WO2023045216A1 - 呼吸机自动计量校准方法、装置及存储介质 - Google Patents

呼吸机自动计量校准方法、装置及存储介质 Download PDF

Info

Publication number
WO2023045216A1
WO2023045216A1 PCT/CN2022/075353 CN2022075353W WO2023045216A1 WO 2023045216 A1 WO2023045216 A1 WO 2023045216A1 CN 2022075353 W CN2022075353 W CN 2022075353W WO 2023045216 A1 WO2023045216 A1 WO 2023045216A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
parameter
ventilator
working
measurement
Prior art date
Application number
PCT/CN2022/075353
Other languages
English (en)
French (fr)
Inventor
卢瑞祥
王文丹
张晓庆
陈春芳
杜江齐
钟晓茹
索彦彦
Original Assignee
深圳市计量质量检测研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市计量质量检测研究院 filed Critical 深圳市计量质量检测研究院
Publication of WO2023045216A1 publication Critical patent/WO2023045216A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/02Equipment for testing the apparatus

Definitions

  • the invention relates to the technical field of medical equipment, in particular to a ventilator automatic measurement and calibration method, device and storage medium.
  • a medical ventilator is a device that can replace, control or change people's normal physiological breathing, increase lung ventilation, improve respiratory function, reduce respiratory work consumption, and save heart reserve capacity. It is mainly used for respiratory failure and respiratory support treatment. And first aid resuscitation treatment, is a very important class of medical equipment.
  • the existing ventilator calibration device can obtain the gas management parameters of the ventilator patient through the pressure sensor, flow sensor, etc., without connecting the communication port of the ventilator, it is impossible to read or set the ventilation mode and operating parameters of the ventilator.
  • the ventilation mode and operating parameters of the ventilator need to be set for each calibration item, and the "ventilator monitoring value” at this time is read from the display screen of the ventilator by manual interpretation. , and compared with the "tester measurement value” measured by the calibration device, and finally manually judge whether the measurement error of the calibration item is qualified, "ventilator set value", “ventilator monitoring value”, “tester measurement value " and other calibration data also need to be recorded manually.
  • the main purpose of the present invention is to provide a ventilator automatic measurement and calibration method, device and storage medium to at least solve the technical problem of low calibration efficiency mentioned in the background art.
  • a method for automatic measurement and calibration of a ventilator is proposed, which is applied to a calibration device, and the method includes the following steps:
  • the first working parameter, the ventilation mode, and the second working parameter of the simulated breathing device are respectively set according to the calibration strategy; the simulated breathing device is connected to the ventilator;
  • the first measurement parameter is a parameter measured by the calibration device
  • the second measurement parameter is a parameter monitored inside the ventilator
  • a calibration result is output according to the ventilation mode, the first operating parameter, the second operating parameter, the first measurement parameter and the second measurement parameter.
  • a second aspect of the present invention provides an electronic device, including a memory, a processor, and a bus;
  • the bus is used to realize connection and communication between the memory and the processor
  • said processor is operable to execute a computer program stored on said memory
  • a third aspect of the present invention provides a computer-readable storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the ventilator automatic measurement and calibration method provided in the first aspect is implemented in the steps.
  • the ventilator automatic measurement and calibration method, device and storage medium provided by the present invention send a calibration permission request to the ventilator, determine the working state according to the calibration instruction fed back by the ventilator, and in the working state according to the calibration strategy respectively Set the first working parameter of the ventilator, the ventilation mode, and the second working parameter of the simulated breathing device, and obtain the first measurement parameter and the second measurement parameter, and the first measurement parameter is measured by the calibration device
  • the second measurement parameter is a parameter monitored inside the ventilator, and a calibration result is output according to the ventilation mode, the first working parameter, the second working parameter, the first measurement parameter and the second measurement parameter.
  • the calibration device of the present invention sends a calibration permission request to the ventilator, and when receiving the calibration instruction fed back by the ventilator, obtains the remote control right of the ventilator, thereby realizing automation and intelligence in the ventilator calibration process , greatly improving the efficiency of ventilator metering calibration, and reducing the result error rate caused by human error in the manual calibration process.
  • the calibration result can be automatically issued, and the digitalization and informatization of the measurement and calibration of the medical ventilator can be realized.
  • Fig. 1 is a schematic flow chart of the ventilator automatic measurement and calibration method provided by the first embodiment of the present invention
  • Fig. 2 is a schematic flow chart of the ventilator automatic measurement and calibration method provided by the second embodiment of the present invention
  • Fig. 3 is a schematic flow chart of the ventilator automatic measurement and calibration method provided by the third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the connection between the ventilator automatic metering and calibration device, the ventilator and the simulated breathing device provided by the fourth embodiment of the present invention
  • FIG. 5 is a schematic diagram of the connection between the ventilator automatic metering and calibration device, the ventilator and the simulated breathing device provided by the fifth embodiment of the present invention
  • Fig. 6 is a schematic diagram of the connection between the ventilator automatic measurement and calibration device, the ventilator and the simulated breathing device provided by the sixth embodiment of the present invention.
  • FIG. 7 is a block diagram of an electronic device provided by a seventh embodiment of the present invention.
  • first may be called a second component
  • second component may similarly be called a first component.
  • the term "and/or” refers to any one or more combination of related items and described items.
  • the calibration device 1 shown in Figures 4-7 is provided with a first communication interface inside. It can be connected with the third communication interface of the simulated breathing apparatus 3 and the second communication interface of the ventilator 2 respectively.
  • the first communication interface is mainly based on RS232 serial communication interface, but it also supports multiple communication methods, including WIFI, NFC interface, Bluetooth and other wireless interfaces, RS485 serial communication port, RJ45 Ethernet interface, USB interface, etc.
  • the simulated breathing device may be a simulated lung, which is an artificial structure for simulating lung breathing.
  • the first embodiment of the present invention provides a ventilator automatic measurement calibration method, including the following steps:
  • Step S10 sending a calibration permission request to the ventilator 2;
  • the connection establishment signal is a signal transmitted after the wired connection is established between the simulated breathing device 3 and the calibration device 1, that is, after the first communication interface of the calibration device 1 is connected to the third communication interface of the simulated breathing device 3, the simulated breathing device 3.
  • a connection establishment signal is generated, and the connection establishment signal is transmitted to the calibration device 1 through the third communication interface and the first communication interface, and then the calibration device 1 can automatically recognize that the ventilator 2 needs to be calibrated based on receiving the connection establishment signal,
  • the calibration device 1 sends a calibration permission request to the ventilator 2 to perform the calibration request.
  • Step S20 receiving the calibration indication command fed back by the ventilator 2 according to the calibration permission request, and determining the working state according to the calibration indication command;
  • the ventilator 2 when the calibration permission request is transmitted from the calibration device 1 to the ventilator 2, the ventilator 2 feeds back the calibration instruction instruction according to the calibration instruction instruction, and the calibration instruction instruction passes through the second communication interface of the ventilator 2, the first communication interface, and the first communication interface.
  • the interface is transmitted to the calibration device 1, and the calibration instruction includes an authorization instruction or a non-authorization instruction, and the ventilator determines different working states according to different authorization instructions.
  • the fully automatic working state can be determined according to the authorization instruction, and when the calibration device 1 is determined to be in the fully automatic working state, the calibration procedure is automatically executed.
  • Step S30 in the working state, respectively set the first working parameter of the ventilator 2, the ventilation mode, and the second working parameter of the simulated breathing device 3 according to the calibration strategy; the simulated breathing device 3 is connected to the ventilator 2;
  • the calibration strategy is the calibration information that is pre-stored in the calibration device 1 and needs to be used during the calibration process.
  • the calibration information can be formulated with reference to the relevant regulations in JJF1234 "Ventilator Calibration Specifications", and the calibration information includes multiple calibration items and related setting information corresponding to each calibration item.
  • the first working parameters include tidal volume VT, ventilator ratio I:E, inspiratory oxygen concentration FiO2, inspiratory pressure level IPL, positive end-expiratory pressure PEEP and respiratory frequency f, and the above-mentioned parameters are performed by the ventilator 2. Operating parameters at work.
  • the ventilation mode includes a PCV mode and a VCV mode, and the PCV mode and the VCV mode are two different ventilation modes when the ventilator 2 is working.
  • the second working parameter includes airway resistance and compliance, and airway resistance and compliance are two parameters for simulating the working of the breathing apparatus 3 .
  • the calibration device 1 automatically switches the first working parameter and ventilation mode of the ventilator 2 under test according to the calibration strategy in a fully automatic working state.
  • connection between the simulated breathing device 3 and the ventilator 2 means that a ventilation pipeline is formed between the simulated breathing device 3 and the ventilator 2 .
  • Step S40 obtaining a first measurement parameter and a second measurement parameter, the first measurement parameter is a parameter measured by the calibration device 1, and the second measurement parameter is a parameter monitored internally by the ventilator 2;
  • the second measurement parameter is the parameter read by the first sensor inside the ventilator 2 , that is, the second measurement parameter is the gas flow parameter obtained by the ventilator 2 itself monitoring the ventilation duct.
  • the first measurement parameter is the gas flow parameter measured by the second sensor on the calibration device 1 , the second sensor is placed in the gas pipeline, and the gas pipeline is a gas communication pipeline between the ventilator 2 and the simulated breathing device 3 .
  • Step S50 outputting a calibration result according to the ventilation mode, the first working parameter, the second working parameter, the first measurement parameter and the second measurement parameter.
  • the calibration device 1 sequentially records and stores the ventilation mode, the first working parameter, the second working parameter, the first measurement parameter and the second measurement parameter acquired during the test of each calibration item, and automatically follows the JJF1234 " According to the requirements of Ventilator Calibration Specifications, the measurement error of each calibration item is automatically calculated and a compliance judgment is made.
  • the calibration device 1 screen displays the calibration results of each calibration item in sequence.
  • the calibration results include a single data report and a total report.
  • the single data report is the report corresponding to each calibration item, and the total report is the report corresponding to all calibration items. reports, each report will contain at least a ventilation mode, a first working parameter, a second working parameter, a first measurement parameter and a second measurement parameter.
  • the present invention is aimed at the special application scenario of the measurement and calibration of the medical ventilator, combined with the specific requirements of JJF1234 "Ventilator Calibration Specification", using computer automatic control and measurement technology, and using the second communication interface of the ventilator 2 itself, Control the ventilator 2 to meet the requirements of the calibration process to automatically set the ventilation mode and operating parameters, and read the first measurement parameter and the second measurement parameter synchronously, realizing the automation and intelligence of the ventilator 2 calibration, and greatly improving the ventilator 2 measurement Improve the work efficiency of calibration, and reduce the result error rate caused by human error in the manual calibration process.
  • a digital calibration certificate can be automatically issued conveniently and connected with information systems such as LIMS, so as to realize the digitalization and informatization of the measurement and calibration of medical ventilators.
  • Fig. 2 shows the method for automatic measurement and calibration of the ventilator provided by the second embodiment of the present invention.
  • the second embodiment is a detailed embodiment of the first embodiment, and the ventilator automatic measurement and calibration method provided by the second embodiment includes:
  • Step S100 sending a calibration permission request to the ventilator 2;
  • Step S101 receiving the calibration indication command fed back by the ventilator according to the calibration permission request, and determining the working state according to the calibration indication command;
  • the working state is a fully automatic working state; that is, the fully automatic working state is determined according to the authorization instruction;
  • Step S102 determining each calibration item and related setting information corresponding to each calibration item in a fully automatic working state
  • Step S103 according to the relevant setting information, set the first working parameter of the ventilator, the ventilation mode and the second working parameter of the simulated breathing device;
  • Step S104 acquiring a first measurement parameter and a second measurement parameter
  • Step S105 outputting a calibration result according to the ventilation mode, the first working parameter, the second working parameter, the first measurement parameter and the second measurement parameter.
  • the working state determined by the calibration device 1 is a fully automatic working state.
  • the calibration device 1 determines a calibration item and related setting information corresponding to a calibration item according to the calibration strategy in a fully automatic working state, and according to the related setting information, the first working parameter of the ventilator, the ventilation mode and the simulated breathing device
  • the second working parameter of the ventilator 2 is automatically set, and at the same time, the calibration device 1 automatically switches the first working parameter and the ventilation mode of the ventilator 2 under test according to the calibration strategy in the fully automatic working state, so that when the ventilation mode, the second Calibration results are automatically output when the first working parameter, the second working parameter, the first measuring parameter and the second measuring parameter are in operation.
  • the calibration device 1 when the calibration device 1 is in a fully automatic working state, the user does not need to personally input parameters to set the first working parameter of the ventilator 2, the ventilation mode, and the second working parameter of the simulated breathing device, which are mainly performed by the calibration device 1 Automated settings.
  • the authorization instruction carries remote control information.
  • the ventilation mode of the ventilator 2 and the second working parameter of the simulated breathing device 3 according to the calibration strategy in the working state, include:
  • the remote control information is used to prompt the working mode of the ventilator 2 to be adjusted to the mode to be calibrated;
  • the first communication interface is the interface on the calibration device 1 .
  • the ventilator 2 when the ventilator 2 feeds back an authorization instruction, it indicates that the ventilator 2 is a ventilator 2 that can be calibrated. Since the authorization instruction fed back by the ventilator 2 will carry remote control information, the remote The control information can be a calibration password, then the calibration device 1 sends the calibration password to the second communication interface through the first communication interface, that is, the working mode of the ventilator 2 can be adjusted to the mode to be calibrated through the calibration password, so as to realize remote The mode adjustment operation is to automatically set the first working parameter and the ventilation mode involved in the calibration process of the ventilator 2 .
  • the ventilation mode and the second working parameter of the simulated breathing device 3 before setting the first working parameter of the ventilator 2, the ventilation mode and the second working parameter of the simulated breathing device 3 according to the relevant setting information, it includes:
  • the verification request information is sent to the third communication interface of the simulated breathing device 3 through the first communication interface, and the verification request information is a signal automatically generated after the wired connection is established between the first communication interface of the calibration device 1 and the third communication interface of the simulated breathing device 3 ;
  • the verification success signal is a signal fed back by the simulated breathing device 3 according to the verification request information
  • the step of setting the first working parameter of the ventilator 2 , the ventilation mode and the second working parameter of the simulated breathing device 3 according to the relevant setting information is executed.
  • the first communication interface of the calibration device 1 when the first communication interface of the calibration device 1 is connected to the third communication interface of the simulated breathing device 3, verification request information will be automatically generated, and the verification request information will be automatically generated by the calibration device 1 through the first communication interface, the third communication interface, and the third communication interface.
  • the communication interface is sent to the simulated breathing device 3 for verification.
  • the function of the verification request information is to verify whether the simulated breathing device 3 is a simulated breathing device that can be automatically calibrated.
  • the simulated breathing device 3 feeds back a verification success signal according to the verification request information
  • the verification success signal is transmitted to the calibration device 1 through the third communication interface and the first communication interface, that is, the calibration device 1 can detect the verification success signal, then the calibration device 1 can perform the automatic setting step in the automatic calibration process, and also That is, the first working parameter of the ventilator 2, the ventilation mode, and the second working parameter of the simulated breathing apparatus 3 are set according to relevant setting information.
  • the second working parameters of the simulated breathing device can be automatically set according to relevant setting information;
  • the simulated breathing device 3 is a simulated lung without the third communication interface, the user needs to input information on the parameter setting interface of the simulated breathing device 3 to manually set the second working parameter.
  • the working state is a semi-automatic working state, that is, the semi-automatic working state is determined according to the non-authorizing permission instruction;
  • Step S111 determining each calibration item and related setting information corresponding to each calibration item in a fully automatic working state
  • Step S112 setting the first working parameter and the ventilation mode of the ventilator 2 according to the relevant setting parameters
  • Step S113 sending the first control information to the simulated breathing device 3, the first control information is used to trigger the simulated breathing device 3 to output a parameter setting interface, and the parameter setting interface is used to receive the information input by the user to adjust the simulated breathing device 3
  • the second working parameter is set;
  • Step S114 acquiring the first measurement parameter and the second measurement parameter
  • Step S115 outputting a calibration result according to the ventilation mode, the first working parameter, the second working parameter, the first measurement parameter and the second measurement parameter.
  • the working state determined by the calibration device 1 is a semi-automatic working state.
  • the calibration device 1 automatically sets the first working parameters and the ventilation mode of the ventilator 2 according to the relevant setting parameters, and then sends the first control information to the simulated breathing device 3, prompting the simulated breathing device 3 to output a parameter setting interface, when After the user inputs information on the parameter setting interface of the simulated breathing device 3 , the manual setting of the second working parameter of the simulated breathing device 3 is completed. That is, when the feedback of the ventilator 2 is the non-authorization command, it indicates that the ventilator 2 is a ventilator that has output the calibration result, and no automatic calibration is required.
  • the way to calibrate is to further calibrate. That is, when the calibration device 1 is in a semi-automatic working state, a part of the parameter setting needs to be automatically set by the calibration device 1, and another part of the parameters is manually set by the user. Specifically: the user needs to personally input the parameters to simulate the breathing device 3 The second working parameter of the ventilator 2 is set manually, and the first working parameter and the ventilation mode of the ventilator 2 are set automatically.
  • obtaining the first measurement parameter and the second measurement parameter includes:
  • the ventilator 2 Send an acquisition request to the ventilator 2, and receive the second measurement parameter of the first sensor fed back by the ventilator 2 according to the acquisition request; the acquisition request is used for the ventilator 2 to send the second measurement parameter read by the first sensor to the calibration Device 1, the first sensor is arranged inside the ventilator 2;
  • the first measurement value read by the second sensor is obtained, and the first measurement parameter is calculated according to the first measurement value.
  • the second sensor is connected to the calibration device 1 , and the second sensor is arranged in the gas pipeline.
  • the first measurement parameter is the measurement parameter obtained after calculating the first measurement value obtained by the second sensor of the calibration device 1, and the second measurement parameter is obtained directly from the first sensor inside the ventilator 2.
  • the parameters to read are the measurement parameter obtained after calculating the first measurement value obtained by the second sensor of the calibration device 1, and the second measurement parameter is obtained directly from the first sensor inside the ventilator 2.
  • Fig. 3 shows a ventilator automatic measurement and calibration method provided by the third embodiment of the present invention.
  • the third embodiment specifically refines the step of outputting calibration results according to the ventilation mode, the first working parameter, the second working parameter, the first measurement parameter and the second measurement parameter in the second embodiment, and the above steps include:
  • Step S1051 determining the first standard parameter and the second standard parameter corresponding to the ventilation module, the first working parameter and the second working parameter according to the relevant setting information;
  • the first standard parameter and the second standard parameter corresponding to the ventilation module, the first working parameter, and the second working parameter can be determined according to the calibration strategy .
  • the relevant setting information contained in the calibration strategy can be set by referring to the relevant regulations of JJF1234 "Ventilator Calibration Specification", that is to say, the relevant setting information includes multiple sets of ventilation modules, first working parameters, and second working parameters. , the first standard parameter, and the second standard parameter, so the ventilation module, the first working parameter, and the second working parameter corresponding to the ventilation module, the first working parameter, and the second working parameter can be filtered out according to the obtained ventilation module, the first working parameter, and the second working parameter.
  • the first standard parameter and the second standard parameter can be set by referring to the relevant regulations of JJF1234 "Ventilator Calibration Specification"
  • Step S1052 calculating a first result value according to the first measurement parameter and the first standard parameter, and calculating a second result value according to the second measurement parameter and the second standard parameter; wherein, the first result value is the first measurement parameter The difference obtained by subtracting the first standard parameter, and the second result value is the difference obtained by subtracting the second standard parameter from the second measured parameter.
  • Step S1053 if both the first result value and the second result value are less than the preset judgment threshold, then generate a calibration qualified flag
  • Step S1054 outputting the ventilation module, the first working parameter, the second working parameter, the first measurement parameter, the second measurement parameter and the calibration pass mark as a calibration result.
  • the calibration device 1 calibrated Ventilator 2 meets the calibration evaluation requirements of JJF1234 "Ventilator Calibration Specifications"
  • the ventilation module, the first working parameter, the second work parameter, the first measurement parameter, the second measurement parameter and the calibration pass mark Output as the calibration result, and synchronously transmit the ventilation module, the first working parameter, the second working parameter, the first measurement parameter, the second measurement parameter, the calibration qualification mark and the ventilator number to the LIMS information system to realize the measurement of the medical ventilator Calibration digitization and informatization.
  • LIMS is the abbreviation of the English word Laboratory Information Management System, which means laboratory information management.
  • the first connection method is shown in Figure 4.
  • the second sensor of the calibration device 1 includes and is not limited to a gas flow sensor, a gas pressure sensor, a temperature sensor, and an oxygen concentration sensor.
  • the above-mentioned second sensor is arranged in the gas pipeline, and the gas pipeline directly Connected between the simulated breathing device 3 and the ventilator 2.
  • the calibration device 1 also performs the following steps: respectively converting the first gas flow and the second gas flow to obtain corresponding measurement parameters, grouping and correlating multiple measurement parameters according to the same pipeline, and detecting each measurement parameter in each group Whether there are measurement parameters greater than the preset standard threshold, when it is determined that there are measurement parameters greater than the preset standard threshold, the measurement parameters greater than the preset standard threshold are filtered from each group to obtain multiple sets of standard measurement parameters, and multiple groups
  • the standard measurement parameters are synthesized to obtain the first measurement value. Therefore, by analyzing the two gas flows, the most accurate data is finally selected based on the multi-source monitoring mechanism to improve the detection accuracy of the calibration device 1 for the data in the gas pipeline, which is also helpful for the subsequent calibration of the calibration device 1 .
  • the second connection method is shown in Figure 5.
  • the gas pipeline is divided into an inspiratory pipeline and an exhalation pipeline.
  • One end of the inspiratory pipeline and one end of the exhalation pipeline are both connected to the ventilator 2.
  • One end and the other end of the exhalation pipeline are combined to form a placement area for placing the second sensor, and the placement area is connected to the simulated breathing apparatus 3 .
  • the third connection method is shown in Figure 6.
  • the gas pipeline is divided into an inspiratory pipeline and an exhalation pipeline.
  • One end of the inspiratory pipeline and one end of the exhalation pipeline are both connected to the ventilator 2.
  • One end and the other end of the exhalation pipeline are connected to the simulated breathing apparatus 3 via a branch interface (a Y-shaped interface with two paths).
  • Fig. 7 shows an electronic device provided by a seventh embodiment of the present invention, which can be used to implement the method for automatic measurement and calibration of a ventilator in any of the foregoing embodiments.
  • the electronic device includes:
  • the memory 601 and the processor 602 are connected through the bus 603 .
  • the processor 602 executes the computer program, the method for automatic metering and calibration of the ventilator in the foregoing embodiments is realized.
  • the number of processors may be one or more.
  • the memory 601 can be a high-speed random access memory (RAM, Random Access Memory) memory, or a non-volatile memory (non-volatile memory), such as a disk memory.
  • RAM Random Access Memory
  • non-volatile memory non-volatile memory
  • the memory 601 is used to store executable program codes, and the processor 602 is coupled to the memory 601 .
  • the embodiment of the present application also provides a computer-readable storage medium, which may be provided in the electronic device in each of the above-mentioned embodiments, and the computer-readable storage medium may be a memory.
  • a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the method for measuring human body bioelectrical impedance in the foregoing embodiments is realized.
  • the computer storage medium can also be a USB flash drive, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), RAM, a magnetic disk or an optical disk, and other media that can store program codes.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • a module described as a separate component may or may not be physically separated, and a component shown as a module may or may not be a physical module, that is, it may be located in one place, or may also be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the integrated modules are realized in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a readable memory
  • the medium includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the above-mentioned readable storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼吸机自动计量校准方法、装置及存储介质,通过发送校准许可请求至呼吸机(2),根据呼吸机(2)所反馈的校准指示指令确定工作状态,在工作状态下根据校准策略分别对呼吸机(2)的第一工作参数、通气模式以及模拟呼吸装置(3)的第二工作参数进行设定,获取第一测量参数和第二测量参数,根据通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数输出校准结果。校准装置(1)通过发送校准许可请求至呼吸机(2),当接收到呼吸机(2)所反馈的校准指示指令时,即获取呼吸机(2)的远程控制权,由此在进行呼吸机(2)校准过程中实现自动化和智能化,大幅提升了呼吸机(2)计量校准的工作效率,同时降低了手动校准过程中由于人为操作失误而导致的结果错误率。

Description

呼吸机自动计量校准方法、装置及存储介质 技术领域
本发明涉及医疗设备技术领域,具体涉及呼吸机自动计量校准方法、装置及存储介质。
背景技术
目前,医用呼吸机是一种能代替、控制或改变人的正常生理呼吸,增加肺通气量,改善呼吸功能,减轻呼吸功消耗,节约心脏储备能力的装置,主要用于呼吸衰竭、呼吸支持治疗和急救复苏治疗,是一类非常重要的医疗设备。
由于医用呼吸机使用的安全性和可靠性直接关系到患者的生命健康,医疗机构必须对呼吸机使用过程中的性能进行周期性的检测和计量校准。按照WS/T 655-2019《呼吸机安全管理》标准的要求,临床在用的呼吸机应每年按照JJF1234《呼吸机校准规范》的要求进行定期计量校准,每次计量校准都涉及多个校准项目。
已有的呼吸机校准装置可通过压力传感器、流量传感器等获取呼吸机患者气体管理中的参数,未连接呼吸机的通讯口,无法读取更无法设置呼吸机的通气模式和运行参数。根据JJF1234《呼吸机校准规范》的要求,每个校准项目均需设置呼吸机的通气模式和运行参数,并通过人工判读的方式从呼吸机的显示屏幕中读取此时“呼吸机监测值”,并与校准装置测得的“测试仪测量值”进行比对,最后人工判定该校准项目的测量误差是否合格,“呼吸机设定值”、“呼吸机监测值”、“测试仪测量值”等校准数据也都需要通过人工方法进行记录。
由于在校准过程中需要对被测呼吸机进行多个通气模式和工作参数的设定,部分校准项目还需要设置模拟肺的顺应性和气道阻力等参数,校准过程需要大量的人工操作,无法实现校准过程的自动化和数字化,无法直接与LIMS等信息化***连接,无法自动出具校准证书,存在校准效率低的技术问题。以及人工操作被测呼吸机、人工读取被测呼吸机的数据以及校准数据的人工记录和计算,这些人为因素也会导致校准结果出现一定的错误率。
因此,现有技术有待于改善。
发明内容
本发明的主要目的在于提出一种呼吸机自动计量校准方法、装置及存储介质,以至少解决背景技术中所提及校准效率低的技术问题。
本发明的第一方面,提出了一种呼吸机自动计量校准方法,应用于校准装置中,所述方法包括以下步骤:
发送校准许可请求至呼吸机;
接收所述呼吸机根据所述校准许可请求所反馈的校准指示指令,根据所述校准指示指令确定工作状态;
在所述工作状态下根据校准策略分别对所述呼吸机的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行设定;所述模拟呼吸装置与所述呼吸机连接;
获取第一测量参数和第二测量参数,所述第一测量参数为所述校准装置测量得出的参数,所述第二测量参数为所述呼吸机内部监测的参数;
根据所述通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数输出校准结果。
本发明的第二方面,提供了一种电子装置,包括存储器、处理器及总线;
所述总线用于实现所述存储器、处理器之间的连接通信;
所述处理器用于执行存储在所述存储器上的计算机程序;
所述处理器执行所述计算机程序时,实现第一方面提供的呼吸机自动计量校准方法中的步骤。
本发明的第三方面,提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现第一方面提供的呼吸机自动计量校准方法中的步骤。
本发明提供的呼吸机自动计量校准方法、装置及存储介质,通过发送校准许可请求至呼吸机,根据所述呼吸机所反馈的校准指示指令确定工作状态,在所述工作状态下根据校准策略分别对所述呼吸机的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行设定,获取第一测量参数和第二测量参数,所述第一测量参数为所述校准装置测量得出的参数,所述第二测量参数为所述呼吸机内部监测的参数,根据所述通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数输出校准结果。本发明的校准装 置通过发送校准许可请求至呼吸机,当接收到呼吸机所反馈的校准指示指令时,即获取呼吸机的远程控制权,由此在进行呼吸机校准过程中实现自动化和智能化,大幅提升了呼吸机计量校准的工作效率,并降低了手动校准过程中由于人为操作失误而导致的结果错误率。通过该自动计量校准方法和装置,可以自动出具校准结果,实现医用呼吸机计量校准的数字化和信息化。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例提供的呼吸机自动计量校准方法的流程示意图;
图2为本发明第二实施例提供的呼吸机自动计量校准方法的流程示意图;
图3为本发明第三实施例提供的呼吸机自动计量校准方法的流程示意图;
图4为本发明第四实施例提供呼吸机自动计量校准装置与呼吸机、模拟呼吸装置进行连接的示意图;
图5为本发明第五实施例提供呼吸机自动计量校准装置与呼吸机、模拟呼吸装置进行连接的示意图;
图6为本发明第六实施例提供呼吸机自动计量校准装置与呼吸机、模拟呼吸装置进行连接的示意图;
图7为本发明第七实施例提供的电子装置的模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要注意的是,相关术语如“第一”、“第二”等可以用于描述各种组件,但是这些术语并不限制该组件。这些术语仅用于区分一个组件和另一组件。例如,不脱离本发明的范围,第一组件可以被称为第二组件,并且第二组件类似地也可以被称为第一组件。术语“和/或”是指相关项和描述项的任 何一个或多个的组合。
如在背景技术中所述,大多数呼吸机校准装置在校准过程中,未连接呼吸机的通讯口,无法读取更无法设置呼吸机的通气模式和运行参数。因此,现有校准装置在校准过程中需要按照校准步骤的要求频繁操作被测呼吸机,无法实现校准过程的自动化,存在校准效率低的技术问题。
为了至少解决背景技术中所提及校准效率低的技术问题,请参见图4-图7所示的校准装置1,本发明提供的校准装置1内部设有第一通讯接口,该第一通讯接口可分别与模拟呼吸装置3的第三通讯接口、呼吸机2上的第二通讯接口连接。该第一通讯接口以RS232串行通讯接口为主,但也支持多种通讯方式,包括WIFI、NFC接口、蓝牙等无线接口,RS485串行通讯口、RJ45以太网接口、USB接口等,这些接口之间的连接所达到的作用是实现呼吸机2、模拟呼吸装置3与校准装置1之间的双向数据通讯,从而获取校准装置1发送的指令和数据,并将被测的呼吸机数据发送至校准装置1。其中,模拟呼吸装置可以是模拟肺,是一种人工制造的模拟肺部呼吸的结构。
如图1所示,本发明的第一实施例提供了呼吸机自动计量校准方法,包括以下步骤:
步骤S10,发送校准许可请求至呼吸机2;
在本实施例中,检测是否接收到建立连接信号,若接收到所述建立连接信号才执行步骤S10的发送校准许可请求至呼吸机。其中,建立连接信号由模拟呼吸装置3与校准装置1建立有线连接后所传输的信号,即当校准装置1的第一通讯接口与模拟呼吸装置3的第三通讯接口连接后,该模拟呼吸装置3会产生建立连接信号,该建立连接信号经第三通讯接口、第一通讯接口传输至校准装置1,则校准装置1基于接收到建立连接信号能够自动识别出需要对呼吸机2进行校准操作,校准装置1发送校准许可请求至呼吸机2,以进行校准请求。
步骤S20,接收呼吸机2根据校准许可请求所反馈的校准指示指令,根据校准指示指令确定工作状态;
在本实施例中,当校准许可请求由校准装置1传输至呼吸机2时,呼吸机2根据校准指示指令反馈校准指示指令,该校准指示指令经呼吸机2的第二通讯接口、第一通讯接口传输至校准装置1,校准指示指令包括授权许可指 令或者不授权许可指令,呼吸机会根据不同的许可指令确定不同的工作状态。例如,可以根据授权许可指令确定全自动工作状态,当校准装置1确定为全自动工作状态时则自动执行校准程序。
步骤S30,在工作状态下根据校准策略分别对呼吸机2的第一工作参数、通气模式以及模拟呼吸装置3的第二工作参数进行设定;所述模拟呼吸装置3与呼吸机2连接;
在本实施例中,校准策略为预存于校准装置1内的校准过程中所需要利用到的校准信息。校准信息可以参考JJF1234《呼吸机校准规范》中的相关规定来制定,该校准信息包括多个校准项目以及与每个校准项目所对应的相关设定信息。其中,第一工作参数包括潮气量VT、呼吸机比I:E、吸气氧浓度FiO2、吸气压力水平IPL、呼气末正压PEEP和呼吸频率f,上述各参数是呼吸机2在进行工作时的运行参数。通气模式包括PCV模式和VCV模式,PCV模式和VCV模式是呼吸机2在进行工作时的两个不同通气模式。第二工作参数包括气道阻力和顺应性,气道阻力和顺应性是模拟呼吸装置3工作时的两个参数。具体的,除了进行设定之外,校准装置1在全自动工作状态下根据校准策略会对被测的呼吸机2的第一工作参数和通气模式进行自动切换。
其中,所述模拟呼吸装置3与呼吸机2连接表示模拟呼吸装置3与呼吸机2之间形成有通气管道。
步骤S40,获取第一测量参数和第二测量参数,第一测量参数为校准装置1测量得出的参数,第二测量参数为呼吸机2内部监测的参数;
在本实施例中,第二测量参数是呼吸机2内部的第一传感器所读取到的参数,即该第二测量参数是呼吸机2本身对于通气管道进行监控所得到的气体流量参数。第一测量参数为校准装置1上的第二传感器测量得出的气体流量参数,该第二传感器置于气体管道内,该气体管道为呼吸机2与模拟呼吸装置3之间气体流通的管道。
步骤S50,根据通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数输出校准结果。
在本实施中,校准装置1依次对各校准项目测试过程中获取的通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数进行记录和存储,并自动按照JJF1234《呼吸机校准规范》的要求,自动计算各校准项目的 测量误差并做出符合性判定。在自动计量校准过程中,校准装置1屏幕依次显示各校准项目的校准结果,该校准结果包括单项数据报告和总报告,单项数据报告为每个校准项目对应的报告,总报告为所有校准项目对应的报告,每个报告会至少含有通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数。在校准装置1输出校准结果后,可将校准结果同步至LIMS信息***。
在上述实施例中,本发明针对医用呼吸机计量校准的特殊应用场景,结合JJF1234《呼吸机校准规范》的具体要求,利用计算机自动控制与测量技术,利用呼吸机2自身的第二通讯接口,控制呼吸机2配合校准过程的要求自动设置通气模式和运行参数,并同步读取第一测量参数和第二测量参数,实现了呼吸机2校准的自动化和智能化,大幅提升了呼吸机2计量校准的工作效率,并降低了手动校准过程中由于人为操作失误而导致的结果错误率。通过该自动计量校准方法和装置,可以方便地自动出具数字校准证书并与LIMS等信息***连接,实现医用呼吸机计量校准的数字化和信息化。
图2示出本发明的第二实施例所提供的呼吸机自动计量校准方法。第二实施例是第一实施例中的细化实施例,第二实施例所提供的呼吸机自动计量校准方法包括:
步骤S100,发送校准许可请求至呼吸机2;
步骤S101,接收呼吸机根据校准许可请求所反馈的校准指示指令,根据校准指示指令确定工作状态;
在校准指示指令为授权许可指令时,工作状态为全自动工作状态;即根据授权许可指令确定全自动工作状态;
步骤S102,在全自动工作状态下确定各校准项目以及与各校准项目对应的相关设定信息;
步骤S103,根据所述相关设定信息对呼吸机的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行设定;
步骤S104,获取第一测量参数和第二测量参数;
步骤S105,根据通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数输出校准结果。
在本实施例中,当校准指示指令为授权许可指令,则校准装置1所确定 的工作状态为全自动工作状态。校准装置1在全自动工作状态下根据校准策略确定一个校准项目以及与一个校准项目对应的相关设定信息,根据所述相关设定信息对呼吸机的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行自动化设定,同时校准装置1在全自动工作状态下根据校准策略会对被测的呼吸机2的第一工作参数和通气模式进行自动切换,从而当得到通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数时自动输出校准结果。即当校准装置1处于全自动工作状态时,用户无需亲自输入参数以对呼吸机2的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行设定,主要由校准装置1来进行自动化设定。
在本实施例中,授权许可指令携带有远程控制信息,在工作状态下根据校准策略分别对呼吸机2的第一工作参数、通气模式以及模拟呼吸装置3的第二工作参数进行设定之前,包括:
经第一通讯接口发送远程控制信息至呼吸机2的第二通讯接口,远程控制信息用于促使呼吸机2的工作模式调整为待校准模式;所述第一通讯接口为校准装置1上的接口。
在具体使用场景下,当呼吸机2所反馈的是授权许可指令,表明呼吸机2是可以进行校准的呼吸机2,由于呼吸机2所反馈的授权许可指令会携带有远程控制信息,该远程控制信息可以是校准密码,则校准装置1将校准密码经第一通讯接口发送至第二通讯接口,即能够通过该校准密码将呼吸机2的工作模式调整为待校准模式,以便于实现远程的模式调节操作,即自动化地对于呼吸机2在校准过程中所需要涉及到的第一工作参数、通气模式进行设定。
在本实施例中,根据相关设定信息对呼吸机2的第一工作参数、通气模式以及模拟呼吸装置3的第二工作参数进行设定之前,包括:
经第一通讯接口发送验证请求信息至模拟呼吸装置3的第三通讯接口,验证请求信息为校准装置1的第一通讯接口与模拟呼吸装置3的第三通讯接口建立有线连接后自动产生的信号;
检测是否接收到验证成功信号,验证成功信号为模拟呼吸装置3根据验证请求信息所反馈的信号;
若接收到验证成功信号,则执行根据相关设定信息对呼吸机2的第一工作参数、通气模式以及模拟呼吸装置3的第二工作参数进行设定的步骤。
在具体使用场景下,当校准装置1的第一通讯接口与模拟呼吸装置3的第三通讯接口连接时会自动产生验证请求信息,校准装置1将该验证请求信息经第一通讯接口、第三通讯接口发送至模拟呼吸装置3以进行验证,该验证请求信息的作用是验证模拟呼吸装置3是否为可自动校准的模拟呼吸装置,显然当模拟呼吸装置3根据验证请求信息反馈验证成功信号时,该验证成功信号经第三通讯接口、第一通讯接口传输至校准装置1,也即校准装置1能够检测到该验证成功信号,则校准装置1可以执行自动化校准过程中的自动设定步骤,也即执行根据相关设定信息对呼吸机2的第一工作参数、通气模式以及模拟呼吸装,3的第二工作参数进行设定。
需要说明的是,当所接入的模拟呼吸装置3为可通过第三通讯接口进行控制的模拟肺时,可以根据相关设定信息对模拟呼吸装置的第二工作参数进行自动设定;当所接入的模拟呼吸装置3为不具有第三通讯接口的模拟肺时,需用户在模拟呼吸装置3上的参数设定界面上输入信息以对于第二工作参数进行手动设定。
该第二实施例所提供的呼吸机自动计量校准方法还包括:
在校准指示指令为不授权许可指令时,工作状态为半自动工作状态,即根据不授权许可指令确定半自动工作状态;
步骤S111,在全自动工作状态下确定各校准项目以及与各校准项目对应的相关设定信息;
步骤S112,根据相关设定参数对呼吸机2的第一工作参数、通气模式进行设定;
步骤S113,发送第一控制信息至模拟呼吸装置3,第一控制信息用于触发模拟呼吸装置3输出参数设定界面,参数设定界面用于接收用户所输入的信息以对模拟呼吸装置3的第二工作参数进行设定;
步骤S114,获取第一测量参数和第二测量参数;
步骤S115,根据通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数输出校准结果。
在本实施例中,当校准指示指令为不授权许可指令,则校准装置1所确定的工作状态为半自动工作状态。校准装置1根据相关设定参数对呼吸机2的第一工作参数、通气模式进行自动设定,然后发送第一控制信息至模拟呼 吸装置3,促使该模拟呼吸装置3输出参数设定界面,当用户在模拟呼吸装置3的参数设定界面上输入信息后,则完成对于模拟呼吸装置3的第二工作参数的手动设定。即当呼吸机2所反馈的是不授权许可指令时,表明表明呼吸机2是已输出校准结果的呼吸机,无需再进行自动校准,如果还需要进一步精细校准只能由用户亲自参与,通过手动校准的方式进一步校准。即当校准装置1处于半自动工作状态时,一部分的参数设定需要由校准装置1来自动设定,另一部分参数由用户来手动设定,具体的:用户需要亲自输入参数以对模拟呼吸装置3的第二工作参数进行手动设定,呼吸机2的第一工作参数、通气模式进行自动化设定。
具体的,获取第一测量参数和第二测量参数包括:
发送获取请求至呼吸机2,接收呼吸机2根据获取请求所反馈的第一传感器的第二测量参数;该获取请求用于呼吸机2将第一传感器所读取的第二测量参数发送至校准装置1,该第一传感器设置于所述呼吸机2内部;
获取第二传感器所读取的第一测量值,根据第一测量值计算第一测量参数,第二传感器与校准装置1连接,第二传感器设置于气体管道内。
在本实施例中,第一测量参数是对校准装置1的第二传感器所获得的第一测量值进行计算后所得到的测量参数,第二测量参数是由呼吸机2内部的第一传感器直接读取的参数。
图3示出本发明的第三实施例所提供的呼吸机自动计量校准方法。该第三实施例对于第二实施例中的根据通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数输出校准结果步骤进行具体细化,上述步骤包括:
步骤S1051,根据相关设定信息确定与通气模块、第一工作参数、第二工作参数对应的第一标准参数以及第二标准参数;
在本实施例中,获得通气模块、第一工作参数、第二工作参数后,根据校准策略可以确定与通气模块、第一工作参数、第二工作参数对应的第一标准参数以及第二标准参数。由于校准策略中所包含的相关设定信息是可参考JJF1234《呼吸机校准规范》的相关规定来设定,也就是说相关设定信息包含多组通气模块、第一工作参数、第二工作参数、第一标准参数、第二标准参数相匹配的数据,所以可以根据所得到的通气模块、第一工作参数、第二工 作参数筛选出与通气模块、第一工作参数、第二工作参数对应的第一标准参数以及第二标准参数。
步骤S1052,根据第一测量参数与第一标准参数计算第一结果值,根据所述第二测量参数与所述第二标准参数计算第二结果值;其中,第一结果值为第一测量参数减去第一标准参数所得的差值,第二结果值为第二测量参数减去第二标准参数所得的差值。
步骤S1053,若第一结果值和第二结果值均小于预设判定阈值,则生成校准合格标识;
步骤S1054,将通气模块、第一工作参数、第二工作参数、第一测量参数、第二测量参数和校准合格标识作为校准结果输出。
本实施例中,当第一测量参数减去第一标准参数所得的差值、第二测量参数减去第二标准参数所得的差值均小于预设判定阈值,表明经校准装置1所校准的呼吸机2满足JJF1234《呼吸机校准规范》的校准评定规定,则生成校准合格标识,最后将通气模块、第一工作参数、第二工作参数、第一测量参数、第二测量参数和校准合格标识作为校准结果输出,并将通气模块、第一工作参数、第二工作参数、第一测量参数、第二测量参数、校准合格标识以及呼吸机编号同步传输至LIMS信息***连接,实现医用呼吸机计量校准的数字化和信息化。其中,LIMS是英文单词Laboratory Information Management System的缩写,表示实验室信息管理。
如图4-图6,分别为实施例4-实施例6所提供的三种关于呼吸机2、校准装置1和模拟呼吸装置3之间的连接方式。
第一种连接方式如图4所示,校准装置1的第二传感器包括且不限于气体流量传感器、气体压力传感器、温度传感器、氧浓度传感器,上述第二传感器设置于气体管道内,气体管道直接接通于模拟呼吸装置3和呼吸机2之间。
具体的,该校准装置1的第二传感器中的气体流量传感器的数量为两个,分别为采集第一气体流量的第一气体流量传感器以及采集第二气体流量的第二气体流量传感器。该校准装置1还执行以下步骤:分别对第一气体流量、第二气体流量进行转化以得到对应的测量参数,根据多个测量参数按照同一管道进行分组关联,检测各组中的每个测量参数是否存在大于预设标准阈值 的测量参数,在确定存在大于预设标准阈值的测量参数时,将大于预设标准阈值的测量参数从各组中进行过滤,得到多组标准测量参数,将多组标准测量参数进行合成,得到第一测量值。由此通过对于两个气体流量进行分析,最终基于多源监测机制从中选择最精准的数据来达到提高校准装置1对于气体管道内的数据的检测准确度,对于校准装置1的后续校准也有所帮助。
第二种连接方式如图5所示,气体管路分为吸气管路和呼气管路,吸气管路一端和呼气管路一端均连接于呼吸机2上,吸气管路另一端和呼气管路另一端合并成一路形成用于放置第二传感器的放置区域,该放置区域连接于模拟呼吸装置3上。
第三种连接方式如图6所示,气体管路分为吸气管路和呼气管路,吸气管路一端和呼气管路一端均连接于呼吸机2上,吸气管路另一端和呼气管路另一端经分路接口(具有两路的Y型接口)连接于模拟呼吸装置3上。
其中,在上述三种连接方式中,当模拟呼吸装置3上没有第三通讯接口时,在对模拟呼吸装置3进行第二工作参数设定时需要用户进行手动设定。
图7示出了本发明第七实施例所提供的电子装置,该电子装置可用于实现前述任一实施例中的呼吸机自动计量校准方法。该电子装置包括:
存储器601、处理器602、总线603及存储在存储器601上并可在处理器602上运行的计算机程序,存储器601和处理器602通过总线603连接。处理器602执行该计算机程序时,实现前述实施例中的呼吸机自动计量校准方法。其中,处理器的数量可以是一个或多个。
存储器601可以是高速随机存取记忆体(RAM,Random Access Memory)存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。存储器601用于存储可执行程序代码,处理器602与存储器601耦合。
进一步的,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以是设置于上述各实施例中的电子装置中,该计算机可读存储介质可以是存储器。
该计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现前述实施例中的人体生物电阻抗测量方法。进一步的,该计算机可存储介质还可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、RAM、 磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属 于优选实施例,所涉及的动作和模块并不一定都是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种呼吸机自动计量校准方法,应用于校准装置中,其特征在于,所述方法包括以下步骤:
    发送校准许可请求至呼吸机;
    接收所述呼吸机根据所述校准许可请求所反馈的校准指示指令,根据所述校准指示指令确定工作状态;
    在所述工作状态下根据校准策略分别对所述呼吸机的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行设定;所述模拟呼吸装置与所述呼吸机连接;
    获取第一测量参数和第二测量参数,所述第一测量参数为所述校准装置测量得出的参数,所述第二测量参数为所述呼吸机内部监测的参数;
    根据所述通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数输出校准结果。
  2. 如权利要求1所述呼吸机自动计量校准方法,其特征在于,在所述校准指示指令为授权许可指令时,所述工作状态为全自动工作状态;
    所述校准策略包括校准项目以及与所述校准项目所对应的相关设定信息;
    所述在所述工作状态下根据校准策略分别对所述呼吸机的第一工作参数和所述模拟呼吸装置的第二工作参数进行设定包括:
    在所述全自动工作状态下确定各校准项目以及与各所述校准项目对应的相关设定信息;
    根据所述相关设定信息对所述呼吸机的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行设定。
  3. 如权利要求2所述呼吸机自动计量校准方法,其特征在于,所述根据所述通气模式、第一工作参数、第二工作参数、第一测量参数和第二测量参数输出校准结果包括:
    根据所述相关设定信息确定与所述通气模块、第一工作参数、第二工作参数对应的第一标准参数以及第二标准参数;
    根据所述第一测量参数与所述第一标准参数计算第一结果值,根据所述第二测量参数与所述第二标准参数计算第二结果值;
    若所述第一结果值和所述第二结果值均小于预设判定阈值,则生成校准合格标识;
    将所述通气模块、第一工作参数、第二工作参数、第一测量参数、第二测量参数和校准合格标识作为所述校准结果输出。
  4. 如权利要求2所述呼吸机自动计量校准方法,其特征在于,在所述发送校准许可请求至呼吸机之前,包括:
    检测是否接收到建立连接信号,所述建立连接信号由所述模拟呼吸装置与所述校准装置建立有线连接后所传输的信号;
    若接收到所述建立连接信号,则执行所述发送校准许可请求至呼吸机的步骤。
  5. 如权利要求3所述呼吸机自动计量校准方法,其特征在于,所述获取第一测量参数和第二测量参数包括:
    发送获取请求至所述呼吸机,接收所述呼吸机根据所述获取请求所反馈的第一传感器的第二测量参数;所述第一传感器设置于所述呼吸机内部;
    获取第二传感器所读取的第一测量值,根据所述第一测量值计算所述第一测量参数;所述第二传感器与所述校准装置连接,所述第二传感器设置于气体管道内。
  6. 如权利要求2所述呼吸机自动计量校准方法,其特征在于,所述授权许可指令携带有远程控制信息;
    所述在所述工作状态下根据校准策略分别对所述呼吸机的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行设定之前,包括:
    经第一通讯接口发送所述远程控制信息至所述呼吸机的第二通讯接口,所述远程控制信息用于控制所述呼吸机将工作模式调整为待校准模式;所述第一通讯接口为所述校准装置上的接口。
  7. 如权利要求4所述呼吸机自动计量校准方法,其特征在于,所述根据所述相关设定信息对所述呼吸机的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行设定之前,包括:
    经第一通讯接口发送验证请求信息至所述模拟呼吸装置的第三通讯接口,所述验证请求信息为所述校准装置的第一通讯接口与所述模拟呼吸装置的第三通讯接口建立有线连接后自动产生的信号;
    检测是否接收到验证成功信号,所述验证成功信号为所述模拟呼吸装置根据所述验证请求信息所反馈的信号;
    若接收到所述验证成功信号,则执行所述根据所述相关设定信息对所述呼吸机的第一工作参数、通气模式以及模拟呼吸装置的第二工作参数进行设定的步骤。
  8. 如权利要求2-7任一项所述呼吸机自动计量校准方法,其特征在于,在所述校准指示指令为不授权许可指令时,所述工作状态为半自动工作状态;
    所述在所述工作状态下根据校准策略分别对所述呼吸机的第一工作参数以及模拟呼吸装置的第二工作参数进行设定包括:
    在所述半自动工作状态下确定各校准项目以及与各所述校准项目对应的相关设定信息;
    根据所述相关设定信息对所述呼吸机的第一工作参数进行设定;
    发送第一控制信息至模拟呼吸装置,所述第一控制信息用于触发所述模拟呼吸装置输出参数设定界面,所述参数设定界面用于接收用户所输入的信息以对所述模拟呼吸装置的第二工作参数进行设定。
  9. 一种电子装置,其特征在于,包括存储器、处理器及总线;
    所述总线用于实现所述存储器、处理器之间的连接通信;
    所述处理器用于执行存储在所述存储器上的计算机程序;
    所述处理器执行所述计算机程序时,实现权利要求1至8中任意一项所述方法中的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于, 所述计算机程序被处理器执行时,实现权利要求1至8中的任意一项所述方法中的步骤。
PCT/CN2022/075353 2021-09-27 2022-02-07 呼吸机自动计量校准方法、装置及存储介质 WO2023045216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111141882.XA CN114028665B (zh) 2021-09-27 2021-09-27 呼吸机自动计量校准方法、装置及存储介质
CN202111141882.X 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023045216A1 true WO2023045216A1 (zh) 2023-03-30

Family

ID=80140339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075353 WO2023045216A1 (zh) 2021-09-27 2022-02-07 呼吸机自动计量校准方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN114028665B (zh)
WO (1) WO2023045216A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115970118B (zh) * 2022-12-22 2023-08-04 宁波市计量测试研究院(宁波新材料检验检测中心) 呼吸湿化治疗仪校准装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114290A (zh) * 2009-12-31 2011-07-06 北京谊安医疗***股份有限公司 呼吸机的检测方法、设备及***
US20120197578A1 (en) * 2011-01-31 2012-08-02 Nellcor Puritan Bennett Llc Systems And Methods For Simulation And Software Testing
CN202814726U (zh) * 2012-09-21 2013-03-20 沈阳新松医疗科技股份有限公司 一种用于无创呼吸机生产线自动化检测的设备
CN104225745A (zh) * 2014-10-17 2014-12-24 中国计量科学研究院 呼吸机测试仪校准装置
CN106310472A (zh) * 2015-06-23 2017-01-11 湖南明康中锦医疗科技发展有限公司 呼吸机校准设备及呼吸机校准***
EP3384948A1 (en) * 2017-04-04 2018-10-10 Medec Benelux NV An automated flow sensor calibration system and method
CN109771755A (zh) * 2017-11-10 2019-05-21 北京航天长峰股份有限公司 一种呼吸机自动标定方法
CN111457963A (zh) * 2020-05-13 2020-07-28 北京中关村水木医疗科技有限公司 用于呼吸机的测试***及测试方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974418B1 (en) * 2005-01-19 2005-12-13 The General Electric Company Automatic calibration of blood volume status indicators
CN104784793B (zh) * 2015-04-14 2017-10-10 深圳市科曼医疗设备有限公司 呼吸机及呼吸机的氧传感器自动校准方法
CN108496137B (zh) * 2017-04-21 2022-05-31 深圳市大疆灵眸科技有限公司 遥控器、云台及云台控制方法、装置、***
CN107274720A (zh) * 2017-05-05 2017-10-20 广州汽车集团股份有限公司 一种自动驾驶汽车及多车协同控制方法、***
CN108325037B (zh) * 2017-12-20 2021-08-13 北京惠泽智信科技有限公司 呼吸机质量控制方法及装置
CN110801563B (zh) * 2019-11-05 2023-05-23 塔城市人民医院 一种呼吸机及呼吸机的氧传感器自动校准方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114290A (zh) * 2009-12-31 2011-07-06 北京谊安医疗***股份有限公司 呼吸机的检测方法、设备及***
US20120197578A1 (en) * 2011-01-31 2012-08-02 Nellcor Puritan Bennett Llc Systems And Methods For Simulation And Software Testing
CN202814726U (zh) * 2012-09-21 2013-03-20 沈阳新松医疗科技股份有限公司 一种用于无创呼吸机生产线自动化检测的设备
CN104225745A (zh) * 2014-10-17 2014-12-24 中国计量科学研究院 呼吸机测试仪校准装置
CN106310472A (zh) * 2015-06-23 2017-01-11 湖南明康中锦医疗科技发展有限公司 呼吸机校准设备及呼吸机校准***
EP3384948A1 (en) * 2017-04-04 2018-10-10 Medec Benelux NV An automated flow sensor calibration system and method
CN109771755A (zh) * 2017-11-10 2019-05-21 北京航天长峰股份有限公司 一种呼吸机自动标定方法
CN111457963A (zh) * 2020-05-13 2020-07-28 北京中关村水木医疗科技有限公司 用于呼吸机的测试***及测试方法

Also Published As

Publication number Publication date
CN114028665B (zh) 2024-06-25
CN114028665A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
JP4307811B2 (ja) 呼吸システムの肺力学の検査のためのオペレーティングシステムおよび呼吸装置システム
RU2540151C2 (ru) Система и способ количественного определения растяжимости легких у субъекта, самостоятельно осуществляющего вентиляцию
US20130006134A1 (en) Methods and systems for monitoring volumetric carbon dioxide
US8660971B2 (en) System and method for detecting respiratory insufficiency in the breathing of a subject
US20130006133A1 (en) Methods and systems for monitoring volumetric carbon dioxide
RU2540149C2 (ru) Система и способ количественного определения растяжимости легких у субъекта, самостоятельно осуществляющего вентиляцию
US10987023B2 (en) System and method for determining one or more breathing parameters of a subject
US20110146681A1 (en) Adaptive Flow Sensor Model
JP5923489B2 (ja) 進行中の心肺機能蘇生をモニタするシステム
WO2023045216A1 (zh) 呼吸机自动计量校准方法、装置及存储介质
CN104114088A (zh) 能量消耗的估算
WO2011079752A1 (zh) 医疗设备的检测方法、装置及***
CN202814726U (zh) 一种用于无创呼吸机生产线自动化检测的设备
CN108325037B (zh) 呼吸机质量控制方法及装置
CN203024988U (zh) 一种用于无创呼吸机开发实验测试的平台
CN210108413U (zh) 一种用于检测麻醉机的装置
CN107095676A (zh) 肺功能仪数据处理准确性的测试方法及***
JP7256541B2 (ja) 熱量測定パフォーマンス及び必要量を決定するためのシステム及び方法
Tzavaras et al. Development of a system for telemonitoring of respiration parameters for patients with Obstructive Sleep Apnea
Hoch et al. ARE WE KEEPING OUR NONINTUBATED PATIENTS ON OXYGEN THERAPY WAY TOO LONG? A RETROSPECTIVE CHART REVIEW.
Huffman et al. TRACHEAL FIO2 MEASUREMENTS IN THREE DIFFERENT VENTURI MASKS DURING SIMULATED, NORMAL BREATHING.
CN116236179A (zh) 一种测试方法及***
Alalawi et al. EVALUATION OF THE DELIVERED FIO2 OF THE OXYTRACH MASK.
CN110108323A (zh) 一种用于检测麻醉机的装置
CN113972007A (zh) 一种模拟生理信号输出方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE