WO2023042780A1 - Thermosetting composition, resin film, prepreg, metal-clad laminate, and printed wiring board - Google Patents

Thermosetting composition, resin film, prepreg, metal-clad laminate, and printed wiring board Download PDF

Info

Publication number
WO2023042780A1
WO2023042780A1 PCT/JP2022/034019 JP2022034019W WO2023042780A1 WO 2023042780 A1 WO2023042780 A1 WO 2023042780A1 JP 2022034019 W JP2022034019 W JP 2022034019W WO 2023042780 A1 WO2023042780 A1 WO 2023042780A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting composition
polyphenylene ether
mass
parts
peroxide
Prior art date
Application number
PCT/JP2022/034019
Other languages
French (fr)
Japanese (ja)
Inventor
佳奈子 詫摩
昌樹 林
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to CN202280029049.2A priority Critical patent/CN117242108A/en
Publication of WO2023042780A1 publication Critical patent/WO2023042780A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to thermosetting compositions, resin films, prepregs, metal-clad laminates, and printed wiring boards.
  • Polyphenylene ether which has excellent dielectric properties (low dielectric constant and low dielectric loss tangent) as a resin for thermosetting compositions, is suitable as an electronic circuit board material that can meet the above requirements, and is attracting attention (Patent Document 1 , 2).
  • thermosetting composition containing polyphenylene ether for electronic circuit board materials (hereinafter referred to as a polyphenylene ether composition) is cured and processed at a high temperature of 190°C or higher. If the heat resistance of the cured product obtained by curing the polyphenylene ether composition (hereinafter referred to as the cured polyphenylene ether) is low, the strength of the cured polyphenylene ether decreases during processing, etc., and in more severe and long-term use cannot gain credibility. Therefore, the polyphenylene ether cured product is required to have heat resistance, but the conventional polyphenylene ether cured product as described in Patent Document 1 lacks heat resistance.
  • polyphenylene ether Since polyphenylene ether has a high viscosity, it is diluted with a solvent when processing the polyphenylene ether composition. Therefore, a solvent-drying step (a step of subjecting the composition diluted with a solvent to a temperature higher than room temperature) is required later. When the solvent is dried, the organic peroxide is decomposed, gelation occurs, and the fluidity of the composition may be lost. Loss of fluidity of the composition causes voids in the cured polyphenylene ether, resulting in loss of uniformity of the cured product and deterioration in quality.
  • the polyphenylene ether composition described in Patent Document 2 has a problem with fluidity during processing, and further improvement is desired.
  • the problem to be solved by the present invention is to obtain a polyphenylene ether cured product that has excellent dielectric properties and heat resistance, is difficult to gel even under high temperatures such as the drying process of the contained solvent, and has good fluidity during processing.
  • An object of the present invention is to provide an excellent thermosetting composition.
  • the present invention provides a thermosetting composition containing polyphenylene ether and an organic peroxide, wherein the polyphenylene ether has an ethylenically unsaturated double bond at the molecular end, and the organic peroxide is the general formula (1): (In the formula (1), R 1 is an alkyl group having 2 to 8 carbon atoms) and a t-alkyl hydroperoxide represented by It relates to a thermosetting composition containing 0.02 parts by mass or more and 10 parts by mass or less of t-alkyl hydroperoxide.
  • the present invention provides a resin film formed from the thermosetting composition, a prepreg impregnated or coated with the thermosetting composition on a fibrous base material, the resin film or the prepreg, and a metal foil. and a printed wiring board in which part of the metal foil is removed from the metal-clad laminate.
  • the radicals generated by thermal decomposition cause an addition reaction, thereby three-dimensionally curing the polyphenylene ether having an ethylenically unsaturated double bond at the molecular end, and the t-alkyl hydroperoxide is While slightly decomposing during the polyphenylene ether curing reaction and contributing to curing, it functions as a radical trapping agent, so the cured polyphenylene ether obtained by curing the thermosetting composition of the present invention has excellent dielectric properties and heat resistance. It is presumed that the thermosetting composition can maintain its fluidity even at high temperatures such as during the process of drying the contained solvent.
  • thermosetting composition of the invention contains a polyphenylene ether and an organic peroxide.
  • the polyphenylene ether contains a phenylene ether unit as a repeating structural unit and has an ethylenically unsaturated double bond at the end of the molecule.
  • the polyphenylene ethers may be used alone or in combination of two or more.
  • polyphenylene ether examples include, for example, 2,6-dimethylphenol and other phenols (eg, 2,3,6-trimethylphenol, 2-methyl-6-butylphenol, 2- allylphenol, etc.); polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols; and poly(2,6-dimethyl-1,4 -Phenylene ether) and phenolic compounds such as bisphenols and trisphenols are heated in a toluene solvent in the presence of an organic peroxide to form a linear or branched structure obtained by a redistribution reaction.
  • 2,6-dimethylphenol and other phenols eg, 2,3,6-trimethylphenol, 2-methyl-6-butylphenol, 2- allylphenol, etc.
  • polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols
  • the phenylene group in the phenylene ether unit may have a substituent, and the polyphenylene ether may contain other structural units other than the phenylene ether unit to the extent that the effects of the present invention are not impaired. .
  • Examples of the ethylenically unsaturated double bond at the end of the polymer include (meth)acryloyl group, styryl group, vinylbenzyl group, vinyl group, allyl group, 1,3-butadienyl group, and the like.
  • a (meth)acryloyl group and a vinylbenzyl group are preferable from the viewpoints of high reactivity during thermosetting and excellent dielectric constant and dielectric loss tangent of the cured product.
  • the number of ethylenically unsaturated double bonds in one molecule of the polyphenylene ether is preferably 1.5 to 6 on average, more preferably 1.6 to 4 on average, and 1.5 on average. 7 to 3 are more preferred.
  • the number of ethylenically unsaturated double bonds in one molecule in the polyphenylene ether is, for example, the number of hydroxyl groups remaining in the polyphenylene ether is measured, and the polyphenylene before modification with a compound having an ethylenically unsaturated double bond It can be measured by calculating the amount of decrease from the number of hydroxyl groups of the ether.
  • a method for measuring the number of hydroxyl groups remaining in polyphenylene ether is described in Kobunshi Ronbunshu, vol. 51, No. 7, page 480 (1994), tetraethylammonium hydroxide is added to a methylene chloride solution of polyphenylene ether, and the absorbance of the mixed solution is measured at a wavelength of 318 nm.
  • the polyphenylene ether preferably has a structure represented by the following general formula (2).
  • X is an a-valent linking group
  • Y is an ethylenically unsaturated double bond at the end of the polymer
  • a is 1 to 6.
  • X in the formula (2) include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxy-3 ,3'5,5'-tetramethylbiphenyl, 4,4'-dihydroxy-2,2',3,3'5,5'-hexamethylbiphenyl, hydroquinone, dihydric phenols such as resorcin, tris- Trihydric or higher phenols represented by (4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol novolak, o-cresol novolak, naphthol novolak and the like can be mentioned.
  • the polyphenylene ether preferably has a number average molecular weight of 800 or more and 5000 or less, more preferably 900 or more and 4500 or less, and 1000 or more and 3000 or less, from the viewpoint of dielectric properties and impregnation into a fibrous base material. It is even more preferable to have
  • the number average molecular weight may be measured by a general molecular weight measurement method, and examples thereof include a polystyrene equivalent value measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the method for synthesizing the polyphenylene ether is not particularly limited as long as it can synthesize a modified polyphenylene ether modified with an ethylenically unsaturated double bond.
  • polyphenylene ether before modification is reacted with a compound having an ethylenically unsaturated double bond and a chlorine atom.
  • compounds having an ethylenically unsaturated double bond and a chlorine atom include (meth)acryloyl chloride and vinylbenzyl chloride.
  • polyphenylene ethers may also be used, such as product names "OPE-2St” (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and “Noryl SA9000” (manufactured by SABIC Innovative Plastics).
  • the organic peroxide has the general formula (1): (In formula (1), R 1 is an alkyl group having 2 to 8 carbon atoms.) and dialkyl peroxides and t-alkyl hydroperoxides.
  • R 1 is, for example, an ethyl group, n-propyl group, n-butyl group, n-pentyl group, neopentyl group, 1-cyclohexyl-1-methylethyl group, n-octyl group and the like. and preferably an ethyl group, an n-propyl group, or a neopentyl group.
  • R 1 is 2 or more, the oxygen radicals generated after thermal decomposition of the dialkyl peroxide undergo rapid ⁇ -cleavage to be converted into carbon radicals to initiate the curing reaction, and the radicals introduced into the polyphenylene ether cured product.
  • R 1 is 2-5.
  • dialkyl peroxides include t-amyl peroxide, t-hexyl methyl peroxide, 1,1,3,3-tetramethylbutyl cumyl peroxide, 1-cyclohexyl-1-methylethyl cumyl Peroxides, etc., and t-amyl cumyl peroxide, t-hexyl cumyl peroxide, and 1,1,3,3-tetramethylbutyl cumyl peroxide are preferred. 1,1,3,3-Tetramethylbutylcumyl peroxide is particularly preferred.
  • the dialkyl peroxide is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, per 100 parts by mass of the polyphenylene ether. More preferably, it is 0.5 to 2 parts by mass.
  • the method for producing the dialkyl peroxide compound is not particularly limited, but for example, general formula (3): (In formula (3), R 1 is an alkyl group having 2 to 8 carbon atoms.) and a t-alkyl hydroperoxide represented by general formula (4): or a t-alkyl hydroperoxide represented by the above general formula (3) and the general formula (5 ):
  • a production method including a step of reacting ⁇ -cumyl alcohol represented by (hereinafter also referred to as step (B)).
  • the t-alkyl hydroperoxide represented by the general formula (3), the ⁇ -methylstyrene represented by the general formula (4), the ⁇ - Cumyl alcohol may use a commercial item.
  • the t-alkyl hydroperoxide represented by the general formula (3) is 1 mol of ⁇ -methylstyrene represented by the general formula (4), or With respect to 1 mol of ⁇ -cumyl alcohol represented by the general formula (5), it is preferable to react 1 mol or more from the viewpoint of increasing the yield of the target product, and from the viewpoint of improving the purity of the target product. It is preferable to react 5 mol or less.
  • the reaction temperature in the step (A) and the step (B) is preferably 0° C. or higher, more preferably 10° C. or higher, from the viewpoint of increasing the yield of the target product. From the viewpoint of, the temperature is preferably 60° C. or lower, more preferably 50° C. or lower.
  • the reaction time of the steps (A) and (B) varies depending on the raw materials, the reaction temperature, etc., and cannot be unconditionally determined. It is preferably 1 hour or more, and preferably 5 hours or less from the viewpoint of safety.
  • the acid catalyst is not particularly limited, and examples thereof include acetic acid, hydrochloric acid, sulfuric acid, perchloric acid and the like.
  • the acid catalyst may be used alone or in combination of two or more.
  • the amount of the acid catalyst to be used is not particularly limited. It is preferable to use 0.02 mol or more per 1 mol of ⁇ -cumyl alcohol represented by formula (5) from the viewpoint of increasing the yield of the target product, and from the viewpoint of safety, 5 mol or less is used. preferably.
  • organic solvent can be used in the step (A) and the step (B).
  • the organic solvent is not particularly limited, it is preferably an organic solvent that is inert in the reaction system.
  • the organic solvent include non-polar compounds such as pentane, hexane and toluene; and polar compounds such as isopropanol, acetone and acetonitrile.
  • the organic solvent may be used alone or in combination of two or more.
  • the amount of the organic solvent used is not particularly limited, but usually 3 to 300 parts by mass with respect to 100 parts by mass of ⁇ -methylstyrene or ⁇ -cumyl alcohol. About a part.
  • Identification of the target product obtained is carried out using liquid chromatography (LC), gas chromatography (GC), nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), mass spectrometry (MS), etc. It can be carried out.
  • LC liquid chromatography
  • GC gas chromatography
  • NMR nuclear magnetic resonance spectroscopy
  • IR infrared spectroscopy
  • MS mass spectrometry
  • the t-alkyl hydroperoxide is not particularly limited.
  • the generated oxygen radicals undergo rapid ⁇ -cleavage to be converted into carbon radicals to initiate the curing reaction. It is preferable that the number of carbon atoms in the tertiary alkyl group of the hydroperoxide is 5 or more because the radicals introduced into the polyphenylene ether cured product can improve the dielectric properties when the polarity thereof is low.
  • the number of carbon atoms in the tertiary alkyl group of the hydroperoxide is preferably 8 or less, since the molecular weight becomes smaller and the amount of radicals generated increases with the same addition amount, thereby improving the heat resistance.
  • Examples include t-butyl hydroperoxide, t-amyl hydroperoxide, t-hexyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, t-cumyl hydroperoxide and the like. , t-hexyl hydroperoxide and 1,1,3,3-tetramethylbutyl hydroperoxide are preferred. 1,1,3,3-Tetramethylbutyl hydroperoxide is particularly preferred.
  • the t-alkyl hydroperoxide is 0.02 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the dialkyl peroxide.
  • the t-alkyl hydroperoxide is preferably 0.05 parts by mass or more, and 0.1 parts by mass or more.
  • the t-alkyl hydroperoxide is preferably 8 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass Part or less is more preferable.
  • thermosetting composition of the present invention a polymerization initiator other than the dialkyl peroxide and t-alkyl hydroperoxide of the present invention is added to the extent that the effects of the present invention are not impaired in order to improve productivity and cure degree. They may be used together.
  • the polymerization initiator is not particularly limited, and those commonly used in this field can be used, but an oil-soluble polymerization initiator that is soluble in the thermosetting composition is preferred.
  • the polymerization initiators may be used alone or in combination of two or more.
  • polymerization initiator examples include peroxydicarbonates such as bis-(4-t-butylcyclohexyl)peroxydicarbonate, diacyl peroxides such as dibenzoyl peroxide, and t-butylperoxy-2-ethylhexanoate.
  • peroxyesters such as t-butyl benzoate, peroxymonocarbonates such as t-butylperoxy 2-ethylhexylmonocarbonate, peroxyketals such as 1,1-bis(t-butylperoxy)cyclohexane, ⁇ , ⁇ '-bis(t -butylperoxy)diisopropylbenzene, dialkyl peroxides such as 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3, azo compounds such as 2,2′-azobis(2-methylbutyronitrile), 1-hydroxycyclohexyl phenyl ketone, diphenyl-2,4,6-trimethylbenzoylphosphine oxide, 1-[( ⁇ 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethylidene ⁇ Amino)oxy]ethanone and other photopolymerization initiators
  • the thermosetting composition of the present invention may contain a polyfunctional monomer from the viewpoint of improving heat resistance.
  • the polyfunctional monomer include ethylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, and dipentaerythritol hexa(meth)acrylate.
  • polyfunctional (meth)acrylates such as 1,4-divinylbenzene, vinylbenzene derivatives such as 4-vinylbenzoic acid-2-acryloylethyl ester, alkenyl isocyanurate derivatives such as triallyl isocyanurate (TAIC), triallyl cyanide Alkenyl cyanurate derivatives such as nurate (TAC), maleimide derivatives such as 4,4-bismaleimide diphenylmethane, N,N-1,3-phenylene bismaleimide, and polybutadiene having two or more vinyl groups in the molecule A vinyl compound etc. are mentioned. Among these, triallyl isocyanurate, triallyl cyanurate, and polybutadiene are preferable because of their excellent heat resistance.
  • the polyfunctional monomers may be used alone or in combination of two or more.
  • the polyfunctional monomer is preferably 5 parts by mass to 50 parts by mass, more preferably 7 parts by mass to 40 parts by mass, still more preferably 10 parts by mass to 30 parts by mass, relative to 100 parts by mass of the polyphenylene ether. part by mass.
  • a solvent may be further added to the thermosetting composition of the present invention in order to improve the viscosity, the ability to impregnate the glass cloth, and the smoothness of the cured film.
  • the solvent is not particularly limited as long as it is capable of dissolving or dispersing the above components and evaporates during drying.
  • solvent from the viewpoint of solubility, aromatic solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone and cyclohexanone; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone. Solvents are preferred. These solvents can be used singly or in combination of two or more.
  • the amount of the solvent used is 10 to 1000 parts by mass with respect to 100 parts by mass of the solid content of the thermosetting composition from the viewpoint of the solubility of the thermosetting composition in the solvent and the ease of the volatilization process. is preferred, and 20 to 500 parts by mass is more preferred.
  • thermosetting composition of the present invention can further contain other components in appropriate combination.
  • Other components include elastomers such as polyisoprene, polybutadiene, styrene butadiene, butyl rubber, ethylene propylene rubber, fluororubber and silicone rubber, natural silica, fused silica, synthetic silica, amorphous silica, hollow silica, alumina, clay, talc and Inorganic fillers such as short glass fibers, silane coupling agents such as ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(meth)acryloxypropyltrimethoxysilane, flame retardants, polymerization inhibitors agents, ultraviolet absorbers, light stabilizers, surfactants, lubricants, thickeners, antifoaming agents, antistatic agents, pigments, dyes and the like.
  • elastomers such as polyisoprene
  • the resin film of the present invention is formed from the thermosetting composition.
  • the resin film contains a thermosetting composition before curing, a part of the thermosetting composition may be cured.
  • the resin film is formed, for example, by drying a resin varnish that is a mixture of the thermosetting composition and the solvent alone, or by coating the resin varnish on a support such as a support film and then drying it. can be obtained by Drying removal of the solvent is performed with a hot air dryer or the like at, for example, 20°C to 180°C.
  • the drying temperature is preferably 20 to 150°C, more preferably 50 to 130°C.
  • the support for the resin film examples include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polycarbonates, polyimides, ethylenetetrafluoroethylene copolymers, copper foils, aluminum foils, and the like.
  • metal foil, release paper, and the like A resin-coated metal foil is obtained by applying the thermosetting composition to a metal foil and then removing the solvent by drying with a hot air dryer or the like.
  • the support may be subjected to chemical or physical treatment such as mud treatment, corona treatment, mold release treatment and the like.
  • the resin film is suitable as an interlayer insulating sheet, an adhesive film, etc. for laminates such as multilayer printed wiring boards.
  • the prepreg of the present invention is a composite of a fibrous base material and the thermosetting composition.
  • the prepreg contains a thermosetting composition before curing, a part of the thermosetting composition may be cured.
  • the prepreg is preferably a composite of a fibrous base material and a thermosetting composition impregnated or applied to the fibrous base material. Even when the thermosetting composition is applied to the surface of the fibrous base material to form a layer, the base material is impregnated with the cured thermosetting composition by press molding for curing the prepreg. structure can be obtained.
  • the prepreg can be obtained, for example, by impregnating or applying a resin varnish, which is a mixture of the thermosetting composition of the present invention and a solvent, onto a substrate such as glass cloth, and then removing the solvent by drying. It is also possible to repeat the impregnation or application multiple times. Furthermore, by repeating the impregnation or application using a plurality of thermosetting compositions having different concentrations and compositions, it is possible to adjust the impregnation amount to a desired one. Drying removal of the solvent is performed with a hot air dryer or the like at, for example, 20°C to 180°C. The drying temperature is preferably 20 to 150°C, more preferably 50 to 130°C.
  • the fibrous base material examples include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, pulp paper, and linter paper. Among these, glass cloth is preferable, and flattened glass cloth is more preferable, because the mechanical strength of the printed wiring board is excellent.
  • These fibrous base materials can be used individually by 1 type or in combination of 2 or more types.
  • the thickness of the fibrous base material for example, one having a thickness of 1 to 300 ⁇ m can be used.
  • the solid content of the thermosetting composition in the solid content of the prepreg is preferably 30 to 80% by mass, more preferably 40 to 70% by mass. If the above ratio is less than 30% by mass, insulation reliability tends to be poor when the prepreg is used for electronic substrates and the like. On the other hand, if the above proportion is more than 80% by mass, mechanical properties such as bending elastic modulus tend to deteriorate when used for electronic substrates and the like.
  • the metal-clad laminate of the present invention is a laminate in which the resin film or the prepreg and metal foil are laminated.
  • the laminate is produced by stacking one or more of the resin films and/or prepregs on a substrate such as a metal foil and then curing the thermosetting composition by press molding to form an insulating layer. can be manufactured. It is also possible to use the resin-coated metal foil instead of the metal foil. Heat molding can be performed, for example, at a temperature of 180° C. to 240° C., a heating time of 30 minutes to 300 minutes, and a surface pressure of 20 kgf/cm 2 to 40 kgf/cm 2 .
  • the metal foil is not particularly limited, examples thereof include aluminum and copper foil, among which copper foil is preferable because of its low electrical resistance.
  • a metal foil having a thickness of, for example, 1 to 50 ⁇ m can be used.
  • the resin film and prepreg to be combined with the metal foil may be one sheet or a plurality of sheets, and depending on the application, the metal foil is laminated on one side or both sides and processed into a laminate.
  • a metal-clad laminate is particularly suitable as a printed wiring board.
  • the printed wiring board of the present invention is obtained by partially removing the metal foil on the surface of the metal-clad laminate by etching or the like, forming wiring, and forming a circuit on the surface of the resin film or prepreg. can get.
  • the printed wiring board is excellent in dielectric properties such as dielectric constant and dielectric loss tangent, moldability, and heat resistance.
  • thermosetting composition is used for applications such as molding, lamination, adhesives, and composite materials such as copper-clad laminates.
  • applications such as molding, lamination, adhesives, and composite materials such as copper-clad laminates.
  • prepregs obtained by semi-curing resins and laminates obtained by curing these prepregs are typically used.
  • an epoxy body a typical example of its use is for a semiconductor encapsulant.
  • the structure of the above dialkyl peroxide was identified by 1 H-NMR measurement, 13 C-NMR measurement and TOFMS (manufactured by JEOL Ltd.) using an AVANCEN NMR spectrometer (manufactured by BRUCKER). Purity was calculated by a simple area method in GC (GC-2014 series manufactured by Shimadzu Corporation).
  • the dielectric constant and dielectric loss tangent at 1 GHz of the obtained cured product were measured by a method based on IPC-TM-650-2.5.5.9 and evaluated according to the following criteria.
  • x Dielectric constant (Dk) and dielectric loss tangent (Df) are other than the above ⁇ or ⁇ .
  • the glass transition temperature of the above cured product was measured by the DSC measurement method based on IPC-TM-650-2.4.25 at a heating rate of 10° C./min and evaluated according to the following criteria.
  • OPE-2St 2200 is a polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular ends (number average molecular weight of 2200), manufactured by Mitsubishi Gas Chemical Company);
  • OPE-2St 1200 is a polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular ends (number average molecular weight of 1200), manufactured by Mitsubishi Gas Chemical Company, Inc.);
  • SA9000 is a polyphenylene ether having an average of 2 ethylenically unsaturated double bonds at the molecular end (number average molecular weight of 2756), manufactured by SABIC Innovative Plastics); 1,1,3,3-Tetramethylbutylcumyl peroxide is produced in Production Example 1 (purity 90.8%); t-hexylyl peroxide is produced in Production Example 2 (purity 94.3%); t-Amilyl peroxide (Production Example 3, purity 89.
  • t-butyl cumyl peroxide is manufactured by NOF Corporation (purity 90.2%); 1,1,3,3-tetramethylbutyl hydroperoxide is manufactured by NOF Corporation (purity 90.3%); t-hexyl hydroperoxide is manufactured by NOF Corporation (purity 85.2%); t-amyl hydroperoxide was from United Initiators (84.8% purity); t-butyl hydroperoxide is manufactured by NOF Corporation (purity 68.9%); 1,4-hydroquinone is manufactured by Tokyo Chemical Industry Co., Ltd. (purity 99.9%); TAIC (Triallyl Isocyanurate) is manufactured by Tokyo Chemical Industry Co., Ltd. (96.0% purity); 1,4-divinylbenzene is manufactured by Tokyo Chemical Industry Co., Ltd. (98.0% purity).
  • thermosetting composition in Examples 1 to 10, the fluidity of the thermosetting composition could be maintained, and a cured polyphenylene ether exhibiting excellent physical properties could be obtained.
  • thermosetting composition lost its fluidity.

Abstract

Provided is a thermosetting composition containing a polyphenylene ether and an organic peroxide, wherein the polyphenylene ether has an ethylenic unsaturated double bond at a molecular end, the organic peroxide includes a dialkyl peroxide represented by general formula (1) and a t-alkyl hydroperoxide, and the t-alkyl hydroperoxide is is contained in an amount of 0.02-10 parts by mass per 100 parts by mass of the dialkyl peroxide. The thermosetting composition yields a polyphenylene ether cured product having exceptional dielectric properties and heat resistance, the thermosetting composition resisting gelation and having exceptional fluidity even under high temperature such as in a step for drying a contained solvent.

Description

熱硬化性組成物、樹脂フィルム、プリプレグ、金属張積層板、及びプリント配線板Thermosetting composition, resin film, prepreg, metal-clad laminate, and printed wiring board
 本発明は、熱硬化性組成物、樹脂フィルム、プリプレグ、金属張積層板、及びプリント配線板に関する。 The present invention relates to thermosetting compositions, resin films, prepregs, metal-clad laminates, and printed wiring boards.
 近年、情報ネットワーク技術の著しい進歩や情報ネットワークを活用したサービスの拡大に伴い、情報量の大容量化及び処理速度の高速化が可能な電子機器が求められるようになってきた。情報量の大容量化及び処理速度の高速化は5Gの普及等によりさらに加速しており、電子機器に用いられるプリント配線板等の電子回路基板材料において、低誘電率及び低誘電正接が必要な性能として要求されるようになってきた。 In recent years, with the remarkable progress in information network technology and the expansion of services that utilize information networks, there has been a demand for electronic devices that are capable of increasing the amount of information and processing speed. With the spread of 5G, etc., the increase in the amount of information and the increase in processing speed are further accelerating, and low dielectric constant and low dielectric loss tangent are required in electronic circuit board materials such as printed wiring boards used in electronic devices. Performance has come to be demanded.
 熱硬化性組成物の樹脂として優れた誘電特性(低い誘電率及び低い誘電正接)を有するポリフェニレンエーテルは、上述した要求に応えられる電子回路基板材料として好適であり、注目されている(特許文献1、2)。 Polyphenylene ether, which has excellent dielectric properties (low dielectric constant and low dielectric loss tangent) as a resin for thermosetting compositions, is suitable as an electronic circuit board material that can meet the above requirements, and is attracting attention (Patent Document 1 , 2).
国際公開第2008/033612号WO2008/033612 特開2019-172725号公報JP 2019-172725 A
 電子回路基板材料用のポリフェニレンエーテルを含有する熱硬化性組成物(以下、ポリフェニレンエーテル組成物という)は、その硬化及び加工が190℃以上の高温で行われる。ポリフェニレンエーテル組成物を硬化して得られる硬化物(以下、ポリフェニレンエーテル硬化物という)の耐熱性が低いと、加工時等においてポリフェニレンエーテル硬化物の強度が下がり、より過酷かつより長期的な使用における信頼性を得ることができない。そのためポリフェニレンエーテル硬化物は耐熱性が求められるが、特許文献1に記載されているような従来のポリフェニレンエーテル硬化物は、耐熱性が不足している。 A thermosetting composition containing polyphenylene ether for electronic circuit board materials (hereinafter referred to as a polyphenylene ether composition) is cured and processed at a high temperature of 190°C or higher. If the heat resistance of the cured product obtained by curing the polyphenylene ether composition (hereinafter referred to as the cured polyphenylene ether) is low, the strength of the cured polyphenylene ether decreases during processing, etc., and in more severe and long-term use cannot gain credibility. Therefore, the polyphenylene ether cured product is required to have heat resistance, but the conventional polyphenylene ether cured product as described in Patent Document 1 lacks heat resistance.
 ポリフェニレンエーテルは粘度が高いことからポリフェニレンエーテル組成物の加工時に溶剤で希釈して用いる。そのため、後に溶剤乾燥の工程(溶剤で希釈した組成物を室温より高い温度に処す工程)が必要となる。この溶剤乾燥時に有機過酸化物が分解し、ゲル化が起きてしまい組成物の流動性が失われるという問題が生じることがある。組成物の流動性が失われるとポリフェニレンエーテル硬化物に空隙が生じるなど、硬化物の均一性が失われ品質低下の原因となる。特許文献2に記載されているポリフェニレンエーテル組成物は、加工時の流動性に課題があり、さらなる改善が求められている。 Since polyphenylene ether has a high viscosity, it is diluted with a solvent when processing the polyphenylene ether composition. Therefore, a solvent-drying step (a step of subjecting the composition diluted with a solvent to a temperature higher than room temperature) is required later. When the solvent is dried, the organic peroxide is decomposed, gelation occurs, and the fluidity of the composition may be lost. Loss of fluidity of the composition causes voids in the cured polyphenylene ether, resulting in loss of uniformity of the cured product and deterioration in quality. The polyphenylene ether composition described in Patent Document 2 has a problem with fluidity during processing, and further improvement is desired.
 したがって、本発明が解決しようとする課題は、誘電特性及び耐熱性に優れるポリフェニレンエーテル硬化物が得られ、含有する溶剤の乾燥工程のような高温下においてもゲル化し難く、加工時の流動性に優れる熱硬化性組成物を提供することである。 Therefore, the problem to be solved by the present invention is to obtain a polyphenylene ether cured product that has excellent dielectric properties and heat resistance, is difficult to gel even under high temperatures such as the drying process of the contained solvent, and has good fluidity during processing. An object of the present invention is to provide an excellent thermosetting composition.
 すなわち、本発明は、ポリフェニレンエーテル、及び有機過酸化物を含有する熱硬化性組成物であって、前記ポリフェニレンエーテルが、分子末端にエチレン性不飽和二重結合を有し、前記有機過酸化物は、一般式(1):
Figure JPOXMLDOC01-appb-C000002
(式(1)中、Rは炭素数が2から8のアルキル基である。)で表されるジアルキルペルオキシド、及びt-アルキルヒドロペルオキシドであり、前記ジアルキルペルオキシド100質量部に対して、前記t-アルキルヒドロペルオキシドが0.02質量部以上10質量部以下である熱硬化性組成物に関する。
That is, the present invention provides a thermosetting composition containing polyphenylene ether and an organic peroxide, wherein the polyphenylene ether has an ethylenically unsaturated double bond at the molecular end, and the organic peroxide is the general formula (1):
Figure JPOXMLDOC01-appb-C000002
(In the formula (1), R 1 is an alkyl group having 2 to 8 carbon atoms) and a t-alkyl hydroperoxide represented by It relates to a thermosetting composition containing 0.02 parts by mass or more and 10 parts by mass or less of t-alkyl hydroperoxide.
 また、本発明は、前記熱硬化性組成物から形成される樹脂フィルム、前記熱硬化性組成物を、繊維質基材に含浸又は塗布されたプリプレグ、前記樹脂フィルム又は前記プリプレグと、金属箔とが積層された金属張積層板、及び前記金属張積層板から、前記金属箔の一部が除去されているプリント配線板に関する。 Further, the present invention provides a resin film formed from the thermosetting composition, a prepreg impregnated or coated with the thermosetting composition on a fibrous base material, the resin film or the prepreg, and a metal foil. and a printed wiring board in which part of the metal foil is removed from the metal-clad laminate.
 前記ジアルキルペルオキシドは、熱分解により発生したラジカルが付加反応を引き起こすことで、分子末端にエチレン性不飽和二重結合を有するポリフェニレンエーテルが三次元的に硬化し、さらに、t-アルキルヒドロペルオキシドは、ポリフェニレンエーテル硬化反応時にわずかに分解し硬化に寄与しつつ、ラジカルトラップ剤として機能するため、本発明の熱硬化性組成物を硬化したポリフェニレンエーテル硬化物は、誘電特性及び耐熱性に優れ、本発明の熱硬化性組成物は含有する溶剤の乾燥工程のような高温下においても、組成物の流動性を保持することができると推定される。 In the dialkyl peroxide, the radicals generated by thermal decomposition cause an addition reaction, thereby three-dimensionally curing the polyphenylene ether having an ethylenically unsaturated double bond at the molecular end, and the t-alkyl hydroperoxide is While slightly decomposing during the polyphenylene ether curing reaction and contributing to curing, it functions as a radical trapping agent, so the cured polyphenylene ether obtained by curing the thermosetting composition of the present invention has excellent dielectric properties and heat resistance. It is presumed that the thermosetting composition can maintain its fluidity even at high temperatures such as during the process of drying the contained solvent.
<熱硬化性組成物>
 本発明の熱硬化性組成物は、ポリフェニレンエーテル、及び有機過酸化物を含有する。
<Thermosetting composition>
The thermosetting composition of the invention contains a polyphenylene ether and an organic peroxide.
<ポリフェニレンエーテル>
 前記ポリフェニレンエーテルは、フェニレンエーテル単位を繰り返し構造単位として含み、分子末端にエチレン性不飽和二重結合を有する。前記ポリフェニレンエーテルは単独で、又は2種以上を組み合わせて使用することができる。
<Polyphenylene ether>
The polyphenylene ether contains a phenylene ether unit as a repeating structural unit and has an ethylenically unsaturated double bond at the end of the molecule. The polyphenylene ethers may be used alone or in combination of two or more.
 前記ポリフェニレンエーテルの構造単位の具体例としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等が挙げられ、誘電特性及び耐熱性に優れる観点から、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)であることが好ましい。更に、前記ポリフェニレンエーテルの構造単位の具体例としては、例えば、2,6-ジメチルフェノールと、他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール、2-アリルフェノール等)との共重合体;2,6-ジメチルフェノールと、ビフェノール類又はビスフェノール類とをカップリングさせて得られるポリフェニレンエーテル共重合体;及び、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)等を、ビスフェノール類やトリスフェノール類のようなフェノール化合物と、トルエン溶剤中、有機過酸化物の存在下で加熱し、再分配反応させて得られる、直鎖構造もしくは分岐構造を有するポリフェニレンエーテルが挙げられる。前記フェニレンエーテル単位中のフェニレン基は、置換基を有してもよく、また、前記ポリフェニレンエーテルは、本発明の作用効果を阻害しない範囲において、フェニレンエーテル単位以外のその他の構成単位を含んでもよい。 Specific examples of structural units of the polyphenylene ether include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly( 2-methyl-6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether), etc., and from the viewpoint of excellent dielectric properties and heat resistance, poly(2, 6-dimethyl-1,4-phenylene ether). Furthermore, specific examples of the structural units of the polyphenylene ether include, for example, 2,6-dimethylphenol and other phenols (eg, 2,3,6-trimethylphenol, 2-methyl-6-butylphenol, 2- allylphenol, etc.); polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols; and poly(2,6-dimethyl-1,4 -Phenylene ether) and phenolic compounds such as bisphenols and trisphenols are heated in a toluene solvent in the presence of an organic peroxide to form a linear or branched structure obtained by a redistribution reaction. and polyphenylene ethers having The phenylene group in the phenylene ether unit may have a substituent, and the polyphenylene ether may contain other structural units other than the phenylene ether unit to the extent that the effects of the present invention are not impaired. .
 前記ポリマー末端のエチレン性不飽和二重結合としては、例えば、(メタ)アクリロイル基、スチリル基、ビニルベンジル基、ビニル基、アリル基、1,3-ブタジエニル基等が挙げられる。これらの中でも、熱硬化時の反応性が高く、硬化物の誘電率や誘電正接が優れる観点から、(メタ)アクリロイル基、ビニルベンジル基であることが好ましい。 Examples of the ethylenically unsaturated double bond at the end of the polymer include (meth)acryloyl group, styryl group, vinylbenzyl group, vinyl group, allyl group, 1,3-butadienyl group, and the like. Among these, a (meth)acryloyl group and a vinylbenzyl group are preferable from the viewpoints of high reactivity during thermosetting and excellent dielectric constant and dielectric loss tangent of the cured product.
 前記ポリフェニレンエーテル中の1分子中のエチレン性不飽和二重結合の数は、平均1.5~6個であることが好ましく、平均1.6から4個であることがより好ましく、平均1.7から3個であることがさらに好ましい。 The number of ethylenically unsaturated double bonds in one molecule of the polyphenylene ether is preferably 1.5 to 6 on average, more preferably 1.6 to 4 on average, and 1.5 on average. 7 to 3 are more preferred.
 前記ポリフェニレンエーテル中の1分子中のエチレン性不飽和二重結合の数は、例えば、ポリフェニレンエーテルに残存する水酸基数を測定して、エチレン性不飽和二重結合を有する化合物で変性する前のポリフェニレンエーテルの水酸基数からの減少分を算出することにより測定することができる。そして、ポリフェニレンエーテルに残存する水酸基数の測定方法は、高分子論文集,vol.51,No.7,480頁(1994)に記載の方法に準拠し、ポリフェニレンエーテルの塩化メチレン溶液に、テトラエチルアンモニウムヒドロキシドを添加し、その混合溶液は波長318nmにおける吸光度を測定することにより求めることができる。 The number of ethylenically unsaturated double bonds in one molecule in the polyphenylene ether is, for example, the number of hydroxyl groups remaining in the polyphenylene ether is measured, and the polyphenylene before modification with a compound having an ethylenically unsaturated double bond It can be measured by calculating the amount of decrease from the number of hydroxyl groups of the ether. A method for measuring the number of hydroxyl groups remaining in polyphenylene ether is described in Kobunshi Ronbunshu, vol. 51, No. 7, page 480 (1994), tetraethylammonium hydroxide is added to a methylene chloride solution of polyphenylene ether, and the absorbance of the mixed solution is measured at a wavelength of 318 nm.
 また、前記ポリフェニレンエーテルは、下記一般式(2)の構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式(2)中、Xはa価の任意の連結基であり、Yはポリマー末端のエチレン性不飽和二重結合であり、aは1から6である。)
Moreover, the polyphenylene ether preferably has a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000003
(In formula (2), X is an a-valent linking group, Y is an ethylenically unsaturated double bond at the end of the polymer, and a is 1 to 6.)
 前記式(2)中、Xの具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシ-3,3’5,5’-テトラメチルビフェニル、4,4’-ジヒドロキシ-2,2’,3,3’5,5’-ヘキサメチルビフェニル、ヒドロキノン、レゾルシン等の2価のフェノール類、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック、ナフトールノボラック等に代表される3価以上のフェノール類が挙げられる。 Specific examples of X in the formula (2) include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxy-3 ,3'5,5'-tetramethylbiphenyl, 4,4'-dihydroxy-2,2',3,3'5,5'-hexamethylbiphenyl, hydroquinone, dihydric phenols such as resorcin, tris- Trihydric or higher phenols represented by (4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol novolak, o-cresol novolak, naphthol novolak and the like can be mentioned.
 前記ポリフェニレンエーテルは、誘電特性と繊維質基材への含浸性の観点から、数平均分子量が800以上5000以下であることが好ましく、900以上4500以下であることがより好ましく、1000以上3000以下であることがさらに好ましい。 The polyphenylene ether preferably has a number average molecular weight of 800 or more and 5000 or less, more preferably 900 or more and 4500 or less, and 1000 or more and 3000 or less, from the viewpoint of dielectric properties and impregnation into a fibrous base material. It is even more preferable to have
 数平均分子量は、一般的な分子量測定方法で測定したものであればよく、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定したポリスチレン換算値等が挙げられる。具体的には、試料濃度0.2w/vol%(溶剤:クロロホルム)の測定試料を調製後、測定装置にはHLC-8220GPC(東ソー株式会社製)を用い、カラム:ShodexGPC KF-405L HQ×3(昭和電工株式会社製)、溶離液:クロロホルム、注入量:20μL、流量:0.3mL/min、カラム温度:40℃、検出器:RI、の条件下にて測定することができる。 The number average molecular weight may be measured by a general molecular weight measurement method, and examples thereof include a polystyrene equivalent value measured using gel permeation chromatography (GPC). Specifically, after preparing a measurement sample with a sample concentration of 0.2 w/vol% (solvent: chloroform), HLC-8220GPC (manufactured by Tosoh Corporation) was used as the measurement device, and column: ShodexGPC KF-405L HQ x 3. (manufactured by Showa Denko KK), eluent: chloroform, injection volume: 20 μL, flow rate: 0.3 mL/min, column temperature: 40° C., detector: RI.
 前記ポリフェニレンエーテルの合成方法は、エチレン性不飽和二重結合で変性された変性ポリフェニレンエーテルを合成できれば、特に限定されない。具体的には、変性前のポリフェニレンエーテルに、エチレン性不飽和二重結合と塩素原子を有する化合物を反応させる方法等が挙げられる。エチレン性不飽和二重結合と塩素原子を有する化合物としては、例えば、(メタ)アクリロイルクロリドやビニルベンジルクロリド等が挙げられる。また、前記ポリフェニレンエーテルは市販品を使用してもよく、例えば、製品名「OPE-2St」(三菱瓦斯化学株式会社製)、「Noryl SA9000」(SABICイノベーティブプラスチック社製)等が挙げられる。 The method for synthesizing the polyphenylene ether is not particularly limited as long as it can synthesize a modified polyphenylene ether modified with an ethylenically unsaturated double bond. Specifically, polyphenylene ether before modification is reacted with a compound having an ethylenically unsaturated double bond and a chlorine atom. Examples of compounds having an ethylenically unsaturated double bond and a chlorine atom include (meth)acryloyl chloride and vinylbenzyl chloride. Commercially available polyphenylene ethers may also be used, such as product names "OPE-2St" (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and "Noryl SA9000" (manufactured by SABIC Innovative Plastics).
<有機過酸化物>
 前記有機過酸化物は、一般式(1):
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Rは炭素数が2から8のアルキル基である。)で表されるジアルキルペルオキシド、及びt-アルキルヒドロペルオキシドである。
<Organic Peroxide>
The organic peroxide has the general formula (1):
Figure JPOXMLDOC01-appb-C000004
(In formula (1), R 1 is an alkyl group having 2 to 8 carbon atoms.) and dialkyl peroxides and t-alkyl hydroperoxides.
<ジアルキルペルオキシド>
 前記式(1)中、Rは、例えば、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、ネオペンチル基、1-シクロヘキシル-1-メチルエチル基、n-オクチル基等が挙げられ、エチル基、n-プロピル基、ネオペンチル基であることが好ましい。Rが2以上の場合、前記ジアルキルペルオキシドが熱分解した後に生成した酸素ラジカルが速やかにβ開裂することで炭素ラジカルに変換され硬化反応を開始でき、また、ポリフェニレンエーテル硬化物に導入されるラジカルは極性が低い方が誘電特性を改善することができる。一方、Rが5以下である場合、分子量が小さくなり、同一添加量におけるラジカル発生量が多くなるため、耐熱性が向上することができる。よって、Rが2~5であることが好ましい。
<Dialkyl peroxide>
In the above formula (1), R 1 is, for example, an ethyl group, n-propyl group, n-butyl group, n-pentyl group, neopentyl group, 1-cyclohexyl-1-methylethyl group, n-octyl group and the like. and preferably an ethyl group, an n-propyl group, or a neopentyl group. When R 1 is 2 or more, the oxygen radicals generated after thermal decomposition of the dialkyl peroxide undergo rapid β-cleavage to be converted into carbon radicals to initiate the curing reaction, and the radicals introduced into the polyphenylene ether cured product. A lower polarity can improve the dielectric properties. On the other hand, when R 1 is 5 or less, the molecular weight becomes small and the amount of radicals generated increases with the same addition amount, so that the heat resistance can be improved. Therefore, it is preferred that R 1 is 2-5.
 前記ジアルキルペルオキシドの具体例としては、例えば、t-アミルクミルペルオキシド、t-ヘキシルクミルペルオキシド、1,1,3,3-テトラメチルブチルクミルペルオキシド、1-シクロヘキシル-1-メチルエチルクミルペルオキシド等が挙げられ、t-アミルクミルペルオキシド、t-ヘキシルクミルペルオキシド、1,1,3,3-テトラメチルブチルクミルペルオキシドが好ましい。また1,1,3,3-テトラメチルブチルクミルペルオキシドが特に好ましい。 Specific examples of the dialkyl peroxides include t-amyl peroxide, t-hexyl methyl peroxide, 1,1,3,3-tetramethylbutyl cumyl peroxide, 1-cyclohexyl-1-methylethyl cumyl Peroxides, etc., and t-amyl cumyl peroxide, t-hexyl cumyl peroxide, and 1,1,3,3-tetramethylbutyl cumyl peroxide are preferred. 1,1,3,3-Tetramethylbutylcumyl peroxide is particularly preferred.
 前記ジアルキルペルオキシドは、前記ポリフェニレンエーテル100質量部に対して0.1質量部から5質量部であることが好ましく、0.2質量部から3質量部であることがより好ましい。さらに好ましくは0.5質量部から2質量部である。 The dialkyl peroxide is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, per 100 parts by mass of the polyphenylene ether. More preferably, it is 0.5 to 2 parts by mass.
 前記ジアルキルペルオキシド化合物の製造方法は、何ら限定されるものではないが、例えば、一般式(3):
Figure JPOXMLDOC01-appb-C000005
(式(3)中、Rは炭素数が2から8のアルキル基である。)で表されるt-アルキルヒドロペルオキシドと、一般式(4):
Figure JPOXMLDOC01-appb-C000006
で表されるα-メチルスチレンを反応させる工程(以下、工程(A)とも称す)を含む製造方法、あるいは、上記一般式(3)で表されるt-アルキルヒドロペルオキシドと、一般式(5):
Figure JPOXMLDOC01-appb-C000007
で表されるα-クミルアルコールを反応させる工程(以下、工程(B)とも称す)を含む製造方法が挙げられる。
The method for producing the dialkyl peroxide compound is not particularly limited, but for example, general formula (3):
Figure JPOXMLDOC01-appb-C000005
(In formula (3), R 1 is an alkyl group having 2 to 8 carbon atoms.) and a t-alkyl hydroperoxide represented by general formula (4):
Figure JPOXMLDOC01-appb-C000006
or a t-alkyl hydroperoxide represented by the above general formula (3) and the general formula (5 ):
Figure JPOXMLDOC01-appb-C000007
A production method including a step of reacting α-cumyl alcohol represented by (hereinafter also referred to as step (B)).
 前記工程(A)において、前記一般式(3)で表されるt-アルキルヒドロペルオキシド、前記一般式(4)で表されるα-メチルスチレン、前記一般式(5)で表されるα-クミルアルコールは、市販品を使用してもよい。 In the step (A), the t-alkyl hydroperoxide represented by the general formula (3), the α-methylstyrene represented by the general formula (4), the α- Cumyl alcohol may use a commercial item.
 前記工程(A)及び前記工程(B)において、前記一般式(3)で表されるt-アルキルヒドロペルオキシドは、前記一般式(4)で表されるα-メチルスチレン1モル、あるいは、前記一般式(5)で表されるα-クミルアルコール1モルに対して、目的物の収率性を高める観点から、1モル以上反応させることが好ましく、そして、目的物の純度向上の観点から5モル以下反応させることが好ましい。 In the step (A) and the step (B), the t-alkyl hydroperoxide represented by the general formula (3) is 1 mol of α-methylstyrene represented by the general formula (4), or With respect to 1 mol of α-cumyl alcohol represented by the general formula (5), it is preferable to react 1 mol or more from the viewpoint of increasing the yield of the target product, and from the viewpoint of improving the purity of the target product. It is preferable to react 5 mol or less.
 前記工程(A)及び前記工程(B)の反応温度は、目的物の収率性を高める観点から、0℃以上であることが好ましく、10℃以上であることがより好ましく、そして、安全性の観点から60℃以下であることが好ましく、50℃以下であることがより好ましい。 The reaction temperature in the step (A) and the step (B) is preferably 0° C. or higher, more preferably 10° C. or higher, from the viewpoint of increasing the yield of the target product. From the viewpoint of, the temperature is preferably 60° C. or lower, more preferably 50° C. or lower.
 前記工程(A)及び前記工程(B)の反応時間は、原料や反応温度等によって異なるので一概には決定できないが、通常、目的物の収率性を高める観点から、0.5時間以上であることが好ましく、1時間以上であることがより好ましく、そして、安全性の観点から5時間以下であることが好ましい。 The reaction time of the steps (A) and (B) varies depending on the raw materials, the reaction temperature, etc., and cannot be unconditionally determined. It is preferably 1 hour or more, and preferably 5 hours or less from the viewpoint of safety.
 前期工程(A)及び前記工程(B)において、酸触媒を用いることが好ましい。前記酸触媒は特に制限されないが、例えば、酢酸、塩酸、硫酸、過塩素酸等が挙げられる。前記酸触媒は、単独で用いてもよく2種類以上を併用してもよい。 It is preferable to use an acid catalyst in the first step (A) and the step (B). The acid catalyst is not particularly limited, and examples thereof include acetic acid, hydrochloric acid, sulfuric acid, perchloric acid and the like. The acid catalyst may be used alone or in combination of two or more.
 前記工程(A)及び前記工程(B)において、前記酸触媒の使用量は特に制限されないが、通常、原料の前記一般式(4)で表されるα-メチルスチレン1モル、あるいは、前記一般式(5)で表されるα-クミルアルコール1モルに対して目的物の収率性を高める観点から、0.02モル以上使用することが好ましく、そして安全性の観点から5モル以下使用することが好ましい。 In the steps (A) and (B), the amount of the acid catalyst to be used is not particularly limited. It is preferable to use 0.02 mol or more per 1 mol of α-cumyl alcohol represented by formula (5) from the viewpoint of increasing the yield of the target product, and from the viewpoint of safety, 5 mol or less is used. preferably.
 前記工程(A)及び前記工程(B)は、有機溶媒を用いることができる。前記有機溶媒は特に制限されないが、反応系内で不活性な有機溶媒であることが好ましい。前記有機溶媒としては、例えば、ペンタン、ヘキサン、トルエン等の非極性化合物;イソプロパノール、アセトン、アセトニトリル等の極性化合物等が挙げられる。前記有機溶媒は、単独で用いてもよく2種類以上を併用してもよい。 An organic solvent can be used in the step (A) and the step (B). Although the organic solvent is not particularly limited, it is preferably an organic solvent that is inert in the reaction system. Examples of the organic solvent include non-polar compounds such as pentane, hexane and toluene; and polar compounds such as isopropanol, acetone and acetonitrile. The organic solvent may be used alone or in combination of two or more.
 前記工程(A)及び前記工程(B)において、前記有機溶媒の使用量は特に制限されないが、通常、α-メチルスチレン、あるいは、α-クミルアルコール100質量部に対して、3~300質量部程度である。 In the step (A) and the step (B), the amount of the organic solvent used is not particularly limited, but usually 3 to 300 parts by mass with respect to 100 parts by mass of α-methylstyrene or α-cumyl alcohol. About a part.
 得られた目的物の同定は、液体クロマトグラフィー(LC)、ガスクロマトグラフィー(GC)、核磁気共鳴分光法(NMR)、赤外分光法(IR)、質量分析法(MS)等を用いて行うことができる。 Identification of the target product obtained is carried out using liquid chromatography (LC), gas chromatography (GC), nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), mass spectrometry (MS), etc. It can be carried out.
<t-アルキルヒドロペルオキシド>
 前記t-アルキルヒドロペルオキシドは、特に限定されない。t-アルキルヒドロペルオキシドが硬化剤として作用する際に、生成した酸素ラジカルは速やかにβ開裂することで炭素ラジカルに変換され硬化反応を開始する。ポリフェニレンエーテル硬化物に導入されるラジカルは極性が低い方が誘電特性を改善することができるためヒドロペルオキシドの第3級アルキル基の炭素数が5以上であることが好ましい。一方、分子量が小さくなり、同一添加量におけるラジカル発生量が多くなるため耐熱性が向上することからヒドロペルオキシドの第3級アルキル基の炭素数が8以下であることが好ましい。例えば、t-ブチルヒドロペルオキシド、t-アミルヒドロペルオキシド、t-ヘキシルヒドロペルオキシド、1,1,3,3-テトラメチルブチルヒドロペルオキシド、t-クミルヒドロペルオキシド等が挙げられ、t-アミルヒドロペルオキシド、t-ヘキシルヒドロペルオキシド、1,1,3,3-テトラメチルブチルヒドロペルオキシドが好ましい。また1,1,3,3-テトラメチルブチルヒドロペルオキシドが特に好ましい。
<t-alkyl hydroperoxide>
The t-alkyl hydroperoxide is not particularly limited. When the t-alkyl hydroperoxide acts as a curing agent, the generated oxygen radicals undergo rapid β-cleavage to be converted into carbon radicals to initiate the curing reaction. It is preferable that the number of carbon atoms in the tertiary alkyl group of the hydroperoxide is 5 or more because the radicals introduced into the polyphenylene ether cured product can improve the dielectric properties when the polarity thereof is low. On the other hand, the number of carbon atoms in the tertiary alkyl group of the hydroperoxide is preferably 8 or less, since the molecular weight becomes smaller and the amount of radicals generated increases with the same addition amount, thereby improving the heat resistance. Examples include t-butyl hydroperoxide, t-amyl hydroperoxide, t-hexyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, t-cumyl hydroperoxide and the like. , t-hexyl hydroperoxide and 1,1,3,3-tetramethylbutyl hydroperoxide are preferred. 1,1,3,3-Tetramethylbutyl hydroperoxide is particularly preferred.
 前記ジアルキルペルオキシド100質量部に対して、前記t-アルキルヒドロペルオキシドが0.02質量部以上10質量部以下である。前記ジアルキルペルオキシド100質量部に対して、熱硬化性組成物のゲル化抑制の観点から、前記t-アルキルヒドロペルオキシドが、0.05質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、そして、ポリフェニレンエーテル硬化物の耐熱性の観点から、前記t-アルキルヒドロペルオキシドが、8質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることがさらに好ましい。 The t-alkyl hydroperoxide is 0.02 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the dialkyl peroxide. With respect to 100 parts by mass of the dialkyl peroxide, from the viewpoint of suppressing gelation of the thermosetting composition, the t-alkyl hydroperoxide is preferably 0.05 parts by mass or more, and 0.1 parts by mass or more. From the viewpoint of heat resistance of the polyphenylene ether cured product, the t-alkyl hydroperoxide is preferably 8 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass Part or less is more preferable.
 本発明の熱硬化性組成物は、生産性の向上、硬化度の向上のため、本発明のジアルキルペルオキシド、及びt-アルキルヒドロペルオキシド以外の重合開始剤を、本発明の効果を損ねない範囲において併用してもよい。前記重合開始剤としては、特に限定されず、この分野で一般的に使用されているものを使用することができるが、熱硬化性組成物に可溶できる油溶性重合開始剤が好ましい。前記重合開始剤は単独で、又は2種以上を組み合わせて使用することができる。 In the thermosetting composition of the present invention, a polymerization initiator other than the dialkyl peroxide and t-alkyl hydroperoxide of the present invention is added to the extent that the effects of the present invention are not impaired in order to improve productivity and cure degree. They may be used together. The polymerization initiator is not particularly limited, and those commonly used in this field can be used, but an oil-soluble polymerization initiator that is soluble in the thermosetting composition is preferred. The polymerization initiators may be used alone or in combination of two or more.
 前記重合開始剤の具体例としては、例えば、ビス-(4-t-ブチルシクロヘキシル)ペルオキシジカーボネート等のペルオキシジカーボネート、ジベンゾイルペルオキシド等のジアシルペルオキシド、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルベンゾエート等のペルオキシエステル、t-ブチルペルオキシ2-エチルヘキシルモノカーボネート等のペルオキシモノカーボネート、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン等のペルオキシケタール、α,α’-ビス(t-ブチルペルオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキシンー3等のジアルキルペルオキシド、2,2’-アゾビス(2-メチルブチロニトリル)等のアゾ化合物、1-ヒドロキシシクロヘキシルフェニルケトン、ジフェニル-2,4,6-トリメチルベンゾイルホスフィンオキシド、1-[({1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エチリデン}アミノ)オキシ]エタノン等の光重合開始剤等が挙げられる。 Specific examples of the polymerization initiator include peroxydicarbonates such as bis-(4-t-butylcyclohexyl)peroxydicarbonate, diacyl peroxides such as dibenzoyl peroxide, and t-butylperoxy-2-ethylhexanoate. , peroxyesters such as t-butyl benzoate, peroxymonocarbonates such as t-butylperoxy 2-ethylhexylmonocarbonate, peroxyketals such as 1,1-bis(t-butylperoxy)cyclohexane, α,α'-bis(t -butylperoxy)diisopropylbenzene, dialkyl peroxides such as 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3, azo compounds such as 2,2′-azobis(2-methylbutyronitrile), 1-hydroxycyclohexyl phenyl ketone, diphenyl-2,4,6-trimethylbenzoylphosphine oxide, 1-[({1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethylidene }Amino)oxy]ethanone and other photopolymerization initiators.
<架橋剤>
 本発明の熱硬化性組成物は、耐熱性を向上させる観点から、多官能性モノマーを含んでもよい。前記多官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル等のビニルベンゼン誘導体、トリアリルイソシアヌレート(TAIC)等のアルケニルイソシアヌレート誘導体、トリアリルシアヌレート(TAC)等のアルケニルシアヌレート誘導体、4,4-ビスマレイミドジフェニルメタン、N,N-1,3-フェニレンビスマレイミド等のマレイミド誘導体、ポリブタジエン等の分子中にビニル基を2個以上有する多官能ビニル化合物等が挙げられる。これらの中でも、耐熱性が優れるためトリアリルイソシアヌレート、トリアリルシアヌレート、ポリブタジエンであることが好ましい。前記多官能モノマーは単独で、又は2種以上を組み合わせて使用することができる。
<Crosslinking agent>
The thermosetting composition of the present invention may contain a polyfunctional monomer from the viewpoint of improving heat resistance. Examples of the polyfunctional monomer include ethylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, and dipentaerythritol hexa(meth)acrylate. polyfunctional (meth)acrylates such as 1,4-divinylbenzene, vinylbenzene derivatives such as 4-vinylbenzoic acid-2-acryloylethyl ester, alkenyl isocyanurate derivatives such as triallyl isocyanurate (TAIC), triallyl cyanide Alkenyl cyanurate derivatives such as nurate (TAC), maleimide derivatives such as 4,4-bismaleimide diphenylmethane, N,N-1,3-phenylene bismaleimide, and polybutadiene having two or more vinyl groups in the molecule A vinyl compound etc. are mentioned. Among these, triallyl isocyanurate, triallyl cyanurate, and polybutadiene are preferable because of their excellent heat resistance. The polyfunctional monomers may be used alone or in combination of two or more.
 前記多官能性モノマーは、前記ポリフェニレンエーテル100質量部に対して、好ましくは5質量部から50質量部であり、より好ましくは7質量部から40質量部であり、さらに好ましくは10質量部から30質量部である。 The polyfunctional monomer is preferably 5 parts by mass to 50 parts by mass, more preferably 7 parts by mass to 40 parts by mass, still more preferably 10 parts by mass to 30 parts by mass, relative to 100 parts by mass of the polyphenylene ether. part by mass.
 本発明の熱硬化性組成物は、粘度やガラスクロスへの含浸性、硬化膜の平滑性の改良のため、更に溶剤を加えることもできる。溶剤は、上記の成分を、溶解又は分散することができるものであり、乾燥時に揮発する溶剤であれば、特に制限されるものではない。 A solvent may be further added to the thermosetting composition of the present invention in order to improve the viscosity, the ability to impregnate the glass cloth, and the smoothness of the cured film. The solvent is not particularly limited as long as it is capable of dissolving or dispersing the above components and evaporates during drying.
 前記溶剤としては、溶解性の観点から、トルエン、キシレン等の芳香族系溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶剤であることが好ましい。これらの溶剤は1種を単独で、又は2種以上を組み合わせて使用することができる。前記溶剤の使用量は、熱硬化性組成物の溶剤への可溶性と揮発工程の容易さの面から、熱硬化性組成物の固形分100質量部に対して、10から1000質量部であることが好ましく、20から500質量部であることがより好ましい。 As the solvent, from the viewpoint of solubility, aromatic solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone and cyclohexanone; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone. Solvents are preferred. These solvents can be used singly or in combination of two or more. The amount of the solvent used is 10 to 1000 parts by mass with respect to 100 parts by mass of the solid content of the thermosetting composition from the viewpoint of the solubility of the thermosetting composition in the solvent and the ease of the volatilization process. is preferred, and 20 to 500 parts by mass is more preferred.
 本発明の熱硬化性組成物は、更にその他の成分を適宜組み合わせて含有させることができる。その他の成分としては、ポリイソプレン、ポリブタジエン、スチレンブタジエン、ブチルゴム、エチレンプロピレンゴム、フッ素ゴム、シリコーンゴム等のエラストマー、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、中空シリカ、アルミナ、クレー、タルク及びガラス短繊維等の無機充填剤、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等のシランカップリング剤、難燃剤、重合禁止剤、紫外線吸収剤、光安定剤、界面活性剤、滑剤、増粘剤、消泡剤、帯電防止剤、顔料、染料等が挙げられる。 The thermosetting composition of the present invention can further contain other components in appropriate combination. Other components include elastomers such as polyisoprene, polybutadiene, styrene butadiene, butyl rubber, ethylene propylene rubber, fluororubber and silicone rubber, natural silica, fused silica, synthetic silica, amorphous silica, hollow silica, alumina, clay, talc and Inorganic fillers such as short glass fibers, silane coupling agents such as γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-(meth)acryloxypropyltrimethoxysilane, flame retardants, polymerization inhibitors agents, ultraviolet absorbers, light stabilizers, surfactants, lubricants, thickeners, antifoaming agents, antistatic agents, pigments, dyes and the like.
<樹脂フィルム>
 本発明の樹脂フィルムは、前記熱硬化性組成物から形成される。前記樹脂フィルムは、硬化前の熱硬化性組成物を含むが、熱硬化性組成物の一部が硬化していてもよい。前記樹脂フィルムは、例えば、前記熱硬化性組成物と前記溶剤との混合物である樹脂ワニスを単独で乾燥させること、又は、前記樹脂ワニスを支持フィルム等の支持体の上に塗布した後乾燥させることで得ることができる。溶剤の乾燥除去は熱風乾燥機等で、例えば、20℃から180℃で行われる。乾燥温度は20から150℃であることが好ましく、50から130℃であることがより好ましい。
<Resin film>
The resin film of the present invention is formed from the thermosetting composition. Although the resin film contains a thermosetting composition before curing, a part of the thermosetting composition may be cured. The resin film is formed, for example, by drying a resin varnish that is a mixture of the thermosetting composition and the solvent alone, or by coating the resin varnish on a support such as a support film and then drying it. can be obtained by Drying removal of the solvent is performed with a hot air dryer or the like at, for example, 20°C to 180°C. The drying temperature is preferably 20 to 150°C, more preferably 50 to 130°C.
 前記樹脂フィルムの支持体としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリカーボネート、ポリイミド、エチレンテトラフルオロエチレン共重合体、銅箔、アルミ箔等の金属箔、離型紙等が挙げられる。前記熱硬化性組成物を金属箔に塗布した後、熱風乾燥機等で溶剤を乾燥除去して得たものを樹脂付金属箔ともいう。なお、前記支持体はマッド処理、コロナ処理、離形処理等の化学的、又は物理的な処理を施してあってもよい。 Examples of the support for the resin film include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polycarbonates, polyimides, ethylenetetrafluoroethylene copolymers, copper foils, aluminum foils, and the like. metal foil, release paper, and the like. A resin-coated metal foil is obtained by applying the thermosetting composition to a metal foil and then removing the solvent by drying with a hot air dryer or the like. The support may be subjected to chemical or physical treatment such as mud treatment, corona treatment, mold release treatment and the like.
 前記樹脂フィルムは、多層プリント配線板等の積層体の層間絶縁シート、接着フィルム等として好適である。 The resin film is suitable as an interlayer insulating sheet, an adhesive film, etc. for laminates such as multilayer printed wiring boards.
<プリプレグ>
 本発明のプリプレグは、繊維質基材と、前記熱硬化性組成物との複合体である。前記プリプレグは、硬化前の熱硬化性組成物を含むが、熱硬化性組成物の一部が硬化していてもよい。前記プリプレグは、繊維質基材と、この繊維質基材に含浸又は塗布された熱硬化性組成物との複合体であることが好ましい。熱硬化性組成物が繊維質基材表面に塗布され層を形成している場合であっても、プリプレグを硬化させるためのプレス成型によって、熱硬化性組成物の硬化物が基材中に含浸された構造を得ることができる。前記プリプレグは、例えば、ガラスクロス等の基材に、本発明の熱硬化性組成物と溶剤との混合物である樹脂ワニスに含浸又は塗布した後、溶剤を乾燥除去することにより得ることができる。また、含浸又は塗布を複数回繰り返すことも可能である。更に、濃度や組成の異なる複数の熱硬化性組成物を用いて含浸又は塗布を繰り返すことにより、採取的に希望する含浸量に調整することもできる。溶剤の乾燥除去は熱風乾燥機等で、例えば、20℃から180℃で行われる。乾燥温度は20から150℃であることが好ましく、50から130℃であることがより好ましい。
<Prepreg>
The prepreg of the present invention is a composite of a fibrous base material and the thermosetting composition. Although the prepreg contains a thermosetting composition before curing, a part of the thermosetting composition may be cured. The prepreg is preferably a composite of a fibrous base material and a thermosetting composition impregnated or applied to the fibrous base material. Even when the thermosetting composition is applied to the surface of the fibrous base material to form a layer, the base material is impregnated with the cured thermosetting composition by press molding for curing the prepreg. structure can be obtained. The prepreg can be obtained, for example, by impregnating or applying a resin varnish, which is a mixture of the thermosetting composition of the present invention and a solvent, onto a substrate such as glass cloth, and then removing the solvent by drying. It is also possible to repeat the impregnation or application multiple times. Furthermore, by repeating the impregnation or application using a plurality of thermosetting compositions having different concentrations and compositions, it is possible to adjust the impregnation amount to a desired one. Drying removal of the solvent is performed with a hot air dryer or the like at, for example, 20°C to 180°C. The drying temperature is preferably 20 to 150°C, more preferably 50 to 130°C.
 前記繊維質基材としては、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、パルプ紙、及びリンター紙等が挙げられる。これらの中で、プリント配線板の機械強度が優れるため、ガラスクロスが好ましく、偏平処理加工されたガラスクロスが更に好ましい。これらの繊維質基材は1種を単独で、又は2種以上を組み合わせて使用することができる。なお、繊維質基材の厚さとしては、例えば1から300μmのものを使用することができる。 Examples of the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, pulp paper, and linter paper. Among these, glass cloth is preferable, and flattened glass cloth is more preferable, because the mechanical strength of the printed wiring board is excellent. These fibrous base materials can be used individually by 1 type or in combination of 2 or more types. As for the thickness of the fibrous base material, for example, one having a thickness of 1 to 300 μm can be used.
 前記プリプレグの固形分中、前記熱硬化性組成物の固形分の割合は、30~80質量%であることが好ましく、40~70質量%であることがより好ましい。上記の割合が30質量%よりも少ない場合、プリプレグを電子基板用等に用いた場合に絶縁信頼性が劣る傾向にある。また、上記の割合が80質量%よりも多い場合、電子基板用等に用いた場合に曲げ弾性率等の機械特性が劣る傾向にある。 The solid content of the thermosetting composition in the solid content of the prepreg is preferably 30 to 80% by mass, more preferably 40 to 70% by mass. If the above ratio is less than 30% by mass, insulation reliability tends to be poor when the prepreg is used for electronic substrates and the like. On the other hand, if the above proportion is more than 80% by mass, mechanical properties such as bending elastic modulus tend to deteriorate when used for electronic substrates and the like.
<金属張積層板>
 本発明の金属張積層板は、前記樹脂フィルム又は前記プリプレグと、金属箔とが積層された積層体である。前記積層体は、1枚又は複数枚の前記樹脂フィルム及び/又はプリプレグを、金属箔等の基板と重ねた後、プレス成型により前記熱硬化性組成物を硬化させ、絶縁層を形成することにより製造することができる。金属箔の替わりに前記樹脂付金属箔を用いることも可能である。加熱成形は、例えば、温度180℃から240℃、加熱時間30分から300分、面圧20kgf/cmから40kgf/cmで行うことができる。
<Metal clad laminate>
The metal-clad laminate of the present invention is a laminate in which the resin film or the prepreg and metal foil are laminated. The laminate is produced by stacking one or more of the resin films and/or prepregs on a substrate such as a metal foil and then curing the thermosetting composition by press molding to form an insulating layer. can be manufactured. It is also possible to use the resin-coated metal foil instead of the metal foil. Heat molding can be performed, for example, at a temperature of 180° C. to 240° C., a heating time of 30 minutes to 300 minutes, and a surface pressure of 20 kgf/cm 2 to 40 kgf/cm 2 .
 前記金属箔は特に限定はないが、例えば、アルミや銅箔等が挙げられ、中でも銅箔は電気抵抗が低いため好ましい。金属箔の厚さとしては、例えば1から50μmのものを使用することができる。 Although the metal foil is not particularly limited, examples thereof include aluminum and copper foil, among which copper foil is preferable because of its low electrical resistance. A metal foil having a thickness of, for example, 1 to 50 μm can be used.
 前記金属箔と組み合わせる樹脂フィルム及びプリプレグは1枚でも複数枚でもよく、用途に応じて片面又は両面に金属箔を重ねて積層板に加工する。金属張積層板は、特にプリント配線板として好適である。 The resin film and prepreg to be combined with the metal foil may be one sheet or a plurality of sheets, and depending on the application, the metal foil is laminated on one side or both sides and processed into a laminate. A metal-clad laminate is particularly suitable as a printed wiring board.
<プリント配線板>
 本発明のプリント配線板は、前記金属張積層板の表面の金属箔をエッチング加工等により部分的に除去し、配線を形成することにより、樹脂フィルム、またはプリプレグの表面に回路を形成させることにより得られる。前記プリント配線板は、前記熱硬化性組成物を含むことにより、誘電率や誘電正接等の誘電特性、成形性、耐熱性に優れる。
<Printed wiring board>
The printed wiring board of the present invention is obtained by partially removing the metal foil on the surface of the metal-clad laminate by etching or the like, forming wiring, and forming a circuit on the surface of the resin film or prepreg. can get. By containing the thermosetting composition, the printed wiring board is excellent in dielectric properties such as dielectric constant and dielectric loss tangent, moldability, and heat resistance.
 上記のほか、前記熱硬化性組成物は、成形、積層、接着剤、銅張積層板等の複合材料等の用途に用いられる。特に、イソシアネート体あるいはエポキシ体を単独もしくは組み合わせ用いた場合、樹脂を半硬化させたプリプレグ、このプリプレグを硬化させた積層板の利用例が代表的に挙げられる。また、エポキシ体を用いた場合、半導体封止材への利用例が代表的に挙げられる。 In addition to the above, the thermosetting composition is used for applications such as molding, lamination, adhesives, and composite materials such as copper-clad laminates. In particular, when an isocyanate compound or an epoxy compound is used alone or in combination, prepregs obtained by semi-curing resins and laminates obtained by curing these prepregs are typically used. Moreover, when an epoxy body is used, a typical example of its use is for a semiconductor encapsulant.
 以下、実施例により、本発明を具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited by the following examples.
<ジアルキルペルオキシドの合成>
<製造例1>
 500mL丸底フラスコに、α―メチルスチレン(純度99.2%、42.54g、0.36mol)、イソプロパノール(17.02g)、HCl(純度35.0%、24.94g、0.68mol)を添加・攪拌させた。上記溶液を35℃まで昇温し1,1,3,3-テトラメチルブチルヒドロペルオキシド(純度90.0%、32.17g、0.40mol)を滴下した。滴下終了後1.5時間攪拌し、得られた溶液を3%NaOH水溶液で洗浄したのちに水で洗浄した。その後、硫酸ナトリウムと硫酸マグネシウムを用いて脱水し、上記一般式(1)Rがネオペンチル基で表される1,1,3,3-テトラメチルブチルクミルペルオキシドを含む混合物を得た。続いて、真空ポンプを用いて50℃/1時間脱溶媒し、1,1,3,3-テトラメチルブチルクミルペルオキシド(79.3g、純度90.3%、収率92.3%)を得た。
<Synthesis of Dialkyl Peroxide>
<Production Example 1>
α-Methylstyrene (99.2% purity, 42.54 g, 0.36 mol), isopropanol (17.02 g), HCl (35.0% purity, 24.94 g, 0.68 mol) were added to a 500 mL round bottom flask. Add and stir. The above solution was heated to 35° C. and 1,1,3,3-tetramethylbutyl hydroperoxide (purity 90.0%, 32.17 g, 0.40 mol) was added dropwise. After the dropwise addition was completed, the mixture was stirred for 1.5 hours, and the obtained solution was washed with a 3% NaOH aqueous solution and then with water. Thereafter, dehydration was performed using sodium sulfate and magnesium sulfate to obtain a mixture containing 1,1,3,3-tetramethylbutylcumyl peroxide in which R 1 of the general formula (1) is represented by a neopentyl group. Subsequently, the solvent was removed using a vacuum pump at 50° C./1 hour to give 1,1,3,3-tetramethylbutylcumyl peroxide (79.3 g, purity 90.3%, yield 92.3%). Obtained.
 なお、上記のジアルキルペルオキシドの構造は、AVANCEN NMRスペクトルメーター(BRUCKER社製)を用いたH-NMR測定、13C-NMR測定及びTOFMS(日本電子株式会社製)にて同定した。また純度はGC(島津製作所製GC-2014シリーズ)において単純面積法から算出した。 The structure of the above dialkyl peroxide was identified by 1 H-NMR measurement, 13 C-NMR measurement and TOFMS (manufactured by JEOL Ltd.) using an AVANCEN NMR spectrometer (manufactured by BRUCKER). Purity was calculated by a simple area method in GC (GC-2014 series manufactured by Shimadzu Corporation).
 H-NMR(CDCl,内部標準TMS);δ (ppm):0.91(9H,m, -O-C(CHCH(CH )、1.30(6H,s, -O-O-C(CH CHC(CH)、1.50(2H,m, -O-C(CH CH C(CH)、1.57(6H,s,C-C(CH -O-)、7.20-7.29(1H,m,arom.H)、7.29-7.32(2H,m,arom.H)、7.44-7.47(2H,m,arom.H)
 分子量:264
1 H - NMR ( CDCl 3 , internal standard TMS) ; , s, -O-O- C (CH3 ) 2CH2C ( CH3 ) 3 ), 1.50(2H,m, -O- C ( CH3 ) 2CH2C ( CH3 ) 3 ) , 1.57 (6H, s, C 5 H 6 —C (CH 3 ) 2 —O—), 7.20-7.29 (1H, m, arom.H), 7.29-7.32 ( 2H, m, arom.H), 7.44-7.47 (2H, m, arom.H)
Molecular weight: 264
<製造例2>
 製造例1の1,1,3,3-テトラメチルブチルヒドロペルオキシドをt-ヘキシルヒドロペルオキシドに変更した以外同様である。t-ヘキシルクミルペルオキシド(63.1g、純度94.3%、収率69.9%)を得た。
<Production Example 2>
The procedure is the same except that 1,1,3,3-tetramethylbutyl hydroperoxide in Production Example 1 is changed to t-hexyl hydroperoxide. t-Hexylyl peroxide (63.1 g, 94.3% purity, 69.9% yield) was obtained.
 H-NMR(CDCl,内部標準TMS);δ(ppm):0.84-0.94(3H,t, -O-C(CHCHCH CH )、1.18(6H,s, -O-C(CH CHCHCH)、1.26-1.36(2H,m, -O-C(CHCH CH CH)、1.46-1.59(8H,m, -C(CH -O-O-C(CH CH CHCH)、7.20-7.25(1H,m,arom.H)、7.29-7.37(2H,m,arom.H)、7.42-7.47(2H,m,arom.H)
 分子量:236
1 H-NMR (CDCl 3 , internal standard TMS); δ (ppm): 0.84-0.94 (3H, t, —O—C(CH 3 ) 2 CH 2 CH 2 CH 3 ), 1.18 (6H , s , -OC (CH3 ) 2CH2CH2CH3 ) , 1.26-1.36 ( 2H , m, -OC( CH3 ) 2CH2CH2CH3 ) , 1.46-1.59 (8H, m, —C( CH 3 ) 2 —O—O—C(CH 3 ) 2 CH 2 CH 2 CH 3 ), 7.20-7.25 (1 H, m , arom.H), 7.29-7.37 (2H, m, arom.H), 7.42-7.47 (2H, m, arom.H)
Molecular weight: 236
<製造例3>
 製造例1の1,1,3,3-テトラメチルブチルヒドロペルオキシドをt-アミルヒドロペルオキシドに変更した以外同様である。t-アミルクミルペルオキシド(64.2g、純度89.0%、収率89.4%)を得た。
<Production Example 3>
The procedure is the same except that 1,1,3,3-tetramethylbutyl hydroperoxide in Production Example 1 is changed to t-amyl hydroperoxide. 64.2 g of t-amylmyl peroxide (89.0% purity, 89.4% yield) were obtained.
 H-NMR(CDCl,内部標準TMS);δ(ppm):0.85-0.95(3H,t, -O-C(CHCH CH )、1.50(6H,s, -O-C(CH CHCH)、1.46-1.55(6H,m, -C(CH -O-O-C(CH CH CH)、7.20-7.26(1H,m,arom.H)、7.30-7.36(2H,m,arom.H)、7.41-7.47(2H,m,arom.H)
 分子量:224
1 H - NMR ( CDCl 3 , internal standard TMS) ; ,s, -O - C (CH3 ) 2CH2CH3 ) , 1.46-1.55 ( 6H,m,-C ( CH3 ) 2 - O-O-C( CH3 ) 2CH2 CH 3 ), 7.20-7.26 (1H, m, arom.H), 7.30-7.36 (2H, m, arom.H), 7.41-7.47 (2H, m, arom.H) arom.H)
Molecular weight: 224
<実施例1~10、比較例1~6>
<流動性の評価>
 表1または表2に示す各成分(質量部)をトルエンで希釈して濃度が50質量%になるように配合した組成物のトルエン溶解物3.5gを6mlスクリュー管瓶に入れ、60℃の恒温槽に静置した。逆さにした際に全く組成物が動かなくなる時間をゲル化時間とし、以下の基準で評価した。
 ◎:300時間以上ゲル化しなかった。
 〇:190時間以上300時間未満でゲル化した。
 ×:190時間未満でゲル化した。
<Examples 1 to 10, Comparative Examples 1 to 6>
<Evaluation of liquidity>
3.5 g of a toluene solution of a composition obtained by diluting each component (parts by mass) shown in Table 1 or Table 2 with toluene and blending the concentration to 50% by mass was placed in a 6 ml screw tube bottle and heated to 60 ° C. It was placed in a constant temperature bath. The gelation time was defined as the time when the composition did not move at all when turned upside down, and was evaluated according to the following criteria.
A: It did not gel for 300 hours or longer.
Good: gelled in 190 hours or more and less than 300 hours.
x: Gelled in less than 190 hours.
<硬化物の製造および誘電特性の評価>
 表1または表2に示す各成分(質量部)をトルエンで希釈して濃度が50質量%になるように配合した組成物のトルエン溶解物6gをアルミ皿に入れ、真空乾燥機(EYELA VACUUM OVEN VOS-3LSD)を用いて400Pa、60℃にて2時間乾燥後、さらに80℃にて2時間溶剤乾燥を行った。得られた粉体をハンドプレス(東洋精機社製)を用いて130℃で成形、200℃で硬化し、硬化物(フィルム、16cmの円形、厚み60μm)を得た。得られた硬化物の1GHzでの誘電率及び誘電正接を、IPC-TM-650-2.5.5.9に準拠の方法で測定し、以下の基準で評価した。
 ◎:誘電率(Dk)が2.85未満であり、誘電正接(Df)が0.0039未満である。
 〇:誘電率(Dk)が2.85以上3.06以下であり、誘電正接(Df)が0.0039以上0.005以下である。
 ×:誘電率(Dk)及び誘電正接(Df)が上記の◎又は〇以外である。
<Production of cured product and evaluation of dielectric properties>
Each component (parts by mass) shown in Table 1 or Table 2 was diluted with toluene to obtain a concentration of 50% by mass. After drying at 400 Pa and 60° C. for 2 hours using VOS-3LSD), solvent drying was further performed at 80° C. for 2 hours. The obtained powder was molded at 130° C. using a hand press (manufactured by Toyo Seiki Co., Ltd.) and cured at 200° C. to obtain a cured product (film, 16 cm circle, thickness 60 μm). The dielectric constant and dielectric loss tangent at 1 GHz of the obtained cured product were measured by a method based on IPC-TM-650-2.5.5.9 and evaluated according to the following criteria.
A: Dielectric constant (Dk) is less than 2.85 and dielectric loss tangent (Df) is less than 0.0039.
○: Dielectric constant (Dk) is 2.85 or more and 3.06 or less, and dielectric loss tangent (Df) is 0.0039 or more and 0.005 or less.
x: Dielectric constant (Dk) and dielectric loss tangent (Df) are other than the above ⊚ or ◯.
<耐熱性の評価>
 上記硬化物のガラス転移温度を、DSC測定方法により、IPC-TM-650-2.4.25に基づいて、昇温スピード10℃/分の条件で測定し、以下の基準で評価した。
 ◎:ガラス転移温度(℃)が175以上である。
 〇:ガラス転移温度(℃)が165以上である。
 ×:ガラス転移温度(℃)が165未満である。
<Evaluation of heat resistance>
The glass transition temperature of the above cured product was measured by the DSC measurement method based on IPC-TM-650-2.4.25 at a heating rate of 10° C./min and evaluated according to the following criteria.
A: The glass transition temperature (°C) is 175 or higher.
Good: The glass transition temperature (°C) is 165 or higher.
x: The glass transition temperature (°C) is less than 165.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1及び2中、OPE-2St 2200は、分子末端に平均2個のエチレン性不飽和二重結合を有するポリフェニレンエーテル(数平均分子量が2200)、三菱ガス化学株式会社製);
 OPE-2St 1200は、分子末端に平均2個のエチレン性不飽和二重結合を有するポリフェニレンエーテル(数平均分子量が1200)、三菱ガス化学株式会社製);
 SA9000は、分子末端に平均2個のエチレン性不飽和二重結合を有するポリフェニレンエーテル(数平均分子量が2756)、SABICイノベーティブプラスチック社製);
 1,1,3,3-テトラメチルブチルクミルペルオキシドは、製造例1(純度90.8%);
 t-ヘキシルクミルペルオキシドは、製造例2(純度94.3%);
 t-アミルクミルペルオキシド(製造例3、純度89.0%);
 ジ-(2-t-ブチルペルオキシイソプロピル)ベンゼンは、日油株式会社製(純度99.9%)
 t-ブチルクミルペルオキシドは、日油株式会社製(純度90.2%);
 1,1,3,3-テトラメチルブチルヒドロペルオキシドは、日油株式会社製(純度90.3%);
 t-ヘキシルヒドロペルオキシドは、日油株式会社製(純度85.2%);
 t-アミルヒドロペルオキシドは、United Initiators製(純度84.8%);
 t-ブチルヒドロペルオキシドは、日油株式会社製(純度68.9%);
 1,4-ヒドロキノンは、東京化成工業株式会社製(純度99.9%);
 TAIC(Triallyl Isocyanurate)は、東京化成工業株式会社製(純度96.0%);
 1,4-ジビニルベンゼンは、東京化成工業株式会社製(純度98.0%)を示す。
In Tables 1 and 2, OPE-2St 2200 is a polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular ends (number average molecular weight of 2200), manufactured by Mitsubishi Gas Chemical Company);
OPE-2St 1200 is a polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular ends (number average molecular weight of 1200), manufactured by Mitsubishi Gas Chemical Company, Inc.);
SA9000 is a polyphenylene ether having an average of 2 ethylenically unsaturated double bonds at the molecular end (number average molecular weight of 2756), manufactured by SABIC Innovative Plastics);
1,1,3,3-Tetramethylbutylcumyl peroxide is produced in Production Example 1 (purity 90.8%);
t-hexylyl peroxide is produced in Production Example 2 (purity 94.3%);
t-Amilyl peroxide (Production Example 3, purity 89.0%);
Di-(2-t-butylperoxyisopropyl)benzene is manufactured by NOF Corporation (purity 99.9%).
t-butyl cumyl peroxide is manufactured by NOF Corporation (purity 90.2%);
1,1,3,3-tetramethylbutyl hydroperoxide is manufactured by NOF Corporation (purity 90.3%);
t-hexyl hydroperoxide is manufactured by NOF Corporation (purity 85.2%);
t-amyl hydroperoxide was from United Initiators (84.8% purity);
t-butyl hydroperoxide is manufactured by NOF Corporation (purity 68.9%);
1,4-hydroquinone is manufactured by Tokyo Chemical Industry Co., Ltd. (purity 99.9%);
TAIC (Triallyl Isocyanurate) is manufactured by Tokyo Chemical Industry Co., Ltd. (96.0% purity);
1,4-divinylbenzene is manufactured by Tokyo Chemical Industry Co., Ltd. (98.0% purity).
 実施例1~10では熱硬化性組成物の流動性を保持でき、優れた物性を示すポリフェニレンエーテル硬化物を得ることができた。 In Examples 1 to 10, the fluidity of the thermosetting composition could be maintained, and a cured polyphenylene ether exhibiting excellent physical properties could be obtained.
 比較例1ではジアルキルペルオキシドを添加せず試験したところ、ポリフェニレンエーテル硬化物の耐熱性が発現しなかった。 In Comparative Example 1, when the test was performed without adding dialkyl peroxide, the heat resistance of the cured polyphenylene ether did not develop.
 比較例2、3ではそれぞれジ-(2-t-ブチルペルオキシイソプロピル)ベンゼン、t-ブチルクミルペルオキシドを使用したところ、ポリフェニレンエーテル硬化物の耐熱性は高いが誘電特性は低く、また短時間で熱硬化性組成物の流動性が失われた。 In Comparative Examples 2 and 3, di-(2-t-butylperoxyisopropyl)benzene and t-butylcumyl peroxide were used, respectively. The thermosetting composition lost its fluidity.
 比較例4ではt-アルキルヒドロペルオキシドをジアルキルペルオキシドに対して10質量部より多く添加したところ、熱硬化性組成物のゲル化は抑制できたが、ポリフェニレンエーテル硬化物の耐熱性及び誘電特性の面で優れなかった。 In Comparative Example 4, when more than 10 parts by mass of t-alkyl hydroperoxide was added to the dialkyl peroxide, gelation of the thermosetting composition could be suppressed, but the heat resistance and dielectric properties of the polyphenylene ether cured product were improved. was not good at
 比較例5ではt-アルキルヒドロペルオキシドをジアルキルペルオキシドに対して0.02質量部より少なく添加したところ、ポリフェニレンエーテル硬化物の耐熱性及び誘電特性の面では優れたが熱硬化性組成物の流動性が失われた。 In Comparative Example 5, when less than 0.02 parts by mass of the t-alkyl hydroperoxide was added to the dialkyl peroxide, the heat resistance and dielectric properties of the cured polyphenylene ether were excellent, but the fluidity of the thermosetting composition was excellent. was lost.
 比較例6では、t-アルキルヒドロペルオキシドの替わりに、ラジカルトラップ剤として機能する1,4-ベンゾキノンを熱硬化性組成物に添加したところ、ゲル化は抑制できたが物性が向上しなかった。
 
In Comparative Example 6, when 1,4-benzoquinone, which functions as a radical trapping agent, was added to the thermosetting composition instead of the t-alkyl hydroperoxide, gelation could be suppressed, but physical properties were not improved.

Claims (7)

  1.  ポリフェニレンエーテル、及び有機過酸化物を含有する熱硬化性組成物であって、
     前記ポリフェニレンエーテルが、分子末端にエチレン性不飽和二重結合を有し、
     前記有機過酸化物は、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは炭素数が2から8のアルキル基である。)で表されるジアルキルペルオキシド、及び
     t-アルキルヒドロペルオキシドであり、
     前記ジアルキルペルオキシド100質量部に対して、前記t-アルキルヒドロペルオキシドが0.02質量部以上10質量部以下であることを特徴とする熱硬化性組成物。
    A thermosetting composition containing a polyphenylene ether and an organic peroxide,
    The polyphenylene ether has an ethylenically unsaturated double bond at the molecular end,
    The organic peroxide has the general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 is an alkyl group having 2 to 8 carbon atoms) and a dialkyl peroxide and a t-alkyl hydroperoxide,
    A thermosetting composition, wherein the t-alkylhydroperoxide is 0.02 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the dialkyl peroxide.
  2.  多官能性モノマーを含むことを特徴とする請求項1に記載の熱硬化性組成物。 The thermosetting composition according to claim 1, characterized by containing a polyfunctional monomer.
  3.  前記エチレン性不飽和二重結合が、(メタ)アクリロイル基及びビニルベンジル基からなる群より選ばれる1種以上であることを特徴とする請求項1又は2に記載の熱硬化性組成物。 The thermosetting composition according to claim 1 or 2, wherein the ethylenically unsaturated double bond is one or more selected from the group consisting of (meth)acryloyl groups and vinylbenzyl groups.
  4.  請求項1~3のいずれかに記載の熱硬化性組成物から形成されることを特徴とする樹脂フィルム。 A resin film characterized by being formed from the thermosetting composition according to any one of claims 1 to 3.
  5.  請求項1~3のいずれかに記載の熱硬化性組成物を、繊維質基材に含浸又は塗布されたことを特徴とするプリプレグ。 A prepreg characterized by impregnating or coating a fibrous base material with the thermosetting composition according to any one of claims 1 to 3.
  6.  請求項4に記載の樹脂フィルム又は請求項5に記載のプリプレグと、金属箔とが積層されたことを特徴とする金属張積層板。 A metal-clad laminate, wherein the resin film according to claim 4 or the prepreg according to claim 5 is laminated with a metal foil.
  7.  請求項6に記載の金属張積層板から、前記金属箔の一部が除去されていることを特徴とするプリント配線板。
     
    A printed wiring board, wherein a part of the metal foil is removed from the metal-clad laminate according to claim 6 .
PCT/JP2022/034019 2021-09-14 2022-09-12 Thermosetting composition, resin film, prepreg, metal-clad laminate, and printed wiring board WO2023042780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280029049.2A CN117242108A (en) 2021-09-14 2022-09-12 Thermosetting composition, resin film, prepreg, metal foil-clad laminate, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-149023 2021-09-14
JP2021149023 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023042780A1 true WO2023042780A1 (en) 2023-03-23

Family

ID=85602865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034019 WO2023042780A1 (en) 2021-09-14 2022-09-12 Thermosetting composition, resin film, prepreg, metal-clad laminate, and printed wiring board

Country Status (3)

Country Link
CN (1) CN117242108A (en)
TW (1) TW202323434A (en)
WO (1) WO2023042780A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117362979A (en) * 2023-10-31 2024-01-09 创合新材料科技江苏有限公司 Halogen-free flame-retardant PPO composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067738A (en) * 1996-07-12 1998-03-10 Hercules Inc Peroxide
JP2003221409A (en) * 2002-01-30 2003-08-05 Kayaku Akzo Corp Production method for acrylic resin
JP2019172725A (en) * 2018-03-27 2019-10-10 旭化成株式会社 Resin composition, prepreg, metal-clad laminate, and printed wiring board
CN112724640A (en) * 2020-12-25 2021-04-30 广东生益科技股份有限公司 Thermosetting resin composition, prepreg using same and copper-clad laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067738A (en) * 1996-07-12 1998-03-10 Hercules Inc Peroxide
JP2003221409A (en) * 2002-01-30 2003-08-05 Kayaku Akzo Corp Production method for acrylic resin
JP2019172725A (en) * 2018-03-27 2019-10-10 旭化成株式会社 Resin composition, prepreg, metal-clad laminate, and printed wiring board
CN112724640A (en) * 2020-12-25 2021-04-30 广东生益科技股份有限公司 Thermosetting resin composition, prepreg using same and copper-clad laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117362979A (en) * 2023-10-31 2024-01-09 创合新材料科技江苏有限公司 Halogen-free flame-retardant PPO composite material and preparation method thereof

Also Published As

Publication number Publication date
CN117242108A (en) 2023-12-15
TW202323434A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US9199434B2 (en) Resin composition, prepreg and their uses
EP2133384B1 (en) Bismaleamic acid, bismaleimide and cured product thereof
US9062145B2 (en) Curable resin composition, curable film and their cured products
JP6514405B2 (en) Polyphenylene ether resin composition, prepreg containing the same, laminate, and printed circuit board
JP6981007B2 (en) Resin composition, resin sheet and printed wiring board
CN112313265B (en) Resin composition and use thereof
JP6457187B2 (en) Vinyl benzyl ether resin, production method thereof, curable resin composition containing the same, and cured product
CN108884302B (en) Thermosetting resin composition, prepreg, and cured product thereof
JP7203386B2 (en) Polyphenylene ether resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same
JP6833723B2 (en) Soluble polyfunctional vinyl aromatic copolymer, its production method and curable composition
CN113490715A (en) Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
WO2023042780A1 (en) Thermosetting composition, resin film, prepreg, metal-clad laminate, and printed wiring board
TW201410645A (en) Aromatic vinylbenzylether compound a curable composition containing the same and application thereof
WO2021241255A1 (en) Polyfunctional vinyl resin and method for producing same
CN117836346A (en) Allyl ether compound, resin composition, and cured product thereof
KR20240067051A (en) Thermosetting compositions, resin films, prepregs, metal-clad laminates, and printed wiring boards
WO2024101271A1 (en) Thermosetting composition, resin film, prepreg, metal-clad laminate, and printed wiring board
WO2024070840A1 (en) Alkyl silyl peroxide, heat-curable composition, resin film, prepreg, metal laminate, and printed wiring board
US20210054197A1 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
TW202413532A (en) Alkyl silyl peroxide, thermosetting composition, resin film, prepreg, metal laminate and printed wiring board
JP7397227B1 (en) Phosphorus compounds, their synthesis methods and their uses
WO2024018918A1 (en) Polyfunctional vinyl resin, production method therefor, composition of polyfunctional vinyl resin, and cured object therefrom
JP7397226B1 (en) Flame retardants and their uses
WO2022009977A1 (en) Resin composition, prepreg, resin-equipped metal foil, resin-equipped film, metal-clad laminated sheet, wiring substrate, and method for producing modified poly(phenylene ether)
JP2023104784A (en) 5-membered fused-ring compound and method for producing the same, curable composition, cured product, prepreg, circuit board, build-up film, semiconductor sealant and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548453

Country of ref document: JP