WO2023047870A1 - 流体制御装置及びガス供給システム - Google Patents

流体制御装置及びガス供給システム Download PDF

Info

Publication number
WO2023047870A1
WO2023047870A1 PCT/JP2022/031745 JP2022031745W WO2023047870A1 WO 2023047870 A1 WO2023047870 A1 WO 2023047870A1 JP 2022031745 W JP2022031745 W JP 2022031745W WO 2023047870 A1 WO2023047870 A1 WO 2023047870A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid control
block
pressure sensor
recess
control device
Prior art date
Application number
PCT/JP2022/031745
Other languages
English (en)
French (fr)
Inventor
和也 赤土
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Publication of WO2023047870A1 publication Critical patent/WO2023047870A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Definitions

  • the present invention relates to a fluid control device and a gas supply system.
  • Patent Document 1 As a conventional fluid control device, as shown in Patent Document 1, a block in which an internal flow path is formed is provided with a fluid control valve and a pressure sensor. are configured to control
  • the above-described block becomes longer in the arrangement direction of the fluid control valves.
  • the gasket for sealing the internal flow path is also designed according to this block, it is also necessary to lengthen it in the direction in which the fluid control valves are arranged.
  • the main object of the present invention is to keep the device compact even when a plurality of fluid control valves are used to control a large flow rate of fluid.
  • a fluid control device includes a block in which an internal flow path is formed, a fluid control valve provided on the device mounting surface of the block, and a pressure sensor for detecting the pressure of the fluid flowing through the internal flow path.
  • a recess is formed in the side surface of the block, and the pressure sensor is accommodated in the recess.
  • the block can be shortened compared to the configuration in which the pressure sensor is mounted on the device mounting surface. be able to. This is because when the pressure sensor is mounted on the equipment mounting surface of the block, a flange is attached to the equipment mounting surface and the pressure sensor is attached to the flange. This is because the above-described flange can be dispensed with if it is, and there is no need to secure the length for attaching this flange.
  • the entire pressure sensor is housed in the recess.
  • the pressure sensor can be accommodated without protruding from the side of the block, so when a plurality of fluid control devices are arranged, the side of each block can be arranged in close contact. You can keep your footprint.
  • a plurality of recesses are formed in one of the mutually opposite side surfaces of the block, and the pressures different from each other are provided in each of the plurality of recesses.
  • a mode in which the sensor is housed can be mentioned.
  • a specific aspect of the side surface is a surface that intersects with the equipment mounting surface and the bottom surface on the back side of the equipment mounting surface.
  • the recesses are formed on the side surfaces facing opposite to each other, and the pressure sensors different from each other are accommodated in each of the plurality of recesses.
  • a gas supply system according to the present invention is characterized by including a plurality of fluid control devices described above. With such a gas supply system, the effects of the fluid control device described above can be obtained.
  • the device can be kept compact, and the number of fluid control valves can vary.
  • a secondary effect such as compatibility between products can also be obtained.
  • FIG. 1 is a schematic diagram showing a state in which a plurality of fluid control devices are arranged according to an embodiment
  • FIG. FIG. 2 is a schematic diagram showing the internal structure of the fluid control device according to the same embodiment
  • the schematic diagram which shows the structure of the fluid control apparatus in other embodiment The schematic diagram which shows the structure of the fluid control apparatus in other embodiment.
  • the schematic diagram which shows the structure of the fluid control apparatus in other embodiment.
  • the schematic diagram which shows the structure of the fluid control apparatus in other embodiment.
  • a fluid control device is used, for example, in a semiconductor manufacturing device to control the flow rate or pressure of a fluid such as a gas for a semiconductor process.
  • a plurality of fluid control devices 100 of this embodiment are arranged in parallel in the width direction Z1 to construct a gas supply system X, and are attached to a common base B via a gasket G. be done.
  • Each fluid control device 100 includes, as shown in FIG. A mass flow controller configured to control the valve opening degree of the fluid control valve 20 so that the measured flow rate output by the flow rate detection mechanism 30 approaches a predetermined set flow rate. be.
  • the block 10 has an elongated shape, and a fluid flowing in from an inflow port P1 formed at one end flows through an internal flow path L formed along the longitudinal direction Z2, and flows through an outflow port P1 formed at the other end. It is configured to flow out from port P2.
  • inflow port P1 and outflow port P2 are formed on the bottom surface 11 of the block 10, as shown in FIG. It is sealed by a gasket G.
  • the block 10 of this embodiment has a substantially rectangular parallelepiped shape with a constant width dimension, and one surface along the longitudinal direction Z2 is mainly composed of fluid devices such as a fluid control valve 20 and a pressure sensor 31, which will be described later. It becomes the device mounting surface 12 to be mounted.
  • the device mounting surface 12 is a surface facing away from the bottom surface 11 described above, as shown in FIGS. 2 and 3 .
  • a surface between the device mounting surface 12 and the bottom surface 11 is referred to as a side surface 13 . That is, the side surface 13 is a surface that intersects the device mounting surface 12 and the bottom surface 11, and extends along the longitudinal direction Z2 of the block 10 in this embodiment in which the block 10 is elongated.
  • the fluid control valve 20 adjusts the valve opening degree by separating and contacting a valve body with respect to a valve seat member.
  • a valve seat member is a piezo valve.
  • the upstream side of the internal flow path L is branched into two parallel flow paths L1, and a fluid control valve 20 is provided in each of these parallel branch flow paths L1.
  • the fluid control valves 20 are hereinafter also referred to as the first fluid control valve 20A and the second fluid control valve 20B).
  • branch flow paths L1 are formed at twisted positions so as not to interfere with each other within the block 10.
  • each branch channel L1 is formed to be shifted in the width direction Z1 of the block 10 .
  • the first fluid control valve 20A and the second fluid control valve 20B are arranged in parallel and provided along the longitudinal direction Z2 of the block 10. As shown in FIG.
  • the respective branched flow paths L1 are merged on the downstream side, and the gas that has passed through the first fluid control valve 20A and the second fluid control valve 20B flows into this merged flow path L2.
  • the internal flow path L is branched into two parallel branch flow paths L1, and the fluid control valve 20 is provided in each of the branch flow paths L1.
  • the controllable flow rate is approximately doubled, making it possible to control a large flow rate of fluid.
  • the width dimension of the block 10 can be kept small.
  • the flow rate detection mechanism 30 is of a differential pressure type, and includes a pair of pressure sensors 31 provided in the internal flow path L and a list provided between these pressure sensors 31. (not shown) and configured to measure the flow rate based on the difference in pressure detected by these pressure sensors 31 .
  • a detection signal indicating the pressure detected by the pair of pressure sensors 31 is output to the control board 40 .
  • a control circuit composed of a CPU, a memory, etc. mounted on the control board 40 calculates the flow rate of the fluid based on the pressure difference indicated by the detection signal, and the calculated flow rate is set in advance.
  • the valve opening degree of the fluid control valve 20 described above is controlled so that
  • a recess 14 is formed in the side surface 13 of the block 10 described above, and at least one pressure sensor 31 is accommodated in this recess 14 .
  • the upstream pressure sensor 31A is provided on the equipment mounting surface 12 of the block 10. More specifically, a flange 32 is attached to the device mounting surface 12, and an upstream pressure sensor 31A is attached to the flange 32. As shown in FIG.
  • the pressure sensor 31B on the downstream side is accommodated in the recess 14 formed in the side surface 13 described above. More specifically, the entirety of the downstream pressure sensor 31B is housed in the recess 14; It is accommodated in the concave portion 14 without protruding out. However, a part of this pressure sensor 31B may protrude slightly from the recess 14 .
  • the concave portion 14 has a cylindrical shape, for example, and is formed halfway in the width direction Z1 of the block 10 without penetrating to the other side surface 13 by recessing one side surface 13. .
  • the block 10 of this embodiment has a protruding portion 15 protruding from the equipment mounting surface 12, and the side surface of the protruding portion 15 is also opened.
  • a recess 14 is formed in the .
  • the pressure sensor 31B on the downstream side is accommodated in the recess 14 with its pressure receiving surface (not shown) parallel to the side surface 13 of the block 10 .
  • the internal space of the recess 14 constitutes a part of the internal flow path L, and the inlet 14a and the outlet 14b of the fluid flowing through the internal flow path L are on the bottom surface or the inner periphery of the recess 14. open on the face.
  • the pressure of the fluid that has flowed into the recess 14 is detected by the pressure sensor 31B accommodated in the recess 14. As shown in FIG.
  • the block 10 of the present embodiment has an opening 16 that communicates with the concave portion 14 and is formed in the device mounting surface 12 described above.
  • the equipment mounting surface 12 is a surface facing away from the bottom surface 11, and the tip surface 151 of the projecting portion 15 is also a part of the equipment mounting surface 12.
  • the opening 16 of the present embodiment is formed by penetrating the tip surface 151 of the projecting portion 15 and the recessed portion 14 .
  • a wiring C connected to the output terminal of the pressure sensor 31B is taken out from the concave portion 14 through the opening 16.
  • the pressure sensor 31B has a plurality of output terminals such as an output terminal for outputting a detection signal indicating the magnitude of the detected pressure. It is electrically connected to the control board 40 via the .
  • a flexible cable such as an FPC, which is formed by bundling a plurality of wirings C connected to a plurality of output terminals respectively, is taken out from the concave portion 14 through the opening 16 and connected to the control board 40.
  • the pressure sensor 31 is placed on the device mounting surface 12.
  • the flange 32 required for mounting can be eliminated, and the block 10 can be shortened in the direction in which the fluid control valves 20 are arranged because there is no need to secure the length for attaching the flange 32 .
  • the wiring C connected to the output terminal of the pressure sensor 31 communicates with the recess 14 and is taken out through the opening 16 formed in the device mounting surface 12, the wiring C can be easily removed from the recess 14. can be taken out, and simplification of the assembly of the device can be achieved.
  • the entire pressure sensor 31 is accommodated in the recess 14, when a plurality of fluid control devices 100 are arranged in parallel in the width direction Z1, the side surfaces 13 of the blocks 10 of the respective fluid control devices 100 are brought into close contact with each other. , and the footprint of the gas supply system X shown in FIG. 1 can be reduced.
  • the present invention is not limited to the above embodiments.
  • one pressure sensor 31 is accommodated in the recess 14 formed in the side surface 13 of the block 10 . 14 may be accommodated.
  • a plurality of recesses 14 may be formed in one of the side surfaces 13 facing opposite to each other, and pressure sensors 31 different from each other may be accommodated in each of the plurality of recesses 14.
  • an upstream pressure sensor 31A and a downstream pressure sensor 31B, which constitute the flow rate detection mechanism 30, are housed in the recess 14, respectively.
  • recesses 14 are formed in each of the side surfaces 13 facing opposite to each other, and pressure sensors 31 different from each other are accommodated in each of the plurality of recesses 14. good.
  • a third pressure sensor 31C is accommodated in the recess 14 separately from the upstream pressure sensor 31A and the downstream pressure sensor 31B.
  • the third pressure sensor 31C can be used as a spare for either the upstream pressure sensor 31A or the downstream pressure sensor 31B, and can be arranged back-to-back with the one pressure sensor 31B, for example.
  • a fourth pressure sensor may be provided as a spare for the other of the upstream pressure sensor 31A and the downstream pressure sensor 31B, and this fourth pressure sensor may also be accommodated in the recess 14. good.
  • the fluid control device 100 may include a single fluid control valve 20. In this case, the size in the longitudinal direction Z2 can be made shorter than in the conventional configuration. .
  • the fluid control device 100 may include three or more fluid control valves 20 (not shown).
  • the fluid control device 100 controls the flow rate of the fluid in the above embodiment, it may control the pressure of the fluid. As the fluid control device 100 in this case, as shown in FIG. be able to.
  • the opening 16 for extracting the wiring C was formed by penetrating the protrusion 15 to the recess 14.
  • the recess 14 that accommodates the pressure sensor 31 is open to the side surface 13 of the block 10 and the equipment mounting surface 12 .
  • the fluid control device 100 may further include a pressure sensor provided upstream of the fluid control valve 20 .
  • the block 10 has been described as having an elongated shape in the above embodiment, the shape is not particularly limited, and the device mounting surface 12 may be square or circular, for example.
  • the device can be kept compact.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Flow Control (AREA)
  • Valve Housings (AREA)

Abstract

大流量の流体を制御するべく複数の流体制御弁を用いる場合であっても、装置をコンパクトに保てるようにするべく、内部流路Lが形成されたブロック10と、ブロック10の機器載置面12に設けられた流体制御弁20と、内部流路Lを流れる流体の圧力を検出する圧力センサ31とを備え、ブロック10の側面13に凹部14が形成されており、その凹部14に圧力センサ31が収容されているようにした。

Description

流体制御装置及びガス供給システム
 本発明は、流体制御装置及びガス供給システムに関するものである。
 従来の流体制御装置としては、特許文献1に示すように、内部流路が形成されたブロックに流体制御弁及び圧力センサを設けて、圧力センサの検出値に基づいて流体制御弁の弁開度を制御するように構成されたものがある。
 このような流体制御装置において、大流量の流体を制御したいといった要望に応えるべく、内部流路をブロック内で分岐させ、それらの分岐流路それぞれに流体制御弁を配置したものがある。
 しかしながら、1つの流体制御弁を備えるものから、複数の流体制御弁を備えるものに設計変更すると、上述したブロックが流体制御弁の配列方向に長くなる。また、内部流路を封止するためのガスケットも、このブロックに合わせて設計されているため、やはり流体制御弁の配列方向に長くする必要が生じる。
 その結果、既存のガスケットを使用することができず、例えば流体制御弁の個数が異なる製品間での互換性を持たせることができなくなるなどといった副次的な問題が生じる。
 なお、こうした問題は、複数の流体制御弁を設ける場合のみならず、種々の要因によりブロックのサイズを長くせざるを得ない場合において共通して生じ得る。
特開2020-079606号公報
 そこで本発明は、大流量の流体を制御するべく複数の流体制御弁を用いる場合であっても、装置をコンパクトに保てるようにすることをその主たる課題とするものである。
 すなわち、本発明に係る流体制御装置は、内部流路が形成されたブロックと、前記ブロックの機器載置面に設けられた流体制御弁と、前記内部流路を流れる流体の圧力を検出する圧力センサとを備え、前記ブロックの側面に凹部が形成されており、その凹部に前記圧力センサが収容されていることを特徴とするものである。
 このように構成された流体制御装置によれば、圧力センサがブロックの側面に形成された凹部に収容されているので、圧力センサを機器載置面に搭載する構成と比べると、ブロックを短くすることができる。
 何故ならば、圧力センサをブロックの機器載置面に搭載する場合は、機器載置面にフランジを取り付けて、そのフランジに圧力センサを取り付けるのに対して、ブロックの側面に形成された凹部収容する場合は、上述したフランジを不要にすることができ、このフランジを取り付ける長さを確保する必要がなくなるからである。
 これにより、大流量の流体を制御するべく複数の流体制御弁を用いる場合であっても、装置をコンパクトに保つことが可能となる。その結果、1つの流体制御弁を備えるものから、複数の流体制御弁を備えるものに設計変更する場合であっても、ブロックを流体制御弁の配列方向において同じ長さに保つことができ、このブロックやガスケットとして既存のものを用いることができる。
 ブロックの側面の凹部に圧力センサを収容させる場合、この圧力センサから信号を取り出すための配線の取り回しが煩雑になり、装置の組み立ての困難性を招き兼ねない。
 そこで、前記ブロックには、前記凹部に連通するとともに、前記ブロックの前記機器載置面に開口が形成されており、前記圧力センサの出力端子に接続された配線が、前記開口を通って前記凹部から取り出されていることが好ましい。
 これならば、配線を凹部から無理なく取り出すことができ、装置の組み立ての簡素化を図れる。
 前記圧力センサの全体が前記凹部に収容されていることが好ましい。
 これならば、圧力センサがブロックの側面からはみ出ることなく収容されるので、例えば複数の流体制御装置を配置する場合に、それぞれのブロックの側面を密接させて配置することができ、例えばこれまでのフットプリントを保つことができる。
 上述した作用効果がより顕著に発揮される実施態様としては、前記機器載置面に複数の前記流体制御弁が設けられている態様を挙げることができる。
 このような構成であれば、背景技術で述べたように大流量の流体を制御できるようにしつつも、装置をコンパクトに保つことができる。
 複数の圧力センサを凹部に収容するための具体的な実施態様としては、前記ブロックの互いに反対を向く側面の一方に複数の前記凹部が形成されており、それら複数の凹部それぞれに互いに異なる前記圧力センサが収容されていること態様を挙げることができる。
 前記側面の具体的な態様は、前記機器載置面及び当該機器載置面の裏側の底面と交差する面である。
 また、別の実施態様としては、互いに反対を向く前記側面それぞれに前記凹部が形成されており、それら複数の凹部それぞれに互いに異なる前記圧力センサが収容されている態様を挙げることができる。
 本発明に係るガス供給システムは、上述した流体制御装置を複数備えることを特徴とするものである。
 このようなガス供給システムであれば、上述した流体制御装置による作用効果を奏し得る。
 このように構成した本発明によれば、大流量の流体を制御するべく複数の流体制御弁を用いる場合であっても、装置をコンパクトに保つことが可能となり、ひいては流体制御弁の個数が異なる製品間での互換性を持たせるといった副次的な効果をも得られる。
一実施形態における流体制御装置が複数配置された状態を示す模式図。 同実施形態における流体制御装置の内部構造を示す模式図。 同実施形態における圧力センサが凹部に収容されている状態を示す模式図。 その他の実施形態における流体制御装置の構成を示す模式図。 その他の実施形態における流体制御装置の構成を示す模式図。 その他の実施形態における流体制御装置の構成を示す模式図。 その他の実施形態における流体制御装置の構成を示す模式図。 その他の実施形態における流体制御装置の内部構造を示す模式図。
 以下に、本発明に係る流体制御装置の一実施形態について、図面を参照して説明する。
 流体制御装置は、例えば半導体製造装置に用いられて半導体プロセス用のガス等の流体の流量又は圧力を制御するものである。
 本実施形態の流体制御装置100は、図1に示すように、幅方向Z1に複数並列に並べられることでガス供給システムXを構築するものであり、共通のベースBにガスケットGを介して取り付けられる。
 各流体制御装置100は、図2に示すように、内部流路Lが形成されたブロック10と、内部流路Lを流れる流体を制御する流体制御弁20と、内部流路Lを流れる流体の流量をセンシングする流量検知機構30とを備え、流量検知機構30の出力する測定流量を予め定めた設定流量に近づけるように流体制御弁20の弁開度を制御するように構成されたマスフローコントローラである。
 ブロック10は、長尺状をなし、一端側に形成された流入ポートP1から流入した流体が、長手方向Z2に沿って形成された内部流路Lを流れて、他端側に形成された流出ポートP2から流出するように構成されている。
 これらの流入ポートP1及び流出ポートP2は、図2に示すように、ブロック10の底面11に形成されており、流体制御装置100がガス供給システムXを構築している状態において、図1に示すガスケットGによりシールされている。
 本実施形態のブロック10は、一定の幅寸法を有する略直方体形状をなすものであり、長手方向Z2に沿った1つの面が、後述する流体制御弁20や圧力センサ31などの流体機器が主として搭載される機器載置面12となる。機器載置面12は、この実施形態では図2及び図3に示すように、上述した底面11とは反対を向く面である。
 また、以下では、機器載置面12と底面11との間の面を側面13と称する。すなわち、この側面13は、機器載置面12及び底面11と交差する面であり、ブロック10が長尺状をなす本実施形態においては、ブロック10の長手方向Z2に沿って延びる面である。
 流体制御弁20は、弁座部材に対して弁体が離接して弁開度が調整されるものであり、具体的には内部流路L上に設けられた例えばノーマルクローズタイプ又はノーマルオープンタイプのピエゾバルブである。
 本実施形態では、図2に示すように、内部流路Lの上流側は2つの並列な流路L1に分岐されており、これらの並列な分岐流路L1それぞれに流体制御弁20が設けられている(以下、これらの流体制御弁20を第1流体制御弁20Aと第2流体制御弁20Bともいう)。
 これらの分岐流路L1は、ブロック10内で干渉しないようにねじれの位置に形成されている。言い換えれば、各分岐流路L1は、ブロック10の幅方向Z1にずらして形成されている。これにより、第1流体制御弁20A及び第2流体制御弁20Bは、並列に配置されるとともに、ブロック10の長手方向Z2に沿って設けられている。
 そして、それぞれの分岐流路L1は下流側で合流しており、この合流流路L2に第1流体制御弁20A及び第2流体制御弁20Bそれぞれを通過したガスが流れ込む。
 このように、内部流路Lを並列な2本の分岐流路L1に分岐させて、それぞれの分岐流路L1に流体制御弁20を設けているので、単一の流体制御弁20を設ける構成に比べると、制御可能な流量が約2倍になり、大流量の流体の制御が可能となる。
 しかも、第1流体制御弁20A及び第2流体制御弁20Bをブロック10の長手方向Z2に沿って配置しているので、ブロック10の幅寸法を小さく保つことができる。
 流量検知機構30は、図2及び図3に示すように、差圧式のものであり、内部流路Lに設けられた一対の圧力センサ31と、これらの圧力センサ31の間に設けられたリストリクタ(不図示)とを有し、これらの圧力センサ31により検出された圧力の差に基づいて流量を測定するように構成してある。
 具体的には、図2に示すように、一対の圧力センサ31により検出された圧力を示す検出信号が制御基板40に出力される。そして、この制御基板40に搭載されているCPUやメモリ等から構成される制御回路が、検出信号の示す圧力の差に基づき流体の流量を算出するとともに、この算出流量が予め設定された設定流量となるように、上述した流体制御弁20の弁開度を制御する。
 なお、上述した流体制御弁20、流量検知機構30、及び制御基板40は、図2に示すように、共通のケーシング50内に収容されている。
 かかる構成において、図3に示すように、上述したブロック10の側面13には凹部14が形成されており、この凹部14に少なくとも1つの圧力センサ31が収容されている。
 この実施形態では、上流側の圧力センサ31Aは、ブロック10の機器載置面12に設けられている。より具体的には、機器載置面12にフランジ32が取り付けられており、このフランジ32に上流側の圧力センサ31Aが取り付けられている。
 一方、下流側の圧力センサ31Bは、上述した側面13に形成された凹部14に収容されている。より具体的には、下流側の圧力センサ31Bの全体が凹部14に収容されており、言い換えれば、この実施形態の場合には、下流側の圧力センサ31Bは、ブロック10の側面13から側方にはみ出さずに凹部14に収容されている。ただし、この圧力センサ31Bの一部が、凹部14から僅かにはみ出していても構わない。
 この凹部14は、図3に示すように、例えば円柱状をなし、一方の側面13を窪ませて、他方の側面13まで貫通することなく、ブロック10の幅方向Z1の途中まで形成されている。
 より具体的に説明すると、本実施形態のブロック10は、図3に示すように、機器載置面12から突出する突出部15を有しており、この突出部15の側面にも開口するように凹部14が形成されている。
 そして、下流側の圧力センサ31Bは、その受圧面(不図示)がブロック10の側面13と平行になる姿勢で凹部14に収容されている。
 凹部14の内部空間は、図2に示すように、内部流路Lの一部を構成しており、内部流路Lを流れる流体の導入口14a及び導出口14bが凹部14の底面又は内側周面に開口している。これにより、凹部14に流れ込んだ流体の圧力が、この凹部14に収容されている圧力センサ31Bにより検出されることになる。
 さらに、本実施形態のブロック10には、図2及び3に示すように、凹部14に連通するとともに、上述した機器載置面12に開口16が形成されている。
 より具体的に説明すると、機器載置面12は、上述した通り、底面11と反対を向く面であって、上述した突出部15の先端面151もここでは機器載置面12の一部であり、本実施形態の開口16は、この突出部15の先端面151と凹部14とを貫通させることにより形成されている。
 そして、圧力センサ31Bの出力端子に接続された配線Cが、この開口16を通って凹部14から取り出されている。
 より具体的に説明すると、圧力センサ31Bは、例えば検出圧力の大きさを示す検出信号を出力する出力端子など、複数本の出力端子を有しており、これらの出力端子それぞれが、配線Cを介して制御基板40に電気的に接続されている。
 この実施形態では、複数の出力端子にそれぞれに接続された複数の配線Cが束ねられてなるFPC等のフレキシブルケーブルが、開口16を介して凹部14から取り出されて、制御基板40に接続されている。
 このように構成された流体制御装置100によれば、少なくとも1つの圧力センサ31がブロック10の側面13に形成された凹部14に収容されているので、この圧力センサ31を機器載置面12に搭載する場合に必要なフランジ32を不要にすることができ、このフランジ32を取り付ける長さを確保する必要がない分、ブロック10を流体制御弁20の配列方向において短くすることができる。
 これにより、本実施形態のように2つの流体制御弁20を用いて大流量の流体を制御可能にしつつも、装置をコンパクトに保つことが可能となる。その結果、単一の流体制御弁20を備えるものから、2つの流体制御弁20を備えるものに設計変更した場合であっても、ブロック10を同じ長さに保つことができ、このブロック10やガスケットGとして既存のものを用いることができる。
 また、圧力センサ31の出力端子に接続された配線Cが、凹部14に連通するとともに機器載置面12に形成された開口16を介して取り出されているので、配線Cを凹部14から無理なく出すことができ、装置の組み立ての簡素化を図れる。
 さらに、圧力センサ31の全体が凹部14に収容されているので、複数の流体制御装置100を幅方向Z1に並列配置する際に、それらの流体制御装置100それぞれのブロック10の側面13を密接させることができ、図1に示すガス供給システムXのフットプリントを小さくすることができる。
 なお、本発明は前記実施形態に限られない。
 例えば、前記実施形態では、1つの圧力センサ31がブロック10の側面13に形成された凹部14に収容される態様を説明したが、複数の圧力センサ31がブロック10の側面13に形成された凹部14に収容されていても良い。
 その一例としては、図4に示すように、互いに反対を向く側面13の一方に複数の凹部14が形成されており、それら複数の凹部14それぞれに互いに異なる圧力センサ31が収容されていても良い。ここでは、流量検知機構30を構成する上流側の圧力センサ31A及び下流側の圧力センサ31Bが、それぞれ凹部14に収容されている。
 また、別の一例としては、図5に示すように、互いに反対を向く側面13のそれぞれに凹部14が形成されており、それら複数の凹部14それぞれに互いに異なる圧力センサ31が収容されていても良い。ここでは、上流側の圧力センサ31A及び下流側の圧力センサ31Bとは別に、第3の圧力センサ31Cを凹部14に収容してある。
 なお、この第3の圧力センサ31Cは、上流側の圧力センサ31A又は下流側の圧力センサ31Bの一方の予備として用いることができ、例えばこの一方の圧力センサ31Bと背中合わせに配置させることができる。
 また、図示していないが、上流側の圧力センサ31A又は下流側の圧力センサ31Bの他方の予備となる第4の圧力センサを設けて、この第4の圧力センサも凹部14に収容させても良い。
 流体制御装置100としては、図6に示すように、単一の流体制御弁20を備えるものであっても良く、この場合は、従来の構成よりも長手方向Z2のサイズを短くすることができる。
 なお、流体制御装置100としては、図示していないが、3つ以上の流体制御弁20を備えるものであっても良い。
 また、流体制御装置100としては、前記実施形態では流体の流量を制御するものであったが、流体の圧力を制御するものであっても良い。
 この場合の流体制御装置100としては、図7に示すように、単一の圧力センサ31を備え、その圧力センサ31がブロック10の側面13に形成された凹部14に収容されている構成を挙げることができる。
 加えて、前記実施形態では、配線Cを取り出すための開口16は、突出部15を凹部14まで貫通させることで形成されていたが、この開口16としては、図8に示すように、ブロック13の側面13を凹ませることで形成されていても良い。この場合、圧力センサ31を収容する凹部14が、ブロック10の側面13及び機器載置面12に開口していることになる。
 さらに、流体制御装置100としては、流体制御弁20よりも上流側に設けられた圧力センサをさらに備えていても良い。
 また、ブロック10は、前記実施形態では長尺状をなすものとして説明したが、形状は特に限られるものではなく、例えば機器載置面12が正方形状や円形状のものであっても良い。
 その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてよいし、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形や実施形態の組合せが可能であるのは言うまでもない。
 本発明によれば、大流量の流体を制御するべく複数の流体制御弁を用いる場合であっても、装置をコンパクトに保つことができる。
100・・・流体制御装置
G  ・・・ガスケット
L  ・・・内部流路
10 ・・・ブロック
11 ・・・底面
12 ・・・機器載置面
13 ・・・側面
14 ・・・凹部
16 ・・・開口
Z2 ・・・長手方向
20 ・・・流体制御弁
30 ・・・流量検知機構
31 ・・・圧力センサ
C  ・・・配線

Claims (8)

  1.  内部流路が形成されたブロックと、
     前記ブロックの機器載置面に設けられた流体制御弁と、
     前記内部流路を流れる流体の圧力を検出する圧力センサとを備え、
     前記ブロックの側面に凹部が形成されており、その凹部に前記圧力センサが収容されている、流体制御装置。
  2.  前記ブロックには、前記凹部に連通するとともに、前記ブロックの前記機器載置面に開口が形成されており、
     前記圧力センサの出力端子に接続された配線が、前記開口を通って前記凹部から取り出されている、請求項1記載の流体制御装置。
  3.  前記圧力センサの全体が前記凹部に収容されている、請求項1又は2記載の流体制御装置。
  4.  前記機器載置面に複数の前記流体制御弁が設けられている、請求項1乃至3のうち何れか一項に記載の流体制御装置。
  5.  前記ブロックの互いに反対を向く側面の一方に複数の前記凹部が形成されており、それら複数の凹部それぞれに互いに異なる前記圧力センサが収容されている、請求項1乃至4のうち何れか一項に記載の流体制御装置。
  6.  互いに反対を向く前記側面それぞれに前記凹部が形成されており、それら複数の凹部それぞれに互いに異なる前記圧力センサが収容されている、請求項1乃至5のうち何れか一項に記載の流体制御装置。
  7.  前記側面が、前記機器載置面及び当該機器載置面の裏側の底面と交差する面である、請求項1乃至6のうち何れか一項に記載の流体制御装置。
  8.  請求項1乃至7のうち何れか一項に記載の流体制御装置を複数備える、ガス供給システム。
PCT/JP2022/031745 2021-09-22 2022-08-23 流体制御装置及びガス供給システム WO2023047870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-153934 2021-09-22
JP2021153934 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023047870A1 true WO2023047870A1 (ja) 2023-03-30

Family

ID=85720521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031745 WO2023047870A1 (ja) 2021-09-22 2022-08-23 流体制御装置及びガス供給システム

Country Status (1)

Country Link
WO (1) WO2023047870A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242940A (ja) * 1999-11-23 2001-09-07 Nt Internatl Inc 流体制御モジュール
JP2005149075A (ja) * 2003-11-14 2005-06-09 Fujikin Inc 流体制御装置
US20200124196A1 (en) * 2018-10-19 2020-04-23 Robert Bosch Gmbh Hydraulic Distributor Block, Hydraulic Assembly, and Method
JP2020107110A (ja) * 2018-12-27 2020-07-09 株式会社堀場エステック 流体制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242940A (ja) * 1999-11-23 2001-09-07 Nt Internatl Inc 流体制御モジュール
JP2005149075A (ja) * 2003-11-14 2005-06-09 Fujikin Inc 流体制御装置
US20200124196A1 (en) * 2018-10-19 2020-04-23 Robert Bosch Gmbh Hydraulic Distributor Block, Hydraulic Assembly, and Method
JP2020107110A (ja) * 2018-12-27 2020-07-09 株式会社堀場エステック 流体制御装置

Similar Documents

Publication Publication Date Title
KR101152086B1 (ko) 듀얼 압력 센서
KR102271591B1 (ko) 차압 센서
KR102276887B1 (ko) 차압 감지 다이를 위한 패키지
JP7495759B2 (ja) バルブ、及びバルブの異常診断方法
CN108496064B (zh) 能够测定流量的气体供给装置、流量计以及流量测定方法
US6826966B1 (en) Flow sensor package
US20130087230A1 (en) Fluid mechanism, support member constituting fluid mechanism and fluid control system
US7814797B2 (en) Pressure sensor apparatus and pressure sensor built-in fluid control equipment
JP2005315740A (ja) 空気流量測定装置
KR102294823B1 (ko) 중계기
CN113390555A (zh) 压差感测基座
US20170153651A1 (en) Flow rate measuring unit and flow rate control unit
EP3104134A1 (en) Gas flowmeter
WO2023047870A1 (ja) 流体制御装置及びガス供給システム
US6662664B2 (en) Electronic pressure sensing device
JP5669583B2 (ja) 流量算出システム、集積型ガスパネル装置及びベースプレート
US9995607B2 (en) Flow rate measuring unit and flow rate control unit
JP4835180B2 (ja) 圧力センサ
JP6082082B2 (ja) 流体機構及び該流体機構を構成する支持部材
KR101993208B1 (ko) 유량 측정 장치
JP2013083282A (ja) 流体機構及び該流体機構を構成する支持部材
WO2021049512A1 (ja) 測定装置
US20230332714A1 (en) Fluid control device
JP2023021773A (ja) 流体制御装置、及び流体制御装置の製造方法
WO2022176739A1 (ja) センサパッケージ、センサモジュール、及びセンサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE