WO2023044621A1 - 一种波束测量和上报的方法及其装置 - Google Patents

一种波束测量和上报的方法及其装置 Download PDF

Info

Publication number
WO2023044621A1
WO2023044621A1 PCT/CN2021/119700 CN2021119700W WO2023044621A1 WO 2023044621 A1 WO2023044621 A1 WO 2023044621A1 CN 2021119700 W CN2021119700 W CN 2021119700W WO 2023044621 A1 WO2023044621 A1 WO 2023044621A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
cmr
different
remote radio
rss
Prior art date
Application number
PCT/CN2021/119700
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/119700 priority Critical patent/WO2023044621A1/zh
Priority to CN202180002917.3A priority patent/CN116158009A/zh
Publication of WO2023044621A1 publication Critical patent/WO2023044621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a beam measurement and reporting method and device thereof.
  • TRP Transmission Reception Point
  • CMR resource set channel measurement resourceset, CMR resource set, CMR resource set
  • each CMR resource set corresponds to a TRP.
  • RRH Remote Radio Head
  • Embodiments of the present disclosure provide a beam measurement and reporting method and device thereof, which can be applied in the field of communication technologies.
  • an embodiment of the present disclosure provides a method for beam measurement and reporting, the method is executed by a terminal device, and the method includes: receiving configuration information, where the configuration information includes at least two reference signal resources, and the The at least two reference signal resources respectively correspond to different remote radio heads.
  • the different remote radio heads correspond to at least one of the following: different sending and receiving points, different control resource pools, and different antenna panels.
  • the configuration information includes a resource configuration resource setting, wherein the resource setting is associated with multiple resource sets CMR resource sets used for channel measurement resources, and multiple CMR resource sets correspond to multiple remote radio heads one by one , the reference signal resources corresponding to different remote radio heads are contained in different CMR resource sets in multiple CMR resource sets;
  • the configuration information includes a plurality of resource settings, wherein each resource setting is associated with a CMR resource set, and multiple resource settings correspond to multiple remote radio heads one by one, and different remote radio heads correspond to The reference signal resource is included in the CMR resource set associated with different resource settings in multiple resource settings;
  • the configuration information includes a resource configuration resource setting, wherein the resource setting is associated with a CMR resource set, the CMR resource set includes multiple CMR resource subsets, and multiple CMR resource subsets are associated with multiple CMR resource subsets.
  • the remote radio heads correspond one-to-one, and the reference signal resources corresponding to different remote radio heads are contained in different CMR resource subsets in multiple CMR resource subsets.
  • Receive first indication information where the first indication information is used to implement at least one of the following:
  • M is a positive integer greater than or equal to 1.
  • the first measurement result report includes multiple groups, and the N reference signal RSs in each group are RSs that the terminal equipment can receive simultaneously, N is a positive integer greater than or equal to 2, and the different RSs among the N RSs are The RSs correspond to different remote radio heads, or, the first measurement result report includes multiple groups, and the RSs in different groups are RSs that can be received by the terminal device at the same time.
  • the configuration information includes a plurality of resource settings, wherein each resource setting includes two CMR resource sets, and the two CMR resource sets correspond to two remote radio heads one by one, and different remote radio heads correspond to at least A reference signal resource is included in different CMR resource sets in two CMR resource sets;
  • the configuration information includes a plurality of resource settings, wherein each resource setting includes a CMR resource set, and the CMR resource set includes two CMR resource subsets, two CMR resource subsets and two radio remote Heads are in one-to-one correspondence, and at least one reference signal resource corresponding to different remote radio heads is included in different CMR resource subsets of the two CMR resource subsets.
  • Receive second indication information where the second indication information is used to implement at least one of the following:
  • the second measurement result report includes the identifier of the at least one resource setting and corresponding measurement results.
  • the measurement results corresponding to each resource setting include multiple groups, and the two RSs in each group are RSs that the terminal device can receive simultaneously, wherein different RSs in the two RSs correspond to different remote radio heads ;
  • the measurement result corresponding to each resource setting includes multiple groups, and RSs in different groups are RSs that can be received by the terminal device at the same time.
  • the measurement result includes the RS index and a corresponding measurement value
  • the RS includes a synchronization signal block SSB or a channel state information reference signal CSI-RS
  • the measurement value includes a layer-1 reference signal received power L1 - RSRP or Layer One Signal to Interference Noise Ratio L1 - SINR.
  • the different remote radio heads correspond to the same physical cell identity PCI, or the different remote radio heads correspond to different PCIs.
  • an embodiment of the present disclosure provides another beam measurement and reporting method, the method is performed by a network device, and the method includes: sending configuration information, where the configuration information includes at least two reference signal resources, The at least two reference signal resources respectively correspond to different remote radio heads.
  • the different remote radio heads correspond to at least one of the following: different sending and receiving points, different control resource pools, and different antenna panels.
  • the configuration information includes a resource configuration resource setting, wherein the resource setting is associated with multiple resource sets CMR resource sets used for channel measurement resources, and multiple CMR resource sets correspond to multiple remote radio heads one by one , the reference signal resources corresponding to different remote radio heads are contained in different CMR resource sets in multiple CMR resource sets;
  • the configuration information includes a plurality of resource settings, wherein each resource setting is associated with a CMR resource set, and multiple resource settings correspond to multiple remote radio heads one by one, and different remote radio heads correspond to The reference signal resource is included in the CMR resource set associated with different resource settings in multiple resource settings;
  • the configuration information includes a resource configuration resource setting, wherein the resource setting is associated with a CMR resource set, the CMR resource set includes multiple CMR resource subsets, and multiple CMR resource subsets are associated with multiple CMR resource subsets.
  • the remote radio heads correspond one-to-one, and the reference signal resources corresponding to different remote radio heads are contained in different CMR resource subsets in multiple CMR resource subsets.
  • M is a positive integer greater than or equal to 1.
  • the first measurement result report includes multiple groups, and the N reference signal RSs in each group are RSs that the terminal equipment can receive simultaneously, N is a positive integer greater than or equal to 2, and the different RSs among the N RSs are The RSs correspond to different remote radio heads, or, the first measurement result report includes multiple groups, and the RSs in different groups are RSs that can be received by the terminal device at the same time.
  • the configuration information includes a plurality of resource settings, wherein each resource setting includes two CMR resource sets, and the two CMR resource sets correspond to two remote radio heads one by one, and different remote radio heads correspond to at least A reference signal resource is included in different CMR resource sets in two CMR resource sets;
  • the configuration information includes a plurality of resource settings, wherein each resource setting includes a CMR resource set, and the CMR resource set includes two CMR resource subsets, two CMR resource subsets and two radio remote Heads are in one-to-one correspondence, and at least one reference signal resource corresponding to different remote radio heads is included in different CMR resource subsets of the two CMR resource subsets.
  • the measurement result corresponding to each resource setting includes multiple groups, and the two RSs in each group are RSs that the terminal device can receive simultaneously, wherein different RSs in the two RSs correspond to different RSs.
  • RF remote head
  • the measurement result corresponding to each resource setting includes multiple groups, and RSs in different groups are RSs that can be received by the terminal device at the same time.
  • the measurement result includes the RS index and a corresponding measurement value
  • the RS includes a synchronization signal block SSB or a channel state information reference signal CSI-RS
  • the measurement value includes a layer-1 reference signal received power L1-RSRP or Layer 1 Signal to Interference and Noise Ratio L1-SINR.
  • the different remote radio heads correspond to the same physical cell identity PCI, or the different remote radio heads correspond to different PCIs.
  • the embodiment of the present disclosure provides a communication device, which has part or all of the functions of the terminal device in the method described in the first aspect above, for example, the communication device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the network device in the method example described in the second aspect above, for example, the function of the communication device may have some of the functions in the present disclosure Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present disclosure alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal device, and when the instructions are executed, the method described in the above-mentioned first aspect is implemented.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned network device, and when the instructions are executed, the method described in the above-mentioned second aspect is implemented.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a beam measurement and reporting method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a beam measurement and reporting method provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a beam measurement and reporting method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a beam measurement and reporting method provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a beam measurement and reporting method provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a beam measurement and reporting method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a beam measurement and reporting method provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a beam measurement and reporting method provided by another embodiment of the present disclosure.
  • Fig. 11 is a schematic flowchart of a beam measurement and reporting method provided by another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • Fig. 13 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • the baseband optical signal is converted into a radio frequency signal, amplified and transmitted. It can also be called Remote Radio Unit (RRU for short).
  • RRU Remote Radio Unit
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 11 and one terminal device 12 as an example.
  • long term evolution long term evolution, LTE
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU).
  • the structure of the network device such as the protocol layer of the base station, can be separated.
  • the functions of some protocol layers are placed in the CU for centralized control, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 21 receiving configuration information, wherein the configuration information includes at least two reference signal resources, and the at least two reference signal resources respectively correspond to different remote radio heads.
  • the network device when the network device includes multiple RRHs, the network device can configure different reference signal resources for the multiple remote radio heads, and at the same time, the reference signal resources corresponding to the RRH remote radio heads are further based on each The reference signal resources corresponding to each RRH are used to measure and report beams.
  • different RRHs may correspond to at least one of the following: different transmission reception points (transmission reception point, TRP), different control resource set pools (CORESET Pool Index), and different antenna panels. That is to say, in the embodiment of the present invention, the RRH can be interchanged with the TRP, CORESETPool Index or antenna panel.
  • different RRHs may correspond to the same physical cell identifier (Physical Cell Identifier, PCI), or different remote radio heads may also correspond to different PCIs, which is not limited in the present disclosure.
  • PCI Physical Cell Identifier
  • the terminal device receives configuration information, where the configuration information includes at least two reference signal resources, and the at least two reference signal resources respectively correspond to different remote radio heads.
  • the terminal device can measure and report the beam according to the reference signal resources configured by the network device for each remote radio head, thereby not only ensuring the coverage of the signal, but also improving the utilization rate of the remote radio head.
  • FIG. 3 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 31 receiving configuration information, wherein the configuration information includes a resource configuration resource setting, wherein a resource setting can be associated with multiple resource sets CMR resource set for channel measurement resources, and multiple CMR resource sets can be associated with multiple radio frequencies Zoom out one by one.
  • the configuration information includes a resource configuration resource setting, wherein a resource setting can be associated with multiple resource sets CMR resource set for channel measurement resources, and multiple CMR resource sets can be associated with multiple radio frequencies Zoom out one by one.
  • each RRH corresponds to at least one reference signal resource.
  • multiple CMR resource sets contain two or more.
  • each reference signal resource in the configuration information is included in one CMR resource set, and different reference signal resources can be included in the same CMR resource set or in different CMR resource sets.
  • the configuration information includes a resource setting#1, resource setting#1 is associated with CMR resource set1, CMR resource set2, and CMR resource set3, CMR resource set1 corresponds to RRH1, CMR resource set2 corresponds to RRH2, and CMR resource set3 corresponds to RRH3 corresponds. Then at least one reference signal resource corresponding to the three RRHs can be respectively included in CMR resource set1, CMR resource set2 and CMR resource set3.
  • CMR resource set1 includes at least one reference signal resource, and all reference signal resources included in CMR resource set1 correspond to RRH1;
  • CMR resource set2 includes at least one reference signal resource, and all reference signal resources included in CMR resource set2 The resources all correspond to RRH2;
  • CMR resource set3 includes at least one reference signal resource, and all reference signal resources included in CMR resource set3 correspond to RRH3.
  • Step 32 receiving first indication information.
  • the first indication information may be used to implement at least one of the following:
  • M is a positive integer greater than or equal to 1.
  • M is less than or equal to the value of the CMRresource set configured in the configuration information.
  • the first indication information may be Media Access Control layer (Medium Access Control, MAC) control element (Control Element, CE) information sent by the network device, and the terminal device may determine whether to activate or deactivate the MCU according to the MAC CE information.
  • MAC Media Access Control layer
  • CE Control Element
  • the network device activates or deactivates the M CMR resource sets through the MAC CE, and may also be implemented by activating or activating a reportconfig (report configuration), and the reportconfig is associated with the M CMR resource sets.
  • a reportconfig report configuration
  • the first indication information may also be downlink control information (Downlink Control Information, DCI) sent by the network device, and the terminal device may determine to perform measurement reporting based on M CMR resource sets according to the DCI.
  • DCI Downlink Control Information
  • the network device uses the DCI to indicate that measurement reporting is performed based on the M CMR resource sets, or it can be implemented by indicating a reportconfig, and the reportconfig is associated with the M CMR resource sets.
  • the terminal equipment After the terminal equipment determines the available CMR resource set, it can perform beam measurement for the RRH.
  • Step 33 sending the first measurement result report.
  • the first measurement result report may include multiple groups, and the N reference signals (Reference Signal, RS) in each group are RSs that the terminal device can receive simultaneously.
  • RS Reference Signal
  • N is a positive integer greater than or equal to 2
  • different RSs among the N RSs correspond to different RRHs
  • the N RSs may correspond to two or more different RRHs, for example, three, four, etc., the present disclosure There is no limit to this.
  • the first measurement result report may include multiple groups, and RSs in different groups are RSs that the terminal device can receive simultaneously.
  • the two RSs obtained from any two groups may correspond to RRH1 and RRH2, or RRH1 and RRH3, or RRH1 and RRH4, or RRH2 and RRH3, or RRH2 and RRH4, or RRH3 and RRH4, which is not limited in the present disclosure.
  • the first measurement result report may include an RS index and a corresponding measurement value
  • the RS includes a synchronization signal block (Synchronization Signal Block, SSB) or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS)
  • the measured values include Layer 1 Reference Signal Receiving Power (L1-RSRP) or Layer 1 Signal to Interference plus Noise Ratio (L1-SINR).
  • the terminal device can first receive the configuration information, and then determine the CMR resource set corresponding to each RRH according to a resource configuration associated with multiple CMR resource sets in the configuration information, and then according to the received first instruction information, determine to perform beam measurement based on the M CMR resource sets, and finally send the first measurement result report to the network device.
  • the measurement and reporting of the beams of multiple RRHs is realized, which not only ensures the coverage of the signal, but also improves the utilization rate of the remote radio head.
  • FIG. 4 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 41 receiving configuration information, wherein the configuration information includes multiple resource settings, wherein each resource setting is associated with a resource set CMR resource set for channel measurement resources, and multiple resource settings correspond to multiple RRHs one by one.
  • the reference signal resources corresponding to different RRHs are included in the CMR resource sets associated with different resource settings in multiple resource settings, and the reference signal resources corresponding to the same RRH are included in the same CMR resource set.
  • Each RRH corresponds to at least one reference signal resource.
  • multiple resource settings contain two or more.
  • each reference signal resource in the configuration information is included in one CMR resource set, and different reference signal resources are included in the same CMR resource set or in different CMR resource sets.
  • the configuration information includes multiple resource settings, namely resource setting#1, resource setting#2, and resource setting#3, wherein resource setting#1 is associated with CMR resource set1, and resource setting#2 is associated with CMR resource set2 Association, resource setting#3 is associated with CMR resource set3, resource setting#1 is corresponding to RRH1, resource setting#2 is corresponding to RRH2, and resource setting#3 is corresponding to RRH3. Then at least one reference signal resource corresponding to the three RRHs can be respectively included in CMR resource set1, CMR resource set2, and CMR resource set3.
  • CMR resource set1 includes at least one reference signal resource, and all reference signal resources included in CMR resource set1 correspond to RRH1;
  • CMR resource set2 includes at least one reference signal resource, and all reference signal resources included in CMR resource set2 The resources all correspond to RRH2;
  • CMR resource set3 includes at least one reference signal resource, and all reference signal resources included in CMR resource set3 correspond to RRH3.
  • Step 42 receiving first indication information.
  • the first indication information is used to implement at least one of the following:
  • M is a positive integer greater than or equal to 1.
  • M is a value less than or equal to the resource setting included in the configuration information.
  • the first indication information may be MAC CE information sent by the network device, and the terminal device may determine to activate or deactivate M resource settings according to the MAC CE information.
  • the network device activates or deactivates the M resource settings through the MAC CE, and may also be implemented by activating or activating a reportconfig (report configuration), and the reportconfig is associated with the M resource settings.
  • a reportconfig report configuration
  • the first indication information may also be DCI sent by the network device, and the terminal device may determine to perform measurement reporting based on M resource settings according to the DCI.
  • the network device indicates to perform measurement based on M resource settings through the DCI, or it may be implemented by indicating a reportconfig, and the reportconfig is associated with the M resource settings.
  • the terminal device After determining the available resource setting, the terminal device can perform beam measurement for the RRH.
  • Step 43 sending the first measurement result report.
  • the first measurement result report may include multiple groups, and the N reference signals (Reference Signal, RS) in each group are RSs that the terminal device can receive simultaneously.
  • RS Reference Signal
  • N is a positive integer greater than or equal to 2
  • different RSs among the N RSs correspond to different RRHs.
  • the N RSs may correspond to two or more different RRHs, for example, three, four, etc., which is not limited in the present disclosure.
  • the first measurement result report may include multiple groups, and RSs in different groups are RSs that the terminal device can receive simultaneously.
  • the two RSs obtained from any two groups may correspond to RRH1 and RRH2, or RRH1 and RRH3, or RRH1 and RRH4, or RRH2 and RRH3, or RRH2 and RRH4, or RRH3 and RRH4, which is not limited in the present disclosure.
  • the first measurement result report may include an RS index and a corresponding measurement value
  • the RS includes a synchronization signal block SSB or a channel state information reference signal CSI-RS
  • the measurement value includes a layer-1 reference signal received power L1-RSRP or Signal-to-interference-to-noise ratio L1-SINR for layer one.
  • the terminal device can first receive the configuration information, and then determine the resource setting corresponding to each RRH according to each resource configuration associated with the CMR resource set in the configuration information, and then according to the received first indication information , determine to perform beam measurement based on M resource settings, and finally send a first measurement result report to the network device.
  • the measurement and reporting of the beams of multiple RRHs is realized, which not only ensures the coverage of the signal, but also improves the utilization rate of the remote radio head.
  • FIG. 5 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step 51 receiving configuration information, wherein the configuration information includes a resource configuration resource setting, wherein a resource setting is associated with a CMR resource set, a CMR resource set includes multiple CMR resource subset subsets, and multiple CMR resource subsets are associated with multiple There is a one-to-one correspondence between each RRH.
  • the reference signal resources corresponding to different RRHs are included in different CMR resource subsets among multiple CMR resource subsets, and the reference signal resources corresponding to the same RRH are included in the same CMR resource subset.
  • Each RRH corresponds to at least one reference signal resource.
  • multiple CMR resource subsets contain two or more.
  • each reference signal resource in the configuration information is included in one CMR resource subset, and different reference signal resources are included in the same CMR resource subset or in different CMR resource subsets.
  • the configuration information includes a resource setting, and the resource setting is associated with a CMR resource set.
  • the CMR resource set includes CMR resource subset1, CMR resource subset2, and CMR resource subset3.
  • CMR resource subset1 corresponds to RRH1, and CMR resource subset2 Corresponds to RRH2, and CMR resource subset3 corresponds to RRH3.
  • at least one reference signal resource corresponding to the three RRHs may be respectively included in CMR resource subset1, CMR resource subset2, and CMR resource subset3.
  • CMR resource subset1 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset1 correspond to RRH1;
  • CMR resource subset2 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset2 The resources all correspond to RRH2;
  • CMR resource subset3 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset3 correspond to RRH3.
  • Step 52 receiving first indication information.
  • the first indication information is used to implement at least one of the following:
  • M is a positive integer greater than or equal to 1.
  • M is a value less than or equal to the CMR resource subset included in the configuration information.
  • the first indication information may be MAC CE information sent by the network device, and the terminal device may determine to activate or deactivate M CMR resource subsets according to the MAC CE information.
  • the network device activates or deactivates the M resource subsets through the MAC CE, and may also be implemented by activating or activating a reportconfig (report configuration), and the reportconfig is associated with the M resource subsets.
  • a reportconfig report configuration
  • the first indication information may also be DCI sent by the network device.
  • the terminal device may determine to perform measurement reporting based on M CMR resource subsets according to the DCI.
  • the network device instructs to perform measurement based on M resource subsets through DCI, and may also indicate a reportconfig, and the reportconfig is associated with M resource subsets.
  • the terminal equipment After the terminal equipment determines the available CMR resource subset, it can perform beam measurement for the RRH.
  • Step 53 sending the first measurement result report.
  • step 53 for the specific implementation form of step 53, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • the terminal device can first receive the configuration information, and then determine the CMR resource subset corresponding to each RRH according to a resource configuration associated with multiple CMR resource subsets in the configuration information, and then according to the received first
  • the indication information is determined based on M CMR resource subsets, beam measurement is performed, and finally the first measurement result report is sent to the network device.
  • the measurement and reporting of the beams of multiple RRHs is realized, which not only ensures the coverage of the signal, but also improves the utilization rate of the remote radio head.
  • FIG. 6 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 6, the method may include but not limited to the following steps:
  • Step 61 receiving configuration information, wherein the configuration information includes multiple resource settings.
  • each resource setting can contain two CMR resource sets, and the two CMR resource sets correspond to the two RRHs one by one. At least one reference signal resource corresponding to different RRHs is respectively included in different CMR resource sets in the two CMR resource sets.
  • resource setting#1 includes two CMR resource sets, namely CMR resource set1 and CMR resource set2, wherein CMR resource set1 corresponds to RRH1, and CMR resource set2 corresponds to RRH2. Then at least one reference signal resource corresponding to the two RRHs can be included in the CMR resource set1 and the CMR resource set2 respectively. That is to say, CMR resource set1 includes at least one reference signal resource, and all reference signal resources included in CMR resource set1 correspond to RRH1; CMR resource set2 includes at least one reference signal resource, and all reference signal resources included in CMR resource set2 The resources all correspond to RRH2.
  • resource setting1 corresponds to the CMR resource set of RRH1 and RRH2
  • resource setting2 corresponds to the CMR of RRH1 and RRH3 resource set
  • resource setting3 corresponds to the CMR resource set of RRH2 and RRH3.
  • each resource setting can also include a CMR resource set, and the CMR resource set includes two CMR resource subsets, and the two CMR resource subsets correspond to the two RRHs one by one. At least one reference signal resource corresponding to different RRHs is respectively contained in different CMR resource subsets in the two CMR resource subsets.
  • resource setting1 includes a CMR resource set
  • CMR resource set includes CMR resource subset1, CMR resource subset2, CMR resource subset1 corresponds to RRH1, and CMR resource subset2 corresponds to RRH2.
  • at least one reference signal resource corresponding to the two RRHs may be included in the CMR resource subset1 and the CMR resource subset2 respectively. That is to say, CMR resource subset1 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset1 correspond to RRH1; CMR resource subset2 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset2 The resources all correspond to RRH2.
  • resource setting1 corresponds to the CMR resource subset of RRH1 and RRH2
  • resource setting2 corresponds to the CMR resource of RRH1 and RRH3 subset
  • resource setting3 corresponds to the CMR resource subset of RRH2 and RRH3.
  • Step 62 receiving second indication information.
  • the second indication information is used to realize at least one of the following:
  • the second indication information may be MAC CE information sent by the network device, and the terminal device may determine to activate or deactivate resources associated with any resource setting according to the MAC CE information.
  • the network device activates or deactivates resources associated with any resource setting through MAC CE, and may also be realized by activating or activating a reportconfig (report configuration), and the reportconfig is associated with the resource setting.
  • a reportconfig report configuration
  • the second indication information may also be DCI sent by the network device, and at this time, the terminal device may determine resources associated with any resource setting according to the DCI.
  • the network device uses the DCI to indicate that the measurement is performed based on the resource associated with any resource setting, or it can be implemented by indicating a reportconfig, and the reportconfig is associated with the resource setting.
  • the terminal device After determining the available resource setting, the terminal device can perform beam measurement for the RRH.
  • Step 63 sending a second measurement result report, wherein the second measurement result report includes at least one resource setting identifier and corresponding measurement results.
  • the measurement result may include RS index and corresponding measurement value
  • RS includes synchronization signal block SSB or channel state information reference signal CSI-RS
  • measurement value includes reference signal received power L1-RSRP of layer 1 or signal of layer 1 Interference-to-noise ratio L1-SINR.
  • the measurement result corresponding to each resource setting may include multiple groups, and the two RSs in each group are RSs that the terminal device can receive simultaneously, where different RSs in the two RSs correspond to different RRHs.
  • the two RRHs corresponding to each resource setting have been Fixed, the measurement results corresponding to the resource setting reported by the terminal equipment can only include the RS and measurement results of the two RRHs.
  • resource setting1 corresponds to the CMR resource set or CMR resource subset of RRH1 and RRH2
  • resource setting2 corresponds to RRH1 and RRH3 CMR resource set or CMR resource subset
  • resource setting3 corresponds to the CMR resource set or CMR resource subset of RRH2 and RRH3.
  • the measurement result corresponding to each resource setting may include multiple groups, and RSs in different groups are RSs that the terminal device can receive simultaneously.
  • resource setting1 corresponds to the CMR resource set or CMR resource subset of RRH1 and RRH2
  • resource setting2 corresponds to RRH1 and RRH3 CMR resource set or CMR resource subset
  • resource setting3 corresponds to the CMR resource set or CMR resource subset of RRH1 and RRH3.
  • the terminal device can first receive the configuration information, and then determine the CMR resource set or CMR resource subset corresponding to each RRH according to the multiple resource configurations contained in the configuration information, and then according to the received second indication information
  • the available resource setting is determined, and after the beam measurement is performed, a second measurement result report can be sent to the network device.
  • the measurement and reporting of the beams of multiple RRHs is realized, which not only ensures the coverage of the signal, but also improves the utilization rate of the remote radio head.
  • FIG. 7 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 7, the method may include but not limited to the following steps:
  • Step 71 Send configuration information, where the configuration information includes at least two reference signal resources, and the at least two reference signal resources correspond to different remote radio heads.
  • the network device when the network device includes multiple RRHs, the network device can configure different reference signal resources for the multiple remote radio heads, and at the same time, the reference signal resources corresponding to the RRH remote radio heads are further based on each The reference signal resources corresponding to each RRH are used to measure and report beams.
  • different RRHs may correspond to at least one of the following: different transmission reception points (transmission reception point, TRP), different control resource set pools (CORESET Pool Index), and different antenna panels. That is to say, in the embodiment of the present invention, the RRH can be interchanged with the TRP, CORESETPool Index or antenna panel.
  • different RRHs may correspond to the same physical cell identifier (Physical Cell Identifier, PCI), or different remote radio heads may also correspond to different PCIs, which is not limited in the present disclosure.
  • PCI Physical Cell Identifier
  • the network device sends configuration information, where the configuration information includes at least two reference signal resources, and the at least two reference signal resources respectively correspond to different remote radio heads.
  • the terminal device can measure and report the beam according to the reference signal resources configured by the network device for each remote radio head, thereby not only ensuring the coverage of the signal, but also improving the utilization rate of the remote radio head.
  • FIG. 8 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 8, the method may include but not limited to the following steps:
  • Step 81 sending configuration information, wherein the configuration information includes a resource configuration resource setting, wherein a resource setting is associated with multiple resource sets CMR resource set for channel measurement resources, and multiple CMR resource sets are associated with multiple radio frequency pull There is one-to-one correspondence between the far heads.
  • each RRH corresponds to at least one reference signal resource.
  • multiple CMR resource sets contain two or more.
  • each reference signal resource in the configuration information is included in one CMR resource set, and different reference signal resources can be included in the same CMR resource set or in different CMR resource sets.
  • the configuration information includes a resource setting#1, resource setting#1 is associated with CMR resource set1, CMR resource set2, and CMR resource set3, CMR resource set1 corresponds to RRH1, CMR resource set2 corresponds to RRH2, and CMR resource set3 corresponds to RRH3 corresponds. Then at least one reference signal resource corresponding to the three RRHs can be respectively included in CMR resource set1, CMR resource set2 and CMR resource set3.
  • CMR resource set1 includes at least one reference signal resource, and all reference signal resources included in CMR resource set1 correspond to RRH1;
  • CMR resource set2 includes at least one reference signal resource, and all reference signal resources included in CMR resource set2 The resources all correspond to RRH2;
  • CMR resource set3 includes at least one reference signal resource, and all reference signal resources included in CMR resource set3 correspond to RRH3.
  • Step 82 sending first indication information.
  • the first indication information is used to implement at least one of the following:
  • M is a positive integer greater than or equal to 1.
  • M is less than or equal to the value of the CMRresource set configured in the configuration information.
  • the first indication information may be Media Access Control layer (Medium Access Control, MAC) control element (Control Element, CE) information sent by the network device.
  • the first indication information may also be downlink control information (Downlink Control Information, DCI) sent by the network device.
  • DCI Downlink Control Information
  • the network device activates or deactivates the M CMR resource sets through the MAC CE, and may also be implemented by activating or activating a reportconfig (report configuration), and the reportconfig is associated with the M CMR resource sets.
  • a reportconfig report configuration
  • the network device uses the DCI to indicate that measurement reporting is performed based on the M CMR resource sets, or it can be implemented by indicating a reportconfig, and the reportconfig is associated with the M CMR resource sets.
  • the terminal device After the network device sends the first indication information to the terminal device, the terminal device can perform beam measurement and reporting based on the M CMR resource sets.
  • Step 83 receiving the first measurement result report.
  • the first measurement result report may include multiple groups, and the N reference signals (Reference Signal, RS) in each group are RSs that the terminal device can receive simultaneously.
  • RS Reference Signal
  • N is a positive integer greater than or equal to 2
  • different RSs among the N RSs correspond to different RRHs
  • the N RSs may correspond to two or more different RRHs, for example, three, four, etc., the present disclosure There is no limit to this.
  • the first measurement result report may include multiple groups, and RSs in different groups are RSs that the terminal device can receive simultaneously.
  • the two RSs obtained from any two groups may correspond to RRH1 and RRH2, or RRH1 and RRH3, or RRH1 and RRH4, or RRH2 and RRH3, or RRH2 and RRH4, or RRH3 and RRH4, which is not limited in the present disclosure.
  • the first measurement result report may include an RS index and a corresponding measurement value
  • the RS includes a synchronization signal block (Synchronization Signal Block, SSB) or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS)
  • the measured values include Layer 1 Reference Signal Receiving Power (L1-RSRP) or Layer 1 Signal to Interference plus Noise Ratio (L1-SINR).
  • the network device can first send configuration information to the terminal device, so that the terminal device can determine the CMR resource set corresponding to each RRH according to a resource configuration associated with multiple CMR resource sets in the configuration information, Then send the first instruction information to the terminal device, so that the terminal device performs beam measurement based on the CMR resource set, and finally receive the first measurement result report sent by the terminal device.
  • the measurement and reporting of the beams of multiple RRHs is realized, which not only ensures the coverage of the signal, but also improves the utilization rate of the remote radio head.
  • FIG. 9 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 9, the method may include but not limited to the following steps:
  • Step 91 sending configuration information, wherein the configuration information includes multiple resource settings, wherein each resource setting is associated with a resource set CMR resource set for channel measurement resources, and multiple resource settings correspond to multiple RRHs one by one .
  • the reference signal resources corresponding to different RRHs are included in the CMR resource sets associated with different resource settings in multiple resource settings, and the reference signal resources corresponding to the same RRH are included in the same CMR resource set.
  • Each RRH corresponds to at least one reference signal resource.
  • multiple resource settings contain two or more.
  • each reference signal resource in the configuration information is included in one CMR resource set, and different reference signal resources are included in the same CMR resource set or in different CMR resource sets.
  • the configuration information includes multiple resource settings, namely resource setting#1, resource setting#2, and resource setting#3, wherein resource setting#1 is associated with CMR resource set1, and resource setting#2 is associated with CMR resource set2 Association, resource setting#3 is associated with CMR resource set3, resource setting#1 is corresponding to RRH1, resource setting#2 is corresponding to RRH2, and resource setting#3 is corresponding to RRH3. Then at least one reference signal resource corresponding to the three RRHs can be respectively included in CMR resource set1, CMR resource set2, and CMR resource set3.
  • CMR resource set1 includes at least one reference signal resource, and all reference signal resources included in CMR resource set1 correspond to RRH1;
  • CMR resource set2 includes at least one reference signal resource, and all reference signal resources included in CMR resource set2 The resources all correspond to RRH2;
  • CMR resource set3 includes at least one reference signal resource, and all reference signal resources included in CMR resource set3 correspond to RRH3.
  • Step 92 sending first indication information.
  • the first indication information is used to implement at least one of the following:
  • M is a positive integer greater than or equal to 1.
  • M is a value less than or equal to the resource setting included in the configuration information.
  • the first indication information may be MAC CE information sent by the network device. Alternatively, it may also be DCI sent by a network device.
  • the network device activates or deactivates the M resource settings through the MAC CE, and may also be implemented by activating or activating a reportconfig (report configuration), and the reportconfig is associated with the M resource settings.
  • a reportconfig report configuration
  • the network device indicates to perform measurement based on M resource settings through the DCI, or it may be implemented by indicating a reportconfig, and the reportconfig is associated with the M resource settings.
  • the terminal device can determine the available esource setting, and then perform beam measurement for the RRH.
  • Step 93 receiving the first measurement result report.
  • the first measurement result report may include multiple groups, and the N reference signals (Reference Signal, RS) in each group are RSs that the terminal device can receive simultaneously.
  • RS Reference Signal
  • N is a positive integer greater than or equal to 2
  • different RSs among the N RSs correspond to different RRHs.
  • the N RSs may correspond to two or more different RRHs, for example, three, four, etc., which is not limited in the present disclosure.
  • the first measurement result report may include multiple groups, and RSs in different groups are RSs that the terminal device can receive simultaneously.
  • the two RSs obtained from any two groups may correspond to RRH1 and RRH2, or RRH1 and RRH3, or RRH1 and RRH4, or RRH2 and RRH3, or RRH2 and RRH4, or RRH3 and RRH4, which is not limited in the present disclosure.
  • the first measurement result report may include an RS index and a corresponding measurement value
  • the RS includes a synchronization signal block SSB or a channel state information reference signal CSI-RS
  • the measurement value includes a layer-1 reference signal received power L1-RSRP or Signal-to-interference-to-noise ratio L1-SINR for layer one.
  • the network device can first send configuration information to the terminal device, so that the terminal device can determine the resource setting corresponding to each RRH according to the resource configuration associated with the CMR resource set contained in the configuration information, and then send the configuration information to the terminal device.
  • the terminal device sends the first indication information, so that the terminal device performs beam measurement based on the M resource settings, and finally receives the first measurement result report sent by the terminal device.
  • the measurement and reporting of the beams of multiple RRHs is realized, which not only ensures the coverage of the signal, but also improves the utilization rate of the remote radio head.
  • FIG. 10 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 10, the method may include but not limited to the following steps:
  • Step 101 sending configuration information, wherein the configuration information includes a resource configuration resource setting, wherein a resource setting is associated with a CMR resource set, a CMR resource set includes multiple CMR resource subset subsets, and multiple CMR resource subsets are associated with multiple CMR resource subsets.
  • the configuration information includes a resource configuration resource setting, wherein a resource setting is associated with a CMR resource set, a CMR resource set includes multiple CMR resource subset subsets, and multiple CMR resource subsets are associated with multiple CMR resource subsets.
  • the reference signal resources corresponding to different RRHs are included in different CMR resource subsets among multiple CMR resource subsets, and the reference signal resources corresponding to the same RRH are included in the same CMR resource subset.
  • Each RRH corresponds to at least one reference signal resource.
  • multiple CMR resource subsets contain two or more.
  • each reference signal resource in the configuration information is included in one CMR resource subset, and different reference signal resources are included in the same CMR resource subset or in different CMR resource subsets.
  • the configuration information includes a resource setting, and the resource setting is associated with a CMR resource set.
  • the CMR resource set includes CMR resource subset1, CMR resource subset2, and CMR resource subset3.
  • CMR resource subset1 corresponds to RRH1, and CMR resource subset2 Corresponds to RRH2, and CMR resource subset3 corresponds to RRH3.
  • at least one reference signal resource corresponding to the three RRHs may be respectively included in CMR resource subset1, CMR resource subset2, and CMR resource subset3.
  • CMR resource subset1 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset1 correspond to RRH1;
  • CMR resource subset2 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset2 The resources all correspond to RRH2;
  • CMR resource subset3 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset3 correspond to RRH3.
  • Step 102 sending first indication information.
  • the first indication information is used to implement at least one of the following:
  • M is a positive integer greater than or equal to 1.
  • M is a value less than or equal to the CMR resource subset included in the configuration information.
  • the first indication information may be MAC CE information sent by the network device. Alternatively, it may also be DCI sent by a network device.
  • the network device activates or deactivates the M resource subsets through the MAC CE, and may also be implemented by activating or activating a reportconfig (report configuration), and the reportconfig is associated with the M resource subsets.
  • a reportconfig report configuration
  • the network device instructs to perform measurement based on M resource subsets through DCI, and may also indicate a reportconfig, and the reportconfig is associated with M resource subsets.
  • the terminal device can determine the available CMR resource subset, and then perform beam measurement for the RRH.
  • Step 103 receiving a first measurement result report.
  • step 103 for a specific implementation form of step 103, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details are not repeated here.
  • the network device can first send configuration information to the terminal device, so that the terminal device can determine the CMR resource subset corresponding to each RRH according to a resource configuration associated with multiple CMR resource subsets in the configuration information, Afterwards, the first indication information is sent to the terminal device, so that the terminal device performs beam measurement based on the M CMR resource subsets, and finally receives the first measurement result report sent by the terminal device.
  • the measurement and reporting of the beams of multiple RRHs is realized, which not only ensures the coverage of the signal, but also improves the utilization rate of the remote radio head.
  • FIG. 11 is a schematic flowchart of a beam measurement and reporting method provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 11, the method may include but not limited to the following steps:
  • Step 111 sending configuration information, wherein the configuration information includes multiple resource settings.
  • each resource setting can contain two CMR resource sets, and the two CMR resource sets correspond to the two RRHs one by one. At least one reference signal resource corresponding to different RRHs is respectively included in different CMR resource sets in the two CMR resource sets.
  • resource setting#1 includes two CMR resource sets, namely CMR resource set1 and CMR resource set2, wherein CMR resource set1 corresponds to RRH1, and CMR resource set2 corresponds to RRH2. Then at least one reference signal resource corresponding to the two RRHs can be included in the CMR resource set1 and the CMR resource set2 respectively. That is to say, CMR resource set1 includes at least one reference signal resource, and all reference signal resources included in CMR resource set1 correspond to RRH1; CMR resource set2 includes at least one reference signal resource, and all reference signal resources included in CMR resource set2 The resources all correspond to RRH2.
  • resource setting1 corresponds to the CMR resource set of RRH1 and RRH2
  • resource setting2 corresponds to the CMR of RRH1 and RRH3 resource set
  • resource setting3 corresponds to the CMR resource set of RRH2 and RRH3.
  • each resource setting can also include a CMR resource set, and the CMR resource set includes two CMR resource subsets, and the two CMR resource subsets correspond to the two RRHs one by one. At least one reference signal resource corresponding to different RRHs is respectively included in different CMR resource subsets in the two CMR resource subsets.
  • resource setting1 includes a CMR resource set
  • CMR resource set includes CMR resource subset1, CMR resource subset2, CMR resource subset1 corresponds to RRH1, and CMR resource subset2 corresponds to RRH2.
  • the two RRHs respectively correspond to at least one reference signal resource and can be included in CMR resource subset1 and CMR resource subset2 respectively. That is to say, CMR resource subset1 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset1 correspond to RRH1; CMR resource subset2 includes at least one reference signal resource, and all reference signal resources included in CMR resource subset2 The resources all correspond to RRH2.
  • resource setting1 corresponds to the CMR resource subset of RRH1 and RRH2
  • resource setting2 corresponds to the CMR resource of RRH1 and RRH3 subset
  • resource setting3 corresponds to the CMR resource subset of RRH2 and RRH3.
  • Step 112 sending second indication information.
  • the second indication information is used to realize at least one of the following:
  • the second indication information may be MAC CE information sent by the network device.
  • the second indication information may also be DCI sent by the network device.
  • the network device activates or deactivates resources associated with any resource setting through MAC CE, and may also be realized by activating or activating a reportconfig (report configuration), and the reportconfig is associated with the resource setting.
  • a reportconfig report configuration
  • the network device uses the DCI to indicate that the measurement is performed based on the resource associated with any resource setting, or it can be implemented by indicating a reportconfig, and the reportconfig is associated with the resource setting.
  • the terminal device can determine the available resource setting, and then perform beam measurement for the RRH.
  • Step 113 receiving a second measurement result report, wherein the second measurement result report includes at least one resource setting identifier and corresponding measurement results.
  • the measurement result may include RS index and corresponding measurement value
  • RS includes synchronization signal block SSB or channel state information reference signal CSI-RS
  • measurement value includes reference signal received power L1-RSRP of layer 1 or signal of layer 1 Interference-to-noise ratio L1-SINR.
  • the measurement result corresponding to each resource setting may include multiple groups, and the two RSs in each group are RSs that the terminal device can receive simultaneously, where different RSs in the two RSs correspond to different RRHs.
  • resource setting1 corresponds to the CMR resource set or CMR resource subset of RRH1 and RRH2
  • resource setting2 corresponds to RRH1 and RRH3 CMR resource set or CMR resource subset
  • resource setting3 corresponds to the CMR resource set or CMR resource subset of RRH2 and RRH3.
  • the measurement result corresponding to each resource setting may include multiple groups, and RSs in different groups are RSs that the terminal device can receive simultaneously.
  • resource setting1 corresponds to the CMR resource set or CMR resource subset of RRH1 and RRH2
  • resource setting2 corresponds to RRH1 and RRH2
  • resource setting3 corresponds to the CMR resource set or CMR resource subset of RRH1 and RRH3.
  • the measurement results for resource setting1 are the measurement results of RRH1 and RRH2; then the measurement results for resource setting2 are the measurement results of RRH1 and RRH3; then the measurement results for resource setting3 are the measurement results of RRH2 and RRH3.
  • the network device can first send configuration information to the terminal device, so that the terminal device can determine the CMR resource set or CMR resource subset corresponding to each RRH according to the resource configuration contained in the configuration information, and then send the configuration information to the terminal device.
  • the device sends the second indication information, so that the terminal device performs beam measurement based on M CMR resource sets or CMR resource subsets, and finally receives the second measurement result report sent by the terminal device.
  • the measurement and reporting of the beams of multiple RRHs is realized, which not only ensures the coverage of the signal, but also improves the utilization rate of the remote radio head.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of network devices and terminal devices respectively.
  • the network device and the terminal device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 12 is a schematic structural diagram of a communication device 120 provided by an embodiment of the present disclosure.
  • the communication device 120 shown in FIG. 12 may include a processing module 1201 and a transceiver module 1202 .
  • the transceiver module 1202 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 1202 can realize the sending function and/or the receiving function.
  • the communication device 120 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device 120 on the side of the terminal device, the device includes:
  • the transceiver module 1202 is configured to receive configuration information, wherein the configuration information includes at least two reference signal resources, and the at least two reference signal resources respectively correspond to different remote radio heads.
  • different remote radio heads correspond to at least one of the following: different sending and receiving points, different control resource pools, and different antenna panels.
  • the configuration information includes a resource configuration resource setting, where a resource setting is associated with multiple resource sets CMR resource set used for channel measurement resources, multiple CMR resource sets correspond to multiple remote radio heads one by one, different radio
  • the reference signal resource corresponding to the far head is included in different CMR resource sets in multiple CMR resource sets;
  • the configuration information includes multiple resource settings, where each resource setting is associated with a CMR resource set, multiple resource settings correspond to multiple remote radio heads one by one, and the reference signal resources corresponding to different remote radio heads include CMR resource set associated with different resource settings in multiple resource settings;
  • the configuration information includes a resource configuration resource setting, wherein a resource setting is associated with a CMR resource set, and a CMR resource set includes multiple CMR resource subset subsets, multiple CMR resource subsets and multiple remote radio heads one by one
  • the reference signal resources corresponding to different remote radio heads are contained in different CMR resource subsets in multiple CMR resource subsets.
  • the transceiver module 1202 is also specifically used for:
  • first indication information is used to implement at least one of the following:
  • M is a positive integer greater than or equal to 1.
  • the transceiver module 1202 is also specifically used for:
  • the first measurement result report contains multiple groups, and the N reference signal RSs in each group are RSs that the terminal device can receive simultaneously, N is a positive integer greater than or equal to 2, and different RSs in the N RSs correspond to Different remote radio heads, or, the first measurement result report includes multiple groups, and RSs in different groups are RSs that can be received by the terminal device at the same time.
  • the configuration information includes multiple resource settings, where each resource setting contains two CMR resource sets, two CMR resource sets correspond to two remote radio heads one by one, and at least one reference signal resource corresponding to different remote radio heads Different CMR resource sets contained in two CMR resource sets respectively;
  • the configuration information includes multiple resource settings, where each resource setting contains a CMR resource set, and the CMR resource set contains two CMR resource subsets, and the two CMR resource subsets correspond to the two remote radio heads one by one. At least one reference signal resource corresponding to the remote radio head is included in different CMR resource subsets of the two CMR resource subsets.
  • the transceiver module 1202 is also specifically used for:
  • Receive second indication information where the second indication information is used to implement at least one of the following:
  • the transceiver module 1202 is also specifically used for:
  • the second measurement result report includes at least one resource setting identifier and corresponding measurement results.
  • the measurement results corresponding to each resource setting include multiple groups, and the two RSs in each group are RSs that the terminal device can receive at the same time, where different RSs in the two RSs correspond to different remote radio heads;
  • the measurement results corresponding to each resource setting include multiple groups, and RSs in different groups are RSs that can be received by the terminal device at the same time.
  • the measurement result includes RS index and corresponding measurement value
  • RS includes synchronization signal block SSB or channel state information reference signal CSI-RS
  • measurement value includes reference signal received power L1-RSRP of layer 1 or signal and Interference-to-noise ratio L1-SINR.
  • different remote radio heads correspond to the same physical cell identity PCI, or different remote radio heads correspond to different PCIs.
  • the terminal device receives configuration information, where the configuration information includes at least two reference signal resources, and the at least two reference signal resources respectively correspond to different remote radio heads.
  • the terminal device can measure and report the beam according to the reference signal resources configured by the network device for each remote radio head, thereby not only ensuring the coverage of the signal, but also improving the utilization rate of the remote radio head.
  • the communication device 120 may be a network device, a device in the network device, or a device that can be matched with the network device.
  • the communication device 120 on the network device side, the device includes:
  • the transceiver module 1202 is configured to send configuration information, wherein the configuration information includes at least two reference signal resources, and the at least two reference signal resources respectively correspond to different remote radio heads.
  • different remote radio heads correspond to at least one of the following: different sending and receiving points, different control resource pools, and different antenna panels.
  • the configuration information includes a resource configuration resource setting, where a resource setting is associated with multiple resource sets CMR resource set used for channel measurement resources, multiple CMR resource sets correspond to multiple remote radio heads one by one, different radio
  • the reference signal resource corresponding to the far head is included in different CMR resource sets in multiple CMR resource sets;
  • the configuration information includes multiple resource settings, where each resource setting is associated with a CMR resource set, multiple resource settings correspond to multiple remote radio heads one by one, and the reference signal resources corresponding to different remote radio heads include CMR resource set associated with different resource settings in multiple resource settings;
  • the configuration information includes a resource configuration resource setting, wherein a resource setting is associated with a CMR resource set, and a CMR resource set includes multiple CMR resource subset subsets, multiple CMR resource subsets and multiple remote radio heads one by one
  • the reference signal resources corresponding to different remote radio heads are contained in different CMR resource subsets in multiple CMR resource subsets.
  • the transceiver module 1202 is also specifically used for:
  • M is a positive integer greater than or equal to 1.
  • the transceiver module 1202 is also specifically used for:
  • the first measurement result report contains multiple groups, and the N reference signal RSs in each group are RSs that the terminal device can receive simultaneously, N is a positive integer greater than or equal to 2, and different RSs in the N RSs correspond to Different remote radio heads, or, the first measurement result report includes multiple groups, and RSs in different groups are RSs that can be received by the terminal device at the same time.
  • the configuration information includes multiple resource settings, where each resource setting contains two CMR resource sets, two CMR resource sets correspond to two remote radio heads one by one, and at least one reference signal resource corresponding to different remote radio heads Different CMR resource sets contained in two CMR resource sets respectively;
  • the configuration information includes multiple resource settings, where each resource setting contains a CMR resource set, and the CMR resource set contains two CMR resource subsets, and the two CMR resource subsets correspond to the two remote radio heads one by one. At least one reference signal resource corresponding to the remote radio head is included in different CMR resource subsets of the two CMR resource subsets.
  • the transceiver module 1202 is also specifically used for:
  • the transceiver module 1202 is also specifically used for:
  • the measurement results corresponding to each resource setting include multiple groups, and the two RSs in each group are RSs that the terminal device can receive at the same time, where different RSs in the two RSs correspond to different remote radio heads;
  • the measurement results corresponding to each resource setting include multiple groups, and RSs in different groups are RSs that can be received by the terminal device at the same time.
  • the measurement result includes RS index and corresponding measurement value
  • RS includes synchronization signal block SSB or channel state information reference signal CSI-RS
  • measurement value includes reference signal received power L1-RSRP of layer 1 or signal and Interference-to-noise ratio L1-SINR.
  • different remote radio heads correspond to the same physical cell identity PCI, or different remote radio heads correspond to different PCIs.
  • the network device sends configuration information, where the configuration information includes at least two reference signal resources, and the at least two reference signal resources respectively correspond to different remote radio heads.
  • the terminal device can measure and report the beam according to the reference signal resources configured by the network device for each remote radio head, thereby not only ensuring the coverage of the signal, but also improving the utilization rate of the remote radio head.
  • FIG. 13 is a schematic structural diagram of another communication device 130 provided by an embodiment of the present disclosure.
  • the communication device 130 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 130 may include one or more processors 1301 .
  • the processor 1301 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 130 may further include one or more memories 1302, on which a computer program 1304 may be stored, and the processor 1301 executes the computer program 1304, so that the communication device 130 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1302 .
  • the communication device 130 and the memory 1302 can be set separately or integrated together.
  • the communication device 130 may further include a transceiver 1305 and an antenna 1306 .
  • the transceiver 1305 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1305 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 130 may further include one or more interface circuits 1307 .
  • the interface circuit 1307 is used to receive code instructions and transmit them to the processor 1301 .
  • the processor 1301 runs the code instructions to enable the communication device 130 to execute the methods described in the foregoing method embodiments.
  • the communication device 130 is a terminal device: the transceiver 1305 is used to execute step 21 in FIG. 2; step 31, step 32, and step 33 in FIG. 3; step 41, step 42, and step 43 in FIG. 4; or Step 51, Step 52, Step 53 and so on.
  • the communication device 130 is a network device: the transceiver 1301 is used to execute step 71 in FIG. 7; step 81, step 82, and step 83 in FIG. 8; step 91, step 92, and step 93 in FIG. 9, and so on.
  • the processor 1301 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1301 may store a computer program 1303 , and the computer program 1303 runs on the processor 1301 to enable the communication device 130 to execute the methods described in the foregoing method embodiments.
  • the computer program 1303 may be solidified in the processor 1301, and in this case, the processor 1301 may be implemented by hardware.
  • the communication device 130 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 13 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 14 refer to the schematic structural diagram of the chip shown in FIG. 14 .
  • the chip shown in FIG. 14 includes a processor 1401 and an interface 1402. Wherein, the number of processors 1401 may be one or more, and the number of interfaces 1402 may be more than one.
  • Interface 1402 for executing step 21 among Fig. 2; Step 31, step 32, step 33 among Fig. 3; Step 41, step 42, step 43 among Fig. 4; Or step 51, step 52, step among Fig. 5 Step 53 and so on.
  • the interface 1402 is used to execute step 71 in FIG. 7; step 81, step 82, and step 83 in FIG. 8; step 91, step 92, and step 93 in FIG. 9, and so on.
  • the chip further includes a memory 1403 for storing necessary computer programs and data.
  • the embodiment of the present disclosure also provides a communication system, the system includes the communication device as the terminal device and the communication device as the network device in the aforementioned embodiment of Figure 12, or the system includes the communication device as the terminal device in the aforementioned embodiment of Figure 13 devices and communication devices as network devices.
  • the present disclosure also provides a computer-readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种波束测量和上报的方法及其装置,可应用于通信技术领域,其中,由终端设备执行的方法包括:接收配置信息,其中,所述配置信息中包括至少两个参考信号资源,所述至少两个参考信号资源分别对应不同的射频拉远头。由此,终端设备即可根据网络设备为每个射频拉远头配置的参考信号资源,进行波束的测量和上报,从而不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。

Description

一种波束测量和上报的方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种波束测量和上报的方法及其装置。
背景技术
在通信***中,为了在高频信道衰减较快的情况下,保证信号的覆盖范围,需要使用基于波束的信息发送和接收。相关技术中,考虑两个发送接收点(Transmission Reception Point,TRP)的波束测量和上报,针对一个资源配置(resource setting)配置了两个用于信道测量资源的资源集(channel measurement resourceset,CMR resource set),每个CMR resource set对应一个TRP。
当网络设备中包含多个射频拉远头(Remote Radio Head,RRH)时,多个RRH可以同时为终端设备提供服务。因此,如何基于多个RRH进行波束测量和上报是目前亟需解决的问题。
发明内容
本公开实施例提供一种波束测量和上报的方法及其装置,可应用于通信技术领域中。
第一方面,本公开实施例提供一种波束测量和上报的方法,所述方法由终端设备执行,该方法包括:接收配置信息,其中,所述配置信息中包括至少两个参考信号资源,所述至少两个参考信号资源分别对应不同的射频拉远头。
可选的,所述不同的射频拉远头对应以下至少一项:不同的发送接收点,不同的控制资源集池,以及不同的天线面板。
可选的,
所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set;
或者,所述配置信息中包括多个resource setting,其中,所述每个resource setting与一个CMR resource set关联,多个resource setting与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set;
或者,所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与一个CMR resource set关联,所述CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset。
可选的,还包括:
接收第一指示信息,所述第一指示信息用于实现以下至少一项:
激活或去激活M个CMR resource set;
激活或去激活M个CMR resource subset;
激活或去激活M个resource setting;
指示M个CMR resource set;
指示M个CMR resource subset;
指示M个resource setting;其中,M为大于或等于1的正整数。
可选的,还包括:
发送第一测量结果报告;
其中,所述第一测量结果报告中包含多个组,每个组内的N个参考信号RS为终端设备能够同时接收的RS,N为大于或等于2的正整数,N个RS中的不同RS对应不同的射频拉远头,或者,所述第一测量结果报告中包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
可选的,
所述配置信息中包括多个resource setting,其中,每个所述resource setting包含两个CMR resource set,两个CMR resource set与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set;
或者,所述配置信息中包括多个resource setting,其中,每个所述resource setting包含一个 CMR resource set,所述CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
可选的,还包括:
接收第二指示信息,其中,所述第二指示信息用于实现以下至少一项:
激活或者去激活任一所述resource setting关联的资源;
指示任一所述resource setting关联的资源。
可选的,还包括:
发送第二测量结果报告,其中,所述第二测量结果报告中包含所述至少一个resource setting的标识以及分别对应的测量结果。
可选的,
所述每个resource setting对应的测量结果包括多个组,每个组内的两个RS为所述终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的射频拉远头;
或者,所述每个resource setting对应的测量结果包括多个组,不同组内的RS为终端设备能够同时接收的RS。
可选的,所述测量结果包括所述RS索引和相应的测量值,所述RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,所述测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
可选的,所述不同的射频拉远头对应相同的物理小区标识PCI,或者所述不同的射频拉远头对应不同的PCI。
第二方面,本公开实施例提供另一种波束测量和上报的方法,所述方法由网络设备执行,该方法包括:发送配置信息,其中,所述配置信息中包括至少两个参考信号资源,所述至少两个参考信号资源分别对应不同的射频拉远头。
可选的,所述不同的射频拉远头对应以下至少一项:不同的发送接收点,不同的控制资源集池,以及不同的天线面板。
可选的,
所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set;
或者,所述配置信息中包括多个resource setting,其中,所述每个resource setting与一个CMR resource set关联,多个resource setting与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set;
或者,所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与一个CMR resource set关联,所述CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset。
可选的,还包括:
发送第一指示信息,所述第一指示信息用于实现以下至少一项:
激活或去激活M个CMR resource set;
激活或去激活M个CMR resource subset;
激活或去激活M个resource setting;
指示M个CMR resource set;
指示M个CMR resource subset;
指示M个resource setting;其中,M为大于或等于1的正整数。
可选的,还包括:
接收第一测量结果报告;
其中,所述第一测量结果报告中包含多个组,每个组内的N个参考信号RS为终端设备能够同时接收的RS,N为大于或等于2的正整数,N个RS中的不同RS对应不同的射频拉远头,或者,所述第一测量结果报告中包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
可选的,
所述配置信息中包括多个resource setting,其中,每个所述resource setting包含两个CMR  resource set,两个CMR resource set与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set;
或者,所述配置信息中包括多个resource setting,其中,每个所述resource setting包含一个CMR resource set,所述CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
可选的,还包括:
发送第二指示信息,其中,所述第二指示信息用于实现以下至少一项:
激活或者去激活任一所述resource setting中关联的资源;
指示任一所述resource setting中关联的资源可用。
可选的,还包括:
接收第二测量结果报告,其中,所述第二测量结果报告中包含所述至少一个resource setting的标识以及分别对应的测量结果。
可选的,所述每个resource setting对应的测量结果包括多个组,每个组内的两个RS为所述终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的射频拉远头;
或者,所述每个resource setting对应的测量结果包括多个组,不同组内的RS为终端设备能够同时接收的RS。
可选的,,所述测量结果包括所述RS索引和相应的测量值,所述RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,所述测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
可选的,所述不同的射频拉远头对应相同的物理小区标识PCI,或者所述不同的射频拉远头对应不同的PCI。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信***,该***包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使上述第一方面所述的方法被实现。
第十三方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令, 当所述指令被执行时,使上述第二方面所述的方法被实现。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信***的架构示意图;
图2是本公开一实施例提供的一种波束测量和上报的方法的流程示意图;
图3是本公开另一实施例提供的一种波束测量和上报的方法的流程示意图;
图4是本公开另一实施例提供的一种波束测量和上报的方法的流程示意图;
图5是本公开另一实施例提供的一种波束测量和上报的方法的流程示意图;
图6是本公开另一实施例提供的一种波束测量和上报的方法的流程示意图;
图7是本公开另一实施例提供的一种波束测量和上报的方法的流程示意图;
图8是本公开另一实施例提供的一种波束测量和上报的方法的流程示意图;
图9是本公开另一实施例提供的一种波束测量和上报的方法的流程示意图;
图10是本公开另一实施例提供的一种波束测量和上报的方法的流程示意图;
图11是本公开另一实施例提供的一种波束测量和上报的方法的流程示意图;
图12是本公开一实施例的通信装置的结构示意图;
图13是本公开另一实施例的通信装置的结构示意图;
图14是本公开一实施例的芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
1、射频拉远头(Remote Radio Head,RRH)
在远端将基带光信号转成射频信号放大传送出去。也可称为射频拉远模块(Remote Radio Unit,简称RRU)。
为了更好的理解本公开实施例公开的一种波束测量和上报的方法,
下面首先对本公开实施例适用的通信***进行描述。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备、一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11、一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term  evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的波束测量和上报的方法及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤21,接收配置信息,其中,配置信息中包括至少两个参考信号资源,至少两个参考信号资源分别对应不同的射频拉远头。
可以理解的是,在网络设备中包含多个RRH的情况下,网络设备可以为多个射频拉远头配置不同的参考信号资源,同时RRH射频拉远头分别对应的参考信号资源,进而基于每个RRH对应的参考信号资源,进行波束的测量和上报。
可选的,不同的RRH可以对应以下至少一项:不同的发送接收点(transmission reception point,TRP),不同的控制资源集池(CORESET Pool Index),以及不同的天线面板。也就是说,在本发明实施例中,RRH可以与TRP,CORESETPool Index或天线面板互换。
可选的,不同的RRH可以对应相同的物理小区标识(Physical Cell Identifier,PCI),或者,不同的射频拉远头也可以对应不同的PCI,本公开对此不做限定。
通过实施本公开实施例,终端设备接收配置信息,其中,配置信息中包括至少两个参考信号资源,至少两个参考信号资源分别对应不同的射频拉远头。由此,终端设备即可根据网络设备为每个射频拉远头配置的参考信号资源,进行波束的测量和上报,从而不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图3,图3是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤31,接收配置信息,其中,配置信息中包括一个资源配置resource setting,其中,一个resource setting可以与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应。
需要说明的是,不同RRH对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set,同一RRH对应的参考信号资源包含于同一CMR resource set。每个RRH对应至少一个参考信号资源。
可选的,多个CMR resource set中的多个包含两个或两个以上。
可以理解的是,配置信息中的每个参考信号资源包含在一个CMR resource set中,不同的参考信号资源,可以包含于同一个CMR resource set中,或包含于不同的CMR resource set。
举例来说,配置信息中包括一个resource setting#1,resource setting#1与CMR resource set1、CMR resource set2、CMR resource set3关联,CMR resource set1与RRH1对应,CMR resource set2与RRH2对应,CMR resource set3与RRH3对应。则三个RRH分别对应的至少一个参考信号资源可以分别包含于CMR resource set1、CMR resource set2和CMR resource set3中。也就是说,CMR resource set1包含至少一个参考信号资源,且CMR resource set1包含的所有的参考信号资源都对应于RRH1;CMR resource set2包含至少一个参考信号资源,且CMR resource set2包含的所有的参考信号资源都对应于RRH2;CMR resource set3包含至少一个参考信号资源,且CMR resource set3包含的所有的参考信号资源都对应于RRH3。
步骤32,接收第一指示信息。
可选的,第一指示信息可以用于实现以下至少一项:
激活或去激活M个CMR resource set;
指示M个CMR resource set;其中,M为大于或等于1的正整数。
可以理解的是,M为小于或等于配置信息中配置的CMRresource set的数值。
可选的,第一指示信息可以为网络设备发送的媒体接入控制层(Medium Access Control,MAC)控制单元(Control Element,CE)信息,终端设备可以根据MAC CE信息,确定激活或去激活M个CMR resource set。
可选的,网络设备通过MAC CE来激活或去激活M个CMR resource set,也可以是通过激活或激活一个reportconfig(报告配置)来实现,而该reportconfig与M个CMR resource set相关联。
或者,第一指示信息也可以为网络设备发送的下行控制信息(Downlink Control Information,DCI),终端设备可以根据DCI,确定基于M个CMR resource set进行测量上报。
可选的,网络设备通过DCI来指示基于M个CMR resource set进行测量上报,也可以是通过指示一个reportconfig来实现,而该reportconfig与M个CMR resource set相关联。
终端设备在确定了可用的CMR resource set后,即可针对RRH进行波束的测量。
步骤33,发送第一测量结果报告。
可选的,第一测量结果报告中可以包含多个组,每个组内的N个参考信号(Reference Signal,RS)为终端设备能够同时接收的RS。
其中,N为大于或等于2的正整数,N个RS中的不同RS对应不同的RRH,N个RS可以对应两个或两个以上不同的RRH,比如,三个、四个等,本公开对此不做限定。
或者,第一测量结果报告中可以包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
举例来说,若有4个RRH,分别为:RRH1、RRH2、RRH3、RRH4,则从任意两个组,比如组1和组2中获取的两个RS,可能分别对应RRH1和RRH2,或RRH1和RRH3,或RRH1和RRH4,或RRH2和RRH3,或RRH2和RRH4,或RRH3和RRH4,本公开对此不做限定。
可选的,第一测量结果报告中可以包括RS索引和相应的测量值,RS包括同步信号块(Synchronization Signal Block,SSB)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),测量值包括层一的参考信号接收功率(Reference Signal Receiving Power,L1-RSRP)或层一的信号与干扰噪声比(Signal to Interference plus Noise Ratio,L1-SINR)。
通过实施本公开实施例,终端设备可以首先接收配置信息,然后根据配置信息中的一个与多个CMR resource set关联的资源配置,确定每个RRH对应的CMR resource set,之后根据接收的第一指示信息,确定基于M个CMR resource set进行波束测量,最后向网络设备发送第一测量结果报告。由此,实现了针对多个RRH的波束的测量和上报,不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图4,图4是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤41,接收配置信息,其中配置信息中包括多个resource setting,其中,每个resource setting与一个用于信道测量资源的资源集CMR resource set关联,多个resource setting与多个RRH一一对应。
其中,不同RRH对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set,同一RRH对应的参考信号资源包含于同一CMR resource set。每个RRH对应至少一个参考信号资源。
可选的,多个resource setting中的多个包含两个或两个以上。
可以理解的是,配置信息中的每个参考信号资源包含在一个CMR resource set中,不同的参考信号资源,包含于同一个CMR resource set,或包含于不同的CMR resource set。
举例来说,配置信息中包括多个resource setting,分别为resource setting#1、resource setting#2、resource setting#3,其中,resource setting#1与CMR resource set1关联,resource setting#2与CMR resource set2关联,resource setting#3与CMR resource set3关联,resource setting#1与RRH1对应,resource setting#2与RRH2对应,resource setting#3与RRH3对应。则三个RRH分别对应的至少一个参考信号资源可以分别包含于CMR resource set1、CMR resource set2、CMR resource set3。也就是说,CMR resource set1包含至少一个参考信号资源,且CMR resource set1包含的所有的参考信号资源都对应于RRH1;CMR resource set2包含至少一个参考信号资源,且CMR resource set2包含的所有的参考信号资源都对应于RRH2;CMR resource set3包含至少一个参考信号资源,且CMR resource set3包含的所有的参考信号资源都对应于RRH3。
步骤42,接收第一指示信息。
可选的,第一指示信息用于实现以下至少一项:
激活或去激活M个resource setting;
指示M个resource setting;其中,M为大于或等于1的正整数。
可以理解的是,M为小于或等于配置信息中包含的resource setting的数值。
可选的,第一指示信息可以为网络设备发送的MAC CE信息,终端设备可以根据MAC CE信息,确定激活或去激活M个resource setting。
可选的,网络设备通过MAC CE来激活或去激活M个resource setting,也可以是通过激活或激活一个reportconfig(报告配置)来实现,而该reportconfig与M个resource setting相关联。
或者,第一指示信息也可以为网络设备发送的DCI,终端设备可以根据DCI,确定基于M个resource setting进行测量上报。
可选的,网络设备通过DCI来指示基于M个resource setting进行测量,也可以是通过指示一个reportconfig来实现,而该reportconfig与M个resource setting相关联。
终端设备在确定了可用的resource setting后,即可针对RRH进行波束的测量。
步骤43,发送第一测量结果报告。
可选的,第一测量结果报告中可以包含多个组,每个组内的N个参考信号(Reference Signal,RS)为终端设备能够同时接收的RS。
其中,N为大于或等于2的正整数,N个RS中的不同RS对应不同的RRH。
可选的,N个RS可以对应两个或两个以上不同的RRH,比如,三个、四个等,本公开对此不做限定。
或者,第一测量结果报告中可以包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
举例来说,若有4个RRH,分别为:RRH1、RRH2、RRH3、RRH4,则从任意两个组,比如组1和组2中获取的两个RS,可能分别对应RRH1和RRH2,或RRH1和RRH3,或RRH1和RRH4,或RRH2和RRH3,或RRH2和RRH4,或RRH3和RRH4,本公开对此不做限定。
可选的,第一测量结果报告中可以包括RS索引和相应的测量值,RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
通过实施本公开实施例,终端设备可以首先接收配置信息,然后根据配置信息中的每个与CMR resource set关联的资源配置,确定每个RRH对应的resource setting,之后再根据接收的第一指示信息,确定基于M个resource setting进行波束测量,最后向网络设备发送第一测量结果报告。由此,实现了针对多个RRH的波束的测量和上报,不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图5,图5是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤51,接收配置信息,其中,配置信息中包括一个资源配置resource setting,其中,一个resource setting与一个CMR resource set关联,CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个RRH一一对应。
其中,不同RRH对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset,同一RRH对应的参考信号资源包含于同一CMR resource subset。每个RRH对应至少一个参考信号资源。
可选的,多个CMR resource subset中的多个包含两个或两个以上。
可以理解的是,配置信息中的每个参考信号资源包含在一个CMR resource subset中,不同的参考信号资源,包含于同一个CMR resource subset,或包含于不同的CMR resource subset。
举例来说,配置信息中包括一个resource setting,resource setting与一个CMR resource set关联,其中,CMR resource set中包含CMR resource subset1、CMR resource subset2、CMR resource subset3,CMR resource subset1与RRH1对应,CMR resource subset2与RRH2对应,CMR resource subset3与RRH3对应。则三个RRH分别对应的至少一个参考信号资源可以分别包含于CMR resource subset1、CMR resource subset2、CMR resource subset3。也就是说,CMR resource subset1包含至少一个参考信号资源,且CMR resource subset1包含的所有的参考信号资源都对应于RRH1;CMR resource subset2包含至少一个参考信号资源,且CMR resource subset2包含的所有的参考信号资源都对应于RRH2;CMR resource subset3包含至少一个参考信号资源,且CMR resource subset3包含的所有的参考信号资源都对应于RRH3。
步骤52,接收第一指示信息。
可选的,第一指示信息用于实现以下至少一项:
激活或去激活M个CMR resource subset;
指示M个CMR resource subset;其中,M为大于或等于1的正整数。
可以理解的是,M为小于或等于配置信息中包含的CMR resource subset的数值。
可选的,第一指示信息可以为网络设备发送的MAC CE信息,终端设备可以根据MAC CE信息,确定激活或去激活M个CMR resource subset。
可选的,网络设备通过MAC CE来激活或去激活M个resource subset,也可以是通过激活或激活一个reportconfig(报告配置)来实现,而该reportconfig与M个resource subset相关联。
或者,第一指示信息也可以为网络设备发送的DCI,此时,终端设备可以根据DCI,确定基于M个CMR resource subset进行测量上报。
可选的,网络设备通过DCI来指示基于M个resource subset进行测量,也可以是通过指示一个reportconfig来实现,而该reportconfig与M个resource subset相关联。
终端设备在确定了可用的CMR resource subset后,即可针对RRH进行波束的测量。
步骤53,发送第一测量结果报告。
其中,步骤53的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
通过实施本公开实施例,终端设备可以首先接收配置信息,然后根据配置信息中的一个与多个CMR resource subset关联的资源配置,确定每个RRH对应的CMR resource subset,之后再根据接收的第一指示信息确定基于M个CMR resource subset,进行波束测量,最后向网络设备发送第一测量结果报告。由此,实现了针对多个RRH的波束的测量和上报,不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图6,图6是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤61,接收配置信息,其中,配置信息中包括多个resource setting。
可选的,每个resource setting可以包含两个CMR resource set,两个CMR resource set与两个RRH一一对应。不同RRH对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set。
举例来说,resource setting#1中包含两个CMR resource set,分别为CMR resource set1与CMR resource set2,其中,CMR resource set1与RRH1对应,CMR resource set2与RRH2对应。则两个RRH分别对应的至少一个参考信号资源可以分别包含于CMR resource set1、CMR resource set2。也就是说,CMR resource set1包含至少一个参考信号资源,且CMR resource set1包含的所有的参考信号资源都对应于RRH1;CMR resource set2包含至少一个参考信号资源,且CMR resource set2包含的所有的参考信号资源都对应于RRH2。
举例来说,如果网络设备需要配置终端设备上报RRH1,RRH2和RRH3的测量结果,那么网络设备需要配置三个resource setting,resource setting1对应RRH1和RRH2的CMR resource set;resource setting2对应RRH1和RRH3的CMR resource set;resource setting3对应RRH2和RRH3的CMR resource set。
或者,每个resource setting也可以包含一个CMR resource set,CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个RRH一一对应。不同RRH对应的至少一个参考信 号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
举例来说,resource setting1中包含一个CMR resource set,CMR resource set中包含CMR resource subset1、CMR resource subset2,CMR resource subset1与RRH1对应,CMR resource subset2与RRH2对应。则两个RRH分别对应的至少一个参考信号资源可以分别包含于CMR resource subset1、CMR resource subset2。也就是说,CMR resource subset1包含至少一个参考信号资源,且CMR resource subset1包含的所有的参考信号资源都对应于RRH1;CMR resource subset2包含至少一个参考信号资源,且CMR resource subset2包含的所有的参考信号资源都对应于RRH2。
举例来说,如果网络设备需要配置终端上报RRH1,RRH2和RRH3的测量结果,那么网络设备需要配置三个resource setting,resource setting1对应RRH1和RRH2的CMR resource subset;resource setting2对应RRH1和RRH3的CMR resource subset;resource setting3对应RRH2和RRH3的CMR resource subset。
步骤62,接收第二指示信息。
其中,第二指示信息用于实现以下至少一项:
激活或者去激活任一resource setting关联的资源;
指示任一resource setting关联的资源。
可选的,第二指示信息可以为网络设备发送的MAC CE信息,终端设备可以根据MAC CE信息,确定激活或者去激活任一resource setting关联的资源。
可选的,网络设备通过MAC CE来激活或去激活任一resource setting关联的资源,也可以是通过激活或激活一个reportconfig(报告配置)来实现,而该reportconfig与该resource setting相关联。
或者,第二指示信息也可以为网络设备发送的DCI,此时,终端设备可以根据DCI,确定任一resource setting关联的资源。
可选的,网络设备通过DCI来指示基于任一resource setting关联的资源进行测量,也可以是通过指示一个reportconfig来实现,而该reportconfig与该resource setting相关联。
终端设备在确定了可用的resource setting后,即可针对RRH进行波束的测量。
步骤63,发送第二测量结果报告,其中,第二测量结果报告中包含至少一个resource setting的标识以及分别对应的测量结果。
可选的,测量结果可以包括RS索引和相应的测量值,RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
可选的,每个resource setting对应的测量结果可以包括多个组,每个组内的两个RS为终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的RRH。
可以理解的是,在两个CMR resource set与两个RRH一一对应,或者,两个CMR resource subset与两个射频拉远头一一对应的情况下,每个resource setting对应的两个RRH已经固定,终端设备上报的resource setting对应的测量结果只能包含这两个RRH的RS及测量结果。
举例来说,如果网络设备需要终端上报RRH1,RRH2和RRH3的测量结果,那么网络设备需要配置三个resource setting,resource setting1对应RRH1和RRH2的CMR resource set或CMR resource subset;resource setting2对应RRH1和RRH3的CMR resource set或CMR resource subset;resource setting3对应RRH2和RRH3的CMR resource set或CMR resource subset。那么针对resource setting1的测量结果即为RRH1和RRH2的测量结果;那么针对resource setting2的测量结果即为RRH1和RRH3的测量结果;那么针对resource setting3的测量结果即为RRH2和RRH3的测量结果。
或者,每个resource setting对应的测量结果可以包括多个组,不同组内的RS为终端设备能够同时接收的RS。
可以理解的是,在两个CMR resource set与两个RRH一一对应,或者,两个CMR resource subset与两个RRH一一对应的情况下,每个resource setting对应的两个RRH已经固定,终端设备上报的resource setting对应的测量结果只能包含这两个RRH的RS及测量结果。
举例来说,如果网络设备需要终端上报RRH1,RRH2和RRH3的测量结果,那么网络设备需要配置三个resource setting,resource setting1对应RRH1和RRH2的CMR resource set或CMR resource subset;resource setting2对应RRH1和RRH3的CMR resource set或CMR resource subset;resource setting3对应RRH1和RRH3的CMR resource set或CMR resource subset。那么针对resource setting1的测量结果即为RRH1和RRH2的测量结果;那么针对resource setting2的测量结果即为RRH1和RRH3的测量结果;那么针对resource setting3的测量结果即为RRH2和RRH3的测量结果。
通过实施本公开实施例,终端设备可以首先接收配置信息,然后根据配置信息中包含的多个资源配 置,确定每个RRH对应的CMR resource set或CMR resource subset,之后再根据接收的第二指示信息确定可用的resource setting,之后在进行波束测量后,即可向网络设备发送第二测量结果报告。由此,实现了针对多个RRH的波束的测量和上报,不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图7,图7是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由网络设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤71,发送配置信息,其中,配置信息中包括至少两个参考信号资源,至少两个参考信号资源分别对应不同的射频拉远头。
可以理解的是,在网络设备中包含多个RRH的情况下,网络设备可以为多个射频拉远头配置不同的参考信号资源,同时RRH射频拉远头分别对应的参考信号资源,进而基于每个RRH对应的参考信号资源,进行波束的测量和上报。
可选的,不同的RRH可以对应以下至少一项:不同的发送接收点(transmission reception point,TRP),不同的控制资源集池(CORESET Pool Index),以及不同的天线面板。也就是说,在本发明实施例中,RRH可以与TRP,CORESETPool Index或天线面板互换。
可选的,不同的RRH可以对应相同的物理小区标识(Physical Cell Identifier,PCI),或者,不同的射频拉远头也可以对应不同的PCI,本公开对此不做限定。
通过实施本公开实施例,网络设备发送配置信息,其中,配置信息中包括至少两个参考信号资源,至少两个参考信号资源分别对应不同的射频拉远头。由此,终端设备即可根据网络设备为每个射频拉远头配置的参考信号资源,进行波束的测量和上报,从而不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图8,图8是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由网络设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤81,发送配置信息,其中,配置信息中包括一个资源配置resource setting,其中,一个resource setting与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应。
需要说明的是,不同RRH对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set,同一RRH对应的参考信号资源包含于同一CMR resource set。每个RRH对应至少一个参考信号资源。
可选的,多个CMR resource set中的多个包含两个或两个以上。
可以理解的是,配置信息中的每个参考信号资源包含在一个CMR resource set中,不同的参考信号资源,可以包含于同一个CMR resource set中,或包含于不同的CMR resource set。
举例来说,配置信息中包括一个resource setting#1,resource setting#1与CMR resource set1、CMR resource set2、CMR resource set3关联,CMR resource set1与RRH1对应,CMR resource set2与RRH2对应,CMR resource set3与RRH3对应。则三个RRH分别对应的至少一个参考信号资源可以分别包含于CMR resource set1、CMR resource set2和CMR resource set3中。也就是说,CMR resource set1包含至少一个参考信号资源,且CMR resource set1包含的所有的参考信号资源都对应于RRH1;CMR resource set2包含至少一个参考信号资源,且CMR resource set2包含的所有的参考信号资源都对应于RRH2;CMR resource set3包含至少一个参考信号资源,且CMR resource set3包含的所有的参考信号资源都对应于RRH3。
步骤82,发送第一指示信息。
可选的,第一指示信息用于实现以下至少一项:
激活或去激活M个CMR resource set;
指示M个CMR resource set;其中,M为大于或等于1的正整数。
可以理解的是,M为小于或等于配置信息中配置的CMRresource set的数值。
可选的,第一指示信息可以为网络设备发送的媒体接入控制层(Medium Access Control,MAC)控制单元(Control Element,CE)信息。或者,第一指示信息也可以为网络设备发送的下行控制信息(Downlink Control Information,DCI)。
可选的,网络设备通过MAC CE来激活或去激活M个CMR resource set,也可以是通过激活或激活一个reportconfig(报告配置)来实现,而该reportconfig与M个CMR resource set相关联。
可选的,网络设备通过DCI来指示基于M个CMR resource set进行测量上报,也可以是通过指示一个reportconfig来实现,而该reportconfig与M个CMR resource set相关联。
网络设备在向终端设备发送了第一指示信息之后,终端设备即可基于M个CMR resource set进行波束的测量上报。
步骤83,接收第一测量结果报告。
可选的,第一测量结果报告中可以包含多个组,每个组内的N个参考信号(Reference Signal,RS)为终端设备能够同时接收的RS。
其中,N为大于或等于2的正整数,N个RS中的不同RS对应不同的RRH,N个RS可以对应两个或两个以上不同的RRH,比如,三个、四个等,本公开对此不做限定。
或者,第一测量结果报告中可以包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
举例来说,若有4个RRH,分别为:RRH1、RRH2、RRH3、RRH4,则从任意两个组,比如组1和组2中获取的两个RS,可能分别对应RRH1和RRH2,或RRH1和RRH3,或RRH1和RRH4,或RRH2和RRH3,或RRH2和RRH4,或RRH3和RRH4,本公开对此不做限定。
可选的,第一测量结果报告中可以包括RS索引和相应的测量值,RS包括同步信号块(Synchronization Signal Block,SSB)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),测量值包括层一的参考信号接收功率(Reference Signal Receiving Power,L1-RSRP)或层一的信号与干扰噪声比(Signal to Interference plus Noise Ratio,L1-SINR)。
通过实施本公开实施例,网络设备可以首先向终端设备发送配置信息,以使终端设备可以根据配置信息中的一个与多个CMR resource set关联的资源配置,确定每个RRH对应的CMR resource set,之后再向终端设备发送第一指示信息,以使终端设备基于CMR resource set,进行波束测量,最后接收终端设备发送的第一测量结果报告。由此,实现了针对多个RRH的波束的测量和上报,不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图9,图9是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由网络设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤91,发送配置信息,其中,配置信息中包括多个resource setting,其中,每个resource setting与一个用于信道测量资源的资源集CMR resource set关联,多个resource setting与多个RRH一一对应。
其中,不同RRH对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set,同一RRH对应的参考信号资源包含于同一CMR resource set。每个RRH对应至少一个参考信号资源。
可选的,多个resource setting中的多个包含两个或两个以上。
可以理解的是,配置信息中的每个参考信号资源包含在一个CMR resource set中,不同的参考信号资源,包含于同一个CMR resource set,或包含于不同的CMR resource set。
举例来说,配置信息中包括多个resource setting,分别为resource setting#1、resource setting#2、resource setting#3,其中,resource setting#1与CMR resource set1关联,resource setting#2与CMR resource set2关联,resource setting#3与CMR resource set3关联,resource setting#1与RRH1对应,resource setting#2与RRH2对应,resource setting#3与RRH3对应。则三个RRH分别对应的至少一个参考信号资源可以分别包含于CMR resource set1、CMR resource set2、CMR resource set3。也就是说,CMR resource set1包含至少一个参考信号资源,且CMR resource set1包含的所有的参考信号资源都对应于RRH1;CMR resource set2包含至少一个参考信号资源,且CMR resource set2包含的所有的参考信号资源都对应于RRH2;CMR resource set3包含至少一个参考信号资源,且CMR resource set3包含的所有的参考信号资源都对应于RRH3。
步骤92,发送第一指示信息。
可选的,第一指示信息用于实现以下至少一项:
激活或去激活M个resource setting;
指示M个resource setting;其中,M为大于或等于1的正整数。
可以理解的是,M为小于或等于配置信息中包含的resource setting的数值。
可选的,第一指示信息可以为网络设备发送的MAC CE信息。或者,也可以为网络设备发送的DCI。
可选的,网络设备通过MAC CE来激活或去激活M个resource setting,也可以是通过激活或激活一个reportconfig(报告配置)来实现,而该reportconfig与M个resource setting相关联。
可选的,网络设备通过DCI来指示基于M个resource setting进行测量,也可以是通过指示一个reportconfig来实现,而该reportconfig与M个resource setting相关联。
可以理解的是,网络设备在向终端设备发送了第一指示信息之后,终端设备即可确定可用的esource setting,进而针对RRH进行波束的测量。
步骤93,接收第一测量结果报告。
可选的,第一测量结果报告中可以包含多个组,每个组内的N个参考信号(Reference Signal,RS)为终端设备能够同时接收的RS。
其中,N为大于或等于2的正整数,N个RS中的不同RS对应不同的RRH。
可选的,N个RS可以对应两个或两个以上不同的RRH,比如,三个、四个等,本公开对此不做限定。
或者,第一测量结果报告中可以包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
举例来说,若有4个RRH,分别为:RRH1、RRH2、RRH3、RRH4,则从任意两个组,比如组1和组2中获取的两个RS,可能分别对应RRH1和RRH2,或RRH1和RRH3,或RRH1和RRH4,或RRH2和RRH3,或RRH2和RRH4,或RRH3和RRH4,本公开对此不做限定。
可选的,第一测量结果报告中可以包括RS索引和相应的测量值,RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
通过实施本公开实施例,网络设备可以首先向终端设备发送配置信息,以使终端设备可以根据配置信息中包含的与CMR resource set关联的资源配置,确定每个RRH对应的resource setting,之后再向终端设备发送第一指示信息,以使终端设备基于M个resource setting,进行波束测量,最后接收终端设备发送的第一测量结果报告。由此,实现了针对多个RRH的波束的测量和上报,不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图10,图10是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由终端设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤101,发送配置信息,其中,配置信息中包括一个资源配置resource setting,其中,一个resource setting与一个CMR resource set关联,CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个RRH一一对应。
其中,不同RRH对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset,同一RRH对应的参考信号资源包含于同一CMR resource subset。每个RRH对应至少一个参考信号资源。
可选的,多个CMR resource subset中的多个包含两个或两个以上。
可以理解的是,配置信息中的每个参考信号资源包含在一个CMR resource subset中,不同的参考信号资源,包含于同一个CMR resource subset,或包含于不同的CMR resource subset。
举例来说,配置信息中包括一个resource setting,resource setting与一个CMR resource set关联,其中,CMR resource set中包含CMR resource subset1、CMR resource subset2、CMR resource subset3,CMR resource subset1与RRH1对应,CMR resource subset2与RRH2对应,CMR resource subset3与RRH3对应。则三个RRH分别对应的至少一个参考信号资源可以分别包含于CMR resource subset1、CMR resource subset2、CMR resource subset3。也就是说,CMR resource subset1包含至少一个参考信号资源,且CMR resource subset1包含的所有的参考信号资源都对应于RRH1;CMR resource subset2包含至少一个参考信号资源,且CMR resource subset2包含的所有的参考信号资源都对应于RRH2;CMR resource subset3包含至少一个参考信号资源,且CMR resource subset3包含的所有的参考信号资源都对应于RRH3。
步骤102,发送第一指示信息。
可选的,第一指示信息用于实现以下至少一项:
激活或去激活M个CMR resource subset;
指示M个CMR resource subset;其中,M为大于或等于1的正整数。
可以理解的是,M为小于或等于配置信息中包含的CMR resource subset的数值。
可选的,第一指示信息可以为网络设备发送的MAC CE信息。或者,也可以为网络设备发送的DCI。
可选的,网络设备通过MAC CE来激活或去激活M个resource subset,也可以是通过激活或激活一个reportconfig(报告配置)来实现,而该reportconfig与M个resource subset相关联。
可选的,网络设备通过DCI来指示基于M个resource subset进行测量,也可以是通过指示一个reportconfig来实现,而该reportconfig与M个resource subset相关联。
可以理解的是,网络设备在向终端设备发送了第一指示信息之后,终端设备即可确定可用的CMR resource subset,进而针对RRH进行波束的测量。
步骤103,接收第一测量结果报告。
其中,步骤103的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
通过实施本公开实施例,网络设备可以首先向终端设备发送配置信息,以使终端设备可以根据配置信息中的一个与多个CMR resource subset关联的资源配置,确定每个RRH对应的CMR resource subset,之后再向终端设备发送第一指示信息,以使终端设备基于M个CMR resource subset,进行波束测量,最后接收终端设备发送的第一测量结果报告。由此,实现了针对多个RRH的波束的测量和上报,不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图11,图11是本公开实施例提供的一种波束测量和上报的方法的流程示意图,该方法由终端设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤111,发送配置信息,其中,配置信息中包括多个resource setting。
可选的,每个resource setting可以包含两个CMR resource set,两个CMR resource set与两个RRH一一对应。不同RRH对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set。
举例来说,resource setting#1中包含两个CMR resource set,分别为CMR resource set1与CMR resource set2,其中,CMR resource set1与RRH1对应,CMR resource set2与RRH2对应。则两个RRH分别对应的至少一个参考信号资源可以分别包含于CMR resource set1、CMR resource set2。也就是说,CMR resource set1包含至少一个参考信号资源,且CMR resource set1包含的所有的参考信号资源都对应于RRH1;CMR resource set2包含至少一个参考信号资源,且CMR resource set2包含的所有的参考信号资源都对应于RRH2。
举例来说,如果网络设备需要配置终端设备上报RRH1,RRH2和RRH3的测量结果,那么网络设备需要配置三个resource setting,resource setting1对应RRH1和RRH2的CMR resource set;resource setting2对应RRH1和RRH3的CMR resource set;resource setting3对应RRH2和RRH3的CMR resource set。
或者,每个resource setting也可以包含一个CMR resource set,CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个RRH一一对应。不同RRH对应的至少一个参考信号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
举例来说,resource setting1中包含一个CMR resource set,CMR resource set中包含CMR resource subset1、CMR resource subset2,CMR resource subset1与RRH1对应,CMR resource subset2与RRH2对应。则两个RRH分别对应至少一个参考信号资源可以分别包含于CMR resource subset1、CMR resource subset2。也就是说,CMR resource subset1包含至少一个参考信号资源,且CMR resource subset1包含的所有的参考信号资源都对应于RRH1;CMR resource subset2包含至少一个参考信号资源,且CMR resource subset2包含的所有的参考信号资源都对应于RRH2。
举例来说,如果网络设备需要配置终端上报RRH1,RRH2和RRH3的测量结果,那么网络设备需要配置三个resource setting,resource setting1对应RRH1和RRH2的CMR resource subset;resource setting2对应RRH1和RRH3的CMR resource subset;resource setting3对应RRH2和RRH3的CMR resource subset。
步骤112,发送第二指示信息。
其中,第二指示信息用于实现以下至少一项:
激活或者去激活任一resource setting关联的资源;
指示任一resource setting关联的资源。
可选的,第二指示信息可以为网络设备发送的MAC CE信息。或者,第二指示信息也可以为网络设备发送的DCI。
可选的,网络设备通过MAC CE来激活或去激活任一resource setting关联的资源,也可以是通过激活或激活一个reportconfig(报告配置)来实现,而该reportconfig与该resource setting相关联。
可选的,网络设备通过DCI来指示基于任一resource setting关联的资源进行测量,也可以是通过指示一个reportconfig来实现,而该reportconfig与该resource setting相关联。
可以理解的是,网络设备在向终端设备发送了第一指示信息之后,终端设备即可确定可用的resource setting,进而针对RRH进行波束的测量。
步骤113,接收第二测量结果报告,其中,第二测量结果报告中包含至少一个resource setting的标识以及分别对应的测量结果。
可选的,测量结果可以包括RS索引和相应的测量值,RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
可选的,每个resource setting对应的测量结果可以包括多个组,每个组内的两个RS为终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的RRH。
可以理解的是,在两个CMR resource set与两个RRH一一对应,或者,两个CMR resource subset与两个射频拉远头一一对应的情况下,每个resource setting对应的两个RRH已经固定,终端设备上报的resource setting对应的测量结果只包含这两个RRH的RS及测量结果。
举例来说,如果网络设备需要终端上报RRH1,RRH2和RRH3的测量结果,那么网络设备需要配置三个resource setting,resource setting1对应RRH1和RRH2的CMR resource set或CMR resource subset;resource setting2对应RRH1和RRH3的CMR resource set或CMR resource subset;resource setting3对应RRH2和RRH3的CMR resource set或CMR resource subset。那么针对resource setting1的测量结果即为RRH1和RRH2的测量结果;那么针对resource setting2的测量结果即为RRH1和RRH3的测量结果;那么针对resource setting3的测量结果即为RRH2和RRH3的测量结果。
或者,每个resource setting对应的测量结果可以包括多个组,不同组内的RS为终端设备能够同时接收的RS。
可以理解的是,在两个CMR resource set与两个RRH一一对应,或者,两个CMR resource subset与两个RRH一一对应的情况下,每个resource setting对应的两个RRH已经固定,终端设备上报的resource setting对应的测量结果只能包含这两个RRH的RS及测量结果。
举例来说,如果网络设备需要终端设备上报RRH1,RRH2和RRH3的测量结果,那么网络设备需要配置三个resource setting,resource setting1对应RRH1和RRH2的CMR resource set或CMR resource subset;resource setting2对应RRH1和RRH3的CMR resource set或CMR resource subset;resource setting3对应RRH1和RRH3的CMR resource set或CMR resource subset。那么针对resource setting1的测量结果即为RRH1和RRH2的测量结果;那么针对resource setting2的测量结果即为RRH1和RRH3的测量结果;那么针对resource setting3的测量结果即为RRH2和RRH3的测量结果。
通过实施本公开实施例,网络设备可以首先向终端设备发送配置信息,以使终端设备可以根据配置信息中包含的资源配置,确定每个RRH对应的CMR resource set或CMR resource subset,之后再向终端设备发送第二指示信息,以使终端设备基于M个CMR resource set或CMR resource subset,进行波束测量,最后接收终端设备发送的第二测量结果报告。由此,实现了针对多个RRH的波束的测量和上报,不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
上述本公开提供的实施例中,分别从网络设备、终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图12,为本公开实施例提供的一种通信装置120的结构示意图。图12所示的通信装置120可包括处理模块1201和收发模块1202。
收发模块1202可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1202可以实现发送功能和/或接收功能。
可以理解的是,通信装置120可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置120,在终端设备侧,该装置,包括:
收发模块1202,用于接收配置信息,其中,配置信息中包括至少两个参考信号资源,至少两个参考信号资源分别对应不同的射频拉远头。
可选的,不同的射频拉远头对应以下至少一项:不同的发送接收点,不同的控制资源集池,以及不同的天线面板。
可选的,
配置信息中包括一个资源配置resource setting,其中,一个resource setting与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set;
或者,配置信息中包括多个resource setting,其中,每个resource setting与一个CMR resource set关联,多个resource setting与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set;
或者,配置信息中包括一个资源配置resource setting,其中,一个resource setting与一个CMR resource set关联,CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset。
可选的,收发模块1202,还具体用于:
接收第一指示信息,第一指示信息用于实现以下至少一项:
激活或去激活M个CMR resource set;
激活或去激活M个CMR resource subset;
激活或去激活M个resource setting;
指示M个CMR resource set;
指示M个CMR resource subset;
指示M个resource setting;其中,M为大于或等于1的正整数。
可选的,收发模块1202,还具体用于:
发送第一测量结果报告;
其中,第一测量结果报告中包含多个组,每个组内的N个参考信号RS为终端设备能够同时接收的RS,N为大于或等于2的正整数,N个RS中的不同RS对应不同的射频拉远头,或者,第一测量结果报告中包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
可选的,
配置信息中包括多个resource setting,其中,每个resource setting包含两个CMR resource set,两个CMR resource set与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set;
或者,配置信息中包括多个resource setting,其中,每个resource setting包含一个CMR resource set,CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
可选的,收发模块1202,还具体用于:
接收第二指示信息,其中,第二指示信息用于实现以下至少一项:
激活或者去激活任一resource setting关联的资源;
指示任一resource setting关联的资源。
可选的,收发模块1202,还具体用于:
发送第二测量结果报告,其中,第二测量结果报告中包含至少一个resource setting的标识以及分别对应的测量结果。
可选的,
每个resource setting对应的测量结果包括多个组,每个组内的两个RS为终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的射频拉远头;
或者,每个resource setting对应的测量结果包括多个组,不同组内的RS为终端设备能够同时接收的RS。
可选的,测量结果包括RS索引和相应的测量值,RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
可选的,不同的射频拉远头对应相同的物理小区标识PCI,或者不同的射频拉远头对应不同的PCI。
本公开提供的通信装置,终端设备接收配置信息,其中,配置信息中包括至少两个参考信号资源,至少两个参考信号资源分别对应不同的射频拉远头。由此,终端设备即可根据网络设备为每个射频拉远头配置的参考信号资源,进行波束的测量和上报,从而不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
可以理解的是,通信装置120可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置120,在网络设备侧,该装置,包括:
收发模块1202,用于发送配置信息,其中,配置信息中包括至少两个参考信号资源,至少两个参考 信号资源分别对应不同的射频拉远头。
可选的,不同的射频拉远头对应以下至少一项:不同的发送接收点,不同的控制资源集池,以及不同的天线面板。
可选的,
配置信息中包括一个资源配置resource setting,其中,一个resource setting与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set;
或者,配置信息中包括多个resource setting,其中,每个resource setting与一个CMR resource set关联,多个resource setting与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set;
或者,配置信息中包括一个资源配置resource setting,其中,一个resource setting与一个CMR resource set关联,CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset。
可选的,收发模块1202,还具体用于:
发送第一指示信息,第一指示信息用于实现以下至少一项:
激活或去激活M个CMR resource set;
激活或去激活M个CMR resource subset;
激活或去激活M个resource setting;
指示M个CMR resource set;
指示M个CMR resource subset;
指示M个resource setting;其中,M为大于或等于1的正整数。
可选的,收发模块1202,还具体用于:
接收第一测量结果报告;
其中,第一测量结果报告中包含多个组,每个组内的N个参考信号RS为终端设备能够同时接收的RS,N为大于或等于2的正整数,N个RS中的不同RS对应不同的射频拉远头,或者,第一测量结果报告中包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
可选的,
配置信息中包括多个resource setting,其中,每个resource setting包含两个CMR resource set,两个CMR resource set与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set;
或者,配置信息中包括多个resource setting,其中,每个resource setting包含一个CMR resource set,CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
可选的,收发模块1202,还具体用于:
发送第二指示信息,其中,第二指示信息用于实现以下至少一项:
激活或者去激活任一resource setting中关联的资源;
指示任一resource setting中关联的资源可用。
可选的,收发模块1202,还具体用于:
接收第二测量结果报告,其中,第二测量结果报告中包含至少一个resource setting的标识以及分别对应的测量结果。
可选的,
每个resource setting对应的测量结果包括多个组,每个组内的两个RS为终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的射频拉远头;
或者,每个resource setting对应的测量结果包括多个组,不同组内的RS为终端设备能够同时接收的RS。
可选的,测量结果包括RS索引和相应的测量值,RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
可选的,不同的射频拉远头对应相同的物理小区标识PCI,或者不同的射频拉远头对应不同的PCI。
本公开提供的通信装置,网络设备发送配置信息,其中,配置信息中包括至少两个参考信号资源, 至少两个参考信号资源分别对应不同的射频拉远头。由此,终端设备即可根据网络设备为每个射频拉远头配置的参考信号资源,进行波束的测量和上报,从而不仅保证了信号的覆盖范围,而且提高了射频拉远头的利用率。
请参见图13,图13是本公开实施例提供的另一种通信装置130的结构示意图。通信装置130可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置130可以包括一个或多个处理器1301。处理器1301可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置130中还可以包括一个或多个存储器1302,其上可以存有计算机程序1304,处理器1301执行所述计算机程序1304,以使得通信装置130执行上述方法实施例中描述的方法。可选的,所述存储器1302中还可以存储有数据。通信装置130和存储器1302可以单独设置,也可以集成在一起。
可选的,通信装置130还可以包括收发器1305、天线1306。收发器1305可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1305可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置130中还可以包括一个或多个接口电路1307。接口电路1307用于接收代码指令并传输至处理器1301。处理器1301运行所述代码指令以使通信装置130执行上述方法实施例中描述的方法。
通信装置130为终端设备:收发器1305用于执行图2中的步骤21;图3中的步骤31、步骤32、步骤33;图4中的步骤41、步骤42、步骤43;或图5中的步骤51、步骤52、步骤53等等。
通信装置130为网络设备:收发器1301用于执行图7中的步骤71;图8中的步骤81、步骤82、步骤83;图9中的步骤91、步骤92、步骤93等等。
在一种实现方式中,处理器1301中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1301可以存有计算机程序1303,计算机程序1303在处理器1301上运行,可使得通信装置130执行上述方法实施例中描述的方法。计算机程序1303可能固化在处理器1301中,该种情况下,处理器1301可能由硬件实现。
在一种实现方式中,通信装置130可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图13的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图14所示的芯片的结构示意图。图14所示的 芯片包括处理器1401和接口1402。其中,处理器1401的数量可以是一个或多个,接口1402的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1402,用于执行图2中的步骤21;图3中的步骤31、步骤32、步骤33;图4中的步骤41、步骤42、步骤43;或图5中的步骤51、步骤52、步骤53等等。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1402,用于执行图7中的步骤71;图8中的步骤81、步骤82、步骤83;图9中的步骤91、步骤92、步骤93等等。
可选的,芯片还包括存储器1403,存储器1403用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信***,该***包括前述图12实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该***包括前述图13实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本公开还提供一种计算机可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (50)

  1. 一种波束测量和上报的方法,其特征在于,由终端设备执行,所述方法包括:
    接收配置信息,其中,所述配置信息中包括至少两个参考信号资源,所述至少两个参考信号资源分别对应不同的射频拉远头。
  2. 如权利要求1所述的方法,其特征在于,所述不同的射频拉远头对应以下至少一项:不同的发送接收点,不同的控制资源集池,以及不同的天线面板。
  3. 如权利要求1所述的方法,其特征在于,
    所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set;
    或者,所述配置信息中包括多个resource setting,其中,所述每个resource setting与一个CMR resource set关联,多个resource setting与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set;
    或者,所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与一个CMR resource set关联,所述CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset。
  4. 如权利要求3所述的方法,其特征在于,还包括:
    接收第一指示信息,所述第一指示信息用于实现以下至少一项:
    激活或去激活M个CMR resource set;
    激活或去激活M个CMR resource subset;
    激活或去激活M个resource setting;
    指示M个CMR resource set;
    指示M个CMR resource subset;
    指示M个resource setting;其中,M为大于或等于1的正整数。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    发送第一测量结果报告;
    其中,所述第一测量结果报告中包含多个组,每个组内的N个参考信号RS为终端设备能够同时接收的RS,N为大于或等于2的正整数,N个RS中的不同RS对应不同的射频拉远头,或者,所述第一测量结果报告中包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
  6. 如权利要求1所述的方法,其特征在于,
    所述配置信息中包括多个resource setting,其中,每个所述resource setting包含两个CMR resource set,两个CMR resource set与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set;
    或者,所述配置信息中包括多个resource setting,其中,每个所述resource setting包含一个CMR resource set,所述CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
  7. 如权利要求6所述的方法,其特征在于,还包括:
    接收第二指示信息,其中,所述第二指示信息用于实现以下至少一项:
    激活或者去激活任一所述resource setting关联的资源;
    指示任一所述resource setting关联的资源。
  8. 如权利要求6所述的方法,其特征在于,还包括:
    发送第二测量结果报告,其中,所述第二测量结果报告中包含所述至少一个resource setting的标识以及分别对应的测量结果。
  9. 如权利要求8所述的方法,其特征在于,
    所述每个resource setting对应的测量结果包括多个组,每个组内的两个RS为所述终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的射频拉远头;
    或者,所述每个resource setting对应的测量结果包括多个组,不同组内的RS为终端设备能够同时接收的RS。
  10. 根据权利要求5或9所述的方法,其特征在于,所述测量结果包括所述RS索引和相应的测量值,所述RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,所述测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
  11. 如权利要求1-10任一所述的方法,其特征在于,所述不同的射频拉远头对应相同的物理小区标识PCI,或者所述不同的射频拉远头对应不同的PCI。
  12. 一种波束测量和上报的方法,其特征在于,由网络设备执行,所述方法包括:
    发送配置信息,其中,所述配置信息中包括至少两个参考信号资源,所述至少两个参考信号资源分别对应不同的射频拉远头。
  13. 如权利要求12所述的方法,其特征在于,所述不同的射频拉远头对应以下至少一项:不同的发送接收点,不同的控制资源集池,以及不同的天线面板。
  14. 如权利要求12所述的方法,其特征在于,
    所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set;
    或者,所述配置信息中包括多个resource setting,其中,所述每个resource setting与一个CMR resource set关联,多个resource setting与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set;
    或者,所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与一个CMR resource set关联,所述CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset。
  15. 如权利要求14所述的方法,其特征在于,还包括:
    发送第一指示信息,所述第一指示信息用于实现以下至少一项:
    激活或去激活M个CMR resource set;
    激活或去激活M个CMR resource subset;
    激活或去激活M个resource setting;
    指示M个CMR resource set;
    指示M个CMR resource subset;
    指示M个resource setting;其中,M为大于或等于1的正整数。
  16. 如权利要求15所述的方法,其特征在于,还包括:
    接收第一测量结果报告;
    其中,所述第一测量结果报告中包含多个组,每个组内的N个参考信号RS为终端设备能够同时接收的RS,N为大于或等于2的正整数,N个RS中的不同RS对应不同的射频拉远头,或者,所述第一测量结果报告中包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
  17. 如权利要求12所述的方法,其特征在于,
    所述配置信息中包括多个resource setting,其中,每个所述resource setting包含两个CMR resource set,两个CMR resource set与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set;
    或者,所述配置信息中包括多个resource setting,其中,每个所述resource setting包含一个CMR resource set,所述CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
  18. 如权利要求17所述的方法,其特征在于,还包括:
    发送第二指示信息,其中,所述第二指示信息用于实现以下至少一项:
    激活或者去激活任一所述resource setting中关联的资源;
    指示任一所述resource setting中关联的资源可用。
  19. 如权利要求17所述的方法,其特征在于,还包括:
    接收第二测量结果报告,其中,所述第二测量结果报告中包含所述至少一个resource setting的标识以及分别对应的测量结果。
  20. 如权利要求19所述的方法,其特征在于,
    所述每个resource setting对应的测量结果包括多个组,每个组内的两个RS为所述终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的射频拉远头;
    或者,所述每个resource setting对应的测量结果包括多个组,不同组内的RS为终端设备能够同时接收的RS。
  21. 根据权利要求16或20所述的方法,其特征在于,所述测量结果包括所述RS索引和相应的测量值,所述RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,所述测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
  22. 如权利要求12-21任一所述的方法,其特征在于,所述不同的射频拉远头对应相同的物理小区标识PCI,或者所述不同的射频拉远头对应不同的PCI。
  23. 一种通信装置,其特征在于,所述装置在终端设备执行,所述装置包括:
    收发模块,用于接收配置信息,其中,所述配置信息中包括至少两个参考信号资源,所述至少两个参考信号资源分别对应不同的射频拉远头。
  24. 如权利要求23所述的装置,其特征在于,所述不同的射频拉远头对应以下至少一项:不同的发送接收点,不同的控制资源集池,以及不同的天线面板。
  25. 如权利要求23所述的装置,其特征在于,
    所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set;
    或者,所述配置信息中包括多个resource setting,其中,所述每个resource setting与一个CMR resource set关联,多个resource setting与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set;
    或者,所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与一个CMR resource set关联,所述CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset。
  26. 如权利要求25所述的装置,其特征在于,所述收发模块,还具体用于:
    接收第一指示信息,所述第一指示信息用于实现以下至少一项:
    激活或去激活M个CMR resource set;
    激活或去激活M个CMR resource subset;
    激活或去激活M个resource setting;
    指示M个CMR resource set;
    指示M个CMR resource subset;
    指示M个resource setting;其中,M为大于或等于1的正整数。
  27. 如权利要求26所述的装置,其特征在于,所述收发模块,还具体用于:
    发送第一测量结果报告;
    其中,所述第一测量结果报告中包含多个组,每个组内的N个参考信号RS为终端设备能够同时接收的RS,N为大于或等于2的正整数,N个RS中的不同RS对应不同的射频拉远头,或者,所述第一测量结果报告中包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
  28. 如权利要求23所述的装置,其特征在于,
    所述配置信息中包括多个resource setting,其中,每个所述resource setting包含两个CMR resource set,两个CMR resource set与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set;
    或者,所述配置信息中包括多个resource setting,其中,每个所述resource setting包含一个CMR resource set,所述CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
  29. 如权利要求28所述的装置,其特征在于,所述收发模块,还具体用于:
    接收第二指示信息,其中,所述第二指示信息用于实现以下至少一项:
    激活或者去激活任一所述resource setting关联的资源;
    指示任一所述resource setting关联的资源。
  30. 如权利要求28所述的装置,其特征在于,所述收发模块,还具体用于:
    发送第二测量结果报告,其中,所述第二测量结果报告中包含所述至少一个resource setting的标识以及分别对应的测量结果。
  31. 如权利要求30所述的装置,其特征在于,
    所述每个resource setting对应的测量结果包括多个组,每个组内的两个RS为所述终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的射频拉远头;
    或者,所述每个resource setting对应的测量结果包括多个组,不同组内的RS为终端设备能够同时接收的RS。
  32. 根据权利要求27或31所述的装置,其特征在于,所述测量结果包括所述RS索引和相应的测量值,所述RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,所述测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
  33. 如权利要求23-32任一所述的装置,其特征在于,所述不同的射频拉远头对应相同的物理小区标识PCI,或者所述不同的射频拉远头对应不同的PCI。
  34. 一种通信装置,其特征在于,所述装置在网络设备侧,所述装置包括:
    收发模块,用于发送配置信息,其中,所述配置信息中包括至少两个参考信号资源,所述至少两个参考信号资源分别对应不同的射频拉远头。
  35. 如权利要求34所述的装置,其特征在于,所述不同的射频拉远头对应以下至少一项:不同的发送接收点,不同的控制资源集池,以及不同的天线面板。
  36. 如权利要求34所述的装置,其特征在于,
    所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与多个用于信道测量资源的资源集CMR resource set关联,多个CMR resource set与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource set中的不同CMR resource set;
    或者,所述配置信息中包括多个resource setting,其中,所述每个resource setting与一个CMR resource set关联,多个resource setting与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个resource setting中不同的resource setting关联的CMR resource set;
    或者,所述配置信息中包括一个资源配置resource setting,其中,所述一个resource setting与一个CMR resource set关联,所述CMR resource set包含多个CMR resource子集subset,多个CMR resource subset与多个射频拉远头一一对应,不同射频拉远头对应的参考信号资源包含于多个CMR resource subset中的不同CMR resource subset。
  37. 如权利要求36所述的装置,其特征在于,所述收发模块,还具体用于:
    发送第一指示信息,所述第一指示信息用于实现以下至少一项:
    激活或去激活M个CMR resource set;
    激活或去激活M个CMR resource subset;
    激活或去激活M个resource setting;
    指示M个CMR resource set;
    指示M个CMR resource subset;
    指示M个resource setting;其中,M为大于或等于1的正整数。
  38. 如权利要求37所述的装置,其特征在于,所述收发模块,还具体用于:
    接收第一测量结果报告;
    其中,所述第一测量结果报告中包含多个组,每个组内的N个参考信号RS为终端设备能够同时接收的RS,N为大于或等于2的正整数,N个RS中的不同RS对应不同的射频拉远头,或者,所述第一测量结果报告中包括多个组,且不同组内的RS为终端设备能够同时接收的RS。
  39. 如权利要求34所述的装置,其特征在于,
    所述配置信息中包括多个resource setting,其中,每个所述resource setting包含两个CMR resource set,两个CMR resource set与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource set中的不同CMR resource set;
    或者,所述配置信息中包括多个resource setting,其中,每个所述resource setting包含一个CMR resource set,所述CMR resource set包含两个CMR resource subset,两个CMR resource subset与两个射频拉远头一一对应,不同射频拉远头对应的至少一个参考信号资源分别包含于两个CMR resource subset中的不同CMR resource subset。
  40. 如权利要求39所述的装置,其特征在于,所述收发模块,还具体用于:
    发送第二指示信息,其中,所述第二指示信息用于实现以下至少一项:
    激活或者去激活任一所述resource setting中关联的资源;
    指示任一所述resource setting中关联的资源可用。
  41. 如权利要求39所述的装置,其特征在于,所述收发模块,还具体用于:
    接收第二测量结果报告,其中,所述第二测量结果报告中包含所述至少一个resource setting的标识以及分别对应的测量结果。
  42. 如权利要求41所述的装置,其特征在于,
    所述每个resource setting对应的测量结果包括多个组,每个组内的两个RS为所述终端设备能够同时接收的RS,其中,两个RS中的不同RS对应不同的射频拉远头;
    或者,所述每个resource setting对应的测量结果包括多个组,不同组内的RS为终端设备能够同时接收的RS。
  43. 根据权利要求38或42所述的装置,其特征在于,所述测量结果包括所述RS索引和相应的测量值,所述RS包括同步信号块SSB或信道状态信息参考信号CSI-RS,所述测量值包括层一的参考信号接收功率L1-RSRP或层一的信号与干扰噪声比L1-SINR。
  44. 如权利要求34-43任一所述的装置,其特征在于,所述不同的射频拉远头对应相同的物理小区标识PCI,或者所述不同的射频拉远头对应不同的PCI。
  45. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至11中任一项所述的方法。
  46. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求12至22中任一项所述的方法。
  47. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至11中任一项所述的方法。
  48. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求12至22中任一项所述的方法。
  49. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至11中任一项所述的方法被实现。
  50. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求12至22中任一项所述的方法被实现。
PCT/CN2021/119700 2021-09-22 2021-09-22 一种波束测量和上报的方法及其装置 WO2023044621A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/119700 WO2023044621A1 (zh) 2021-09-22 2021-09-22 一种波束测量和上报的方法及其装置
CN202180002917.3A CN116158009A (zh) 2021-09-22 2021-09-22 一种波束测量和上报的方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119700 WO2023044621A1 (zh) 2021-09-22 2021-09-22 一种波束测量和上报的方法及其装置

Publications (1)

Publication Number Publication Date
WO2023044621A1 true WO2023044621A1 (zh) 2023-03-30

Family

ID=85719780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119700 WO2023044621A1 (zh) 2021-09-22 2021-09-22 一种波束测量和上报的方法及其装置

Country Status (2)

Country Link
CN (1) CN116158009A (zh)
WO (1) WO2023044621A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391404A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院有限公司 一种csi的反馈及其控制方法、装置
CN112134664A (zh) * 2019-06-25 2020-12-25 华为技术有限公司 资源确定方法及装置
CN112312416A (zh) * 2019-07-26 2021-02-02 华为技术有限公司 一种通信方法及通信装置
CN112398520A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 发送信道状态信息的方法和相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391404A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院有限公司 一种csi的反馈及其控制方法、装置
CN112134664A (zh) * 2019-06-25 2020-12-25 华为技术有限公司 资源确定方法及装置
CN112312416A (zh) * 2019-07-26 2021-02-02 华为技术有限公司 一种通信方法及通信装置
CN112398520A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 发送信道状态信息的方法和相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on UE and gNB measurements for NR Positioning", 3GPP DRAFT; R1-1908511 NR UE AND GNB MEASUREMENT_SS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051765119 *

Also Published As

Publication number Publication date
CN116158009A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023000149A1 (zh) 一种中继终端设备测量上报的方法及其装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2023070586A1 (zh) 物理下行共享信道pdsch配置方法及装置
WO2023044621A1 (zh) 一种波束测量和上报的方法及其装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2023004548A1 (zh) 一种上行发送的控制方法及其装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023065326A1 (zh) 一种通信模式的确定方法及其装置
WO2023123476A1 (zh) 一种时域资源传输位置的确定方法和装置
WO2024036519A1 (zh) 一种侧行链路pdcp复用的激活方法及装置
WO2023035202A1 (zh) 一种跟踪参考信号周期的确定方法及其装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2023122990A1 (zh) 物理随机接入信道prach的传输方法和装置
WO2023044807A1 (zh) 一种控制信令的执行方法及其装置
WO2023050151A1 (zh) 资源配置方法、装置及存储介质
WO2022266963A1 (zh) 资源分配方法及其装置
WO2023102945A1 (zh) 测量间隔配置方法及装置
WO2022266948A1 (zh) 一种物理上行控制信道波束恢复的方法及其装置
WO2023050152A1 (zh) 终端能力上报方法、装置及存储介质
WO2023220899A1 (zh) 发送和接收参考信号配置信息的方法及其装置
WO2023150918A1 (zh) 一种波束管理的方法及其装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2023197187A1 (zh) 一种信道状态信息的处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18693093

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021957762

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021957762

Country of ref document: EP

Effective date: 20240422