WO2023047999A1 - Board mounting mechanism, inspection apparatus, and inspection method - Google Patents

Board mounting mechanism, inspection apparatus, and inspection method Download PDF

Info

Publication number
WO2023047999A1
WO2023047999A1 PCT/JP2022/034025 JP2022034025W WO2023047999A1 WO 2023047999 A1 WO2023047999 A1 WO 2023047999A1 JP 2022034025 W JP2022034025 W JP 2022034025W WO 2023047999 A1 WO2023047999 A1 WO 2023047999A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating
electronic device
temperature controller
substrate
Prior art date
Application number
PCT/JP2022/034025
Other languages
French (fr)
Japanese (ja)
Inventor
繁 河西
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020247011980A priority Critical patent/KR20240053003A/en
Priority to CN202280062354.1A priority patent/CN117941047A/en
Publication of WO2023047999A1 publication Critical patent/WO2023047999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present disclosure relates to a substrate mounting mechanism, an inspection apparatus, and an inspection method.
  • Patent Document 1 discloses an inspection apparatus in which a mounting table on which a substrate to be inspected is mounted is divided into a plurality of regions in the radial direction of the substrate mounting surface, and a heater is provided in each of the plurality of regions. is disclosed. Then, the inspection apparatus of Patent Document 1 performs feedback control so that the centralmost region of the plurality of regions on the substrate mounting surface is at the set temperature, and It has a control unit that performs feedback control so that the temperature difference between a region outside the centermost region of and a region adjacent in the radial direction becomes a preset value.
  • Patent Document 2 discloses a technique of using a plurality of LEDs as heating means to perform temperature control in a plurality of zones in a similar inspection device.
  • the present disclosure provides a substrate mounting mechanism, an inspection apparatus, and an inspection method that can easily control the temperature of electronic devices in a short time when inspecting a plurality of electronic devices formed on a substrate.
  • a mounting mechanism is a substrate mounting mechanism that mounts a substrate in an inspection apparatus that sequentially inspects a plurality of electronic devices provided on a substrate, and includes a substrate provided with a plurality of electronic devices. and a temperature control section for controlling the temperature of the electronic device on the substrate on the stage, wherein the stage includes a top plate having a mounting surface for the substrate, and the top plate a heating section for heating and a plurality of temperature sensors provided on the top plate, wherein the heating section is divided into a plurality of heating zones; and the temperature control section corresponds to an electronic device under test.
  • a first temperature controller for controlling the output of one or more of the heating zones based on the values detected by corresponding ones of the plurality of temperature sensors to control the temperature of the electronic device under inspection; controlling the output of one or more of the heating zones corresponding to the electronic devices to be tested next or after the electronic device of the above based on the detection value of the corresponding one of the plurality of temperature sensors, and and a second temperature controller for controlling the temperature of an electronic device tested next to or after the electronic device.
  • a substrate mounting mechanism, an inspection apparatus, and an inspection method that can easily control the temperature of electronic devices in a short time when inspecting a plurality of electronic devices formed on a substrate.
  • FIG. 1 It is a perspective view showing a schematic structure of an inspection device concerning one embodiment. It is a front view which shows a part of inspection apparatus of FIG. 1 in a cross section. 2 is a plan view schematically showing the configuration of a wafer, which is a substrate to be inspected; FIG. It is a sectional view showing an example of a substrate placement mechanism used for an inspection device concerning one embodiment. It is a figure which shows the structure of the resistance heater used as a heating source. 4 is a circuit diagram showing an example of a specific circuit configuration of a heating section divided into a plurality of heating zones, a first temperature controller and a second temperature controller of a main control section, and a heating selection section; FIG. FIG.
  • FIG. 4 is a diagram showing an example of the relationship between a plurality of temperature sensors provided on the stage and a plurality of heating zones;
  • FIG. 4 is a schematic diagram illustrating an example of serially inspecting a plurality of electronic devices;
  • FIG. 4 is a schematic diagram illustrating an example of testing a plurality of electronic devices at random;
  • FIG. 1 is a perspective view showing a schematic configuration of an inspection apparatus according to one embodiment
  • FIG. 2 is a front view showing a cross section of a part of the inspection apparatus of FIG.
  • an inspection apparatus 1 inspects the electrical characteristics of each of a plurality of electronic devices formed on a wafer W as a substrate. and a tester 4 .
  • the inspection unit 2 has a housing 11 whose interior is hollow, and has a stage 20 in the housing 11 on which a wafer W to be inspected is placed.
  • the stage 20 has a mounting surface on which the wafer W is mounted. and a plurality of temperature sensors 26 provided on the top plate 21 .
  • the stage 20 is configured to be movable horizontally and vertically by a moving mechanism 16 .
  • the heating section 24 and the cooling section 25 are controlled by the temperature control section 23 , and the stage 20 and the temperature control section 23 constitute the substrate mounting mechanism 10 . Details of the substrate mounting mechanism 10 will be described later.
  • a probe card 12 is arranged above the stage 20 in the inspection section 2 so as to face the stage 20 .
  • the probe card 12 has a plurality of probes 12a as contacts.
  • the probe card 12 is connected to the tester 4 via an interface 13 .
  • each probe 12a contacts the electrode of each electronic device on the wafer W
  • each probe 12a supplies power to the electronic device from the tester 4 via the interface 13, or receives a signal from the electronic device via the interface 13. and transmit it to the tester 4. Therefore, the interface 13 and the probe 12a function as supply members that supply power to the electronic device.
  • the loader 3 has a housing 14 in which a FOUP (not shown), which is a transfer container containing wafers W, is arranged.
  • the loader 3 also has a transfer device (not shown), which takes out the wafer W accommodated in the FOUP and transfers it to the stage 20 of the inspection section 2 .
  • the wafer W on the stage 20 whose electrical characteristics have been inspected is transferred by the transfer device and accommodated in the FOUP.
  • control unit 15 that performs various types of control such as temperature control of the electronic device to be inspected is provided in the housing 14 of the loader 3 .
  • the control unit 15 is composed of a computer and has a main control unit that controls each component of the inspection device 1.
  • the main control unit controls the operation of each component of the inspection device.
  • the control unit 15 has an input device, an output device, a display device, and a storage device. Control of each component by the main controller is executed by a processing recipe, which is a control program stored in a storage medium (hard disk, optical disk, semiconductor memory, etc.) built into the storage device.
  • the control unit 15 controls the temperature control unit 23 .
  • the arrangement position of the control unit 15 is not limited to the inside of the housing 14 and may be provided inside the housing 11 of the inspection unit 2, for example.
  • a user interface section 18 that constitutes a part of the control section 15 is provided on the housing 11 of the inspection section 2 .
  • the user interface unit 18 is for displaying information for the user and allowing the user to input instructions, and includes, for example, an input unit such as a touch panel or keyboard and a display unit such as a liquid crystal display.
  • the tester 4 has a test board (not shown) that reproduces part of the circuit configuration of the motherboard on which the electronic device is mounted.
  • the test board is connected to a tester computer 17 which determines whether the electronic device under test is good or bad based on signals from the electronic device.
  • the tester 4 can reproduce circuit configurations of multiple types of motherboards by replacing the test board.
  • the probe card 12, interface 13, and tester 4 constitute an inspection mechanism.
  • the tester computer 17 When inspecting the electrical characteristics of the electronic device, the tester computer 17 transmits data to the test board connected to the electronic device via each probe 12a. Then, the tester computer 17 determines whether or not the transmitted data is correctly processed by the test board based on the electrical signal from the test board.
  • the wafer W which is a substrate to be inspected, has a plurality of wafers formed on the surface thereof at predetermined intervals by performing etching processing and wiring processing on a substantially disk-shaped silicon substrate.
  • FIG. 4 is a cross-sectional view showing an example of the substrate mounting mechanism 10. As shown in FIG. The substrate mounting mechanism 10 has the stage 20 and the temperature controller 23 as described above.
  • the stage 20 has the top plate 21, the heating section 24, the cooling section 25, and a plurality of temperature sensors 26, as described above.
  • the heating section 24 is provided under the top plate 21 and the cooling section 25 is provided below the heating section 24, but the heating section 24 and the cooling section 25 may be reversed.
  • the top plate 21 has a disc shape corresponding to the wafer W, for example, and is made of a material with high thermal conductivity such as Cu, Al, SiC, AlN, or carbon fiber. By forming the top plate 21 from a material with high thermal conductivity, temperature control accuracy and efficiency can be enhanced.
  • the heating part 24 is a plate-like body in which a heating source 31 is built, and the heating source 31 heats the top plate 21 .
  • the heating unit 24 is divided into a plurality (three or more) of heating zones 32, the heating source 31 is also divided corresponding to each heating zone 32, and the plurality of heating zones 32 is configured to be capable of being heated independently. ing.
  • a plurality of heating zones 32 are provided corresponding to each of the plurality of temperature sensors 26 .
  • a resistance heater formed in a specific pattern can be used as the heating source 31, for example, as shown in FIG. 5, a resistance heater formed in a specific pattern can be used. Resistive heaters can be made by screen-printing a copper foil onto a polymer and etching it into a specific shape.
  • the cooling part 25 is a plate-like body in which a cooling medium flow path 35 is formed. .
  • a plurality of temperature sensors 26 are provided inside the top plate 21 and are fitted into holes formed in the top plate 21 .
  • an RTD (resistance temperature detector) sensor can be used.
  • other sensors such as a PN junction using a thermocouple, a diode, a transistor, or the like may be used.
  • a plurality of temperature sensors 26 may be collectively arranged at the measurement position while being attached to the positioning unit.
  • the positioning unit can be composed of a flexible substrate.
  • the temperature control section 23 controls the temperature of the electronic device D on the wafer W placed on the top plate 21 and has a main control section 41 , a sensor selection section 42 and a heating selection section 43 .
  • the main control unit 41 Based on a command from the control unit 15, the main control unit 41 supplies a sensor selection signal to the sensor selection unit 42, and a signal for selecting the heating zone 32 corresponding to the selected temperature sensor 26 to the heating selection unit 43. give.
  • the main control unit 41 also has a first temperature controller 45a and a second temperature controller 45b, which output a temperature signal from the power supply 50 to the heating zone 32 of the heating unit 24 based on the signal from the temperature sensor 26. controls the voltage applied.
  • the first temperature controller 45a and the second temperature controller 45b are not particularly limited, PID controllers can be preferably used.
  • the main control unit 41 is configured to control the amount of cooling medium supplied to the cooling unit 25, the temperature, and the like.
  • the sensor selection unit 42 selects the temperature sensor 26 closest to the electronic device D (first electronic device) under test and the electronic device D (first electronic device) to be tested next or thereafter. The one closest to the second electronic device) is selected, and detection signals are sent from these two selected temperature sensors 26 to the first temperature controller 45a and the second temperature controller 45b, respectively.
  • the heating selection unit 43 selects the heating zone 32 to which the control voltage output from the first temperature controller 45a and the second temperature controller 45b is applied. This selection is made based on the selection signal from the main control section 41 as described above.
  • a controlled voltage is applied from the first temperature controller 45a to the heating source 31 of the one or more heating zones 32 selected by the heating selection unit 43, and the temperature of the first electronic device under test reaches a desired temperature. controlled.
  • the voltage controlled by the second temperature controller 45b is applied to the heating source 31 of the one or more heating zones 32 selected by the heating selection unit 43, and the second electron The temperature of the device is controlled to the desired temperature.
  • the target electronic device D When the target electronic device D is positioned at the boundary between two heating zones 32, it is preferable to apply a voltage to the heating sources 31 of the plurality of heating zones 32. At this time, the position of the electronic device D is It is preferable to distribute the power (voltage) of the plurality of heating zones 32 accordingly. Further, when the electronic device D to be measured next or thereafter corresponds to the same heating zone, the second temperature controller 45b further controls the temperature of the heating zone 32 corresponding to the next electronic device D. good too.
  • FIG. 6 shows an example of a specific circuit configuration of the heating section 24 divided into a plurality of heating zones, the first temperature controller 45a and the second temperature controller 45b of the main control section 41, and the heating selection section 43. It is a circuit diagram showing.
  • the heating section 24 has a plurality of heating zones 32 1 to 32 2 , 32 3 , . . .
  • the heating selector 43 includes a plurality of first solid state relays (SD) 46 11 to 46 1f connected to the plurality of heating zones 32 1 to 32 f , respectively, and similarly to the plurality of heating zones 32 1 to 32 f, respectively. It has a plurality of connected second solid state relays (SD) 46 21 to 46 2f .
  • SD solid state relays
  • the first temperature controller 45a is connected to first solid state relays (SD) 46 11 to 46 1f
  • the second temperature controller 45b is connected to second solid state relays (SD) 46 21 to 46 2f . It is By turning on one or more of the first solid state relays (SD) 46 11 to 46 1f , the control voltage from the first temperature controller 45a is applied to the heating zones 32 1 to 32 f . is selected. Also, by turning on one or more of the second solid state relays (SD) 46 21 to 46 2f , the control voltage from the second temperature controller 45b is applied to the heating zones 32 1 to 32 f . is selected.
  • the heating selection unit 43 is composed of a plurality of solid state relays in this way, by arranging the heating selection unit 43 directly below the heating unit 24, the wiring from the solid state relay to the heating source 31 of the heating zone 32 is reduced. can be minimized.
  • a solid state relay is an example of a switching element, and the switching element is not limited to a solid state relay, and may be a switching transistor or the like.
  • FIG. 7 is a diagram showing an example of the relationship between a plurality of temperature sensors provided on the stage and a plurality of heating zones.
  • the heating section 24 has 16 heating zones 32 1 to 32 16 .
  • the heating zones 32 1 to 32 12 are on the outer peripheral side and the heating zones 32 13 to 32 16 are on the central side.
  • the top plate 21 is provided with 16 temperature sensors 26 1 to 26 16 corresponding to these heating zones 32 1 to 32 16 .
  • the control is as follows. That is, the heating zone 32-13 corresponding to the electronic device D1 is temperature-controlled by the first temperature controller 45a based on the detection value of the temperature sensor 26-13 , and the detection value of the heating zone 32-4 corresponding to the electronic device D2 . Based on this, it is controlled by the second temperature controller 45b.
  • the wafer W is taken out from the FOUP of the loader 3 by the transfer device, transferred to the stage 20, and placed thereon.
  • the stage 20 is moved to a predetermined position.
  • the probe 12a provided above the stage 20 is brought into contact with the electrode E of the electronic device D to be inspected on the wafer W, thereby starting the inspection.
  • the temperature of the electronic device D under inspection is controlled in order to guarantee the operation of the electronic device D in the operating environment.
  • inspection is continuously performed with respect to several electronic devices D.
  • the temperature control at this time is performed by controlling the heating by the heating unit 24 after adjusting the flow rate of the cooling medium flowing through the cooling unit 25 to adjust the base temperature of the stage 20 .
  • the temperature control of the electronic device D under inspection by the heating unit 24 is performed using the signal of the temperature sensor 26 closest to the electronic device D under inspection among the plurality of temperature sensors 26 arranged.
  • a controlled voltage is applied from the first temperature controller 45a to the heating source 31 of one or more heating zones 32 corresponding to the electronic device D under test, thereby controlling the temperature of the electronic device under test. .
  • a plurality of temperature sensors 26 are arranged, and the temperature is controlled using the signal of the temperature sensor 26 closest to the electronic device to be tested.
  • High-precision temperature control can be performed by controlling the temperature of subsequent electronic devices using the signal from the temperature sensor 26, which is the closest. In this case, even if the temperature control of the heating section 24 is performed in one zone, highly accurate temperature control can be achieved.
  • the heat generation affects the temperature control and reduces the voltage applied to the heater. Recovery latency can reduce throughput.
  • the heating unit 24 is divided into a plurality of heating zones 32, and the output of one or a plurality of heating zones 32 corresponding to the electronic device D under test is controlled by the first temperature controller 45a.
  • a second temperature controller 45b controls the output of one or more heating zones 32 corresponding to the next or subsequent electronic devices D to be tested. More specifically, the first temperature controller 45a controls the heating source 31 of the corresponding one or more heating zones 32 based on the detection value of the (closest) temperature sensor 26 corresponding to the electronic device D under test. to control the temperature of the electronic device D under test.
  • the second temperature controller 45b controls the heating source 31 of the corresponding one or more heating zones 32 based on the detected value of the (closest) temperature sensor corresponding to the electronic device D to be tested next or later. Control the power output and control the temperature of the next or subsequent electronic device D to be tested.
  • the heating zone 32-13 corresponding to the electronic device D1 under inspection is temperature-controlled by the first temperature controller 45a based on the detection value of the temperature sensor 26-13 . It is controlled by the second temperature controller 45b based on the detected value of the heating zone 324 corresponding to the electronic device D2 . Further, when the electronic device D to be measured next or thereafter corresponds to the same heating zone, the same effect can be obtained by further controlling the temperature of the heating zone 32 corresponding to the next electronic device D. can. As a result, temperature control can be performed in a short period of time even if the next or subsequent electronic device to be tested is separated from the electronic device being tested.
  • Patent Documents 1 and 2 dividing the heating unit into a plurality of heating zones is also described in Patent Documents 1 and 2.
  • the temperatures of a plurality of heating zones are controlled by temperature controllers corresponding to each, which complicates the control system and increases the cost.
  • the first temperature controller 45a controls the temperature of the electronic device D under test
  • the second temperature controller 45a controls the temperature of the second electronic device to be tested next or later.
  • 45b are used to select the heating zone 32 controlled by them in the heating selection section 43.
  • Patent Document 2 uses a plurality of units having a plurality of LEDs as a heating unit, and by controlling the temperature of these units, thermal resistance and heat capacity are minimized to achieve high-speed and high-precision temperature control. and is suitable for testing expensive high power density electronic devices.
  • a resistance heater as the heating source 31 of the heating unit 24 is shown.
  • temperature control for random testing can be performed quickly, easily and at low cost.
  • the first temperature controller controls one or more heating zones corresponding to the electronic device under test and the one or more heating zones corresponding to the next or subsequent electronic devices to be tested.
  • a second temperature controller controlling the temperature of the zone.
  • a third temperature controller may be provided to control the temperature of one or more heating zones corresponding to electronic devices to be subsequently tested.
  • a PID controller can also be suitably used as the third temperature controller.
  • a plurality of third temperature controllers may be provided. However, the total number of first temperature controllers, second temperature controllers, and third temperature controllers must be less than the number of heating zones.
  • the present invention is not limited to this, and another heating source such as an LED may be used.
  • the substrate is not limited to a wafer, and may be any substrate on which a plurality of electronic devices are formed.

Abstract

According to the present invention, a board mounting mechanism comprises a stage on which a board is mounted and a temperature control unit that controls the temperature of electronic devices on the board on the stage. The stage has a top plate, a heating unit that is divided into a plurality of heating zones, and a plurality of temperature sensors. The temperature control unit has a first temperature controller that controls the output of one or more heating zones that correspond to electronic devices under inspection on the basis of detection values from the corresponding temperature sensors and thereby controls the temperature of the electronic devices under inspection and a second temperature controller that controls the output of one or more heating zones that correspond to electronic devices to be inspected immediately or some time after the electronic devices under inspection on the basis of detection values from the corresponding temperature sensors and thereby controls the temperature of the relevant electronic devices.

Description

基板載置機構、検査装置、および検査方法SUBSTRATE PLACEMENT MECHANISM, INSPECTION APPARATUS, AND INSPECTION METHOD
 本開示は、基板載置機構、検査装置、および検査方法に関する。 The present disclosure relates to a substrate mounting mechanism, an inspection apparatus, and an inspection method.
 半導体製造プロセスでは、電子デバイスが形成された基板を載置台に載置した状態で、電子デバイスの電気的特性等の検査を行う検査装置が用いられる。特許文献1には、被検査対象の基板が載置される載置台を、基板載置面が径方向に複数の領域に区画され、複数の領域それぞれにヒータが設けられた構成とした検査装置が開示されている。そして、特許文献1の検査装置は、基板載置面における複数の領域のうちの最中心の領域について、設定温度になるようにフィードバック制御を行い、かつ、基板載置面における複数の領域のうちの最中心の領域より外側の領域について、径方向内側に隣接する領域との温度差が予め設定された値になるようにフィードバック制御を行う制御部を有している。 In the semiconductor manufacturing process, an inspection apparatus is used that inspects the electrical characteristics of the electronic device while the substrate on which the electronic device is formed is mounted on a mounting table. Patent Document 1 discloses an inspection apparatus in which a mounting table on which a substrate to be inspected is mounted is divided into a plurality of regions in the radial direction of the substrate mounting surface, and a heater is provided in each of the plurality of regions. is disclosed. Then, the inspection apparatus of Patent Document 1 performs feedback control so that the centralmost region of the plurality of regions on the substrate mounting surface is at the set temperature, and It has a control unit that performs feedback control so that the temperature difference between a region outside the centermost region of and a region adjacent in the radial direction becomes a preset value.
 また、特許文献2には、同様の検査装置において、加熱手段に複数のLEDを用い、複数ゾーンの温度制御を行う技術が開示されている。 In addition, Patent Document 2 discloses a technique of using a plurality of LEDs as heating means to perform temperature control in a plurality of zones in a similar inspection device.
特開2020-191332号公報JP 2020-191332 A 特開2019-153717号公報JP 2019-153717 A
 本開示は、基板に形成された複数の電子デバイスを検査する際の電子デバイスの温度制御を短時間でかつ簡易に行うことができる基板載置機構、検査装置、および検査方法を提供する。 The present disclosure provides a substrate mounting mechanism, an inspection apparatus, and an inspection method that can easily control the temperature of electronic devices in a short time when inspecting a plurality of electronic devices formed on a substrate.
 本開示の一態様に係る載置機構は、基板に設けられた複数の電子デバイスを順次検査する検査装置において基板を載置する基板載置機構であって、複数の電子デバイスが設けられた基板を載置するステージと、前記ステージ上の前記基板における前記電子デバイスの温度を制御する温度制御部と、を備え、前記ステージは、前記基板の載置面を有するトッププレートと、前記トッププレートを加熱する加熱部と、前記トッププレートに設けられた複数の温度センサと、を有し、前記加熱部は、複数の加熱ゾーンに分割され、前記温度制御部は、検査中の電子デバイスに対応する1または複数の前記加熱ゾーンの出力を、前記複数の温度センサのうち対応するものの検出値に基づいて制御し、前記検査中の電子デバイスの温度を制御する第1温度制御器と、前記検査中の電子デバイスの次またはそれ以降に検査される電子デバイスに対応する1または複数の前記加熱ゾーンの出力を、前記複数の温度センサのうち対応するものの検出値に基づいて制御し、前記検査中の電子デバイスの次またはそれ以降に検査される電子デバイスの温度を制御する第2温度制御器と、を有する。 A mounting mechanism according to an aspect of the present disclosure is a substrate mounting mechanism that mounts a substrate in an inspection apparatus that sequentially inspects a plurality of electronic devices provided on a substrate, and includes a substrate provided with a plurality of electronic devices. and a temperature control section for controlling the temperature of the electronic device on the substrate on the stage, wherein the stage includes a top plate having a mounting surface for the substrate, and the top plate a heating section for heating and a plurality of temperature sensors provided on the top plate, wherein the heating section is divided into a plurality of heating zones; and the temperature control section corresponds to an electronic device under test. a first temperature controller for controlling the output of one or more of the heating zones based on the values detected by corresponding ones of the plurality of temperature sensors to control the temperature of the electronic device under inspection; controlling the output of one or more of the heating zones corresponding to the electronic devices to be tested next or after the electronic device of the above based on the detection value of the corresponding one of the plurality of temperature sensors, and and a second temperature controller for controlling the temperature of an electronic device tested next to or after the electronic device.
 本開示によれば、基板に形成された複数の電子デバイスを検査する際の電子デバイスの温度制御を短時間でかつ簡易に行うことができる基板載置機構、検査装置、および検査方法が提供される。 Advantageous Effects of Invention According to the present disclosure, there is provided a substrate mounting mechanism, an inspection apparatus, and an inspection method that can easily control the temperature of electronic devices in a short time when inspecting a plurality of electronic devices formed on a substrate. be.
一実施形態に係る検査装置の概略構成を示す斜視図である。It is a perspective view showing a schematic structure of an inspection device concerning one embodiment. 図1の検査装置の一部を断面で示す正面図である。It is a front view which shows a part of inspection apparatus of FIG. 1 in a cross section. 検査対象基板であるウエハの構成を概略的に示す平面図である。2 is a plan view schematically showing the configuration of a wafer, which is a substrate to be inspected; FIG. 一実施形態に係る検査装置に用いられる基板載置機構の一例を示す断面図である。It is a sectional view showing an example of a substrate placement mechanism used for an inspection device concerning one embodiment. 加熱源として用いる抵抗ヒータの構造を示す図である。It is a figure which shows the structure of the resistance heater used as a heating source. 複数の加熱ゾーンに分割された加熱部と、主制御部の第1温度制御器および第2温度制御器と、加熱選択部の具体的な回路構成の一例を示す回路図である。4 is a circuit diagram showing an example of a specific circuit configuration of a heating section divided into a plurality of heating zones, a first temperature controller and a second temperature controller of a main control section, and a heating selection section; FIG. ステージに設けられた複数の温度センサと、複数の加熱ゾーンとの関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between a plurality of temperature sensors provided on the stage and a plurality of heating zones; 複数の電子デバイスの検査をシリアルに行う場合の一例を説明する模式図である。FIG. 4 is a schematic diagram illustrating an example of serially inspecting a plurality of electronic devices; 複数の電子デバイスの検査をランダムに行う場合の一例を説明する模式図である。FIG. 4 is a schematic diagram illustrating an example of testing a plurality of electronic devices at random;
 以下、添付図面を参照して、実施形態について説明する。 Embodiments will be described below with reference to the accompanying drawings.
 <検査装置>
 最初に、一実施形態に係る検査装置について説明する。
 図1は一実施形態に係る検査装置の概略構成を示す斜視図、図2は図1の検査装置の一部を断面で示す正面図である。
<Inspection device>
First, an inspection apparatus according to one embodiment will be described.
FIG. 1 is a perspective view showing a schematic configuration of an inspection apparatus according to one embodiment, and FIG. 2 is a front view showing a cross section of a part of the inspection apparatus of FIG.
 図1および図2に示すように、検査装置1は、基板としてのウエハWに形成された複数の電子デバイスそれぞれの電気的特性の検査を行うものであり、検査部2と、ローダ3と、テスタ4とを備える。 As shown in FIGS. 1 and 2, an inspection apparatus 1 inspects the electrical characteristics of each of a plurality of electronic devices formed on a wafer W as a substrate. and a tester 4 .
 検査部2は、内部が空洞の筐体11を有し、筐体11内には検査対象のウエハWを載置するステージ20を有する。ステージ20は、ウエハWを載置する載置面を有し、ウエハWを吸着固定するトッププレート21と、トッププレート21の加熱を行う加熱部24と、トッププレート21の冷却を行う冷却部25と、トッププレート21に設けられた複数の温度センサ26とを有する。ステージ20は、移動機構16により水平方向および鉛直方向に移動自在に構成されている。加熱部24および冷却部25は温度制御部23により制御され、ステージ20と、温度制御部23とで基板載置機構10が構成される。基板載置機構10の詳細は後述する。 The inspection unit 2 has a housing 11 whose interior is hollow, and has a stage 20 in the housing 11 on which a wafer W to be inspected is placed. The stage 20 has a mounting surface on which the wafer W is mounted. and a plurality of temperature sensors 26 provided on the top plate 21 . The stage 20 is configured to be movable horizontally and vertically by a moving mechanism 16 . The heating section 24 and the cooling section 25 are controlled by the temperature control section 23 , and the stage 20 and the temperature control section 23 constitute the substrate mounting mechanism 10 . Details of the substrate mounting mechanism 10 will be described later.
 検査部2におけるステージ20の上方には、該ステージ20に対向するようにプローブカード12が配置される。プローブカード12は接触子である複数のプローブ12aを有する。また、プローブカード12は、インターフェース13を介してテスタ4へ接続されている。各プローブ12aがウエハWの各電子デバイスの電極に接触する際、各プローブ12aは、テスタ4からインターフェース13を介して電子デバイスへ電力を供給し、または、電子デバイスからの信号をインターフェース13を介してテスタ4へ伝達する。したがって、インターフェース13およびプローブ12aは、電子デバイスに電力(パワー)を供給する供給部材として機能する。 A probe card 12 is arranged above the stage 20 in the inspection section 2 so as to face the stage 20 . The probe card 12 has a plurality of probes 12a as contacts. Also, the probe card 12 is connected to the tester 4 via an interface 13 . When each probe 12a contacts the electrode of each electronic device on the wafer W, each probe 12a supplies power to the electronic device from the tester 4 via the interface 13, or receives a signal from the electronic device via the interface 13. and transmit it to the tester 4. Therefore, the interface 13 and the probe 12a function as supply members that supply power to the electronic device.
 ローダ3は、筐体14を有し、筐体14内にウエハWが収容された搬送容器であるFOUP(図示せず)が配置されている。また、ローダ3は搬送装置(図示せず)を有し、搬送装置によりFOUPに収容されているウエハWを取り出して検査部2のステージ20へ搬送する。また、搬送装置により電気的特性の検査が終了したステージ20上のウエハWを搬送し、FOUPへ収容する。 The loader 3 has a housing 14 in which a FOUP (not shown), which is a transfer container containing wafers W, is arranged. The loader 3 also has a transfer device (not shown), which takes out the wafer W accommodated in the FOUP and transfers it to the stage 20 of the inspection section 2 . In addition, the wafer W on the stage 20 whose electrical characteristics have been inspected is transferred by the transfer device and accommodated in the FOUP.
 また、ローダ3の筐体14内には、検査対象の電子デバイスの温度制御等の各種制御を行う制御部15が設けられている。 In addition, a control unit 15 that performs various types of control such as temperature control of the electronic device to be inspected is provided in the housing 14 of the loader 3 .
 制御部15は、コンピュータからなり、検査装置1の各構成部を制御する主制御部を有しており、主制御部により検査装置の各構成部の動作を制御する。また、制御部15は、入力装置、出力装置、表示装置、記憶装置を有している。主制御部による各構成部の制御は、記憶装置に内蔵された記憶媒体(ハードディスク、光デスク、半導体メモリ等)に記憶された制御プログラムである処理レシピにより実行される。また、制御部15は温度制御部23を制御する。なお、制御部15の配置位置は筐体14内に限らず、例えば検査部2の筐体11内に設けられてもよい。 The control unit 15 is composed of a computer and has a main control unit that controls each component of the inspection device 1. The main control unit controls the operation of each component of the inspection device. Also, the control unit 15 has an input device, an output device, a display device, and a storage device. Control of each component by the main controller is executed by a processing recipe, which is a control program stored in a storage medium (hard disk, optical disk, semiconductor memory, etc.) built into the storage device. Also, the control unit 15 controls the temperature control unit 23 . Note that the arrangement position of the control unit 15 is not limited to the inside of the housing 14 and may be provided inside the housing 11 of the inspection unit 2, for example.
 検査部2の筐体11には、制御部15の一部を構成するユーザインターフェース部18が設けられている。ユーザインターフェース部18は、ユーザ向けに情報を表示したりユーザが指示を入力したりするためのものであり、例えば、タッチパネルやキーボード等の入力部と液晶ディスプレイ等の表示部とからなる。 A user interface section 18 that constitutes a part of the control section 15 is provided on the housing 11 of the inspection section 2 . The user interface unit 18 is for displaying information for the user and allowing the user to input instructions, and includes, for example, an input unit such as a touch panel or keyboard and a display unit such as a liquid crystal display.
 テスタ4は、電子デバイスが搭載されるマザーボードの回路構成の一部を再現するテストボード(図示省略)を有する。テストボードは、検査対象の電子デバイスからの信号に基づいて、該電子デバイスの良否を判断するテスタコンピュータ17に接続される。テスタ4では、上記テストボードを取り替えることにより、複数種のマザーボードの回路構成を再現することができる。 The tester 4 has a test board (not shown) that reproduces part of the circuit configuration of the motherboard on which the electronic device is mounted. The test board is connected to a tester computer 17 which determines whether the electronic device under test is good or bad based on signals from the electronic device. The tester 4 can reproduce circuit configurations of multiple types of motherboards by replacing the test board.
 なお、プローブカード12、インターフェース13、テスタ4は、検査機構を構成する。 The probe card 12, interface 13, and tester 4 constitute an inspection mechanism.
 電子デバイスの電気的特性の検査の際、テスタコンピュータ17が、電子デバイスと各プローブ12aを介して接続されたテストボードへデータを送信する。そして、テスタコンピュータ17が、送信されたデータが当該テストボードによって正しく処理されたか否かを当該テストボードからの電気信号に基づいて判定する。 When inspecting the electrical characteristics of the electronic device, the tester computer 17 transmits data to the test board connected to the electronic device via each probe 12a. Then, the tester computer 17 determines whether or not the transmitted data is correctly processed by the test board based on the electrical signal from the test board.
 検査対象基板であるウエハWは、例えば、図3に示すように、略円板状のシリコン基板にエッチング処理や配線処理を施すことによりその表面に互いに所定の間隔をおいて形成された、複数の電子デバイスDを有している。電子デバイスDの表面には、電極Eが形成されており、該電極Eは当該電子デバイスDの内部の回路素子に電気的に接続されている。電極Eへ電圧を印加することにより、各電子デバイスDの内部の回路素子へ電流を流すことができる。 As shown in FIG. 3, the wafer W, which is a substrate to be inspected, has a plurality of wafers formed on the surface thereof at predetermined intervals by performing etching processing and wiring processing on a substantially disk-shaped silicon substrate. has an electronic device D of An electrode E is formed on the surface of the electronic device D, and the electrode E is electrically connected to a circuit element inside the electronic device D. By applying a voltage to the electrode E, a current can flow to the circuit element inside each electronic device D. FIG.
 <基板載置機構>
 次に、基板載置機構10について詳細に説明する。
 図4は基板載置機構10の一例を示す断面図である。基板載置機構10は、上述したように、ステージ20と、温度制御部23とを有する。
<Substrate placement mechanism>
Next, the substrate mounting mechanism 10 will be described in detail.
FIG. 4 is a cross-sectional view showing an example of the substrate mounting mechanism 10. As shown in FIG. The substrate mounting mechanism 10 has the stage 20 and the temperature controller 23 as described above.
 ステージ20は、上述したように、トッププレート21と、加熱部24と、冷却部25と、複数の温度センサ26とを有する。図4では、トッププレート21の下に加熱部24が設けられ、加熱部24の下に冷却部25が設けられているが、加熱部24と冷却部25は逆であってもよい。 The stage 20 has the top plate 21, the heating section 24, the cooling section 25, and a plurality of temperature sensors 26, as described above. In FIG. 4, the heating section 24 is provided under the top plate 21 and the cooling section 25 is provided below the heating section 24, but the heating section 24 and the cooling section 25 may be reversed.
 トッププレート21は、例えばウエハWに対応して円板状をなし、Cu、Al、SiC、AlN、カーボンファイバーのような熱伝導率が高い材料で形成されている。トッププレート21が熱伝導率の高い材料で形成されることにより、温調精度および効率を高めることができる。 The top plate 21 has a disc shape corresponding to the wafer W, for example, and is made of a material with high thermal conductivity such as Cu, Al, SiC, AlN, or carbon fiber. By forming the top plate 21 from a material with high thermal conductivity, temperature control accuracy and efficiency can be enhanced.
 加熱部24は加熱源31が内蔵された板状体であり、加熱源31によりトッププレート21を加熱するようになっている。加熱部24は、複数(3以上)の加熱ゾーン32に分割され、加熱源31も各加熱ゾーン32に対応して分割されており、複数の加熱ゾーン32がそれぞれ独立して加熱可能に構成されている。複数の加熱ゾーン32は、複数の温度センサ26のそれぞれに対応して設けられている。 The heating part 24 is a plate-like body in which a heating source 31 is built, and the heating source 31 heats the top plate 21 . The heating unit 24 is divided into a plurality (three or more) of heating zones 32, the heating source 31 is also divided corresponding to each heating zone 32, and the plurality of heating zones 32 is configured to be capable of being heated independently. ing. A plurality of heating zones 32 are provided corresponding to each of the plurality of temperature sensors 26 .
 加熱源31としては、例えば、図5に示すように、特定パターンに形成された抵抗ヒータを用いることができる。抵抗ヒータとしては、ポリマー上に銅箔をスクリーン印刷し、それを特定形状にエッチングしたものを用いることができる。 As the heating source 31, for example, as shown in FIG. 5, a resistance heater formed in a specific pattern can be used. Resistive heaters can be made by screen-printing a copper foil onto a polymer and etching it into a specific shape.
 冷却部25は内部に冷却媒体流路35が形成された板状体であり、冷却媒体流路35に冷却媒体供給源36から冷却水等の冷却媒体が循環供給されるように構成されている。 The cooling part 25 is a plate-like body in which a cooling medium flow path 35 is formed. .
 複数の温度センサ26は、トッププレート21の内部に設けられており、トッププレート21に形成された穴に嵌め込まれている。温度センサ26としては、例えばRTD(測温抵抗体)センサを用いることができる。温度センサ26として、熱電対やダイオード、トランジスタ等を使ったPNジャンクション等の他のものを用いてもよい。複数の温度センサ26は、位置決めユニットに装着された状態で、一括して測定位置に配置するようにしてもよい。位置決めユニットはフレキシブル基板により構成することができる。 A plurality of temperature sensors 26 are provided inside the top plate 21 and are fitted into holes formed in the top plate 21 . As the temperature sensor 26, for example, an RTD (resistance temperature detector) sensor can be used. As the temperature sensor 26, other sensors such as a PN junction using a thermocouple, a diode, a transistor, or the like may be used. A plurality of temperature sensors 26 may be collectively arranged at the measurement position while being attached to the positioning unit. The positioning unit can be composed of a flexible substrate.
 温度制御部23は、トッププレート21に載置されたウエハWの電子デバイスDの温度を制御するものであり、主制御部41と、センサ選択部42と、加熱選択部43とを有する。 The temperature control section 23 controls the temperature of the electronic device D on the wafer W placed on the top plate 21 and has a main control section 41 , a sensor selection section 42 and a heating selection section 43 .
 主制御部41は、制御部15からの指令に基づいて、センサ選択部42にセンサ選択信号を与え、加熱選択部43に、選択された温度センサ26に対応する加熱ゾーン32を選択する信号を与える。また、主制御部41は、第1温度制御器45aおよび第2温度制御器45bを有しており、これらは温度センサ26からの信号に基づいて電源50から加熱部24の加熱ゾーン32に出力される電圧を制御する。第1温度制御器45aおよび第2温度制御器45bは、特に限定されないが、PID制御器を好適に用いることができる。また、主制御部41は、冷却部25に供給する冷却媒体の供給量や温度等を制御するように構成されている。 Based on a command from the control unit 15, the main control unit 41 supplies a sensor selection signal to the sensor selection unit 42, and a signal for selecting the heating zone 32 corresponding to the selected temperature sensor 26 to the heating selection unit 43. give. The main control unit 41 also has a first temperature controller 45a and a second temperature controller 45b, which output a temperature signal from the power supply 50 to the heating zone 32 of the heating unit 24 based on the signal from the temperature sensor 26. controls the voltage applied. Although the first temperature controller 45a and the second temperature controller 45b are not particularly limited, PID controllers can be preferably used. Further, the main control unit 41 is configured to control the amount of cooling medium supplied to the cooling unit 25, the temperature, and the like.
 センサ選択部42は、センサ選択信号に基づいて複数の温度センサ26のうち検査中の電子デバイスD(第1の電子デバイス)に最も近いもの、およびその次またはそれ以降に検査する電子デバイスD(第2の電子デバイス)に最も近いものを選択し、これら選択された2つの温度センサ26から、それぞれ第1温度制御器45aおよび第2温度制御器45bに検出信号を送る。 Based on the sensor selection signal, the sensor selection unit 42 selects the temperature sensor 26 closest to the electronic device D (first electronic device) under test and the electronic device D (first electronic device) to be tested next or thereafter. The one closest to the second electronic device) is selected, and detection signals are sent from these two selected temperature sensors 26 to the first temperature controller 45a and the second temperature controller 45b, respectively.
 加熱選択部43は、第1温度制御器45aおよび第2温度制御器45bから出力された制御電圧を印加する加熱ゾーン32を選択する。この選択は、上述したように主制御部41からの選択信号に基づいて行われる。加熱選択部43により選択された1または複数の加熱ゾーン32の加熱源31に第1温度制御器45aから制御された電圧が印加され、検査中の第1の電子デバイスの温度が所望の温度に制御される。また、加熱選択部43により選択された1または複数の加熱ゾーン32の加熱源31に第2温度制御器45bから制御された電圧が印加され、その次またはそれ以降に検査される第2の電子デバイスの温度が所望の温度に制御される。 The heating selection unit 43 selects the heating zone 32 to which the control voltage output from the first temperature controller 45a and the second temperature controller 45b is applied. This selection is made based on the selection signal from the main control section 41 as described above. A controlled voltage is applied from the first temperature controller 45a to the heating source 31 of the one or more heating zones 32 selected by the heating selection unit 43, and the temperature of the first electronic device under test reaches a desired temperature. controlled. In addition, the voltage controlled by the second temperature controller 45b is applied to the heating source 31 of the one or more heating zones 32 selected by the heating selection unit 43, and the second electron The temperature of the device is controlled to the desired temperature.
 対象となる電子デバイスDが2つの加熱ゾーン32の境界に位置しているような場合は、複数の加熱ゾーン32の加熱源31に電圧を印加することが好ましく、このとき電子デバイスDの位置に応じて複数の加熱ゾーン32のパワー(電圧)を配分することが好ましい。また、その次またはそれ以降に測定される電子デバイスDが同じ加熱ゾーンに対応する場合は、第2温度制御器45bにより、さらに次の電子デバイスDに対応する加熱ゾーン32の温度制御をしてもよい。 When the target electronic device D is positioned at the boundary between two heating zones 32, it is preferable to apply a voltage to the heating sources 31 of the plurality of heating zones 32. At this time, the position of the electronic device D is It is preferable to distribute the power (voltage) of the plurality of heating zones 32 accordingly. Further, when the electronic device D to be measured next or thereafter corresponds to the same heating zone, the second temperature controller 45b further controls the temperature of the heating zone 32 corresponding to the next electronic device D. good too.
 図6は、複数の加熱ゾーンに分割された加熱部24と、主制御部41の第1温度制御器45aおよび第2温度制御器45bと、加熱選択部43の具体的な回路構成の一例を示す回路図である。本例では、加熱部24は、加熱源31を有する複数の加熱ゾーン32~、32、32、・・・・、32を有する。加熱選択部43は、複数の加熱ゾーン32~32にそれぞれ接続される複数の第1ソリッドステートリレー(SD)4611~461fと、同様に複数の加熱ゾーン32~32にそれぞれ接続される複数の第2ソリッドステートリレー(SD)4621~462fとを有する。第1温度制御器45aは、第1ソリッドステートリレー(SD)4611~461fに接続されており、第2温度制御器45bは、第2ソリッドステートリレー(SD)4621~462fに接続されている。そして、第1ソリッドステートリレー(SD)4611~461fの1または複数をオンにすることにより、加熱ゾーン32~32のうち第1温度制御器45aからの制御電圧が印加されるものが選択される。また、第2ソリッドステートリレー(SD)4621~462fの1または複数をオンにすることにより、加熱ゾーン32~32のうち第2温度制御器45bからの制御電圧が印加されるものが選択される。 FIG. 6 shows an example of a specific circuit configuration of the heating section 24 divided into a plurality of heating zones, the first temperature controller 45a and the second temperature controller 45b of the main control section 41, and the heating selection section 43. It is a circuit diagram showing. In this example, the heating section 24 has a plurality of heating zones 32 1 to 32 2 , 32 3 , . . . The heating selector 43 includes a plurality of first solid state relays (SD) 46 11 to 46 1f connected to the plurality of heating zones 32 1 to 32 f , respectively, and similarly to the plurality of heating zones 32 1 to 32 f, respectively. It has a plurality of connected second solid state relays (SD) 46 21 to 46 2f . The first temperature controller 45a is connected to first solid state relays (SD) 46 11 to 46 1f , and the second temperature controller 45b is connected to second solid state relays (SD) 46 21 to 46 2f . It is By turning on one or more of the first solid state relays (SD) 46 11 to 46 1f , the control voltage from the first temperature controller 45a is applied to the heating zones 32 1 to 32 f . is selected. Also, by turning on one or more of the second solid state relays (SD) 46 21 to 46 2f , the control voltage from the second temperature controller 45b is applied to the heating zones 32 1 to 32 f . is selected.
 加熱選択部43がこのように複数のソリッドステートリレーで構成されている場合、加熱選択部43を加熱部24の直下に配置することにより、ソリッドステートリレーから加熱ゾーン32の加熱源31までの配線を最小にすることができる。 When the heating selection unit 43 is composed of a plurality of solid state relays in this way, by arranging the heating selection unit 43 directly below the heating unit 24, the wiring from the solid state relay to the heating source 31 of the heating zone 32 is reduced. can be minimized.
 なお、ソリッドステートリレーはスイッチング素子の一例であり、スイッチング素子としては、ソリッドステートリレーに限らず、例えばスイッチングトランジスタ等であってもよい。 A solid state relay is an example of a switching element, and the switching element is not limited to a solid state relay, and may be a switching transistor or the like.
 図7は、ステージに設けられた複数の温度センサと、複数の加熱ゾーンとの関係の一例を示す図である。本例では、加熱部24が16個の加熱ゾーン32~3216を有する。加熱ゾーン32~3212が外周側で加熱ゾーン3213~3216が中心側である。トッププレート21には、これらの加熱ゾーン32~3216に対応して16個の温度センサ26~2616が設けられている。 FIG. 7 is a diagram showing an example of the relationship between a plurality of temperature sensors provided on the stage and a plurality of heating zones. In this example, the heating section 24 has 16 heating zones 32 1 to 32 16 . The heating zones 32 1 to 32 12 are on the outer peripheral side and the heating zones 32 13 to 32 16 are on the central side. The top plate 21 is provided with 16 temperature sensors 26 1 to 26 16 corresponding to these heating zones 32 1 to 32 16 .
 例えば、図7中、電子デバイスDが検査中で、電子デバイスDが次に検査するものである場合、以下のように制御される。すなわち、電子デバイスDに対応する加熱ゾーン3213が温度センサ2613の検出値に基づいて第1温度制御器45aにより温度制御され、電子デバイスDに対応する加熱ゾーン32の検出値に基づいて第2温度制御器45bにより制御される。 For example, in FIG. 7, if the electronic device D1 is being tested and the electronic device D2 is to be tested next, the control is as follows. That is, the heating zone 32-13 corresponding to the electronic device D1 is temperature-controlled by the first temperature controller 45a based on the detection value of the temperature sensor 26-13 , and the detection value of the heating zone 32-4 corresponding to the electronic device D2 . Based on this, it is controlled by the second temperature controller 45b.
 <検査装置による検査処理>
 次に、検査装置1を用いたウエハWに対する検査処理の一例について説明する。
 まず、ローダ3のFOUPから搬送装置によりウエハWを取り出してステージ20に搬送し、載置する。次いで、ステージ20を所定の位置に移動する。
<Inspection processing by inspection device>
Next, an example of inspection processing for the wafer W using the inspection apparatus 1 will be described.
First, the wafer W is taken out from the FOUP of the loader 3 by the transfer device, transferred to the stage 20, and placed thereon. Next, the stage 20 is moved to a predetermined position.
 この状態で、ステージ20の上方に設けられているプローブ12aと、ウエハWの検査対象の電子デバイスDの電極Eとを接触させることにより検査が開始される。検査する際には電子デバイスDを動作環境での動作保証のため、検査中の電子デバイスDを温度制御する。検査は、複数の電子デバイスDに対し連続して行われる。 In this state, the probe 12a provided above the stage 20 is brought into contact with the electrode E of the electronic device D to be inspected on the wafer W, thereby starting the inspection. During the inspection, the temperature of the electronic device D under inspection is controlled in order to guarantee the operation of the electronic device D in the operating environment. A test|inspection is continuously performed with respect to several electronic devices D. FIG.
 このときの温度制御は、冷却部25を流れる冷却媒体の流量等を調整してステージ20のベース温度を調整した上で、加熱部24による加熱を制御することにより行われる。加熱部24による検査中の電子デバイスDの温度制御は、複数配置された温度センサ26の中で、検査中の電子デバイスDに最も近い温度センサ26の信号を用いて行われる。そして、検査中の電子デバイスDに対応する1または複数の加熱ゾーン32の加熱源31に第1温度制御器45aから制御された電圧が印加されることにより、検査中の電子デバイスを温度制御する。 The temperature control at this time is performed by controlling the heating by the heating unit 24 after adjusting the flow rate of the cooling medium flowing through the cooling unit 25 to adjust the base temperature of the stage 20 . The temperature control of the electronic device D under inspection by the heating unit 24 is performed using the signal of the temperature sensor 26 closest to the electronic device D under inspection among the plurality of temperature sensors 26 arranged. Then, a controlled voltage is applied from the first temperature controller 45a to the heating source 31 of one or more heating zones 32 corresponding to the electronic device D under test, thereby controlling the temperature of the electronic device under test. .
 近時、半導体デバイスは高速化、高集積化が要求されており、それにともない検査の際の温度制御も高い精度が要求されている。この要求に対して、本実施形態では、複数の温度センサ26を配置し、検査する電子デバイスに最も近い温度センサ26の信号を用いて温度制御する。 Recently, semiconductor devices are required to be faster and more highly integrated, and along with this, high-precision temperature control is required during inspection. In response to this requirement, in this embodiment, a plurality of temperature sensors 26 are arranged, and the temperature is controlled using the signal of the temperature sensor 26 closest to the electronic device to be tested.
 その次以降の電子デバイスに対しても最も近い温度センサ26の信号を用いて温度制御することにより高精度の温度制御を行うことができる。この場合、加熱部24の温度制御は1ゾーンであっても高精度の温度制御を実現することができる。 High-precision temperature control can be performed by controlling the temperature of subsequent electronic devices using the signal from the temperature sensor 26, which is the closest. In this case, even if the temperature control of the heating section 24 is performed in one zone, highly accurate temperature control can be achieved.
 しかし、電子デバイスDが高発熱デバイスである場合、温度制御に発熱が影響し、ヒータ印加電圧を減少させるため、加熱部24の温度制御が1ゾーンの場合、次のデバイス温度の低下が生じ、リカバリーの待ち時間によりスループットが低下することがある。 However, if the electronic device D is a high heat generating device, the heat generation affects the temperature control and reduces the voltage applied to the heater. Recovery latency can reduce throughput.
 この点について以下に説明する。
 複数の電子デバイスDの高温での検査を図8に示すようにシリアルに行う場合、次に検査する電子デバイスDは従前に検査した電子デバイスDの熱の影響により温度が上昇している。このため、次の電子デバイスDの温度制御の際の昇温量はわずかであり、加熱部24の温度制御が1ゾーンでも温度制御のための待ち時間はほとんど生じない。しかし、ランダムに検査する場合は、図9に示すように、検査中の電子デバイスDと、次に検査する電子デバイスDとが離れている場合もある。このような場合、電子デバイスDは電子デバイスDの発熱の影響をほとんど受けないため、加熱部24の温度制御が1ゾーンでは、電子デバイスDの温度を制御する際の温度上昇幅が大きくなって、温度制御の時間が長くなってしまう。このため、検査のスループットが低下してしまう。
This point will be described below.
When a plurality of electronic devices D are tested serially at high temperatures as shown in FIG. 8, the temperature of the next electronic device D to be tested has risen due to the heat of the previously tested electronic device D. FIG. Therefore, the amount of temperature rise in the next temperature control of the electronic device D is slight, and even if the temperature control of the heating unit 24 is performed in one zone, there is almost no waiting time for temperature control. However, when inspecting at random, as shown in FIG. 9, the electronic device D1 being inspected and the electronic device D2 to be inspected next may be separated. In such a case, the electronic device D2 is hardly affected by the heat generated by the electronic device D1 . It becomes large, and the time of temperature control becomes long. As a result, inspection throughput is reduced.
 そこで、本実施形態では、加熱部24を複数の加熱ゾーン32に分割し、検査中の電子デバイスDに対応する1または複数の加熱ゾーン32の出力を第1温度制御器45aで制御し、その次またはそれ以降に検査される電子デバイスDに対応する1または複数の加熱ゾーン32の出力を第2温度制御器45bで制御する。より具体的には、第1温度制御器45aは、検査中の電子デバイスDに対応する(最も近い)温度センサ26の検出値に基づいて、対応する1または複数の加熱ゾーン32の加熱源31の出力を制御し、検査中の電子デバイスDの温度を制御する。第2温度制御器45bは、その次またはそれ以降に検査される電子デバイスDに対応する(最も近い)温度センサの検出値に基づいて、対応する1または複数の加熱ゾーン32の加熱源31の出力を制御し、その次またはそれ以降に検査される電子デバイスDの温度を制御する。 Therefore, in the present embodiment, the heating unit 24 is divided into a plurality of heating zones 32, and the output of one or a plurality of heating zones 32 corresponding to the electronic device D under test is controlled by the first temperature controller 45a. A second temperature controller 45b controls the output of one or more heating zones 32 corresponding to the next or subsequent electronic devices D to be tested. More specifically, the first temperature controller 45a controls the heating source 31 of the corresponding one or more heating zones 32 based on the detection value of the (closest) temperature sensor 26 corresponding to the electronic device D under test. to control the temperature of the electronic device D under test. The second temperature controller 45b controls the heating source 31 of the corresponding one or more heating zones 32 based on the detected value of the (closest) temperature sensor corresponding to the electronic device D to be tested next or later. Control the power output and control the temperature of the next or subsequent electronic device D to be tested.
 例えば、上述の図7に示すように、検査中の電子デバイスDに対応する加熱ゾーン3213が温度センサ2613の検出値に基づいて第1温度制御器45aにより温度制御され、次に検査される電子デバイスDに対応する加熱ゾーン32の検出値に基づいて第2温度制御器45bにより制御される。また、その次またはそれ以降に測定する電子デバイスDが同じ加熱ゾーンに対応する場合は、さらに次の電子デバイスDに対応する加熱ゾーン32の温度制御を行うことにより、同様の効果を得ることができる。これにより、次またはそれ以降に検査する電子デバイスが検査中の電子デバイスと離れていても、短時間で温度制御することができる。 For example, as shown in FIG. 7 above, the heating zone 32-13 corresponding to the electronic device D1 under inspection is temperature-controlled by the first temperature controller 45a based on the detection value of the temperature sensor 26-13 . It is controlled by the second temperature controller 45b based on the detected value of the heating zone 324 corresponding to the electronic device D2 . Further, when the electronic device D to be measured next or thereafter corresponds to the same heating zone, the same effect can be obtained by further controlling the temperature of the heating zone 32 corresponding to the next electronic device D. can. As a result, temperature control can be performed in a short period of time even if the next or subsequent electronic device to be tested is separated from the electronic device being tested.
 一方、加熱部を複数の加熱ゾーンに分割することは特許文献1、2にも記載されている。しかし、特許文献1、2では、複数の加熱ゾーンの温度をそれぞれに対応する温度制御器により制御しており、制御系が複雑となりコストも高くなる。 On the other hand, dividing the heating unit into a plurality of heating zones is also described in Patent Documents 1 and 2. However, in Patent Literatures 1 and 2, the temperatures of a plurality of heating zones are controlled by temperature controllers corresponding to each, which complicates the control system and increases the cost.
 これに対して、本実施形態では、検査中の電子デバイスの温度制御と、その次またはそれ以降の電子デバイスの温度制御を行えばよいので、加熱ゾーンごとに温度制御器を設ける必要がない。すなわち、本実施形態では、検査中の電子デバイスDの温度制御を行う第1温度制御器45aと、その次またはそれ以降に検査される第2の電子デバイスの温度制御を行う第2温度制御器45bを用い、加熱選択部43でこれらにより制御される加熱ゾーン32を選択する。このため、特許文献1、2の技術よりも制御系を簡易にすることができ、コストの上昇を抑えることができる。 On the other hand, in this embodiment, it is only necessary to control the temperature of the electronic device under test and the temperature of the next or subsequent electronic device, so there is no need to provide a temperature controller for each heating zone. That is, in this embodiment, the first temperature controller 45a controls the temperature of the electronic device D under test, and the second temperature controller 45a controls the temperature of the second electronic device to be tested next or later. 45b are used to select the heating zone 32 controlled by them in the heating selection section 43. FIG. Therefore, the control system can be made simpler than the techniques of Patent Literatures 1 and 2, and an increase in cost can be suppressed.
 また、特許文献2は、加熱部として複数のLEDを有するユニットを複数配置したものを用い、これら複数のユニットを温度制御することにより、熱抵抗および熱容量を最小にして高速高精度での温度制御を実現するものであり、高価な高パワー密度の電子デバイスの検査に適している。これに対して、本実施形態では加熱部24の加熱源31として抵抗ヒータを用いた例を示しており、抵抗ヒータを用いて上述のような温度制御を行う構成を採ることにより、より安価な中程度のパワー密度の電子デバイスに対して、ランダムな検査に対する温度制御を短時間でかつ簡易に低コストで行うことができる。 In addition, Patent Document 2 uses a plurality of units having a plurality of LEDs as a heating unit, and by controlling the temperature of these units, thermal resistance and heat capacity are minimized to achieve high-speed and high-precision temperature control. and is suitable for testing expensive high power density electronic devices. On the other hand, in this embodiment, an example of using a resistance heater as the heating source 31 of the heating unit 24 is shown. For medium power density electronic devices, temperature control for random testing can be performed quickly, easily and at low cost.
 <他の適用>
 以上、実施形態について説明したが、今回開示された実施形態は、全ての点において例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
<Other applications>
Although the embodiments have been described above, the embodiments disclosed this time should be considered as examples and not restrictive in all respects. The above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 例えば、上記実施形態では、検査中の電子デバイスに対応する1または複数の加熱ゾーンを制御する第1温度制御器と、その次またはそれ以降に検査される電子デバイスに対応する1または複数の加熱ゾーンの温度を制御する第2温度制御器とを用いた例を示した。しかし、これに限らず、さらにそれ以降に検査される電子デバイスに対応する1または複数の加熱ゾーンの温度を制御する第3温度制御器を設けてもよい。これにより、より検査中の電子デバイスの次以降のより多くの電子デバイスの温度制御を行うことができ、制御時間をより短縮できるとともに温度制御の精度を高めることができる。第3温度制御器としてもPID制御器を好適に用いることができる。第3温度制御器は複数であってもよい。ただし、第1温度制御器、第2温度制御器、第3温度制御器の合計数は加熱ゾーンの数よりも少ないことが必要である。 For example, in the above embodiments, the first temperature controller controls one or more heating zones corresponding to the electronic device under test and the one or more heating zones corresponding to the next or subsequent electronic devices to be tested. An example is shown with a second temperature controller controlling the temperature of the zone. However, this is not the only option, and a third temperature controller may be provided to control the temperature of one or more heating zones corresponding to electronic devices to be subsequently tested. As a result, it is possible to control the temperature of a larger number of electronic devices after the electronic device under test, thereby shortening the control time and increasing the accuracy of the temperature control. A PID controller can also be suitably used as the third temperature controller. A plurality of third temperature controllers may be provided. However, the total number of first temperature controllers, second temperature controllers, and third temperature controllers must be less than the number of heating zones.
 また、上記実施形態では、加熱部の加熱源として抵抗ヒータを用いた例を示したが、これに限らずLED等の他の加熱源であってもよい。さらに、基板はウエハに限らず、複数の電子デバイスが形成されているものであればよい。 Also, in the above embodiment, an example of using a resistance heater as a heating source for the heating unit is shown, but the present invention is not limited to this, and another heating source such as an LED may be used. Furthermore, the substrate is not limited to a wafer, and may be any substrate on which a plurality of electronic devices are formed.
 1;検査装置、2;検査部、3;ローダ、4;テスタ、10;基板載置機構、12;プローブカード、12a;プローブ、13;インターフェース、15;制御部、16;移動機構、20;ステージ、21;トッププレート、23;温度制御部、24;加熱部、25;冷却部、26;温度センサ、31;加熱源、32;加熱ゾーン、41;主制御部、42;センサ選択部、43;加熱選択部、45a;第1温度制御器、45b;第2温度制御器、50;電源、4611~461f、4621~462f;ソリッドステートリレー(スイッチング素子)、D、D,D;電子デバイス、W;ウエハ(基板) 1; inspection device, 2; inspection section, 3; loader, 4; tester, 10; substrate mounting mechanism, 12; probe card, 12a; stage, 21; top plate, 23; temperature control unit, 24; heating unit, 25; cooling unit, 26; temperature sensor, 31; 43; heating selection unit, 45a; first temperature controller, 45b; second temperature controller, 50; power supply , 46 11 to 46 1f , 46 21 to 46 2f ; , D 2 ; electronic device, W; wafer (substrate)

Claims (20)

  1.  基板に設けられた複数の電子デバイスを順次検査する検査装置において基板を載置する基板載置機構であって、
     複数の電子デバイスが設けられた基板を載置するステージと、
     前記ステージ上の前記基板における前記電子デバイスの温度を制御する温度制御部と、
    を備え、
     前記ステージは、
     前記基板の載置面を有するトッププレートと、
     前記トッププレートを加熱する、複数の加熱ゾーンに分割された加熱部と、
     前記トッププレートに設けられた複数の温度センサと、
    を有し、
     前記温度制御部は、
     検査中の電子デバイスに対応する1または複数の前記加熱ゾーンの出力を、前記複数の温度センサのうち対応するものの検出値に基づいて制御し、前記検査中の電子デバイスの温度を制御する第1温度制御器と、
     前記検査中の電子デバイスの次またはそれ以降に検査される電子デバイスに対応する1または複数の前記加熱ゾーンの出力を、前記複数の温度センサのうち対応するものの検出値に基づいて制御し、前記検査中の電子デバイスの次またはそれ以降に検査される電子デバイスの温度を制御する第2温度制御器と、
    を有する、基板載置機構。
    A substrate mounting mechanism for mounting a substrate in an inspection apparatus for sequentially inspecting a plurality of electronic devices provided on the substrate,
    a stage on which a substrate provided with a plurality of electronic devices is placed;
    a temperature control unit that controls the temperature of the electronic device on the substrate on the stage;
    with
    The stage is
    a top plate having a mounting surface for the substrate;
    a heating unit divided into a plurality of heating zones for heating the top plate;
    a plurality of temperature sensors provided on the top plate;
    has
    The temperature control unit
    controlling the output of the one or more heating zones corresponding to the electronic device under test based on the detected values of the corresponding one of the plurality of temperature sensors to control the temperature of the electronic device under test; a temperature controller;
    controlling the output of one or more of the heating zones corresponding to electronic devices to be tested subsequent to or after the electronic device under test based on detection values of corresponding ones of the plurality of temperature sensors; a second temperature controller for controlling the temperature of an electronic device to be tested next to or after the electronic device under test;
    A substrate placement mechanism.
  2.  前記温度制御部は、
     前記温度センサを選択するセンサ選択部と、
     前記加熱ゾーンを選択する加熱選択部と、
     前記センサ選択部に温度センサを選択する信号を与え、前記加熱選択部に加熱ゾーンを選択する信号を与え、かつ前記第1温度制御器および前記第2温度制御器を有する主制御部と、
    を有する、請求項1に記載の基板載置機構。
    The temperature control unit
    a sensor selection unit that selects the temperature sensor;
    a heating selection unit that selects the heating zone;
    a main control unit that provides a signal for selecting a temperature sensor to the sensor selection unit, a signal for selecting a heating zone to the heating selection unit, and has the first temperature controller and the second temperature controller;
    The substrate mounting mechanism according to claim 1, comprising:
  3.  前記加熱選択部は、前記複数の加熱ゾーンにそれぞれ対応して設けられ、前記第1温度制御器に接続された複数の第1スイッチング素子と、前記複数の加熱ゾーンにそれぞれ対応して設けられ、前記第2温度制御器に接続された複数の第2スイッチング素子とを有する、請求項2に記載の基板載置機構。 The heating selection unit is provided corresponding to each of the plurality of heating zones, and is provided corresponding to each of the plurality of first switching elements connected to the first temperature controller and the plurality of heating zones, 3. The substrate mounting mechanism according to claim 2, further comprising a plurality of second switching elements connected to said second temperature controller.
  4.  前記第1および第2スイッチング素子は、ソリッドステートリレーである、請求項3に記載の基板載置機構。 The substrate mounting mechanism according to claim 3, wherein the first and second switching elements are solid state relays.
  5.  前記加熱選択部は、前記加熱部の直下に配置されている、請求項2に記載の基板載置機構。 The substrate mounting mechanism according to claim 2, wherein the heating selection section is arranged directly below the heating section.
  6.  前記ステージは、前記トッププレートを冷却する冷却部をさらに有し、前記温度制御部は、前記冷却部を制御する、請求項1から請求項5のいずれか一項に記載の基板載置機構。 The substrate mounting mechanism according to any one of claims 1 to 5, wherein the stage further has a cooling section that cools the top plate, and the temperature control section controls the cooling section.
  7.  前記第1温度制御器および前記第2温度制御器はPID制御器である、請求項1から請求項5のいずれか一項に記載の基板載置機構。 The substrate mounting mechanism according to any one of claims 1 to 5, wherein the first temperature controller and the second temperature controller are PID controllers.
  8.  前記温度制御部は、
     前記第2温度制御器で温度制御される電子デバイスの次またはそれ以降に検査される電子デバイスに対応する1または複数の前記加熱ゾーンの出力を、前記複数の温度センサのうち対応するものの検出値に基づいて制御し、前記第2温度制御器で温度制御される電子デバイスの次またはそれ以降に検査される電子デバイスの温度を制御する第3温度制御器をさらに有し、前記第1温度制御器、前記第2温度制御器、および前記第3温度制御器の合計数は前記加熱ゾーンの数よりも少ない、請求項1に記載の基板載置機構。
    The temperature control unit
    The outputs of the one or more heating zones corresponding to electronic devices to be tested after or after the electronic device whose temperature is controlled by the second temperature controller are detected by corresponding ones of the plurality of temperature sensors. and further comprising a third temperature controller for controlling the temperature of an electronic device to be tested after or after the electronic device temperature-controlled by the second temperature controller, wherein the first temperature controller 2. The substrate mounting mechanism according to claim 1, wherein the total number of said heating units, said second temperature controllers, and said third temperature controllers is less than the number of said heating zones.
  9.  前記第1温度制御器および前記第2温度制御器および前記第3温度制御器はPID制御器である、請求項8に記載の基板載置機構。 The substrate mounting mechanism according to claim 8, wherein said first temperature controller, said second temperature controller and said third temperature controller are PID controllers.
  10.  前記加熱部の加熱源は抵抗ヒータである、請求項1に記載の基板載置機構。 The substrate mounting mechanism according to claim 1, wherein the heating source of said heating unit is a resistance heater.
  11.  基板に設けられた複数の電子デバイスを順次検査する検査装置であって、
     複数の電子デバイスが設けられた基板を載置するステージを含む基板載置機構と、
     前記ステージ上の基板に設けられた前記電子デバイスにプローブを電気的に接触させて当該電子デバイスを検査する検査機構と、
    を具備し、
     前記基板載置機構は、前記ステージ上の前記基板における前記電子デバイスの温度を制御する温度制御部をさらに備え、
     前記ステージは、
     前記基板の載置面を有するトッププレートと、
     前記トッププレートを加熱する加熱部と、
     前記トッププレートに設けられた複数の温度センサと、
    を有し、
     前記加熱部は、複数の加熱ゾーンに分割され、
     前記温度制御部は、
     検査中の電子デバイスに対応する1または複数の前記加熱ゾーンの出力を、前記複数の温度センサのうち対応するものの検出値に基づいて制御し、前記検査中の電子デバイスの温度を制御する第1温度制御器と、
     前記検査中の電子デバイスの次またはそれ以降に検査される電子デバイスに対応する1または複数の前記加熱ゾーンの出力を、前記複数の温度センサのうち対応するものの検出値に基づいて制御し、前記検査中の電子デバイスの次またはそれ以降に検査される電子デバイスの温度を制御する第2温度制御器と、
    を有する、検査装置。
    An inspection apparatus for sequentially inspecting a plurality of electronic devices provided on a substrate,
    a substrate mounting mechanism including a stage for mounting a substrate provided with a plurality of electronic devices;
    an inspection mechanism that electrically contacts a probe to the electronic device provided on the substrate on the stage to inspect the electronic device;
    and
    The substrate mounting mechanism further includes a temperature control unit that controls the temperature of the electronic device on the substrate on the stage,
    The stage is
    a top plate having a mounting surface for the substrate;
    a heating unit that heats the top plate;
    a plurality of temperature sensors provided on the top plate;
    has
    The heating unit is divided into a plurality of heating zones,
    The temperature control unit
    controlling the output of the one or more heating zones corresponding to the electronic device under test based on the detected values of the corresponding one of the plurality of temperature sensors to control the temperature of the electronic device under test; a temperature controller;
    controlling the output of one or more of the heating zones corresponding to electronic devices to be tested subsequent to or after the electronic device under test based on detection values of corresponding ones of the plurality of temperature sensors; a second temperature controller for controlling the temperature of an electronic device to be tested next to or after the electronic device under test;
    An inspection device.
  12.  前記温度制御部は、
     前記温度センサを選択するセンサ選択部と、
     前記加熱ゾーンを選択する加熱選択部と、
     前記センサ選択部に温度センサを選択する信号を与え、前記加熱選択部に加熱ゾーンを選択する信号を与え、かつ前記第1温度制御器および前記第2温度制御器を有する主制御部と、
    を有する、請求項11に記載の検査装置。
    The temperature control unit
    a sensor selection unit that selects the temperature sensor;
    a heating selection unit that selects the heating zone;
    a main control unit that provides a signal for selecting a temperature sensor to the sensor selection unit, a signal for selecting a heating zone to the heating selection unit, and has the first temperature controller and the second temperature controller;
    12. The inspection device according to claim 11, comprising:
  13.  前記加熱選択部は、前記複数の加熱ゾーンにそれぞれ対応して設けられ、前記第1温度制御器に接続された複数の第1スイッチング素子と、前記複数の加熱ゾーンにそれぞれ対応して設けられ、前記第2温度制御器に接続された複数の第2スイッチング素子とを有する、請求項12に記載の検査装置。 The heating selection unit is provided corresponding to each of the plurality of heating zones, and is provided corresponding to each of the plurality of first switching elements connected to the first temperature controller and the plurality of heating zones, 13. The inspection apparatus according to claim 12, comprising a plurality of second switching elements connected to said second temperature controller.
  14.  前記第1および第2スイッチング素子は、ソリッドステートリレーである、請求項13に記載の検査装置。 The inspection device according to claim 13, wherein said first and second switching elements are solid state relays.
  15.  前記加熱選択部は、前記加熱部の直下に配置されている、請求項12に記載の検査装置。 The inspection device according to claim 12, wherein the heating selection unit is arranged directly below the heating unit.
  16.  前記ステージは、前記トッププレートを冷却する冷却部をさらに有し、前記温度制御部は、前記冷却部を制御する、請求項11から請求項15のいずれか一項に記載の検査装置。 The inspection apparatus according to any one of claims 11 to 15, wherein the stage further has a cooling section that cools the top plate, and the temperature control section controls the cooling section.
  17.  前記第1温度制御器および前記第2温度制御器はPID制御器である、請求項11から請求項15のいずれか一項に記載の検査装置。 The inspection apparatus according to any one of claims 11 to 15, wherein said first temperature controller and said second temperature controller are PID controllers.
  18.  前記温度制御部は、
     前記第2温度制御器で温度制御される電子デバイスの次またはそれ以降に検査される電子デバイスに対応する1または複数の前記加熱ゾーンの出力を、前記複数の温度センサのうち対応するものの検出値に基づいて制御し、前記第2温度制御器で温度制御される電子デバイスの次またはそれ以降に検査される電子デバイスの温度を制御する第3温度制御器をさらに有し、前記第1温度制御器、前記第2温度制御器、および前記第3温度制御器の合計数は前記加熱ゾーンの数よりも少ない、請求項11に記載の検査装置。
    The temperature control unit
    The outputs of the one or more heating zones corresponding to electronic devices to be tested after or after the electronic device whose temperature is controlled by the second temperature controller are detected by corresponding ones of the plurality of temperature sensors. and further comprising a third temperature controller for controlling the temperature of an electronic device to be tested after or after the electronic device temperature-controlled by the second temperature controller, wherein the first temperature controller 12. The inspection apparatus of claim 11, wherein the total number of devices, said second temperature controllers, and said third temperature controllers is less than the number of said heating zones.
  19.  前記第1温度制御器および前記第2温度制御器および前記第3温度制御器はPID制御器である、請求項18に記載の検査装置。 The inspection apparatus according to claim 18, wherein said first temperature controller, said second temperature controller and said third temperature controller are PID controllers.
  20.  基板に設けられた複数の電子デバイスを順次検査する検査方法であって、
     複数の電子デバイスが設けられた基板をステージ上に載置することと、
     検査機構により前記複数の電子デバイスを順次検査することと、
     前記検査することの際に前記電子デバイスを温度制御することと、
    を有し、
     前記ステージは、前記基板の載置面を有するトッププレートと、前記トッププレートを加熱する加熱部と、を有し、
     前記加熱部は、複数の加熱ゾーンに分割され、
     前記温度制御することは、検査中の電子デバイスに対応する1または複数の前記加熱ゾーンの出力を制御して前記検査中の電子デバイスの温度制御を行うとともに、前記検査中の電子デバイスの次またはそれ以降に検査される電子デバイスに対応する1または複数の前記加熱ゾーンの出力を制御して前記検査中の電子デバイスの次またはそれ以降に検査される前記電子デバイスの温度を制御する、検査方法。
    An inspection method for sequentially inspecting a plurality of electronic devices provided on a substrate,
    placing a substrate provided with a plurality of electronic devices on a stage;
    sequentially inspecting the plurality of electronic devices by an inspection mechanism;
    temperature-controlling the electronic device during the testing;
    has
    The stage has a top plate having a mounting surface for the substrate, and a heating unit that heats the top plate,
    The heating unit is divided into a plurality of heating zones,
    The controlling the temperature includes controlling the output of one or more of the heating zones corresponding to the electronic device under test to control the temperature of the electronic device under test, and controlling the temperature of the electronic device under test. A method of testing comprising controlling the power of one or more of the heating zones corresponding to a subsequently tested electronic device to control the temperature of the electronic device tested next to or after the electronic device under test. .
PCT/JP2022/034025 2021-09-24 2022-09-12 Board mounting mechanism, inspection apparatus, and inspection method WO2023047999A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247011980A KR20240053003A (en) 2021-09-24 2022-09-12 Board mounting mechanism, inspection device, and inspection method
CN202280062354.1A CN117941047A (en) 2021-09-24 2022-09-12 Substrate mounting mechanism, inspection apparatus, and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021155287A JP2023046600A (en) 2021-09-24 2021-09-24 Substrate mounting mechanism, inspection device, and inspection method
JP2021-155287 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023047999A1 true WO2023047999A1 (en) 2023-03-30

Family

ID=85720644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034025 WO2023047999A1 (en) 2021-09-24 2022-09-12 Board mounting mechanism, inspection apparatus, and inspection method

Country Status (5)

Country Link
JP (1) JP2023046600A (en)
KR (1) KR20240053003A (en)
CN (1) CN117941047A (en)
TW (1) TW202331870A (en)
WO (1) WO2023047999A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210683A (en) * 2000-01-25 2001-08-03 Tokyo Seimitsu Co Ltd Chucking mechanism of prober
JP2002500432A (en) * 1997-12-31 2002-01-08 テンプトロニック コーポレイション Temperature control system for workpiece chuck
JP2004186492A (en) * 2002-12-04 2004-07-02 Sumitomo Heavy Ind Ltd Control method of chuck temperature
JP2006147612A (en) * 2004-11-16 2006-06-08 Seiko Epson Corp Semiconductor testing device and testing method of semiconductor device
JP2007142301A (en) * 2005-11-22 2007-06-07 Tokyo Seimitsu Co Ltd Prober

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7300310B2 (en) 2019-05-20 2023-06-29 東京エレクトロン株式会社 Mounting table temperature adjustment method, inspection device, and mounting table

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500432A (en) * 1997-12-31 2002-01-08 テンプトロニック コーポレイション Temperature control system for workpiece chuck
JP2001210683A (en) * 2000-01-25 2001-08-03 Tokyo Seimitsu Co Ltd Chucking mechanism of prober
JP2004186492A (en) * 2002-12-04 2004-07-02 Sumitomo Heavy Ind Ltd Control method of chuck temperature
JP2006147612A (en) * 2004-11-16 2006-06-08 Seiko Epson Corp Semiconductor testing device and testing method of semiconductor device
JP2007142301A (en) * 2005-11-22 2007-06-07 Tokyo Seimitsu Co Ltd Prober

Also Published As

Publication number Publication date
KR20240053003A (en) 2024-04-23
TW202331870A (en) 2023-08-01
JP2023046600A (en) 2023-04-05
CN117941047A (en) 2024-04-26

Similar Documents

Publication Publication Date Title
US11340283B2 (en) Testing device
US10295590B2 (en) Probe card with temperature control function, inspection apparatus using the same, and inspection method
EP3799111B1 (en) Inspection device and temperature control method
JP7304722B2 (en) Temperature control device, temperature control method, and inspection device
US20100327891A1 (en) Method and apparatus for thermally conditioning probe cards
JP2007019094A (en) Semiconductor testing device
JP7361624B2 (en) Heating source life estimation system, life estimation method, and inspection device
US20220015193A1 (en) Method for controlling temperature of substrate support and inspection apparatus
CN113325900B (en) Temperature control device, temperature control method, and inspection device
WO2023047999A1 (en) Board mounting mechanism, inspection apparatus, and inspection method
JP7266481B2 (en) Temperature control device, temperature control method, and inspection device
JP7300310B2 (en) Mounting table temperature adjustment method, inspection device, and mounting table
JP2545648B2 (en) Prober
JP2005347612A (en) Wafer tray, wafer burn-in unit, wafer-level burn-in apparatus using same unit, and temperature controlling method of semiconductor wafer
JP7474678B2 (en) Mounting table, inspection device, and inspection method
US20220151026A1 (en) Heater temperature control method, heater, and placement stand
JP2022032473A (en) Inspection method and inspection apparatus
JP2008190907A (en) Temperature testing device and temperature adjustment method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247011980

Country of ref document: KR

Kind code of ref document: A