WO2023042856A1 - ナノカーボン配合凝集物およびその製造方法 - Google Patents

ナノカーボン配合凝集物およびその製造方法 Download PDF

Info

Publication number
WO2023042856A1
WO2023042856A1 PCT/JP2022/034428 JP2022034428W WO2023042856A1 WO 2023042856 A1 WO2023042856 A1 WO 2023042856A1 JP 2022034428 W JP2022034428 W JP 2022034428W WO 2023042856 A1 WO2023042856 A1 WO 2023042856A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon
blended
aggregate
mass
aggregates
Prior art date
Application number
PCT/JP2022/034428
Other languages
English (en)
French (fr)
Inventor
宏史 山本
Original Assignee
三菱商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱商事株式会社 filed Critical 三菱商事株式会社
Publication of WO2023042856A1 publication Critical patent/WO2023042856A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nanocarbon compound aggregate and a method for producing the same.
  • CNT carbon nanotubes
  • CNF carbon nanofibers
  • CNC carbon nanocoils
  • GPN graphene
  • CNTs are carbon crystals with a diameter of several nm to about 500 nm, a length of about 10 ⁇ m to 1000 ⁇ m, a large aspect ratio, and a tubular structure.
  • types including single-wall CNTs having a single-layer structure, double-wall CNTs having two layers that fall into the category of multi-wall CNTs having a multi-layer structure, and the like.
  • CNTs are known to impart electrical conductivity, high elasticity, high strength, thermal conductivity, etc. to base materials by being blended with base materials such as various synthetic resins and rubbers.
  • Patent Document 1 CNTs are impregnated with an aqueous solution containing a water-soluble polymer at a predetermined concentration to form a solid aggregate, which is subjected to a shear crushing treatment and then dried to achieve a high bulk density and dispersibility in a simple and convenient manner.
  • the present applicant has reported that CNT-blended agglomerates with a low M can be efficiently obtained.
  • Patent Document 1 does not report anything about the dispersibility of CNT-blended aggregates.
  • the aggregation medium When preparing a nanocarbon-containing aggregate of nanocarbon such as CNT or graphene and an aggregation medium, the aggregation medium does not uniformly adhere to and permeate the nanocarbon, forming a non-uniform nanocarbon-containing aggregate, resulting in a poor particle size distribution. This can result in inconsistent quality of the CNT-blended agglomerate and reduced handling properties. Therefore, it can be said that efficiently obtaining nanocarbon-blended agglomerates with improved dispersibility is still an important issue in this technical field.
  • One object of the present invention is to efficiently obtain nanocarbon-blended aggregates with good dispersibility.
  • the inventors of the present invention impregnated CNTs with a solution containing a predetermined concentration of a binder agent to form aggregates, and then pulverized the aggregates to efficiently obtain nanocarbon-blended aggregates with good dispersibility. I found what I could do. The present invention is based on such findings.
  • a method for producing a nanocarbon-blended agglomerate comprising: (1) A step of impregnating 100 parts by mass of nanocarbon with 1 to 10 parts by mass of a binder agent and 43 to 233 parts by mass of a liquid medium to obtain a solid aggregate, and (2) dissolving the solid aggregate. a step of crushing to obtain a nanocarbon-blended aggregate; comprising A method is provided, wherein the hardness of the nanocarbon-blended aggregate measured according to JIS K 6219-3 is 10 g or less.
  • the present invention it is possible to efficiently obtain nanocarbon-blended aggregates with good dispersibility.
  • INDUSTRIAL APPLICABILITY The present invention can be advantageously used to efficiently obtain a nanocarbon-containing agglomerate that has good dispersibility, high bulk density, and low scattering properties. Further, according to the present invention, by improving the dispersibility of the nanocarbon-containing aggregate, it is possible to improve workability such as workability and handleability.
  • the blending treatment and the crushing treatment can be continuously performed in a closed system solid phase state to provide nanocarbon-blended agglomerates, which is advantageous in terms of reducing the environmental load. .
  • the nanocarbon-blended agglomerates can be mass-produced simply and quickly at low cost without requiring large-scale equipment, which is particularly advantageous in terms of industrial production.
  • a method for producing a nanocarbon-blended agglomerate comprising: (1) A step of impregnating 100 parts by mass of nanocarbon with 1 to 10 parts by mass of a binder agent and 43 to 233 parts by mass of a liquid medium to obtain a solid aggregate, and (2) dissolving the solid aggregate. a step of crushing to obtain a nanocarbon-blended aggregate; comprising A method is provided, wherein the hardness of the nanocarbon-blended aggregate measured in accordance with JIS K 6219-3 is 10 g or less.
  • each step of the method for producing a nanocarbon-containing aggregate according to the present invention will be described in detail.
  • Step (1) 100 parts by mass of nanocarbon is impregnated with 1 to 10 parts by mass of a binder agent and 43 to 233 parts by mass of a liquid medium to form a solid aggregate. obtain.
  • the binder agent and liquid medium present between two or more nanocarbon particles bind the particles by interfacial tension to form large nanocarbon-containing particles, while the surface of the nanocarbon-containing particles
  • the binder agent and liquid medium adhering to the nanocarbon-containing particles coat the nanocarbon-containing particles to form a layer. It is considered that solid aggregates are stably generated by repeating such aggregation phenomenon and coating phenomenon.
  • Nanocarbon as used in the present invention is a general term for a group of substances made of carbon having a nanometer (1/1,000,000,000 m) size structure.
  • examples of nanocarbon include CNT, CNF, CNC, GPN, fullerene, GPN and the like, preferably CNT or GPN, more preferably CNT.
  • graphene (GPN) refers not only to a one-atom-thick sheet of sp2-bonded carbon atoms, but also to a substance composed of multiple sheets but commercially named graphene. include.
  • the CNTs used in the present invention are not particularly limited, and may be in any form, such as single-wall CNTs having a single-layer structure, double-wall CNTs falling into the category of multi-wall CNTs having a multi-layer structure, and the like.
  • CNTs have different morphologies depending on the manufacturing method. It may be obtained.
  • the CNT as a raw material used in the method for producing the nanocarbon compound aggregate of the present invention preferably has a fiber diameter of 1 nm from the viewpoint of ensuring superior physical properties such as electrical and mechanical properties and dispersibility. ⁇ 200 nm, more preferably 1 nm to 150 nm, even more preferably 1 nm to 100 nm.
  • the fiber length of CNT is preferably 0.1 ⁇ m to 2000 ⁇ m, more preferably 0.1 ⁇ m to 1000 ⁇ m, from the viewpoint of ensuring conductivity, mechanical properties, dispersibility, and avoiding fiber breakage. More preferably, it is 0.1 ⁇ m to 500 ⁇ m.
  • the aspect ratio of CNT is usually about 10 to 10,000, and a structure in which a hexagonal network-like graphite sheet has a cylindrical shape is preferably used.
  • Either single-layer CNTs or multilayer CNTs may be used, and can be selected according to the final purpose.
  • the CNT production method is not limited, and includes a thermal decomposition method in which a carbon-containing gas is brought into contact with a catalyst, an arc discharge method in which an arc discharge is generated between carbon rods, and a laser evaporation method in which a carbon target is irradiated with a laser.
  • CVD method in which carbon source gas is reacted at high temperature in the presence of fine metal particles
  • HiPco method in which carbon monoxide is decomposed under high pressure.
  • CNTs doped with metal atoms may also be used. In addition, these CNTs may be used singly or in combination.
  • a surfactant such as an amphipathic polymer or low-molecular-weight compound is used.
  • a surfactant such as an amphipathic polymer or low-molecular-weight compound is used.
  • it is preferably a graft type polymer having a polyoxyalkylene chain, an amine-based polymer, a cellulose-based polymer, or the like.
  • graft-type polymers having polyoxyalkylene chains include polyfunctional comb-shaped functional polymers having polyoxyalkylene chains as graft chains.
  • the functional polymer is (a) a polyoxyalkylene alkyl represented by the following formula (I) an allyl alcohol/maleic anhydride copolymer and a poly It is a grafted product with oxyalkylene monoalkyl alcohol.
  • the number of moles of added ethylene oxide units in the component (b), preferably m in formula (I), is 5 to 50 moles.
  • R is a linear or branched alkyl group having 1 to 5 carbon atoms, for example, linear methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group; isopropyl a branched group such as a group, an isobutyl group and an isopentyl group; a cyclic group such as a cyclopropyl group and a cyclopentyl group;
  • allyl alcohol/maleic anhydride/styrene copolymer and polyoxyalkylene monoalkyl ether grafted product used in the present invention include the following formula (II), and the allyl alcohol/maleic anhydride copolymer and poly Grafted products with oxyalkylene monoalkyl ethers are exemplified by those represented by the following formula (III), and these can be used alone or in combination of two or more.
  • a diallylamine-based cationic polymer can be suitably used as the amine-based polymer.
  • the diallylamine-based cationic polymer include polymers of secondary amine salts such as diallylamine hydrochloride and sulfate, and polymers of quaternary ammonium salts such as polydiallyldialkylammonium chloride and polydiallyldialkylammonium bromide. Polymers of quaternary ammonium salts are preferred, and polymers such as poly(diallyldimethylammonium chloride) (PDADMAC) are particularly preferred.
  • PDADMAC poly(diallyldimethylammonium chloride)
  • the amine-based polymer is obtained by polymerization of at least one monomer having a quaternary ammonium group and at least one polyfunctional monomer having no quaternary ammonium group. It may be a copolymer that is The mass ratio of the monomer having a quaternary ammonium group to the polyfunctional monomer is preferably from 90/10 to 10/90, more preferably from 75/25 to 40/60, even more preferably from 60/40 to 50. /50.
  • the monomer having a quaternary ammonium group preferably has the following formula (IV):
  • R 1 is H or C 1 -C 4 -alkyl
  • R 2 is H or methyl
  • R 3 is C 1 -C 4 -alkylene
  • R 4 , R 5 and R 6 are each independently H or C 1 -C 30 -alkyl
  • X is —O— or —NH—
  • Y is Cl, Br, I, hydrogensulfate or methosulfate salts.
  • R 1 and R 2 are each H, or R 1 is H and R 2 is CH 3 or preferably H as well.
  • Particularly preferred monomers of formula (IV) are [2-(acryloyloxy)ethyl]trimethylammonium chloride, also called dimethylaminoethyl acrylate metochloride (DMA3*MeCl) or dimethylaminoethyl methacrylate metochloride (DMAEMA*MeCl). trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium chloride.
  • At least one polyfunctional monomer having no quaternary ammonium group includes acrylic acid, methacrylic acid, N-vinylpyrrolidone, N-vinylimidazole, Examples include methyl ester or ethyl ester of itaconic acid or maleic acid, ethyl acrylate or methyl acrylate, and the like.
  • the polyfunctional monomer having no quaternary ammonium group preferably has the following formula (V): (wherein R 7 is H or C 1 -C 4 -alkyl, R 8 is H or methyl, R 9 and R 10 are independently of each other H or C 1 -C 30 -alkyl is selected from the monomers represented by
  • the monomer of formula (V) above is preferably acrylamide, methacrylamide or dialkylaminoacrylamide.
  • the polyfunctional monomer having no quaternary ammonium group has the following formula (VI): (wherein Ra is H or C 6 -C 50 -alkyl, Rb is H or C1-C4-alkyl, Rc is H or methyl, n is an integer of 0 to 100).
  • Ra is preferably C 8 -C 30 -alkyl, more preferably C 16 -C 22 -alkyl, Rb is preferably H, n is preferably 3-50.
  • the non-amine monomer of formula (III) is preferably an aliphatic alcohol ethoxylate or its methacrylate.
  • each of the monomers of formula (I), formula (II), and formula (III) may be used in the copolymer constituting the amine-based polymer.
  • the R groups of the monomers of formula (III) above may be present in the copolymer with monomers having different chain lengths, such as C16 and C18 .
  • the copolymers that make up the amine-based polymer are preferably dialkylaminoalkyl (meth)acrylates and monomers selected from alkyl (meth)acrylates, hydroxyalkyl (meth)acrylates and combinations thereof. It is a copolymer composed of units.
  • the copolymer preferably comprises diC 1 -C 2 alkylamino C 1 -C 2 alkyl (meth)acrylates, C 1 -C 4 alkyl ( meth ) acrylates, and (meth)acrylic
  • a copolymer comprising as monomer units selected from acid monohydroxy C 2 -C 4 alkyl and combinations thereof, more preferably methyl (meth)acrylate/butyl (meth)acrylate/(meth)acrylic acid It is a dimethylaminoethyl copolymer, more preferably a methyl methacrylate/butyl methacrylate/dimethylaminoethyl methacrylate copolymer.
  • methyl methacrylate/butyl methacrylate/dimethylaminoethyl methacrylate copolymer a commercially available one may be used, for example, Eudragit (registered trademark) E100 (Degussa).
  • the cellulosic polymer includes carboxymethylcellulose, hydrophobically modified carboxymethylcellulose, cationically modified hydroxyethylcellulose, cationically modified hydroxypropylcellulose, cationically and hydrophobically modified hydroxyethylcellulose, cationically and hydrophobically modified hydroxypropylcellulose, and mixtures thereof, preferably carboxymethyl cellulose, cation-modified hydroxyethyl cellulose, cation- and hydrophobically-modified hydroxyethyl cellulose, or mixtures thereof, more preferably carboxymethyl cellulose.
  • cellulosic polymers include Finnfix GDA (sold by CP Kelco), e.g., the alkylketene dimer derivative of carboxymethyl cellulose sold under the trade name Finnfix SH1 (CP Kelco), or the trade name Finnfix V (sold by CP Kelco) and the like.
  • binder agents other than those mentioned above include cationic starch, cationic guar gum, modified polyvinyl alcohol, cationic polyacrylamide, polyamide epichlorohydrin (PAE), melamine resin derivatives, polyvinylamine or its derivatives, polyvinyl Cationic groups (1 to quaternary ammonium salts, etc.) are introduced into the main chain or side chains, citric acid, sodium hydrogen carbonate, and the like.
  • the molecular weight of the binder agent depends on the type of nanocarbon impregnated with the binder agent. Good, but preferably 1,000 to 50,000, more preferably 1,500 to 3,000. Further, from the viewpoint of adhesion (aggregation) between granules when granules are formed by shearing after forming a solid aggregate, the weight average molecular weight is preferably 8,000 to 50,000. Incidentally, the mass average molecular weight can be measured according to a standard method by a gel permeation chromatography (GPC) method (polystyrene standard).
  • GPC gel permeation chromatography
  • the liquid medium used in step (1) is, for example, organic solvent oil, plasticizer, water, etc., preferably process oil.
  • the temperature at which step (1) is performed is not particularly limited, but is, for example, 5 to 50°C, preferably 30 to 40°C.
  • the step (1) can be carried out in two steps. That is, in a preferred embodiment of the present invention, the step (1) is (1a) a step of preparing a binder liquid containing a binder agent and a liquid medium; and (1b) a step of impregnating nanocarbon with the binder liquid to obtain a solid aggregate.
  • a binder liquid is prepared by mixing a binder agent and a liquid medium.
  • the amount of the binder used can be appropriately set within the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of nanocarbon, preferably 0.15 to 5 parts by mass, more preferably 0. .2 to 2 parts by mass.
  • the amount of the liquid medium used can be appropriately set in the range of 43 to 233 parts by mass with respect to 100 parts by mass of nanocarbon, preferably 80 to 200 parts by mass, more preferably 100 to 150 parts by mass. Department.
  • the concentration of the binder agent in the binder liquid is, for example, 0.1 to 5% by mass, It is preferably 0.2 to 3% by mass, more preferably 0.2 to 2% by mass.
  • Adjusting the binder agent and the liquid medium to the predetermined amounts as described above keeps the size of the droplets within an appropriate range when the binder liquid is dropped in step (1b), and the binder liquid impregnation treatment can be performed efficiently. can be done.
  • the binder agent and the liquid medium can be mixed by stirring using a known stirring device. It is preferred to use a bath.
  • the stirring speed in the stirring device is, for example, 5 to 20 rpm, preferably 5 to 12 rpm, more preferably 7 to 10 rpm.
  • the stirring may be continued when the binder liquid is added to the nanocarbon in step (1b).
  • step (1b) nanocarbon is impregnated with a binder liquid to obtain a solid aggregate.
  • the amount of the binder liquid used can be appropriately set in the range of 44 to 243 parts by mass with respect to 100 parts by mass of nanocarbon, preferably 80 to 200 parts by mass, more preferably 100 to 150 parts by mass. be.
  • the impregnation treatment in step (1b) is preferably carried out by dropping a binder liquid onto the nanocarbon.
  • the impregnation treatment may be carried out in a known stirring device, but from the viewpoint of preparing a uniform mixture, it is preferable to use an inclined stirring tank.
  • nanocarbon is charged in an inclined stirring vessel, and the binder liquid is dripped onto the nanocarbon in the inclined stirring vessel while rotating the inclined shaft stirring vessel at a predetermined number of revolutions. .
  • the impregnation treatment in step (1b) is performed under a reduced pressure atmosphere, a pressurized atmosphere, or a combination thereof. It is preferable to repeat the depressurization and pressurization operations in this way in order to adjust the adsorption speed of the binder liquid. Further, adjusting the pressure conditions in the step (1b) is advantageous in terms of allowing the binder liquid to uniformly permeate the inside of the nanocarbon and improving the wettability of the surface of the nanocarbon.
  • the reduced pressure condition is, for example, 5 to 50 Pa, preferably 10 to 40 Pa, more preferably It is 10-20Pa.
  • the pressurized conditions are, for example, 0.1 to 5 MPa, preferably 0.2 to 5 MPa. and more preferably 0.5 to 3 MPa.
  • step (1b) by adding a binder liquid to the nanocarbon in a predetermined amount as described above, it can be suitably prepared as a soft solid aggregate with plasticity.
  • Step (2) Crushing treatment step for solid aggregates
  • the solid agglomerate obtained in the step (1) is pulverized to obtain a nanocarbon-containing agglomerate.
  • the crushing treatment of the present invention refers to a dispersing treatment for disentangling lumpy solid aggregates, and is used in a broad sense including deflocculation.
  • the crushing treatment is preferably carried out using a shearing device, more preferably using a shearing crushing device.
  • shearing refers to a process of applying a shearing force to a sample to make the sample finer.
  • a shearing device As a shearing device, a high-speed rotating blade and a fixed cutting head blade are used to break up solid agglomerates thrown in. Apparatuses that utilize impact to simultaneously shear solid agglomerates and high-speed agitation are included.
  • More specific shearing devices include comitrolles, colloid mills, electric mills, mass colloiders, food processors, pulper finishers, rotary cutter mills, microhoffs, nano cutters, pulverizers and the like, preferably nano cutters. be.
  • the operating conditions of the shearing device are not particularly limited, but are preferably set from the viewpoint of efficient production of nanocarbon-blended agglomerates.
  • the temperature in the shearing device during the crushing process is, for example, about 20°C to 90°C.
  • the rotation speed of the blades in the shearing device is about 350 to 600 rpm, preferably about 500 to 600 rpm.
  • the crushing treatment may be performed once, or may be performed repeatedly two or more times.
  • the solid aggregates obtained in step (1) are subjected to the crushing treatment in step (2) to directly provide nanocarbon-blended aggregates without going through a drying step. can be done. Therefore, according to one embodiment, the method of the present invention does not include a drying step. Since the production method of the present invention can be easily carried out without a drying step, it is advantageous in efficiently obtaining nanocarbon-containing aggregates in a short period of time.
  • Nanocarbon compound aggregate According to one embodiment of the present invention, there is provided a nanocarbon-containing agglomerate obtained by the above method. According to a preferred embodiment of the present invention, the nanocarbon-loaded agglomerate is provided as a non-dried product (storage, packaging, etc.).
  • the hardness of the nanocarbon-containing agglomerates of the present invention is adjusted to 10 g or less, which is advantageous in exhibiting excellent dispersibility and handleability.
  • "hardness” means hardness measured according to JIS K 6219-3.
  • the hardness of the nanocarbon-containing agglomerates may be within a range of 20 g or less, preferably 5 to 15 g, more preferably 5 to 10 g.
  • the bulk density of the nanocarbon-blended aggregates is preferably 0.5-2.3 g/cm 3 , more preferably 0.8-2.0 g/cm 3 . and more preferably 0.8 to 1.5 g/cm 3 .
  • the nanocarbon-blended agglomerate obtained by the production method of the present invention has a very high bulk density as described above, therefore, for example, in the kneading step of synthetic resin etc., it is possible to prevent the occurrence of bridges in the storage tank and supply It also has the advantage of enabling automatic weighing of time and reducing transportation and inventory costs.
  • the nanocarbon-containing aggregates are granular.
  • the average particle diameter of the nanocarbon-blended aggregates is preferably 0.15-2.0 mm, more preferably 0.25-1.8 mm, still more preferably 0.25-1.0 mm.
  • the average particle size is the average value obtained by calculating the particle size of each of 100 randomly extracted aggregates by microscopic observation of the nanocarbon-blended aggregates.
  • nanocarbon-containing agglomerate of the present invention can exhibit excellent dispersibility, it can be provided as an aggregate in which variation in particle size is suitably suppressed.
  • nanocarbon-loaded agglomerates are provided as compositions.
  • JIS K 6219-1 2005 (Carbon black for rubber-Characteristics of granulated particles-Part 1: How to determine fine powder)
  • the particle size (R) of the nanocarbon-blended aggregate measured by is, for example, 0.1 to 5%, preferably 0.2 to 3%, more preferably 0.2 to 1.5%. be.
  • the particle size (R) can be calculated based on the following formula.
  • R particle size (%)
  • E mass of nanocarbon on the sieve surface (g)
  • B Mass (g) of sample (containing all components)
  • a method for producing a nanocarbon-blended aggregate (1) A step of impregnating 100 parts by mass of nanocarbon with 0.1 to 10 parts by mass of a binder agent and 43 to 233 parts by mass of a liquid medium to obtain a solid aggregate, and (2) the solid aggregate.
  • a step of crushing to obtain a nanocarbon-blended aggregate comprising A method, wherein the hardness of the nanocarbon-blended aggregate measured in accordance with JIS K 6219-3 is 20 g or less.
  • the nanocarbon is at least one selected from carbon nanotubes and graphene.
  • the binder agent is at least one selected from the group consisting of a graft type polymer having a polyoxyalkylene chain, an amine-based polymer and a cellulose-based polymer, citric acid, and sodium bicarbonate [1] The method according to any one of to [3].
  • step (1) is (1a) a step of preparing a binder liquid containing the binder agent and the liquid medium; and (1b) a step of impregnating the nanocarbon with the binder liquid to obtain the solid aggregate, [1] to The method according to any one of [5].
  • step (1b) is performed under conditions selected from the group consisting of a reduced pressure atmosphere, a pressurized atmosphere and a combination thereof.
  • the reduced pressure atmosphere is 50 to 5 Pa.
  • pressurized atmosphere is 0.1 to 5 MPa.
  • JIS Japanese Industrial Standards
  • Table 1 shows the physical properties of the CNTs (trade names: K-Nanos-100P, 100T, 210T, 300T, 500T, manufactured by Kumho Petrochemical) used in the following experiments.
  • the obtained solid agglomerate was continuously sheared and crushed by a multi-stage rotary cutter mill to obtain the desired CNT-blended agglomerate.
  • the physical properties (bulk density, carbon content, average particle size, particle size, particle hardness) of the CNT-blended agglomerates were measured by the following methods.
  • the bulk density was obtained according to the method for measuring the bulk density of carbon black specified in JIS K 6219.
  • carbon content The carbon content was obtained by subtracting the ash content (%) measured according to JIS K 6218-2 from 100%.
  • the morphology of the CNT-blended aggregates was observed by scanning electron microscopy (SEM). Observation was performed by using a 300-fold SEM image, measuring the outer diameter of 100 CNT-blended aggregates at random, and taking the number average value as the average particle size (mm) of the CNT-blended aggregates.
  • particle size In addition, the particle size (R) of the CNT blended aggregate was calculated based on the following formula according to JIS K 6219-1:2005. R: particle size (%) E: mass of nanocarbon on the sieve surface (g) B: Mass (g) of sample (containing all components)
  • the hardness of the particles was measured according to JIS K 6219-3 (Carbon black-Determination of hardness of granulated particles).
  • a 2 mm wide section is cut from the edge of the sheet of the obtained CNT-blended aggregate, and the cut surface is scanned using an atomic force microscope (MFP-3D-SA-J, manufactured by Oxford Instruments). It was observed (100 times) in AC mode (tapping mode) at a size of 40 ⁇ m ⁇ 40 ⁇ m. An AFM photograph is shown in FIG.
  • Example 1 2 kg of powdered nanocarbon (CNT) was placed in an inclined stirring tank (PT40SMV, manufactured by Masellar), and the pressure was reduced. Next, in an inclined shaft type stirring tank (ST-J-ASC-36, manufactured by Shinto Corporation), a liquid medium (process oil, manufactured by Nippon Sun Oil Co., Ltd.) and a binder agent (Malialim AKM0531, manufactured by NOF Corporation). was stirred (100 rpm) to prepare a binder solution (binder concentration: 10% by mass, 4 g), and the binder solution was added dropwise to the CNTs in an inclined stirring vessel while being stirred in a reduced pressure atmosphere (10 Pa).
  • a binder solution binder concentration: 10% by mass, 4 g
  • Example 2 A CNT-blended agglomerate was produced in the same manner as in Example 1 except that the binder was changed to polyethylene wax (with a binder concentration of 10% by mass), and AFM observation was performed in the same manner as described above.
  • the hardness of the particles of the CNT-blended aggregates of Examples was 10 g or less, and the hardness particle size distribution was narrow.
  • the hardness of the particles is suppressed to a low level, and as a result, it is considered that the dispersion is suppressed and the dispersibility is improved.
  • Example 1 since it is not necessary to perform the drying process, it is possible to avoid an increase in the hardness of the particles due to densification in the granulation process, which is considered to contribute to the improvement of the dispersibility of the particles of the CNT-blended aggregates. .
  • Example 1 CNT-blended agglomerates with high bulk density and dispersibility are continuously and efficiently produced in a closed system, so CNT dispersal can be prevented, and safety risks can be suppressed. It is possible.
  • the present invention it is possible to efficiently produce a nanocarbon-containing agglomerate that has good dispersibility, high bulk density, and low scattering properties. Moreover, according to the present invention, the dispersibility of the nanocarbon-containing aggregate can be improved, and the workability such as workability and handleability can be significantly improved.
  • the blending treatment is performed in a closed system in a solid state, and the nanocarbon-blended agglomerate particles can be produced by continuous pulverization treatment, which is advantageous in terms of reducing the environmental load. .
  • nanocarbon-blended aggregates with good particle size distribution can be rapidly mass-produced at low cost without the need for large-scale equipment, which is particularly advantageous in terms of industrial production.

Abstract

[課題]分散性の良好なナノカーボン配合凝集物を効率的に取得する。 [解決手段]ナノカーボン配合凝集物の製造方法であって、(1)ナノカーボン100質量部に対して、1~10質量部のバインダー剤および43~233質量部の液媒体を含浸させて固体凝集物を得る工程、および(2)上記固体凝集物を解砕処理してナノカーボン配合凝集物を得る工程、を含んでなり、JIS K 6219-3に準拠して測定される上記ナノカーボン配合凝集物の硬度が10g以下である方法を用いる。

Description

ナノカーボン配合凝集物およびその製造方法
 本発明は、ナノカーボン配合凝集物およびその製造方法に関する。
 近年、カーボンナノチューブ(以下、「CNT」ともいう。)、カーボンナノファイバー(以下、「CNF」ともいう。)、カーボンナノコイル(以下、「CNC」ともいう。)、グラフェン(以下、「GPN」ともいう。)等のナノカーボン材料の様々な分野における応用が期待されている。中でも、CNTは夢の次世代材料として注目され、帯電防止剤や導電性付与材としての使用はもちろん、タイヤ、キャパシタ、Li電池の導電助剤、繊維強化プラスチックス等への活用に向けた用途開発が進められている。
 CNTは直径が数nm~約500nmで、長さが10μm~1000μm程度であり、アスペクト比が大きく、チューブ状構造の炭素の結晶である。その種類は多岐にわたり、単層構造を有するシングルウオールCNT、多層構造を有するマルチウオールCNTの範疇に入る2層のダブルウオールCNT等がある。また、両端が封鎖されているものから、片末端だけが封鎖されているもの、両末端とも開いているものがあり、また、丸め方の構造にもアームチェア型等いくつか種類がある。
 一般に、CNTは、種々の合成樹脂やゴム等の基材に配合されることで、基材に電気伝導性や高弾性、高強度、熱伝導性等を付与することが知られている。
 しかしながら、ナノカーボンを使用するにあたっては、その低い嵩密度による粉塵飛散の問題や、ナノカーボン粒子の凝集による分散不良等の課題がある。そのため「夢の素材」と期待された割には実用化が進んでいない。
 近年、ナノカーボン配合凝集物の嵩密度を向上させ、粉塵飛散を防止するための様々な手法が報告されている。例えば、特許文献1では、水溶性ポリマーを所定濃度で含有する水溶液をCNTに含浸させて固体凝集物とし、それを剪断破砕処理した後に乾燥することで、簡易かつ簡便に嵩密度が高く飛散性の低いCNT配合凝集物を効率的に取得しうることが、本出願人により報告されている。しかしながら、特許文献1には、CNT配合凝集物による分散性については何ら報告されていない。
 CNTもしくはグラフェン等のナノカーボンと凝集媒体とのナノカーボン配合凝集物を調製する場合、凝集媒体がナノカーボンに均一に付着浸透せず、不均一なナノカーボン配合凝集物が形成されて粒度分布が歪になり、その結果、CNT配合凝集物の品質が一定せず、ハンドリング性が低下することがある。したがって、分散性の向上したナノカーボン配合凝集物を効率的に取得ことは、当該技術分野において依然として重要な課題といえる。
特許第6714134号公報
 本発明は、分散性の良好なナノカーボン配合凝集物を効率的に取得することを一つの目的としている。
 本発明者らは、今般、バインダー剤を所定濃度で含有する溶液をCNTに含浸させて凝集物とし、それを解砕処理することで分散性の良好なナノカーボン配合凝集物を効率的に取得しうることを見出した。本発明はかかる知見に基づくものである。
 本発明の一実施形態によれば、ナノカーボン配合凝集物の製造方法であって、
(1)ナノカーボン100質量部に対して、1~10質量部のバインダー剤および43~233質量部の液媒体を含浸させて固体凝集物を得る工程、および
(2)上記固体凝集物を解砕処理してナノカーボン配合凝集物を得る工程、
を含んでなり、
 JIS K 6219-3に準拠して測定される上記ナノカーボン配合凝集物の硬度が10g以下である、方法が提供される。
 また、本発明の別の実施形態によれば、上記方法により得られた、ナノカーボン配合凝集物が提供される。
 本発明によれば、分散性の良好なナノカーボン配合凝集物を効率的に取得することができる。本発明は、分散性が良好であり、嵩密度が高く飛散性の低いナノカーボン配合凝集物を効率的に取得する上で有利に利用することができる。また、本発明によれば、ナノカーボン配合凝集物の分散性を向上させることにより、加工性・ハンドリング性等の作業性を向上させることが可能である。また、本発明によれば、閉鎖系の固相状態で配合処理、解砕処理を連続的に実施してナノカーボン配合凝集物を提供しうることから、環境負荷を低減する上で有利である。また、本発明によれば、大掛かりな設備を必要とせず、ナノカーボン配合凝集物を低原価で簡便にかつ迅速に量産できることから、工業生産上特に有利である。
参考例1で得られたCNT配合凝集物のAFM写真(100倍)。 実施例1で得られたCNT配合凝集物のAFM写真(100倍)。 CNT配合凝集物の凝集塊の大きさの分布
 本発明の一実施形態によれば、ナノカーボン配合凝集物の製造方法であって、
(1)ナノカーボン100質量部に対して、1~10質量部のバインダー剤および43~233質量部の液媒体を含浸させて固体凝集物を得る工程、および
(2)上記固体凝集物を解砕処理してナノカーボン配合凝集物を得る工程、
を含んでなり、
 JIS K 6219-3に準拠して測定される上記ナノカーボン配合凝集の硬度が10g以下である、方法が提供される。
 以下、本発明によるナノカーボン配合凝集物の製造方法を工程毎に詳細に説明する。
[工程(1)]
 本発明の一実施形態によれば、工程(1)において、ナノカーボン100質量部に対して、1~10質量部のバインダー剤および43~233質量部の液媒体を含浸させて固体凝集物を得る。理論に拘束されるものでないが、上記各成分を所定の配合量で接触させることにより、凝集現象と被覆現象が好適なバランスで生じ、固体凝集物が生成するものと考えられる。すなわち、凝集現象においては、2つ以上のナノカーボン粒子の間に存在するバインダー剤と液媒体が界面張力で粒子を結合して大きなナノカーボン含有粒子を形成し、一方で、ナノカーボン含有粒子表面に付着したバインダー剤と液媒体は、ナノカーボン含有粒子を被覆して層を形成する。このような凝集現象と被覆現象を繰り返して、固体凝集物は安定して生成するものと考えられる。
 本発明でいう「ナノカーボン」とは、ナノメートル(10億分の1m)の大きさの構造をもつカーボンからなる物質群の総称である。ナノカーボンとしては、CNT、CNF、CNC、GPN、フラーレンまたはGPN等が挙げられるが、好ましくはCNTまたはGPNであり、より好ましくはCNTである。なお、本発明でいう「グラフェン(GPN)」とは、1原子の厚さのsp2結合炭素原子のシートだけでなく、複数のシートからなるが商業的にグラフェンの名前が付けられている物質を含む。
 本発明において使用するCNTに特に制限はなく、単層構造を有するシングルウオールCNT、多層構造を有するマルチウオールCNTの範疇に入る2層のダブルウオールCNT等いずれの形態であってもよい。また、CNTは製造方法により得られる形態が異なることが知られているが、本発明においては、アーク放電型、触媒気相製造法、レーザーアブレーション法、その他の方法を含め、いずれの製造方法により得られたものであってもよい。
 本発明のナノカーボン配合凝集物の製造方法に使用される原料としてのCNTは、電気的・機
械的な特性や分散性等の物性の優位性を確保する観点から、繊維径は、好ましくは1nm~200nmであり、より好ましくは1nm~150nmであり、さらに好ましくは1nm~100nmである。
 また、CNTの繊維長は、導電性や機械的特性、分散性の確保や繊維の切断の回避の観点から、好ましくは0.1μm~2000μmであり、より好ましくは0.1μm~1000μmであり、さらに好ましくは0.1μm~500μmである。
 CNTのアスペクト比としては、通常10~10000程度であり、六角網目状のグラファイトシートが円筒状をなした構造物が好適に用いられる。単層のCNT、多層のCNTいずれでもよく、最終の目的に応じて選択することができる。また、CNTの製造方法に関しても制限されるものではなく、炭素含有ガスを触媒と接触させる熱分解法、炭素棒間にてアーク放電を発生させるアーク放電法、カーボンターゲットにレーザーを照射するレーザー蒸発法、金属微粒子の存在下で炭素源のガスを高温で反応させるCVD法、一酸化炭素を高圧下で分解するHiPco法等のいずれでもよい。また、金属原子をドープしたCNTでもよい。また、これらのCNTは、単独または複数種を組み合わせて用いてもよい。
 また、本発明の一実施形態によれば、バインダー剤としては、ナノカーボン表面の濡れ性を改善する観点から、例えば、両親媒性の高分子または低分子化合物等の界面活性剤が使用されるが、好ましくはポリオキシアルキレン鎖を有するグラフト型ポリマー、アミン系ポリマーまたはセルロース系ポリマー等である。
 ポリオキシアルキレン鎖を有するグラフト型ポリマーとしては、例えば、ポリオキシアルキレン鎖をグラフト鎖として有する多官能櫛型の機能性ポリマーが挙げられる。
 ポリオキシアルキレン鎖をグラフト鎖として有する多官能櫛型の機能性ポリマーとしては、例えば、(a)下式(I)で表されるポリオキシアルキレンアルキルエーテル単位、(b)無水マレイン酸単位、(c)スチレン単位で構成され、これらの組成比がモル%で(a):(b):(c)=25~75:25~75:0~50であるアリルアルコール・無水マレイン酸・スチレン共重合物とポリオキシアルキレンモノアルキルアルコールとのグラフト化物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記(c)のスチレン単位が0モル%の場合は、スチレン単位が含まれない場合であり、この場合は、機能性ポリマーは、(a)下記式(I)で表されるポリオキシアルキレンアルキルエーテル単位、(b)無水マレイン酸単位で構成され、これらの組成比がモル%で(a):(b)=25~75:25~75であるアリルアルコール・無水マレイン酸共重合物とポリオキシアルキレンモノアルキルアルコールとのグラフト化物である。
 上記(c)のスチレン単位を含む場合において、上記(a)~(c)の好ましい組成比は、モル%で(a):(b):(c)=25~40:25~40:20~50となるものが好ましい。
 上記成分(b)のエチレンオキサイド単位の付加モル数、好ましくは、式(I)中のmは、5~50モルである。
 また、Rは炭素数1~5の直鎖または分岐を有するアルキル基であり、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基の直鎖のもの;イソプロピル基、イソブチル基、イソペンチル基の分岐鎖のもの;シクロプロピル基、シクロペンチル基の環状のもの等が挙げられる。
 本発明に用いるアリルアルコール・無水マレイン酸・スチレン共重合物とポリオキシアルキレンモノアルキルエーテルとのグラフト化物としては、例えば、下記式(II)、また、アリルアルコール・無水マレイン酸共重合物とポリオキシアルキレンモノアルキルエーテルとのグラフト化物としては、下記式(III)に示すものが例示され、これらは単独でまたは2種以上を混合して使用することができる。
Figure JPOXMLDOC01-appb-C000002
 より具体的な例としては、上記式(II)中、m=11、n=20となるグラフト化物、市販品ではマリアリムAKM-0531(日油社製);上記式(II)中、m=13、n=18、質量平均分子量:40000となるグラフト化物、市販品ではマリアリムAAB-0851(日油社製);上記式(II)中、m=28、n=20となるグラフト化物、市販品ではマリアリムAFB-1521(日油社製)等が挙げられる。なお、上記式(II)中のnは、正の数である〔下記式(III)中も同様〕。
Figure JPOXMLDOC01-appb-C000003
 より具体的な例としては、上記式(III)中、m=11、n=14となるグラフト化物〔メトキシポリエチレングリコール(エチレンオキサイド11モル付加)アリルエーテルと無水マレイン酸の共重合体〕、市販品ではマリアリムSC-0505K(日油社製)等が挙げられる。
 本発明の一実施形態によれば、アミン系ポリマーとしてはジアリルアミン系カチオンポリマーを好適に使用することができる。ジアリルアミン系カチオンポリマーはジアリルアミンの塩酸塩、硫酸塩等の2級アミン塩のポリマー、ポリジアリルジアルキルアンモニウムクロライド、ポリジアリルジアルキルアンモニウムブロマイド等の4級アンモニウム塩のポリマー等が挙げられるが、これらのうち、4級アンモニウム塩のポリマーが好ましく、ポリ(ジアリルジメチルアンモニウムクロイド)(PDADMAC)等のポリマーが特に好ましい。
 また、本発明の別の実施形態によれば、アミン系ポリマーは、少なくとも1種の4級アンモニウム基を有するモノマーおよび少なくとも1種の4級アンモニウム基を有さない多官能性モノマーの重合により得られるコポリマーであってもよい。4級アンモニウム基を有するモノマーと多官能性モノマーに対する質量比は、好ましくは90/10~10/90であり、より好ましくは75/25~40/60であり、さらに好ましくは60/40~50/50である。
 アミン系ポリマーである上記コポリマーの構成要素のうち、4級アンモニウム基を有するモノマーは、好ましくは、下記式(IV):
Figure JPOXMLDOC01-appb-C000004
 (式(IV)において、Rは、HまたはC~C-アルキルであり、Rは、Hまたはメチルであり、Rは、C~C-アルキレンであり、R、RおよびRは、それぞれ独立にHまたはC~C30-アルキルであり、Xは、-O-または-NH-であり、Yは、Cl、Br、I、硫酸水素塩またはメト硫酸塩である。)のモノマーから選択されてもよい。好ましい式(I)のモノマーとしては、RおよびRがそれぞれHであるか、または、RがHでありRがCHまたは好ましくは同様にHである。
 特に好ましい式(IV)のモノマーは、ジメチルアミノエチルアクリレートメトクロリド(DMA3*MeCl)とも称される[2-(アクリロイルオキシ)エチル]トリメチルアンモニウムクロリドまたはジメチルアミノエチルメタクリレートメトクロリド(DMAEMA*MeCl)とも称されるトリメチル-[2-(2-メチルプロパ-2-エノイルオキシ)エチル]アザニウムクロリドである。
 また、アミン系ポリマーである上記コポリマーの構成要素のうち、少なくとも1種の4級アンモニウム基を有さない多官能性モノマーとしては、アクリル酸、メタクリル酸、N-ビニルピロリドン、N-ビニルイミダゾール、イタコン酸またはマレイン酸のメチルエステルまたはエチルエステル、アクリル酸エチルまたはアクリル酸メチル等が挙げられる。
 また、一実施形態によれば、アミン系ポリマーである上記コポリマーの構成要素のうち、上記4級アンモニウム基を有さない多官能性モノマーは、好ましくは、下記式(V):
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、HまたはC~C-アルキルであり、Rは、Hまたはメチルであり、RおよびR10は、互いに独立に、HまたはC~C30-アルキルである)で表されるモノマーから選択される。
 上記式(V)のモノマーは、好ましくは、アクリルアミド、メタクリルアミドまたはジアルキルアミノアクリルアミドである。
 また、上記した多官能性モノマーにおいて、4級アンモニウム基を有さない多官能性モノマーとしては、下記式(VI):
Figure JPOXMLDOC01-appb-C000006
(式中、Raは、HまたはC~C50-アルキルであり、Rbは、HまたはC1~C4-アルキルであり、Rcは、Hまたはメチルであり、
 nは、0~100の整数である)で表される非アミン系モノマーでもよい。
 上記式(VI)の非アミン系モノマーにおいて、Raは、好ましくはC~C30-アルキルであり、より好ましくはC16~C22-アルキルであり、Rbは、好ましくはHであり、nは、好ましくは3~50である。
 式(III)の非アミン系モノマーは、好ましくは、脂肪族アルコールエトキシレートまたはそのメタクリレートである。
 上記式(I)、上記式(II)、および上記式(III)のモノマーは各々、アミン系ポリマーを構成するコポリマー中において複数種を用いてもよい。したがって、例えば、上記式(III)のモノマーのR基は、C16およびC18等、異なる鎖長を有するモノマーがコポリマー中に存在してもよい。
 一実施形態によればアミン系ポリマーを構成するコポリマーは、好ましくは(メタ)アクリル酸ジアルキルアミノアルキルと、(メタ)アクリル酸アルキル、(メタ)アクリル酸ヒドロキシアルキルおよびこれらの組み合わせから選択されるモノマー単位とから構成されるコポリマーである。より具体的には、上記コポリマーは、好ましくは(メタ)アクリル酸ジC~CアルキルアミノC~Cアルキルと、(メタ)アクリル酸C~Cアルキル、および(メタ)アクリル酸モノヒドロキシC~Cアルキルおよびこれらの組み合わせから選択されるモノマー単位して含んでなるコポリマーであり、より好ましくは(メタ)アクリル酸メチル・(メタ)アクリル酸ブチル・(メタ)アクリル酸ジメチルアミノエチルコポリマーであり、さらに好ましくはメタアクリル酸メチル・メタアクリル酸ブチル・メタアクリル酸ジメチルアミノエチルコポリマーである。このようなメタアクリル酸メチル・メタアクリル酸ブチル・メタアクリル酸ジメチルアミノエチルコポリマーとしては、市販のものを使用してもよく、例えば、オイドラギット(登録商標)E100(デグサ社)が挙げられる。
 本発明の一実施形態によれば、セルロース系ポリマーとしては、カルボキシメチルセルロース、疎水変性カルボキシメチルセルロース、カチオン変性ヒドロキシエチルセルロース、カチオン変性ヒドロキシプロピルセルロース、カチオンおよび疎水変性ヒドロキシエチルセルロース、カチオンおよび疎水変性ヒドロキシプロピルセルロース、またはこれらの混合物等が挙げられるが、好ましくはカルボキシメチルセルロース、カチオン変性ヒドロキシエチルセルロース、カチオンおよび疎水変性ヒドロキシエチルセルロース、またはこれらの混合物であり、より好ましくはカルボキシメチルセルロースである。
 セルロース系ポリマーの具体的な例としては、Finnfix GDA(CP Kelcoによって販売)、例えば、商品名Finnfix SH1(CP Kelco)として販売されているカルボキシメチルセルロースのアルキルケテン二量体誘導体、または商品名Finnfix V(CP Kelcoによって販売)として販売されているブロック系カルボキシメチルセルロース等が挙げられる。
 上記した以外のバインダー剤との具体例としては、カチオン化でんぷん、カチオン化グァーガム、変性ポリビニルアルコール、カチオン化ポリアクリルアミド、ポリアミドエピクロロヒドリン(PAE)、メラミン樹脂誘導体、ポリビニルアミンまたはその誘導体、ポリビニルピリジンまたはその誘導体、ポリメタクリル酸エステル誘導体、ポリアクリル酸エステル誘導体、ポリアクリル酸ナトリウム誘導体、ポリエチレンイミンまたはその誘導体、ポリダドマック、ポリアルキレンポリアミンまたはその誘導体、ポリアリルアミンまたはその誘導体等のカチオン基(1~4級アンモニウム塩等)を主鎖または側鎖に導入されたポリマー、クエン酸、炭酸水素ナトリウム等が挙げられる。
 バインダー剤の分子量は、バインダー剤を含浸させるナノカーボンの種類にもよるが、ナノカーボンを液媒体中で分散安定化させる観点から、質量平均分子量が1,000~100,000程度であってもよいが、好ましくは1,000~50,000であり、より好ましくは1,500~3,000である。また、固体凝集物とした後に剪断して粒状物とした際の粒状物どうしの付着性(凝集性)の観点からは、質量平均分子量が8,000~50,000であることが好ましい。なお、質量平均分子量は、ゲル・パーミエーション・クロマトグラフィー法(GPC)法(ポリスチレン標準)により、定法に従って測定することができる。
 また、本発明の一実施形態によれば、工程(1)において使用する液媒体は、例えば、有機溶剤オイル、可塑剤、水等であり、好ましくはプロセスオイルである。
 本発明の一実施形態において、上記工程(1)を実施する温度は特に限定されないが、例えば、5~50℃であり、好ましくは30~40℃である。
 また、本発明の一実施形態において、上記工程(1)は、2工程に分けて実施することができる。
 すなわち、本発明の好ましい実施形態において、上記工程(1)は、
 (1a)バインダー剤と液媒体とを含有するバインダー液を準備する工程、および
 (1b)バインダー液をナノカーボンに含浸させて固体凝集物を得る工程
を含んでなる。
 本発明の一実施形態においては、工程(1a)において、バインダー剤と液媒体と混合することによりバインダー液を調製する。
 バインダー剤の使用量は、ナノカーボン100質量部に対して0.1~10質量部の範囲内で適宜設定することができるが、好ましくは0.15~5質量部であり、より好ましくは0.2~2質量部である。
 また、液媒体の使用量は、ナノカーボン100質量部に対して43~233質量部の範囲で適宜設定することができるが、好ましくは80~200質量部であり、より好ましくは100~150質量部である。
 また、上記のように、工程(1)を工程(1a)および(1b)のようにして実施する場合は、バインダー液におけるバインダー剤の濃度は、例えば、0.1~5質量%であり、好ましくは0.2~3質量%であり、より好ましくは0.2~2質量%である。
 バインダー剤および液媒体を上述のような所定量に調整することは、工程(1b)においてバインダー液を滴下する際に、液滴の大きさを適切な範囲留め、バインダー液の含浸処理を効率的に行うことができる。
 本発明の一実施形態においては、バインダー剤と液媒体との混合は、公知の撹拌装置を使用して撹拌により実施することができるが、均一な混合物の調製の観点からは、斜坑型撹拌翼槽を使用することが好ましい。
 上記撹拌装置における撹拌速度は、例えば、5~20rpmであり、好ましくは5~12rpmであり、より好ましくは7~10rpmである。上記撹拌は、工程(1b)において、バインダー液をナノカーボンに添加する際に継続してもよい。
 また、本発明の一実施形態によれば、工程(1b)において、バインダー液をナノカーボンに含浸させて固体凝集物を得る。
 バインダー液の使用量は、ナノカーボン100質量部に対して44~243質量部の範囲で適宜設定することができるが、好ましくは80~200質量部であり、より好ましくは100~150質量部である。
 工程(1b)における含浸処理は、ナノカーボンに対してバインダー液を滴下することにより実施することが好ましい。上記含浸処理は、公知の撹拌装置内で実施してよいが、均一な混合物の調製の観点からは、傾斜型撹拌槽を使用することが好ましい。本発明の好ましい実施形態によれば、傾斜型撹拌槽内にナノカーボンを仕込み、斜坑型撹拌槽を所定の回転数にて回転させながら、バインダー液を傾斜型撹拌槽中のナノカーボンに滴下する。
 また、本発明の一実施形態によれば、工程(1b)における含浸処理は、減圧雰囲気、加圧雰囲気またはそれらを組み合わせた条件下で実施される。このように減圧および加圧操作を繰り返して行うことは、バインダー液の吸着速度を調節する上で好ましい。また、工程(1b)において、圧力条件を調整することは、ナノカーボン内部へバインダー液を均一に浸透させ、さらにはナノカーボン表面の濡れ性を向上させる上でも有利である。
 本発明の好ましい実施形態によれば、工程(1b)における含浸処理は減圧雰囲気下で実施される場合、減圧条件は、例えば、5~50Paであり、好ましくは10~40Paであり、より好ましくは10~20Paである。
 本発明の好ましい実施形態によれば、工程(1b)における含浸処理が加圧雰囲気下で実施される場合、加圧条件は、例えば、0.1~5MPaであり、好ましくは0.2~5MPaであり、より好ましくは0.5~3MPaである。
 工程(1b)において、上述のような所定量でナノカーボンにバインダー液を添加することにより、可塑性を備えた軟性の固体凝集物として好適に調製することができる。
[工程(2):固体凝集物の解砕処理工程]
 次いで、本発明の一実施形態によれば、上記工程(1)において得られた固体凝集物を解砕処理してナノカーボン配合凝集物を得る。
 本発明の解砕処理は、塊状の固体凝集物を解きほぐす分散処理をいい、解膠をも含めた広い意味に用いる。解砕処理は、剪断装置を用いて実施することが好ましく、剪断破砕装置を用いることがより好ましい。ここで、剪断とは、剪断力を試料に加えて試料を微細化する処理をいう。剪断装置としては、高速で回転する刃と固定されたカッティングヘッドの刃によって投入された固体凝集物が細分化されるものや、大きな相対速度を持つ2面のディスク間の間隙に起きる剪断力と衝撃を利用して固体凝集物の剪断と高速撹拌を同時に行うような装置が挙げられる。より具体的な剪断装置としては、コミトロール、コロイドミル、電動ミル、マスコロイダー、フードプロセッサー、パルパーフィニッシャー、ロータリーカッターミル、ミクロマイスター、ナノカッター、解砕機等が挙げられ、好ましくはナノカッターである。
 剪断装置の運転条件は、特に限定されないが、効率的なナノカーボン配合凝集物の生産の観点から設定することが好ましい。具体的には、解砕処理時の剪断装置中の温度は、例えば、20℃~90℃程度である。また、剪断装置を用いて解砕処理を実施する場合、剪断装置における刃の回転速度は、350~600rpm程度、好ましくは500~600rpm程度である。
 解砕処理は、1回行ってもよく、2回以上繰り返し行ってもよい。
 本発明によれば、工程(1)で得られた固体凝集物を工程(2)の解砕処理に付して、乾燥工程を経ることなく、直接的にナノカーボン配合凝集物を提供することができる。したがって、一実施態様によれば、本発明の方法は、乾燥処理工程を含まない。本発明の製造方法は、乾燥工程経ずに簡便に実施しうることから、短時間でナノカーボン配合凝集物を効率的に取得する上で有利である。
[ナノカーボン配合凝集物]
 本発明の一実施形態によれば、上記方法により得られたナノカーボン配合凝集物が提供される。本発明の好ましい実施形態によれば、ナノカーボン配合凝集物は非乾燥状態の製品(保管物、包装品等)として提供される。
 本発明のナノカーボン配合凝集物は硬度が10g以下に調整されることから、優れた分散性およびハンドリング性を発揮する上で有利である。本発明において「硬度」とは、JIS K 6219-3に準拠して測定された硬度を意味する。ナノカーボン配合凝集物の硬度は20g以下の範囲内であればよいが、好ましくは5~15gであり、より好ましくは5~10gである。
 また、本発明の一実施形態によれば、ナノカーボン配合凝集物の嵩密度は、好ましくは0.5~2.3g/cmであり、より好ましくは0.8~2.0g/cmであり、さらに好ましくは0.8~1.5g/cmである。本発明の製造方法により得られるナノカーボン配合凝集物は、上記のように嵩密度が非常に高く、従って、例えば合成樹脂等への混錬工程において、貯蔵タンク内でのブリッジの発生防止や供給時の自動計量化が可能となり、輸送や在庫コストの低減化にもつながる等のメリットもある。
 本発明の一実施形態によれば、ナノカーボン配合凝集物は、粒状である。ナノカーボン配合凝集物の平均粒径は、好ましくは0.15~2.0mmであり、より好ましくは0.25~1.8mmであり、さらに好ましくは0.25~1.0mmである。なお、平均粒径とは、ナノカーボン配合凝集物の顕微鏡観察により、ランダムに抽出した100個の凝集物のそれぞれについて粒径を算出し、平均した値をいうものとする。
 また、本発明のナノカーボン配合凝集物は、優れた分散性を奏しうることから、粒度のバラツキを好適に抑制した集合体として提供することができる。したがって、本発明の一実施形態よれば、ナノカーボン配合凝集物は組成物として提供される。
 本発明の別の好ましい実施形態によれば、ナノカーボン配合凝集物において、JIS K 6219-1:2005(ゴム用カーボンブラック-造粒粒子の特性-第1部:微粉の求め方)に準拠して測定されるナノカーボン配合凝集物の粒度(R)は、例えば、0.1~5%であり、好ましくは0.2~3%であり、より好ましくは0.2~1.5%である。
 なお、上記粒度(R)は、以下の式に基づき算出することができる。
Figure JPOXMLDOC01-appb-M000007
 R:粒度(%)
 E:ふるい面上のナノカーボンの質量(g)
 B:試料(全成分を含んだもの)の質量(g)
 また、本発明の一実施態様によれば、以下が提供される。
[1]ナノカーボン配合凝集物の製造方法であって、
(1)ナノカーボン100質量部に対して、0.1~10質量部のバインダー剤および43~233質量部の液媒体を含浸させて固体凝集物を得る工程、および
(2)上記固体凝集物を解砕処理してナノカーボン配合凝集物を得る工程、
を含んでなり、
 JIS K 6219-3に準拠して測定される上記ナノカーボン配合凝集の硬度が20g以下である、方法。
[2]上記ナノカーボンが、カーボンナノチューブおよびグラフェンから選択される少なくとも一つのものである、[1]に記載の方法。
[3]上記バインダー剤が、高分子界面活性剤である、[1]または[2]に記載の方法。
[4]上記バインダー剤が、ポリオキシアルキレン鎖を有するグラフト型ポリマー、アミン系ポリマーおよびセルロース系ポリマー、クエン酸、および炭酸水素ナトリウムからなる群から選択される少なくとも一つのものである、[1]~[3]のいずれかに記載の方法。
[5]上記液媒体が、有機溶剤および水から選択される少なくとも一つのものである、[1]~[4]のいずれかに記載の方法。
[6]上記工程(1)が、
 (1a)上記バインダー剤と上記液媒体を含有するバインダー液を準備する工程、および
 (1b)上記バインダー液をナノカーボンに含浸させて上記固体凝集物を得る工程
を含んでなる、[1]~[5]のいずれかに記載の方法。
[7]上記工程(1b)が、減圧雰囲気、加圧雰囲気およびそれらを組み合わせからなる群から選択される条件下で実施される、[6]に記載の方法。
[8]上記減圧雰囲気が50~5Paである、[7]に記載の方法。
[9]上記加圧雰囲気が0.1~5MPaである、[7]または[8]に記載の方法。
[10]工程(2)における解砕処理が、剪断装置を用いて実施される、[1]~[9]のいずれかに記載の方法。
[11]上記ナノカーボン配合凝集物が非乾燥状態で提供される、[1]~[10]のいずれかに記載の方法。
[12]上記ナノカーボン配合凝集物の嵩密度が、0.8~2.0g/cmである、[1]~[11]のいずれかに記載の方法。
[13]上記ナノカーボン配合凝集物の平均粒径が、0.15~2.0mmである、[1]~[12]のいずれかに記載の方法。
[14] [1]~[13]のいずれかに記載の方法により得られた、ナノカーボン配合凝集物。
 以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。なお、特段の記載のない限り、本明細書における単位および測定方法は、日本工業規格(JIS)の規定に従う。
 以下の実験に使用したCNT(商品名:K-Nanos-100P,100T,210T,300T、500T、Kumho Petrochemical社製)の物性は、表1に示される通りであった。
Figure JPOXMLDOC01-appb-T000008
[参考例1]
 傾斜型撹拌槽(PT40SMV、マゼラー社製)内に粉体ナノカーボン(CNT)2kgを仕込み、減圧した。次いで、液媒体(プロセスオイル、日本サン石油社製)を傾斜型撹拌槽内のCNTに対して2kgを滴下した。滴下終了後には、撹拌羽根を回転させたまま減圧および加圧操作を繰り返し行い、CNTに液媒体が浸透するのを促進させて固体凝集物を得た。
 次に、得られた固体凝集物を、多段式のロータリーカッターミルにより連続的に剪断破砕処理し、目的とするCNT配合凝集物を得た。
 CNT配合凝集物について、以下の手法により物性(嵩密度、炭素含有率、平均粒子径、粒度、粒子の硬度)を測定した。
(嵩密度)
 嵩密度は、JIS K 6219に規定されるカーボンブラックの嵩密度の測定法に準拠して求めた。
(炭素含有率)
 炭素含有率は、JIS K 6218-2に準拠して測定された灰分(%)を100%から差し引くことにより求めた。
(平均粒子径)
 走査型電子顕微鏡(SEM)により、CNT配合凝集物の形態観察を実施した。観察は300倍のSEM画像を用いて、任意に100個のCNT配合凝集物の外径を計測し、その数平均値をもってCNT配合凝集物の平均粒径(mm)とした。
(粒度)
 また、JIS K 6219-1:2005に準拠してCNT配合凝集物の粒度(R)を、以下の式に基づき算出した。
Figure JPOXMLDOC01-appb-M000009
 R:粒度(%)
 E:ふるい面上のナノカーボンの質量(g)
 B:試料(全成分を含んだもの)の質量(g)
(粒子の硬度)
 粒子の硬度は、JIS K 6219-3(カーボンブラック-造粒粒子の硬さの求め方)に準拠して測定した。
 上記測定の結果は表2に示される通りであった。
Figure JPOXMLDOC01-appb-T000010
 得られたCNT配合凝集物のシートを、端部から2mm幅で切片を切り出し、切断面を原子間力顕微鏡(MFP-3D-SA-J、オックスフォード・インストゥルメンツ社製)を用いて、スキャンサイズ40μm×40μmにてACモード(タッピングモード)にて観察(100倍)した。AFM写真を図1に示す。
[実施例1]
 傾斜型撹拌槽(PT40SMV、マゼラー社製)内に粉体ナノカーボン(CNT)2Kgを仕込み、減圧した。次に、斜坑型撹拌槽(ST-J-ASC-36、新東社製)中で、液媒体(プロセスオイル、日本サン石油社製)と、バインダー剤(マリアリム AKM0531、日油社製)とを撹拌(100rpm)してバインダー液(バインダー剤濃度10質量%、4g)を調製し、減圧雰囲気(10Pa)にてバインダー液を撹拌しながら傾斜型撹拌槽内のCNTに対して滴下した。滴下終了後には、撹拌羽根を回転させたまま減圧および加圧操作を繰り返し行い、CNTに対するバインダー液の浸透を促進させ、軟凝集物を得た。
 得られたCNT配合凝集物について、上記と同様にして評価を行った。AFM観察を行った。AFM写真を図2に示す。
[実施例2]
 バインダー剤として、ポリエチレンワックス(バインダー剤濃度10質量%)に変更した以外は実施例1と同様にしてCNT配合凝集物を製造し、上記と同様にしてAFM観察を行った。
[参考例2]
 下記表3に示す各成分を下記表に従って配合した混練物を製造し、上記と同様にしてAFM観察を行った。
Figure JPOXMLDOC01-appb-T000011
[参考例3]
 下記表4に示す各成分を下記表に従って配合した混練物を製造し、上記と同様にしてAFM観察を行った。
Figure JPOXMLDOC01-appb-T000012
 実施例1~2のCNT配合凝集物、および参考例1~3の混練物のそれぞれのAFM観察写真から、任意の5箇所における凝集塊の大きさと個数を数え、その平均値を求めた。凝集塊の分布を図3に示す。図3から、実施例1のCNT配合凝集物中の凝集塊の大きさは3~60μmであることがわかる。
 以上に示される通り、実施例のCNT配合凝集物の粒子の硬度は10g以下であり、硬度粒度分布が狭かった。実施例のCNT配合凝集物では、粒子の硬度が低レベルに抑制され、その結果バラツキが抑制され、分散性が向上しているものと考えられる。
 実施例1では、乾燥工程を行う必要がないことから、造粒工程における焼き締まりによる粒子の硬度上昇を回避され、CNT配合凝集物の粒子の分散性の向上に寄与しているものと考えられる。また、実施例1では、閉鎖系内で、嵩密度が高く飛散性のCNT配合凝集物を連続的、効率的に生成することから、CNTの飛散を防止することができ、安全に対するリスクを抑制できると考えられる。
 本発明によれば、分散性が良好であり、嵩密度が高く飛散性の低いナノカーボン配合凝集物を効率的に製造することができる。また、本発明によれば、ナノカーボン配合凝集物の分散性を向上させ、加工性・ハンドリング性等の作業性を著しく向上させることができる。また、本発明によれば、閉鎖系の固相状態で配合処理を実施し、さらに連続的な解砕処理によりナノカーボン配合凝集物粒子を製造できることから、環境負荷を低減する上で有利である。また、本発明によれば、大掛かりな設備を必要とせず、粒度分布の良好なナノカーボン配合凝集物を低原価で迅速に量産できることから、工業生産上特に有利である。

Claims (14)

  1.  ナノカーボン配合凝集物の製造方法であって、
    (1)ナノカーボン100質量部に対して、0.1~10質量部のバインダー剤および43~233質量部の液媒体を含浸させて固体凝集物を得る工程、および
    (2)前記固体凝集物を解砕処理してナノカーボン配合凝集物を得る工程、
    を含んでなり、
     JIS K 6219-3に準拠して測定される前記ナノカーボン配合凝集物の硬度が20g以下である、方法。
  2.  前記ナノカーボンが、カーボンナノチューブおよびグラフェンから選択される少なくとも一つのものである、請求項1に記載の方法。
  3.  前記バインダー剤が界面活性剤である、請求項1または2に記載の方法。
  4.  前記バインダー剤が、ポリオキシアルキレン鎖を有するグラフト型ポリマー、アミン系ポリマーおよびセルロース系ポリマー、クエン酸、および炭酸水素ナトリウムからなる群から選択される少なくとも一つのものである、請求項1~3のいずれか一項に記載の方法。
  5.  前記液媒体が、有機溶剤および水から選択される少なくとも一つのものである、請求項1~4のいずれか一項に記載の方法。
  6.  前記工程(1)が、
     (1a)前記バインダー剤と前記液媒体を含有するバインダー液を準備する工程、および
     (1b)前記バインダー液をナノカーボンに含浸させて前記固体凝集物を得る工程
    を含んでなる、請求項1~5のいずれか一項に記載の方法。
  7.  前記工程(1b)が、減圧雰囲気、加圧雰囲気およびそれらを組み合わせからなる群から選択される条件下で実施される、請求項6に記載の方法。
  8.  前記減圧雰囲気が5~50Paである、請求項7に記載の方法。
  9.  前記加圧雰囲気が0.1~5MPaである、請求項7または8に記載の方法。
  10.  工程(2)における解砕処理が、剪断装置を用いて実施される、請求項1~9のいずれか一項に記載の方法。
  11.  前記ナノカーボン配合凝集物が非乾燥状態で提供される、請求項1~10のいずれか一項に記載の方法。
  12.  前記ナノカーボン配合凝集物の嵩密度が、0.8~2.0g/cmである、請求項1~11のいずれか一項に記載の方法。
  13.  前記ナノカーボン配合凝集物の平均粒径が、0.15~2.0mmである、請求項1~12のいずれか一項に記載の方法。
  14.  請求項1~13のいずれか一項に記載の方法により得られた、ナノカーボン配合凝集物。
PCT/JP2022/034428 2021-09-15 2022-09-14 ナノカーボン配合凝集物およびその製造方法 WO2023042856A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021150436A JP7134320B1 (ja) 2021-09-15 2021-09-15 ナノカーボン配合凝集物およびその製造方法
JP2021-150436 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023042856A1 true WO2023042856A1 (ja) 2023-03-23

Family

ID=83225918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034428 WO2023042856A1 (ja) 2021-09-15 2022-09-14 ナノカーボン配合凝集物およびその製造方法

Country Status (3)

Country Link
JP (1) JP7134320B1 (ja)
TW (1) TW202323184A (ja)
WO (1) WO2023042856A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143532A (ja) * 2004-11-19 2006-06-08 Shimizu Corp カーボンナノチューブの分散性向上方法
JP2008016769A (ja) * 2006-07-10 2008-01-24 Shimizu Corp 電気二重層キャパシタ用炭素電極及び電気二重層キャパシタ並びに電気二重層キャパシタ用炭素電極の製造方法
JP2011042538A (ja) * 2009-08-21 2011-03-03 Nano Structure Research Institute Co Ltd カーボンナノチューブ樹脂組成物およびその製造方法
JP2011190128A (ja) * 2010-03-12 2011-09-29 Toyo Tanso Kk カーボンナノチューブ集合体及びその製造方法
WO2016136428A1 (ja) * 2015-02-25 2016-09-01 東レ株式会社 カーボンナノチューブ分散液および導電性フィルムの製造方法
JP2017201006A (ja) * 2016-04-28 2017-11-09 株式会社DR.goo 嵩密度の異なったカーボンの造粒物の製造方法及びその方法で得られたカーボンの造粒物
JP2018513084A (ja) * 2016-01-20 2018-05-24 エルジー・ケム・リミテッド カーボンナノチューブペレットの製造装置
JP2020194625A (ja) * 2019-05-24 2020-12-03 東洋インキScホールディングス株式会社 電池用カーボンナノチューブ分散組成物の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143532A (ja) * 2004-11-19 2006-06-08 Shimizu Corp カーボンナノチューブの分散性向上方法
JP2008016769A (ja) * 2006-07-10 2008-01-24 Shimizu Corp 電気二重層キャパシタ用炭素電極及び電気二重層キャパシタ並びに電気二重層キャパシタ用炭素電極の製造方法
JP2011042538A (ja) * 2009-08-21 2011-03-03 Nano Structure Research Institute Co Ltd カーボンナノチューブ樹脂組成物およびその製造方法
JP2011190128A (ja) * 2010-03-12 2011-09-29 Toyo Tanso Kk カーボンナノチューブ集合体及びその製造方法
WO2016136428A1 (ja) * 2015-02-25 2016-09-01 東レ株式会社 カーボンナノチューブ分散液および導電性フィルムの製造方法
JP2018513084A (ja) * 2016-01-20 2018-05-24 エルジー・ケム・リミテッド カーボンナノチューブペレットの製造装置
JP2017201006A (ja) * 2016-04-28 2017-11-09 株式会社DR.goo 嵩密度の異なったカーボンの造粒物の製造方法及びその方法で得られたカーボンの造粒物
JP2020194625A (ja) * 2019-05-24 2020-12-03 東洋インキScホールディングス株式会社 電池用カーボンナノチューブ分散組成物の製造方法

Also Published As

Publication number Publication date
JP2023042985A (ja) 2023-03-28
TW202323184A (zh) 2023-06-16
JP7134320B1 (ja) 2022-09-09

Similar Documents

Publication Publication Date Title
Prashantha et al. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties
Menzer et al. Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites
McNally et al. Polymer-carbon nanotube composites: Preparation, properties and applications
Jogi et al. Dispersion and performance properties of carbon nanotubes (CNTs) based polymer composites: a review
Grady Recent developments concerning the dispersion of carbon nanotubes in polymers
Tang et al. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres
Li et al. High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer
McClory et al. Influence of Screw Speed on Electrical and Rheological Percolation of Melt‐Mixed High‐Impact Polystyrene/MWCNT Nanocomposites
Grossiord et al. Isotactic polypropylene/carbon nanotube composites prepared by latex technology: Electrical conductivity study
JP2010043169A (ja) ポリマー組成物および導電性材料
Hegde et al. SWCNT induced crystallization in an amorphous all-aromatic poly (ether imide)
KR101157451B1 (ko) 전도성이 향상된 고분자-탄소나노튜브 복합체 제조방법
Mathew et al. Moisture absorption behavior and its impact on the mechanical properties of cellulose whiskers‐based polyvinylacetate nanocomposites
Yang et al. Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing
de Luna et al. Importance of the morphology and structure of the primary aggregates for the dispersibility of carbon nanotubes in polymer melts
Díez-Pascual et al. Novel nanocomposites reinforced with hydroxylated poly (ether ether ketone)-grafted carbon nanotubes
Xiang et al. Fabrication and properties of acid treated carbon nanotubes reinforced soy protein nanocomposites
JP5629960B2 (ja) 複合粘着剤の製造方法、複合粘着剤及び粘着シート
EP4015453A1 (en) Method for producing carbon-nanotube-blended aggregates
Botelho et al. Dispersing carbon nanotubes in phenolic resin using an aqueous solution
JP7134320B1 (ja) ナノカーボン配合凝集物およびその製造方法
Pantano Mechanical properties of CNT/polymer
JP5614681B2 (ja) 複合粘着剤の製造方法、複合粘着剤及び粘着シート
JP5735442B2 (ja) 炭素ナノ物質でコーティングされた天然纎維補強材と高分子とを含むナノバイオ複合体
JP2018177586A (ja) カーボンナノチューブの造粒方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870003

Country of ref document: EP

Kind code of ref document: A1