WO2023050372A1 - 应用于点对多点的短距离无线通信***的通信方法及设备 - Google Patents

应用于点对多点的短距离无线通信***的通信方法及设备 Download PDF

Info

Publication number
WO2023050372A1
WO2023050372A1 PCT/CN2021/122351 CN2021122351W WO2023050372A1 WO 2023050372 A1 WO2023050372 A1 WO 2023050372A1 CN 2021122351 W CN2021122351 W CN 2021122351W WO 2023050372 A1 WO2023050372 A1 WO 2023050372A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
time domain
slave device
domain resource
configuration information
Prior art date
Application number
PCT/CN2021/122351
Other languages
English (en)
French (fr)
Inventor
谢子晨
郭湛
李卫华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21958944.7A priority Critical patent/EP4401426A1/en
Priority to PCT/CN2021/122351 priority patent/WO2023050372A1/zh
Priority to CN202180102514.6A priority patent/CN117999805A/zh
Publication of WO2023050372A1 publication Critical patent/WO2023050372A1/zh
Priority to US18/623,468 priority patent/US20240251392A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and equipment applied to a point-to-multipoint short-distance wireless communication system.
  • short-distance wireless communication technology can effectively simplify the communication between computers, laptops, mobile phones, earphones, speakers and other terminal equipment, and also simplify the communication between terminal equipment and the network, making some small, portable or wearable
  • the terminal equipment can be networked without the help of cables, thus forming a point-to-point or point-to-multipoint communication system.
  • Bluetooth (BT) technology has a wide range of application scenarios and application ranges because it can realize two-way voice and data communication.
  • the following uses Bluetooth technology as an example for description.
  • Temporary peer-to-peer connections can be established using Bluetooth technology.
  • the master device is a Bluetooth device that actively initiates a connection request during the network connection process, that is, the master device needs to perform device search and initiate pairing before establishing a connection.
  • the master device can simultaneously establish connections with multiple slave devices to form a point-to-multipoint Bluetooth system.
  • different slave devices in a Bluetooth system need to perform some cooperative data interaction, such as: data synchronization, configuration information synchronization, interference information transmission, etc.
  • This requires the establishment of a communication link between slave devices that need coordination in the communication network to achieve communication.
  • it is necessary to periodically send empty packets.
  • the air interface resources corresponding to the communication link need to be maintained between the two slave devices.
  • the present application provides a communication method and device applied to a point-to-multipoint short-distance wireless communication system, so as to reduce power consumption and waste of air interface resources in the short-distance wireless communication system.
  • the embodiment of the present application provides a communication method applied to a point-to-multipoint short-distance wireless communication system, the method includes: the master device in the short-distance wireless communication system receives the communication from the first slave device After the request, the resource configuration information is sent in response to the communication request.
  • the communication request is used to request data transmission with the second slave device; the resource configuration information is used to indicate the target air interface resource, and the target air interface resource is used for the first slave device and the second slave device Air interface resources for data transmission between devices.
  • any slave device in the two slave devices can send a communication request to the master device so that the master device can be the slave device for the two slave devices.
  • the data transmission of the device allocates air interface resources, so that the two slave devices can perform data transmission according to the air interface resources allocated by the master device.
  • the air interface resources required for data transmission between two slave devices are allocated on demand, that is, the communication link between two slave devices is a temporary link established on demand, therefore, there is no When data transmission is required, no additional air interface resources will be occupied, and there is no need to send empty packets from the device to maintain the communication link. In summary, this method will not cause waste of power consumption of the slave device, nor waste of air interface resources.
  • the target air interface resources include at least one of the following: target frequency domain resources and target time domain resources.
  • the resource configuration information includes at least one of the following: clock synchronization information, and the target time domain resource is relative to the set time The offset value of the target time-domain resource; wherein, the clock synchronization information is used to indicate to maintain clock synchronization with the master device.
  • the master device can also configure the time domain resources used by the cooperative data transmission between the two slave devices.
  • the first slave device and the second slave device can determine the position of the target time domain resource according to the offset value of the target time domain resource relative to the set time in the resource configuration information and the duration of the target time domain resource .
  • the clock synchronization information in the resource configuration information may indicate to maintain clock synchronization with the master device in the communication system, which can ensure Coordination data transfer efficiency between two slave devices.
  • the set time may be a time agreed between the master device and the slave device in the communication system, for example, the time when a synchronization signal is sent, etc.; it may also be a time specified by the master device, such as a certain A time slot, a certain symbol, a certain second, etc. are not limited in this application.
  • the target time domain resource may include: a time domain resource used for the first slave device to send the first coordination data to the second slave device; A time domain resource for sending the second coordination data.
  • the resource configuration information when the target air interface resource includes the target frequency domain resource, includes frequency point indication information for indicating the target frequency domain resource.
  • the master device can also configure the frequency domain resources used by the cooperative data transmission between the two slave devices.
  • the resource configuration information further includes security protection information
  • the security protection information is used to indicate at least one of the following: an encryption method, an encryption algorithm, and a key.
  • the master device can also configure the security protection information used for the cooperative data transmission between the two slave devices.
  • the two slave devices receive the resource configuration information, they can treat the transmitted data according to the security protection information in it.
  • Collaborative data is encrypted to ensure the security of collaborative data.
  • the resource configuration information is also used to indicate the response air interface resource allocated by the master device for the response information for transmitting coordinated data between two slave devices. Similar to the target air interface resources, the response air interface resources include at least one of the following: response time domain resources and response frequency domain resources; when the response air interface resources include response time domain resources, the resource configuration information also includes At least one of the following: an offset value of the response time domain resource relative to a set time, and a duration of the response time domain resource.
  • the first slave device and the second slave device can also determine the position of the response air interface resource according to the resource configuration information, so that the response information of the coordinated data can be transmitted according to the response air interface resource.
  • the resource configuration information is also used to instruct the master device to allocate retransmission air interface resources for retransmission of coordinated data between two slave devices.
  • the resource configuration information is also used to indicate the retransmission air interface resource.
  • the retransmission air interface resources include at least one of the following: retransmission time domain resources and retransmission frequency domain resources; when the retransmission air interface resources include retransmission time domain resources, the The resource configuration information may also include at least one of the following items: an offset value of the retransmission time domain resource relative to a set time, and a duration of the retransmission time domain resource.
  • the two slave devices can also determine the location of the retransmission air interface resource according to the resource configuration information.
  • the sender of the coordinated data can retransmit the coordinated data according to the retransmission air interface resources when receiving the response information from the receiver indicating that the reception fails, and the receiver can re-receive the coordinated data according to the retransmitted air interface resources.
  • the master device can send resource configuration information in the following two ways, including:
  • Manner 1 the master device may broadcast the resource configuration information
  • Manner 2 the master device may send the resource configuration information to the first slave device and the second slave device respectively.
  • the master device may broadcast the resource configuration information through the following steps: when the master device also reserves broadcast time domain resources for broadcasting synchronization signals (in the event cycle), the master device may broadcast In the time-domain resource, a synchronization frame carrying the resource configuration information is broadcast. Wherein, the synchronization frame further includes a clock synchronization signal.
  • the master device can send resource configuration information to the slave device by using the air interface resource for sending broadcast signals to the slave device.
  • the master device may send the resource configuration information to the first slave device and the second slave device respectively through the following steps: within the first time domain resource in the event period, send The first slave device sends a first data frame carrying the resource configuration information; within the second time domain resource in the event period, sends the second data frame carrying the resource configuration information to the second slave device frame; wherein, the first time domain resource is a time domain resource reserved for the master device to send service data to the first slave device in the event period, and the second time domain resource is a time domain resource reserved during the event period A time domain resource reserved for the master device to send service data to the second slave device in the event period; wherein, the first time domain resource does not overlap with the second time domain resource.
  • the master device can send resource configuration information to the slave device by using the air interface resource for sending service data to the slave device.
  • the master device may receive the communication request from the first slave device through the following steps: receiving the communication request within a third time domain resource in the event period; wherein, the third time domain resource
  • the domain resource is a time domain resource reserved for the response information that the first slave device feeds back service data to the master device in the event period.
  • the first slave device can send a communication request to the master device by using the time domain resource reserved for the response information for feeding back service data to the master device.
  • the first slave device and the second slave device are binaural true wireless TWS Bluetooth headsets.
  • the embodiment of the present application provides a communication method applied to a point-to-multipoint short-distance wireless communication system, the method comprising: the first slave device in the short-distance wireless communication system receives a communication response from the master device The resource configuration information sent by the request, the resource configuration information is used to indicate the target air interface resource, and the target air interface resource is the air interface resource used for data transmission between the first slave device and the second slave device; the The communication request is used to request the first slave device to perform data transmission with the second slave device; the first slave device uses the target air interface resource indicated by the resource configuration information to communicate with the second slave device data transfer between them.
  • any slave device in the two slave devices can send a communication request to the master device so that the master device can be the slave device for the two slave devices.
  • the data transmission of the device allocates air interface resources, so that the two slave devices can perform data transmission according to the air interface resources allocated by the master device.
  • the air interface resources required for data transmission between two slave devices are allocated on demand, that is, the communication link between two slave devices is a temporary link established on demand, therefore, there is no When data transmission is required, no additional air interface resources will be occupied, and there is no need to send empty packets from the device to maintain the communication link. In summary, this method will not cause waste of power consumption of the slave device, nor waste of air interface resources.
  • the target air interface resources include at least one of the following: target frequency domain resources and target time domain resources.
  • the resource configuration information includes at least one of the following: clock synchronization information, and the target time domain resource is relative to the set time The offset value of the target time-domain resource; wherein, the clock synchronization information is used to indicate to maintain clock synchronization with the master device.
  • the resource configuration information when the target resource includes the target frequency domain resource, includes frequency point indication information for indicating the target frequency domain resource.
  • the resource configuration information further includes security protection information
  • the security protection information is used to indicate at least one of the following: an encryption method, an encryption algorithm, and a key.
  • the first slave device may receive the resource configuration information from the master device in response to the communication request in the following two ways: Mode 1: The first slave device receives the resource configuration information carried in the event period The synchronization frame of the resource configuration information; mode 2: the first slave device receives the first data frame carrying the resource configuration information in the first time domain resource in the event cycle; wherein, the first time domain The resource is a time domain resource reserved for the master device to send service data to the first slave device in the event period.
  • the first slave device before the first slave device receives resource configuration information from the master device in response to the communication request, the first slave device sends the communication request to the master device.
  • the first slave device sending the communication request to the master device includes: sending the communication request to the master device within a third time domain resource in an event period; wherein, The third time domain resource is a time domain resource reserved for the first slave device to feed back service data response information to the master device in the event period.
  • the communication request is sent by the second slave device to the master device.
  • the first slave device and the second slave device are binaural true wireless TWS Bluetooth headsets; the data transmitted between the first slave device and the second slave device Including at least one of the following: playback synchronization information, volume synchronization information, earphone position information, earphone power information, configuration synchronization information, and interference information.
  • the embodiment of the present application provides a communication device, including a unit configured to perform each step in any one of the above aspects.
  • an embodiment of the present application provides a communication device, including a transceiver, a processor coupled to the transceiver, and a memory; the processor reads and executes programs and data stored in the memory, And send and receive data through the transceiver, so that the method provided by any one of the above aspects of the present application is realized.
  • an embodiment of the present application provides a short-distance wireless communication system, including: a master device configured to execute the method provided in the first aspect, and at least two slave devices configured to execute the method provided in the second aspect.
  • the embodiment of the present application further provides a computer program, which, when the computer program is run on a computer, causes the computer to execute the method provided in any one of the above aspects.
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a computer, the computer executes any one of the above-mentioned method provided.
  • the embodiment of the present application further provides a chip, the chip is used to read a computer program stored in a memory, and execute the method provided in any one of the above aspects.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor, configured to support a computer device to implement the method provided in any one of the above aspects.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • FIG. 1 is an architecture diagram of a point-to-multipoint short-distance wireless communication system provided by an embodiment of the present application
  • FIG. 2A is an example diagram of a bluetooth system provided by an embodiment of the present application.
  • FIG. 2B is a schematic diagram of a transmission mode of a Bluetooth system provided by an embodiment of the present application.
  • FIG. 2C is a schematic diagram of another bluetooth system transmission mode provided by the embodiment of the present application.
  • FIG. 2D is a schematic diagram of time-domain resource configuration in a traditional event period
  • FIG. 3 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG. 4A is a schematic diagram of an example of time-domain resource configuration in an event period in a Bluetooth system provided by an embodiment of the present application;
  • FIG. 4B is a schematic diagram of an example of time-domain resource configuration in an event period in a Bluetooth system provided by an embodiment of the present application;
  • FIG. 4C is a schematic diagram of an example of time-domain resource configuration in an event period in a Bluetooth system provided by an embodiment of the present application.
  • FIG. 4D is a schematic diagram of an example of time-domain resource configuration in an event period in a Bluetooth system provided by an embodiment of the present application.
  • FIG. 4E is a schematic diagram of a communication example of a Bluetooth system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an architecture example of a bluetooth system provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 7 is a structural diagram of a communication device provided by an embodiment of the present application.
  • the present application provides a communication method and device applied to a point-to-multipoint short-distance wireless communication system, so as to reduce power consumption and waste of air interface resources in the short-distance wireless communication system.
  • the method and the device provided in the embodiment of the present application are based on the same technical concept, and since the principle of solving the problem is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • Short-distance wireless communication technology is a communication technology that transmits information through radio waves between communicating parties within a relatively small range. It generally has the following characteristics:
  • the transmission power of wireless transmitters is generally within 100mW;
  • the communication distance is generally controlled within tens of meters or hundreds of meters.
  • short-range wireless communication technologies may include, but are not limited to: radio frequency identification (radio frequency identification, RFID) technology, Bluetooth technology, wireless-fidelity (wireless-fidelity, WI-FI) technology, ZigBee (ZigBee) technology, ultra-wideband (ultra wideband, UWB) technology, and communication technologies based on the evolution of the above-mentioned communication technologies, and communication technologies that have the same or similar functions as the above-mentioned communication technologies and can replace each other.
  • radio frequency identification radio frequency identification
  • RFID wireless-fidelity
  • WI-FI wireless-fidelity
  • ZigBee ZigBee
  • ultra-wideband ultra wideband
  • the short-distance wireless communication system is a communication system established by a plurality of terminal devices through the short-distance wireless communication technology, which may be referred to as a communication system for short in the embodiment of the present application. Specifically, it can be specifically divided into RFID system, bluetooth system, WI-FI system, etc. according to different specific communication technologies adopted.
  • the terminal equipment in the communication system can define two types of equipment: master equipment and slave equipment.
  • a short-distance wireless communication system with one master device and multiple slave devices is referred to as a point-to-multipoint short-distance wireless communication system. It should be understood that in some communication scenarios, there may also be multiple master devices in the short-distance wireless communication system.
  • the bluetooth system is a communication system established by at least two terminal devices through the bluetooth technology, and may also be called a bluetooth network, a communication network, a micronet or a piconet.
  • a terminal device in a Bluetooth system may also be referred to as a Bluetooth device.
  • two Bluetooth devices can be defined:
  • the Bluetooth device in the Bluetooth system that actively initiates the connection request process.
  • the connection request process includes: device search, pairing initiation, connection establishment, etc.
  • the master device is also called the master control device.
  • the master device is also responsible for providing clock synchronization signals and frequency hopping sequences to the slave devices.
  • Slave device A slave device other than the master device in the Bluetooth system, accepting the management and control of the master device.
  • a bluetooth system there is generally one bluetooth device as the master device, and the other bluetooth devices are all slave devices, and this state will always be maintained during the existence of the bluetooth system.
  • Any slave device in the Bluetooth system can communicate with the master device, and the master device can communicate with multiple slave devices in the Bluetooth system.
  • connection event also known as connection event or business event cycle, refers to the process of sending data between the master device and the slave device in the Bluetooth system.
  • the frequency used for communication between the master device and the slave device is at the same frequency point. Therefore, in order to avoid interference, the Bluetooth system uses time division multiplexing for transmission in an event cycle, that is, in an event cycle, use Different time domain resources are used to transmit signals of different channels.
  • Terminal equipment is a device that supports short-distance wireless communication technology and provides users with voice and/or data connectivity.
  • the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminal devices are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), intelligent sales terminal (point of sale, POS), wearable device ( Binaural true wireless (true wireless stereo, TWS) Bluetooth headset), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), driverless ( Wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety, and smart cities Wireless terminals, wireless terminals in smart homes, various smart meters (smart water meters, smart electricity meters, smart gas meters), etc.
  • the terminal equipment that can be used as the main equipment in the short-distance wireless communication system is a terminal equipment that can be easily operated by the user, has a display screen, and integrates relatively complex algorithms (with management and control capabilities), such as mobile phones, notebook computers, tablet computers, etc. .
  • relatively complex algorithms with management and control capabilities
  • small, portable and wearable terminal devices can generally be used as slave devices in the Bluetooth system.
  • the present application does not limit the device types of the master device and the slave device, and the master device and the slave device in the short-distance wireless communication system need to be defined according to specific scenarios.
  • a mobile phone can act as a master device in one Bluetooth system and as a slave device in another Bluetooth system.
  • a communication link is a communication line between two adjacent communication nodes without any other communication nodes in between, also known as communication connection, connection, or link.
  • the communication links involved in the short-distance wireless communication system are all wireless air interface connections (also referred to as air interface connections for short).
  • a communication link established through the Bluetooth technology may also be referred to as a Bluetooth connection.
  • the response information of the data is used to indicate the reception result (success or failure) of the data receiver for the data.
  • the data response information is an acknowledgment (acknowledgment, ACK)/negative acknowledgment (negative acknowledgment, NACK).
  • the response information of the data may also indicate different receiving results by taking a value.
  • the response information of the data takes a value of 0 to indicate failure to receive, and a value of 1 to indicate success of reception.
  • Air interface resources which are used to implement resources required for wireless air interface transmission, may also be called channel resources and channels, which may include, but are not limited to: time domain resources and frequency domain resources.
  • the time domain resources are continuous or discontinuous time used to realize air interface transmission.
  • the embodiment of the present application does not limit the counting unit of time domain resources.
  • the time-domain resources in this application may use traditional time units as counting units, for example: seconds (second, s), milliseconds (millisecond, ms), microseconds (microsecond, ⁇ s) and so on.
  • the time-domain resources in this application may also be calculated in time-domain units in the communication field, for example: frame (frame), subframe (subframe), time slot (slot), symbol (symbol) and so on.
  • the frequency domain resources are continuous or discontinuous frequency bands used to implement air interface transmission.
  • the frequency domain resource may be represented by a frequency point of the frequency band.
  • a plurality referred to in this application refers to two or more than two. At least one means one or more than one.
  • FIG. 1 shows the architecture of a typical point-to-multipoint short-distance wireless communication system to which the communication method provided by the embodiment of the present application is applicable.
  • the communication system includes a master device and multiple slave devices (for example, the first slave device and the second slave device shown in FIG. 1 ).
  • the master device can establish temporary peer-to-peer communication links with multiple slave devices, thereby establishing a point-to-multipoint communication system, and can control and manage all slave devices in the communication system, and can communicate with Each of the slave devices performs business communication. For example, the master device can add or delete slave devices in the communication system, allocate air interface resources for the slave devices, and so on.
  • the master device can perform data transmission with each slave device.
  • the master device can, but not limited to, communicate with multiple slave devices through the following modes:
  • the master device can broadcast service data to all slave devices in the communication system by broadcasting;
  • the master device can use time division multiplexing to interact with different slave devices in different time periods.
  • the embodiment of the present application provides a communication scheme applied to the above-mentioned point-to-multipoint short-distance wireless communication system.
  • this scheme there is a data transmission requirement between two slave devices in the short-distance wireless communication system.
  • any one of the two slave devices can send a communication request to the master device so that the master device allocates air interface resources for the data transmission of the two slave devices, so that the two slave devices can resources for data transfer.
  • the air interface resources required for data transmission between two slave devices are allocated on demand, that is, the communication link between two slave devices is a temporary link established on demand (as indicated by the dotted line communication link in Figure 1 shown), therefore, when there is no need for data transmission between the two slave devices, additional air interface resources will not be occupied, and there is no need for the slave device to send empty packets to maintain the communication link. In summary, this method will not cause waste of power consumption of the slave device, nor waste of air interface resources.
  • the left earphone and the right earphone in the TWS Bluetooth headset can be used as an independent Bluetooth device to establish a communication link with the mobile phone, as shown in Figure 2A.
  • the mobile phone is the master device, and the left and right earphones are both slave devices.
  • the mobile phone After the mobile phone turns on the Bluetooth function, it can find the Bluetooth device near the mobile phone through the device search process; when the mobile phone finds the TWS Bluetooth headset, the device identification of the TWS Bluetooth headset will be displayed in the Bluetooth device list; Click the device logo of the TWS Bluetooth headset in the Bluetooth device list to notify the mobile phone that after connecting the TWS Bluetooth headset, the mobile phone initiates pairing with the TWS Bluetooth headset. After the pairing is successful, establish a communication connection with the left earphone and the right earphone of the TWS Bluetooth headset.
  • the mobile phone and the TWS Bluetooth headset can use the following two transmission modes for data transmission:
  • the mobile phone broadcasts service data, and the left earphone and right earphone receive the service data at the same time.
  • the TWS Bluetooth headset can set the left earphone and the right earphone as the main earphone and the auxiliary earphone respectively.
  • the secondary earphone generates the first response information according to the receiving result of its own service data, to indicate whether the service data is successfully received by the secondary earphone, and then sends the first response information to the main earphone; the main earphone generates the first response information according to the receiving result of its own service data.
  • the second response information is to indicate whether the business data is successfully received by the main earphone, and then according to the received first response information and the generated second response information, generate the third response information and send it to the mobile phone; or the main earphone can send the first response information and the second response information is sent to the mobile phone.
  • the sending process of specific service data and the sending process of response information reference may be made to that shown in FIG. 2B .
  • the mobile phone determines whether to retransmit the service data according to the received third response information, or the received first response information and the received second response information.
  • Transmission mode 2 dual transmission mode
  • the mobile phone separates the service data of the left earphone (that is, the service data of the left channel) and the service data of the right earphone (that is, the service data of the right channel), and sends corresponding service data to the left earphone and the right earphone in turn. And the left earphone and the right earphone respectively reply to the mobile phone with response information indicating the receiving result of their own service data.
  • the sending process of specific service data and the sending process of response information reference may be made to that shown in FIG. 2C .
  • the mobile phone determines whether to retransmit the left channel service data to the left earphone according to the received response information of the left earphone, and determines whether to retransmit the right channel service data to the right earphone according to the received response information of the right earphone.
  • the collaborative data requiring interaction may be but not limited to at least one of the following: playback synchronization information, volume synchronization information, earphone position information, earphone power information, configuration synchronization information, interference information, and the like.
  • a communication link must be established between the left earphone and the right earphone, and the communication link is a physical link, that is, it needs to be continuously connected and cannot be disconnected. Therefore, even if there is no data that needs to be coordinated between the left earphone and the right earphone, it is still necessary to send an empty packet at intervals to maintain the connection of the communication link. If the communication link does not send data continuously, the timer will be timed out, and the communication link will be disconnected.
  • the mobile phone needs to reserve the following time domain resources:
  • the first duration is the time domain resource reserved for the mobile phone to send left channel service data to the left earphone;
  • the second duration is the time domain resource reserved for the left earphone to feed back the response information of the left channel service data to the mobile phone;
  • the third duration is the time domain resource reserved for the mobile phone to send right channel service data to the right earphone;
  • the fourth duration is the time domain resource reserved for the right earphone to feed back the response information of the right channel business data to the mobile phone;
  • the fifth duration is the time-domain resource reserved for sending cooperative data from the left earphone to the right earphone;
  • the sixth duration is the time domain resource reserved for the right earphone to send cooperative data to the left earphone.
  • the mobile phone may also reserve time domain resources for sending synchronization signals in each event period. For example, a broadcast duration is reserved at the beginning of the event period, and the mobile phone broadcasts a synchronization frame carrying a clock synchronization signal within the broadcast duration.
  • resources other than the above reserved time domain resources can be used for mobile phones to retransmit business data to the left earphone or right earphone, or for mobile phones and other Bluetooth devices connected to mobile phones Carry out business data transmission.
  • time domain resources used for retransmission of service data it is also necessary to refer to the retransmission mechanism adopted in the current system, which will not be described in detail in this application.
  • the mobile phone can only reserve the fifth duration instead of the sixth duration; in the scenario where only the right earphone sends coordination data to the left earphone, The mobile phone can only reserve the sixth duration instead of the fifth duration; in the scenario where the left earphone sends coordination data to the right earphone, and the right earphone also needs to send coordination data to the left earphone, the mobile phone can reserve the fifth duration at the same time. duration and the sixth duration.
  • the mobile phone can also directly reserve the fifth duration and the sixth duration when receiving a communication request from any headset without considering the transmission direction of the collaborative data.
  • the embodiment of the present application provides a communication method, which can be applied to In the short-distance wireless communication system shown in FIG. 1 .
  • FIG. 3 the method provided by the embodiment of the present application will be described in detail.
  • S300 The master device establishes a communication link with the first slave device and the second slave device; then, the master device communicates with the first slave device and the second slave device respectively.
  • the master device can use short-distance wireless communication technology to establish communication links with the first slave device and the second slave device respectively, thereby forming a short-distance wireless communication system.
  • the master device can control and manage the first slave device and the second slave device in the communication system.
  • the communication system includes the first slave device and the second slave device as an example, and does not limit the number of slave devices in the communication system.
  • the communication system may also include a third slave device, a fourth slave device, etc., wherein, when there is a need for cooperative data transmission between any two slave devices, it can be realized by the method provided in the embodiment of the present application.
  • the master device can allocate air interface resources for the service data transmission of each slave device, so as to establish a communication link, and then the master device According to the air interface resources allocated for each slave device, it can communicate with the corresponding slave device.
  • the above process can refer to the traditional scheme of transmitting service data between the master device and the slave device, which will not be described in detail here.
  • the air interface resources (first air interface resources) allocated to the first slave device include time domain resources and frequency domain resources.
  • the time domain resource in the first air interface resource includes: the time domain resource reserved for the master device to send service data to the first slave device (hereinafter referred to as the first time domain resource);
  • the time domain resource reserved by the response information of the service data hereinafter referred to as the second time domain resource for short).
  • the air interface resources (second air interface resources) allocated to the second slave device also include time domain resources and frequency domain resources.
  • the time domain resource in the second air interface resource includes: the time domain resource reserved for the master device to send service data to the second slave device (hereinafter referred to as the third time domain resource); The time domain resource reserved by the response information of the service data (hereinafter referred to as the fourth time domain resource for short).
  • the master device can also reserve time domain resources for retransmission of service data from the master device to the first slave device in idle air interface resources (hereinafter referred to as the fifth time domain resource), and a time domain resource reserved by the master device for retransmitting service data to the second slave device (hereinafter referred to as the sixth time domain resource for short).
  • the fifth time domain resource a time domain resource reserved by the master device for retransmitting service data to the second slave device
  • the short-distance wireless communication system (such as the Bluetooth system) defines the process of sending data between the master device and the slave device through the event cycle
  • the time domain resource of each slave device above is the time domain within the event cycle resources, and there is no overlap between different time domain resources.
  • the master device After the master device allocates air interface resources for each slave device, it will notify the corresponding slave devices respectively. In this way, the subsequent master device and any slave device can use each specific air interface resource allocated to the slave device to perform corresponding data transmission operations, thereby realizing the service of the slave device.
  • the first slave device may send a communication request to the master device when there is a cooperative data transmission requirement.
  • the master device receives a communication request from the first slave device.
  • the communication request is used to request data transmission with the second slave device.
  • the first slave device may send the communication request to the master device in the second time domain resource, that is, the first slave device may send the service data to the master device in the second time domain resource
  • the response information and the communication request are sent to the master device.
  • the embodiment of the present application only takes the first slave device sending a communication request to the master device as an example, but does not limit the slave devices that can send the communication request to the master device.
  • any slave device in the short-distance wireless communication system can send a communication request to the master device.
  • the left earphone or the right earphone in the TWS Bluetooth earphone, or the master earphone in the case of setting the master earphone can both send a communication request to the master device when there is a demand for cooperative data transmission.
  • the first slave device has a cooperative data transmission requirement, which may but is not limited to include at least one of the following:
  • the first slave device generates or acquires the coordination data that needs to be sent to the second slave device;
  • the first slave device needs to obtain coordination data from the second slave device
  • the function of the first slave device is affected due to lack of data synchronization with the second slave device.
  • the collaboration data involved in this embodiment of the present application may include, but is not limited to, at least one of the following: business data, configuration information, interference information, and working status information (for example, power information, volume information, location information, etc.).
  • the collaboration data may include at least one of the following: playback synchronization information, volume synchronization information, headset position information, headset power information , Configure synchronization information and interference information.
  • the master device allocates target air interface resources in response to the communication request.
  • the target air interface resource is an air interface resource used for data transmission between the first slave device and the second slave device.
  • the master device may allocate the target air interface resource for the transmission of cooperative data between two slave devices in other idle air interface resources other than the above-mentioned first air interface resource and the second air interface resource; Or, occupying the fifth time domain resource and/or the sixth time domain resource and allocating the target air interface resource for the transmission of coordinated data between two slave devices (for example, in the case of insufficient free air interface resources).
  • the master device sends resource configuration information.
  • the first slave device receives resource configuration information sent from the master device in response to the communication request.
  • the second slave device receives resource configuration information sent from the master device in response to the communication request.
  • the resource configuration information is used to indicate the target air interface resource.
  • the target air interface resources include at least one of the following: target frequency domain resources and target time domain resources.
  • the target air interface resources include target time domain resources.
  • the resource configuration information may include at least one of the following: clock synchronization information, an offset value of the target time domain resource relative to a set time, and a duration of the target time domain resource.
  • the clock synchronization information in the resource configuration information may indicate to maintain clock synchronization with the master device in the communication system.
  • the set time may be a time agreed between the master device and the slave device in the communication system, for example, the time when a synchronization signal is sent, etc.; it may also be a time specified by the master device, such as a certain time slot, a certain time slot, etc. A symbol, a certain second, etc., which are not limited in this application.
  • the target time domain resource may include at least one of the following:
  • the time domain resource used for the first slave device to send the first coordination data to the second slave device (hereinafter referred to as the seventh time domain resource); the time domain used for the second slave device to send the second coordination data to the first slave device resource (hereinafter referred to as the eighth time-domain resource for short).
  • the offset value of the target time domain resource in the resource configuration information relative to the set time may be It specifically includes: an offset value of the seventh time domain resource relative to the first set time, and/or an offset value of the eighth time domain resource relative to the second set time.
  • the first set time and the second set time may be the same time or different time.
  • the duration of the target time domain resource in the resource configuration information may specifically include: the duration of the seventh time domain resource, the duration of the eighth time domain resource; or the duration of the seventh time domain resource /The duration of the eighth time domain resource, and the total duration of the target time domain resource.
  • the first slave device and the second slave device can determine the positions of the seventh time domain resource and the eighth time domain resource according to the resource configuration information, so as to execute the first coordination data in the seventh time domain resource and transmitting, performing transmission of the second coordination data in the eighth time domain resource.
  • the target air interface resources include target frequency domain resources.
  • the resource configuration information includes frequency point indication information for indicating the target frequency domain resource.
  • the resource configuration information may further include security protection information.
  • the security protection information is used to indicate at least one of the following: encryption method, encryption algorithm, key and so on.
  • the slave devices may also feed back response information of the coordination data according to a receiving result of the coordination data.
  • the master device may also allocate response air interface resources for the response information of the coordinated data transmission between the two slave devices.
  • the resource configuration information is also used to indicate the response air interface resource.
  • the response air interface resources include at least one of the following: response time domain resources and response frequency domain resources.
  • the response air interface resource when the target time domain resource includes the seventh time domain resource, the response air interface resource includes: a ninth time domain resource, used for the second slave device to send the first coordination data to the first slave device response information; when the target time domain resource includes the eighth time domain resource, the response air interface resource includes: the tenth time domain resource, used for the first slave device to send the second slave device to the second slave device Response information for collaborative data.
  • the resource configuration information further includes at least one of the following items: an offset value of the response time domain resource relative to a set time, and a duration of the response time domain resource.
  • the offset value of the response time domain resource in the resource configuration information relative to the set time may be It specifically includes: an offset value of the ninth time domain resource relative to the third set time, and/or an offset value of the tenth time domain resource relative to the fourth set time.
  • the first set time, the second set time, the third set time and the fourth set time may be the same time or different time.
  • the duration of the response time domain resource in the resource configuration information may specifically include: the duration of the ninth time domain resource, the duration of the tenth time domain resource; or the duration of the ninth time domain resource /The duration of the tenth time domain resource, and the total duration of the response time domain resource.
  • the first slave device and the second slave device can determine the positions of the ninth time domain resource and the tenth time domain resource according to the resource configuration information, so as to execute the first coordination data in the ninth time domain resource In response to the transmission of information, the transmission of the response information of the second coordinated data is performed in the tenth time domain resource.
  • the master device may also allocate retransmission air interface resources for retransmission of coordinated data between two slave devices.
  • the resource configuration information is also used to indicate the retransmission air interface resources.
  • the retransmission air interface resources include at least one of the following: retransmission time domain resources and retransmission frequency domain resources.
  • the retransmission air interface resource when the target time domain resource includes the seventh time domain resource, the retransmission air interface resource includes: an eleventh time domain resource, which is used for the first slave device to retransmit the seventh time domain resource to the second slave device. Coordination data; when the eighth time domain resource is included in the target time domain resource, the retransmission air interface resource includes: a twelfth time domain resource, used for retransmission from the second slave device to the first slave device Pass the second collaboration data.
  • the resource configuration information may further include at least one of the following: an offset value of the retransmission time domain resource relative to a set time, and a duration of the retransmission time domain resource.
  • the offset of the retransmission time domain resource relative to the set time in the resource configuration information may specifically include: an offset value of the eleventh time-domain resource relative to the fifth set moment, and/or an offset value of the twelfth time-domain resource relative to the sixth set moment .
  • the first set time, the second set time, the third set time, the fourth set time, the fifth set time, and the sixth set time may be For the same moment, or for different moments.
  • the duration of the retransmission time domain resource in the resource configuration information may specifically include: the duration of the eleventh time domain resource, the duration of the twelfth time domain resource; or the eleventh time domain resource The duration of the domain resource/the duration of the twelfth time domain resource, and the total duration of the retransmission time domain resource.
  • the first slave device and the second slave device can determine the positions of the eleventh time domain resource and the twelfth time domain resource according to the resource configuration information, so as to execute the first time domain resource in the eleventh time domain resource. Coordinated data retransmission, performing retransmission of the second coordinated data within the tenth time domain resource.
  • the master device may send the resource configuration information in the following manner.
  • Manner 1 The master device broadcasts the resource configuration information.
  • the master device When the master device also reserves a broadcast time domain resource for broadcasting a synchronization signal (in the event period), the master device may broadcast a synchronization frame carrying the resource configuration information within the broadcast time domain resource.
  • the synchronization frame further includes a clock synchronization signal.
  • the master device can send resource configuration information to the slave device by using the air interface resources used to send broadcast signals to the slave device.
  • Manner 2 The master device sends the resource configuration information to the first slave device and the second slave device respectively.
  • the master device may send respective service data and resource configuration information to the two slave devices, specifically, the master device may send the first slave device within the first time domain resource The first data frame carrying the resource configuration information; sending the second data frame carrying the resource configuration information to the second slave device within the third time domain resource.
  • the first data frame may further include service data of the first slave device
  • the second data frame may further include service data of the second slave device.
  • the master device can use the air interface resources for sending service data to the slave device to send resource configuration information to the slave device.
  • the communication request sent by the first slave device may carry the device information of the second slave device, so that after the master device allocates the target air interface resource, it may send a request to the second slave device The device feeds back resource configuration information.
  • the master device may, after receiving the communication request from the first slave device, Determining the second slave device that is paired with the first slave device or has the same device information.
  • each time domain resource (the first time domain resource to the twelfth time domain resource, and the broadcast time domain resource defined above) Time-domain resources, etc.) are all time-domain resources within the event period, and there is no overlap between different time-domain resources. Since the bandwidth used by the short-distance wireless communication system is generally narrowband, the communication between all devices in the communication system can use the same frequency domain resources. domain resource for an expanded description. Of course, in some scenarios, similar to the above time domain resources, the master device may also allocate different frequency domain resources for different signal transmissions, which will not be repeated here.
  • the short-distance wireless communication system (such as the Bluetooth system) defines the process of mutual communication between the master device and the slave device through the event cycle
  • the first slave device can use the second time domain resource in the current event cycle
  • a communication request is sent internally to the master device, and the master device may send the resource configuration information by using time domain resources in the next (or subsequent mth) event cycle.
  • any slave device may determine the target air interface resource through the following implementation manners.
  • the target air interface resources include target time domain resources.
  • the resource configuration information may include at least one of the following: clock synchronization information, an offset value of the target time domain resource relative to a set time, and a duration of the target time domain resource.
  • Any slave device can maintain clock synchronization with the master device according to the clock synchronization information in the resource configuration information. Both slave devices maintain clock synchronization with the master device, and clock alignment can also be achieved between the two slave devices. In this way, the target time domain resources determined by the two slave devices according to the resource configuration information are also clock-aligned. When the two slave devices When the device transmits the coordinated data according to the target time domain resource, the transmission efficiency of the coordinated data can be guaranteed.
  • Any slave device can accurately determine the position of the target time domain resource according to the offset value of the target time domain resource contained in the resource configuration information relative to the set time and the duration of the target time domain resource , so that the coordinated data can be transmitted within the target time domain resource.
  • the first slave device when the target time domain resource includes a seventh time domain resource, in S304, the first slave device sends the first slave device within the seventh time domain resource to the second slave device. coordination data; and the second slave device may receive the first coordination data from the first slave device within the seventh time domain resource.
  • the second slave device when the target time domain resource includes an eighth time domain resource, in S304, sends the second slave device to the first slave device within the eighth time domain resource. coordination data; and the first slave device may receive the second coordination data from the second slave device in the eighth time domain resource.
  • the resource configuration information includes frequency point indication information for indicating the target frequency domain resources.
  • any slave device may determine the target frequency domain resource according to the frequency point indication information included in the resource configuration information. In this way, in S304, the slave device may use the target frequency domain resource to perform coordinated data transmission with another slave device.
  • the resource configuration information may further include security protection information, and the security protection information is used to indicate at least one of the following: an encryption method, an encryption algorithm, a key, and the like.
  • the sender of the collaboration data can encrypt the collaboration data to be transmitted according to the security protection information contained in the resource configuration information; and the receiver of the collaboration data can also encrypt the security protection information contained in the resource configuration information information, and decrypt the received encrypted collaboration data.
  • the security of the coordination data transmitted between the slave devices in the short-distance wireless communication system can be guaranteed.
  • the resource configuration information is also used to indicate the response air interface resources.
  • the response air interface resources include response time domain resources and response frequency domain resources.
  • the resource configuration information further includes at least one of the following items: an offset value of the response time domain resource relative to a set time, and a duration of the response time domain resource.
  • Any slave device may also determine the location of the response time domain resource according to the above information contained in the resource configuration information, so that the response information of the coordinated data may be transmitted in the response time domain resource.
  • the second slave device when the response time domain resource includes a ninth time domain resource, after S304, the second slave device sends the first coordination data to the first slave device in the ninth time domain resource the response information of the first slave device; and the first slave device may receive the response information of the first coordination data from the second slave device within the ninth time domain resource.
  • the first slave device may send the second slave device within the tenth time domain resource to the second slave device Response information of the second coordination data; and the second slave device may receive the response information of the second coordination data from the first slave device within the tenth time domain resource.
  • the resource configuration information is also used to indicate retransmission air interface resources.
  • the retransmission air interface resources include at least one of the following: retransmission time domain resources and retransmission frequency domain resources.
  • the resource configuration information may further include at least one of the following items: an offset value of the retransmission time domain resource relative to a set time, and a duration of the retransmission time domain resource.
  • Any slave device may also determine the location of the retransmission time domain resource according to the above information in the resource configuration information, so that the coordinated data may be retransmitted within the retransmission time domain resource.
  • the retransmission time domain resource includes an eleventh time domain resource
  • the first slave device receives response information from the second slave device indicating that the reception fails, in the eleventh time domain resource, In the time domain resource, retransmit the first coordination data to the second slave device.
  • the retransmission time domain resource includes the twelfth time domain resource
  • the second slave device receives response information indicating reception failure from the first slave device, in the twelfth time domain resource, In the second time domain resource, retransmit the second coordination data to the first slave device.
  • the first coordinated data is the coordinated data of the first slave device
  • the second coordinated data is the coordinated data of the second slave device.
  • the embodiment of the present application provides a communication method applied to a point-to-multipoint short-distance wireless communication system.
  • this method when there is a data transmission requirement between two slave devices in the short-distance wireless communication system , any one of the two slave devices can send a communication request to the master device so that the master device allocates air interface resources for the data transmission of the two slave devices, so that the two slave devices can use the air interface resources allocated by the master device for data transfer.
  • the air interface resources required for data transmission between two slave devices are allocated on demand, that is, the communication link between two slave devices is a temporary link established on demand, therefore, there is no When data transmission is required, the air interface resources will be released, and no additional air interface resources will be occupied, and there is no need to send empty packets from the device to maintain the communication link. In summary, this method will not cause waste of power consumption of the slave device, nor waste of air interface resources.
  • the master device Since the air interface resources required for data transmission between two slave devices are allocated on demand, the master device does not need to reserve the air interface resources for them when there is no need for data transmission between the two slave devices.
  • the air interface resources for transmitting business data improve the transmission reliability of business data; it does not occupy additional idle air interface resources, so that more slave devices can be connected to the master device, thereby improving the multi-service concurrency capability in the communication system. Improve the data sending and receiving capability of the system.
  • the communication interaction between the slave devices is controlled by the master device in the communication system, which can improve the master device's ability to control the air interface resources of the entire communication system, thereby facilitating the coexistence of multiple master devices.
  • this application also provides some communication examples in the Bluetooth system.
  • the mobile phone and the TWS Bluetooth headset can use a dual-transmission mode Carry out business data transmission.
  • Fig. 4A-Fig. 4D it will be explained.
  • the process of allocating target air interface resources by the mobile phone and the specific description of the resource configuration information indicating the target air interface resources can refer to the specific descriptions in the above embodiments, and will not be repeated here.
  • Example 1 Refer to Figure 4A.
  • the mobile phone can carry resource configuration information in data frames sent to each earphone respectively.
  • the mobile phone In the default case (there is no cooperative data to be transmitted between the two earphones), there is no physical link between the two earphones, and there is no need to reserve time domain resources for the intercommunication between the two earphones during the event period, as shown in Figure 4A
  • the mobile phone only reserves the first time period to the fourth time period in the event period, and other time domain resources can be reserved for service data retransmission, or allocated to other Bluetooth devices connected to the mobile phone.
  • the description of the first duration to the fourth duration in this example may refer to the first duration to the fourth duration in FIG. 2D , which will not be repeated here.
  • the mobile phone first sends a data frame carrying left-channel service data to the left earphone within the first duration; then, within the second duration, the left earphone sends left-channel service data to the mobile phone within the third period of time, the mobile phone sends a data frame carrying the service data of the right channel to the right earphone; then within the fourth period of time, the right earphone sends the response information of the service data of the right channel to the mobile phone.
  • the mobile phone can retransmit the left channel service data and/or the right channel service data in subsequent air interface resources according to the response information of the left earphone and the response information of the right earphone.
  • any earphone in this example, the left earphone is taken as an example
  • the left earphone can send a communication request to the mobile phone within the second period of time in the nth event period.
  • the mobile phone After the mobile phone receives a communication request within the second duration of the nth event cycle, it allocates target air interface resources for the coordinated data transmission between the two earphones, and generates resource configuration information indicating the target air interface resources, and the n+1th event cycle Send a data frame carrying left channel business data and resource configuration information to the left earphone within the first duration of an event cycle, and send a data frame carrying right channel business data to the right earphone within the third duration of the n+1th event cycle and a data frame of resource configuration information, as shown in (c) in FIG. 4A.
  • the left earphone and the right earphone After the left earphone and the right earphone receive the resource configuration information, they can determine the target air interface resources in the subsequent air interface resources in the n+1th event period, that is, the fifth duration and the sixth duration shown in (c) in Figure 4A. duration. In this way, within the fifth duration of the n+1 event cycle, the left earphone can send coordination data to the right earphone; within the sixth duration of the n+1 event cycle, the left earphone can send coordination data to the right earphone data.
  • Example 2 Referring to Figure 4B, the communication method in Example 1 is basically the same, the difference is that after the mobile phone receives the communication request in the nth event cycle, it not only allocates the target air interface resources for the coordinated data transmission between the two earphones ( That is, the fifth time length and the sixth time length in Figure 4B), and allocate response air interface resources for the response information of the two slave devices to feed back coordinated data (that is, the seventh time length and the eighth time length in Figure 4B), and for the two slave devices The retransmission coordination between devices allocates retransmission air interface resources (that is, the ninth duration and the tenth duration in FIG. 4B ).
  • the mobile phone After the mobile phone generates resource configuration information indicating the target air interface resources, response air interface resources, and retransmission air interface resources, it sends a message carrying left channel service data and resource configuration information to the left earphone within the first duration of the n+1th event period.
  • the data frame, and the data frame carrying the right channel service data and resource configuration information is sent to the right earphone within the third duration of the n+1th event period.
  • each air interface resource can be determined in the subsequent air interface resources in the n+1th event cycle, that is, the fifth duration to the tenth duration shown in FIG. 4B .
  • the left earphone can send coordination data to the right earphone; within the sixth duration of the n+1 event cycle, the left earphone can send coordination data to the right earphone ;
  • the right earphone can send the response information of cooperative data to the left earphone within the seventh duration of the n+1th event cycle, and when the response information indicates that the reception fails, the left earphone can also send the response information in the n+1th event cycle Retransmit the coordinated data to the right earphone within the ninth time duration of the n+1th event cycle; the left earphone can send the response information of the coordinated data to the right earphone within the eighth time length of the n+1th event period.
  • the mobile phone may also reserve broadcast time domain resources for broadcasting synchronization signals (for example, reserve a broadcast duration within the event period).
  • the mobile phone can broadcast and send a synchronization frame carrying a clock synchronization signal within the broadcast duration.
  • Example 3 Refer to Figure 4C.
  • the mobile phone can carry resource configuration information in the broadcast synchronization frame.
  • the mobile phone also reserves a broadcast duration for broadcasting the synchronization signal to the slave device during the event period, as shown in (a) in FIG. 4C .
  • the mobile phone can broadcast a synchronization frame carrying a clock synchronization signal within the broadcast duration of the initial stage of an event cycle.
  • the slave device in the bluetooth system synchronizes with the clock of the mobile phone after receiving the synchronization frame.
  • any earphone can send a communication request to the mobile phone to request the mobile phone to allocate air interface resources for the coordinated data transmission between the two earphones.
  • the left earphone can send a communication request to the mobile phone.
  • the mobile phone After the mobile phone receives a communication request within the second duration of the nth event cycle, it allocates target air interface resources for the coordinated data transmission between the two earphones, and generates resource configuration information indicating the target air interface resources, and the n+1th event cycle Within the broadcast duration within an event period, broadcast to the dual earphones through a synchronous frame, as shown in (c) in FIG. 4C .
  • the left earphone and the right earphone After the left earphone and the right earphone receive the resource configuration information, they can determine the target air interface resources in the subsequent air interface resources in the n+1th event period, that is, the fifth duration and the first time shown in (c) in Figure 4C. six hours long. In this way, within the fifth duration of the n+1 event cycle, the left earphone can send coordination data to the right earphone; within the sixth duration of the n+1 event cycle, the left earphone can send coordination data to the right earphone data.
  • Example 4 Refer to Figure 4D, the communication method is basically the same as that in Example 3, the difference is that after the mobile phone receives a communication request in the nth event cycle, it not only allocates target air interface resources for coordinated data transmission between the two earphones ( That is, the fifth duration and the sixth duration in FIG. 4D ), and allocate response air interface resources (that is, the seventh duration and the eighth duration in FIG. The retransmission coordination data allocation between devices retransmission air interface resources (that is, the ninth duration and the tenth duration in FIG. 4D ).
  • the mobile phone After the mobile phone generates resource configuration information indicating the target air interface resource, response air interface resource and retransmission air interface resource, it broadcasts to the dual earphones through a synchronization frame within the broadcast duration of the n+1th event cycle.
  • each air interface resource can be determined in the subsequent air interface resources in the n+1th event period, that is, the fifth duration to the tenth duration shown in FIG. 4D .
  • the left earphone can send coordination data to the right earphone; within the sixth duration of the n+1 event cycle, the left earphone can send coordination data to the right earphone ;
  • the right earphone can send the response information of cooperative data to the left earphone within the seventh duration of the n+1th event cycle, and when the response information indicates that the reception fails, the left earphone can also send the response information in the n+1th event cycle Retransmit the coordinated data to the right earphone within the ninth time duration of the n+1th event cycle; the left earphone can send the response information of the coordinated data to the right earphone within the eighth time length of the n+1th event period.
  • the mobile phone can allocate air interface resources according to the coordinated data transmission renewal of the two earphones, and the two earphones can also realize on-demand coordination.
  • Bluetooth devices are connected to mobile phones, which improves the multi-service concurrent capability and data sending and receiving capabilities in the system.
  • the interaction between the two earphones is controlled by the mobile phone, which improves the mobile phone's ability to control the air interface resources of the entire Bluetooth system, and facilitates the coexistence of multiple master devices (such as multiple mobile phones).
  • each Bluetooth device includes a Bluetooth controller (Bluetooth controller, BTC) module and a Bluetooth host (Bluetooth host, BTH) module.
  • BTC Bluetooth controller
  • BTH Bluetooth host
  • the BTH module is used to control and manage the BTC module, such as issuing instructions to BTC and receiving data or events reported by BTC.
  • the BTC module is used to realize signal sending and receiving, analysis and processing.
  • the BTC module may include: a micro control unit (micro control unit, MCU), a baseband (baseband, BB) unit, and a radio frequency (radio frequency, RF) unit. in:
  • MAC is used to receive instructions from the BTH module, and report data or time to the BTH module, as well as data analysis, calculation, and processing functions.
  • the BB unit generates a baseband signal based on the data sent by the MCU unit, and decodes the baseband signal received from the RF.
  • the RF unit is used to perform radio frequency processing on the baseband signal to form a radio frequency signal, and then transmit it through the air interface; and receive the radio frequency signal through the air interface, perform radio frequency processing on the radio frequency signal, and generate a baseband signal to feed back to the BB unit for decoding.
  • the BTH module of any earphone determines that there is a cooperative data transmission demand between the two earphones, it sends a communication request to the BTC module of the left earphone; the communication request passes through the MCU and BB in the BTC module. After processing by the unit, it is sent to the mobile phone through the RF unit.
  • the RF unit in the BTC module of the mobile phone After receiving the communication request, the RF unit in the BTC module of the mobile phone processes and analyzes the communication request through the BB unit and the MCU to obtain the communication request. Then, the MCU of the mobile phone allocates target air interface resources for the coordinated data transmission of the two earphones according to the communication request, and generates resource configuration information indicating the target air interface resources. Finally, the MCU of the mobile phone broadcasts or sends the resource configuration information to the left earphone and the right earphone respectively through the BB unit and the RF unit.
  • the RF unit in the BTC module of the two earphones After the RF unit in the BTC module of the two earphones receives the resource configuration information, it processes and analyzes the resource configuration information through the BB unit and the MCU, and determines the location of the target air interface resource allocated by the mobile phone; then the left earphone and the right earphone can Coordination data is transmitted according to the target air interface resource.
  • the Bluetooth system is used as an example, and does not constitute any limitation on the applicable scenarios of the communication method provided by the embodiment of the present application.
  • the above bluetooth system may be a communication system established based on traditional bluetooth technology, or a communication system established based on future evolved bluetooth technology.
  • the above embodiments or examples may also be applicable to communication systems established through other short-distance wireless communication technologies (refer to the explanation of the aforementioned terms), which is not limited in the present application.
  • the present application also provides a communication device, the structure of which is shown in FIG. 6 , including a communication unit 601 and a processing unit 602 .
  • the communication apparatus 600 may be applied to any communication device in the short-distance wireless communication system as shown in FIG. 1 .
  • the form of the communication device 600 may be a communication device, such as a terminal device; or the communication device 600 may be other devices capable of realizing the functions of the communication device, such as a processor or a chip inside the communication device wait.
  • the communication device 600 may be a field-programmable gate array (field-programmable gate array, FPGA), a complex programmable logic device (complex programmable logic device, CPLD), an application specific integrated circuit (application specific integrated circuits, ASIC), or Some programmable chips such as System on a chip (SOC).
  • FPGA field-programmable gate array
  • CPLD complex programmable logic device
  • ASIC application specific integrated circuits
  • SOC System on a chip
  • the communication unit 601 is configured to receive and send data.
  • the communication unit 601 may be implemented by a transceiver, for example, a communication module supporting short-distance wireless communication technology.
  • the processing unit 602 is configured to:
  • the resource configuration information is used to indicate target air interface resources, and the target air interface resources are used for the first slave device and the second slave device Air interface resources for data transmission between them.
  • the target air interface resources include at least one of the following: target frequency domain resources and target time domain resources.
  • the resource configuration information includes at least one of the following: clock synchronization information, an offset value of the target time domain resource relative to the set time , the duration of the target time domain resource;
  • the clock synchronization information is used to indicate to maintain clock synchronization with the master device.
  • the resource configuration information includes frequency point indication information for indicating the target frequency domain resource.
  • the resource configuration information further includes security protection information, and the security protection information is used to indicate at least one of the following: encryption method, encryption algorithm, and key.
  • processing unit 602 is configured to:
  • processing unit 602 is configured to:
  • the communication unit 601 broadcasts a synchronization frame carrying the resource configuration information.
  • processing unit 602 is configured to:
  • the first time domain resource is a time domain resource reserved for the master device to send service data to the first slave device in the event period
  • the second time domain resource is a time domain resource reserved during the event period.
  • processing unit 602 is configured to:
  • the communication request is received by the communication unit 601 in the third time domain resource in the event cycle; wherein, the third time domain resource is for the first slave device to the master in the event cycle
  • the first slave device and the second slave device are binaural true wireless TWS Bluetooth headsets.
  • the processing unit 602 is configured to:
  • the resource configuration information sent by the master device in response to the communication request is received by the communication unit 601, the resource configuration information is used to indicate the target air interface resource, and the target air interface resource is used for the slave device and another slave device Air interface resources for data transmission between them; the communication request is used to request the slave device to perform data transmission with the other slave device;
  • the target air interface resources include at least one of the following: target frequency domain resources and target time domain resources.
  • the resource configuration information includes at least one of the following: clock synchronization information, an offset value of the target time domain resource relative to the set time , the duration of the target time domain resource;
  • the clock synchronization information is used to indicate to maintain clock synchronization with the master device.
  • the resource configuration information includes frequency point indication information for indicating the target frequency domain resource.
  • the resource configuration information further includes security protection information, and the security protection information is used to indicate at least one of the following: encryption method, encryption algorithm, and key.
  • processing unit 602 is configured to:
  • the first time domain resource in the event period the first data frame carrying the resource configuration information is received by the communication unit 601; wherein, the first time domain resource is in the event period for the The master device sends time domain resources reserved for service data to the slave device.
  • processing unit 602 is further configured to:
  • the communication request is sent to the master device through the communication unit 601 .
  • processing unit 602 is configured to:
  • the master device sends the communication request to the master device through the communication unit 601 in the third time domain resource in the event cycle; wherein, the third time domain resource is for the slave device to communicate with the master device in the event cycle
  • the master device feeds back the time domain resources reserved by the response information of the service data.
  • the communication request is sent by the other slave device to the master device.
  • the slave device and the other slave device are binaural true wireless TWS Bluetooth headsets; the data transmitted between the slave device and the other slave device includes at least one of the following:
  • Playback synchronization information volume synchronization information, headphone position information, headphone power information, configuration synchronization information, and interference information.
  • each function in each embodiment of the present application Units can be integrated into one processing unit, or physically exist separately, or two or more units can be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the communication device 700 includes: a transceiver 701 , a processor 702 and a memory 703 . Wherein, the transceiver 701, the processor 702, and the memory 703 are connected to each other.
  • the transceiver 701, the processor 702, and the memory 703 are connected to each other through a bus 704.
  • the bus 704 may be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus or the like.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the transceiver 701 is used to receive and send signals to realize communication and interaction with other devices.
  • the transceiver 701 may be a communication module supporting short-distance wireless communication technology, such as a Bluetooth module, an RF module, and the like.
  • the transceiver 701 is coupled with the processor 702 to implement the communication method provided in the embodiment of the present application.
  • the communication device 700 may be the master device in the embodiment shown in FIG. 3 .
  • the transceiver 701 is configured to receive a communication request from the first slave device, and the communication request is used to request data transmission with the second slave device;
  • the processor 702 is configured to respond to the communication request and send resource configuration information through the transceiver 701, where the resource configuration information is used to indicate a target air interface resource, and the target air interface resource is used for the first slave An air interface resource for data transmission between the device and the second slave device.
  • the communication device 700 may be any slave device in the embodiment shown in FIG. 3 .
  • the transceiver 701 is configured to receive resource configuration information sent from a master device in response to a communication request, wherein the communication request is used to request the slave device to perform data transmission with another slave device;
  • the processor 702 is configured to perform data transmission with the other slave device through the transceiver 701 according to the target air interface resource indicated by the resource configuration information, wherein the target air interface resource is used for the An air interface resource for data transmission between the slave device and the other slave device.
  • the memory 703 is used to store program instructions and data.
  • the program instructions may include program codes including computer operation instructions.
  • the processor 702 executes the program instructions stored in the memory 703, and uses the data stored in the memory 703 to implement the above functions, thereby realizing the communication method provided by the above embodiments.
  • the memory 703 in FIG. 7 of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • an embodiment of the present application further provides a computer program, which, when the computer program is run on a computer, causes the computer to execute the method provided in the above embodiments.
  • the embodiments of the present application also provide a computer-readable storage medium, in which a computer program is stored, and when the computer program is executed by a computer, the computer executes the method provided in the above embodiments .
  • the storage medium may be any available medium that can be accessed by a computer. Take this as an example but not limited to: specific examples of the memory 703 in the communication device 700 shown in FIG. desired program code in the form of any other medium that can be accessed by a computer.
  • an embodiment of the present application further provides a chip, the chip is used to read a computer program stored in a memory, and implement the method provided in the above embodiments.
  • an embodiment of the present application provides a chip system, which includes a processor, configured to support a computer device to implement the functions involved in the master device and the slave device in the above embodiments.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiments of the present application provide a communication method and device applied to a point-to-multipoint short-distance wireless communication system.
  • this method when there is a data transmission requirement between two slave devices in the short-distance wireless communication system, any one of the two slave devices can send a communication request to the master device so that the master device Data transmission of the slave device allocates air interface resources, so that two slave devices can perform data transmission according to the air interface resources allocated by the master device.
  • the air interface resources required for data transmission between two slave devices are allocated on demand, that is, the communication link between two slave devices is a temporary link established on demand, therefore, there is no When data transmission is required, the air interface resources will be released, and no additional air interface resources will be occupied, and there is no need to send empty packets from the device to maintain the communication link. In summary, this method will not cause waste of power consumption of the slave device, nor waste of air interface resources.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种应用于点对多点的短距离无线通信***的通信方法及设备。在该方法中,短距离无线通信***中的两个从设备之间存在数据传输需求时,该两个从设备中的任一个从设备可以向主设备发送通信请求以使主设备为该两个从设备的数据传输分配空口资源,从而使两个从设备可以根据主设备分配的空口资源进行数据传输。两个从设备之间数据传输所需要的空口资源是按需分配的,即两个从设备之间的通信链路是按需建立的临时性链路,因此,在两个从设备之间无数据传输需求时,该空口资源就会释放,不会额外占用空口资源,也无需从设备发送空包以保持该通信链路。综上,该方法不会造成从设备的功耗浪费,也不会造成空口资源浪费。

Description

应用于点对多点的短距离无线通信***的通信方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种应用于点对多点的短距离无线通信***的通信方法及设备。
背景技术
利用短距离无线通信技术,能够有效地简化电脑、笔记本电脑、手机、耳机、音箱等终端设备之间的通信,也可以简化终端设备与网络之间的通信,使得一些体积小、便携式或可穿戴的终端设备不必借助电缆即可联网,从而形成一个点对点或点对多点的通信***。作为一种典型的短距离无线通信技术,蓝牙(Bluetooth,BT)技术由于其能够实现双向的语音、数据通信,因此其应用场景和应用范围较广。下面以蓝牙技术为例进行说明。
利用蓝牙技术可以建立临时性的对等连接。根据蓝牙设备在***中的角色,可以分为主设备(Master)和从设备(slave)。主设备是组网连接过程中主动发起连接请求的蓝牙设备,即主设备需要进行设备查找、发起配对,之后才能建立连接。
目前,主设备可以同时与多个从设备建立连接,形成一个点对多点式的蓝牙***。然而,在某些场景中,一个蓝牙***中的不同从设备之间需要进行一些协同数据的交互,比如:数据同步、配置信息同步、干扰信息传输等。这就需要通信网络中需要协同的从设备之间建立通信链路,以实现通信。然而,为了保持该通信链路不会断开,即使两个从设备之间没有具体的协同数据需要传输,也需要周期性的发送空包。显然,为了保持通信链路,两个从设备之间需要维护该通信链路对应的空口资源。
通过以上对目前从设备之间通过通信链路传输协同数据的方案的分析可知,即使从设备之间没有协同数据传输时,也需要发送空包以维护通信链路不断开,这会造成从设备的功耗浪费;再者,为了维护该通信链路,需要持续维护空口资源,也会挤占***内的空口资源。例如,事件(event)周期内为从设备之间协同预留的时域资源,会挤占event周期内主设备向从设备重传的机会以及更多从设备接入的机会,造成空口资源浪费。
发明内容
本申请提供一种应用于点对多点的短距离无线通信***的通信方法及设备,用以在短距离无线通信***中降低功耗和空口资源浪费。
第一方面,本申请实施例提供了一种应用于点对多点的短距离无线通信***的通信方法,该方法包括:短距离无线通信***中的主设备在接收来自第一从设备的通信请求之后,响应所述通信请求,发送资源配置信息。其中,所述通信请求用于请求与第二从设备进行数据传输;所述资源配置信息用于指示目标空口资源,所述目标空口资源为用于所述第一从设备与所述第二从设备之间进行数据传输的空口资源。
通过该方法,短距离无线通信***中的两个从设备之间存在数据传输需求时,该两个从设备中的任一个从设备可以向主设备发送通信请求以使主设备为该两个从设备的数据传输分配空口资源,从而使两个从设备可以根据主设备分配的空口资源进行数据传输。两个从设备之间数据传输所需要的空口资源是按需分配的,即两个从设备之间的通信链路是 按需建立的临时性链路,因此,在两个从设备之间无数据传输需求时,不会额外占用空口资源,也无需从设备发送空包以保持该通信链路。综上,该方法不会造成从设备的功耗浪费,也不会造成空口资源浪费。
在一种可能的设计中,所述目标空口资源包含以下至少一项:目标频域资源、目标时域资源。
在一种可能的设计中,当所述目标空口资源包含所述目标时域资源时,所述资源配置信息中包含以下至少一项:时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长;其中,所述时钟同步信息用于指示与主设备保持时钟同步。
通过该设计,主设备还可以配置两个从设备之间协同数据传输所使用的时域资源。第一从设备和第二从设备可以根据资源配置信息中的所述目标时域资源相对于设定时刻的偏移值,以及所述目标时域资源的时长,可以确定目标时域资源的位置。另外,为了保证第一从设备和第二从设备确定的目标时域资源的绝对时钟对齐,因此,资源配置信息中的时钟同步信息可以指示与通信***中的主设备保持时钟同步,这样可以保证两个从设备之间协同数据的传输效率。示例性的,所述设定时刻可以为所述主设备与通信***中的从设备约定的一个时刻,例如,发送同步信号的时刻等;还可以为所述主设备指定的时刻,例如某个时隙、某个符号、某一秒等,本申请对此不作限定。
在一种可能的设计中,所述目标时域资源中可以包含:用于第一从设备向第二从设备发送第一协同数据的时域资源;用于第二从设备向第一从设备发送第二协同数据的时域资源。
在一种可能的设计中,当所述目标空口资源包含所述目标频域资源时,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。
通过该设计,主设备还可以配置两个从设备之间协同数据传输所使用的频域资源。
在一种可能的设计中,所述资源配置信息中还包含安全保护信息,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥。
通过该设计,主设备还可以配置两个从设备之间的协同数据传输所使用的安全保护信息,这样,两个从设备在接收到资源配置信息时,可以根据其中的安全保护信息对待传输的协同数据进行加密,从而保证协同数据的安全性。
在一种可能的设计中,所述资源配置信息还用于指示所述主设备为两个从设备之间传输协同数据的响应信息分配的响应空口资源。与目标空口资源类似的,所述响应空口资源中包含以下至少一项:响应时域资源和响应频域资源;当所述响应空口资源中包含响应时域资源时,所述资源配置信息还包含以下至少一项:所述响应时域资源相对于设定时刻的偏移值,所述响应时域资源的时长。
通过该设计,所述第一从设备和所述第二从设备还可以根据资源配置信息确定响应空口资源的位置,从而可以根据响应空口资源传输协同数据的响应信息。
在一种可能的设计中,所述资源配置信息还用于指示所述主设备为两个从设备之间重传协同数据分配重传空口资源。此时,所述资源配置信息还用于指示所述重传空口资源。与目标空口资源类似的,所述重传空口资源中包含以下至少一项:重传时域资源和重传频域资源;当所述重传空口资源中包含重传时域资源时,所述资源配置信息还可以包含以下至少一项:所述重传时域资源相对于设定时刻的偏移值,所述重传时域资源的时长。
通过该设计,两个从设备还可以根据资源配置信息确定重传空口资源的位置。这样, 协同数据的发送端可以在接收到来自接收端指示接收失败的响应信息时,根据该重传空口资源重传协同数据,而接收端可以根据该重传空口资源重新接收协同数据。
在一种可能的设计中,主设备可以通过以下两种方式发送资源配置信息,包括:
方式一:主设备可以广播所述资源配置信息;方式二:主设备可以分别向所述第一从设备和所述第二从设备发送所述资源配置信息。
在一种可能的设计中,主设备可以通过以下步骤广播所述资源配置信息:在主设备还为广播同步信号(在event周期)预留广播时域资源时,所述主设备可以在该广播时域资源内,广播携带所述资源配置信息同步帧。其中,所述同步帧中还包含时钟同步信号。
通过该设计,所述主设备可以利用向从设备发送广播信号的空口资源,向从设备发送资源配置信息。
在一种可能的设计中,主设备可以通过以下步骤分别向所述第一从设备和所述第二从设备发送所述资源配置信息:在event周期中的第一时域资源内,向所述第一从设备发送携带所述资源配置信息的第一数据帧;在所述event周期中的第二时域资源内,向所述第二从设备发送携带所述资源配置信息的第二数据帧;其中,所述第一时域资源是在所述event周期中为所述主设备向所述第一从设备发送业务数据预留的时域资源,所述第二时域资源是在所述event周期中为所述主设备向所述第二从设备发送业务数据预留的时域资源;其中,所述第一时域资源与所述第二时域资源不重叠。
通过该设计,所述主设备可以利用向从设备发送业务数据的空口资源,向从设备发送资源配置信息。
在一种可能的设计中,所述主设备可以通过以下步骤接收来自第一从设备的通信请求:在event周期中的第三时域资源内接收所述通信请求;其中,所述第三时域资源是在所述event周期中为所述第一从设备向主设备反馈业务数据的响应信息预留的时域资源。
通过该设计,第一从设备可以利用向主设备反馈业务数据的响应信息预留的时域资源,向主设备发送通信请求。
在一种可能的设计中,所述第一从设备和所述第二从设备为双耳真无线TWS蓝牙耳机。
第二方面,本申请实施例提供了一种应用于点对多点的短距离无线通信***的通信方法,该方法包括:短距离无线通信***中的第一从设备接收来自主设备响应于通信请求而发送的资源配置信息,所述资源配置信息用于指示目标空口资源,所述目标空口资源为用于所述第一从设备与第二从设备之间进行数据传输的空口资源;所述通信请求用于请求所述第一从设备与所述第二从设备进行数据传输;所述第一从设备利用所述资源配置信息所指示的所述目标空口资源,与所述第二从设备之间进行数据传输。
通过该设计,短距离无线通信***中的两个从设备之间存在数据传输需求时,该两个从设备中的任一个从设备可以向主设备发送通信请求以使主设备为该两个从设备的数据传输分配空口资源,从而使两个从设备可以根据主设备分配的空口资源进行数据传输。两个从设备之间数据传输所需要的空口资源是按需分配的,即两个从设备之间的通信链路是按需建立的临时性链路,因此,在两个从设备之间无数据传输需求时,不会额外占用空口资源,也无需从设备发送空包以保持该通信链路。综上,该方法不会造成从设备的功耗浪费,也不会造成空口资源浪费。
在一种可能的设计中,所述目标空口资源包含以下至少一项:目标频域资源、目标时 域资源。
在一种可能的设计中,当所述目标空口资源包含所述目标时域资源时,所述资源配置信息中包含以下至少一项:时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长;其中,所述时钟同步信息用于指示与所述主设备保持时钟同步。
在一种可能的设计中,当所述目标资源包含所述目标频域资源时,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。
在一种可能的设计中,所述资源配置信息中还包含安全保护信息,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥。
在一种可能的设计中,第一从设备可以通过以下两种方式,接收来自主设备响应于通信请求的资源配置信息:方式一:所述第一从设备在事件event周期内,接收携带所述资源配置信息的同步帧;方式二:所述第一从设备在event周期中的第一时域资源内,接收携带所述资源配置信息的第一数据帧;其中,所述第一时域资源是在所述event周期中为所述主设备向所述第一从设备发送业务数据预留的时域资源。
在一种可能的设计中,在第一从设备接收来自主设备响应于通信请求的资源配置信息之前,所述第一从设备向所述主设备发送所述通信请求。
在一种可能的设计中,所述第一从设备向所述主设备发送所述通信请求,包括:在event周期中的第三时域资源内向所述主设备发送所述通信请求;其中,所述第三时域资源是在所述event周期中为所述第一从设备向所述主设备反馈业务数据的响应信息预留的时域资源。
在一种可能的设计中,所述通信请求为所述第二从设备向所述主设备发送的。
在一种可能的设计中,所述第一从设备和所述第二从设备为双耳真无线TWS蓝牙耳机;所述第一从设备与所述第二从设备之间传输的所述数据包含以下至少一项:播放同步信息、音量同步信息、耳机位置信息、耳机电量信息、配置同步信息、干扰信息。
第三方面,本申请实施例提供了一种通信装置,包括用于执行以上任一方面中各个步骤的单元。
第四方面,本申请实施例提供了一种通信设备,包括收发器和耦合至所述收发器的处理器,以及存储器;所述处理器读取并执行所述存储器中存储的程序和数据,并通过所述收发器收发数据,以使得本申请以上任一方面提供的方法被实现。
第五方面,本申请实施例提供了一种短距离无线通信***,包括:用于执行第一方面提供的方法的主设备,以及至少两个用于执行第二方面提供的方法的从设备。
第六方面,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述任一方面提供的方法。
第七方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机执行上述任一方面提供的方法。
第八方面,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,执行上述任一方面提供的方法。
第九方面,本申请实施例还提供了一种芯片***,该芯片***包括处理器,用于支持计算机装置实现上述任一方面提供的方法。在一种可能的设计中,所述芯片***还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片***可以由芯片构成, 也可以包含芯片和其他分立器件。
上述第二方面至第九方面中任一方面可以达到的技术效果可以参照上述第一方面中任一种可能设计可以达到的技术效果说明,重复之处不予论述。
附图说明
图1为本申请实施例提供的一种点对多点的短距离无线通信***架构图;
图2A为本申请实施例提供的一种蓝牙***实例图;
图2B为本申请实施例提供的一种蓝牙***的传输模式示意图;
图2C为本申请实施例提供的另一种蓝牙***的传输模式示意图;
图2D为一种传统的event周期内的时域资源配置示意图;
图3为本申请实施例提供的一种通信方法流程图;
图4A为本申请实施例提供的一种蓝牙***中event周期内时域资源配置实例示意图;
图4B为本申请实施例提供的一种蓝牙***中event周期内时域资源配置实例示意图;
图4C为本申请实施例提供的一种蓝牙***中event周期内时域资源配置实例示意图;
图4D为本申请实施例提供的一种蓝牙***中event周期内时域资源配置实例示意图;
图4E为本申请实施例提供的一种蓝牙***的通信实例示意图;
图5为本申请实施例提供的一种蓝牙***的架构实例示意图;
图6为本申请实施例提供的一种通信装置的结构图;
图7为本申请实施例提供的一种通信设备的结构图。
具体实施方式
本申请提供一种应用于点对多点的短距离无线通信***的通信方法及设备,用以在短距离无线通信***中降低功耗和空口资源浪费。其中,本申请实施例提供的方法和设备是基于同一技术构思的,由于解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1、短距离无线通信技术,为在较小范围内的通信双方通过无线电波传输信息的通信技术,一般具有以下特点:
低成本,一般工作在开放的非授权频段上;
低功耗,相对于蜂窝通信技术,无线发射器的发射功率一般在100mW以内;
短距离的对等通信,通信距离一般控制在几十米或上百米之内。
例如,短距离无线通信技术可以但不限于包括:射频识别(radio frequency identification,RFID)技术,蓝牙技术、无线保真(wireless-fidelity,WI-FI)技术、紫蜂(ZigBee)技术、超宽带(ultra wideband,UWB)技术,以及基于上述通信技术演进的通信技术,和与上述通信技术功能相同或相似、能够互相替代的通信技术等。
2、短距离无线通信***,为多个终端设备通过短距离无线通信技术建立的通信***,在本申请实施例中可以简称为通信***。具体的,按照采用的具体的通信技术的不同,可以具体划分为RFID***、蓝牙***、WI-FI***等。
按照在通信***中的角色或功能,通信***中的终端设备可以定义两种设备类型:主 设备和从设备。
其中,主设备与通信***中的所有从设备之间存在通信链路,能够控制和管理所有从设备,以及分别与每个从设备进行业务通信。在通信***中除主设备以外的其他终端设备均为从设备。
通常,短距离无线通信***中存在一个主设备和至少一个从设备。本申请实施例中,将具有一个主设备和多个从设备的短距离无线通信***称为点对多点的短距离无线通信***。应当理解,在某些通信场景下,短距离无线通信***中也可以存在多个主设备。
3、蓝牙***,为至少两个终端设备通过蓝牙技术建立的通信***,又可以称为蓝牙网络、通信网络、微网或微微网(piconet)。在蓝牙***中的终端设备也可以称为蓝牙设备。
按照在蓝牙***中的角色,可以定义两种蓝牙设备:
主设备:蓝牙***中主动发起连接请求流程的蓝牙设备,该连接请求流程包括:设备查找、发起配对、建立连接等。主设备又称为主控设备。另外,主设备还负责向从设备提供时钟同步信号和跳频序列。
从设备:蓝牙***中除主设备以外的从设备,接受主设备的管理和控制。
在一个蓝牙***中,一般有一个蓝牙设备为主设备,其他蓝牙设备均为从设备,并且在该蓝牙***存在期间将一直维持这一状态。蓝牙***中的任何一个从设备均可以与主设备通信,而主设备可以与蓝牙***中的多个从设备进行通信。
4、event周期,又称为连接事件(connection event)或业务事件周期,是指蓝牙***中主设备和从设备之间相互发送数据的过程。
在一个event周期内主设备和从设备之间通信使用的频率位于同一个频点,因此,为了避免干扰,在一个event周期内蓝牙***采用时分复用进行传输,即在一个event周期内,利用不同的时域资源来传输不同路的信号。
5、终端设备,为支持短距离无线通信技术、向用户提供语音和/或数据连通性的设备。
例如,终端设备可以为具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、智能销售终端(point of sale,POS)、可穿戴设备(双耳真无线(true wireless stereo,TWS)蓝牙耳机),虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、各类智能仪表(智能水表、智能电表、智能燃气表)等。
通常,能够作为短距离无线通信***中的主设备的终端设备为能够便于用户操作、具有显示屏、集成相对复杂算法(具有管理控制能力)的终端设备,例如,手机、笔记本电脑、平板电脑等。而体积小、便携式以及可穿戴的终端设备一般能够作为蓝牙***中的从设备。
当然,本申请不限定主设备和从设备的设备类型,还需要根据具体场景来定义短距离无线通信***中的主设备和从设备。例如,手机在一个蓝牙***中可以作为主设备,在另一个蓝牙***还可以作为从设备。
6、通信链路,为相邻两个通信节点之间的一段通信线路,中间没有任何其他的通信 节点,又称为通信连接、连接、链路。在本申请实施例中短距离无线通信***涉及的通信链路均为无线空口连接(也可以简称为空口连接)。
示例性的,在蓝牙***中,通过蓝牙技术建立的通信链路还可以称为蓝牙连接。
7、数据的响应信息,用于指示数据的接收方对该数据的接收结果(成功或失败)。示例性的,数据的响应信息为确认应答(acknowledgement,ACK)/否定应答(negative acknowledgement,NACK)。又例如,数据的响应信息还可以通过取值来指示不同的接收结果,例如数据的响应信息取值为0表示接收失败,取值为1表示接收成功。
8、空口资源,用于实现无线空口传输所需要的资源,还可以称为信道资源、信道,可以但不限于包括:时域资源和频域资源。
其中,时域资源,为用于实现空口传输的连续或不连续的时间。本申请实施例不限定时域资源的计数单位。可选的,本申请中的时域资源可以以传统的时间单位为计数单位,例如:秒(second,s),毫秒(millisecond,ms),微秒(microsecond,μs)等。又例如,本申请中的时域资源还可以以通信领域中的时域单位来计算,例如:帧(frame)、子帧(subframe)、时隙(slot)、符号(symbol)等。
频域资源,为用于实现空口传输的连续或不连续的频段。可选的,当频域资源为连续的频段时,可以通过该频段的频点来表示该频域资源。
9、“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。至少一个,是指一个或一个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面将结合附图,对本申请实施例进行详细描述。
图1示出了本申请实施例提供的通信方法适用的一种典型的点对多点的短距离无线通信***的架构。参阅图1所示,在该通信***中包含主设备以及多个从设备(例如图1中所示的第一从设备和第二从设备)。
所述主设备可以与多个从设备建立临时性的对等的通信链路,从而建立点对多点的通信***,并且能够控制和管理通信***中的所有从设备,以及能够与通信***中的每个从设备进行业务通信。例如,主设备可以添加或删除通信***中的从设备,为从设备分配空口资源等。
在该通信***中,主设备可以与每个从设备进行数据传输。可选的,主设备可以但不限于通过以下模式,与多个从设备进行通信:
在一种传输模式中,主设备可以通过广播的方式,将业务数据广播给通信***中的所有从设备;
在另一种传输模式中,主设备可以采用时分复用的方式,分别在不同的时间段与不同的从设备进行交互。
在图1所示的通信***中,除了主设备与从设备之间的通信交互以外,在一些场景中,从设备之间也存在临时性、偶发性的数据传输需求,例如,两个从设备之间需要实现数据 同步、配置信息同步、干扰信息传输等。因此,为了保证具有数据传输需求的两个从设备之间能够传输数据,该两个从设备之间也需要建立通信链路。
在目前的方案中,为了保证两个从设备之间的通信链路不会断开,即使两个从设备之间没有具体的数据传输,也需要周期性地发送空包以维持通信链路,并且两个从设备之间也需要持续维护该通信链路对应的空口资源。显然,这种方案不仅会造成从设备的功耗浪费,也会造成空口资源浪费。在上述方案中,由于两个从设备之间维护的通信链路不会断开,因此该通信链路又可以称为实体链路。
基于此,本申请实施例提供了一种应用于上述点对多点的短距离无线通信***的通信方案,在该方案中,短距离无线通信***中的两个从设备之间存在数据传输需求时,该两个从设备中的任一个从设备可以向主设备发送通信请求以使主设备为该两个从设备的数据传输分配空口资源,从而使两个从设备可以根据主设备分配的空口资源进行数据传输。两个从设备之间数据传输所需要的空口资源是按需分配的,即两个从设备之间的通信链路是按需建立的临时性链路(如图1中的虚线通信链路所示),因此,在两个从设备之间无数据传输需求时,不会额外占用空口资源,也无需从设备发送空包以保持该通信链路。综上,该方法不会造成从设备的功耗浪费,也不会造成空口资源浪费。
下面以图2A所示的TWS蓝牙耳机和手机组成的蓝牙***为例进行说明。TWS蓝牙耳机中的左耳机和右耳机可以分别作为一个独立的蓝牙设备与手机建立通信链路,如图2A所示。在该场景中,手机为主设备,左耳机和右耳机均为从设备。
在该蓝牙***中,手机连接TWS蓝牙耳机的过程如下:
手机在打开蓝牙功能后,可以通过设备查找过程,查找到手机附近的蓝牙设备;在手机查找到TWS蓝牙耳机时,将该TWS蓝牙耳机的设备标识显示在到蓝牙设备列表中;当用户通过在蓝牙设备列表中点击TWS蓝牙耳机的设备标识,以通知手机连接该TWS蓝牙耳机后,手机向TWS蓝牙耳机发起配对,在配对成功后,分别与TWS蓝牙耳机的左耳机和右耳机建立通信连接。
在图2A所示的蓝牙***中,无论是在通话场景还是在音乐场景,手机和TWS蓝牙耳机可以采用如下两种传输模式进行数据传输:
传输模式一:监听模式
在本模式中,手机广播业务数据,左耳机和右耳机同时接收该业务数据。另外,为了向手机反馈业务数据的响应信息,TWS蓝牙耳机可以将左耳机和右耳机分别设置主耳机和副耳机。其中,副耳机根据自身业务数据的接收结果生成第一响应信息,以指示业务数据是否被副耳机成功接收,然后将该第一响应信息发送给主耳机;主耳机根据自身业务数据的接收结果生成第二响应信息,以指示业务数据是否被主耳机成功接收,再根据接收的第一响应信息、生成的第二响应信息,生成第三响应信息发送给手机;或者主耳机可以将第一响应信息和第二响应信息发送给手机。具体业务数据的发送过程以及响应信息的发送过程可以参考图2B所示。
手机根据接收的第三响应信息,或者接收的第一响应信息和第二响应信息,决定是否需要重传该业务数据。
传输模式二:双发模式
在本模式中,手机将左耳机的业务数据(即左声道业务数据)和右耳机的业务数据(即 右声道业务数据)分开,并轮流给左耳机和右耳机发送相应的业务数据,且左耳机和右耳机分别向手机回复指示自身业务数据的接收结果的响应信息。具体业务数据的发送过程以及响应信息的发送过程可以参考图2C所示。
手机根据接收的左耳机的响应信息决定是否需要向左耳机重传左声道业务数据,以及根据接收的右耳机的响应信息决定是否需要向右耳机重传右声道业务数据。
无论采用哪种传输模式,左耳机和右耳机之间都需要进行一些必要的协同交互。示例性的,需要交互的协同数据可以但不限于以下至少一项:播放同步信息、音量同步信息、耳机位置信息、耳机电量信息、配置同步信息、干扰信息等。
为了实现该协同交互,根据传统的蓝牙标准,左耳机和右耳机之间必须建立通信链路,且该通信链路是实体链路,即需要持续保持连接,不能断开。因此,即使左耳机和右耳机之间没有需要协同的数据,依然需要隔一段时间发送一个空包,以维持该通信链路的连接。若该通信链路持续未发送数据,则会导致计时器超时,该通信链路会断开。
因此,基于上述传统的从设备之间通过通信链路传输协同数据的方案,为了保持左耳机和右耳机之间的通信链路,在双方没有数据需要传输的情况下,不仅需要左耳机和右耳机之间周期性地发送空包,另外蓝牙***还需要维护该通信链路对应的空口资源。
以双发模式为例,参阅图2D所示,在一个event周期内,手机需要预留以下时域资源:
第一时长,是为手机向左耳机发送左声道业务数据预留的时域资源;
第二时长,是为左耳机向手机反馈左声道业务数据的响应信息预留的时域资源;
第三时长,是为手机向右耳机发送右声道业务数据预留的时域资源;
第四时长,是为右耳机向手机反馈右声道业务数据的响应信息预留的时域资源;
第五时长,是为左耳机向右耳机发送协同数据预留的时域资源;
第六时长,是为右耳机向左耳机发送协同数据预留的时域资源。
可选的,为了使双耳机能够与手机时钟同步,手机还可以在每个event周期内为发送同步信号预留时域资源。例如,在event周期的起始阶段预留广播时长,手机在该广播时长内广播携带时钟同步信号的同步帧。
如图2D所示,在event周期内除以上预留的时域资源以外的使用资源,可以用于手机向左耳机或右耳机重传业务数据,或者用于手机与其他接入手机的蓝牙设备进行业务数据传输。其中,有关于业务数据重传所使用的时域资源的具体分配情况还需要参考当前***中所采用的重传机制,本申请对此不再具体说明。
需要说明的是,在只有左耳机向右耳机发送协同数据的场景中,手机可以只预留第五时长,而无需预留第六时长;在只有右耳机向左耳机发送协同数据的场景中,手机可以只预留第六时长,而无需预留第五时长;在存在左耳机向右耳机发送协同数据,且右耳机也需要向左耳机发送协同数据的场景中,手机可以同时预留第五时长和第六时长。当然,手机也可以无需考虑协同数据的传输方向,在收到任一耳机的通信请求时,直接预留第五时长和第六时长。
通过图2D可知,针对空口而言,在每个event周期都要预留固定的第五时长和/或第六时长。为了维持双耳机之间的通信链路,即使双耳机之间没有协同数据需要发送,在每个event周期内的第五时长和/或第六时长内,也要发送空包。显然,目前这种为双耳机之间的偶然性的协同数据的传输建立实体链路的方案,不仅会导耳机的功耗浪费,也造成空口资源浪费,挤占了event周期内手机向耳机重传业务数据的时域资源以及更多蓝牙设备 接入手机的机会。
为了解决在点对多点的短距离无线通信***中由于保持从设备之间的通信链路导致的功耗和空口资源浪费的问题,本申请实施例提供了一种通信方法,该方法可以适用于如图1所示的短距离无线通信***中。下面参阅图3所示的流程图,对本申请实施例提供的方法进行详细说明。
S300:主设备与第一从设备第二从设备建立通信链路;然后,主设备分别与第一从设备和第二从设备进行通信交互。
主设备可以采用短距离无线通信技术,分别与第一从设备、第二从设备建立通信链路,从而组建成短距离无线通信***。所述主设备可以控制和管理该通信***中的所述第一从设备和所述第二从设备。
需要说明的是,在本申请实施例仅以通信***中包含第一从设备和第二从设备为例说明,并不对该通信***中的从设备的数量构成限定。例如,该通信***中还可以包含第三从设备、第四从设备等,其中,任意两个从设备之间存在协同数据传输需求时,均可以通过本申请实施例提供的方法实现。
在所述第一从设备和所述第二从设备接入所述主设备之后,所述主设备可以分别为每个从设备的业务数据传输分配空口资源,以便建立通信链路,之后主设备可以根据为每个从设备分配的空口资源,与相应的从设备进行通信交互,以上过程可以参考传统的主设备与从设备之间传输业务数据的方案,此处不再详细描述。
下面对主设备为每个从设备分配的空口资源进行说明:
为第一从设备分配的空口资源(第一空口资源)包括时域资源和频域资源。其中,第一空口资源中的时域资源包含:为主设备向第一从设备发送业务数据预留的时域资源(后续简称为第一时域资源);为第一从设备向主设备反馈业务数据的响应信息预留的时域资源(后续简称为第二时域资源)。
类似的,为第二从设备分配的空口资源(第二空口资源)也包括时域资源和频域资源。其中,第二空口资源中的时域资源包含:为主设备向第二从设备发送业务数据预留的时域资源(后续简称为第三时域资源);为第二从设备向主设备反馈业务数据的响应信息预留的时域资源(后续简称为第四时域资源)。
可选的,在当前通信***支持重传业务数据的场景中,主设备还可以在空闲的空口资源中为主设备向第一从设备重传业务数据预留时域资源(后续简称为第五时域资源),以及为主设备向第二从设备重传业务数据预留的时域资源(后续简称为第六时域资源)。
示例性的,当短距离无线通信***(例如蓝牙***)通过event周期定义主设备和从设备之间相互发送数据的过程时,以上每个从设备的时域资源均为event周期内的时域资源,且不同的时域资源之间不存在重叠。
主设备在为每个从设备分配空口资源后,会分别通知给相应的从设备。这样,后续主设备和任一从设备可以使用为该从设备分配的各个具体的空口资源,执行相应的数据传输操作,从而实现该从设备的业务。
S301:在所述第一从设备存在协同数据传输需求,可以向所述主设备发送通信请求。所述主设备接收来自所述第一从设备的通信请求。所述通信请求用于请求与第二从设备进行数据传输。
可选的,所述第一从设备可以在第二时域资源内,向所述主设备发送所述通信请求,即在所述第二时域资源内所述第一从设备可以将业务数据的响应信息和所述通信请求发送给所述主设备。
需要说明的是,本申请实施例仅以第一从设备向主设备发送通信请求为例,但是不对能够向主设备发送通信请求的从设备构成限定。在实际场景中,短距离无线通信***中的任一从设备均可以向主设备发送通信请求。示例性的,TWS蓝牙耳机中的左耳机或右耳机,或者在设置主耳机的情况下主耳机,均可以在存在协同数据传输需求时向主设备发送通信请求。
在本申请实施例中,所述第一从设备存在协同数据传输需求,可以但不限于包括以下至少一项:
1、所述第一从设备生成或获取到需要向第二从设备发送的协同数据;
2、所述第一从设备需要从第二从设备获取协同数据;
3、由于用户指示、功能异常,或周期性触发时。
4、所述第一从设备受到突发性干扰、电量过低时。
5、由于未与第二从设备协同数据同步,导致第一从设备的功能受到影响时。
可选的,本申请实施例涉及的协同数据可以但不限于包含以下至少一项:业务数据、配置信息、干扰信息,工作状态信息(例如,电量信息、音量信息、位置信息等)。示例性的,当所述第一从设备和所述第二从设备为TWS蓝牙耳机时,所述协同数据可以包含以下至少一项:播放同步信息、音量同步信息、耳机位置信息、耳机电量信息、配置同步信息、干扰信息。
S302:所述主设备响应所述通信请求,分配目标空口资源。其中,所述目标空口资源为用于所述第一从设备与所述第二从设备之间进行数据传输的空口资源。
其中,为了不影响正常业务数据的传输,所述主设备可以在上述第一空口资源和第二空口资源以外的其他空闲空口资源为两个从设备之间传输协同数据分配所述目标空口资源;或者,挤占第五时域资源和/或第六时域资源为两个从设备之间传输协同数据分配所述目标空口资源(例如,在空闲空口资源不充裕的情况下)。
S303:所述主设备发送资源配置信息。所述第一从设备接收来自所述主设备响应于所述通信请求而发送的资源配置信息。所述第二从设备接收来自所述主设备响应于所述通信请求而发送的资源配置信息。其中,所述资源配置信息用于指示所述目标空口资源。
所述目标空口资源包含以下至少一项:目标频域资源和目标时域资源。
在一种实施方式中,所述目标空口资源中包含目标时域资源。在本实施方式中,所述资源配置信息中可以包含以下至少一项:时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长。
为了保证协同数据的传输效率,第一从设备和第二从设备需要时钟对齐,因此,资源配置信息中的时钟同步信息可以指示与通信***中的主设备保持时钟同步。所述设定时刻可以为所述主设备与通信***中的从设备约定的一个时刻,例如,发送同步信号的时刻等;还可以为所述主设备指定的时刻,例如某个时隙、某个符号、某一秒等,本申请对此不作限定。
由于两个从设备之间传输协同数据的可能是单向的,也可能是双向的,因此,所述目标时域资源中可以包括以下至少一项:
用于第一从设备向第二从设备发送第一协同数据的时域资源(后续简称为第七时域资源);用于第二从设备向第一从设备发送第二协同数据的时域资源(后续简称为第八时域资源)。
可选的,当所述目标时域资源中包含第七时域资源和第八时域资源时,所述资源配置信息中的所述目标时域资源相对于设定时刻的偏移值,可以具体包含:所述第七时域资源相对于第一设定时刻的偏移值,和/或,所述第八时域资源相对于第二设定时刻的偏移值。其中,所述第一设定时刻与所述第二设定时刻可以为同一时刻,也可以为不同的时刻。所述资源配置信息中的所述目标时域资源的时长,可以具体包含:所述第七时域资源的时长、所述第八时域资源的时长;或者所述第七时域资源的时长/所述第八时域资源的时长,以及所述目标时域资源的总时长。
这样,所述第一从设备和所述第二从设备可以根据资源配置信息,确定第七时域资源和第八时域资源的位置,从而在第七时域资源内执行第一协同数据的传输,在第八时域资源内执行第二协同数据的传输。
在另一种实施方式中,所述目标空口资源中包含目标频域资源。在该情况下,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。
在又一种实施方式中,当两个从设备之间传输的协同数据需要安全保护的场景中,所述资源配置信息中还可以包含安全保护信息。其中,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥等。这样,两个从设备在接收到资源配置信息时,可以根据其中的安全保护信息对待传输的协同数据进行加密,从而保证协同数据的安全性。
在再一种实施方式中,两个从设备之间传输协同数据的过程中,从设备还可以根据协同数据的接收结果反馈协同数据的响应信息。在该场景下,所述主设备还可以为两个从设备之间传输协同数据的响应信息分配响应空口资源。此时,所述资源配置信息还用于指示所述响应空口资源。
与目标空口资源类似的,所述响应空口资源中包含以下至少一项:响应时域资源和响应频域资源。其中,当所述目标时域资源中包含所述第七时域资源时,所述响应空口资源中包含:第九时域资源,用于第二从设备向第一从设备发送第一协同数据的响应信息;当所述目标时域资源中包含所述第八时域资源时,所述响应空口资源中包含:第十时域资源,用于第一从设备向第二从设备发送第二协同数据的响应信息。
在该实施方式中,所述资源配置信息还包含以下至少一项:所述响应时域资源相对于设定时刻的偏移值,所述响应时域资源的时长。
可选的,当所述响应时域资源中包含第九时域资源和第十时域资源时,所述资源配置信息中的所述响应时域资源相对于设定时刻的偏移值,可以具体包含:所述第九时域资源相对于第三设定时刻的偏移值,和/或,所述第十时域资源相对于第四设定时刻的偏移值。其中,所述第一设定时刻、所述第二设定时刻、所述第三设定时刻与所述第四设定时刻可以为同一时刻,也可以为不同的时刻。所述资源配置信息中的所述响应时域资源的时长,可以具体包含:所述第九时域资源的时长、所述第十时域资源的时长;或者所述第九时域资源的时长/所述第十时域资源的时长,以及所述响应时域资源的总时长。
这样,所述第一从设备和所述第二从设备可以根据资源配置信息,确定第九时域资源和第十时域资源的位置,从而在第九时域资源内执行第一协同数据的响应信息的传输,在第十时域资源内执行第二协同数据的响应信息的传输。
在再一种实施方式中,在当前通信***支持重传协同数据的场景中,主设备还可以为两个从设备之间重传协同数据分配重传空口资源。此时,所述资源配置信息还用于指示所述重传空口资源。
与目标空口资源类似的,所述重传空口资源中包含以下至少一项:重传时域资源和重传频域资源。其中,当所述目标时域资源中包含所述第七时域资源时,所述重传空口资源中包含:第十一时域资源,用于第一从设备向第二从设备重传第一协同数据;当所述目标时域资源中包含所述第八时域资源时,所述重传空口资源中包含:第十二时域资源,用于第二从设备向第一从设备重传第二协同数据。
在该实施方式中,所述资源配置信息还可以包含以下至少一项:所述重传时域资源相对于设定时刻的偏移值,所述重传时域资源的时长。
可选的,当所述重传时域资源中包含第十一时域资源和第十二时域资源时,所述资源配置信息中的所述重传时域资源相对于设定时刻的偏移值,可以具体包含:所述第十一时域资源相对于第五设定时刻的偏移值,和/或,所述第十二时域资源相对于第六设定时刻的偏移值。其中,所述第一设定时刻、所述第二设定时刻、所述第三设定时刻、所述第四设定时刻、所述第五设定时刻、所述第六设定时刻可以为同一时刻,也可以为不同的时刻。所述资源配置信息中的所述重传时域资源的时长,可以具体包含:所述第十一时域资源的时长、所述第十二时域资源的时长;或者所述第十一时域资源的时长/所述第十二时域资源的时长,以及所述重传时域资源的总时长。
这样,所述第一从设备和所述第二从设备可以根据资源配置信息,确定第十一时域资源和第十二时域资源的位置,从而在第十一时域资源内执行第一协同数据重传,在第十时域资源内执行第二协同数据的重传。
在本实施例中,所述主设备可以采用以下方式,发送所述资源配置信息。
方式一:所述主设备广播所述资源配置信息。
在主设备还为广播同步信号(在event周期)预留广播时域资源时,所述主设备可以在该广播时域资源内,广播携带所述资源配置信息同步帧。其中,所述同步帧中还包含时钟同步信号。
通过这种方式,所述主设备可以利用向从设备发送广播信号的空口资源,向从设备发送资源配置信息。
方式二:所述主设备分别向所述第一从设备和所述第二从设备发送所述资源配置信息。
在本方式中,所述主设备可以分别向两个从设备发送各自的业务数据和资源配置信息,具体的,所述主设备可以在第一时域资源内,向所述第一从设备发送携带所述资源配置信息的第一数据帧;在第三时域资源内,向所述第二从设备发送携带所述资源配置信息的第二数据帧。其中,所述第一数据帧中还可以包含第一从设备的业务数据,所述第二数据帧中还可以包含第二从设备的业务数据。
通过这种方式,所述主设备可以利用向从设备发送业务数据的空口资源,向从设备发 送资源配置信息。
在方式二中,当主设备接入多个从设备的情况下,为了使主设备可以确定与第一从设备进行通信的是第二从设备,以便可以向第二从设备发送资源配置信息,本申请实施例可以通过以下实施方式:
在一种实施方式中,所述第一从设备发送的所述通信请求中可以携带所述第二从设备的设备信息,这样,所述主设备在分配目标空口资源后,可以向第二从设备反馈资源配置信息。
在另一种实施方式中,当所述第一从设备与所述第二从设备为配对出现或者具有统一的设备信息时,主设备可以在接收到所述第一从设备的通信请求后,确定与所述第一从设备配对出现或具有同一设备信息的所述第二从设备。
应注意,当短距离无线通信***是通过event周期定义主设备和从设备之间相互通信的过程时,以上定义的各个时域资源(第一时域资源至第十二时域资源,以及广播时域资源等)均为event周期内的时域资源,且不同的时域资源之间不存在重叠。由于短距离无线通信***所使用的带宽一般为窄带,因此,在该通信***中所有设备之间通信可以使用相同的频域资源,因此,本申请不对以上各个实施方式涉及的空口资源中的频域资源进行展开说明。当然,在一些场景中,与上述时域资源类似的,主设备也可以为不同信号传输分配不同的频域资源,此处不再赘述。
此外,还应注意,当短距离无线通信***(例如蓝牙***)通过event周期定义主设备和从设备之间相互通信的过程时,第一从设备可以在当前event周期内的第二时域资源内向主设备发送通信请求,而主设备可以利用下一个(或后续第m个)event周期内的时域资源发送该资源配置信息。
应了解,本申请对以上空口资源中的时域资源的先后顺序、长度等均不作限定。
S304:利用所述资源配置信息所指示的所述目标空口资源,所述第一从设备与所述第二从设备之间传输协同数据。
与S303中的描述对应的,任一个从设备可以通过如下实施方式,确定所述目标空口资源。
在一种实施方式中,所述目标空口资源包含目标时域资源。所述资源配置信息中可以包含以下至少一项:时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长。
任一从设备可以根据资源配置信息中的时钟同步信息,与主设备保持时钟同步。两个从设备均与主设备保持时钟同步,两个从设备之间也实现可以实现时钟对齐,这样,两个从设备根据资源配置信息确定的目标时域资源也是时钟对齐的,当两个从设备根据该目标时域资源传输协同数据时,可以保证协同数据的传输效率。
任一从设备可以根据资源配置信息中包含的所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长,从而可以准确地确定所述目标时域资源的位置,从而可以在该目标时域资源内,传输协同数据。
可选的,当所述目标时域资源中包含第七时域资源时,在S304中,所述第一从设备在所述第七时域资源内,向所述第二从设备发送第一协同数据;而所述第二从设备可以在 所述第七时域资源内,接收来自所述第一从设备的所述第一协同数据。
可选的,当所述目标时域资源中包含第八时域资源时,在S304中,所述第二从设备在所述第八时域资源内,向所述第一从设备发送第二协同数据;而所述第一从设备可以在所述第八时域资源,接收来自所述第二从设备的所述第二协同数据。
在另一种实施方式中,所述目标空口资源中还包含目标频域资源时,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。在本实施方式中,任一从设备可以根据该资源配置信息中包含的频点指示信息,确定所述目标频域资源。这样,在S304中,该从设备可以使用该目标频域资源与另一个从设备进行协同数据传输。
在又一种实施方式中,所述资源配置信息中还可以包含安全保护信息,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥等。在本实施方式中,协同数据的发送方可以根据该资源配置信息中包含的安全保护信息,对待传输的协同数据进行加密;而协同数据的接收方也可以根据该资源配置信息中包含的安全保护信息,对接收的加密后的协同数据进行解密。通过该实施方式,可以保证短距离无线通信***中从设备之间传输的协同数据的安全性。
在再一种实施方式中,资源配置信息还用于指示响应空口资源。响应空口资源中包含响应时域资源和响应频域资源。在本实施方式中,资源配置信息中还包含以下至少一项:所述响应时域资源相对于设定时刻的偏移值,所述响应时域资源的时长。
任一从设备还可以根据资源配置信息中的包含的上述信息,确定所述响应时域资源的位置,从而可以在该响应时域资源内传输协同数据的响应信息。
可选的,当所述响应时域资源中包含第九时域资源时,在S304之后,所述第二从设备在所述第九时域资源内,向第一从设备发送第一协同数据的响应信息;而所述第一从设备可以在所述第九时域资源内,接收来自所述第二从设备的第一协同数据的响应信息。
可选的,当所述响应时域资源中包含第十时域资源时,在S304之后,所述第一从设备可以在所述第十时域资源内,向所述第二从设备发送第二协同数据的响应信息;而所述第二从设备可以在所述第十时域资源内,接收来自所述第一从设备的所述第二协同数据的响应信息。
在再一种实施方式中,在当前通信***支持重传协同数据的场景中,所述资源配置信息还用于指示重传空口资源。所述重传空口资源中包含以下至少一项:重传时域资源和重传频域资源。在本实施方式中,资源配置信息中可以还包含以下至少一项:所述重传时域资源相对于设定时刻的偏移值,所述重传时域资源的时长。
任一从设备还可以根据资源配置信息中的上述信息,确定所述重传时域资源的位置,从而可以在该重传时域资源内重传协同数据。
可选的,当重传时域资源中包含第十一时域资源时,在S304之后,所述第一从设备接收到来自第二从设备指示接收失败的响应信息时,在所述十一时域资源内,向所述第二从设备重传第一协同数据。
可选的,当重传时域资源中包含第十二时域资源时,在S304之后,所述第二从设备 接收到来自第一从设备指示接收失败的响应信息时,在所述第十二时域资源内,向所述第一从设备重传第二协同数据。
其中,第一协同数据为第一从设备的协同数据,第二协同数据为第二从设备的协同数据。
综上,本申请实施例提供了一种应用于点对多点的短距离无线通信***的通信方法,在该方法中,短距离无线通信***中的两个从设备之间存在数据传输需求时,该两个从设备中的任一个从设备可以向主设备发送通信请求以使主设备为该两个从设备的数据传输分配空口资源,从而使两个从设备可以根据主设备分配的空口资源进行数据传输。两个从设备之间数据传输所需要的空口资源是按需分配的,即两个从设备之间的通信链路是按需建立的临时性链路,因此,在两个从设备之间无数据传输需求时,该空口资源就会释放,不会额外占用空口资源,也无需从设备发送空包以保持该通信链路。综上,该方法不会造成从设备的功耗浪费,也不会造成空口资源浪费。
由于两个从设备之间数据传输所需要的空口资源是按需分配的,因此,在二者无数据传输需求时,主设备无需为其预留该空口资源,因此,不会挤占主设备重传业务数据的空口资源,提高了业务数据的传输可靠性;也不会占用额外的空闲空口资源,可以使更多的从设备可以接入主设备,从而可以提高通信***内多业务并发能力,提高***的数据收发能力。此外,从设备之间的通信交互由通信***中的主设备进行控制,可以提升主设备对整个通信***的空口资源的控制能力,从而有利于多主设备间共存。
基于图3所示的实施例提供的方法,以及图2A所示的蓝牙***,本申请还提供了一些蓝牙***中的通信实例,在该蓝牙***中,手机和TWS蓝牙耳机可以采用双发模式进行业务数据传输。下面参阅图4A-图4D进行说明。在以下实例中,手机分配目标空口资源的过程,以及指示目标空口资源的资源配置信息的具体描述可以参考以上实施例中的具体描述,此处不再赘述。
实例一:参阅图4A所示。本实例中,手机可以分别在向每个耳机发送的数据帧中携带资源配置信息。
在默认情况(两个耳机之间无协同数据需要传输的情况)下,两个耳机之间无实体链路,在event周期内无需为两个耳机互通预留时域资源,如图4A中的(a)所示,手机仅在event周期内预留第一时长至第四时长,其它时域资源可以预留给业务数据重传,或者分配给其它接入手机的蓝牙设备。其中,本实例中第一时长至第四时长的描述可以参考图2D中的第一时长至第四时长,此处不再赘述。
因此,在默认情况下,在一个event周期内,手机先在第一时长内向左耳机发送携带左声道业务数据的数据帧;然后在第二时长内,左耳机向手机发送左声道业务数据的响应信息;在第三时长内,手机向右耳机发送携带右声道业务数据的数据帧;然后在第四时长内,右耳机向手机发送右声道业务数据的响应信息。这样,手机可以根据左耳机的响应信息、右耳机的响应信息,在后续的空口资源中对左声道业务数据和/或右声道业务数据进行重传。
当双耳机之间存在协同数据交互需求时,任一耳机(本实例以左耳机为例)可以向手机发送通信请求,以请求手机为双耳机之间的协同数据传输分配空口资源;如图4A中的(b)所示,在第n个event周期中第二时长内,左耳机可以向手机发送通信请求。
手机在第n个event周期中的第二时长内接收到通信请求后,为双耳机之间协同数据传输分配目标空口资源,并生成指示该目标空口资源的资源配置信息后,在第n+1个event周期内的第一时长内向左耳机发送携带左声道业务数据和资源配置信息的数据帧,以及在第n+1个event周期内的第三时长内向右耳机发送携带右声道业务数据和资源配置信息的数据帧,如图4A中的(c)所示。
左耳机和右耳机在接收到资源配置信息后,可以在第n+1个event周期内的后续空口资源中确定目标空口资源,即图4A中的(c)所示的第五时长和第六时长。这样,在第n+1个event周期内的第五时长内,左耳机可以向右耳机发送协同数据;在第n+1个event周期内的第六时长内,左耳机可以向右耳机发送协同数据。
实例二:参阅图4B所示,与实例一中的通信方法基本相同,区别在于:手机在第n个event周期中接收到通信请求后,不仅为双耳机之间协同数据传输分配目标空口资源(即图4B中的第五时长和第六时长),还为两个从设备反馈协同数据的响应信息分配响应空口资源(即图4B中的第七时长和第八时长),以及为两个从设备之间重传协同数据分配重传空口资源(即图4B中的第九时长和第十时长)。
手机生成指示该目标空口资源、响应空口资源和重传空口资源的资源配置信息后,在第n+1个event周期内的第一时长内向左耳机发送携带左声道业务数据和资源配置信息的数据帧,以及在第n+1个event周期内的第三时长内向右耳机发送携带右声道业务数据和资源配置信息的数据帧。
左耳机和右耳机在接收到资源配置信息后,可以在第n+1个event周期内的后续空口资源中确定各个空口资源,即图4B所示的第五时长至第十时长。这样,在第n+1个event周期内的第五时长内,左耳机可以向右耳机发送协同数据;在第n+1个event周期内的第六时长内左耳机可以向右耳机发送协同数据;在第n+1个event周期内的第七时长内右耳机可以向左耳机发送协同数据的响应信息,在该响应信息指示接收失败时,左耳机还可以在第n+1个event周期内的第九时长内向右耳机重传协同数据;在第n+1个event周期内的第八时长内左耳机可以向右耳机发送协同数据的响应信息,在该响应信息指示接收失败时,右耳机还可以在第n+1个event周期内的第十时长内向右耳机重传协同数据。
可选的,实例一和实例二的event周期内,手机还可以为广播同步信号预留广播时域资源(例如在event周期内预留广播时长)。手机可以在该广播时长内,广播发送携带时钟同步信号的同步帧。
实例三:参阅图4C所示。本实例中,手机可以在广播的同步帧中携带资源配置信息。
与实例一类似的,不同的是,在默认情况下,在event周期内手机还为向从设备广播同步信号预留广播时长,参阅图4C中的(a)所示。这样,在默认情况下,在一个event周期起始阶段的广播时长内,手机可以广播携带时钟同步信号的同步帧。蓝牙***中的从设备接收到该同步帧后与手机时钟同步。
当双耳机之间存在协同数据交互需求时,任一耳机(继续以左耳机为例)可以向手机发送通信请求,以请求手机为双耳机之间的协同数据传输分配空口资源。如图4C中的(b)所示,在第n个event周期中第二时长内,左耳机可以向手机发送通信请求。
手机在第n个event周期中的第二时长内接收到通信请求后,为双耳机之间协同数据 传输分配目标空口资源,并生成指示该目标空口资源的资源配置信息后,在第n+1个event周期内的广播时长内,通过同步帧广播给双耳机,如图4C中的(c)所示。
左耳机和右耳机在接收到资源配置信息后,可以在第n+1个event周期内的后续空口资源中,确定目标空口资源,即图4C中的(c)所示的第五时长和第六时长。这样,在第n+1个event周期内的第五时长内,左耳机可以向右耳机发送协同数据;在第n+1个event周期内的第六时长内,左耳机可以向右耳机发送协同数据。
实例四:参阅图4D所示,与实例三中的通信方法基本相同,区别在于:手机在第n个event周期中接收到通信请求后,不仅为双耳机之间协同数据传输分配目标空口资源(即图4D中的第五时长和第六时长),还为两个从设备反馈协同数据的响应信息分配响应空口资源(即图4D中的第七时长和第八时长),以及为两个从设备之间重传协同数据分配重传空口资源(即图4D中的第九时长和第十时长)。
手机生成指示该目标空口资源、响应空口资源和重传空口资源的资源配置信息后,在第n+1个event周期内的广播时长内通过同步帧广播给双耳机。
左耳机和右耳机在接收到资源配置信息后,可以在第n+1个event周期内的后续空口资源中确定各个空口资源,即图4D所示的第五时长至第十时长。这样,在第n+1个event周期内的第五时长内,左耳机可以向右耳机发送协同数据;在第n+1个event周期内的第六时长内左耳机可以向右耳机发送协同数据;在第n+1个event周期内的第七时长内右耳机可以向左耳机发送协同数据的响应信息,在该响应信息指示接收失败时,左耳机还可以在第n+1个event周期内的第九时长内向右耳机重传协同数据;在第n+1个event周期内的第八时长内左耳机可以向右耳机发送协同数据的响应信息,在该响应信息指示接收失败时,右耳机还可以在第n+1个event周期内的第十时长内向右耳机重传协同数据。
通过以上实例一至实例四,如图4E所示,手机可以根据双耳机的协同数据传输续期分配空口资源,双耳机也可以实现按需协同。
通过以上图4A至图4D可知,由于蓝牙***中的双耳机无需建立实体链路,双耳机无需周期性发送空包以维护该实体链路,可以明显降低双耳机发送空包造成的功耗浪费。另外,图4A中的(a)和图4C中的(a)所示,在双耳机之间没有协同数据传输需求时,手机无需在event周期内为双耳机的交互预留固定的空口资源,因此,event周期内中的其他时域资源可以用于业务数据重传或者分配给其它蓝牙设备,因此,增加了业务数据重传的机会,提高蓝牙***中业务数据的传输可靠性,也可以使更多的蓝牙设备接入手机,提高了***中多业务并发能力和数据收发能力。此外,双耳机之间的交互由手机进行控制,提升了手机对整个蓝牙***的空口资源的控制能力,利于多主设备(例如多手机)间共存。
基于图3所示的实施例以及以上图4A-图4D所示的实例的描述,针对图4E所示的蓝牙***,本申请还提供了一种蓝牙***实例。参阅图5所示,每个蓝牙设备中包含蓝牙控制器(Bluetooth controller,BTC)模块和蓝牙主机(Bluetooth host,BTH)模块。
其中,BTH模块用于控制管理BTC模块,例如向BTC下发指令,接收BTC上报的数据或事件。
BTC模块用于实现信号的收发以及解析、处理。具体的,BTC模块中可以包含:微控制单元(micro control unit,MCU)、基带(baseband,BB)单元,以及无线射频(radio frequency, RF)单元。其中:
MAC用于接收BTH模块的指令,以及向BTH模块上报数据或时间,以及数据分析、计算、处理功能。
BB单元根据MCU单元发送的数据生成基带信号,以及对从RF接收的基带信号进行解码。
RF单元用于将基带信号进行射频处理形成射频信号,从而通过空口发射出去;以及通过空口接收射频信号,对射频信号进行射频处理后,生成基带信号反馈给BB单元以进行解码。
如图5所示,任一耳机(左耳机)的BTH模块确定双耳机之间存在协同数据传输需求时,向左耳机的BTC模块下发通信请求;该通信请求经过BTC模块中的MCU、BB单元处理后,通过RF单元发送给手机。
手机BTC模块中的RF单元接收到该通信请求后,通过BB单元、MCU对该通信请求进行处理、解析后,得到该通信请求。然后,手机的MCU根据该通信请求为双耳机的协同数据传输分配目标空口资源,并生成指示目标空口资源的资源配置信息。最后,手机的MCU通过BB单元和RF单元,将该资源配置信息广播或分别发送给左耳机和右耳机。
两个耳机的BTC模块中的RF单元接收到该资源配置信息后,通过BB单元、MCU对该资源配置信息进行处理、解析,确定手机分配的目标空口资源的位置;之后左耳机和右耳机可以根据该目标空口资源传输协同数据。
应注意,在以上图3所示的实施例以及以上图4A-图4D所示的实例的描述中,蓝牙***作为示例,不对本申请实施例提供的通信方法的适用场景构成任何限定。上述蓝牙***可以为根据传统的蓝牙技术建立的通信***,也可以为根据未来演进的蓝牙技术建立的通信***。同时,上述实施例或实例还可以适用于通过其他短距离无线通信技术(参考前述用语解释)建立的通信***,本申请对此不作限定。
基于相同的技术构思,本申请还提供了一种通信装置,该装置的结构如图6所示,包括通信单元601和处理单元602。所述通信装置600可以应用于如图1所示的短距离无线通信***中的任一通信设备中。可选的,所述通信装置600的表现形式可以为一种通信设备,例如终端设备;或者所述通信装置600可以为能够实现通信设备的功能的其他装置,例如通信设备内部的处理器或芯片等。具体的,通信装置600可以为现场可编程门阵列(field-programmable gate array,FPGA)、复杂可编程逻辑器件(complex programmable logic device,CPLD)、专用集成电路(application specific intergrated circuits,ASIC),或片上***(System on a chip,SOC)等一些可编程的芯片。
下面对所述通信装置600中各个单元的功能进行介绍。
所述通信单元601,用于接收和发送数据。其中,所述通信单元601可以通过收发器实现,例如支持短距离无线通信技术的通信模块。
在一种实施方式中,所述通信装置600应用于如图3所示的实施例中的主设备时,所述处理单元602,用于:
通过所述通信单元601接收来自第一从设备的通信请求,所述通信请求用于请求与第二从设备进行数据传输;
响应所述通信请求,通过所述通信单元601发送资源配置信息,所述资源配置信息用于指示目标空口资源,所述目标空口资源为用于所述第一从设备与所述第二从设备之间进行数据传输的空口资源。
可选的,所述目标空口资源包含以下至少一项:目标频域资源、目标时域资源。
可选的,当所述目标空口资源包含所述目标时域资源时,所述资源配置信息中包含以下至少一项:时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长;
其中,所述时钟同步信息用于指示与主设备保持时钟同步。
可选的,当所述目标空口资源包含所述目标频域资源时,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。
可选的,所述资源配置信息中还包含安全保护信息,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥。
可选的,所述处理单元602用于:
通过所述通信单元601广播所述资源配置信息;或者
通过所述通信单元601分别向所述第一从设备和所述第二从设备发送所述资源配置信息。
可选的,所述处理单元602用于:
在事件event周期内,通过所述通信单元601广播携带所述资源配置信息的同步帧。
可选的,所述处理单元602用于:
在event周期中的第一时域资源内,通过所述通信单元601向所述第一从设备发送携带所述资源配置信息的第一数据帧;
在所述event周期中的第二时域资源内,通过所述通信单元601向所述第二从设备发送携带所述资源配置信息的第二数据帧;
其中,所述第一时域资源是在所述event周期中为所述主设备向所述第一从设备发送业务数据预留的时域资源,所述第二时域资源是在所述event周期中为所述主设备向所述第二从设备发送业务数据预留的时域资源;其中,所述第一时域资源与所述第二时域资源不重叠。
可选的,所述处理单元602用于:
在event周期中的第三时域资源内通过所述通信单元601接收所述通信请求;其中,所述第三时域资源是在所述event周期中为所述第一从设备向所述主设备反馈业务数据的响应信息预留的时域资源。
可选的,所述第一从设备和所述第二从设备为双耳真无线TWS蓝牙耳机。
在另一种实施方式中,所述通信装置600应用于如图3所示的实施例中的从设备时,所述处理单元602,用于:
通过所述通信单元601接收来自主设备响应于通信请求而发送的资源配置信息,所述资源配置信息用于指示目标空口资源,所述目标空口资源为用于所述从设备与另一从设备之间进行数据传输的空口资源;所述通信请求用于请求所述从设备与所述另一从设备进行数据传输;
利用所述资源配置信息所指示的所述目标空口资源,通过所述通信单元601与所述另 一从设备之间进行数据传输。
可选的,所述目标空口资源包含以下至少一项:目标频域资源、目标时域资源。
可选的,当所述目标空口资源包含所述目标时域资源时,所述资源配置信息中包含以下至少一项:时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长;
其中,所述时钟同步信息用于指示与所述主设备保持时钟同步。
可选的,当所述目标资源包含所述目标频域资源时,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。
可选的,所述资源配置信息中还包含安全保护信息,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥。
可选的,所述处理单元602用于:
在事件event周期内,通过所述通信单元601接收携带所述资源配置信息的同步帧;或者
在event周期中的第一时域资源内,通过所述通信单元601接收携带所述资源配置信息的第一数据帧;其中,所述第一时域资源是在所述event周期中为所述主设备向所述从设备发送业务数据预留的时域资源。
可选的,所述处理单元602,还用于:
在通过所述通信单元601接收来自主设备响应于通信请求的资源配置信息之前,通过所述通信单元601向所述主设备发送所述通信请求。
可选的,所述处理单元602用于:
在event周期中的第三时域资源内通过所述通信单元601向所述主设备发送所述通信请求;其中,所述第三时域资源是在所述event周期中为所述从设备向所述主设备反馈业务数据的响应信息预留的时域资源。
可选的,所述通信请求为所述另一从设备向所述主设备发送的。
可选的,所述从设备和所述另一从设备为双耳真无线TWS蓝牙耳机;所述从设备与所述另一从设备之间传输的所述数据包含以下至少一项:
播放同步信息、音量同步信息、耳机位置信息、耳机电量信息、配置同步信息、干扰信息。
需要说明的是,本申请以上实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
基于相同的技术构思,本申请还提供了一种通信设备,所述通信设备可以应用于如图1所示的短距离无线通信***中,可以实现以上实施例以及实例提供的方法,具有图6所示的通信装置600的功能。参阅图7所示,所述通信设备700包括:收发器701、处理器702以及存储器703。其中,所述收发器701、所述处理器702以及所述存储器703之间相互连接。
可选的,所述收发器701、所述处理器702以及所述存储器703之间通过总线704相 互连接。所述总线704可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述收发器701,用于接收和发送信号,实现与其他设备之间的通信交互。在本申请中,所述收发器701可以为支持短距离无线通信技术的通信模块,例如蓝牙模块、RF模块等。所述收发器701与所述处理器702相耦合,以实现本申请实施例提供的通信方法。
在一种实施方式中,所述通信设备700可以为图3所示的实施例中的主设备。
所述收发器701,用于接收来自第一从设备的通信请求,所述通信请求用于请求与第二从设备进行数据传输;
所述处理器702,用于响应所述通信请求,通过所述收发器701发送资源配置信息,所述资源配置信息用于指示目标空口资源,所述目标空口资源为用于所述第一从设备与所述第二从设备之间进行数据传输的空口资源。
另一种实施方式中,所述通信设备700可以为图3所示的实施例中的任一从设备。
所述收发器701,用于接收来自主设备响应于通信请求而发送的资源配置信息,其中,所述通信请求用于请求所述从设备与另一从设备进行数据传输;
所述处理器702,用于根据所述资源配置信息所指示的目标空口资源,通过所述收发器701与所述另一从设备进行数据传输,其中,所述目标空口资源为用于所述从设备与所述另一从设备之间进行数据传输的空口资源。
需要说明的是,本实施例不对所述处理器702的具体功能进行详细描述,所述处理器702的具体功能可以参考以上图3所示实施例以及图4A-图4D所示实例提供的通信方法中的描述,以及图6所示实施例中对所述通信装置600的具体功能描述,此处不再赘述。
所述存储器703,用于存放程序指令和数据等。具体地,程序指令可以包括程序代码,该程序代码包括计算机操作指令。处理器702执行存储器703所存放的程序指令,并使用所述存储器703中存储的数据,实现上述功能,从而实现上述实施例提供的通信方法。
可以理解,本申请图7中的存储器703可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
基于以上实施例,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行以上实施例提供的方法。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存 储介质中存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行以上实施例提供的方法。
其中,存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:图7所示的通信设备700中关于存储器703的具体举例,或其他光盘存储、磁盘存储介质或者其他磁存储设备,或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
基于以上实施例,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,实现以上实施例提供的方法。
基于以上实施例,本申请实施例提供了一种芯片***,该芯片***包括处理器,用于支持计算机装置实现以上实施例中主设备、从设备所涉及的功能。在一种可能的设计中,所述芯片***还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
综上所述,本申请实施例提供了一种应用于点对多点的短距离无线通信***的通信方法及设备。在该方法中,短距离无线通信***中的两个从设备之间存在数据传输需求时,该两个从设备中的任一个从设备可以向主设备发送通信请求以使主设备为该两个从设备的数据传输分配空口资源,从而使两个从设备可以根据主设备分配的空口资源进行数据传输。两个从设备之间数据传输所需要的空口资源是按需分配的,即两个从设备之间的通信链路是按需建立的临时性链路,因此,在两个从设备之间无数据传输需求时,该空口资源就会释放,不会额外占用空口资源,也无需从设备发送空包以保持该通信链路。综上,该方法不会造成从设备的功耗浪费,也不会造成空口资源浪费。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (42)

  1. 一种应用于点对多点的短距离无线通信***的通信方法,其特征在于,包括:
    主设备接收来自第一从设备的通信请求,所述通信请求用于请求与第二从设备进行数据传输;
    所述主设备响应所述通信请求,发送资源配置信息,所述资源配置信息用于指示目标空口资源,所述目标空口资源为用于所述第一从设备与所述第二从设备之间进行数据传输的空口资源。
  2. 如权利要求1所述的方法,其特征在于,所述目标空口资源包含以下至少一项:
    目标频域资源、目标时域资源。
  3. 如权利要求2所述的方法,其特征在于,当所述目标空口资源包含所述目标时域资源时,所述资源配置信息中包含以下至少一项:
    时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长;
    其中,所述时钟同步信息用于指示与主设备保持时钟同步。
  4. 如权利要求2或3所述的方法,其特征在于,当所述目标空口资源包含所述目标频域资源时,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述资源配置信息中还包含安全保护信息,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥。
  6. 如权利要求1-5任一项所述的方法,其特征在于,发送资源配置信息,包括:
    所述主设备广播所述资源配置信息;或者
    所述主设备分别向所述第一从设备和所述第二从设备发送所述资源配置信息。
  7. 如权利要求6所述的方法,其特征在于,所述主设备广播所述资源配置信息,包括:
    所述主设备在事件event周期内,广播携带所述资源配置信息的同步帧。
  8. 如权利要求6所述的方法,其特征在于,所述主设备分别向所述第一从设备和所述第二从设备发送所述资源配置信息,包括:
    所述主设备在event周期中的第一时域资源内,向所述第一从设备发送携带所述资源配置信息的第一数据帧;
    所述主设备在所述event周期中的第二时域资源内,向所述第二从设备发送携带所述资源配置信息的第二数据帧;
    其中,所述第一时域资源是在所述event周期中为所述主设备向所述第一从设备发送业务数据预留的时域资源,所述第二时域资源是在所述event周期中为所述主设备向所述第二从设备发送业务数据预留的时域资源;所述第一时域资源与所述第二时域资源不重叠。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述主设备接收来自第一从设备的通信请求,包括:
    所述主设备在event周期中的第三时域资源内接收所述通信请求;其中,所述第三时域资源是在所述event周期中为所述第一从设备向所述主设备反馈业务数据的响应信息预留的时域资源。
  10. 一种应用于点对多点的短距离无线通信***的通信方法,其特征在于,包括:
    第一从设备接收来自主设备响应于通信请求而发送的资源配置信息,所述资源配置信 息用于指示目标空口资源,所述目标空口资源为用于所述第一从设备与第二从设备之间进行数据传输的空口资源,所述通信请求用于请求所述第一从设备与所述第二从设备进行数据传输;
    所述第一从设备利用所述资源配置信息所指示的所述目标空口资源,与所述第二从设备之间进行数据传输。
  11. 如权利要求10所述的方法,其特征在于,所述目标空口资源包含以下至少一项:
    目标频域资源、目标时域资源。
  12. 如权利要求11所述的方法,其特征在于,当所述目标空口资源包含所述目标时域资源时,所述资源配置信息中包含以下至少一项:
    时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长;
    其中,所述时钟同步信息用于指示与所述主设备保持时钟同步。
  13. 如权利要求11或12所述的方法,其特征在于,当所述目标资源包含所述目标频域资源时,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。
  14. 如权利要求10-13任一项所述的方法,其特征在于,所述资源配置信息中还包含安全保护信息,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥。
  15. 如权利要求10-14任一项所述的方法,其特征在于,第一从设备接收来自主设备响应于通信请求的资源配置信息,包括:
    所述第一从设备在事件event周期内,接收携带所述资源配置信息的同步帧;或者
    所述第一从设备在event周期中的第一时域资源内,接收携带所述资源配置信息的第一数据帧;其中,所述第一时域资源是在所述event周期中为所述主设备向所述第一从设备发送业务数据预留的时域资源。
  16. 如权利要求10-15任一项所述的方法,其特征在于,在第一从设备接收来自主设备响应于通信请求的资源配置信息之前,所述方法还包括:
    所述第一从设备向所述主设备发送所述通信请求。
  17. 如权利要求16所述的方法,其特征在于,所述第一从设备向所述主设备发送所述通信请求,包括:
    在event周期中的第三时域资源内向所述主设备发送所述通信请求;其中,所述第三时域资源是在所述event周期中为所述第一从设备向所述主设备反馈业务数据的响应信息预留的时域资源。
  18. 如权利要求10-15任一项所述的方法,其特征在于,所述通信请求为所述第二从设备向所述主设备发送的。
  19. 如权利要求10-18任一项所述的方法,其特征在于,所述第一从设备和所述第二从设备为双耳真无线TWS蓝牙耳机;所述数据包含以下至少一项:
    播放同步信息、音量同步信息、耳机位置信息、耳机电量信息、配置同步信息、干扰信息。
  20. 一种主设备,其特征在于,包括:
    收发器,以及耦合至所述收发器的处理器;
    所述收发器,用于接收来自第一从设备的通信请求,所述通信请求用于请求与第二从设备进行数据传输;
    所述处理器,用于响应所述通信请求,通过所述收发器发送资源配置信息,所述资源配置信息用于指示目标空口资源,所述目标空口资源为用于所述第一从设备与所述第二从设备之间进行数据传输的空口资源。
  21. 如权利要求20所述的设备,其特征在于,所述目标空口资源包含以下至少一项:
    目标频域资源、目标时域资源。
  22. 如权利要求21所述的设备,其特征在于,当所述目标空口资源包含所述目标时域资源时,所述资源配置信息中包含以下至少一项:
    时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长;
    其中,所述时钟同步信息用于指示与主设备保持时钟同步。
  23. 如权利要求21或22所述的设备,其特征在于,当所述目标空口资源包含所述目标频域资源时,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。
  24. 如权利要求20-23任一项所述的设备,其特征在于,所述资源配置信息中还包含安全保护信息,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥。
  25. 如权利要求20-24任一项所述的设备,其特征在于,所述处理器用于:
    通过所述收发器广播所述资源配置信息;或者
    通过所述收发器分别向所述第一从设备和所述第二从设备发送所述资源配置信息。
  26. 如权利要求25所述的设备,其特征在于,所述处理器用于:
    在事件event周期内,通过所述收发器广播携带所述资源配置信息的同步帧。
  27. 如权利要求25所述的设备,其特征在于,所述处理器用于:
    在event周期中的第一时域资源内,通过所述收发器向所述第一从设备发送携带所述资源配置信息的第一数据帧;
    在所述event周期中的第二时域资源内,通过所述收发器向所述第二从设备发送携带所述资源配置信息的第二数据帧;
    其中,所述第一时域资源是在所述event周期中为所述主设备向所述第一从设备发送业务数据预留的时域资源,所述第二时域资源是在所述event周期中为所述主设备向所述第二从设备发送业务数据预留的时域资源;其中,所述第一时域资源与所述第二时域资源不重叠。
  28. 如权利要求20-27任一项所述的设备,其特征在于,所述处理器用于:
    在event周期中的第三时域资源内通过所述收发器接收所述通信请求;其中,所述第三时域资源是在所述event周期中为所述第一从设备向所述主设备反馈业务数据的响应信息预留的时域资源。
  29. 一种从设备,其特征在于,包括:
    收发器,以及耦合至所述收发器的处理器;
    所述收发器,用于接收来自主设备响应于通信请求而发送的资源配置信息,其中,所述通信请求用于请求所述从设备与另一从设备进行数据传输;
    所述处理器,用于根据所述资源配置信息所指示的目标空口资源,通过所述收发器与所述另一从设备进行数据传输,其中,所述目标空口资源为用于所述从设备与所述另一从设备之间进行数据传输的空口资源。
  30. 如权利要求29所述的设备,其特征在于,所述目标空口资源包含以下至少一项:
    目标频域资源、目标时域资源。
  31. 如权利要求30所述的设备,其特征在于,当所述目标空口资源包含所述目标时域资源时,所述资源配置信息中包含以下至少一项:
    时钟同步信息,所述目标时域资源相对于设定时刻的偏移值,所述目标时域资源的时长;
    其中,所述时钟同步信息用于指示与所述主设备保持时钟同步。
  32. 如权利要求30或31所述的设备,其特征在于,当所述目标资源包含所述目标频域资源时,所述资源配置信息中包含用于指示所述目标频域资源的频点指示信息。
  33. 如权利要求29-32任一项所述的设备,其特征在于,所述资源配置信息中还包含安全保护信息,所述安全保护信息用于指示以下至少一项:加密方式、加密算法、密钥。
  34. 如权利要求29-33任一项所述的设备,其特征在于,所述处理器用于:
    在事件event周期内,通过所述收发器接收携带所述资源配置信息的同步帧;或者
    在event周期中的第一时域资源内,通过所述收发器接收携带所述资源配置信息的第一数据帧;其中,所述第一时域资源是在所述event周期中为所述主设备向所述从设备发送业务数据预留的时域资源。
  35. 如权利要求29-34任一项所述的设备,其特征在于,所述处理器,还用于:
    在通过所述收发器接收来自主设备响应于通信请求的资源配置信息之前,通过所述收发器向所述主设备发送所述通信请求。
  36. 如权利要求35所述的设备,其特征在于,所述处理器用于:
    在event周期中的第三时域资源内通过所述收发器向所述主设备发送所述通信请求;其中,所述第三时域资源是在所述event周期中为所述从设备向所述主设备反馈业务数据的响应信息预留的时域资源。
  37. 如权利要求29-34任一项所述的设备,其特征在于,所述通信请求为所述另一从设备向所述主设备发送的。
  38. 如权利要求29-37任一项所述的设备,其特征在于,所述从设备和所述另一从设备为双耳真无线TWS蓝牙耳机;所述数据包含以下至少一项:
    播放同步信息、音量同步信息、耳机位置信息、耳机电量信息、配置同步信息、干扰信息。
  39. 一种短距离无线通信***,其特征在于,包括:
    主设备,用于接收来自第一从设备的通信请求,所述通信请求用于请求与第二从设备进行数据传输;响应所述通信请求,发送资源配置信息,所述资源配置信息用于指示目标空口资源,所述目标空口资源为用于所述第一从设备与所述第二从设备之间进行数据传输的空口资源;
    第一从设备,用于向所述主设备发送所述通信请求;接收来自所述主设备的资源配置信息;以及利用所述资源配置信息所指示的所述目标空口资源,与所述第二从设备之间进行数据传输;
    所述第二从设备,用于接收来自所述主设备的资源配置信息;以及利用所述资源配置信息所指示的所述目标空口资源,与所述第一从设备之间进行数据传输。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1-19任一项所 述的方法。
  41. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1-19任一项所述的方法。
  42. 一种芯片,其特征在于,所述芯片与存储器耦合,所述芯片读取存储器中存储的计算机程序,执行权利要求1-19任一项所述的方法。
PCT/CN2021/122351 2021-09-30 2021-09-30 应用于点对多点的短距离无线通信***的通信方法及设备 WO2023050372A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21958944.7A EP4401426A1 (en) 2021-09-30 2021-09-30 Communication method applied to point-to-multipoint short-distance wireless communication system and device
PCT/CN2021/122351 WO2023050372A1 (zh) 2021-09-30 2021-09-30 应用于点对多点的短距离无线通信***的通信方法及设备
CN202180102514.6A CN117999805A (zh) 2021-09-30 2021-09-30 应用于点对多点的短距离无线通信***的通信方法及设备
US18/623,468 US20240251392A1 (en) 2021-09-30 2024-04-01 Communication Method and Device Applied to Point-To-Multipoint Short-Range Wireless Communication System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122351 WO2023050372A1 (zh) 2021-09-30 2021-09-30 应用于点对多点的短距离无线通信***的通信方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/623,468 Continuation US20240251392A1 (en) 2021-09-30 2024-04-01 Communication Method and Device Applied to Point-To-Multipoint Short-Range Wireless Communication System

Publications (1)

Publication Number Publication Date
WO2023050372A1 true WO2023050372A1 (zh) 2023-04-06

Family

ID=85781178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122351 WO2023050372A1 (zh) 2021-09-30 2021-09-30 应用于点对多点的短距离无线通信***的通信方法及设备

Country Status (4)

Country Link
US (1) US20240251392A1 (zh)
EP (1) EP4401426A1 (zh)
CN (1) CN117999805A (zh)
WO (1) WO2023050372A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619008A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 设备到设备组播/广播通信处理方法、装置及用户设备
CN104811892A (zh) * 2014-01-29 2015-07-29 中兴通讯股份有限公司 一种资源分配方法、装置及***
CN110830952A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 车联网中直通链路的资源配置方法及装置
CN112511990A (zh) * 2020-11-17 2021-03-16 福勤智能科技(昆山)有限公司 D2d通信方法、装置、设备及介质
WO2021185960A1 (en) * 2020-03-20 2021-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nr sidelink assistance information messages

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619008A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 设备到设备组播/广播通信处理方法、装置及用户设备
CN104811892A (zh) * 2014-01-29 2015-07-29 中兴通讯股份有限公司 一种资源分配方法、装置及***
CN110830952A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 车联网中直通链路的资源配置方法及装置
WO2021185960A1 (en) * 2020-03-20 2021-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nr sidelink assistance information messages
CN112511990A (zh) * 2020-11-17 2021-03-16 福勤智能科技(昆山)有限公司 D2d通信方法、装置、设备及介质

Also Published As

Publication number Publication date
US20240251392A1 (en) 2024-07-25
EP4401426A1 (en) 2024-07-17
CN117999805A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US10034160B2 (en) Method and apparatus for transmitting or receiving data using bluetooth in wireless communication system
US10136429B2 (en) Method for transmitting and receiving audio data in wireless communication system supporting bluetooth communication and device therefor
CN112313977B (zh) 利用通信共存的低时延音频流式传输
US10979894B2 (en) Method and device for allocating address of device in Bluetooth mesh network
US9094424B2 (en) Method, apparatus, and computer program product for digital stream swapping between signal sources
EP2728764B1 (en) Synchronous access method, and communication device and system in frequency hopping radio communication
CN109995479A (zh) 一种音频数据通信方法、***及音频通信设备
CN104969649A (zh) Wifi实时流和蓝牙共存
JP6266812B2 (ja) マルチレートストリーミングを用いたBluetooth(登録商標) Low Energy2次データチャネル
US20130124937A1 (en) Method and apparatus for transmitting data in device-to-device service system
US20160299739A1 (en) Method for controlling data streaming using bluetooth communication
CN109587666B (zh) 蓝牙设备、***及调度方法
CN109743782A (zh) 通信方法、装置及设备
CN114208234A (zh) 在蓝牙网络环境中支持多链路的方法及其电子装置
CN110166988B (zh) 一种无线通信***及其方法
WO2021072573A1 (zh) 链路处理方法、设备及存储介质
WO2022141645A1 (zh) 资源确定方法、装置、设备、存储介质、芯片及程序产品
WO2023050372A1 (zh) 应用于点对多点的短距离无线通信***的通信方法及设备
US11375578B2 (en) Bluetooth connectionless slave broadcast burst mode
EP3843467B1 (en) Wireless connection method, device group, system, and storage medium
CN109618406A (zh) 无线连接方法、设备组、***及存储介质
US11882533B2 (en) Method for transmitting audio data using short-range wireless communication in wireless communication system, and apparatus therefor
WO2023028863A1 (zh) 通信方法及装置
WO2023082974A1 (zh) 配置用于传输组播业务的通道的方法及装置
WO2023185406A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102514.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021958944

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021958944

Country of ref document: EP

Effective date: 20240411

NENP Non-entry into the national phase

Ref country code: DE