WO2023050398A1 - 激光雷达发射装置、激光雷达装置及电子设备 - Google Patents

激光雷达发射装置、激光雷达装置及电子设备 Download PDF

Info

Publication number
WO2023050398A1
WO2023050398A1 PCT/CN2021/122396 CN2021122396W WO2023050398A1 WO 2023050398 A1 WO2023050398 A1 WO 2023050398A1 CN 2021122396 W CN2021122396 W CN 2021122396W WO 2023050398 A1 WO2023050398 A1 WO 2023050398A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
emitting units
beams
rows
Prior art date
Application number
PCT/CN2021/122396
Other languages
English (en)
French (fr)
Inventor
陈华
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2021/122396 priority Critical patent/WO2023050398A1/zh
Priority to EP21920112.6A priority patent/EP4184200A4/en
Priority to US17/875,121 priority patent/US20230094857A1/en
Publication of WO2023050398A1 publication Critical patent/WO2023050398A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18388Lenses

Definitions

  • the present application relates to the technical field of laser radar, and more specifically, to a laser radar transmitting device, a laser radar device and electronic equipment.
  • Simultaneous localization and mapping (SLAM) technology is often used to solve the positioning and map construction problems of mobile robots in unknown environments, and thus is widely used in sweeping robots, service robots, drones, and self-driving cars. And other devices that need to automatically realize real-time positioning, path planning, obstacle avoidance and other functions without unmanned operation.
  • SLAM can be divided into laser SLAM and visual SLAM.
  • laser SLAM is realized by laser radar, which can usually achieve very high measurement accuracy.
  • Laser SLAM is based on laser direct structuring (LDS) technology to achieve distance mapping and intelligent obstacle avoidance through additional sensor modules.
  • LDS laser direct structuring
  • LDS uses a 360-degree high-speed rotating single-beam laser to measure the distance of the target object under different rotation angles in real time. Limited by the number of lasers in LDS and the measurement mode of rotating distance measurement, laser SLAM based on LDS can only perform two-dimensional distance measurement, and the mechanical structure of the measurement module needs to protrude from the top of the electronic device for measurement, which has low reliability. , The problem of short service life.
  • Embodiments of the present application provide a laser radar transmitting device, a laser radar device and electronic equipment, which have a simple structure and support the measurement of three-dimensional depth information while having high measurement accuracy.
  • a laser radar transmitting device including: a light source, including a light-emitting array composed of M*N light-emitting units, for emitting M*N beams of light, where M and N are positive integers, wherein the light-emitting The light-emitting units in each row of the array are arranged along a first direction, the light-emitting units in each column of the light-emitting array are arranged in a second direction, and the first direction is perpendicular to the second direction; a collimating mirror is used For collimating the M*N beams of light; a diffuser, the diffuser has a first viewing angle in the first direction, and is used to convert the M*N beams of light into M*N beams with the line light with a first divergence angle in the first direction, and project the line light to the target object to form N line light spots parallel to the first direction, each of the line light spots is composed of M beams of the line light Light is formed, and the first viewing
  • the emission device in the time-of-flight camera is specially designed, and the diffuser with the first field of view in the first direction is used to obtain a linear beam parallel to the first direction, so that the light source, collimator and
  • the transmitter device composed of the diffusion sheet has a simple structure and can perform high-precision lidar mapping.
  • the emission device uses a light source with a light-emitting array, and the light emitted by the light-emitting array forms multiple linear beams after being shaped by the collimator mirror and the diffuser, so that the emission device can simultaneously emit multi-line lasers to the target to be measured.
  • the multiple beams of linear light emitted by the emission device have a first The divergence angle, the first divergence angle is equal to the first field of view angle of the diffuser in the first direction, so that the launch device can measure the depth information of the target object in real time without rotation, avoiding the use of a rotating mechanical structure, and prolonging the launch
  • the light field emitted by the emitting device itself has a first viewing angle in the first direction, there is no need to rotate the light source to obtain the viewing angle in the first direction, so there is no need to install it on the protruding device
  • the position of the top avoids the equipment from blocking the light source, so that the sweeper can enter the low space; the multi-beam linear light emitted by the emission device has the first divergence angle equal to the first field of view, and can also be used for obstacle detection and
  • the first direction may be a horizontal direction or a vertical direction.
  • the first viewing angle is generally greater than or equal to 60 degrees.
  • the emitting device further includes: an optical replication element, disposed between the collimating mirror and the diffusion sheet, for replicating the M*N after passing through the collimating mirror
  • the beam of light obtains M*P*N*Q beams of light, so that the diffuser projects the M*P*N*Q beams of light onto the target object to form N*Q strips parallel to the first direction
  • each of the linear light spots is formed by M*P beams of the linear light.
  • the replication capability of the optical replication element can be used to increase the number of linear beams projected onto the surface of the target to be measured without changing the light source, thereby expanding the field of view of the laser radar device in the second direction , so that the laser radar device has a wider detection range in the second direction, thereby improving the detection capability of the laser radar device.
  • the collimator is a projection lens
  • the projection lens has a second viewing angle in the first direction and a third viewing angle in the second direction, so that The angle of view in the first direction of the field of view formed by the M*N beams of linear light converted by the diffusion sheet is the first angle of view, and in the second direction The viewing angle of is the third viewing angle.
  • the field of view of the laser radar device in the second direction is larger, and the detection range of the laser radar device in the second direction is expanded.
  • the linear beam projected to the surface of the target to be measured not only has a larger field of view, but also has a larger number, thereby further improving the detection accuracy of the laser radar device.
  • the emitting device further includes: a driving module, connected to the light source, and configured to sequentially drive each row of the light emitting units of the light emitting array.
  • the driving module drives the light sources in partitions, that is, each row of light-emitting units can be independently driven, so that the laser radar device can select the number and position of the light-emitting units to be lit according to application requirements. For example, when the distance from the laser radar When the device is far away from the target to be measured, only one row of light-emitting units is lit, and as the lidar gradually approaches the target to be measured, more light-emitting units are lit up row by row. When too much depth information in the second direction needs to be collected, power consumption is saved and the working efficiency of the laser radar device is improved.
  • the driving module is configured to simultaneously drive k rows of light emitting units in N rows of light emitting units in the first period, 1 ⁇ k ⁇ N.
  • the driving module is further configured to simultaneously drive (N-k) rows of light-emitting units in the N rows of light-emitting units during the second period.
  • the second time period is a time period after the end of the first time period.
  • the driving module drives the light source in time-division and division, so that the laser radar device can light up the light-emitting units with different numbers of rows and positions at different time periods, so as to realize switching back and forth between different lighting modes. For example, when a long-distance and low-precision depth detection in the second direction is required, only one row of light-emitting units is illuminated to emit a linear beam; when a short-distance and high-precision depth detection in the second direction is required During detection, the light-emitting units in rows N-1 are lighted up at the same time.
  • the N-1 rows of light-emitting units may include one row of light-emitting units that have already been lit in the N-rows of light-emitting units, or may be the remaining N-1 row of light-emitting units except the one row of light-emitting units that have been lit. .
  • the driving module is further configured to drive the remaining (N-k) rows of light-emitting units in the N rows of light-emitting units at the same time during the second period.
  • the launching device is applied to a cleaning robot.
  • the launching device of the embodiment of the present application When the launching device of the embodiment of the present application is applied to the sweeping robot, since the launching device does not need to protrude from the top of the equipment, the sweeping robot will not be stuck due to the height of the launching device when cleaning places such as the bottom of the bed Or a collision occurs, resulting in failure or damage, which improves the working efficiency of the sweeping robot and prolongs the service life of the sweeping robot.
  • the light source is a vertical cavity surface emitting laser.
  • a laser radar device including: a transmitting device as in any possible implementation manner of the first aspect, configured to project an optical signal to a target object; a receiving device, connected to the transmitting device, for The reflected light signal returned by the target object is received, and the reflected light signal is analyzed to obtain the depth information of the target object.
  • the laser radar device in the embodiment of the present application uses the transmitter in the special time-of-flight camera as the transmitter of the laser radar. It has a simple structure and high measurement accuracy, and does not need to be installed at a position protruding from the top of the equipment, which is convenient for equipment installation. Overall integration and assembly.
  • the receiving device includes: a receiving lens, configured to receive the reflected light signal, and the viewing angle of the receiving lens is equal to the first viewing angle; a sensor is arranged on the Below the receiving lens, it is used to analyze the reflected light signal to obtain the depth information of the target object.
  • the senor is connected to the driving module, and is configured to send driving information to the driving module so that the driving module drives the light source.
  • the transmitting device is controlled by the receiving device, which facilitates the synchronization of detection and sampling, and avoids the situation that the laser radar device cannot perform in-depth detection or detection errors due to the asynchronous detection and sampling timing between the transmitting device and the receiving device, and improves the accuracy of the laser radar.
  • the efficiency of device depth detection is the efficiency of device depth detection.
  • the senor determines the driving information according to depth information of the target object.
  • the receiving device further includes: an optical filter, disposed above the sensor, for transmitting the reflected light signal with a predetermined wavelength.
  • optical filters by setting an optical filter, it is possible to filter out optical signals other than signal light, such as ambient light signals, which affect depth detection, improve the signal-to-noise ratio, and improve the accuracy of depth information detection.
  • the receiving device further includes: a support member, configured to support the receiving lens so that the sensor is disposed below the receiving lens.
  • an electronic device including the lidar device in any possible implementation manner of the second aspect.
  • a depth detection method including: sending driving information, the driving information is used to instruct the emitting device to emit light signals, the light signals include M*N beams of linear light, and the M*N beams are The linear light is projected to the target object to form N linear light spots parallel to the first direction, each of the linear light spots is formed by M beams of the linear light, and M and N are positive integers; A reflected light signal; calculating depth information of the target object according to the reflected light signal.
  • the sending driving information includes: sending first driving information, where the first driving information is used to instruct the emitting device to drive each row of the light emitting units of the light emitting array.
  • the sending driving information includes: sending second driving information in a first period, and the second driving information is used to instruct the transmitting device to simultaneously drive N rows of k rows of light emitting units in the above light emitting units, 1 ⁇ k ⁇ N.
  • the sending the driving information further includes: sending third driving information during the second period, the third driving information is used to instruct the emitting device to simultaneously drive the (N-k) rows of light emitting units in the N rows of light emitting units.
  • the laser radar device by sending different driving information to instruct the emitting device to drive the light source in time-division and division, so that the laser radar device can light up the light-emitting units with different numbers of rows and positions at different time periods, so that it is possible to switch between different lighting modes. Switch back and forth. For example, when long-distance and low-precision depth detection in the second direction is required, send the second information to instruct the emitting device to light only 3 rows of light-emitting units and emit 3 linear beams; When performing depth detection with higher precision, the third information is sent to instruct the emitting device to simultaneously light up the light emitting units in rows N-3.
  • the N-3 rows of light-emitting units may include the 3 rows of light-emitting units in the N rows of light-emitting units that have been lit, or the remaining N-3 rows of light-emitting units except the 3 rows of light-emitting units that have been lit. .
  • the third driving information is used to instruct the emitting device to simultaneously drive the remaining (N-k) rows of light-emitting units in the N rows of light-emitting units in the second period.
  • the method further includes: determining the driving information according to a usage scenario of the transmitting device.
  • the driving information is determined according to the usage scenario of the transmitting device, that is, the distance between the transmitting device and the target object, and the lighting mode of the transmitting device can be flexibly indicated according to the current scene of the transmitting device, thereby reducing the power consumption of the transmitting device .
  • FIG. 1 is a schematic structural diagram of a laser radar device.
  • Fig. 2 is a schematic diagram of depth detection of a lidar device.
  • FIG. 3 is a two-dimensional map construction scene diagram and an effect diagram of a sweeping robot of the present application.
  • FIG. 4 is a schematic structural diagram of a laser radar transmitting device of the present application.
  • FIG. 5 is a diagram of a beam shaping process of a laser radar transmitting device of the present application.
  • FIG. 6 is a schematic diagram of a light-emitting array and a linear light spot of a laser radar transmitting device of the present application.
  • Fig. 7 is a three-dimensional map construction scene diagram and an effect diagram of the sweeping robot using the laser radar transmitter shown in the application diagram.
  • FIG. 8 is a schematic structural diagram of another laser radar transmitting device of the present application.
  • FIG. 9 is a schematic structural diagram of another laser radar transmitting device of the present application.
  • FIG. 10 is a schematic structural diagram of another laser radar transmitting device of the present application.
  • FIG. 11 is a schematic structural diagram of a lidar device of the present application.
  • Fig. 12 is a schematic structural diagram of a receiving device of the present application.
  • FIG. 13 is a schematic structural diagram of an electronic device of the present application.
  • Fig. 14 is a schematic flowchart of a depth detection method of the present application.
  • LiDAR device is an important part of Simultaneous localization and mapping (SLAM) technology, which can measure depth information independently of ambient light, and thus has been widely used.
  • SLAM Simultaneous localization and mapping
  • Figure 1 and Figure 2 respectively show the common laser radar device and its principle of depth detection.
  • the embodiment of this application takes a sweeping robot as an example to explain the working principle and effect of the laser radar device. It should be understood that the laser radar device described in this application can also be applied to service robots, drones, self-driving cars and other equipment.
  • the top of the sweeping robot 100 is provided with a laser radar device 101, which can emit a beam of laser light and rotate on the top of the sweeping robot.
  • the laser radar device 101 can be fixed relative to the sweeping robot 100. and rotate; it can also rotate by itself relative to the cleaning robot 100 .
  • the laser radar device usually includes a laser radar transmitting device 102 and a laser radar receiving device 103.
  • the transmitting device 102 is usually a laser direct structuring (LDS) module, which emits a single beam of linear laser light, and passes through the laser radar device continuously.
  • LDS laser direct structuring
  • the optical signal 2001 emitted by the transmitting device 102 is reflected by the target object 200 to form a reflected optical signal 2002 carrying depth information, which is received by the receiving device 103, and the cleaning robot 100 obtains the depth information of the target object by analyzing the reflected optical signal 2002.
  • a two-dimensional indoor map can be constructed. Since the laser radar device 101 detects the depth information by rotating, in order to avoid the occlusion of the optical signal by the sweeping robot 100 itself, the laser radar device 101 must protrude from the top of the sweeping robot 100, so that the sweeping robot 100 travels to a place as low as the bottom of the bed.
  • the protruding lidar device 101 In a low position, the protruding lidar device 101 is likely to be stuck or collided, affecting the normal travel and service life of the cleaning robot 100 .
  • the laser radar device based on the rotating mechanical structure is limited by the rotational speed and sampling rate of the mechanical structure, and the resolution of the laser radar device is also limited accordingly.
  • the rotation speed of a typical lidar device is 360rpm (that is, 6 revolutions per second), and the sampling rate is 2080Sa/s, and its calculated angular resolution is only 1°.
  • FIG. 3 shows a scene where the sweeping robot 100 builds a two-dimensional map through the lidar device 101 in an indoor environment 300 with obstacles 301 and a schematic rendering of the two-dimensional map.
  • the laser radar device 101 can only obtain limited two-dimensional depth information and the resolution is limited by its rotating mechanical structure, and does not support more precise and accurate map mapping or three-dimensional obstacle avoidance.
  • 3D vision camera to obtain 3D depth information to support 3D map mapping and obstacle avoidance functions.
  • 3D deep vision cameras are generally divided into: time of flight (TOF), structured light (Structure light, SL) and binocular stereo vision cameras.
  • the time-of-flight camera adopts the active light detection method, and obtains the distance of the target object by detecting the flight (round-trip) time of the light signal.
  • the time-of-flight camera is generally composed of light source, optical components, sensors, control circuits, and processing circuits.
  • the sweeping robot 100 includes multiple laser radar devices 101, although multiple laser beams can be emitted simultaneously, the multiple devices need to protrude from the top of the sweeping robot 100 and avoid mutual interference between the multiple laser radar devices 101.
  • the occlusion increases the height of the plurality of laser radar devices 101 protruding from the top of the cleaning robot 100 , which further increases the risk of the cleaning robot 100 colliding with the environment.
  • the present application provides a laser radar emission device, a laser radar device, and an electronic device. While the measurement accuracy is high, the structure is simple and supports the measurement of three-dimensional depth information, so that the electronic device only uses the laser radar device. Two functions of map mapping and obstacle avoidance.
  • FIG. 4 is a schematic structural diagram of a laser radar transmitting device of the present application.
  • the emitting device 400 includes: a light source 401 , a collimating mirror 402 and a diffuser 403 .
  • the light signal emitted by the light source 401 is projected onto the surface of the target to be measured after being passed through the collimating mirror and the diffuser.
  • the light source 401 includes a light-emitting array composed of M*N light-emitting units 4001 for emitting M*N beams of light, where M and N are positive integers, wherein the light-emitting units 4001 in each row of the light-emitting array are arranged along the first direction, and each light-emitting array A column of light emitting units 4001 is arranged along the second direction, and the first direction is perpendicular to the second direction;
  • the collimating mirror 402 is used to collimate the M*N beams of light emitted by the light source 401;
  • the diffuser 403 has a first angle of view in the first direction, and is used to convert the M*N beams of light passing through the collimating mirror 402 into M*N beams of linear light with a first divergence angle in the first direction, and Projecting the linear light to the target object forms N linear light spots parallel to the first direction, each linear light spot is formed by M beams of linear light, and the first viewing angle is equal to the first divergence angle.
  • the first direction may be a vertical direction or a horizontal direction; each row of the light emitting array includes M light emitting units 4001 , and each column includes N light emitting units 4001 .
  • FIG. 5 shows the beam shaping process of the laser radar transmitting device of the present application.
  • each light-emitting unit 4001 emits a laser beam with a divergence angle a; after being collimated by the collimating mirror 402, the laser beam is converted into a collimated laser beam, and the divergence angle of the laser beam will be reduced to b;
  • the collimated laser beam is shaped into a beam having a first divergence angle d in the first direction and a divergence angle b in the second direction through a diffusion plate having a first angle of view c in the first direction, Wherein the first angle of view c is equal to the first divergence angle d, since the first angle of view c is much larger than the divergence angle (a or b) of the light beam, so the laser beam emitted by each light emitting unit 4001 is converted into The beam whose divergence angle in one direction is much larger than the divergence angle in the second direction presents a linear spot on a plane perpen
  • the divergence angle of the laser beam emitted by the light source is 20°, that is, the divergence angle of the laser beam in the first direction and the second direction is both 20°, and the divergence angle of the beam after collimation by the collimator is 0.3°
  • the beam After passing through a wide-angle diffuser with a 120° field of view in the first direction, the beam is shaped into a linear beam with a divergence angle of 120° in the first direction and a divergence angle of 0.3° in the second direction.
  • a linear spot is formed on the surface.
  • Each of the M*N beams undergoes the above-mentioned beam shaping process, and the light sources corresponding to the M light-emitting units form a row of linear spots in the first direction, so that the light source can project N rows of linear spots parallel to the first direction to the target object Light.
  • FIG. 6 is a schematic diagram of a light-emitting array and a linear light spot of a lidar device of the present application.
  • the light source when the first direction is the horizontal direction, the second direction is the vertical direction, and the light source is an 8*8 light-emitting array, the light source can emit 64 beams of light, and the 64 beams of light are formed after passing through the collimating mirror
  • the horizontal field of view and vertical field of view of the field of view are 16.3° and 12.9° respectively. If the field of view of the diffuser in the horizontal direction is 120°, the 64 beams of light will form a horizontal field of view after passing through the diffuser. is 120°, and the vertical field of view is 12.9°. Among them, there will be 8 linear spots in the horizontal direction.
  • the line resolution of the laser radar device in the vertical direction is the distance between each linear spot in the vertical direction.
  • FIG. 7 is a schematic rendering of a scene in which a three-dimensional map is constructed by a lidar emitting device 400 in an indoor environment 300 with obstacles 301 and the three-dimensional map.
  • a diffuser with a first field of view in the first direction is used to obtain a linear beam parallel to the first direction, so that the light source, collimator and diffuser
  • the launch device composed of chips has a simple structure and can perform high-precision lidar mapping.
  • the emission device uses a light source with a light-emitting array, and the light emitted by the light-emitting array forms multiple linear beams after being shaped by the collimator mirror and the diffuser, so that the emission device can simultaneously emit multi-line lasers to the target to be measured.
  • the multiple beams of linear light emitted by the emission device have a first The divergence angle, the first divergence angle is equal to the first angle of view of the diffuser in the first direction, so that the launch device can measure the depth information of the target object in real time without rotation, avoiding the use of a rotating mechanical structure, and the launch device does not need Installed on the top of the protruding device, prolonging the service life of the transmitter; the multi-beam linear light emitted by the transmitter has a first divergence angle equal to the first field of view, and can also be used for obstacle detection and avoidance , so that the electronic device can support two functions of map construction and obstacle avoidance with only one transmitter device, which is conducive to the miniaturization and thinning of the device.
  • the light source 401 is a vertical cavity surface emitting laser (Verticah cavity surface emitting laser, VCSEL).
  • VCSEL is a semiconductor diode laser.
  • the emitted laser beam generally leaves the device from the top surface and in a substantially vertical manner.
  • the VCSEL light source has many advantages such as small size, high power, small beam divergence angle, and stable operation. It is a depth detection system.
  • the embodiment of this application uses VCSEL as an example for illustration.
  • the light source may be a VCSEL chip with multiple light emitting points on a single chip, and the multiple light emitting points are arranged in a two-dimensional matrix, correspondingly emitting multiple laser signals to form a matrix laser signal array.
  • the light source 401 is an edge emitting laser (Edge emitting laser, EEL) or a light emitting diode (Light emitting diodes, HED).
  • EEL edge emitting laser
  • HED light emitting diode
  • the light source 401 may be one type of light source, or may be a combination of the above-mentioned multiple light sources.
  • the optical signal can be an optical signal carrying a spatial optical pattern that has been optically modulated, processed, or controlled, it can be an optical signal that has been optically modulated, processed, or controlled for sub-area illumination, or it can be a periodic optical signal that has been optically modulated, processed, or controlled.
  • the optical axis of the light source 401 is located at the geometric center of the light emitting plane and is perpendicular to the light emitting plane.
  • the collimating mirror 402 is a glass or plastic lens or a glass/plastic combination.
  • the collimating mirror can change the beam diameter and divergence angle of the optical signal emitted by the light source 401, so that the beam becomes a collimated parallel beam with more concentrated energy, and obtains a small high-density light spot.
  • the collimating mirror 402 described in the embodiment of the present application may also be a single optical element or a combination of multiple optical elements capable of collimating light beams.
  • the collimating mirror 402 includes a plurality of lenses arranged back and forth along the optical axis direction, and the plurality of lenses are used to collimate the N beams of light, and the incident surface of the lens closest to the light source 401 among the plurality of lenses is a collimating mirror
  • the light incident surface of 402 and the light exit surface of the lens farthest from the light source 401 among the multiple lenses are used as the light exit surface of the collimating mirror 402 .
  • FIG. 8 is a schematic structural diagram of another laser radar transmitting device of the present application.
  • the laser radar transmitting device 400 also includes:
  • the optical reproduction element 404 is arranged between the collimating mirror 402 and the diffusion sheet 403, and is used to reproduce the M*N beams of light after the collimating mirror 402 to obtain M*P*N*Q beams of light, so that the diffusion sheet 403 Projecting M*P*N*Q beams of light to the target object forms N*Q linear light spots parallel to the first direction, and each linear light spot is formed by M*P beams of linear light.
  • the optical replication element may be at least one or a combination of optical elements such as an optical diffraction element (Diffraction optical element, DOE), a micro lens array (Micro lens array, MLA), and a grating.
  • DOE optical diffraction element
  • MLA micro lens array
  • grating grating
  • the replication capability of the optical diffraction element can be used to increase the number of linear beams projected onto the surface of the target to be measured without changing the light source, thereby expanding the field of view of the laser radar device in the second direction.
  • the laser radar device has a wider detection range in the second direction, thereby improving the detection capability of the laser radar device.
  • FIG. 9 is a schematic structural diagram of another laser radar transmitting device of the present application.
  • the collimating mirror 402 is a projection lens 901
  • the projection lens 901 has a second viewing angle in the first direction and a third viewing angle in the second direction, so that M* transformed by the diffuser 403
  • the field of view formed by the N beams of linear light is described as a first field of view angle in the first direction, and a third field of view angle in the second direction.
  • the projection lens 901 not only has the collimating ability, but also has a larger field of view and a shorter focal length.
  • the field of view of the light beam passing through the projection lens in the second direction The angle is further increased, so that the detection range of the lidar device in the second direction is expanded;
  • the projection lens 901 it is possible to project more and denser light beams to the diffuser 403 by increasing the number of light-emitting arrays , so that the number of light beams forming each line of the linear spot increases, the number of lines of the linear spot increases, and the distance between the linear light plates is also reduced, thereby improving the line resolution of the laser radar device in the second direction.
  • the projection lens 901 may also be used instead of the collimating mirror 402 in the laser radar device including the optical replication element 404, which can further expand the detection range of the laser radar device in the second direction.
  • the light source has 34*17 light-emitting arrays and can emit 578 beams of light.
  • the horizontal viewing angle of the field of view formed by the projection lens is 46.7°, and the vertical viewing angle is 60.2°.
  • These 578 beams of light pass through
  • the formed light field has a horizontal field angle of 120° and a vertical field angle of 60.2°, including 34 rows of horizontal light spots, and each line of light spots consists of 17 beams Horizontal line light is formed, and the line resolution at this time is 1.37°.
  • the field of view of the laser radar device in the second direction is larger, and the detection range of the laser radar device in the second direction is expanded.
  • the linear beam projected to the surface of the target to be measured not only has a larger field of view, but also has a larger number, thereby further improving the detection accuracy of the laser radar device.
  • Fig. 10 is a schematic structural diagram of another laser radar emitting device of the present application.
  • the emitting device 400 further includes: a driving module 405 connected to the light source 401 and used to drive each row of light emitting units of the light emitting array.
  • each row of the light emitting array of the light source 401 can be driven independently, and when only one row of light emitting units is lit, it corresponds to a linear light spot.
  • the driving module 405 can determine the number and position of lit rows according to the working scene requirements of the laser radar device.
  • the driving module drives the light sources in partitions, that is, each row of light-emitting units can be independently driven, so that the laser radar device can select the number and position of the light-emitting units to be lit according to application requirements. For example, when the distance from the laser radar When the device is far away from the target to be measured, only one row of light-emitting units is lit, and as the lidar gradually approaches the target to be measured, more light-emitting units are lit up row by row. When too much depth information in the second direction needs to be collected, power consumption is saved and the working efficiency of the laser radar device is improved.
  • the driving module is configured to drive k rows of light emitting units in N rows of light emitting units at the same time in the first period, 1 ⁇ k ⁇ N.
  • the driving module is further configured to simultaneously drive (N-k) rows of light-emitting units in the N rows of light-emitting units during the second period.
  • the second time period is a time period after the end of the first time period.
  • the first lighting mode is to light up a row of light-emitting units or light-emitting units with a small number of rows.
  • the drive module adopts the first lighting mode, which only lights up one row of light-emitting units and emits a linear beam;
  • the second lighting mode is to light up multiple rows of light-emitting units at the same time, when it is necessary to perform short-distance and precision in the second direction
  • the driving module adopts the second lighting mode, and simultaneously lights up multiple rows of light-emitting units to obtain depth information in the first direction and the second direction.
  • the plurality of rows of light-emitting units lit in the second lighting pattern may include light-emitting units that have been lit in the first lighting pattern, or may be light-emitting units other than the light-emitting units lit in the first lighting pattern.
  • the driving module is used to simultaneously drive the remaining (N-k) rows of light emitting units in the N rows of light emitting units during the second period.
  • the light source includes 8 rows of light-emitting units, the 1st, 3rd, 5th and 7th rows of light-emitting units are simultaneously driven during the first period, and the 2nd, 4th, 6th and 8th rows of light-emitting units are simultaneously driven during the second period.
  • the driving module drives the light source in time-sharing, so that the laser radar device can light up the light-emitting units with different numbers of rows and positions at different time periods, so as to switch back and forth between different lighting modes. While meeting the requirements of three-dimensional surveying and mapping, it can effectively save the power consumption of the laser radar device.
  • FIG. 11 is a schematic structural diagram of a laser radar device of the present application. As shown in Figure 11, the laser radar device 1100 includes:
  • a transmitting device 400 configured to project an optical signal to a target object
  • the receiving device 1101 is connected with the transmitting device 400, and is used for receiving the reflected light signal returned by the target object, and analyzing the reflected light signal to obtain the depth information of the target object.
  • the receiving device 1101 includes:
  • the receiving lens 1102 is used to receive the reflected light signal, and the viewing angle of the receiving lens 1102 is equal to the first viewing angle;
  • the sensor 1103 is disposed under the receiving lens 1102 and is used to analyze the reflected light signal to obtain the depth information of the target object.
  • the receiving lens 1102 may be an optical structure composed of a spherical surface or an aspherical surface, which is used to focus incident light onto the sensor 1103, and convert the optical signal collected by the lens into an electrical signal through the sensor 1103.
  • the receiving lens 1102 may be composed of one or more lenses, and each lens may be injection-molded with materials such as resin, for example.
  • the laser radar device in this embodiment uses the transmitter in the special time-of-flight camera as the transmitter of the laser radar, has a simple structure and high measurement accuracy, and the emitted light field itself has a first viewing angle in the first direction. Field angle, it is not necessary to rotate the light source to obtain the field of view angle in the first direction, and it does not need to be installed at a position protruding from the top of the device to avoid the device from blocking the light source, which is convenient for the overall integration and assembly of the device.
  • the laser radar device 1100 includes a plurality of emitting devices 400, which can realize 360° full-angle depth information detection by setting them at different positions of the device and combining angles.
  • the senor 1103 is connected to the driving module 405 and is used to send driving information to the driving module 405 so that the driving module drives the light source 401 .
  • the transmitting device is controlled by the receiving device, which facilitates the synchronization of detection and sampling, and avoids situations where the laser radar device cannot perform in-depth detection or detection errors due to asynchronous detection and sampling timing between the transmitting device and the receiving device, and improves the accuracy of the laser radar device.
  • the efficiency of deep detection is the efficiency of deep detection.
  • the sensor 1103 determines driving information according to the depth information of the target object.
  • the receiving device 1101 further includes:
  • the optical filter 1104 is disposed above the sensor 1103 for passing the reflected light signal with a predetermined wavelength.
  • an optical filter by setting an optical filter, it is possible to filter out the influence of optical signals other than signal light, such as ambient light signals, on depth detection, improve the signal-to-noise ratio, and improve the accuracy of depth information detection.
  • the receiving device 1101 further includes:
  • the supporting member 1105 is used to support the receiving lens 1102 so that the sensor 1103 is disposed under the receiving lens 1102 .
  • the embodiment of the present application also provides an electronic device 1300 , as shown in FIG. 13 , the electronic device 1300 includes: a laser radar device 1100 .
  • the electronic device in the embodiment of the present application may be a portable or mobile computing device such as a terminal device, a mobile phone, a tablet computer, a notebook computer, a desktop computer, a game device, a vehicle electronic device, or a wearable smart device, and Electronic databases, automobiles, bank ATMs (Automated Teller Machines, ATMs) and other electronic equipment.
  • the wearable smart device includes full-featured, large-sized, complete or partial functions independent of smartphones, such as smart watches or smart glasses, etc., and only focuses on a certain type of application functions, and needs to cooperate with other devices such as smartphones Use, such as various smart bracelets, smart jewelry and other equipment for physical sign monitoring.
  • the embodiment of the present application also provides a depth detection method, including:
  • the driving information is used to instruct the emitting device to emit an optical signal
  • the optical signal includes M*N beams of linear light
  • the M*N beams of linear light are projected to the target object to form N linear light spots parallel to the first direction, and each linear light spot consists of M
  • the linear light beam is formed, and M and N are positive integers;
  • S1402 Receive a reflected light signal returned by the target object
  • sending the driving information includes: sending first driving information, the first driving information is used to instruct the emitting device to drive each row of the light emitting units of the light emitting array.
  • sending the driving information includes: sending second driving information in a first period, the second driving information is used to instruct the emitting device to simultaneously drive N rows of the light emitting units in the first period The k rows of light-emitting units in , 1 ⁇ k ⁇ N.
  • sending the driving information further includes: sending third driving information in a second period, where the third driving information is used to instruct the transmitting device to simultaneously drive the N rows of (N-k) rows of light-emitting units in the above-mentioned light-emitting units.
  • the N-3 rows of light-emitting units may include the 3 rows of light-emitting units that have been lit in the N rows of light-emitting units, or the remaining N-rows of light-emitting units other than the 3 rows that have been lit in the first period. 3 rows of light emitting units.
  • the third driving information is used to instruct the emitting device to simultaneously drive the remaining (N-k) rows of light-emitting units in the N rows of light-emitting units in the second period. That is, (N-k) rows of light-emitting units except the k-rows of light-emitting units that have been turned on in the first period.
  • the method further includes: determining the driving information according to a usage scenario of the transmitting device.
  • the driving information is determined according to the usage scenario of the transmitting device, that is, according to the distance between the transmitting device and the target object. For example, when the emitting device is far away from the target, the first or second driving information is sent to drive light-emitting units with fewer rows; when the emitting device is closer to the target, the first or third driving information is sent to drive the number of rows More lighting units.
  • the lighting mode of the transmitting device can be flexibly indicated according to the current scene of the transmitting device, thereby reducing the power consumption of the transmitting device.
  • the disclosed systems and devices can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)

Abstract

一种激光雷达发射装置、激光雷达装置及电子设备,激光雷达发射装置(400)包括:光源(401),包括M*N个发光单元(4001)组成的发光阵列,用于发射M*N束光,M、N为正整数,其中,发光阵列每一行的发光单元(4001)沿第一方向排列,发光阵列每一列的发光单元(4001)沿第二方向上排列,第一方向与第二方向垂直;准直镜(402),用于准直M*N束光;扩散片(403),扩散片(403)具有第一方向上的第一视场角,用于将M*N束光转化为M*N束具有第一方向上的第一发散角的线形光,并将线形光投射至目标对象形成平行于第一方向的N条线形光斑,每条线形光斑由M束线形光重合形成,第一视场角等于第一发散角。激光雷达装置(101)包括激光雷达发射装置(400);电子设备包括激光雷达装置(101)。激光雷达发射装置(400)使得激光雷达在测量精度高的同时,结构简单且支持三维深度信息的测量。

Description

激光雷达发射装置、激光雷达装置及电子设备 技术领域
本申请涉及激光雷达技术领域,并且更具体地,涉及一种激光雷达发射装置、激光雷达装置及电子设备。
背景技术
即时定位与地图构建(Simultaneous localization and mapping,SLAM)技术常被用于解决移动机器人在未知环境下的定位与地图构建问题,从而被广泛应用于扫地机器人、服务机器人、无人机、自动驾驶汽车等需要在无人操作的情况下自动实现实时定位、路径规划、躲避障碍物等功能的设备中。SLAM根据传感器类型,可以分为激光SLAM和视觉SLAM,其中激光SLAM利用激光雷达来实现,通常能够实现非常高测量精度。激光SLAM基于激光直接成型(Laser direct structuring,LDS)技术实现距离测绘并通过额外的传感器模组进行智能避障。LDS通过360度高速旋转的单束激光实时测量不同旋转角度下目标对象的距离。受限于LDS的激光数量以及旋转测距的测量模式,基于LDS的激光SLAM仅能进行二维测距且测量模组的机械结构需要凸出电子设备的顶部才能进行测量,存在可靠性较低、使用寿命较短的问题。
因此,需要为SLAM技术提供结构更加简单、测量精度更高的激光雷达装置。
发明内容
本申请实施例提供了一种激光雷达发射装置、激光雷达装置及电子设备,在测量精度高的同时,结构简单且支持三维深度信息的测量。
第一方面,提供一种激光雷达的发射装置,包括:光源,包括M*N个发光单元组成的发光阵列,用于发射M*N束光,M、N为正整数,其中,所述发光阵列每一行的所述发光单元沿第一方向排列,所述发光阵列每一列的所述发光单元沿第二方向上排列,所述第一方向与所述第二方向垂直;准直镜,用于准直所述M*N束光;扩散片,所述扩散片具有所述第一方向上的第一视场角,用于将所述M*N束光转化为M*N束具有所述第一方向上的第一发散角的线形光,并将所述线形光投射至目标对象形成平行于所述第一 方向的N条线形光斑,每条所述线形光斑由M束所述线形光形成,所述第一视场角等于所述第一发散角。
本申请实施例中,将飞行时间相机中的发射装置进行特殊设计,使用在第一方向上具有第一视场角的扩散片得到与第一方向平行的线形光束,使得光源、准直镜和扩散片组成的发射装置结构简单,且能够进行高精度激光雷达测绘。一方面,发射装置利用具有发光阵列的光源,发光阵列发出的光经过准直镜和扩散片的光束整形后即形成多束线形光束,使得发射装置能够同时向待测目标发射多线激光,进行三维深度信息的测量,提高了发射装置的测量性能以及测量精度,且发射装置尺寸较小,便于集成于设备中;另一方面,发射装置发出的多束线形光在第一方向上具有第一发散角,该第一发散角等于扩散片在第一方向上的第一视场角,使得发射装置无需旋转即可实时测量目标对象的深度信息,避免了旋转式机械结构的使用,延长了发射装置的使用寿命,同时,由于发射装置发射的光场本身在第一方向上具有第一视场角,不需要通过旋转光源以获得第一方向上的视场角,故无需安装在凸出设备顶部的位置来避免设备对光源的遮挡,使得扫地机可以进入低矮空间;发射装置发出的多束线形光因具有与第一视场角相等的第一发散角,还能用于障碍物检测与躲避中,使得电子装置仅使用一个发射装置就能支持地图构建与障碍物躲避两项功能,降低成本的同时利于设备的小型化、轻薄化。
应理解,第一方向可以是水平方向,也可以是竖直方向。第一视场角通常大于或等于60度。
在一种可能的实现方式中,所述发射装置还包括:光学复制元件,设置于所述准直镜与所述扩散片之间,用于复制经所述准直镜的后的M*N束光得到M*P*N*Q束光,以使所述扩散片将所述M*P*N*Q束光投射至所述目标对象形成平行于所述第一方向的N*Q条所述线形光斑,每条所述线形光斑由M*P束所述线形光形成。
本申请实施例中,利用光学复制元件的复制能力,能够在不改变光源的情况下,增加投射至待测目标表面的线形光束的数量,扩大了激光雷达装置在第二方向上的视场角,使得激光雷达装置在第二方向上具有更广的检测范围,从而提升了激光雷达装置的检测能力。
在一种可能的实现方式中,所述准直镜为投影镜头,所述投影镜头具有所述第一方向上的第二视场角以及所述第二方向上的第三视场角,以使经所 述扩散片转化后的所述M*N束所述线形光形成的视场在所述第一方向上的视场角为所述第一视场角,在所述第二方向上的视场角为所述第三视场角。
本申请实施例中,通过使用视场角较大的投影镜头,使得激光雷达装置在第二方向上的视场角更大,扩大激光雷达装置在第二方向上的检测范围,当使用发光单元更多的光源时,结合投影镜头的设置,投射至待测目标表面的线形光束不仅视场角更大,且数量更多,从而进一步提高了激光雷达装置的检测精度。
在一种可能的实现方式中,所述发射装置还包括:驱动模块,与所述光源连接,用于依次驱动所述发光阵列的每一行所述发光单元。
本申请实施例中,驱动模块分区驱动光源,即每行发光单元能够被独立驱动,使得激光雷达装置能够根据应用需求选择点亮的发光单元的行数以及位置,示例性地,当距离激光雷达装置距离待测目标较远时,仅点亮一行发光单元,随着激光雷达逐渐靠近待测目标,逐行点亮更多的发光单元,能够在激光雷达装置在距离待测目标较远、不需要采集过多第二方向上的深度信息时,节省功耗,提高激光雷达装置的工作效率。
在一种可能的实现方式中,所述驱动模块用于在第一时段同时驱动N行所述发光单元中的k行发光单元,1≤k≤N。
在一种可能的实现方式中,所述驱动模块还用于在第二时段同时驱动所述N行所述发光单元中(N-k)行发光单元。
应理解,第二时段为第一时段结束后的时间段。
本申请实施例中,驱动模块分时分区驱动光源,使得激光雷达装置能够在不同时段点亮不同行数及位置的发光单元,从而能够实现在不同点亮模式之间来回切换。示例性地,当需要进行远距离、第二方向上精度不高的深度检测时,仅点亮1行发光单元,发射一条线形光束;当需要进行近距离、第二方向上精度较高的深度检测时,同时点亮N-1行发光单元。应理解,该N-1行发光单元中可以包括N行发光单元中已经点亮过的1行发光单元,也可以是除已经点亮过的1行发光单元以外剩余的N-1行发光单元。
在一种优选的实现方式中,所述驱动模块还用于在第二时段同时驱动所述N行所述发光单元中的剩余(N-k)行发光单元。在一种可能的实现方式中,所述发射装置应用于扫地机器人中。
本申请实施例的发射装置应用于扫地机器人中时,由于发射装置无需凸 出于设备的顶部,使得扫地机器人在进行如床底等位置的清扫时,不会因发射装置的高度而被卡住或产生碰撞从而出现故障或损坏,提高了扫地机器人的工作效率并延长了扫地机器人的使用寿命。
在一种可能的实现方式中,所述光源为垂直腔面发射激光器。
第二方面,提供一种激光雷达装置,包括:如第一方面任一种可能的实现方式中的发射装置,用于向目标对象投射光信号;接收装置,与所述发射装置连接,用于接收经所述目标对象返回的反射光信号,并解析所述反射光信号以得到所述目标对象的深度信息。
本申请实施例中的激光雷达装置使用特殊的飞行时间相机中的发射装置作为激光雷达的发射装置,具有简单的结构以及较高的测量精度,无需安装于凸出设备顶部的位置,便于设备的整体集成与装配。
在一种可能的实现方式中,所述接收装置包括:接收镜头,用于接收所述反射光信号,所述接收镜头的视场角等于所述第一视场角;传感器,设置于所述接收镜头下方,用于解析所述反射光信号以得到所述目标对象的深度信息。
在一种可能的实现方式中,所述传感器与所述驱动模块连接,用于向所述驱动模块发送驱动信息以使所述驱动模块驱动所述光源。
本申请实施例中,通过接收装置控制发射装置,利于检测与采样的同步,避免发射装置与接收装置因检测与采样时序不同步导致激光雷达装置无法进行深度检测或检测错误等情况,提高激光雷达装置深度检测的效率。
在一种可能的实现方式中,所述传感器根据所述目标对象的深度信息确定所述驱动信息。
在一种可能的实现方式中,所述接收装置还包括:滤光片,设置于所述传感器的上方,用于透过预设波长的所述反射光信号。
本申请实施例中,通过设置滤光片,能够滤除信号光之外的光信号,如环境光信号,对深度检测的影响,提高信噪比,提升深度信息检测的准确性。
在一种可能的实现方式中,所述接收装置还包括:支撑件,用于支撑所述接收镜头以使所述传感器设置于所述接收镜头的下方。
第三方面,提供一种电子设备,包括如第二方面任一种可能的实现方式中的激光雷达装置。
第四方面,提供过一种深度检测方法,包括:发送驱动信息,所述驱动 信息用于指示发射装置发射光信号,所述光信号包括M*N束线形光,所述M*N束所述线形光被投射至目标对象形成平行于第一方向的N条线形光斑,每条所述线形光斑由M束所述线形光形成,M、N为正整数;接收经所述目标对象返回的反射光信号;根据所述反射光信号,计算所述目标对象的深度信息。
在一种可能的实现方式中,所述发送驱动信息包括:发送第一驱动信息,所述第一驱动信息用于指示所述发射装置驱动所述发光阵列的每一行所述发光单元。在一种可能的实现方式中,所述发送驱动信息包括:在第一时段发送第二驱动信息,所述第二驱动信息用于指示所述发射装置在所述第一时段同时驱动N行所述发光单元中的k行发光单元,1≤k≤N。
在一种可能的实现方式中,所述发送驱动信息还包括:在第二时段发送第三驱动信息,所述第三驱动信息用于指示所述发射装置在所述第二时段同时驱动所述N行所述发光单元中(N-k)行发光单元。
本申请实施例中,通过发送不同的驱动信息指示发射装置分时分区驱动光源,使得激光雷达装置能够在不同时段点亮不同行数及位置的发光单元,从而能够实现在不同点亮模式之间来回切换。例如,当需要进行远距离、第二方向上精度不高的深度检测时,发送第二信息指示发射装置仅点亮3行发光单元,发射3条线形光束;当需要进行近距离、第二方向上精度较高的深度检测时,发送第三信息指示发射装置同时点亮N-3行发光单元。应理解,该N-3行发光单元中可以包括N行发光单元中已经点亮过的3行发光单元,也可以是除已经点亮过的3行发光单元以外剩余的N-3行发光单元。
在一种优选的实现方式中,所述第三驱动信息用于指示所述发射装置在所述第二时段同时驱动所述N行所述发光单元中的剩余(N-k)行发光单元。
在一种可能的实现方式中,所述方法还包括:根据所述发射装置的使用场景,确定所述驱动信息。
本申请实施例中,根据发射装置的使用场景,即发射装置距离目标对象的距离确定驱动信息,能够根据发射装置当前所处的场景灵活指示发射装置的点亮模式,从而降低发射装置的功耗。
附图说明
图1是一种激光雷达装置的示意性结构图。
图2是一种激光雷达装置的深度检测原理图。
图3是本申请一种扫地机器人的二维地图构建场景图以及效果图。
图4是本申请一种激光雷达的发射装置的示意性结构图。
图5是本申请一种激光雷达的发射装置的光束整形过程图。
图6是本申请一种激光雷达的发射装置的发光阵列与线形光斑示意图。
图7是扫地机器人利用本申请图只不过激光雷达的发射装置的三维地图构建场景图以及效果图。
图8本申请另一种激光雷达的发射装置的示意性结构图。
图9是本申请又一种激光雷达的发射装置的示意性结构图。
图10本申请再一种激光雷达的发射装置的示意性结构图。
图11为本申请一种激光雷达装置的示意性结构图。
图12是本申请一种接收装置的示意性结构图。
图13是本申请一种电子设备的示意性结构图。
图14是本申请一种深度检测方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
激光雷达装置是实现即时定位与地图构建(Simultaneous localization and mapping,SLAM)技术的重要部件,能够不依赖于环境光进行深度信息的测量,从而得到了广泛的应用。以扫地机器人为例,图1和图2分别为常见的激光雷达装置如以及其深度检测的原理。本申请实施例以扫地机器人为例,解释激光雷达装置的工作原理及效果,应理解,本申请所述的激光雷达装置还可应用于服务机器人、无人机、自动驾驶汽车等设备中。
扫地机器人100的顶部设置有激光雷达装置101,该激光雷达装置101能够发射一束激光并在扫地机器人的顶部旋转,该激光雷达装置101可相对于扫地机器人100固定,随着扫地机器人100的转动而旋转;也可以相对于扫地机器人100自行旋转。激光雷达装置通常包括激光雷达发射装置102及激光雷达接收装置103,发射装置102通常是一个激光直接成型(Laser direct structuring,LDS)模块,向外发射单束直线形激光,通过激光雷达装置的不断旋转,发射装置102发出的光信号2001经目标对象200的反射形成携带深度信息的反射光信号2002,被接收装置103接收,扫地机器人100通过解析 该反射光信号2002获取目标对象的深度信息。结合扫地机器人100自身的运动轨迹,能够构建室内的二维地图。由于激光雷达装置101通过旋转进行深度信息的检测,为避免扫地机器人100自身对光信号的遮挡,激光雷达装置101必须凸出于扫地机器人100的顶部,使得扫地机器人100行进至如床底等低矮位置时,其凸出的激光雷达装置101容易被卡住或产生碰撞,影响扫地机器人100的正常行进以及使用寿命。另外,基于旋转式机械结构的激光雷达装置,受限于机械结构的转速与采样率,激光雷达装置的分辨率也随之受限。例如,典型的激光雷达装置的转速为360rpm(即每秒旋转6圈)、采样率为2080Sa/s,计算得到其角度分辨率仅为1°。
图3示出了扫地机器人100在具有障碍物301的室内环境300中通过激光雷达装置101构建二维地图的场景与该二维地图的示意性效果图。由图3可知,激光雷达装置101仅能获取有限的二维深度信息且分辨率受其旋转机械结构限制,不支持更加精细准确的地图测绘或进行三维避障,故通常扫地机器人100中还需结合三维视觉相机获取三维深度信息以支持三维地图的测绘以及避障功能。三维深视觉相机按照测量原理的不同一般分为:飞行时间相机(Time of flight,TOF)、结构光相机(Structure light,SL)和双目立体视觉相机。其中飞行时间相机采用主动光探测方式,通过探测光信号的飞行(往返)时间来获取目标物的距离,飞行时间相机一般由光源、光学部件、传感器、控制电路以及处理电路等单元组成。
另外,当扫地机器人100中包括多个激光雷达装置101时,尽管能够同时发射多束激光,但多个装置均需要凸出于扫地机器人100的顶部且避免多个激光雷达装置101之间的互相遮挡,使得多个激光雷达装置101凸出于扫地机器人100顶部的高度增大,进一步提高了扫地机器人100与环境发生碰撞的风险。
有鉴于此,本申请提供了一种激光雷达发射装置、激光雷达装置以及电子设备,在测量精度高的同时,结构简单且支持三维深度信息的测量,使得电子设备仅使用激光雷达装置即可实现地图测绘及避障两项功能。
图4为本申请一种激光雷达的发射装置的示意性结构图。
发射装置400包括:光源401、准直镜402以及扩散片403,光源401发出的光信号经准直镜及扩散片后被投射至待测目标的表面。
光源401包括M*N个发光单元4001组成的发光阵列,用于发射M*N 束光,M、N为正整数,其中,发光阵列每一行的发光单元4001沿第一方向排列,发光阵列每一列的发光单元4001沿第二方向上排列,第一方向与第二方向垂直;
准直镜402用于准直光源401发射的M*N束光;
扩散片403具有第一方向上的第一视场角,用于将经过准直镜402的M*N束光转化为M*N束具有第一方向上的第一发散角的线形光,并将线形光投射至目标对象形成平行于第一方向的N条线形光斑,每条线形光斑由M束线形光形成,所述第一视场角等于所述第一发散角。
应理解,第一方向可以是竖直方向也可以是水平方向;发光阵列的每一行包括M个发光单元4001,每一列包括N个发光单元4001。
图5展示了本申请的激光雷达的发射装置的光束整形过程。具体地,每个发光单元4001发出具有发散角a的激光光束;经过准直镜402准直后,激光光束被转化为准直的激光光束,此时激光光束的发散角将减小至b;准直后的激光光束经过在第一方向上具有第一视场角c的扩散片,被整形成在第一方向上具有第一发散角d,在第二方向上具有发散角b的光束,其中第一视场角c等于第一发散角d,由于第一视场角c远大于光束的发散角(a或b),故每一个发光单元4001发出的激光光束都被转化为在第一方向上的发散角远大于第二方向上的发散角的光束,在垂直于光束的平面上呈现线形光斑,即激光光束被转化为线形光束。
示例性地,光源发出的激光光束的发散角为20°,即激光光束在第一方向、第二方向上的发散角均为20°,准直镜准直后光束的发散角为0.3°,经过在第一方向上具有120°视场角的广角扩散片后,光束被整形成在第一方向上具有120°发散角,在第二方向上具有发散角0.3°的线形光束,在目标对象表面形成线形光斑。M*N个光束中的每一个光束均经过上述光束整形过程,M个发光单元对应的光源形成第一方向上的一行线形光斑,从而光源能够向目标对象投射N行平行于第一方向的线形光。
图6是本申请的一种激光雷达装置的发光阵列与线形光斑示意图。如图6所示,当第一方向为水平方向,第二方向为竖直方向,光源为8*8的发光阵列时,光源能够发射64束光,这64束光经过准直镜后形成的视场的水平视场角与竖直视场角分别为16.3°与12.9°,若扩散片在水平方向上的视场角为120°,这64束光经过扩散片后将形成水平视场角为120°,竖直视场 角为12.9°的视场,其中,水平方向将有8条线形光斑,激光雷达装置在竖直方向上的线分辨率即竖直方向上每条线形光斑之间的角度间隔为12.9°/8=1.61°。
图7是在具有障碍物301的室内环境300中通过激光雷达发射装置400构建三维地图的场景与该三维地图的示意性效果图。
本申请实施例通过对飞行时间相机中的发射装置进行特殊设计,使用在第一方向上具有第一视场角的扩散片得到与第一方向平行的线形光束,使得光源、准直镜和扩散片组成的发射装置结构简单,且能够进行高精度激光雷达测绘。一方面,发射装置利用具有发光阵列的光源,发光阵列发出的光经过准直镜和扩散片的光束整形后即形成多束线形光束,使得发射装置能够同时向待测目标发射多线激光,进行三维深度信息的测量,提高了发射装置的测量性能以及测量精度,且发射装置尺寸较小,便于集成于设备中;另一方面,发射装置发出的多束线形光在第一方向上具有第一发散角,该第一发散角等于扩散片在第一方向上的第一视场角,使得发射装置无需旋转即可实时测量目标对象的深度信息,避免了旋转式机械结构的使用,发射装置无需安装在凸出设备顶部的位置,延长了发射装置的使用寿命;发射装置发出的多束线形光因具有与第一视场角相等的第一发散角,还能用于障碍物检测与躲避中,使得电子装置仅使用一个发射装置就能支持地图构建与障碍物躲避两项功能,利于设备的小型化、轻薄化。
可选地,光源401是垂直腔面发射激光器(Verticah cavity surface emitting laser,VCSEL)。VCSEL是一种半导体二极管激光器,发射的激光束一般从顶表面并且以基本垂直的方式离开该器件,VCSEL光源具有体积小、功率大、光束发散角小、运行稳定等诸多优势,成深度检测***光源的首选,本申请实施例以VCSEL为示例进行说明。具体的,光源可以是单芯片多点发光的VCSEL芯片,多个发光点呈二维矩阵排列,对应的发射出多束激光信号,形成矩阵式激光信号阵列。
可选地,光源401为边发射激光器(Edge emitting laser,EEL)或发光二极管(Light emitting diodes,HED)。
应理解,光源401可以是一种光源,也可以是上述多种光源的组合。光信号可以是经光学调制、处理或控制的携带空间光学图案的光信号,可以是经光学调制、处理或控制的分区域照明的光信号,也可以是经光学制、处理 或控制的周期性照明的光信号,或上述光信号的组合。光源401的光轴位于发光平面几何中心并垂直于发光平面。
可选地,准直镜402采用玻璃或塑胶镜片或者玻璃/塑胶的组合。准直镜能够改变光源401发射的光信号的光束直径和发散角,使光束变为能量更为集中的准直平行光束,获得细小的高密度光斑。应理解,本申请实施例所述的准直镜402也可以是其他能达到光束准直效果的单个光学元件或多个光学元件的组合。
可选地,准直镜402包括沿光轴方向前后排列的多个透镜,多个透镜用于准直N束光,多个透镜中最靠近光源401的那个透镜的入光面为准直镜402的入光面,多个透镜中离光源401最远的那个透镜的出光面作为准直镜402的出光面。
图8是本申请另一种激光雷达的发射装置的示意性结构图。可选地,激光雷达发射装置400还包括:
光学复制元件404,设置于准直镜402与扩散片403之间,用于复制经准直镜402的后的M*N束光得到M*P*N*Q束光,以使扩散片403将M*P*N*Q束光投射至目标对象形成平行于第一方向的N*Q条线形光斑,每条线形光斑由M*P束线形光形成。
具体地,P、Q分别是光学复制元件在第一方向以及第二方向上的复制倍数。光学复制元件可以为光学衍射元件(Diffraction optical element,DOE)、微透镜阵列(Micro lens array,MLA)、光栅等光学元件中的至少一个或多种光学元件的组合。本申请实施例以DOE为示例进行说明。DOE通常为玻璃或塑胶材质,用于将所述VCSEL光源发射的光束以一定的倍数复制后向外投射。
作为示例而非限定,当光源为8*8的发光阵列,能够发射64束光,这64束光经过准直镜后形成的视场的水平视场角与竖直视场角分别为16.3°与12.9°,DOE在第一方向和第二方向上分别具有3倍复制能力,即该DOE的P=Q=3,这64束光经DOE复制后形成64*9=576束光,这576束光形成的视场的水平视场角为16.3°*3=48.9°,竖直视场角为12.9°*3=38.7°,若扩散片403在水平方向上的视场角为120°,这576束光经过扩散片403后将形成水平视场角为120°,竖直视场角为38.7°的视场。
申请实施例中,利用光学衍射元件的复制能力,能够在不改变光源的情 况下,增加投射至待测目标表面的线形光束的数量,扩大了激光雷达装置在第二方向上的视场角,使得激光雷达装置在第二方向上具有更广的检测范围,从而提升了激光雷达装置的检测能力。
图9是本申请又一种激光雷达的发射装置的示意性结构图。可选地,准直镜402为投影镜头901,投影镜头901具有第一方向上的第二视场角以及第二方向上的第三视场角,以使经扩散片403转化后的M*N束线形光形成的视场述第一方向上的视场角为第一视场角,在第二方向上的视场角为第三视场角。
具体地,投影镜头901相比于准直镜401除了具有准直能力,还具有更大的视场角以及更短的焦距,一方面,使得经过投影镜头的光束在第二方向上的视场角进一步增大,使得激光雷达装置在第二方向上的检测范围扩大;另一方面,在使用投影镜头901时,能够通过增加发光阵列的数量,向扩散片403投射数量更多更加密集的光束,使得形成每行线形光斑的光束数量增多,线形光斑的行数增多,线性光板之间的间距也缩小,从而提高激光雷达装置在第二方向上的线分辨率。
应理解,在包括光学复制元件404的激光雷达装置中也可以使用投影镜头901取代准直镜402,能够进一步扩大激光雷达装置在第二方向上的检测范围。
示例性地,光源具有34*17个发光阵列,能够发射578束光,经投影镜头后形成的视场的水平视场角为46.7°,竖直视场角为60.2°,这578束光经过水平视场角为120°的扩散片进行光束整形后,所形成的光场的水平视场角为120°,竖直视场角为60.2°,包括34行水平光斑,每行光斑由17束水平线光形成,此时的线分辨率为1.37°。
本申请实施例中,通过使用视场角较大的投影镜头,使得激光雷达装置在第二方向上的视场角更大,扩大激光雷达装置在第二方向上的检测范围,当使用发光单元更多的光源时,结合投影镜头的设置,投射至待测目标表面的线形光束不仅视场角更大,且数量更多,从而进一步提高了激光雷达装置的检测精度。
图10是本申请再一种激光雷达发射装置的示意性结构图。可选地,发射装置400还包括:驱动模块405,与光源401连接,用于驱动发光阵列的每一行发光单元。
具体地,光源401的发光阵列的每一行能够被独立驱动,当只点亮一行发光单元时,对应一条线形光斑。驱动模块405可以根据激光雷达装置的工作场景需求,确定点亮的行数与位置。
本申请实施例中,驱动模块分区驱动光源,即每行发光单元能够被独立驱动,使得激光雷达装置能够根据应用需求选择点亮的发光单元的行数以及位置,示例性地,当距离激光雷达装置距离待测目标较远时,仅点亮一行发光单元,随着激光雷达逐渐靠近待测目标,逐行点亮更多的发光单元,能够在激光雷达装置在距离待测目标较远、不需要采集过多第二方向上的深度信息时,节省功耗,提高激光雷达装置的工作效率。
可选地,所述驱动模块用于在第一时段同时驱动N行所述发光单元中的k行发光单元,1≤k≤N。
在一种可能的实现方式中,所述驱动模块还用于在第二时段同时驱动所述N行所述发光单元中(N-k)行发光单元。
应理解,第二时段为第一时段结束后的时间段。
具体地,第一点亮模式为点亮一行发光单元或行数较少的发光单元,当需要进行远距离、第二方向上精度不高的深度检测时,例如仅需要进行室内的自我定位或地图测绘时,驱动模块采用第一点亮模式,仅点亮一行发光单元,发射一条线形光束;第二点亮模式为同时点亮多行发光单元,当需要进行近距离、第二方向上精度较高的深度检测时,例如需要进行障碍物躲避时,驱动模块采用第二点亮模式,同时点亮多行发光单元获取第一方向及第二方向上的深度信息。再例如,可以在不同时段选择不同的点亮模式,在上述点亮模式之间按顺序切换、轮询。第二点亮模式中点亮的多行发光单元可以包括第一点亮模式中已经点亮过的发光单元,也可以是除第一点亮模式中点亮的发光单元以外的发光单元。
优选地,驱动模块用于在第二时段同时驱动所述N行所述发光单元中剩余的(N-k)行发光单元。例如,光源包括8行发光单元,在第一时段同时驱动第1、3、5、7行发光单元,在第二时段同时驱动第2、4、6、8行发光单元。
本申请实施例中,驱动模块分时驱动光源,使得激光雷达装置能够在不同时段点亮不同行数及位置的发光单元,从而能够实现在不同点亮模式之间来回切换。在满足三维测绘需求的同时,有效节省激光雷达装置的功耗。
本申请实施例还提供一种激光雷达装置,图11为本申请一种激光雷达 装置的示意性结构图,如图11所示,激光雷达装置1100包括:
发射装置400,用于向目标对象投射光信号;
接收装置1101,与发射装置400连接,用于接收经目标对象返回的反射光信号,并解析反射光信号以得到目标对象的深度信息。
可选地,如图12所示,接收装置1101包括:
接收镜头1102,用于接收所述反射光信号,接收镜头1102的视场角等于第一视场角;
传感器1103,设置于接收镜头1102下方,用于解析反射光信号以得到目标对象的深度信息。
具体地,接收镜头1102可以是球面或者非球面构成的光学结构,用于聚焦入射光线至传感器1103上,通过传感器1103将镜头收集到的光信号转换为电信号。接收镜头1102可由一个或多个透镜组合构成,每个透镜例如可以采用树脂等材料注塑而成。
本实施例中的激光雷达装置使用特殊的飞行时间相机中的发射装置作为激光雷达的发射装置,具有简单的结构以及较高的测量精度,发射的光场本身在第一方向上具有第一视场角,不需要通过旋转光源以获得第一方向上的视场角,无需安装于凸出设备顶部的位置来避免设备对光源的遮挡,便于设备的整体集成与装配。
可选地,激光雷达装置1100包括多个发射装置400,通过设置于设备不同的位置,进行角度组合,能够实现360°全角度的深度信息检测。
可选地,传感器1103与驱动模块405连接,用于向驱动模块405发送驱动信息以使驱动模块驱动光源401。
本实施例中,通过接收装置控制发射装置,利于检测与采样的同步,避免发射装置与接收装置因检测与采样时序不同步导致激光雷达装置无法进行深度检测或检测错误等情况,提高激光雷达装置深度检测的效率。
可选地,传感器1103根据目标对象的深度信息确定驱动信息。
可选地,接收装置1101还包括:
滤光片1104,设置于传感器1103的上方,用于透过预设波长的所述反射光信号。
本实施例中,通过设置滤光片,能够滤除信号光之外的光信号,如环境光信号,对深度检测的影响,提高信噪比,提升深度信息检测的准确性。
可选地,接收装置1101还包括:
支撑件1105,用于支撑接收镜头1102以使传感器1103设置于接收镜头1102的下方。
本申请实施例还提供一种电子设备1300,如图13所示,电子设备1300包括:激光雷达装置1100。
作为示例而非限定,本申请实施例中的电子设备可以为终端设备、手机、平板电脑、笔记本电脑、台式机电脑、游戏设备、车载电子设备或穿戴式智能设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。该穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等设备。
如图14所示,本申请实施例还提供一种深度检测方法,包括:
S1401:发送驱动信息;
驱动信息用于指示发射装置发射光信号,光信号包括M*N束线形光,M*N束线形光被投射至目标对象形成平行于第一方向的N条线形光斑,每条线形光斑由M束所述线形光形成,M、N为正整数;
S1402:接收经所述目标对象返回的反射光信号;
S1403:根据所述反射光信号,计算所述目标对象的深度信息。
可选地,在S1401中,发送驱动信息包括:发送第一驱动信息,第一驱动信息用于指示所述发射装置驱动所述发光阵列的每一行所述发光单元。可选地,在S1401中,发送驱动信息包括:在第一时段发送第二驱动信息,所述第二驱动信息用于指示所述发射装置在所述第一时段同时驱动N行所述发光单元中的k行发光单元,1≤k≤N。
可选地,在S1301中,发送驱动信息还包括:在第二时段发送第三驱动信息,所述第三驱动信息用于指示所述发射装置在所述第二时段同时驱动所述N行所述发光单元中(N-k)行发光单元。
本实施例中,通过在不同时段发送不同的驱动信息指示发射装置分时分区驱动光源,使得激光雷达装置能够在不同时段点亮不同行数及位置的发光单元,从而能够实现在不同点亮模式之间来回切换。例如,当需要进行远距离、第二方向上精度不高的深度检测时,发送第二信息指示发射装置仅点亮 3行发光单元,发射一条线形光束;当需要进行近距离、第二方向上精度较高的深度检测时,发送第三信息指示发射装置同时点亮N-3行发光单元。应理解,该N-3行发光单元中可以包括N行发光单元中已经点亮过的3行发光单元,也可以是除在第一时段已经点亮过的3行发光单元以外剩余的N-3行发光单元。
优选地,第三驱动信息用于指示所述发射装置在第二时段同时驱动所述N行所述发光单元中的剩余(N-k)行发光单元。即除第一时段已经点亮过的k行发光单元以外的(N-k)行发光单元。
在一种可能的实现方式中,所述方法还包括:根据所述发射装置的使用场景,确定所述驱动信息。
根据发射装置的使用场景,即根据发射装置距离目标对象的距离确定驱动信息。例如,当发射装置距离目标较远时,发送第一或第二驱动信息,驱动行数较少的发光单元,当发射装置距离目标较近时,发送第一或第三驱动信息,驱动行数较多的发光单元。本实施例中,能够根据发射装置当前所处的场景灵活指示发射装置的点亮模式,从而降低发射装置的功耗。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种激光雷达的发射装置,其特征在于,所述发射装置包括:
    光源,包括M*N个发光单元组成的发光阵列,用于发射M*N束光,M、N为正整数,其中,所述发光阵列每一行的所述发光单元沿第一方向排列,所述发光阵列每一列的所述发光单元沿第二方向上排列,所述第一方向与所述第二方向垂直;
    准直镜,用于准直所述M*N束光;
    扩散片,所述扩散片具有所述第一方向上的第一视场角,用于将所述M*N束光转化为M*N束具有所述第一方向上的第一发散角的线形光,并将所述线形光投射至目标对象形成平行于所述第一方向的N条线形光斑,每条所述线形光斑由M束所述线形光重合形成,所述第一视场角等于所述第一发散角。
  2. 根据权利要求1所述的发射装置,其特征在于,所述发射装置还包括:
    光学复制元件,设置于所述准直镜与所述扩散片之间,用于复制经所述准直镜的后的M*N束光得到M*P*N*Q束光,以使所述扩散片将所述M*P*N*Q束光投射至所述目标对象形成平行于所述第一方向的N*Q条所述线形光斑,每条所述线形光斑由M*P束所述线形光形成。
  3. 根据权利要求1或2所述的发射装置,其特征在于,
    所述准直镜为投影镜头,所述投影镜头具有所述第一方向上的第二视场角以及所述第二方向上的第三视场角,以使经所述扩散片转化后的所述M*N束所述线形光形成的视场在所述第一方向上的视场角为所述第一视场角,在所述第二方向上的视场角为所述第三视场角。
  4. 根据权利要求1-3中任一项所述的发射装置,其特征在于,所述发射装置还包括:
    驱动模块,与所述光源连接,用于驱动所述发光阵列的每一行所述发光单元。
  5. 根据权利要求1-4中任一项所述的发射装置,其特征在于,所述驱动模块用于在第一时段同时驱动N行所述发光单元中的k行发光单元,1≤k≤N。
  6. 根据权利要求5所述的发射装置,其特征在于,所述驱动模块还用 于在第二时段同时驱动所述N行所述发光单元中(N-k)行发光单元。
  7. 根据权利要求1-6中任一项所述的发射装置,其特征在于,所述发射装置应用于扫地机器人中。
  8. 根据权利要求1-7中任一项所述的发射装置,其特征在于,所述光源为垂直腔面发射激光器。
  9. 一种激光雷达装置,其特征在于,所述装置包括:
    如权利要求1-8中任一项所述的发射装置,用于向目标对象投射光信号;
    接收装置,与所述发射装置连接,用于接收经所述目标对象返回的反射光信号,并解析所述反射光信号以得到所述目标对象的深度信息。
  10. 根据权利要求9所述的装置,其特征在于,所述接收装置包括:
    接收镜头,用于接收所述反射光信号,所述接收镜头的视场角等于所述第一视场角;
    传感器,设置于所述接收镜头下方,用于解析所述反射光信号以得到所述目标对象的深度信息。
  11. 根据权利要求10所述的装置,其特征在于,所述传感器与所述驱动模块连接,用于向所述驱动模块发送驱动信息以使所述驱动模块驱动所述光源。
  12. 根据权利要求10或11所述的装置,其特征在于,所述传感器根据所述目标对象的深度信息确定所述驱动信息。
  13. 根据权利要求9-12中任一项所述的装置,其特征在于,所述接收装置还包括:
    滤光片,设置于所述传感器的上方,用于透过预设波长的所述反射光信号。
  14. 根据权利要求9-13中任一项所述的装置,其特征在于,所述接收装置还包括:
    支撑件,用于支撑所述接收镜头以使所述传感器设置于所述接收镜头的下方。
  15. 一种电子设备,其特征在于,包括:如权利要求9-14中任一项所述的激光雷达装置。
  16. 一种深度检测的方法,其特征在于,所述方法包括:
    发送驱动信息,所述驱动信息用于指示发射装置发射光信号,所述光信 号包括M*N束线形光,所述M*N束所述线形光被投射至目标对象形成平行于第一方向的N条线形光斑,每条所述线形光斑由M束所述线形光形成,M、N为正整数;
    接收经所述目标对象返回的反射光信号;
    根据所述反射光信号,计算所述目标对象的深度信息。
  17. 根据权利要求16所述的方法,其特征在于,所述发送驱动信息包括:
    发送第一驱动信息,所述第一驱动信息用于指示所述发射装置驱动所述发光阵列的每一行所述发光单元。
  18. 根据权利要求16或17所述的方法,其特征在于,所述发送驱动信息包括:
    在第一时段发送第二驱动信息,所述第二驱动信息用于指示所述发射装置在所述第一时段同时驱动N行所述发光单元中的k行发光单元,1≤k≤N。
  19. 根据权利要求18所述的方法,其特征在于,所述发送驱动信息还包括:
    在第二时段发送第三驱动信息,所述第三驱动信息用于指示所述发射装置在所述第二时段同时驱动所述N行所述发光单元中(N-k)行发光单元。
  20. 根据权利要求16-19中任一项所述的方法,其特征在于,所述方法还包括:根据所述发射装置的使用场景,确定所述驱动信息。
PCT/CN2021/122396 2021-09-30 2021-09-30 激光雷达发射装置、激光雷达装置及电子设备 WO2023050398A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/122396 WO2023050398A1 (zh) 2021-09-30 2021-09-30 激光雷达发射装置、激光雷达装置及电子设备
EP21920112.6A EP4184200A4 (en) 2021-09-30 2021-09-30 LIDAR TRANSMITTER DEVICE, LIDAR DEVICE AND ELECTRONIC DEVICE
US17/875,121 US20230094857A1 (en) 2021-09-30 2022-07-27 Transmission apparatus for laser radar, laser radar apparatus and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122396 WO2023050398A1 (zh) 2021-09-30 2021-09-30 激光雷达发射装置、激光雷达装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/875,121 Continuation US20230094857A1 (en) 2021-09-30 2022-07-27 Transmission apparatus for laser radar, laser radar apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2023050398A1 true WO2023050398A1 (zh) 2023-04-06

Family

ID=85706499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122396 WO2023050398A1 (zh) 2021-09-30 2021-09-30 激光雷达发射装置、激光雷达装置及电子设备

Country Status (3)

Country Link
US (1) US20230094857A1 (zh)
EP (1) EP4184200A4 (zh)
WO (1) WO2023050398A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667155A (zh) * 2023-07-24 2023-08-29 深圳市速腾聚创科技有限公司 发射模组、激光发射模块和激光雷达设备

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071122A1 (en) * 2000-09-28 2002-06-13 Kulp Thomas J. Pulsed laser linescanner for a backscatter absorption gas imaging system
CN105548989A (zh) * 2016-01-05 2016-05-04 西安应用光学研究所 手持式反光电观瞄及目标定位一体化装置
CN106443699A (zh) * 2016-09-09 2017-02-22 深圳市砝石激光雷达有限公司 一种多组合式激光雷达装置及其扫描方法
CN206945971U (zh) * 2017-06-22 2018-01-30 深圳市瑞大科技有限公司 雷达
CN108549085A (zh) * 2018-04-12 2018-09-18 北醒(北京)光子科技有限公司 一种发射镜头、面阵激光雷达及移动平台
CN108604053A (zh) * 2015-10-21 2018-09-28 普林斯顿光电子股份有限公司 编码图案投影仪
CN110687541A (zh) * 2019-10-15 2020-01-14 深圳奥锐达科技有限公司 一种距离测量***及方法
CN110726983A (zh) * 2019-10-24 2020-01-24 深圳市镭神智能***有限公司 一种激光雷达
US20200088850A1 (en) * 2018-09-19 2020-03-19 Electronics And Telecommunications Research Institute Lidar system
CN111722241A (zh) * 2020-05-18 2020-09-29 深圳奥锐达科技有限公司 一种多线扫描距离测量***、方法及电子设备
CN112433382A (zh) * 2020-11-25 2021-03-02 Oppo(重庆)智能科技有限公司 散斑投影装置及方法、电子设备和距离测量***
CN112526534A (zh) * 2020-11-03 2021-03-19 上海炬佑智能科技有限公司 ToF传感装置及其距离检测方法
CN112914433A (zh) * 2021-04-23 2021-06-08 常州纵慧芯光半导体科技有限公司 一种激光设备及扫地机器人
CN113075642A (zh) * 2020-01-06 2021-07-06 宁波舜宇车载光学技术有限公司 激光雷达和用于激光雷达的探测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926321B1 (ko) * 2013-06-19 2018-12-06 애플 인크. 통합 구조화된 광 프로젝터
US12007504B2 (en) * 2019-03-01 2024-06-11 Vixar, Inc. 3D and LiDAR sensing modules
CN110463183A (zh) * 2019-06-28 2019-11-15 深圳市汇顶科技股份有限公司 识别装置及方法
WO2021083641A1 (en) * 2019-10-30 2021-05-06 Trumpf Photonic Components Gmbh Light source, sensor and method of illuminating a scene
CN110764073A (zh) * 2019-12-12 2020-02-07 福建海创光电有限公司 一种激光雷达光学接收***

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071122A1 (en) * 2000-09-28 2002-06-13 Kulp Thomas J. Pulsed laser linescanner for a backscatter absorption gas imaging system
CN108604053A (zh) * 2015-10-21 2018-09-28 普林斯顿光电子股份有限公司 编码图案投影仪
CN105548989A (zh) * 2016-01-05 2016-05-04 西安应用光学研究所 手持式反光电观瞄及目标定位一体化装置
CN106443699A (zh) * 2016-09-09 2017-02-22 深圳市砝石激光雷达有限公司 一种多组合式激光雷达装置及其扫描方法
CN206945971U (zh) * 2017-06-22 2018-01-30 深圳市瑞大科技有限公司 雷达
CN108549085A (zh) * 2018-04-12 2018-09-18 北醒(北京)光子科技有限公司 一种发射镜头、面阵激光雷达及移动平台
US20200088850A1 (en) * 2018-09-19 2020-03-19 Electronics And Telecommunications Research Institute Lidar system
CN110687541A (zh) * 2019-10-15 2020-01-14 深圳奥锐达科技有限公司 一种距离测量***及方法
CN110726983A (zh) * 2019-10-24 2020-01-24 深圳市镭神智能***有限公司 一种激光雷达
CN113075642A (zh) * 2020-01-06 2021-07-06 宁波舜宇车载光学技术有限公司 激光雷达和用于激光雷达的探测方法
CN111722241A (zh) * 2020-05-18 2020-09-29 深圳奥锐达科技有限公司 一种多线扫描距离测量***、方法及电子设备
CN112526534A (zh) * 2020-11-03 2021-03-19 上海炬佑智能科技有限公司 ToF传感装置及其距离检测方法
CN112433382A (zh) * 2020-11-25 2021-03-02 Oppo(重庆)智能科技有限公司 散斑投影装置及方法、电子设备和距离测量***
CN112914433A (zh) * 2021-04-23 2021-06-08 常州纵慧芯光半导体科技有限公司 一种激光设备及扫地机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184200A4 *

Also Published As

Publication number Publication date
US20230094857A1 (en) 2023-03-30
EP4184200A1 (en) 2023-05-24
EP4184200A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
TWI644116B (zh) 光學裝置
CA3124640C (en) Laser measurement module and laser radar
CN111722241B (zh) 一种多线扫描距离测量***、方法及电子设备
WO2023092859A1 (zh) 激光雷达发射装置、激光雷达装置及电子设备
WO2022141534A1 (zh) 探测装置、扫描单元、可移动平台及探测装置的控制方法
WO2018058741A1 (zh) 多路光束处理光学***及其处理方法、多路激光探测器
US11204412B2 (en) LiDAR device
CN211718520U (zh) 一种多线激光雷达
KR20230034273A (ko) 노이즈를 저감시키기 위한 옵틱 모듈 및 이를 이용하는 라이다 장치
WO2023050398A1 (zh) 激光雷达发射装置、激光雷达装置及电子设备
WO2023035326A1 (zh) 一种混合固态激光雷达及其扫描方法
CN211554313U (zh) 一种多线激光雷达
CN208588825U (zh) 激光雷达、自主移动机器人及智能车辆
WO2024036582A1 (zh) 一种发射模组、接收模组、探测装置及终端设备
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
CN113900077A (zh) 激光雷达发射装置、激光雷达装置及电子设备
WO2024130642A1 (zh) 一种发射装置、探测装置及终端
WO2024044905A1 (zh) 一种探测装置及终端设备
CN219302660U (zh) 一种扫描式激光雷达
CN220983495U (zh) 一种基于mems镜阵的扫描模组和激光雷达
WO2023019442A1 (zh) 一种探测***、终端设备及探测控制方法
US20230204731A1 (en) Lidar device
CN114002692A (zh) 深度检测发射装置、接收装置及电子设备
WO2024045884A1 (zh) 激光雷达、电子设备及车辆
KR20230081835A (ko) 라이다 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021920112

Country of ref document: EP

Effective date: 20220727

NENP Non-entry into the national phase

Ref country code: DE