WO2023048140A1 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
WO2023048140A1
WO2023048140A1 PCT/JP2022/034980 JP2022034980W WO2023048140A1 WO 2023048140 A1 WO2023048140 A1 WO 2023048140A1 JP 2022034980 W JP2022034980 W JP 2022034980W WO 2023048140 A1 WO2023048140 A1 WO 2023048140A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode fingers
mass addition
film
electrode
wave device
Prior art date
Application number
PCT/JP2022/034980
Other languages
French (fr)
Japanese (ja)
Inventor
克也 大門
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280063687.6A priority Critical patent/CN117981221A/en
Publication of WO2023048140A1 publication Critical patent/WO2023048140A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to elastic wave devices.
  • An object of the present invention is to provide an elastic wave device capable of suppressing unwanted waves at frequencies lower than and near the resonance frequency.
  • An elastic wave device includes a support member including a support substrate, a piezoelectric layer provided on the support member and being a lithium niobate layer or a lithium tantalate layer, and a piezoelectric layer provided on the piezoelectric layer. and an IDT electrode having a pair of bus bars and a plurality of electrode fingers, and overlapping at least a portion of the IDT electrode in a plan view along the stacking direction of the support member and the piezoelectric layer.
  • d is the thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent electrode fingers, d/p is 0.5 or less, and one of the IDT electrodes Some of the plurality of electrode fingers are connected to the bus bar of the second bus bar, and the remaining electrode fingers of the plurality of electrode fingers are connected to the other bus bar, and are connected to one of the bus bars.
  • the plurality of electrode fingers connected to the bus bar and the plurality of electrode fingers connected to the other bus bar are inserted into each other, and the direction in which the adjacent electrode fingers face each other is defined as an electrode finger facing direction;
  • the region where the adjacent electrode fingers overlap is an intersection region, and when the direction in which the plurality of electrode fingers extends is defined as the electrode finger extending direction, the intersection region is the center. and a pair of edge regions arranged so as to sandwich the central region in the extending direction of the electrode fingers, and a pair of gaps formed between the intersecting region and the pair of bus bars.
  • At least one of the edge region and the gap region is arranged such that at least one first mass addition film and at least one second mass addition film, which are regions and are made of different materials, are arranged in the electrode finger facing direction. placed on one side.
  • an elastic wave device capable of suppressing unwanted waves at frequencies lower than and near the resonance frequency.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • FIG. 3 is a diagram showing phase characteristics in each elastic wave device of the reference example.
  • FIG. 4 is an enlarged view of FIG. 3 near 4000 MHz.
  • FIG. 5 is a cross-sectional view showing a portion corresponding to the cross-section shown in FIG. 2 of an elastic wave device according to a modification of the first embodiment of the invention.
  • FIG. 6 is a plan view of an elastic wave device according to a second embodiment of the invention.
  • FIG. 7 is a plan view of an elastic wave device according to a third embodiment of the invention.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • FIG. 3 is a diagram showing phase characteristics in each elastic wave device of the reference example.
  • FIG. 8 is a plan view of an elastic wave device according to a fourth embodiment of the invention.
  • 9 is a cross-sectional view taken along line II in FIG. 8.
  • FIG. 10 is a plan view of an acoustic wave device according to a fifth embodiment of the invention.
  • 11 is a cross-sectional view taken along line II in FIG. 10.
  • FIG. 12 is a plan view of an elastic wave device according to a sixth embodiment of the invention. 13 is a cross-sectional view taken along line II in FIG. 12.
  • FIG. FIG. 14 is a plan view of an elastic wave device according to a seventh embodiment of the invention.
  • 15 is a cross-sectional view taken along line II in FIG. 14.
  • FIG. 16(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness shear mode bulk wave
  • FIG. 16(b) is a plan view showing an electrode structure on a piezoelectric layer
  • FIG. 17 is a cross-sectional view of a portion taken along line AA in FIG. 16(a).
  • FIG. 18(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device
  • FIG. 18(b) is a thickness shear propagating
  • FIG. 2 is a schematic front cross-sectional view for explaining bulk waves in a mode;
  • FIG. 19 is a diagram showing amplitude directions of bulk waves in the thickness shear mode.
  • FIG. 19 is a diagram showing amplitude directions of bulk waves in the thickness shear mode.
  • FIG. 20 is a diagram showing resonance characteristics of an elastic wave device that utilizes bulk waves in a thickness-shear mode.
  • FIG. 21 is a diagram showing the relationship between d/p and the fractional bandwidth of the resonator, where p is the center-to-center distance between adjacent electrodes and d is the thickness of the piezoelectric layer.
  • FIG. 22 is a plan view of an acoustic wave device that utilizes thickness shear mode bulk waves.
  • FIG. 23 is a diagram showing the resonance characteristics of the elastic wave device of the reference example in which spurious appears.
  • FIG. 24 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious.
  • FIG. 25 is a diagram showing the relationship between d/2p and the metallization ratio MR.
  • FIG. 26 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. 27 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
  • FIG. 1 is a schematic plan view of an elastic wave device according to the first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
  • the acoustic wave device 10 has a piezoelectric substrate 12 and an IDT electrode 11.
  • the piezoelectric substrate 12 has a support member 13 and a piezoelectric layer 14 .
  • the support member 13 includes a support substrate 16 and an insulating layer 15 .
  • An insulating layer 15 is provided on the support substrate 16 .
  • a piezoelectric layer 14 is provided on the insulating layer 15 .
  • the support member 13 may be composed of only the support substrate 16 .
  • the piezoelectric layer 14 has a first main surface 14a and a second main surface 14b.
  • the first main surface 14a and the second main surface 14b face each other.
  • the second principal surface 14b is located on the support member 13 side.
  • the material of the support substrate 16 for example, semiconductors such as silicon, ceramics such as aluminum oxide, and the like can be used.
  • the insulating layer 15 any suitable dielectric such as silicon oxide or tantalum oxide can be used.
  • the piezoelectric layer 14 may be, for example, a lithium niobate layer such as a LiNbO3 layer or a lithium tantalate layer such as a LiTaO3 layer.
  • the insulating layer 15 is provided with recesses.
  • a piezoelectric layer 14 is provided on the insulating layer 15 so as to close the recess.
  • a hollow portion is thus formed.
  • This hollow portion is the hollow portion 10a.
  • the support member 13 and the piezoelectric layer 14 are arranged such that a portion of the support member 13 and a portion of the piezoelectric layer 14 face each other with the hollow portion 10a interposed therebetween.
  • the recess in the support member 13 may be provided over the insulating layer 15 and the support substrate 16 .
  • the recess provided only in the support substrate 16 may be closed with the insulating layer 15 .
  • the recess may be provided in the piezoelectric layer 14 .
  • the hollow portion 10 a may be a through hole provided in the support member 13 .
  • the elastic wave device 10 of this embodiment is an elastic wave resonator configured to be able to use bulk waves in a thickness-shear mode.
  • the elastic wave device of the present invention may be a filter device having a plurality of elastic wave resonators, a multiplexer, or the like.
  • the term “planar view” refers to viewing from the direction corresponding to the upper side in FIG. 2 along the stacking direction of the support member 13 and the piezoelectric layer 14 .
  • the piezoelectric layer 14 side is the upper side.
  • the IDT electrode 11 has a pair of busbars and a plurality of electrode fingers.
  • a pair of busbars is specifically a first busbar 26 and a second busbar 27 .
  • the first busbar 26 and the second busbar 27 face each other.
  • the plurality of electrode fingers are specifically a plurality of first electrode fingers 28 and a plurality of second electrode fingers 29 .
  • One ends of the plurality of first electrode fingers 28 are each connected to the first bus bar 26 .
  • One ends of the plurality of second electrode fingers 29 are each connected to the second bus bar 27 .
  • the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 are interleaved with each other.
  • the IDT electrode 11 may be composed of a single-layer metal film, or may be composed of a laminated metal film.
  • first electrode finger 28 and the second electrode finger 29 may be simply referred to as electrode fingers.
  • the first busbar 26 and the second busbar 27 may be simply referred to as busbars.
  • the electrode finger extending direction and the electrode finger facing direction are Orthogonal.
  • d/p is 0.5 or less, where d is the thickness of the piezoelectric layer 14 and p is the center-to-center distance between adjacent electrode fingers. As a result, thickness-shear mode bulk waves are preferably excited.
  • the hollow portion 10a shown in FIG. 2 is the acoustic reflection portion in the present invention.
  • the acoustic reflector can effectively confine the energy of the elastic wave to the piezoelectric layer 14 side.
  • an acoustic reflection film such as an acoustic multilayer film, which will be described later, may be provided.
  • the IDT electrode 11 has an intersecting region F.
  • the intersecting region F is a region where adjacent electrode fingers overlap each other when viewed from the direction in which the electrode fingers are opposed.
  • the intersection region F has a central region H and a pair of edge regions.
  • a pair of edge regions is specifically a first edge region E1 and a second edge region E2.
  • the first edge region E1 and the second edge region E2 are arranged so as to face each other with the central region H interposed therebetween in the direction in which the electrode fingers extend.
  • the first edge region E1 is located on the first bus bar 26 side.
  • the second edge region E2 is located on the second busbar 27 side.
  • the IDT electrode 11 has a pair of gap regions.
  • a pair of gap regions are located between the intersection region F and a pair of busbars.
  • a pair of gap regions is specifically a first gap region G1 and a second gap region G2.
  • the first gap region G1 is located between the first busbar 26 and the first edge region E1.
  • the second gap region G2 is located between the second busbar 27 and the second edge region E2.
  • first mass addition film 24 and one second mass addition film 25 are provided in the first edge region E1.
  • first edge region E1 the first mass addition film 24 and the second mass addition film 25 are arranged side by side in the electrode finger facing direction.
  • the first mass addition film 24 is made of silicon oxide, such as SiO 2 .
  • the second mass addition film 25 consists of tantalum oxide, for example Ta2O5 .
  • the material of the first mass addition film 24 and the material of the second mass addition film 25 are not limited to the above. It is sufficient if the material of the first mass addition film 24 and the material of the second mass addition film are different from each other.
  • the term "a certain member is made of a certain material” includes the case where a minute amount of impurity is included to such an extent that the electrical characteristics of the acoustic wave device are not significantly degraded.
  • first mass addition film 24 and one second mass addition film 25 are also provided in the second edge region E2.
  • a pair of first mass addition films 24 and a pair of second mass addition films 25 are provided in a pair of edge regions.
  • the first mass addition film 24 and the second mass addition film 25 have the same dimension along the extending direction of the electrode fingers and the same thickness.
  • Each first mass addition film 24 and each second mass addition film 25 in each edge region has a strip shape.
  • Each first mass addition film 24 is provided on the first main surface 14a of the piezoelectric layer 14 so as to cover the plurality of electrode fingers.
  • Each second mass addition film 25 is provided on the first main surface 14a of the piezoelectric layer 14 so as to cover a plurality of electrode fingers other than the electrode fingers covered by each first mass addition film 24.
  • each of the plurality of electrode fingers has a first surface 11a, a second surface 11b, and a side surface 11c.
  • the first surface 11a and the second surface 11b face each other.
  • a side surface 11c is connected to the first surface 11a and the second surface 11b.
  • the second surface 11b is the surface on the piezoelectric layer 14 side.
  • the first mass addition film 24 is provided on the first surface 11a of each electrode finger.
  • the first mass addition film 24 and the second mass addition film 25 are continuously provided on the first surface 11a and the area between the electrode fingers on the piezoelectric layer 14. As shown in FIG.
  • first mass addition film 24 and the second mass addition film 25 are provided on the first surfaces 11a of the electrode fingers different from each other and on the regions between the electrode fingers different from each other.
  • the first mass addition film 24 and the second mass addition film 25 also cover the side surface 11c of each electrode finger.
  • first mass addition film 24 and the second mass addition film 25 are provided only in both edge regions. Note that the first mass addition film 24 and the second mass addition film 25 may be provided in the gap region.
  • a feature of this embodiment is that at least one first mass addition film 24 and at least one second mass addition film 25 made of different materials are arranged in the electrode finger facing direction in the edge region and the gap region. It is provided in at least one side.
  • frequencies at which unnecessary waves are generated can be dispersed in a frequency band that is lower than the resonance frequency and located near the resonance frequency. Therefore, it is possible to suppress unnecessary waves of frequencies lower than the resonance frequency and located near the resonance frequency. Details of this are provided below by reference to a reference example. In the following description, when an unwanted wave is simply described, it means an unwanted wave generated at a frequency lower than the resonance frequency and located near the resonance frequency, unless otherwise specified.
  • the reference example differs from the first embodiment in that a pair of mass addition films are provided over a pair of edge regions and a pair of gap regions. In the reference example, only one type of mass adding film is provided over a pair of edge regions and a pair of gap regions.
  • An acoustic wave device of a reference example in which a mass addition film is made of SiO 2 and an acoustic wave device of a reference example in which a mass addition film is made of Ta 2 O 5 were prepared. The thickness of the mass addition film in each acoustic wave device was set to 15 nm. The phase characteristics of each elastic wave device were measured.
  • FIG. 3 is a diagram showing phase characteristics in each elastic wave device of the reference example.
  • FIG. 4 is an enlarged view of FIG. 3 near 4000 MHz.
  • the frequencies at which ripples caused by unnecessary waves are generated are also different. This is the same even when the mass addition film is provided only in the edge region as in the first embodiment. Furthermore, the same applies when the mass addition film is provided only in the gap region.
  • the first mass addition film 24 and the second mass addition film 25 made of different materials are arranged in the electrode finger facing direction. Therefore, in the first embodiment, in the edge region, the material of the mass addition film provided in one portion in the electrode finger facing direction and the material of the mass addition film provided in the other portion are different from each other. That is, the material of the mass adding film provided in the edge region is not uniform in the electrode finger facing direction. As a result, frequencies at which unwanted waves are generated can be dispersed, and the intensity of the unwanted waves can be reduced. Therefore, unwanted waves can be suppressed.
  • the intersecting region F in the IDT electrode 11 of the acoustic wave device 10 includes a plurality of excitation regions C. More specifically, the excitation region C is the region between the centers of adjacent electrode fingers. Elastic waves are excited in a plurality of excitation regions C by applying an AC voltage to the IDT electrodes 11 .
  • the intersection region is one excitation region.
  • the acoustic wave device 10 that uses thickness-shear mode bulk waves is substantially equivalent to a configuration in which a plurality of resonators each having an excitation region C are connected in parallel. . Therefore, in the acoustic wave device 10, even if the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed, the waveform of the frequency characteristics such as the phase characteristics is less likely to collapse. Therefore, in the first embodiment, unnecessary waves can be suppressed without deteriorating electrical characteristics.
  • the first mass addition film 24 and the second mass addition film 25 are provided only in the edge region, the amount of change in the fractional band can be reduced. Thereby, the electrical characteristics of the acoustic wave device 10 can be stabilized.
  • the provision of the first mass addition film 24 and the second mass addition film 25 constitutes a low sound velocity region in each edge region.
  • the low sound velocity region is a region in which the sound velocity is lower than the sound velocity in the central region H.
  • a central region H and a low-frequency region are arranged in this order from the inner side to the outer side of the IDT electrode 11 in the electrode finger extending direction. Thereby, the piston mode is established and the transverse mode can be suppressed.
  • the elastic wave device of the present invention utilizes thickness-shear mode bulk waves instead of surface acoustic waves.
  • the piston mode can be suitably established.
  • At least one dielectric selected from the group consisting of silicon oxide, tungsten oxide, niobium oxide, tantalum oxide and hafnium oxide is preferably used as the material of the first mass addition film 24 .
  • the piston mode can be established more reliably, and the lateral mode can be suppressed more reliably.
  • the material of the second mass addition film 25 is different from the material of the first mass addition film 24 and at least one selected from the group consisting of silicon oxide, tungsten oxide, niobium oxide, tantalum oxide and hafnium oxide.
  • a seed dielectric is used.
  • the piston mode can be established more reliably, and the transverse mode can be suppressed more reliably.
  • one first mass addition film 24 and one second mass addition film are each provided in each edge region.
  • a plurality of first mass addition films 24 and a plurality of second mass addition films 25 are provided in the first edge region.
  • the first mass addition films 24 and the second mass addition films 25 are alternately arranged in the electrode finger facing direction.
  • Each first mass adding film 24 covers a plurality of electrode fingers.
  • Each second mass addition film 25 covers a plurality of electrode fingers other than the electrode fingers covered by each first mass addition film 24 .
  • the frequencies at which unwanted waves are generated can be dispersed, and the unwanted waves can be suppressed.
  • FIG. 6 is a plan view of the elastic wave device according to the second embodiment.
  • This embodiment differs from the first embodiment in that the first mass addition film 24 and the second mass addition film 25 are provided only in both gap regions. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • One of the pair of first mass addition films 24 is provided in the first gap region G1.
  • the other of the pair of first mass adding films 24 is provided in the second gap region G2.
  • one of the pair of second mass addition films 25 is provided in the first gap region G1.
  • the second mass addition film 25 is provided so as to be aligned with the first mass addition film 24 provided in the first gap region G1 in the electrode finger facing direction.
  • the other of the pair of second mass adding films 25 is provided in the second gap region G2.
  • the second mass addition film 25 is provided so as to be aligned with the first mass addition film 24 provided in the second gap region G2 in the electrode finger facing direction.
  • the first mass addition film 24 and the second mass addition film 25 do not reach the end on the busbar side in the gap region.
  • the first mass addition film 24 and the second mass addition film 25 may be provided over the entire gap region in the extending direction of the electrode fingers.
  • the first mass addition film 24 and the second mass addition film 25 may be provided in at least a part of the gap region in the extending direction of the electrode fingers.
  • the first mass addition film 24 and the second mass addition film 25 have the same dimension along the extending direction of the electrode fingers and the same thickness.
  • the first mass addition film 24 and the second mass addition film 25 provided in the gap region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the first embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
  • FIG. 7 is a plan view of an elastic wave device according to the third embodiment.
  • This embodiment differs from the first embodiment in that the first mass addition film 24 and the second mass addition film 25 are provided over the edge region and the gap region. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • One of the pair of first mass addition films 24 is provided over the first edge region E1 and the first gap region G1.
  • the other of the pair of first mass adding films 24 is provided over the second edge region E2 and the second gap region G2.
  • one of the pair of second mass addition films 25 is provided over the first edge region E1 and the first gap region G1.
  • the second mass addition film 25 is provided so as to be aligned with the first mass addition film 24 provided in the first gap region G1 in the electrode finger facing direction.
  • the other of the pair of second mass adding films 25 is provided in the second gap region G2.
  • the second mass addition film 25 is provided so as to be aligned with the first mass addition film 24 provided in the second gap region G2 in the electrode finger facing direction.
  • the first mass addition film 24 and the second mass addition film 25 provided over the edge region and the gap region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the first embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
  • the first mass addition film 24 and the second mass addition film 25 are strip-shaped.
  • the first mass addition film 24 and the second mass addition film 25 are respectively continuously provided on the plurality of electrode fingers and on the regions between the electrode fingers.
  • the first mass addition film 24 or the second mass addition film 25 may be provided only on the electrode fingers, for example. Examples of this are illustrated by the fourth and fifth embodiments.
  • FIG. 8 is a plan view of an elastic wave device according to the fourth embodiment. 9 is a cross-sectional view taken along line II in FIG. 8. FIG.
  • this embodiment differs from the first embodiment in that each edge region is provided with a plurality of first mass adding films 34 . Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the plurality of first mass adding films 34 are arranged in the electrode finger facing direction. In plan view, each first mass adding film 34 and each electrode finger overlap each other. More specifically, in the first edge region E1, each first mass addition film 34 covers only the first surface 11a of one first electrode finger 28 or one second electrode finger. 29 is provided only on the first surface 11a. The same applies to the second edge region E2.
  • the plurality of first mass adding films 34 are provided only in regions overlapping with the electrode fingers in plan view.
  • the dimensions along the electrode finger extension direction and the thickness of the plurality of first mass addition films 34 and the second mass addition films 24 are all the same.
  • the dimensions along the extending direction of the electrode fingers and the thicknesses of all the first mass addition films 34 and the second mass addition films 25 may not necessarily be the same.
  • the second mass addition film 25 is continuously provided in a region overlapping the plurality of electrode fingers and the region between the electrode fingers in plan view.
  • the plurality of first mass addition films 34 and second mass addition films 25 are provided on different electrode fingers.
  • a plurality of first mass addition films 34 and second mass addition films 25 provided in the edge region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the first embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
  • Each first mass addition film 34 is not in contact with both of the electrode fingers connected to different potentials.
  • metal can be used as the material of the plurality of first mass addition films 34 .
  • a dielectric may be used as the material of the plurality of first mass adding films 34 .
  • FIG. 10 is a plan view of an elastic wave device according to the fifth embodiment.
  • 11 is a cross-sectional view taken along line II in FIG. 10.
  • this embodiment differs from the fourth embodiment in that each edge region is provided with a plurality of second mass adding films 35 . Therefore, in this embodiment, a plurality of first mass addition films 34 and a plurality of second mass addition films 35 are provided. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device of the fourth embodiment.
  • the plurality of second mass adding films 35 are arranged in the electrode finger facing direction. In a plan view, each second mass adding film 35 and each electrode finger overlap each other. More specifically, in the first edge region E1, each second mass addition film 35 covers only the first surface 11a of one first electrode finger 28 or one second electrode finger. 29 is provided only on the first surface 11a. The same applies to the second edge region E2.
  • the plurality of second mass adding films 35 are provided only in regions overlapping with the electrode fingers in plan view.
  • the dimensions along the extending direction of the electrode fingers and the thicknesses of the plurality of first mass addition films 34 and the plurality of second mass addition films 35 are the same. is. However, the dimensions along the extending direction of the electrode fingers and the thicknesses of all the first mass addition films 34 and all the second mass addition films 35 may not necessarily be the same.
  • the plurality of first mass addition films 34 and the plurality of second mass addition films 35 provided in the edge region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the fourth embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
  • Each first mass addition film 34 and each second mass addition film 35 are not in contact with both electrode fingers connected to different potentials.
  • metal can be used as the material of the plurality of first mass addition films 34 and the plurality of second mass addition films 35 .
  • materials for the first mass addition film 34 and the second mass addition film 35 different kinds of metals may be used.
  • a dielectric may be used as the material of the plurality of first mass addition films 34 or the plurality of second mass addition films 35 .
  • the plurality of first mass addition films 34 and the plurality of second mass addition films 35 are provided only in both edge regions, as in the first embodiment. Thereby, also in this embodiment, the amount of change in the fractional band can be reduced, and the electrical characteristics of the elastic wave device can be stabilized.
  • a plurality of first mass addition films 34 and a plurality of second mass addition films 35 may be provided over the first edge region E1 and the first gap region G1 shown in FIG.
  • a plurality of first mass addition films 34 and a plurality of second mass addition films 35 may be provided over the second edge region E2 and the second gap region G2.
  • the plurality of first mass addition films 34 and the plurality of second mass addition films 35 may be provided only in both gap regions.
  • this embodiment is different in that the protective film 46 is provided, and the first mass addition film 24 and the second mass addition film 25 are provided on the protection film 46. , differs from the third embodiment. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device of the third embodiment.
  • the protective film 46 is provided on the first main surface 14 a of the piezoelectric layer 14 so as to cover the IDT electrodes 11 . Thereby, the IDT electrode 11 is less likely to be damaged.
  • a material of the protective film 46 for example, silicon oxide, silicon nitride, silicon oxynitride, or the like can be used.
  • one first mass addition film 24 and one second mass addition film 25 are provided over the edge region and the gap region.
  • Each of the first mass addition film 24 and the second mass addition film 25 is continuously provided in a region overlapping the plurality of electrode fingers and the region between the electrode fingers in plan view. Even when the protective film 46 is provided, the first mass addition film 24 and the second mass addition film 25 may be provided only in the edge region, and may be provided only in the gap region. good too.
  • the electrode fingers, the protection film 46 and the first mass addition film 24 are stacked in the order of Similarly, in the portion where the electrode fingers, the second mass addition film 25 and the protective film 46 are laminated, the electrode fingers, the protective film 46 and the second mass addition film 25 are laminated in this order.
  • the order of lamination is not limited to the above.
  • the electrode fingers, the first mass addition film 24 and the protection film 46 may be stacked in this order.
  • the first mass addition film 24, the electrode fingers and the protective film 46 may be laminated in this order. The same applies to the portions where the electrode fingers, the second mass adding film 25 and the protective film 46 are laminated.
  • the first mass addition film 24 and the second mass addition film 25 provided over the edge region and the gap region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the third embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated, and suppress the unnecessary waves.
  • the first mass addition film 24 and the second mass addition film 25 are not in contact with the electrode fingers.
  • metal can be used as the material of the first mass addition film 24 and the second mass addition film 25 .
  • materials for the first mass addition film 24 and the second mass addition film 25 metals of different kinds may be used.
  • the first mass addition film 24 and the second mass addition film 25 sandwich the protective film 46 and face the plurality of electrode fingers. Therefore, when metal is used as the material of the first mass addition film 24 and the second mass addition film 25, the electrostatic capacitance of the elastic wave device can be increased. Therefore, it is possible to reduce the area of the IDT electrode 11 for obtaining a desired capacitance. Therefore, the acoustic wave device can be miniaturized.
  • a dielectric may be used as the material of the first mass addition film 24 or the second mass addition film 25 .
  • the thickness of the protective film 46 is the thickness of the protective film 46 in the central region H shown in FIG.
  • the thickness of the first mass addition film 24 is obtained by subtracting the thickness of the protection film 46 from the total thickness of the protection film 46 and the first mass addition film 24 .
  • the protective film 46 and the second mass adding film 25 are made of the same material.
  • the configuration provided with the protective film 46 can also be employed in configurations of the present invention other than the present embodiment.
  • a plurality of first mass addition films 34 or a plurality of mass addition films 35 shown in FIG. 11 may be provided on the protective film 46 .
  • FIG. 14 is a plan view of an elastic wave device according to the seventh embodiment.
  • 15 is a cross-sectional view taken along line II in FIG. 14.
  • FIG. 14 is a plan view of an elastic wave device according to the seventh embodiment.
  • 15 is a cross-sectional view taken along line II in FIG. 14.
  • the present embodiment is characterized in that the first mass addition film 24 and the second mass addition film 25 are provided between the plurality of electrode fingers and the piezoelectric layer 14. 1 embodiment. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the first mass addition film 24 includes the second surfaces 11b of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29, and the piezoelectric layer 14. is provided between Similarly, a second mass addition film 25 is provided between the second surface 11 b of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 and the piezoelectric layer 14 . Even if the plurality of first mass addition films 34 or the plurality of second mass addition films 35 shown in FIG. 11 are provided between the second surfaces 11b of the plurality of electrode fingers and the piezoelectric layer 14 good.
  • the first mass addition film 24 and the second mass addition film 25 provided in the edge region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the first embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
  • Electrodes in the IDT electrodes to be described later correspond to electrode fingers in the present invention.
  • the supporting member in the following examples corresponds to the supporting substrate in the present invention.
  • FIG. 16(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness shear mode bulk wave
  • FIG. 16(b) is a plan view showing an electrode structure on a piezoelectric layer
  • FIG. 17 is a cross-sectional view of a portion taken along line AA in FIG. 16(a).
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut, but may be rotational Y-cut or X-cut.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 40 nm or more and 1000 nm or less, more preferably 50 nm or more and 1000 nm or less, in order to effectively excite the thickness-shear mode.
  • the piezoelectric layer 2 has first and second major surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode” and the electrode 4 is an example of the "second electrode”.
  • the multiple electrodes 3 are multiple first electrode fingers connected to the first bus bar 5 .
  • the multiple electrodes 4 are multiple second electrode fingers connected to the second bus bar 6 .
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other. Electrodes 3 and 4 have a rectangular shape and a length direction. The electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction. Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 .
  • the electrode 3 and the adjacent electrode 4 face each other in the direction crossing the thickness direction of the piezoelectric layer 2 .
  • the length direction of the electrodes 3 and 4 may be interchanged with the direction perpendicular to the length direction of the electrodes 3 and 4 shown in FIGS. 16(a) and 16(b). That is, in FIGS. 16A and 16B, the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 16(a) and 16(b).
  • a plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4.
  • the electrodes 3 and 4 are adjacent to each other, it does not mean that the electrodes 3 and 4 are arranged so as to be in direct contact with each other, but that the electrodes 3 and 4 are arranged with a gap therebetween. point to When the electrodes 3 and 4 are adjacent to each other, no electrodes connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, are arranged between the electrodes 3 and 4.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
  • the center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the width of the electrodes 3 and 4, that is, the dimension of the electrodes 3 and 4 in the facing direction is preferably in the range of 50 nm or more and 1000 nm or less, more preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrodes 3 and 4 means the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the distance between the center of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the dimension (width dimension) of
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but is substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90° ⁇ 10°). within the range).
  • a supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween.
  • the insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 17, have through holes 7a and 8a.
  • a cavity 9 is thereby formed.
  • the cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used.
  • the support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). It is desirable that the Si constituting the support member 8 has a high resistivity of 4 k ⁇ cm or more. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Materials for the support member 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
  • d/p is 0.0, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. 5 or less. Therefore, the thickness-shear mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the elastic wave device 1 Since the elastic wave device 1 has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the propagation loss is small even if the number of electrode fingers in the reflectors on both sides is reduced. Moreover, the fact that the number of electrode fingers can be reduced is due to the fact that bulk waves in the thickness-shear mode are used. The difference between the Lamb wave used in the elastic wave device and the bulk wave in the thickness shear mode will be described with reference to FIGS. 18(a) and 18(b).
  • FIG. 18(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device as described in Japanese Unexamined Patent Publication No. 2012-257019.
  • waves propagate through the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. is.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are arranged.
  • the Lamb wave propagates in the X direction as shown.
  • the wave is generated on the first main surface 2a and the second main surface of the piezoelectric layer 2. 2b, ie, the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, propagation loss is unlikely to occur even if the number of electrode fingers of the reflector is reduced. Furthermore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 19 schematically shows bulk waves when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 .
  • the first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 .
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • the acoustic wave device 1 at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged.
  • the number of electrode pairs need not be plural. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • electrode 3 may also be connected to ground potential and electrode 4 to hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
  • FIG. 20 is a diagram showing resonance characteristics of the elastic wave device shown in FIG.
  • the design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
  • Insulating layer 7 Silicon oxide film with a thickness of 1 ⁇ m.
  • Support member 8 Si.
  • the length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is more preferably 0.5 or less, as described above. is less than or equal to 0.24. This will be described with reference to FIG.
  • FIG. 21 is a diagram showing the relationship between this d/p and the fractional bandwidth of the acoustic wave device as a resonator.
  • the specific bandwidth when d/p>0.5, even if d/p is adjusted, the specific bandwidth is less than 5%.
  • the specific bandwidth when d/p ⁇ 0.5, the specific bandwidth can be increased to 5% or more by changing d/p within that range. can be configured. Further, when d/p is 0.24 or less, the specific bandwidth can be increased to 7% or more.
  • d/p when adjusting d/p within this range, a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, by setting d/p to 0.5 or less, it is possible to construct a resonator having a high coupling coefficient using the thickness-shear mode bulk wave.
  • FIG. 22 is a plan view of an elastic wave device that utilizes thickness-shear mode bulk waves.
  • elastic wave device 80 a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 22 is the crossing width.
  • the number of pairs of electrodes may be one. Even in this case, if d/p is 0.5 or less, bulk waves in the thickness-shear mode can be effectively excited.
  • the adjacent excitation region C is an overlapping region when viewed in the direction in which any of the adjacent electrodes 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the mating electrodes 3, 4 satisfy MR ⁇ 1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 23 and 24.
  • the metallization ratio MR will be explained with reference to FIG. 16(b).
  • the excitation region C is the portion surrounded by the dashed-dotted line.
  • the excitation region C is a region where the electrode 3 and the electrode 4 overlap each other when the electrodes 3 and 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, i.e., in a facing direction. 3 and an overlapping area between the electrodes 3 and 4 in the area between the electrodes 3 and 4 .
  • the area of the electrodes 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
  • MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
  • FIG. 24 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured according to this embodiment. be.
  • the ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes.
  • FIG. 24 shows the results obtained when a piezoelectric layer made of Z-cut LiNbO 3 is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, when it exceeds 17%, even if a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, the passband appear within. That is, as in the resonance characteristics shown in FIG. 23, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
  • FIG. 25 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 25 is the area where the fractional bandwidth is 17% or less.
  • FIG. 26 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. The hatched portion in FIG. 26 is a region where a fractional bandwidth of at least 5% or more is obtained, and when the range of the region is approximated, the following formulas (1), (2) and (3) ).
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°) Equation (2) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)
  • the fractional band can be sufficiently widened, which is preferable.
  • the piezoelectric layer 2 is a lithium tantalate layer.
  • FIG. 27 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
  • an acoustic multilayer film 82 is laminated on the second main surface 2 b of the piezoelectric layer 2 .
  • the acoustic multilayer film 82 has a laminated structure of low acoustic impedance layers 82a, 82c, 82e with relatively low acoustic impedance and high acoustic impedance layers 82b, 82d with relatively high acoustic impedance.
  • the thickness shear mode bulk wave can be confined in the piezoelectric layer 2 without using the cavity 9 in the elastic wave device 1 .
  • the elastic wave device 81 by setting d/p to 0.5 or less, it is possible to obtain resonance characteristics based on bulk waves in the thickness-shear mode.
  • the number of lamination of the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d is not particularly limited. At least one of the high acoustic impedance layers 82b, 82d should be arranged farther from the piezoelectric layer 2 than the low acoustic impedance layers 82a, 82c, 82e.
  • the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d can be made of appropriate materials as long as the acoustic impedance relationship is satisfied.
  • Examples of materials for the low acoustic impedance layers 82a, 82c, 82e include silicon oxide and silicon oxynitride.
  • Materials for the high acoustic impedance layers 82b and 82d include alumina, silicon nitride, and metals.
  • an acoustic multilayer film 82 shown in FIG. 27 may be provided as an acoustic reflection film between the support substrate and the piezoelectric layer. .
  • the support member and the piezoelectric layer may be arranged such that at least a portion of the support member and at least a portion of the piezoelectric layer face each other with the acoustic multilayer film 82 interposed therebetween.
  • low acoustic impedance layers and high acoustic impedance layers may be alternately laminated in the acoustic multilayer film 82 .
  • the acoustic multilayer film 82 may be an acoustic reflector in the elastic wave device.
  • d/p is preferably 0.5 or less, and 0.24 or less, as described above. is more preferable. Thereby, even better resonance characteristics can be obtained. Furthermore, in the crossover regions of the elastic wave devices of the first to seventh embodiments and modifications using thickness shear mode bulk waves, MR ⁇ 1.75 (d/p)+0.075 is preferably satisfied. In this case, spurious can be suppressed more reliably.
  • the piezoelectric layer in the elastic wave devices of the first to seventh embodiments and modified examples that utilize thickness shear mode bulk waves is preferably a lithium niobate layer or a lithium tantalate layer.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate constituting the piezoelectric layer are within the range of the above formula (1), formula (2), or formula (3). is preferred. In this case, the fractional bandwidth can be widened sufficiently.
  • Piezoelectric films 201a, 201b ... First and second main surfaces 451, 452... First and second areas B... Arrows C... Excitation areas E1, E2... First and second edge areas F... Crossing area G1 , G2... First and second gap regions H... Central regions O1, O2... First and second points VP1... Virtual plane

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Provided is an elastic wave device capable of suppressing unwanted waves at a frequency lower than and around a resonance frequency. An elastic wave device 10 of the present invention comprises: a support member 13 including a support substrate 16; a piezoelectric layer 14 that is a lithium niobate layer or a lithium tantalate layer provided on the support member 13; and an IDT electrode 11 provided on the piezoelectric layer 14 and having a pair of bus bars and a plurality of electrode fingers. In the plan view viewed along the layering direction of the support member 13 and the piezoelectric layer 14, an acoustic reflector (cavity10a) is formed at a position overlapping at least a portion of the IDT electrode 11. When d represents the thickness of the piezoelectric layer 14 and p represents the distance between the centers of adjacent electrode fingers, d/p is 0.5 or less. Of the plurality of electrode fingers, a portion of the electrode fingers are connected to one busbar of the IDT electrode 11, the remaining electrode fingers of the plurality of electrode fingers are connected to the other busbar, and the plurality of electrode fingers connected to the one busbar and the plurality of electrode fingers connected to the other busbar are interdigitated with each other. If a direction in which adjacent electrode fingers oppose each other is defined as an electrode finger opposing direction, the region in which adjacent electrode fingers overlap each other is an intersecting region when viewed from the electrode finger opposing direction. If the direction of extension of the plurality of electrode fingers is defined as an electrode finger extending direction, the intersecting region includes a central region and a pair of edge regions disposed so as to sandwich the central region in the electrode finger extending direction. Regions positioned between the intersecting region and the pair of bus bars are a pair of gap regions. At least one first mass addition film 24 and at least one second mass addition film 25 made of different materials are provided on at least one of the edge regions and the gap region so as to be aligned in the electrode finger opposing direction.

Description

弾性波装置Acoustic wave device
 本発明は、弾性波装置に関する。 The present invention relates to elastic wave devices.
 従来、弾性波装置は、携帯電話器のフィルタなどに広く用いられている。近年においては、下記の特許文献1に記載のような、厚み滑りモードのバルク波を用いた弾性波装置が提案されている。この弾性波装置においては、支持体上に圧電層が設けられている。圧電層上に、対となる電極が設けられている。対となる電極は圧電層上において互いに対向しており、かつ互いに異なる電位に接続される。上記電極間に交流電圧を印加することにより、厚み滑りモードのバルク波を励振させている。 Conventionally, elastic wave devices have been widely used in filters for mobile phones. In recent years, there has been proposed an elastic wave device using a thickness-shear mode bulk wave, as described in Patent Document 1 below. In this elastic wave device, a piezoelectric layer is provided on a support. A pair of electrodes is provided on the piezoelectric layer. The paired electrodes face each other on the piezoelectric layer and are connected to different potentials. By applying an AC voltage between the electrodes, a thickness-shear mode bulk wave is excited.
米国特許第10491192号明細書U.S. Patent No. 10491192
 特許文献1に記載のような、厚み滑りモードのバルク波を利用する弾性波装置においては、共振周波数よりも低く、共振周波数付近に位置する周波数において不要波が生じる。そのため、電気的特性が劣化するおそれがある。 In an elastic wave device that utilizes thickness-shear mode bulk waves, such as that described in Patent Document 1, unnecessary waves are generated at frequencies that are lower than and near the resonance frequency. Therefore, electrical characteristics may deteriorate.
 本発明の目的は、共振周波数よりも低く、共振周波数付近に位置する周波数において、不要波を抑制することができる、弾性波装置を提供することにある。 An object of the present invention is to provide an elastic wave device capable of suppressing unwanted waves at frequencies lower than and near the resonance frequency.
 本発明に係る弾性波装置は、支持基板を含む支持部材と、前記支持部材上に設けられており、ニオブ酸リチウム層またはタンタル酸リチウム層である圧電層と、前記圧電層上に設けられており、1対のバスバーと、複数の電極指とを有するIDT電極とを備え、前記支持部材及び前記圧電層の積層方向に沿って見た平面視において、前記IDT電極の少なくとも一部と重なる位置に音響反射部が形成されており、前記圧電層の厚みをd、隣り合う前記電極指同士の中心間距離をpとした場合、d/pが0.5以下であり、前記IDT電極の一方の前記バスバーに前記複数の電極指のうち一部の電極指が接続されており、他方の前記バスバーに前記複数の電極指のうち残りの電極指が接続されており、一方の前記バスバーに接続されている前記複数の電極指、及び他方の前記バスバーに接続されている前記複数の電極指が互いに間挿し合っており、隣り合う前記電極指同士が対向し合う方向を電極指対向方向とし、前記電極指対向方向から見たときに、前記隣り合う電極指同士が重なり合う領域が交叉領域であり、前記複数の電極指が延びる方向を電極指延伸方向としたときに、前記交叉領域が、中央領域と、前記中央領域を前記電極指延伸方向において挟むように配置された1対のエッジ領域とを有し、前記交叉領域と前記1対のバスバーとの間に位置する領域が1対のギャップ領域であり、互いに材料が異なる、少なくとも1つの第1の質量付加膜及び少なくとも1つの第2の質量付加膜が、前記電極指対向方向に並ぶように、前記エッジ領域及び前記ギャップ領域のうち少なくとも一方に設けられている。 An elastic wave device according to the present invention includes a support member including a support substrate, a piezoelectric layer provided on the support member and being a lithium niobate layer or a lithium tantalate layer, and a piezoelectric layer provided on the piezoelectric layer. and an IDT electrode having a pair of bus bars and a plurality of electrode fingers, and overlapping at least a portion of the IDT electrode in a plan view along the stacking direction of the support member and the piezoelectric layer. where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent electrode fingers, d/p is 0.5 or less, and one of the IDT electrodes Some of the plurality of electrode fingers are connected to the bus bar of the second bus bar, and the remaining electrode fingers of the plurality of electrode fingers are connected to the other bus bar, and are connected to one of the bus bars. the plurality of electrode fingers connected to the bus bar and the plurality of electrode fingers connected to the other bus bar are inserted into each other, and the direction in which the adjacent electrode fingers face each other is defined as an electrode finger facing direction; When viewed from the electrode finger facing direction, the region where the adjacent electrode fingers overlap is an intersection region, and when the direction in which the plurality of electrode fingers extends is defined as the electrode finger extending direction, the intersection region is the center. and a pair of edge regions arranged so as to sandwich the central region in the extending direction of the electrode fingers, and a pair of gaps formed between the intersecting region and the pair of bus bars. At least one of the edge region and the gap region is arranged such that at least one first mass addition film and at least one second mass addition film, which are regions and are made of different materials, are arranged in the electrode finger facing direction. placed on one side.
 本発明によれば、共振周波数よりも低く、共振周波数付近に位置する周波数において、不要波を抑制することができる、弾性波装置を提供することができる。 According to the present invention, it is possible to provide an elastic wave device capable of suppressing unwanted waves at frequencies lower than and near the resonance frequency.
図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the invention. 図2は、図1中のI-I線に沿う模式的断面図である。FIG. 2 is a schematic cross-sectional view taken along line II in FIG. 図3は、参考例の各弾性波装置における位相特性を示す図である。FIG. 3 is a diagram showing phase characteristics in each elastic wave device of the reference example. 図4は、図3を、4000MHz付近において拡大した図である。FIG. 4 is an enlarged view of FIG. 3 near 4000 MHz. 図5は、本発明の第1の実施形態の変形例に係る弾性波装置の、図2に示す断面に相当する部分を示す断面図である。FIG. 5 is a cross-sectional view showing a portion corresponding to the cross-section shown in FIG. 2 of an elastic wave device according to a modification of the first embodiment of the invention. 図6は、本発明の第2の実施形態に係る弾性波装置の平面図である。FIG. 6 is a plan view of an elastic wave device according to a second embodiment of the invention. 図7は、本発明の第3の実施形態に係る弾性波装置の平面図である。FIG. 7 is a plan view of an elastic wave device according to a third embodiment of the invention. 図8は、本発明の第4の実施形態に係る弾性波装置の平面図である。FIG. 8 is a plan view of an elastic wave device according to a fourth embodiment of the invention. 図9は、図8中のI-I線に沿う断面図である。9 is a cross-sectional view taken along line II in FIG. 8. FIG. 図10は、本発明の第5の実施形態に係る弾性波装置の平面図である。FIG. 10 is a plan view of an acoustic wave device according to a fifth embodiment of the invention. 図11は、図10中のI-I線に沿う断面図である。11 is a cross-sectional view taken along line II in FIG. 10. FIG. 図12は、本発明の第6の実施形態に係る弾性波装置の平面図である。FIG. 12 is a plan view of an elastic wave device according to a sixth embodiment of the invention. 図13は、図12中のI-I線に沿う断面図である。13 is a cross-sectional view taken along line II in FIG. 12. FIG. 図14は、本発明の第7の実施形態に係る弾性波装置の平面図である。FIG. 14 is a plan view of an elastic wave device according to a seventh embodiment of the invention. 図15は、図14中のI-I線に沿う断面図である。15 is a cross-sectional view taken along line II in FIG. 14. FIG. 図16(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図16(b)は、圧電層上の電極構造を示す平面図である。FIG. 16(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness shear mode bulk wave, and FIG. 16(b) is a plan view showing an electrode structure on a piezoelectric layer. 図17は、図16(a)中のA-A線に沿う部分の断面図である。FIG. 17 is a cross-sectional view of a portion taken along line AA in FIG. 16(a). 図18(a)は、弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図であり、図18(b)は、弾性波装置における、圧電膜を伝搬する厚み滑りモードのバルク波を説明するための模式的正面断面図である。FIG. 18(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device, and FIG. 18(b) is a thickness shear propagating FIG. 2 is a schematic front cross-sectional view for explaining bulk waves in a mode; 図19は、厚み滑りモードのバルク波の振幅方向を示す図である。FIG. 19 is a diagram showing amplitude directions of bulk waves in the thickness shear mode. 図20は、厚み滑りモードのバルク波を利用する弾性波装置の共振特性を示す図である。FIG. 20 is a diagram showing resonance characteristics of an elastic wave device that utilizes bulk waves in a thickness-shear mode. 図21は、隣り合う電極の中心間距離をp、圧電層の厚みをdとした場合のd/pと共振子としての比帯域との関係を示す図である。FIG. 21 is a diagram showing the relationship between d/p and the fractional bandwidth of the resonator, where p is the center-to-center distance between adjacent electrodes and d is the thickness of the piezoelectric layer. 図22は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。FIG. 22 is a plan view of an acoustic wave device that utilizes thickness shear mode bulk waves. 図23は、スプリアスが現れている参考例の弾性波装置の共振特性を示す図である。FIG. 23 is a diagram showing the resonance characteristics of the elastic wave device of the reference example in which spurious appears. 図24は、比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。FIG. 24 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious. 図25は、d/2pと、メタライゼーション比MRとの関係を示す図である。FIG. 25 is a diagram showing the relationship between d/2p and the metallization ratio MR. 図26は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。FIG. 26 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is infinitely close to 0. FIG. 図27は、音響多層膜を有する弾性波装置の正面断面図である。FIG. 27 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be noted that each embodiment described in this specification is an example, and partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。図2は、図1中のI-I線に沿う模式的断面図である。 FIG. 1 is a schematic plan view of an elastic wave device according to the first embodiment of the invention. FIG. 2 is a schematic cross-sectional view taken along line II in FIG.
 図1に示すように、弾性波装置10は、圧電性基板12と、IDT電極11とを有する。図2に示すように、圧電性基板12は、支持部材13と、圧電層14とを有する。本実施形態では、支持部材13は、支持基板16と、絶縁層15とを含む。支持基板16上に絶縁層15が設けられている。絶縁層15上に圧電層14が設けられている。もっとも、支持部材13は支持基板16のみにより構成されていてもよい。 As shown in FIG. 1, the acoustic wave device 10 has a piezoelectric substrate 12 and an IDT electrode 11. As shown in FIG. 2, the piezoelectric substrate 12 has a support member 13 and a piezoelectric layer 14 . In this embodiment, the support member 13 includes a support substrate 16 and an insulating layer 15 . An insulating layer 15 is provided on the support substrate 16 . A piezoelectric layer 14 is provided on the insulating layer 15 . However, the support member 13 may be composed of only the support substrate 16 .
 圧電層14は第1の主面14a及び第2の主面14bを有する。第1の主面14a及び第2の主面14bは互いに対向している。第1の主面14a及び第2の主面14bのうち、第2の主面14bが支持部材13側に位置している。 The piezoelectric layer 14 has a first main surface 14a and a second main surface 14b. The first main surface 14a and the second main surface 14b face each other. Of the first principal surface 14a and the second principal surface 14b, the second principal surface 14b is located on the support member 13 side.
 支持基板16の材料としては、例えば、シリコンなどの半導体や、酸化アルミニウムなどのセラミックスなどを用いることができる。絶縁層15の材料としては、酸化ケイ素または酸化タンタルなどの、適宜の誘電体を用いることができる。圧電層14は、例えば、LiNbO層などのニオブ酸リチウム層またはLiTaO層などのタンタル酸リチウム層であればよい。 As the material of the support substrate 16, for example, semiconductors such as silicon, ceramics such as aluminum oxide, and the like can be used. As a material for the insulating layer 15, any suitable dielectric such as silicon oxide or tantalum oxide can be used. The piezoelectric layer 14 may be, for example, a lithium niobate layer such as a LiNbO3 layer or a lithium tantalate layer such as a LiTaO3 layer.
 図2に示すように、絶縁層15に凹部が設けられている。絶縁層15上に、凹部を塞ぐように、圧電層14が設けられている。これにより、中空部が構成されている。この中空部が空洞部10aである。本実施形態では、支持部材13の一部及び圧電層14の一部が、空洞部10aを挟み互いに対向するように、支持部材13と圧電層14とが配置されている。もっとも、支持部材13における凹部は、絶縁層15及び支持基板16にわたり設けられていてもよい。あるいは、支持基板16のみに設けられた凹部が、絶縁層15により塞がれていてもよい。凹部は圧電層14に設けられていても構わない。なお、空洞部10aは、支持部材13に設けられた貫通孔であってもよい。 As shown in FIG. 2, the insulating layer 15 is provided with recesses. A piezoelectric layer 14 is provided on the insulating layer 15 so as to close the recess. A hollow portion is thus formed. This hollow portion is the hollow portion 10a. In this embodiment, the support member 13 and the piezoelectric layer 14 are arranged such that a portion of the support member 13 and a portion of the piezoelectric layer 14 face each other with the hollow portion 10a interposed therebetween. However, the recess in the support member 13 may be provided over the insulating layer 15 and the support substrate 16 . Alternatively, the recess provided only in the support substrate 16 may be closed with the insulating layer 15 . The recess may be provided in the piezoelectric layer 14 . Note that the hollow portion 10 a may be a through hole provided in the support member 13 .
 圧電層14の第1の主面14aには、IDT電極11が設けられている。本実施形態の弾性波装置10は、厚み滑りモードのバルク波を利用可能に構成された弾性波共振子である。もっとも、本発明の弾性波装置は、複数の弾性波共振子を有するフィルタ装置や、マルチプレクサなどであってもよい。 An IDT electrode 11 is provided on the first main surface 14a of the piezoelectric layer 14. As shown in FIG. The elastic wave device 10 of this embodiment is an elastic wave resonator configured to be able to use bulk waves in a thickness-shear mode. However, the elastic wave device of the present invention may be a filter device having a plurality of elastic wave resonators, a multiplexer, or the like.
 平面視において、IDT電極11の少なくとも一部が、支持部材13の空洞部10aと重なっている。本明細書において平面視とは、図2における上方に相当する方向から、支持部材13及び圧電層14の積層方向に沿って見ることをいう。なお、図2においては、例えば、支持基板16及び圧電層14のうち、圧電層14側が上方である。 At least a portion of the IDT electrode 11 overlaps the hollow portion 10a of the support member 13 in plan view. In this specification, the term “planar view” refers to viewing from the direction corresponding to the upper side in FIG. 2 along the stacking direction of the support member 13 and the piezoelectric layer 14 . In FIG. 2, for example, of the support substrate 16 and the piezoelectric layer 14, the piezoelectric layer 14 side is the upper side.
 図1に示すように、IDT電極11は、1対のバスバーと、複数の電極指とを有する。1対のバスバーは、具体的には、第1のバスバー26及び第2のバスバー27である。第1のバスバー26及び第2のバスバー27は互いに対向している。複数の電極指は、具体的には、複数の第1の電極指28及び複数の第2の電極指29である。複数の第1の電極指28の一端はそれぞれ、第1のバスバー26に接続されている。複数の第2の電極指29の一端はそれぞれ、第2のバスバー27に接続されている。複数の第1の電極指28及び複数の第2の電極指29は互いに間挿し合っている。IDT電極11は、単層の金属膜からなっていてもよく、あるいは、積層金属膜からなっていてもよい。 As shown in FIG. 1, the IDT electrode 11 has a pair of busbars and a plurality of electrode fingers. A pair of busbars is specifically a first busbar 26 and a second busbar 27 . The first busbar 26 and the second busbar 27 face each other. The plurality of electrode fingers are specifically a plurality of first electrode fingers 28 and a plurality of second electrode fingers 29 . One ends of the plurality of first electrode fingers 28 are each connected to the first bus bar 26 . One ends of the plurality of second electrode fingers 29 are each connected to the second bus bar 27 . The plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 are interleaved with each other. The IDT electrode 11 may be composed of a single-layer metal film, or may be composed of a laminated metal film.
 以下においては、第1の電極指28及び第2の電極指29を、単に電極指と記載することがある。第1のバスバー26及び第2のバスバー27を、単にバスバーと記載することがある。複数の電極指が延びる方向を電極指延伸方向とし、隣り合う電極指同士が互いに対向する方向を電極指対向方向としたときに、本実施形態においては、電極指延伸方向及び電極指対向方向は直交する。 In the following, the first electrode finger 28 and the second electrode finger 29 may be simply referred to as electrode fingers. The first busbar 26 and the second busbar 27 may be simply referred to as busbars. When the direction in which a plurality of electrode fingers extends is defined as the electrode finger extending direction, and the direction in which adjacent electrode fingers face each other is defined as the electrode finger facing direction, in the present embodiment, the electrode finger extending direction and the electrode finger facing direction are Orthogonal.
 弾性波装置10においては、圧電層14の厚みをd、隣り合う電極指同士の中心間距離をpとした場合、d/pが0.5以下である。これにより、厚み滑りモードのバルク波が好適に励振される。 In the acoustic wave device 10, d/p is 0.5 or less, where d is the thickness of the piezoelectric layer 14 and p is the center-to-center distance between adjacent electrode fingers. As a result, thickness-shear mode bulk waves are preferably excited.
 ところで、図2に示す空洞部10aは、本発明における音響反射部である。音響反射部により、弾性波のエネルギーを圧電層14側に効果的に閉じ込めることができる。なお、音響反射部として、後述する、音響多層膜などの音響反射膜が設けられていてもよい。 By the way, the hollow portion 10a shown in FIG. 2 is the acoustic reflection portion in the present invention. The acoustic reflector can effectively confine the energy of the elastic wave to the piezoelectric layer 14 side. As the acoustic reflection portion, an acoustic reflection film such as an acoustic multilayer film, which will be described later, may be provided.
 図1に戻り、IDT電極11は交叉領域Fを有する。交叉領域Fは、電極指対向方向から見たときに、隣り合う電極指同士が重なり合う領域である。交叉領域Fは、中央領域Hと、1対のエッジ領域とを有する。1対のエッジ領域は、具体的には、第1のエッジ領域E1及び第2のエッジ領域E2である。第1のエッジ領域E1及び第2のエッジ領域E2は、電極指延伸方向において中央領域Hを挟み、互いに対向するように配置されている。第1のエッジ領域E1は第1のバスバー26側に位置している。第2のエッジ領域E2は第2のバスバー27側に位置している。 Returning to FIG. 1, the IDT electrode 11 has an intersecting region F. The intersecting region F is a region where adjacent electrode fingers overlap each other when viewed from the direction in which the electrode fingers are opposed. The intersection region F has a central region H and a pair of edge regions. A pair of edge regions is specifically a first edge region E1 and a second edge region E2. The first edge region E1 and the second edge region E2 are arranged so as to face each other with the central region H interposed therebetween in the direction in which the electrode fingers extend. The first edge region E1 is located on the first bus bar 26 side. The second edge region E2 is located on the second busbar 27 side.
 IDT電極11は1対のギャップ領域を有する。1対のギャップ領域は、交叉領域Fと1対のバスバーとの間に位置している。1対のギャップ領域は、具体的には、第1のギャップ領域G1及び第2のギャップ領域G2である。第1のギャップ領域G1は、第1のバスバー26及び第1のエッジ領域E1の間に位置している。第2のギャップ領域G2は、第2のバスバー27及び第2のエッジ領域E2の間に位置している。 The IDT electrode 11 has a pair of gap regions. A pair of gap regions are located between the intersection region F and a pair of busbars. A pair of gap regions is specifically a first gap region G1 and a second gap region G2. The first gap region G1 is located between the first busbar 26 and the first edge region E1. The second gap region G2 is located between the second busbar 27 and the second edge region E2.
 第1のエッジ領域E1には、1つの第1の質量付加膜24と、1つの第2の質量付加膜25とが設けられている。第1のエッジ領域E1において、第1の質量付加膜24及び第2の質量付加膜25は、電極指対向方向に並ぶように設けられている。本実施形態では、第1の質量付加膜24は、例えばSiOなどの、酸化ケイ素からなる。第2の質量付加膜25は、例えばTaなどの、酸化タンタルからなる。もっとも、第1の質量付加膜24の材料及び第2の質量付加膜25の材料は上記に限定されない。第1の質量付加膜24の材料及び第2の質量付加膜の材料が互いに異なっていればよい。本明細書において、ある部材がある材料からなるとは、弾性波装置の電気的特性が大きく劣化しない程度の微量な不純物が含まれる場合を含む。 One first mass addition film 24 and one second mass addition film 25 are provided in the first edge region E1. In the first edge region E1, the first mass addition film 24 and the second mass addition film 25 are arranged side by side in the electrode finger facing direction. In this embodiment, the first mass addition film 24 is made of silicon oxide, such as SiO 2 . The second mass addition film 25 consists of tantalum oxide, for example Ta2O5 . However, the material of the first mass addition film 24 and the material of the second mass addition film 25 are not limited to the above. It is sufficient if the material of the first mass addition film 24 and the material of the second mass addition film are different from each other. In the present specification, the term "a certain member is made of a certain material" includes the case where a minute amount of impurity is included to such an extent that the electrical characteristics of the acoustic wave device are not significantly degraded.
 同様に、第2のエッジ領域E2にも、1つの第1の質量付加膜24と、1つの第2の質量付加膜25とが設けられている。よって、1対の第1の質量付加膜24及び1対の第2の質量付加膜25が、1対のエッジ領域に設けられている。本実施形態では、第1の質量付加膜24及び第2の質量付加膜25の電極指延伸方向に沿う寸法、及び厚みは同じである。 Similarly, one first mass addition film 24 and one second mass addition film 25 are also provided in the second edge region E2. Thus, a pair of first mass addition films 24 and a pair of second mass addition films 25 are provided in a pair of edge regions. In the present embodiment, the first mass addition film 24 and the second mass addition film 25 have the same dimension along the extending direction of the electrode fingers and the same thickness.
 各エッジ領域における各第1の質量付加膜24及び各第2の質量付加膜25は、帯状の形状を有する。各第1の質量付加膜24は、圧電層14の第1の主面14aに、複数の電極指を覆うように設けられている。各第2の質量付加膜25は、圧電層14の第1の主面14aに、各第1の質量付加膜24が覆っている電極指以外の、複数の電極指を覆うように設けられている。 Each first mass addition film 24 and each second mass addition film 25 in each edge region has a strip shape. Each first mass addition film 24 is provided on the first main surface 14a of the piezoelectric layer 14 so as to cover the plurality of electrode fingers. Each second mass addition film 25 is provided on the first main surface 14a of the piezoelectric layer 14 so as to cover a plurality of electrode fingers other than the electrode fingers covered by each first mass addition film 24. there is
 より詳細には、図2に示すように、複数の電極指はそれぞれ、第1の面11a及び第2の面11bと、側面11cとを有する。第1の面11a及び第2の面11bは互いに対向している。第1の面11a及び第2の面11bに側面11cが接続されている。第1の面11a及び第2の面11bのうち第2の面11bが圧電層14側の面である。第1の質量付加膜24は、各電極指の第1の面11aに設けられている。そして、第1の質量付加膜24及び第2の質量付加膜25は、第1の面11aと、圧電層14上における電極指間の領域とに、連続的に設けられている。もっとも、第1の質量付加膜24及び第2の質量付加膜25は、互いに異なる電極指の第1の面11a、及び互いに異なる電極指間の領域に設けられている。なお、第1の質量付加膜24及び第2の質量付加膜25は、各電極指の側面11cも覆っている。 More specifically, as shown in FIG. 2, each of the plurality of electrode fingers has a first surface 11a, a second surface 11b, and a side surface 11c. The first surface 11a and the second surface 11b face each other. A side surface 11c is connected to the first surface 11a and the second surface 11b. Of the first surface 11a and the second surface 11b, the second surface 11b is the surface on the piezoelectric layer 14 side. The first mass addition film 24 is provided on the first surface 11a of each electrode finger. The first mass addition film 24 and the second mass addition film 25 are continuously provided on the first surface 11a and the area between the electrode fingers on the piezoelectric layer 14. As shown in FIG. However, the first mass addition film 24 and the second mass addition film 25 are provided on the first surfaces 11a of the electrode fingers different from each other and on the regions between the electrode fingers different from each other. The first mass addition film 24 and the second mass addition film 25 also cover the side surface 11c of each electrode finger.
 本実施形態では、第1の質量付加膜24及び第2の質量付加膜25は、双方のエッジ領域のみに設けられている。なお、第1の質量付加膜24及び第2の質量付加膜25は、ギャップ領域に設けられていてもよい。 In this embodiment, the first mass addition film 24 and the second mass addition film 25 are provided only in both edge regions. Note that the first mass addition film 24 and the second mass addition film 25 may be provided in the gap region.
 本実施形態の特徴は、互いに材料が異なる、少なくとも1つずつの第1の質量付加膜24及び第2の質量付加膜25が、電極指対向方向に並ぶように、エッジ領域及びギャップ領域のうち少なくとも一方に設けられていることにある。それによって、共振周波数よりも低く、共振周波数付近に位置する周波数帯域において、不要波が生じる周波数を分散させることができる。従って、共振周波数よりも低く、共振周波数付近に位置する周波数の不要波を抑制することができる。この詳細を、参考例を参照することにより、以下において示す。なお、以下においては、単に不要波と記載されている場合、特に断りがない限り、該不要波は、共振周波数よりも低く、共振周波数付近に位置する周波数において生じる不要波をいうものとする。 A feature of this embodiment is that at least one first mass addition film 24 and at least one second mass addition film 25 made of different materials are arranged in the electrode finger facing direction in the edge region and the gap region. It is provided in at least one side. As a result, frequencies at which unnecessary waves are generated can be dispersed in a frequency band that is lower than the resonance frequency and located near the resonance frequency. Therefore, it is possible to suppress unnecessary waves of frequencies lower than the resonance frequency and located near the resonance frequency. Details of this are provided below by reference to a reference example. In the following description, when an unwanted wave is simply described, it means an unwanted wave generated at a frequency lower than the resonance frequency and located near the resonance frequency, unless otherwise specified.
 参考例は、1対の質量付加膜が、1対のエッジ領域及び1対のギャップ領域にわたり設けられている点において、第1の実施形態と異なる。参考例においては、1対のエッジ領域及び1対のギャップ領域にわたり設けられている質量付加膜は、1種類のみである。なお、質量付加膜がSiOからなる参考例の弾性波装置、及び質量付加膜がTaからなる参考例の弾性波装置を用意した。各弾性波装置における質量付加膜の厚みは、15nmとした。各弾性波装置の位相特性を測定した。 The reference example differs from the first embodiment in that a pair of mass addition films are provided over a pair of edge regions and a pair of gap regions. In the reference example, only one type of mass adding film is provided over a pair of edge regions and a pair of gap regions. An acoustic wave device of a reference example in which a mass addition film is made of SiO 2 and an acoustic wave device of a reference example in which a mass addition film is made of Ta 2 O 5 were prepared. The thickness of the mass addition film in each acoustic wave device was set to 15 nm. The phase characteristics of each elastic wave device were measured.
 図3は、参考例の各弾性波装置における位相特性を示す図である。図4は、図3を、4000MHz付近において拡大した図である。 FIG. 3 is a diagram showing phase characteristics in each elastic wave device of the reference example. FIG. 4 is an enlarged view of FIG. 3 near 4000 MHz.
 図3及び図4に示すように質量付加膜の材料が異なる場合には、不要波に起因するリップルが生じる周波数も異なることがわかる。これは、第1の実施形態のように、質量付加膜がエッジ領域のみに設けられている場合においても同様である。さらに、質量付加膜がギャップ領域のみに設けられている場合においても同様である。そして、図1に示すように、第1の実施形態では、材料が互いに異なる第1の質量付加膜24及び第2の質量付加膜25が、電極指対向方向に並んでいる。よって、第1の実施形態では、エッジ領域において、電極指対向方向における一部に設けられた質量付加膜の材料と、他の一部に設けられた質量付加膜の材料とが互いに異なる。すなわち、エッジ領域に設けられた質量付加膜の材料が、電極指対向方向において一様ではない。それによって、不要波が生じる周波数を分散させることができ、不要波の強度を低くすることができる。従って、不要波を抑制することができる。 As shown in FIGS. 3 and 4, when the materials of the mass addition films are different, the frequencies at which ripples caused by unnecessary waves are generated are also different. This is the same even when the mass addition film is provided only in the edge region as in the first embodiment. Furthermore, the same applies when the mass addition film is provided only in the gap region. Further, as shown in FIG. 1, in the first embodiment, the first mass addition film 24 and the second mass addition film 25 made of different materials are arranged in the electrode finger facing direction. Therefore, in the first embodiment, in the edge region, the material of the mass addition film provided in one portion in the electrode finger facing direction and the material of the mass addition film provided in the other portion are different from each other. That is, the material of the mass adding film provided in the edge region is not uniform in the electrode finger facing direction. As a result, frequencies at which unwanted waves are generated can be dispersed, and the intensity of the unwanted waves can be reduced. Therefore, unwanted waves can be suppressed.
 ところで、図1に示すように、弾性波装置10のIDT電極11における交叉領域Fは、複数の励振領域Cを含む。より具体的には、励振領域Cは、隣り合う電極指同士の中心間の領域である。IDT電極11に交流電圧を印加することにより、複数の励振領域Cにおいて、弾性波が励振される。一方で、弾性表面波を利用する弾性波装置においては、交叉領域が1つの励振領域である。 By the way, as shown in FIG. 1, the intersecting region F in the IDT electrode 11 of the acoustic wave device 10 includes a plurality of excitation regions C. More specifically, the excitation region C is the region between the centers of adjacent electrode fingers. Elastic waves are excited in a plurality of excitation regions C by applying an AC voltage to the IDT electrodes 11 . On the other hand, in an acoustic wave device that utilizes surface acoustic waves, the intersection region is one excitation region.
 弾性表面波を利用する弾性波装置とは異なり、厚み滑りモードのバルク波を利用する弾性波装置10は、励振領域Cをそれぞれ有する複数の共振子が並列に接続された構成とほぼ等価である。そのため、弾性波装置10においては、質量付加膜の材料が、電極指対向方向において一様ではなくとも、位相特性などの周波数特性の波形は崩れ難い。従って、第1の実施形態においては、電気的特性を劣化させずして、不要波を抑制することができる。 Unlike an acoustic wave device that uses surface acoustic waves, the acoustic wave device 10 that uses thickness-shear mode bulk waves is substantially equivalent to a configuration in which a plurality of resonators each having an excitation region C are connected in parallel. . Therefore, in the acoustic wave device 10, even if the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed, the waveform of the frequency characteristics such as the phase characteristics is less likely to collapse. Therefore, in the first embodiment, unnecessary waves can be suppressed without deteriorating electrical characteristics.
 さらに、第1の質量付加膜24及び第2の質量付加膜25がエッジ領域のみに設けられていることによって、比帯域の変化量を小さくすることができる。それによって、弾性波装置10の電気的特性を安定化させることができる。 Furthermore, since the first mass addition film 24 and the second mass addition film 25 are provided only in the edge region, the amount of change in the fractional band can be reduced. Thereby, the electrical characteristics of the acoustic wave device 10 can be stabilized.
 第1の実施形態では、第1の質量付加膜24及び第2の質量付加膜25が設けられていることにより、各エッジ領域において、低音速領域が構成されている。低音速領域とは、中央領域Hにおける音速よりも、音速が低い領域である。電極指延伸方向において、IDT電極11の内側から外側にかけて、中央領域H及び低音速領域がこの順序において配置されている。それによって、ピストンモードが成立し、横モードを抑制することができる。 In the first embodiment, the provision of the first mass addition film 24 and the second mass addition film 25 constitutes a low sound velocity region in each edge region. The low sound velocity region is a region in which the sound velocity is lower than the sound velocity in the central region H. A central region H and a low-frequency region are arranged in this order from the inner side to the outer side of the IDT electrode 11 in the electrode finger extending direction. Thereby, the piston mode is established and the transverse mode can be suppressed.
 なお、本発明の弾性波装置は、弾性表面波ではなく、厚み滑りモードのバルク波を利用する。この場合には、各ギャップ領域に第1の質量付加膜24及び第2の質量付加膜25が設けられていても、ピストンモードを好適に成立させることができる。 It should be noted that the elastic wave device of the present invention utilizes thickness-shear mode bulk waves instead of surface acoustic waves. In this case, even if the first mass addition film 24 and the second mass addition film 25 are provided in each gap region, the piston mode can be suitably established.
 第1の質量付加膜24の材料としては、酸化ケイ素、酸化タングステン、酸化ニオブ、酸化タンタル及び酸化ハフニウムからなる群から選択された少なくとも1種の誘電体が用いられていることが好ましい。この場合には、ピストンモードをより確実に成立させることができ、横モードをより確実に抑制することができる。他方、第2の質量付加膜25の材料としては、第1の質量付加膜24の材料と異なり、かつ酸化ケイ素、酸化タングステン、酸化ニオブ、酸化タンタル及び酸化ハフニウムからなる群から選択された少なくとも1種の誘電体が用いられていることが好ましい。この場合においても、ピストンモードをより確実に成立させることができ、横モードをより確実に抑制することができる。 At least one dielectric selected from the group consisting of silicon oxide, tungsten oxide, niobium oxide, tantalum oxide and hafnium oxide is preferably used as the material of the first mass addition film 24 . In this case, the piston mode can be established more reliably, and the lateral mode can be suppressed more reliably. On the other hand, the material of the second mass addition film 25 is different from the material of the first mass addition film 24 and at least one selected from the group consisting of silicon oxide, tungsten oxide, niobium oxide, tantalum oxide and hafnium oxide. Preferably, a seed dielectric is used. Also in this case, the piston mode can be established more reliably, and the transverse mode can be suppressed more reliably.
 第1の実施形態では、1つの第1の質量付加膜24及び1つの第2の質量付加膜がそれぞれ、各エッジ領域に設けられている。もっとも、これに限定されるものではない。例えば、図5に示す第1の実施形態の変形例では、第1のエッジ領域において、複数の第1の質量付加膜24及び複数の第2の質量付加膜25が設けられている。第1の質量付加膜24及び第2の質量付加膜25が、電極指対向方向に交互に並んでいる。各第1の質量付加膜24は複数の電極指を覆っている。各第2の質量付加膜25は、各第1の質量付加膜24が覆っている電極指以外の、複数の電極指を覆っている。第2のエッジ領域においても同様である。この場合においても、不要波が生じる周波数を分散させることができ、不要波を抑制することができる。 In the first embodiment, one first mass addition film 24 and one second mass addition film are each provided in each edge region. However, it is not limited to this. For example, in the modification of the first embodiment shown in FIG. 5, a plurality of first mass addition films 24 and a plurality of second mass addition films 25 are provided in the first edge region. The first mass addition films 24 and the second mass addition films 25 are alternately arranged in the electrode finger facing direction. Each first mass adding film 24 covers a plurality of electrode fingers. Each second mass addition film 25 covers a plurality of electrode fingers other than the electrode fingers covered by each first mass addition film 24 . The same is true for the second edge region. Also in this case, the frequencies at which unwanted waves are generated can be dispersed, and the unwanted waves can be suppressed.
 なお、図5に示す変形例における、第1の質量付加膜24及び第2の質量付加膜25が、電極指対向方向に交互に設けられている構成は、該変形例以外の本発明の構成にも適用することができる。 Note that the configuration in which the first mass addition films 24 and the second mass addition films 25 are alternately provided in the electrode finger facing direction in the modification shown in FIG. 5 is the configuration of the present invention other than the modification. can also be applied to
 図6は、第2の実施形態に係る弾性波装置の平面図である。 FIG. 6 is a plan view of the elastic wave device according to the second embodiment.
 本実施形態は、第1の質量付加膜24及び第2の質量付加膜25が双方のギャップ領域のみに設けられている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。 This embodiment differs from the first embodiment in that the first mass addition film 24 and the second mass addition film 25 are provided only in both gap regions. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 1対の第1の質量付加膜24のうち一方が、第1のギャップ領域G1に設けられている。1対の第1の質量付加膜24のうち他方が、第2のギャップ領域G2に設けられている。 One of the pair of first mass addition films 24 is provided in the first gap region G1. The other of the pair of first mass adding films 24 is provided in the second gap region G2.
 同様に、1対の第2の質量付加膜25のうち一方が、第1のギャップ領域G1に設けられている。該第2の質量付加膜25は、第1のギャップ領域G1に設けられた第1の質量付加膜24と、電極指対向方向に並ぶように設けられている。1対の第2の質量付加膜25のうち他方が、第2のギャップ領域G2に設けられている。該第2の質量付加膜25は、第2のギャップ領域G2に設けられた第1の質量付加膜24と、電極指対向方向に並ぶように設けられている。 Similarly, one of the pair of second mass addition films 25 is provided in the first gap region G1. The second mass addition film 25 is provided so as to be aligned with the first mass addition film 24 provided in the first gap region G1 in the electrode finger facing direction. The other of the pair of second mass adding films 25 is provided in the second gap region G2. The second mass addition film 25 is provided so as to be aligned with the first mass addition film 24 provided in the second gap region G2 in the electrode finger facing direction.
 第1の質量付加膜24及び第2の質量付加膜25は、ギャップ領域におけるバスバー側の端部には至っていない。なお、第1の質量付加膜24及び第2の質量付加膜25は、ギャップ領域の電極指延伸方向における全体に設けられていてもよい。第1の質量付加膜24及び第2の質量付加膜25は、ギャップ領域の電極指延伸方向における少なくとも一部に設けられていればよい。本実施形態では、第1の質量付加膜24及び第2の質量付加膜25の電極指延伸方向に沿う寸法、及び厚みは同じである。 The first mass addition film 24 and the second mass addition film 25 do not reach the end on the busbar side in the gap region. The first mass addition film 24 and the second mass addition film 25 may be provided over the entire gap region in the extending direction of the electrode fingers. The first mass addition film 24 and the second mass addition film 25 may be provided in at least a part of the gap region in the extending direction of the electrode fingers. In the present embodiment, the first mass addition film 24 and the second mass addition film 25 have the same dimension along the extending direction of the electrode fingers and the same thickness.
 図6に示すように、ギャップ領域に設けられた第1の質量付加膜24及び第2の質量付加膜25が、電極指対向方向に並んでいる。そのため、電極指対向方向において、質量付加膜の材料は一様ではない。それによって、第1の実施形態と同様に、不要波が生じる周波数を分散させることができ、不要波を抑制することができる。 As shown in FIG. 6, the first mass addition film 24 and the second mass addition film 25 provided in the gap region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the first embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
 図7は、第3の実施形態に係る弾性波装置の平面図である。 FIG. 7 is a plan view of an elastic wave device according to the third embodiment.
 本実施形態は、第1の質量付加膜24及び第2の質量付加膜25が、エッジ領域及びギャップ領域にわたり設けられている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。 This embodiment differs from the first embodiment in that the first mass addition film 24 and the second mass addition film 25 are provided over the edge region and the gap region. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 1対の第1の質量付加膜24のうち一方が、第1のエッジ領域E1及び第1のギャップ領域G1にわたり設けられている。1対の第1の質量付加膜24のうち他方が、第2のエッジ領域E2及び第2のギャップ領域G2にわたり設けられている。 One of the pair of first mass addition films 24 is provided over the first edge region E1 and the first gap region G1. The other of the pair of first mass adding films 24 is provided over the second edge region E2 and the second gap region G2.
 同様に、1対の第2の質量付加膜25のうち一方が、第1のエッジ領域E1及び第1のギャップ領域G1にわたり設けられている。該第2の質量付加膜25は、第1のギャップ領域G1に設けられた第1の質量付加膜24と、電極指対向方向に並ぶように設けられている。1対の第2の質量付加膜25のうち他方が、第2のギャップ領域G2に設けられている。該第2の質量付加膜25は、第2のギャップ領域G2に設けられた第1の質量付加膜24と、電極指対向方向に並ぶように設けられている。 Similarly, one of the pair of second mass addition films 25 is provided over the first edge region E1 and the first gap region G1. The second mass addition film 25 is provided so as to be aligned with the first mass addition film 24 provided in the first gap region G1 in the electrode finger facing direction. The other of the pair of second mass adding films 25 is provided in the second gap region G2. The second mass addition film 25 is provided so as to be aligned with the first mass addition film 24 provided in the second gap region G2 in the electrode finger facing direction.
 図7に示すように、エッジ領域及びギャップ領域にわたり設けられた第1の質量付加膜24及び第2の質量付加膜25が、電極指対向方向に並んでいる。そのため、電極指対向方向において、質量付加膜の材料は一様ではない。それによって、第1の実施形態と同様に、不要波が生じる周波数を分散させることができ、不要波を抑制することができる。 As shown in FIG. 7, the first mass addition film 24 and the second mass addition film 25 provided over the edge region and the gap region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the first embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
 上記の第1~第3の実施形態においては、第1の質量付加膜24及び第2の質量付加膜25は帯状である。第1の質量付加膜24及び第2の質量付加膜25はそれぞれ、複数の電極指上と、電極指間の領域とに連続的に設けられている。もっとも、第1の質量付加膜24または第2の質量付加膜25は、例えば、電極指上のみに設けられていてもよい。この例を、第4の実施形態及び第5の実施形態により示す。 In the first to third embodiments described above, the first mass addition film 24 and the second mass addition film 25 are strip-shaped. The first mass addition film 24 and the second mass addition film 25 are respectively continuously provided on the plurality of electrode fingers and on the regions between the electrode fingers. However, the first mass addition film 24 or the second mass addition film 25 may be provided only on the electrode fingers, for example. Examples of this are illustrated by the fourth and fifth embodiments.
 図8は、第4の実施形態に係る弾性波装置の平面図である。図9は、図8中のI-I線に沿う断面図である。 FIG. 8 is a plan view of an elastic wave device according to the fourth embodiment. 9 is a cross-sectional view taken along line II in FIG. 8. FIG.
 図8に示すように、本実施形態は、各エッジ領域に複数の第1の質量付加膜34が設けられている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。 As shown in FIG. 8, this embodiment differs from the first embodiment in that each edge region is provided with a plurality of first mass adding films 34 . Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 複数の第1の質量付加膜34は、電極指対向方向に並んでいる。そして、平面視において、各第1の質量付加膜34と各電極指とが重なっている。より具体的には、第1のエッジ領域E1において、各第1の質量付加膜34は、1本の第1の電極指28の第1の面11aのみ、または1本の第2の電極指29の第1の面11aのみに設けられている。第2のエッジ領域E2においても同様である。複数の第1の質量付加膜34は、平面視において、電極指と重なる領域のみに設けられている。 The plurality of first mass adding films 34 are arranged in the electrode finger facing direction. In plan view, each first mass adding film 34 and each electrode finger overlap each other. More specifically, in the first edge region E1, each first mass addition film 34 covers only the first surface 11a of one first electrode finger 28 or one second electrode finger. 29 is provided only on the first surface 11a. The same applies to the second edge region E2. The plurality of first mass adding films 34 are provided only in regions overlapping with the electrode fingers in plan view.
 図8及び図9に示すように、本実施形態では、複数の第1の質量付加膜34及び第2の質量付加膜24の電極指延伸方向に沿う寸法、及び厚みは、いずれも同じである。もっとも、全ての第1の質量付加膜34及び第2の質量付加膜25の電極指延伸方向に沿う寸法、及び厚みは、必ずしも同じではなくともよい。 As shown in FIGS. 8 and 9, in this embodiment, the dimensions along the electrode finger extension direction and the thickness of the plurality of first mass addition films 34 and the second mass addition films 24 are all the same. . However, the dimensions along the extending direction of the electrode fingers and the thicknesses of all the first mass addition films 34 and the second mass addition films 25 may not necessarily be the same.
 他方、第2の質量付加膜25は、第1の実施形態と同様に、平面視において、複数の電極指及び電極指間の領域と重なる領域に、連続的に設けられている。複数の第1の質量付加膜34及び第2の質量付加膜25は、互いの異なる電極指上に設けられている。 On the other hand, as in the first embodiment, the second mass addition film 25 is continuously provided in a region overlapping the plurality of electrode fingers and the region between the electrode fingers in plan view. The plurality of first mass addition films 34 and second mass addition films 25 are provided on different electrode fingers.
 図8に示すように、エッジ領域に設けられた複数の第1の質量付加膜34及び第2の質量付加膜25が、電極指対向方向に並んでいる。そのため、電極指対向方向において、質量付加膜の材料は一様ではない。それによって、第1の実施形態と同様に、不要波が生じる周波数を分散させることができ、不要波を抑制することができる。 As shown in FIG. 8, a plurality of first mass addition films 34 and second mass addition films 25 provided in the edge region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the first embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
 各第1の質量付加膜34は、互いに異なる電位に接続される電極指の双方とは接触していない。この場合には、複数の第1の質量付加膜34の材料として、金属を用いることができる。もっとも、複数の第1の質量付加膜34の材料として、誘電体を用いてもよい。 Each first mass addition film 34 is not in contact with both of the electrode fingers connected to different potentials. In this case, metal can be used as the material of the plurality of first mass addition films 34 . However, a dielectric may be used as the material of the plurality of first mass adding films 34 .
 図10は、第5の実施形態に係る弾性波装置の平面図である。図11は、図10中のI-I線に沿う断面図である。 FIG. 10 is a plan view of an elastic wave device according to the fifth embodiment. 11 is a cross-sectional view taken along line II in FIG. 10. FIG.
 図10に示すように、本実施形態は、各エッジ領域に複数の第2の質量付加膜35が設けられている点において、第4の実施形態と異なる。よって、本実施形態においては、複数の第1の質量付加膜34及び複数の第2の質量付加膜35が設けられている。上記の点以外においては、本実施形態の弾性波装置は第4の実施形態の弾性波装置と同様の構成を有する。 As shown in FIG. 10, this embodiment differs from the fourth embodiment in that each edge region is provided with a plurality of second mass adding films 35 . Therefore, in this embodiment, a plurality of first mass addition films 34 and a plurality of second mass addition films 35 are provided. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device of the fourth embodiment.
 複数の第2の質量付加膜35は、電極指対向方向に並んでいる。そして、平面視において、各第2の質量付加膜35と各電極指とが重なっている。より具体的には、第1のエッジ領域E1において、各第2の質量付加膜35は、1本の第1の電極指28の第1の面11aのみ、または1本の第2の電極指29の第1の面11aのみに設けられている。第2のエッジ領域E2においても同様である。複数の第2の質量付加膜35は、平面視において、電極指と重なる領域のみに設けられている。 The plurality of second mass adding films 35 are arranged in the electrode finger facing direction. In a plan view, each second mass adding film 35 and each electrode finger overlap each other. More specifically, in the first edge region E1, each second mass addition film 35 covers only the first surface 11a of one first electrode finger 28 or one second electrode finger. 29 is provided only on the first surface 11a. The same applies to the second edge region E2. The plurality of second mass adding films 35 are provided only in regions overlapping with the electrode fingers in plan view.
 図10及び図11に示すように、本実施形態では、複数の第1の質量付加膜34及び複数の第2の質量付加膜35の電極指延伸方向に沿う寸法、及び厚みは、いずれも同じである。もっとも、全ての第1の質量付加膜34及び全ての第2の質量付加膜35の電極指延伸方向に沿う寸法、及び厚みは、必ずしも同じではなくともよい。 As shown in FIGS. 10 and 11, in the present embodiment, the dimensions along the extending direction of the electrode fingers and the thicknesses of the plurality of first mass addition films 34 and the plurality of second mass addition films 35 are the same. is. However, the dimensions along the extending direction of the electrode fingers and the thicknesses of all the first mass addition films 34 and all the second mass addition films 35 may not necessarily be the same.
 図10に示すように、エッジ領域に設けられた複数の第1の質量付加膜34及び複数の第2の質量付加膜35が、電極指対向方向に並んでいる。そのため、電極指対向方向において、質量付加膜の材料は一様ではない。それによって、第4の実施形態と同様に、不要波が生じる周波数を分散させることができ、不要波を抑制することができる。 As shown in FIG. 10, the plurality of first mass addition films 34 and the plurality of second mass addition films 35 provided in the edge region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the fourth embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
 各第1の質量付加膜34及び各第2の質量付加膜35は、互いに異なる電位に接続される電極指の双方とは接触していない。この場合には、複数の第1の質量付加膜34及び複数の第2の質量付加膜35の材料として、金属を用いることができる。第1の質量付加膜34及び第2の質量付加膜35の材料として、互いに異なる種類の金属が用いられていればよい。もっとも、複数の第1の質量付加膜34または複数の第2の質量付加膜35の材料として、誘電体を用いてもよい。 Each first mass addition film 34 and each second mass addition film 35 are not in contact with both electrode fingers connected to different potentials. In this case, metal can be used as the material of the plurality of first mass addition films 34 and the plurality of second mass addition films 35 . As materials for the first mass addition film 34 and the second mass addition film 35, different kinds of metals may be used. However, a dielectric may be used as the material of the plurality of first mass addition films 34 or the plurality of second mass addition films 35 .
 複数の第1の質量付加膜34及び複数の第2の質量付加膜35は、第1の実施形態と同様に、双方のエッジ領域のみに設けられている。それによって、本実施形態においても、比帯域の変化量を小さくすることができ、弾性波装置の電気的特性を安定化させることができる。もっとも、複数の第1の質量付加膜34及び複数の第2の質量付加膜35が、図10に示す、第1のエッジ領域E1及び第1のギャップ領域G1にわたり設けられていてもよい。同様に、複数の第1の質量付加膜34及び複数の第2の質量付加膜35が、第2のエッジ領域E2及び第2のギャップ領域G2にわたり設けられていてもよい。あるいは、複数の第1の質量付加膜34及び複数の第2の質量付加膜35が、双方のギャップ領域のみに設けられていてもよい。 The plurality of first mass addition films 34 and the plurality of second mass addition films 35 are provided only in both edge regions, as in the first embodiment. Thereby, also in this embodiment, the amount of change in the fractional band can be reduced, and the electrical characteristics of the elastic wave device can be stabilized. However, a plurality of first mass addition films 34 and a plurality of second mass addition films 35 may be provided over the first edge region E1 and the first gap region G1 shown in FIG. Similarly, a plurality of first mass addition films 34 and a plurality of second mass addition films 35 may be provided over the second edge region E2 and the second gap region G2. Alternatively, the plurality of first mass addition films 34 and the plurality of second mass addition films 35 may be provided only in both gap regions.
 図12は、第6の実施形態に係る弾性波装置の平面図である。図13は、図12中のI-I線に沿う断面図である。 FIG. 12 is a plan view of an elastic wave device according to the sixth embodiment. 13 is a cross-sectional view taken along line II in FIG. 12. FIG.
 図12に示すように、本実施形態は、保護膜46が設けられている点、及び保護膜46上に第1の質量付加膜24及び第2の質量付加膜25が設けられている点において、第3の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第3の実施形態の弾性波装置と同様の構成を有する。 As shown in FIG. 12, this embodiment is different in that the protective film 46 is provided, and the first mass addition film 24 and the second mass addition film 25 are provided on the protection film 46. , differs from the third embodiment. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device of the third embodiment.
 保護膜46は、圧電層14の第1の主面14aに、IDT電極11を覆うように設けられている。それによって、IDT電極11が破損し難い。保護膜46の材料としては、例えば、酸化ケイ素、窒化ケイ素または酸窒化ケイ素などを用いることができる。 The protective film 46 is provided on the first main surface 14 a of the piezoelectric layer 14 so as to cover the IDT electrodes 11 . Thereby, the IDT electrode 11 is less likely to be damaged. As a material of the protective film 46, for example, silicon oxide, silicon nitride, silicon oxynitride, or the like can be used.
 第3の実施形態と同様に、第1の質量付加膜24及び第2の質量付加膜25がそれぞれ1つずつ、エッジ領域及びギャップ領域にわたり設けられている。第1の質量付加膜24及び第2の質量付加膜25はそれぞれ、平面視において、複数の電極指及び電極指間の領域と重なる領域に、連続的に設けられている。なお、保護膜46が設けられている場合においても、第1の質量付加膜24及び第2の質量付加膜25は、エッジ領域のみに設けられていてもよく、ギャップ領域のみに設けられていてもよい。 As in the third embodiment, one first mass addition film 24 and one second mass addition film 25 are provided over the edge region and the gap region. Each of the first mass addition film 24 and the second mass addition film 25 is continuously provided in a region overlapping the plurality of electrode fingers and the region between the electrode fingers in plan view. Even when the protective film 46 is provided, the first mass addition film 24 and the second mass addition film 25 may be provided only in the edge region, and may be provided only in the gap region. good too.
 図13に示すように、本実施形態においては、電極指、第1の質量付加膜24及び保護膜46が積層されている部分においては、電極指、保護膜46及び第1の質量付加膜24の順序で積層されている。同様に、電極指、第2の質量付加膜25及び保護膜46が積層されている部分においては、電極指、保護膜46及び第2の質量付加膜25の順序で積層されている。 As shown in FIG. 13, in the present embodiment, in the portion where the electrode fingers, the first mass addition film 24 and the protection film 46 are laminated, the electrode fingers, the protection film 46 and the first mass addition film 24 are stacked in the order of Similarly, in the portion where the electrode fingers, the second mass addition film 25 and the protective film 46 are laminated, the electrode fingers, the protective film 46 and the second mass addition film 25 are laminated in this order.
 なお、積層の順序は上記に限定されない。例えば、電極指、第1の質量付加膜24及び保護膜46が積層されている部分において、電極指、第1の質量付加膜24及び保護膜46の順序で積層されていてもよい。あるいは、第1の質量付加膜24、電極指及び保護膜46の順序で積層されていてもよい。電極指、第2の質量付加膜25及び保護膜46が積層されている部分においても同様である。 The order of lamination is not limited to the above. For example, in the portion where the electrode fingers, the first mass addition film 24 and the protection film 46 are stacked, the electrode fingers, the first mass addition film 24 and the protection film 46 may be stacked in this order. Alternatively, the first mass addition film 24, the electrode fingers and the protective film 46 may be laminated in this order. The same applies to the portions where the electrode fingers, the second mass adding film 25 and the protective film 46 are laminated.
 図12に示すように、エッジ領域及びギャップ領域にわたり設けられた第1の質量付加膜24及び第2の質量付加膜25が、電極指対向方向に並んでいる。そのため、電極指対向方向において、質量付加膜の材料は一様ではない。それによって、第3の実施形態と同様に、不要波が生じる周波数を分散させることができ、不要波を抑制することができる。 As shown in FIG. 12, the first mass addition film 24 and the second mass addition film 25 provided over the edge region and the gap region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the third embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated, and suppress the unnecessary waves.
 本実施形態においては、第1の質量付加膜24及び第2の質量付加膜25は電極指と接触していない。この場合には、第1の質量付加膜24及び第2の質量付加膜25の材料として、金属を用いることができる。第1の質量付加膜24及び第2の質量付加膜25の材料として、互いに異なる種類の金属が用いられていればよい。 In this embodiment, the first mass addition film 24 and the second mass addition film 25 are not in contact with the electrode fingers. In this case, metal can be used as the material of the first mass addition film 24 and the second mass addition film 25 . As materials for the first mass addition film 24 and the second mass addition film 25, metals of different kinds may be used.
 ここで、第1の質量付加膜24及び第2の質量付加膜25は、保護膜46を挟み、複数の電極指と対向している。そのため、第1の質量付加膜24及び第2の質量付加膜25の材料に金属が用いられている場合には、弾性波装置の静電容量を大きくすることができる。よって、所望の静電容量を得るための、IDT電極11の面積を狭くすることができる。従って、弾性波装置を小型にすることができる。もっとも、第1の質量付加膜24または第2の質量付加膜25の材料として、誘電体が用いられてもよい。 Here, the first mass addition film 24 and the second mass addition film 25 sandwich the protective film 46 and face the plurality of electrode fingers. Therefore, when metal is used as the material of the first mass addition film 24 and the second mass addition film 25, the electrostatic capacitance of the elastic wave device can be increased. Therefore, it is possible to reduce the area of the IDT electrode 11 for obtaining a desired capacitance. Therefore, the acoustic wave device can be miniaturized. However, a dielectric may be used as the material of the first mass addition film 24 or the second mass addition film 25 .
 保護膜46及び第1の質量付加膜24の材料が同じである場合、保護膜46の厚みは、図12に示す中央領域Hにおける保護膜46の厚みとする。第1の質量付加膜24の厚みは、保護膜46及び第1の質量付加膜24の合計の厚みから、保護膜46の厚みを引いたものとする。保護膜46及び第2の質量付加膜25の材料が同じである場合も同様である。 When the materials of the protective film 46 and the first mass addition film 24 are the same, the thickness of the protective film 46 is the thickness of the protective film 46 in the central region H shown in FIG. The thickness of the first mass addition film 24 is obtained by subtracting the thickness of the protection film 46 from the total thickness of the protection film 46 and the first mass addition film 24 . The same is true when the protective film 46 and the second mass adding film 25 are made of the same material.
 なお、保護膜46が設けられた構成は、本実施形態以外の本発明の構成においても採用することができる。例えば、保護膜46上に、図11に示した複数の第1の質量付加膜34または複数の質量付加膜35が設けられていてもよい。 The configuration provided with the protective film 46 can also be employed in configurations of the present invention other than the present embodiment. For example, a plurality of first mass addition films 34 or a plurality of mass addition films 35 shown in FIG. 11 may be provided on the protective film 46 .
 図14は、第7の実施形態に係る弾性波装置の平面図である。図15は、図14中のI-I線に沿う断面図である。 FIG. 14 is a plan view of an elastic wave device according to the seventh embodiment. 15 is a cross-sectional view taken along line II in FIG. 14. FIG.
 図14及び図15に示すように、本実施形態は、複数の電極指及び圧電層14間に、第1の質量付加膜24及び第2の質量付加膜25が設けられている点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。 As shown in FIGS. 14 and 15, the present embodiment is characterized in that the first mass addition film 24 and the second mass addition film 25 are provided between the plurality of electrode fingers and the piezoelectric layer 14. 1 embodiment. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 より具体的には、図15に示すように、第1の質量付加膜24が、複数の第1の電極指28及び複数の第2の電極指29の第2の面11bと、圧電層14との間に設けられている。同様に、第2の質量付加膜25が、複数の第1の電極指28及び複数の第2の電極指29の第2の面11bと、圧電層14との間に設けられている。なお、図11に示した複数の第1の質量付加膜34または複数の第2の質量付加膜35が、複数の電極指の第2の面11b及び圧電層14の間に設けられていてもよい。 More specifically, as shown in FIG. 15, the first mass addition film 24 includes the second surfaces 11b of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29, and the piezoelectric layer 14. is provided between Similarly, a second mass addition film 25 is provided between the second surface 11 b of the plurality of first electrode fingers 28 and the plurality of second electrode fingers 29 and the piezoelectric layer 14 . Even if the plurality of first mass addition films 34 or the plurality of second mass addition films 35 shown in FIG. 11 are provided between the second surfaces 11b of the plurality of electrode fingers and the piezoelectric layer 14 good.
 図14に示すように、エッジ領域に設けられた第1の質量付加膜24及び第2の質量付加膜25が、電極指対向方向に並んでいる。そのため、電極指対向方向において、質量付加膜の材料は一様ではない。それによって、第1の実施形態と同様に、不要波が生じる周波数を分散させることができ、不要波を抑制することができる。 As shown in FIG. 14, the first mass addition film 24 and the second mass addition film 25 provided in the edge region are arranged in the electrode finger facing direction. Therefore, the material of the mass adding film is not uniform in the direction in which the electrode fingers are opposed. As a result, as in the first embodiment, it is possible to disperse the frequencies at which unnecessary waves are generated and suppress the unnecessary waves.
 以下において、厚み滑りモードの詳細を説明する。なお、後述するIDT電極における「電極」は、本発明における電極指に相当する。以下の例における支持部材は、本発明における支持基板に相当する。 The details of the thickness slip mode will be explained below. "Electrodes" in the IDT electrodes to be described later correspond to electrode fingers in the present invention. The supporting member in the following examples corresponds to the supporting substrate in the present invention.
 図16(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図16(b)は、圧電層上の電極構造を示す平面図であり、図17は、図16(a)中のA-A線に沿う部分の断面図である。 FIG. 16(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness shear mode bulk wave, and FIG. 16(b) is a plan view showing an electrode structure on a piezoelectric layer; FIG. 17 is a cross-sectional view of a portion taken along line AA in FIG. 16(a).
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、Zカットであるが、回転YカットやXカットであってもよい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、40nm以上、1000nm以下であることが好ましく、50nm以上、1000nm以下であることがより好ましい。圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図16(a)及び図16(b)では、複数の電極3が、第1のバスバー5に接続されている複数の第1の電極指である。複数の電極4は、第2のバスバー6に接続されている複数の第2の電極指である。複数の電極3及び複数の電極4は、互いに間挿し合っている。電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交叉する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交叉する方向において対向しているともいえる。また、電極3,4の長さ方向が図16(a)及び図16(b)に示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図16(a)及び図16(b)において、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図16(a)及び図16(b)において電極3,4が延びている方向に延びることとなる。そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、50nm以上、1000nm以下の範囲であることが好ましく、150nm以上、1000nm以下の範囲であることがより好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。 The acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 . The piezoelectric layer 2 may consist of LiTaO 3 . The cut angle of LiNbO 3 and LiTaO 3 is Z-cut, but may be rotational Y-cut or X-cut. Although the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 40 nm or more and 1000 nm or less, more preferably 50 nm or more and 1000 nm or less, in order to effectively excite the thickness-shear mode. The piezoelectric layer 2 has first and second major surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a. Here, the electrode 3 is an example of the "first electrode" and the electrode 4 is an example of the "second electrode". In FIGS. 16( a ) and 16 ( b ), the multiple electrodes 3 are multiple first electrode fingers connected to the first bus bar 5 . The multiple electrodes 4 are multiple second electrode fingers connected to the second bus bar 6 . The plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other. Electrodes 3 and 4 have a rectangular shape and a length direction. The electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction. Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction crossing the thickness direction of the piezoelectric layer 2 . Moreover, the length direction of the electrodes 3 and 4 may be interchanged with the direction perpendicular to the length direction of the electrodes 3 and 4 shown in FIGS. 16(a) and 16(b). That is, in FIGS. 16A and 16B, the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 16(a) and 16(b). A plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4. there is Here, when the electrodes 3 and 4 are adjacent to each other, it does not mean that the electrodes 3 and 4 are arranged so as to be in direct contact with each other, but that the electrodes 3 and 4 are arranged with a gap therebetween. point to When the electrodes 3 and 4 are adjacent to each other, no electrodes connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, are arranged between the electrodes 3 and 4. FIG. The logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like. The center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 μm or more and 10 μm or less. Moreover, the width of the electrodes 3 and 4, that is, the dimension of the electrodes 3 and 4 in the facing direction is preferably in the range of 50 nm or more and 1000 nm or less, more preferably in the range of 150 nm or more and 1000 nm or less. Note that the center-to-center distance between the electrodes 3 and 4 means the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the distance between the center of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the dimension (width dimension) of
 また、弾性波装置1では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°の範囲内)でもよい。 In addition, since the Z-cut piezoelectric layer is used in the elastic wave device 1 , the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 . This is not the case when a piezoelectric material with a different cut angle is used as the piezoelectric layer 2 . Here, "perpendicular" is not limited to being strictly perpendicular, but is substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90° ± 10°). within the range).
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図17に示すように、貫通孔7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。 A supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween. The insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 17, have through holes 7a and 8a. A cavity 9 is thereby formed. The cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。支持部材8を構成するSiは、抵抗率4kΩcm以上の高抵抗であることが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。 The insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used. The support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). It is desirable that the Si constituting the support member 8 has a high resistivity of 4 kΩcm or more. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material.
 支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。 Materials for the support member 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer. Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。 The plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys. In this embodiment, the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。 When driving, an AC voltage is applied between the multiple electrodes 3 and the multiple electrodes 4 . More specifically, an AC voltage is applied between the first busbar 5 and the second busbar 6 . As a result, it is possible to obtain resonance characteristics using bulk waves in the thickness-shear mode excited in the piezoelectric layer 2 . Further, in the acoustic wave device 1, d/p is 0.0, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. 5 or less. Therefore, the thickness-shear mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
 弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側の反射器における電極指の本数を少なくしても、伝搬ロスが少ないためである。また、上記電極指の本数を少なくできるのは、厚み滑りモードのバルク波を利用していることによる。弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図18(a)及び図18(b)を参照して説明する。 Since the elastic wave device 1 has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the propagation loss is small even if the number of electrode fingers in the reflectors on both sides is reduced. Moreover, the fact that the number of electrode fingers can be reduced is due to the fact that bulk waves in the thickness-shear mode are used. The difference between the Lamb wave used in the elastic wave device and the bulk wave in the thickness shear mode will be described with reference to FIGS. 18(a) and 18(b).
 図18(a)は、日本公開特許公報 特開2012-257019号公報に記載のような弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。ここでは、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図18(a)に示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。 FIG. 18(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device as described in Japanese Unexamined Patent Publication No. 2012-257019. Here, waves propagate through the piezoelectric film 201 as indicated by arrows. Here, in the piezoelectric film 201, the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. is. The X direction is the direction in which the electrode fingers of the IDT electrodes are arranged. As shown in FIG. 18(a), the Lamb wave propagates in the X direction as shown. Since it is a plate wave, although the piezoelectric film 201 as a whole vibrates, since the wave propagates in the X direction, reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when miniaturization is attempted, that is, when the logarithm of the electrode fingers is decreased.
 これに対して、図18(b)に示すように、弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器の電極指の本数を少なくしても、伝搬損失は生じ難い。さらに、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。 On the other hand, as shown in FIG. 18(b), in the elastic wave device 1, since the vibration displacement is in the thickness slip direction, the wave is generated on the first main surface 2a and the second main surface of the piezoelectric layer 2. 2b, ie, the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, propagation loss is unlikely to occur even if the number of electrode fingers of the reflector is reduced. Furthermore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
 なお、厚み滑りモードのバルク波の振幅方向は、図19に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図19では、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。 Note that the amplitude direction of the bulk wave in the thickness-shear mode is opposite between the first region 451 included in the excitation region C of the piezoelectric layer 2 and the second region 452 included in the excitation region C, as shown in FIG. Become. FIG. 19 schematically shows bulk waves when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 . The first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 . The second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要はない。すなわち、少なくとも1対の電極が設けられてさえおればよい。 As described above, in the acoustic wave device 1, at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged. The number of electrode pairs need not be plural. That is, it is sufficient that at least one pair of electrodes is provided.
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。 For example, the electrode 3 is an electrode connected to a hot potential, and the electrode 4 is an electrode connected to a ground potential. However, electrode 3 may also be connected to ground potential and electrode 4 to hot potential. In this embodiment, at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
 図20は、図17に示す弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。 FIG. 20 is a diagram showing resonance characteristics of the elastic wave device shown in FIG. The design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。
 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
Piezoelectric layer 2: LiNbO 3 with Euler angles (0°, 0°, 90°), thickness = 400 nm.
When viewed in the direction orthogonal to the length direction of the electrodes 3 and 4, the length of the region where the electrodes 3 and 4 overlap, that is, the length of the excitation region C = 40 μm, the number of pairs of electrodes 3 and 4 = 21 pairs, center distance between electrodes = 3 µm, width of electrodes 3 and 4 = 500 nm, d/p = 0.133.
Insulating layer 7: Silicon oxide film with a thickness of 1 μm.
Support member 8: Si.
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。 The length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。 In this embodiment, the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
 図20から明らかなように、反射器を有しないにも関わらず、比帯域が12.5%である良好な共振特性が得られている。 As is clear from FIG. 20, good resonance characteristics with a fractional bandwidth of 12.5% are obtained in spite of having no reflector.
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図21を参照して説明する。 By the way, when the thickness of the piezoelectric layer 2 is d, and the center-to-center distance between the electrodes 3 and 4 is p, in the present embodiment, d/p is more preferably 0.5 or less, as described above. is less than or equal to 0.24. This will be described with reference to FIG.
 図20に示した共振特性を得た弾性波装置と同様に、但しd/pを変化させ、複数の弾性波装置を得た。図21は、このd/pと、弾性波装置の共振子としての比帯域との関係を示す図である。 A plurality of elastic wave devices were obtained by changing d/p in the same manner as the elastic wave device that obtained the resonance characteristics shown in FIG. FIG. 21 is a diagram showing the relationship between this d/p and the fractional bandwidth of the acoustic wave device as a resonator.
 図21から明らかなように、d/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。 As is clear from FIG. 21, when d/p>0.5, even if d/p is adjusted, the specific bandwidth is less than 5%. On the other hand, when d/p≤0.5, the specific bandwidth can be increased to 5% or more by changing d/p within that range. can be configured. Further, when d/p is 0.24 or less, the specific bandwidth can be increased to 7% or more. In addition, by adjusting d/p within this range, a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, by setting d/p to 0.5 or less, it is possible to construct a resonator having a high coupling coefficient using the thickness-shear mode bulk wave.
 図22は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。弾性波装置80では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図22中のKが交叉幅となる。前述したように、本発明の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。 FIG. 22 is a plan view of an elastic wave device that utilizes thickness-shear mode bulk waves. In elastic wave device 80 , a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 . Note that K in FIG. 22 is the crossing width. As described above, in the elastic wave device of the present invention, the number of pairs of electrodes may be one. Even in this case, if d/p is 0.5 or less, bulk waves in the thickness-shear mode can be effectively excited.
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に視たときに重なっている領域である励振領域Cに対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図23及び図24を参照して説明する。図23は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と***振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。 In the elastic wave device 1, preferably, in the plurality of electrodes 3 and 4, the adjacent excitation region C is an overlapping region when viewed in the direction in which any of the adjacent electrodes 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the mating electrodes 3, 4 satisfy MR≤1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 23 and 24. FIG. FIG. 23 is a reference diagram showing an example of resonance characteristics of the acoustic wave device 1. As shown in FIG. A spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency. Note that d/p=0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°). Also, the metallization ratio MR was set to 0.35.
 メタライゼーション比MRを、図16(b)を参照して説明する。図16(b)の電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線で囲まれた部分が励振領域Cとなる。この励振領域Cとは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に見たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域Cの面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域Cの面積に対する比である。 The metallization ratio MR will be explained with reference to FIG. 16(b). In the electrode structure of FIG. 16(b), when focusing attention on the pair of electrodes 3 and 4, it is assumed that only the pair of electrodes 3 and 4 are provided. In this case, the excitation region C is the portion surrounded by the dashed-dotted line. The excitation region C is a region where the electrode 3 and the electrode 4 overlap each other when the electrodes 3 and 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, i.e., in a facing direction. 3 and an overlapping area between the electrodes 3 and 4 in the area between the electrodes 3 and 4 . The area of the electrodes 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。 When a plurality of pairs of electrodes are provided, MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
 図24は本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図24は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。 FIG. 24 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured according to this embodiment. be. The ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes. FIG. 24 shows the results obtained when a piezoelectric layer made of Z-cut LiNbO 3 is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
 図24中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図24から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図23に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。 In the area surrounded by ellipse J in FIG. 24, the spurious is as large as 1.0. As is clear from FIG. 24, when the fractional band exceeds 0.17, that is, when it exceeds 17%, even if a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, the passband appear within. That is, as in the resonance characteristics shown in FIG. 23, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
 図25は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図25の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図25中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。 FIG. 25 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth. In the elastic wave device described above, various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured. The hatched portion on the right side of the dashed line D in FIG. 25 is the area where the fractional bandwidth is 17% or less. The boundary between the hatched area and the non-hatched area is expressed by MR=3.5(d/2p)+0.075. That is, MR=1.75(d/p)+0.075. Therefore, preferably MR≤1.75(d/p)+0.075. In that case, it is easy to set the fractional bandwidth to 17% or less. More preferably, it is the area on the right side of MR=3.5(d/2p)+0.05 indicated by the dashed-dotted line D1 in FIG. That is, if MR≦1.75(d/p)+0.05, the fractional bandwidth can be reliably made 17% or less.
 図26は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図26のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。 FIG. 26 is a diagram showing a map of fractional bandwidth with respect to Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is infinitely close to 0. FIG. The hatched portion in FIG. 26 is a region where a fractional bandwidth of at least 5% or more is obtained, and when the range of the region is approximated, the following formulas (1), (2) and (3) ).
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
(0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) Equation (2)
(0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。圧電層2がタンタル酸リチウム層である場合も同様である。 Therefore, in the case of the Euler angle range of formula (1), formula (2), or formula (3), the fractional band can be sufficiently widened, which is preferable. The same applies when the piezoelectric layer 2 is a lithium tantalate layer.
 図27は、音響多層膜を有する弾性波装置の正面断面図である。 FIG. 27 is a front cross-sectional view of an elastic wave device having an acoustic multilayer film.
 弾性波装置81では、圧電層2の第2の主面2bに音響多層膜82が積層されている。音響多層膜82は、音響インピーダンスが相対的に低い低音響インピーダンス層82a,82c,82eと、音響インピーダンスが相対的に高い高音響インピーダンス層82b,82dとの積層構造を有する。音響多層膜82を用いた場合、弾性波装置1における空洞部9を用いずとも、厚み滑りモードのバルク波を圧電層2内に閉じ込めることができる。弾性波装置81においても、上記d/pを0.5以下とすることにより、厚み滑りモードのバルク波に基づく共振特性を得ることができる。なお、音響多層膜82においては、その低音響インピーダンス層82a,82c,82e及び高音響インピーダンス層82b,82dの積層数は特に限定されない。低音響インピーダンス層82a,82c,82eよりも、少なくとも1層の高音響インピーダンス層82b,82dが圧電層2から遠い側に配置されておりさえすればよい。 In the acoustic wave device 81 , an acoustic multilayer film 82 is laminated on the second main surface 2 b of the piezoelectric layer 2 . The acoustic multilayer film 82 has a laminated structure of low acoustic impedance layers 82a, 82c, 82e with relatively low acoustic impedance and high acoustic impedance layers 82b, 82d with relatively high acoustic impedance. When the acoustic multilayer film 82 is used, the thickness shear mode bulk wave can be confined in the piezoelectric layer 2 without using the cavity 9 in the elastic wave device 1 . Also in the elastic wave device 81, by setting d/p to 0.5 or less, it is possible to obtain resonance characteristics based on bulk waves in the thickness-shear mode. In the acoustic multilayer film 82, the number of lamination of the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d is not particularly limited. At least one of the high acoustic impedance layers 82b, 82d should be arranged farther from the piezoelectric layer 2 than the low acoustic impedance layers 82a, 82c, 82e.
 上記低音響インピーダンス層82a,82c,82e及び高音響インピーダンス層82b,82dは、上記音響インピーダンスの関係を満たす限り、適宜の材料で構成することができる。例えば、低音響インピーダンス層82a,82c,82eの材料としては、酸化ケイ素または酸窒化ケイ素などを挙げることができる。また、高音響インピーダンス層82b,82dの材料としては、アルミナ、窒化ケイ素または金属などを挙げることができる。 The low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d can be made of appropriate materials as long as the acoustic impedance relationship is satisfied. Examples of materials for the low acoustic impedance layers 82a, 82c, 82e include silicon oxide and silicon oxynitride. Materials for the high acoustic impedance layers 82b and 82d include alumina, silicon nitride, and metals.
 第1~第7の実施形態及び変形例の弾性波装置においては、例えば、支持基板及び圧電層の間に、音響反射膜としての、図27に示す音響多層膜82が設けられていてもよい。具体的には、支持部材の少なくとも一部及び圧電層の少なくとも一部が、音響多層膜82を挟み互いに対向するように、支持部材と圧電層とが配置されていてもよい。この場合、音響多層膜82において、低音響インピーダンス層と高音響インピーダンス層とが交互に積層されていればよい。音響多層膜82が、弾性波装置における音響反射部であってもよい。 In the elastic wave devices of the first to seventh embodiments and modifications, for example, an acoustic multilayer film 82 shown in FIG. 27 may be provided as an acoustic reflection film between the support substrate and the piezoelectric layer. . Specifically, the support member and the piezoelectric layer may be arranged such that at least a portion of the support member and at least a portion of the piezoelectric layer face each other with the acoustic multilayer film 82 interposed therebetween. In this case, low acoustic impedance layers and high acoustic impedance layers may be alternately laminated in the acoustic multilayer film 82 . The acoustic multilayer film 82 may be an acoustic reflector in the elastic wave device.
 厚み滑りモードのバルク波を利用する第1~第7の実施形態及び変形例の弾性波装置においては、上記のように、d/pが0.5以下であることが好ましく、0.24以下であることがより好ましい。それによって、より一層良好な共振特性を得ることができる。さらに、厚み滑りモードのバルク波を利用する第1~第7の実施形態及び変形例の弾性波装置における交叉領域においては、上記のように、MR≦1.75(d/p)+0.075を満たすことが好ましい。この場合には、スプリアスをより確実に抑制することができる。 In the elastic wave devices of the first to seventh embodiments and modified examples that utilize thickness-shear mode bulk waves, d/p is preferably 0.5 or less, and 0.24 or less, as described above. is more preferable. Thereby, even better resonance characteristics can be obtained. Furthermore, in the crossover regions of the elastic wave devices of the first to seventh embodiments and modifications using thickness shear mode bulk waves, MR≦1.75 (d/p)+0.075 is preferably satisfied. In this case, spurious can be suppressed more reliably.
 厚み滑りモードのバルク波を利用する第1~第7の実施形態及び変形例の弾性波装置における圧電層は、ニオブ酸リチウム層またはタンタル酸リチウム層であることが好ましい。そして、該圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、上記の式(1)、式(2)または式(3)の範囲にあることが好ましい。この場合、比帯域を十分に広くすることができる。 The piezoelectric layer in the elastic wave devices of the first to seventh embodiments and modified examples that utilize thickness shear mode bulk waves is preferably a lithium niobate layer or a lithium tantalate layer. The Euler angles (φ, θ, ψ) of lithium niobate or lithium tantalate constituting the piezoelectric layer are within the range of the above formula (1), formula (2), or formula (3). is preferred. In this case, the fractional bandwidth can be widened sufficiently.
1…弾性波装置
2…圧電層
2a,2b…第1,第2の主面
3,4…電極
5,6…第1,第2のバスバー
7…絶縁層
7a…貫通孔
8…支持部材
8a…貫通孔
9…空洞部
10…弾性波装置
10a…空洞部
11…IDT電極
11a,11b…第1,第2の面
11c…側面
12…圧電性基板
13…支持部材
14…圧電層
14a,14b…第1,第2の主面
15…絶縁層
16…支持基板
24,25…第1,第2の質量付加膜
26,27…第1,第2のバスバー
28,29…第1,第2の電極指
34,35…第1,第2の質量付加膜
46…保護膜
80,81…弾性波装置
82…音響多層膜
82a,82c,82e…低音響インピーダンス層
82b,82d…高音響インピーダンス層
201…圧電膜
201a,201b…第1,第2の主面
451,452…第1,第2領域
B…矢印
C…励振領域
E1,E2…第1,第2のエッジ領域
F…交叉領域
G1,G2…第1,第2のギャップ領域
H…中央領域
O1,O2…第1,第2の点
VP1…仮想平面
REFERENCE SIGNS LIST 1 elastic wave device 2 piezoelectric layers 2a, 2b first and second main surfaces 3, 4 electrodes 5, 6 first and second bus bars 7 insulating layer 7a through hole 8 supporting member 8a Through hole 9 Hollow portion 10 Acoustic wave device 10a Hollow portion 11 IDT electrodes 11a, 11b First and second surfaces 11c Side surface 12 Piezoelectric substrate 13 Supporting member 14 Piezoelectric layers 14a, 14b First and second main surfaces 15 Insulating layer 16 Support substrates 24 and 25 First and second mass adding films 26 and 27 First and second bus bars 28 and 29 First and second Electrode fingers 34, 35 First and second mass addition films 46 Protective films 80, 81 Elastic wave device 82 Acoustic multilayer films 82a, 82c, 82e Low acoustic impedance layers 82b, 82d High acoustic impedance layers 201... Piezoelectric films 201a, 201b... First and second main surfaces 451, 452... First and second areas B... Arrows C... Excitation areas E1, E2... First and second edge areas F... Crossing area G1 , G2... First and second gap regions H... Central regions O1, O2... First and second points VP1... Virtual plane

Claims (16)

  1.  支持基板を含む支持部材と、
     前記支持部材上に設けられており、ニオブ酸リチウム層またはタンタル酸リチウム層である圧電層と、
     前記圧電層上に設けられており、1対のバスバーと、複数の電極指と、を有するIDT電極と、
    を備え、
     前記支持部材及び前記圧電層の積層方向に沿って見た平面視において、前記IDT電極の少なくとも一部と重なる位置に音響反射部が形成されており、
     前記圧電層の厚みをd、隣り合う前記電極指同士の中心間距離をpとした場合、d/pが0.5以下であり、
     前記IDT電極の一方の前記バスバーに前記複数の電極指のうち一部の電極指が接続されており、他方の前記バスバーに前記複数の電極指のうち残りの電極指が接続されており、一方の前記バスバーに接続されている前記複数の電極指、及び他方の前記バスバーに接続されている前記複数の電極指が互いに間挿し合っており、
     隣り合う前記電極指同士が対向し合う方向を電極指対向方向とし、前記電極指対向方向から見たときに、前記隣り合う電極指同士が重なり合う領域が交叉領域であり、前記複数の電極指が延びる方向を電極指延伸方向としたときに、前記交叉領域が、中央領域と、前記中央領域を前記電極指延伸方向において挟むように配置された1対のエッジ領域と、を有し、前記交叉領域と前記1対のバスバーとの間に位置する領域が1対のギャップ領域であり、
     互いに材料が異なる、少なくとも1つの第1の質量付加膜及び少なくとも1つの第2の質量付加膜が、前記電極指対向方向に並ぶように、前記エッジ領域及び前記ギャップ領域のうち少なくとも一方に設けられている、弾性波装置。
    a support member including a support substrate;
    a piezoelectric layer provided on the support member and being a lithium niobate layer or a lithium tantalate layer;
    an IDT electrode provided on the piezoelectric layer and having a pair of bus bars and a plurality of electrode fingers;
    with
    an acoustic reflection portion is formed at a position that overlaps at least a part of the IDT electrode in a plan view viewed along the stacking direction of the support member and the piezoelectric layer,
    where d is the thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent electrode fingers, d/p is 0.5 or less,
    Some of the plurality of electrode fingers are connected to one bus bar of the IDT electrode, and the remaining electrode fingers of the plurality of electrode fingers are connected to the other bus bar, the plurality of electrode fingers connected to one of the bus bars and the plurality of electrode fingers connected to the other bus bar are inserted into each other,
    A direction in which the adjacent electrode fingers face each other is defined as an electrode finger facing direction, and a region where the adjacent electrode fingers overlap each other when viewed from the electrode finger facing direction is an intersecting region. The intersecting region has a central region and a pair of edge regions arranged to sandwich the central region in the electrode finger extending direction when the extending direction is the electrode finger extending direction. a region located between the region and the pair of busbars is a pair of gap regions;
    At least one first mass addition film and at least one second mass addition film made of different materials are provided in at least one of the edge region and the gap region so as to be aligned in the electrode finger facing direction. elastic wave device.
  2.  双方の前記エッジ領域のみにそれぞれ、前記少なくとも1つの第1の質量付加膜及び前記少なくとも1つの第2の質量付加膜が設けられている、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the at least one first mass addition film and the at least one second mass addition film are provided only in both of the edge regions.
  3.  双方の前記ギャップ領域のみにそれぞれ、前記少なくとも1つの第1の質量付加膜及び前記少なくとも1つの第2の質量付加膜が設けられている、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the at least one first mass addition film and the at least one second mass addition film are provided only in both of the gap regions.
  4.  一方の前記エッジ領域及び一方の前記ギャップ領域と、他方の前記エッジ領域及び他方の前記ギャップ領域とのそれぞれにわたり、前記少なくとも1つの第1の質量付加膜及び前記少なくとも1つの第2の質量付加膜が設けられている、請求項1に記載の弾性波装置。 the at least one first mass addition film and the at least one second mass addition film over one of the edge regions and one of the gap regions and the other of the edge regions and the other of the gap regions, respectively; The elastic wave device according to claim 1, wherein a is provided.
  5.  前記複数の電極指がそれぞれ、対向し合う第1の面及び第2の面を有し、前記第1の面及び前記第2の面のうち前記第2の面が前記圧電層側の面であり、前記少なくとも1つの第1の質量付加膜及び前記少なくとも1つの第2の質量付加膜が、前記複数の電極指の前記第1の面に設けられている、請求項1~4のいずれか1項に記載の弾性波装置。 Each of the plurality of electrode fingers has a first surface and a second surface facing each other, and the second surface of the first surface and the second surface is the surface on the piezoelectric layer side. 5. The method according to claim 1, wherein said at least one first mass addition film and said at least one second mass addition film are provided on said first surfaces of said plurality of electrode fingers. The elastic wave device according to item 1.
  6.  前記複数の電極指がそれぞれ、対向し合う第1の面及び第2の面を有し、前記第1の面及び前記第2の面のうち前記第2の面が前記圧電層側の面であり、前記少なくとも1つの第1の質量付加膜及び前記少なくとも1つの第2の質量付加膜が、前記複数の電極指の前記第2の面及び前記圧電層の間に設けられている、請求項1~4のいずれか1項に記載の弾性波装置。 Each of the plurality of electrode fingers has a first surface and a second surface facing each other, and the second surface of the first surface and the second surface is the surface on the piezoelectric layer side. wherein said at least one first mass addition film and said at least one second mass addition film are provided between said second surfaces of said plurality of electrode fingers and said piezoelectric layer; 5. The elastic wave device according to any one of 1 to 4.
  7.  前記圧電層上に、前記IDT電極を覆うように保護膜が設けられており、前記保護膜上に前記少なくとも1つの第1の質量付加膜及び前記少なくとも1つの第2の質量付加膜が設けられている、請求項1~4のいずれか1項に記載の弾性波装置。 A protective film is provided on the piezoelectric layer so as to cover the IDT electrodes, and the at least one first mass addition film and the at least one second mass addition film are provided on the protective film. The elastic wave device according to any one of claims 1 to 4, wherein
  8.  前記第1の質量付加膜が、平面視において、前記複数の電極指と重なる領域のみに設けられている、請求項1~7のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 7, wherein the first mass adding film is provided only in a region overlapping with the plurality of electrode fingers in plan view.
  9.  前記第1の質量付加膜が、平面視において、前記複数の電極指及び前記電極指間の領域と重なる領域に、連続的に設けられている、請求項1~7のいずれか1項に記載の弾性波装置。 8. The first mass application film according to any one of claims 1 to 7, wherein the first mass application film is continuously provided in a region overlapping with the plurality of electrode fingers and regions between the electrode fingers in plan view. elastic wave device.
  10.  前記第1の質量付加膜が金属からなる、請求項7または8に記載の弾性波装置。 The acoustic wave device according to claim 7 or 8, wherein the first mass addition film is made of metal.
  11.  前記第1の質量付加膜及び前記第2の質量付加膜のうち少なくとも一方に、酸化ケイ素、酸化タングステン、酸化ニオブ、酸化タンタル及び酸化ハフニウムからなる群から選択された少なくとも1種の誘電体が用いられている、請求項1~9のいずれか1項に記載の弾性波装置。 At least one of the first mass addition film and the second mass addition film uses at least one dielectric selected from the group consisting of silicon oxide, tungsten oxide, niobium oxide, tantalum oxide and hafnium oxide. The elastic wave device according to any one of claims 1 to 9, wherein
  12.  前記音響反射部が空洞部であり、前記支持部材の一部及び前記圧電層の一部が、前記空洞部を挟み互いに対向するように、前記支持部材と前記圧電層とが配置されている、請求項1~11のいずれか1項に記載の弾性波装置。 The acoustic reflection portion is a hollow portion, and the supporting member and the piezoelectric layer are arranged such that a portion of the supporting member and a portion of the piezoelectric layer face each other with the hollow portion interposed therebetween. The elastic wave device according to any one of claims 1 to 11.
  13.  前記音響反射部が、相対的に音響インピーダンスが高い高音響インピーダンス層と、相対的に音響インピーダンスが低い低音響インピーダンス層と、を含む、音響反射膜であり、前記支持部材の少なくとも一部及び前記圧電層の少なくとも一部が、前記音響反射膜を挟み互いに対向するように、前記支持部材と前記圧電層とが配置されている、請求項1~11のいずれか1項に記載の弾性波装置。 The acoustic reflection part is an acoustic reflection film including a high acoustic impedance layer with relatively high acoustic impedance and a low acoustic impedance layer with relatively low acoustic impedance, and at least a portion of the support member and the The elastic wave device according to any one of claims 1 to 11, wherein the support member and the piezoelectric layer are arranged such that at least a portion of the piezoelectric layer faces each other with the acoustic reflection film interposed therebetween. .
  14.  d/pが0.24以下である、請求項1~13のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 13, wherein d/p is 0.24 or less.
  15.  前記電極指対向方向から見たときに、前記隣り合う電極指同士が重なり合う領域であり、かつ前記隣り合う電極指同士の中心間の領域が励振領域であり、前記励振領域に対する、前記複数の電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、請求項1~14のいずれか1項に記載の弾性波装置。 When viewed from the electrode finger facing direction, a region where the adjacent electrode fingers overlap each other, and a region between the centers of the adjacent electrode fingers is an excitation region, and the plurality of electrodes with respect to the excitation region. The elastic wave device according to any one of claims 1 to 14, wherein MR≤1.75(d/p)+0.075, where MR is the metallization ratio of the finger.
  16.  前記圧電層としての前記ニオブ酸リチウム層または前記タンタル酸リチウム層のオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項1~15のいずれか1項に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
    Euler angles (φ, θ, ψ) of the lithium niobate layer or the lithium tantalate layer as the piezoelectric layer are within the range of the following formula (1), formula (2), or formula (3). Item 16. The elastic wave device according to any one of items 1 to 15.
    (0°±10°, 0° to 20°, arbitrary ψ) Equation (1)
    (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) Equation (2)
    (0°±10°, [180°-30°(1-(ψ-90) 2 /8100) 1/2 ]~180°, arbitrary ψ) Equation (3)
PCT/JP2022/034980 2021-09-21 2022-09-20 Elastic wave device WO2023048140A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063687.6A CN117981221A (en) 2021-09-21 2022-09-20 Elastic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163246450P 2021-09-21 2021-09-21
US63/246,450 2021-09-21

Publications (1)

Publication Number Publication Date
WO2023048140A1 true WO2023048140A1 (en) 2023-03-30

Family

ID=85719467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034980 WO2023048140A1 (en) 2021-09-21 2022-09-20 Elastic wave device

Country Status (2)

Country Link
CN (1) CN117981221A (en)
WO (1) WO2023048140A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131351A (en) * 2010-01-25 2014-07-10 Epcos Ag Electroacoustic transducer having performance enhanced by reducing lateral direction radiation loss and suppressing lateral direction mode
WO2015182522A1 (en) * 2014-05-26 2015-12-03 株式会社村田製作所 Elastic wave device
JP2017175276A (en) * 2016-03-22 2017-09-28 太陽誘電株式会社 Acoustic wave resonator, filter, multiplexer, and manufacturing method of acoustic wave resonator
US20180054179A1 (en) * 2016-08-19 2018-02-22 Qorvo Us, Inc. Guided acoustic wave device
US20200076404A1 (en) * 2017-05-22 2020-03-05 Murata Manufacturing Co., Ltd. Acoustic wave device
JP2020109957A (en) * 2018-12-28 2020-07-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Acoustic wave device with transverse mode suppression
WO2020171050A1 (en) * 2019-02-18 2020-08-27 株式会社村田製作所 Elastic wave device
WO2021039639A1 (en) * 2019-08-30 2021-03-04 株式会社村田製作所 Elastic wave device
JP2021100280A (en) * 2018-11-14 2021-07-01 京セラ株式会社 Elastic wave device, splitter, and communication device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131351A (en) * 2010-01-25 2014-07-10 Epcos Ag Electroacoustic transducer having performance enhanced by reducing lateral direction radiation loss and suppressing lateral direction mode
WO2015182522A1 (en) * 2014-05-26 2015-12-03 株式会社村田製作所 Elastic wave device
JP2017175276A (en) * 2016-03-22 2017-09-28 太陽誘電株式会社 Acoustic wave resonator, filter, multiplexer, and manufacturing method of acoustic wave resonator
US20180054179A1 (en) * 2016-08-19 2018-02-22 Qorvo Us, Inc. Guided acoustic wave device
US20200076404A1 (en) * 2017-05-22 2020-03-05 Murata Manufacturing Co., Ltd. Acoustic wave device
JP2021100280A (en) * 2018-11-14 2021-07-01 京セラ株式会社 Elastic wave device, splitter, and communication device
JP2020109957A (en) * 2018-12-28 2020-07-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Acoustic wave device with transverse mode suppression
WO2020171050A1 (en) * 2019-02-18 2020-08-27 株式会社村田製作所 Elastic wave device
WO2021039639A1 (en) * 2019-08-30 2021-03-04 株式会社村田製作所 Elastic wave device

Also Published As

Publication number Publication date
CN117981221A (en) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2023002858A1 (en) Elastic wave device and filter device
WO2022163865A1 (en) Elastic wave device
WO2021200835A1 (en) Elastic wave device
WO2021246447A1 (en) Elastic wave device
WO2022044869A1 (en) Elastic wave device
WO2022239630A1 (en) Piezoelectric bulk wave device
US20240154595A1 (en) Acoustic wave device
WO2023002790A1 (en) Elastic wave device
WO2022210809A1 (en) Elastic wave device
WO2022019170A1 (en) Elastic wave device
WO2023048140A1 (en) Elastic wave device
WO2023048144A1 (en) Elastic wave device
WO2022244635A1 (en) Piezoelectric bulk wave device
WO2023136291A1 (en) Elastic wave device
WO2023002824A1 (en) Elastic wave device
WO2023085347A1 (en) Elastic wave device
WO2023140354A1 (en) Elastic wave device and filter device
WO2023136293A1 (en) Elastic wave device
WO2023136292A1 (en) Elastic wave device
WO2023136294A1 (en) Elastic wave device
WO2023085408A1 (en) Elastic wave device
WO2024043346A1 (en) Acoustic wave device
WO2024043347A1 (en) Elastic wave device and filter device
WO2022210942A1 (en) Elastic wave device
WO2024043345A1 (en) Elastic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280063687.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE