WO2023042666A1 - Composite base material and method for producing same - Google Patents

Composite base material and method for producing same Download PDF

Info

Publication number
WO2023042666A1
WO2023042666A1 PCT/JP2022/032888 JP2022032888W WO2023042666A1 WO 2023042666 A1 WO2023042666 A1 WO 2023042666A1 JP 2022032888 W JP2022032888 W JP 2022032888W WO 2023042666 A1 WO2023042666 A1 WO 2023042666A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
base material
substrate
composite
formula
Prior art date
Application number
PCT/JP2022/032888
Other languages
French (fr)
Japanese (ja)
Inventor
瑞木 山本
雅彦 箕田
仁 本柳
Original Assignee
日東電工株式会社
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 国立大学法人京都工芸繊維大学 filed Critical 日東電工株式会社
Priority to JP2023548398A priority Critical patent/JPWO2023042666A1/ja
Publication of WO2023042666A1 publication Critical patent/WO2023042666A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention relates to a composite base material and a manufacturing method thereof.
  • Polymer chains can be introduced, for example, by generating radicals on the surface of the base material and polymerizing the monomer group with the radicals. Radicals can be generated, for example, by irradiating the surface of the substrate with energy rays such as ultraviolet rays, electron rays, gamma rays, or plasma.
  • Patent Document 1 discloses a method of introducing polymer chains onto the surface of a substrate without using energy rays or plasma. Specifically, Patent Document 1 discloses that a base layer to which a polymerization initiator is fixed is formed on the surface of a base material, and a polymer film is produced by polymerizing a monomer starting from the polymerization initiator. disclosed. Patent Document 1 discloses only a polydopamine film as an underlayer.
  • an object of the present invention is to provide a new composite base material having a base layer containing a specific polymer.
  • the present invention a substrate; a base layer covering the surface of the base material and containing a polymer having a structural unit derived from catecholamines represented by the following formula (1); with A composite base material is provided, wherein at least one of (a) the underlayer includes a polymerization initiating group, and (b) the underlayer is bound to a polymer chain.
  • R 1 to R 4 are each independently a hydrogen atom (excluding the case where both R 1 and R 2 are hydrogen atoms) or any substituent; Z is represented by the following formula (2) or (3).
  • X - is any anion
  • R 5 is a hydrogen atom or an arbitrary substituent.
  • a method for manufacturing the above composite base material comprising the step (I) of forming the underlayer containing the polymerization initiation group so as to cover the surface of the substrate.
  • FIG. 1 is a schematic cross-sectional view of a composite substrate according to one embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of a composite substrate according to one embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view of a composite base material according to a modified example of the present invention
  • FIG. 4 is a schematic cross-sectional view of a composite base material according to a modified example of the present invention
  • the composite substrate according to the first aspect of the present invention is a substrate; a base layer covering the surface of the base material and containing a polymer having a structural unit derived from catecholamines represented by the following formula (1); with At least one of (a) the underlying layer includes a polymerization initiation group and (b) the underlying layer is bound to a polymer chain is established.
  • R 1 to R 4 are each independently a hydrogen atom (excluding the case where both R 1 and R 2 are hydrogen atoms) or any substituent; Z is represented by the following formula (2) or (3).
  • X - is any anion,
  • R 5 is a hydrogen atom or an arbitrary substituent.
  • the polymer contains the polymerization initiation group, and (b1) the polymer is bonded to the polymer chain. At least one of is established.
  • the optional substituents in R 1 and R 2 are hydroxyl group, carboxyl group or halogen group.
  • R 1 is a hydroxyl group and R 2 is a hydrogen atom.
  • Z is represented by the following formula (4).
  • R 6 is a divalent hydrocarbon group which may have a substituent
  • A is the polymerization initiation group.
  • the polymerization initiation group is at least one selected from the group consisting of halogen groups and nitroxide groups. .
  • the polymer chain contains a structural unit derived from a radically polymerizable monomer.
  • the base material contains a hydrophobic resin.
  • the base material contains a fluororesin.
  • the base material contains polytetrafluoroethylene.
  • the substrate has a plurality of pores.
  • the underlayer comprises a first layer in direct contact with the surface of the base material; a second layer covering the first layer; At least one of (a2) the second layer includes a polymerization initiation group, and (b2) the second layer is bound to a polymer chain is established.
  • the method for producing a composite substrate according to the thirteenth aspect of the present invention comprises: A method for manufacturing a composite substrate according to any one of the first to twelfth aspects, comprising: The manufacturing method is A step (I) of forming the underlayer containing the polymerization initiation group so as to cover the surface of the base material.
  • the step (I) includes: a step (i) of contacting the surface with a solution containing the catecholamines; a step (ii) of allowing the polymerization reaction of the catecholamines to proceed; including.
  • the catecholamines contain the polymerization initiation group.
  • the step (i) includes a step (ia) of contacting the surface with a liquid comprising water; a step (ib) of adding the catecholamines to the liquid; including.
  • the polymerization reaction of the catecholamines is allowed to proceed by adjusting the pH of the solution.
  • the production method according to any one of the 13th to 17th aspects includes contacting a group of monomers with the underlayer containing the polymerization initiation group, and Further comprising step (II) of forming said polymer chain by polymerizing groups.
  • composite substrates 10A and 10B of this embodiment comprise a substrate 1 and a base layer 2.
  • FIG. The underlying layer 2 covers the surface 1 a of the base material 1 .
  • the underlayer 2 may entirely cover the surface 1a or partially cover the surface 1a.
  • at least one of (a) the underlying layer 2 contains a polymerization initiation group and (b) the underlying layer 2 is bound to the polymer chains 3 is established.
  • FIG. 1A shows an example of a composite substrate 10A that satisfies requirement (a).
  • FIG. 1B shows an example of a composite substrate 10B that satisfies requirement (b).
  • FIGS. 1A and 1B are partially enlarged cross-sectional views of the surface of the substrate 1.
  • Surface 1 a is typically an outer surface that defines the outer shape of base material 1 .
  • the surface 1a may be the surface facing the pores inside the substrate 1 .
  • the underlayer 2 may cover the surface of the pores of the substrate 1 as well as the outer surface of the substrate 1 .
  • Composite substrate 10A does not include, for example, polymer chains 3 bound to underlying layer 2 .
  • the substrate 1 may contain an organic material, may contain an inorganic material, or may contain both an organic material and an inorganic material.
  • organic materials contained in the substrate 1 include resins such as hydrophobic resins and hydrophilic resins.
  • the base material 1 may contain a hydrophobic resin.
  • hydrophobic resin means a resin having a water content of 0.1% or less
  • hydrophilic resin means a resin having a water content of more than 0.1%.
  • the “moisture content” means the ratio of the difference between the weight of the resin when it is wet and the weight of the resin when it is dry to the weight of the resin when it is dry.
  • the "weight of the resin when dried” is a value obtained by weighing the resin when the resin is left to stand in an atmosphere of 60°C for 2 hours or more to dry.
  • Weight of resin when wet is a value obtained by weighing the above-mentioned dried resin after immersing the resin in water kept at 30°C for 2 hours or more. The operation of "drying the resin by leaving it in an atmosphere of 60° C. for 2 hours or longer” is performed until the weight of the resin does not change.
  • the time for which the resin is allowed to stand is not particularly limited as long as it is 2 hours or more and the weight of the resin does not change, and it may be 2 hours or 3 hours.
  • the state in which the weight of the resin does not change is, for example, the weight W t of the resin when the resin is left to stand for a predetermined time (t hours) of 2 hours or more in an atmosphere of 60 ° C. and dried, It means that the difference from the weight Wt+0.5 of the resin when left to stand for 30 minutes (t+0.5 hours) to dry is within the range of ⁇ 0.5% of the weight Wt .
  • the operation of "keeping the resin immersed in water kept at 30° C. for 2 hours or more" is performed according to the same criteria as above until the weight of the resin does not change.
  • Hydrophobic resins include, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-polytetrafluoroethylene copolymer (ETFE), perfluoroalkoxyalkane (PFA) and other fluorine resins; polyethylene ( PE), polyolefin resins such as polypropylene (PP); polystyrene resins; rubber-based resins;
  • the substrate 1 preferably contains a fluororesin, particularly PTFE, as the hydrophobic resin.
  • hydrophilic resins examples include polyimide resins; polyetherimide resins; polyetheretherketone resins; polyethersulfone resins; polyethylene terephthalate resins; polycarbonate resins; ) (meth)acrylic resins such as methyl acrylate; and polyvinyl alcohol resins such as polyvinyl alcohol (PVA) and ethylene-vinyl alcohol copolymer (EVOH).
  • (meth)acrylic acid means acrylic acid and/or methacrylic acid.
  • inorganic materials include silicon, glass, metals, metal oxides, and alloys.
  • the base material 1 may contain a fluororesin, particularly PTFE, as a main component, and preferably consists essentially of a fluororesin.
  • a fluororesin particularly PTFE
  • main component means a component contained in the base material 1 in the largest amount by weight.
  • Consisting essentially of means excluding other ingredients that modify the essential characteristics of the referenced material.
  • the substrate 1 may contain impurities in addition to the fluororesin.
  • the substrate 1 may be a porous substrate having a plurality of pores, or may have no pores.
  • Examples of the shape of the base material 1 include a film shape and a particle shape. Specific forms of the film-like substrate 1 are sheets, films, woven fabrics, non-woven fabrics, and the like. Fibers comprising woven fabrics, non-woven fabrics, etc. may comprise a core and a shell covering the core.
  • the core may be made of a material other than hydrophobic resin (hydrophilic resin, inorganic material, etc.), and the shell may be made of hydrophobic resin.
  • Specific examples of the base material 1 include a PTFE porous membrane, a silicon wafer, a PTFE sheet, and the like.
  • the thickness of the base material 1 is, for example, 1 to 1000 ⁇ m.
  • the shape of the pores included in the porous base material is not particularly limited.
  • the porous substrate may have continuous pores formed continuously in a three-dimensional shape, or may have closed pores.
  • the porous substrate may have through-holes passing through the porous substrate. As an example, the through holes may extend in the thickness direction of the porous substrate.
  • the average pore size of the porous substrate is, for example, 0.01 to 100 ⁇ m.
  • the average pore size of the porous substrate can be measured by a method according to ASTM (American Society for Testing and Materials) F316-86.
  • the porosity of the porous substrate is, for example, 10% to 90%.
  • the porosity of the porous substrate can be calculated by substituting the weight W (g), volume V (cm 3 ) and true density D (g/cm 3 ) of the porous substrate into the following formula.
  • Porosity (%) ⁇ 1-(W/(V D)) ⁇ x 100
  • the BET Brunauer-Emmett-Teller specific surface area by nitrogen gas adsorption is not particularly limited, and is, for example, 0.01 to 100 m 2 /g.
  • the base layer 2 contains a polymerization initiation group.
  • the polymerization initiation group is, for example, at least one selected from the group consisting of halogen groups and nitroxide groups. These polymerization initiating groups are suitable for initiating radical polymerization, especially living radical polymerization.
  • a halogen group is for example F, Cl, Br or I, preferably Br.
  • the underlayer 2 contains a polymer P having structural units derived from catecholamines represented by the following formula (1).
  • catecholamines means compounds and/or derivatives thereof having a catechol group and an amino group.
  • the requirement (a1) that the polymer P contains a polymerization initiation group may be satisfied.
  • R 1 to R 4 are each independently a hydrogen atom (except when both R 1 and R 2 are hydrogen atoms) or an optional substituent.
  • Optional substituents for R 1 and R 2 are not particularly limited and are, for example, hydroxyl groups, carboxyl groups or halogen groups.
  • the halogen group is preferably a bromo group.
  • R 1 may be a hydroxyl group and R 2 may be a hydrogen atom.
  • R 3 and R 4 are not particularly limited, and are, for example, acyl groups optionally having substituents.
  • An acyl group is represented by -COR a .
  • R a is, for example, a hydrocarbon group optionally having a substituent.
  • the hydrocarbon group may be linear or branched.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1-10, preferably 1-5.
  • Examples of the hydrocarbon group include methyl group, ethyl group, propyl group and the like, preferably isopropyl group.
  • Substituents of the hydrocarbon group include, for example, polymerization initiation groups such as halogen groups.
  • R7 is a divalent hydrocarbon group which may have a substituent.
  • the divalent hydrocarbon group may be linear or branched.
  • the number of carbon atoms in the divalent hydrocarbon group is not particularly limited, and is, for example, 1-10, preferably 1-5.
  • the divalent hydrocarbon group includes a methylene group, an ethylene group, a propane-1,3-diyl group, a propane-2,2-diyl group and the like, preferably a propane-2,2-diyl group.
  • a divalent hydrocarbon group may not have a substituent.
  • R 7 is preferably a propane-2,2-diyl group.
  • A is a polymerization initiation group. Examples of the polymerization initiation group include those described above. A is preferably a bromo group.
  • R 3 and R 4 are typically hydrogen atoms. However, at least one selected from the group consisting of R 3 and R 4 may be a substituent represented by the above formula (5).
  • Z is represented by the following formula (2) or (3).
  • X ⁇ is any anion.
  • X ⁇ is not particularly limited as long as it forms a salt with a quaternary ammonium cation, and is, for example, a halide ion or a carboxylate ion.
  • Halide ions include, for example, fluoride ions, chloride ions, bromide ions, and iodide ions.
  • Carboxylate ions include, for example, tartaric acid ions.
  • X ⁇ is preferably chloride ion.
  • R 5 is a hydrogen atom or any substituent.
  • the optional substituent in R 5 is not particularly limited, and examples thereof include an optionally substituted hydrocarbon group or an optionally substituted acyl group.
  • the hydrocarbon group may be linear or branched.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1-10, preferably 1-5.
  • Examples of the hydrocarbon group include methyl group, ethyl group, propyl group and the like, preferably methyl group.
  • Substituents of the hydrocarbon group include, for example, polymerization initiation groups such as halogen groups.
  • R 5 the acyl group is represented by —COR a .
  • R a is, for example, a hydrocarbon group optionally having a substituent. Examples of the hydrocarbon group include those described above.
  • Equation (4) is a more detailed representation of Equation (3) above.
  • R 6 is a divalent hydrocarbon group which may have a substituent.
  • the divalent hydrocarbon group may be linear or branched.
  • the number of carbon atoms in the divalent hydrocarbon group is not particularly limited, and is, for example, 1-10, preferably 1-5.
  • the divalent hydrocarbon group includes a methylene group, an ethylene group, a propane-1,3-diyl group, a propane-2,2-diyl group and the like, preferably a propane-2,2-diyl group.
  • a divalent hydrocarbon group may not have a substituent.
  • A is a polymerization initiation group.
  • examples of the polymerization initiation group include those described above.
  • A is preferably a bromo group.
  • Catecholamines may be represented by the following formula (6).
  • the catecholamines of formula (6) correspond to compounds of formula (1) in which R 3 and R 4 are hydrogen atoms.
  • R 1 , R 2 and Z are the same as in formula (1).
  • Specific examples of catecholamines represented by formula (6) include the following formulas (C1) to (C7).
  • Formulas (C1) to (C3) represent norepinephrine derivatives.
  • Formula (C4) represents epinephrine.
  • Formula (C5) represents levodopa.
  • Formula (C6) represents droxidopa.
  • the norepinephrine hydrochloride of formula (C1) is sometimes referred to herein as NE, and the norepinephrine derivative of formula (C2) as ATRP-NE.
  • the catecholamines may be reaction products of the compound represented by the above formula (6) and other compounds.
  • Other compounds include, for example, compound F having a polymerization initiation group and a functional group capable of reacting with catecholamines.
  • Functional groups capable of reacting with catecholamines are typically acyl halide groups.
  • Compound F is represented, for example, by the following formula (7).
  • X 1 is a halogen group, preferably a bromo group.
  • R 8 is a divalent hydrocarbon group optionally having a substituent. Hydrocarbon groups for R 8 include those described above for R 7 .
  • R 8 is preferably a propane-2,2-diyl group.
  • A is a polymerization initiation group. Examples of the polymerization initiation group include those described above.
  • A is preferably a bromo group.
  • a specific example of compound F is 2-bromoisobutyryl bromide (BiBB).
  • reaction product of the compound represented by formula (6) and compound F represented by formula (7) is represented by, for example, the following formula (8).
  • R 1 and R 2 are the same as in formula (6).
  • R 11 is a hydrogen atom, a substituent contained in Z in formula (6), or a group represented by the general formula —C( ⁇ O)—R 8 —A.
  • the above-mentioned catecholamines may be used singly or in combination of two or more.
  • the catecholamines preferably contain a norepinephrine derivative, and more preferably contain at least one of the compounds represented by formulas (C1) to (C2).
  • the polymer P may further have structural units derived from catecholamines other than the catecholamines represented by formula (1).
  • Other catecholamines may be dopamine derivatives in which both R 1 and R 2 are hydrogen atoms in formula (1).
  • Specific examples of other catecholamines include formulas (D1) to (D3) below.
  • Formulas (D1) to (D2) represent dopamine derivatives.
  • Formula (D3) represents methyldopa.
  • the dopamine hydrochloride of formula (D1) is sometimes referred to herein as DA, and the dopamine derivative of formula (D2) is sometimes referred to as ATRP-DA.
  • Catecholamines can self-oxidize and polymerize in the presence of oxygen atoms.
  • catecholamines represented by formula (1) undergo a polymerization reaction represented by the following reaction formula (S1).
  • reaction formula (S1) the indole derivative represented by formula (E1) is an intermediate of the polymerization reaction.
  • Reaction Formula (S1) a polymer P having structural units (p1) derived from catecholamines is formed. That is, the polymer P may contain the following structural unit (p1).
  • R 1 to R 4 are the same as in formula (1).
  • R12 is a hydrogen atom or a substituent corresponding to R5 .
  • a polymer P containing a polymerization initiation group can be produced by using catecholamines containing a polymerization initiation group.
  • the polymerization reaction proceeds at the 4-position and 7-position of the indole ring.
  • R 2 is a hydrogen atom in the indole derivative (E1)
  • the polymerization reaction may proceed even at the 2-position of the indole ring in the structural unit (p1). At this time, the polymer P has a three-dimensional crosslinked structure.
  • the content of structural units derived from the catecholamines represented by formula (1) in the polymer P is not particularly limited, and is, for example, 10 mol% or more, may be 30 mol% or more, or 50 mol%. 70 mol % or more, 90 mol % or more, or 95 mol % or more.
  • the polymer P may be substantially composed only of structural units derived from catecholamines represented by formula (1).
  • the underlayer 2 may contain the polymer P as a main component, and preferably consists essentially of the polymer P only. However, the underlying layer 2 may contain impurities in addition to the polymer P.
  • the thickness of the underlying layer 2 is not particularly limited, and is, for example, 1 to 200 nm.
  • Polymer P having structural units derived from catecholamines represented by formula (1) tends to strongly adhere to the surface of substrate 1 regardless of the type of substrate 1 . Furthermore, the underlying layer 2 containing the polymer P tends to have excellent surface smoothness. A smooth underlayer 2 tends to facilitate adjustment of the properties of the substrate 1 by introducing polymer chains 3 . According to the studies of the present inventors, in the case where the underlayer is formed using only a dopamine derivative in which both R 1 and R 2 are hydrogen atoms in formula (1), the surface of the underlayer obtained is observed with a scanning electron microscope (SEM), there tends to be a large number of fine particles with an average particle size of about 50 to 150 nm. Due to these particles, the surface of the underlayer tends to have many irregularities.
  • SEM scanning electron microscope
  • the manufacturing method of the composite base material 10A includes a step (I) of forming an underlayer 2 containing a polymerization initiation group so that the surface 1a of the base material 1 is covered.
  • the step (I) includes, for example, a step (i) of contacting the surface 1a of the substrate 1 with a solution S containing catecholamines represented by formula (1), and a step (ii) of allowing the polymerization reaction of the catecholamines to proceed. including.
  • step (i) includes step (ia) of bringing liquid L containing water into contact with surface 1a of substrate 1 and step (ib) of adding catecholamines to liquid L.
  • step (ia) the surface 1a of the base material 1 is brought into contact with the liquid L by immersing the base material 1 in the liquid L, for example.
  • the liquid L may consist only of water, or may be a mixed liquid of alcohol and water. Alcohols are preferably lower alcohols such as methanol and ethanol. When the liquid L is a mixed liquid of alcohol and water, the content of water in the liquid L is not particularly limited, and is, for example, 50 vol % to 70 vol %.
  • catecholamines are added to liquid L in step (ib). Thereby, the catecholamines are dissolved in the liquid L to form a solution S.
  • the catecholamines represented by the formula (8) can be synthesized by reacting the compound represented by the formula (6) with the compound F represented by the formula (7). .
  • This reaction can be carried out, for example, using triethylamine in an organic solvent such as N,N-dimethylformamide (DMF).
  • DMF N,N-dimethylformamide
  • This reaction liquid may be added to the liquid L described above. Even in this case, the solution S is formed by mixing the reaction liquid and the liquid L. Since the liquid L is in contact with the surface 1a of the substrate 1, the solution S obtained by adding catecholamines to the liquid L contacts the surface 1a.
  • the catecholamines contain a polymerization initiation group.
  • a polymer P containing a polymerization initiation group can be produced by the polymerization reaction of step (ii).
  • catecholamines containing no polymerization initiation group may be added to the liquid L together with catecholamines containing a polymerization initiation group.
  • the molar ratio of catecholamines containing a polymerization initiating group to catecholamines not containing a polymerization initiating group is not particularly limited, and is, for example, 2:8 to 8:2.
  • step (ii) the polymerization reaction of catecholamines is allowed to proceed.
  • the polymerization reaction of the catecholamines proceeds while the catecholamines contained in the solution S are in contact with the surface 1a.
  • the polymer P containing the polymerization initiation group is formed on the surface 1a, and the base layer 2 is obtained.
  • 10 A of composite base materials can be obtained by forming the base layer 2 containing a polymerization initiation group on the surface 1a.
  • the polymerization reaction of catecholamines can be advanced by adjusting the pH of solution S.
  • the pH of the solution S can be adjusted with a buffer containing trishydroxymethylaminomethane (Tris), for example.
  • the buffer may be Tris-HCl buffer (TRIS-HCl).
  • a buffer may be added to liquid L before performing step (ib). In this case, when the catecholamines are added to the liquid L containing the buffer in step (ib), the pH of the resulting solution S tends to be adjusted appropriately.
  • the polymerization reaction of catecholamines can be performed at room temperature (23° C.), for example.
  • step (i) may be performed by the following method.
  • a reaction solution containing catecholamines represented by formula (8) is prepared by the method described above.
  • a solution S is prepared by mixing this reaction solution and water.
  • a buffer such as Tris-HCl buffer may be mixed with the reaction solution together with water.
  • the substrate 1 is a porous substrate
  • the liquid L will be trapped inside the pores of the porous substrate. tend to fill very little.
  • the porous substrate contains a hydrophobic resin, it is difficult to fill the liquid L inside the pores of the porous substrate.
  • the substrate 1 is a porous substrate
  • the surface of the pores of the porous substrate can be brought into contact with the liquid L by the following method. First, prior to step (ia), the porous substrate is brought into contact with alcohol. Specifically, the porous substrate is immersed in alcohol. Alcohols include those mentioned above.
  • the alcohol When the porous substrate and alcohol are brought into contact with each other, the alcohol penetrates into the pores of the porous substrate, thereby filling the pores with alcohol. As a result, the inside of the holes is filled with alcohol.
  • Ultrasonic treatment may be performed while the porous substrate and alcohol are in contact with each other. The ultrasonic treatment allows the alcohol to easily penetrate into the pores of the porous substrate.
  • step (ia) the porous substrate with alcohol filled inside the pores is brought into contact with water.
  • the water is mixed with the alcohol while permeating into the pores of the porous substrate.
  • the liquid L containing water is formed inside the hole, and the inside of the hole can be filled with the liquid L.
  • the ultrasonic treatment may be performed while the porous substrate is in contact with water. By performing ultrasonic treatment, water can easily penetrate into the pores of the porous substrate. Conditions for ultrasonic treatment are not particularly limited. Sonication may be performed, for example, for one hour or longer.
  • a surfactant may be added together with water to the porous substrate in which the inside of the pores is filled with alcohol.
  • Surfactants allow water to more easily penetrate into the pores of the porous substrate.
  • the liquid L formed by this operation further contains a surfactant.
  • the surfactant is not particularly limited, and for example, a fluorosurfactant can be used.
  • the method of filling the inside of the pores of the porous substrate with the liquid L is not limited to the method described above. As long as the inside of the pores of the porous substrate can be filled with the liquid L, it is not always necessary to prepare a porous substrate in which the inside of the pores is filled with alcohol before step (ia).
  • the pores of the porous substrate may be filled with the liquid L by bringing the liquid L containing the surfactant into contact with the porous substrate and further performing ultrasonic treatment.
  • the liquid L may be alcohol-free and may be a mixture of water and a surfactant.
  • a solution S is formed by adding catecholamines to the liquid L in a state in which the pores of the porous substrate are filled with the liquid L. Since the liquid L is filled inside the pores of the porous substrate, the solution S obtained by adding catecholamines to the liquid L contacts the surface 1a of the pores. By allowing the polymerization reaction of the catecholamines to proceed in this state (step (II)), the underlayer 2 can be formed also on the surfaces of the pores.
  • composite base material 10B that satisfies the requirement (b) will be described.
  • underlayer 2 is bonded to polymer chains 3 .
  • the composite substrate 10B is the same as the composite substrate 10A. Therefore, elements common to the composite substrate 10A described above and the composite substrate 10B of the present embodiment are denoted by the same reference numerals, and description thereof may be omitted. That is, the descriptions of the respective embodiments below can be applied to each other as long as they are not technically inconsistent. Furthermore, each embodiment may be combined with each other unless it is technically inconsistent.
  • the polymer chain 3 can be produced, for example, by a polymerization reaction of a group of monomers starting from a polymerization initiation group contained in the underlayer 2 of the composite substrate 10A, specifically the polymer P.
  • the requirement (b1) that the polymer P is bound to the polymer chain 3 may be satisfied.
  • the underlayer 2, especially the polymer P may not contain a polymerization initiation group.
  • the polymer chains 3 are, for example, attached to the surface 2a of the underlayer 2 and extend in the thickness direction of the underlayer 2 .
  • the polymer chains 3 are exposed to the outside of the substrate 1, for example.
  • the substrate 1 is a porous substrate and the underlayer 2 also covers the surface of the pores of the porous substrate, some of the polymer chains 3 exist inside the pores of the porous substrate. may be
  • the group of monomers for forming the polymer chain 3 includes, for example, radically polymerizable monomers.
  • the polymer chain 3 contains structural units derived from radically polymerizable monomers.
  • radically polymerizable monomers include (meth)acrylic esters, (meth)acrylic acid, (meth)acrylamides, styrene derivatives, olefins, halogenated olefins, vinyl esters, vinyl alcohols and nitriles.
  • R 13 is a hydrogen atom or a methyl group.
  • R 14 is a hydrocarbon group optionally having a substituent.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1-20, preferably 1-15.
  • the hydrocarbon group may be linear or branched.
  • a substituent of the hydrocarbon group may contain a heteroatom such as a nitrogen atom, an oxygen atom, or a halogen atom.
  • Substituents for the hydrocarbon group include, for example, a hydroxyl group, an amino group, an alkoxy group, and a halogen group.
  • R 14 may be represented by the following formula (10). —(R 15 —O) n —H (10)
  • R 15 is an alkylene group having 1 to 8 carbon atoms, preferably an ethylene group. In formula (10), when multiple R 15 are present, the multiple R 15 may be the same or different. In formula (10), n is an integer of 1 or more. The upper limit of n is not particularly limited, and is 200, for example.
  • R 14 may be a fluorine-containing hydrocarbon group.
  • the fluorine-containing hydrocarbon group may be branched, but preferably linear.
  • a fluorine-containing hydrocarbon group may be represented, for example, by the following formula (11). -R16 -Rf (11)
  • R 16 is an alkylene group having 1 to 8 carbon atoms, preferably an ethylene group.
  • Rf is a perfluoroalkyl group having 1 to 12 carbon atoms. In Rf, the number of carbon atoms in the perfluoroalkyl group is preferably 1 to 6, more preferably 1 to 4, from the viewpoint of environmental regulations regarding fluorine compounds.
  • R 14 in formula (9) include a polyethylene glycol group, a 1H,1H,2H,2H-heptadecafluoro-n-decyl group, and a 1H,1H,2H,2H-tridecafluoro-n-octyl group. , methyl group, ethyl group, butyl group, t-butyl group, hexyl group, 2-ethylhexyl group, octyl group, 2-hydroxyethyl group, 2-[2-(2-methoxyethoxy)ethoxy]ethyl group, dimethylamino An ethyl group etc. are mentioned.
  • Examples of (meth)acrylamide include (meth)acrylamide, N-isopropyl(meth)acrylamide, dimethylaminopropyl(meth)acrylamide, (meth)acrylamidopropyltrimethylammonium chloride, and (meth)acrylamido-2-methylpropanesulfonic acid. etc.
  • styrene derivatives include styrene, ⁇ -methylstyrene, vinylbenzyl chloride, butoxystyrene, vinylaniline, sodium styrenesulfonate, vinylbenzoic acid, vinylpyridine, dimethylaminomethylstyrene, vinylbenzyltrimethylammonium chloride, and the like.
  • olefins examples include ethylene, propylene, butadiene, butene, and isoprene.
  • halogenated olefins include, for example, vinyl chloride, vinylidene chloride, tetrafluoroethylene, and the like.
  • vinyl esters examples include vinyl acetate and vinyl propionate.
  • Vinyl alcohols include, for example, saponified vinyl esters described above.
  • Nitriles include, for example, (meth)acrylonitrile.
  • the monomer group may contain one or more of the above monomers.
  • the monomer group contains, for example, a radically polymerizable monomer as a main component, and preferably consists essentially of a radically polymerizable monomer.
  • the thickness of this layer is not particularly limited, and is, for example, 10 nm to 10 mm, may be 1 mm or less, may be 100 nm or less, or may be 50 nm or less.
  • the molecular weight of polymer chain 3 can be easily controlled. For example, it is possible to suppress variations in molecular weight among the plurality of polymer chains 3 .
  • the molecular weight distribution (ratio of weight-average molecular weight to number-average molecular weight) of the plurality of polymer chains 3 is not particularly limited, and is, for example, 1.5 or less.
  • the molecular weight per polymer chain 3 is not particularly limited, and is, for example, 500 to 500,000.
  • the resulting polymer chain 3 has a polyethylene glycol group.
  • the hydrophilicity of the substrate 1 tends to be greatly improved.
  • introduction of the polymer chains 3 containing polyethylene glycol groups to the surface 1a of the substrate 1 tends to impart hydrophilicity to the substrate 1 .
  • the property that can be imparted to the substrate 1 is not limited to hydrophilicity. According to this embodiment, various properties can be imparted to the base material 1 according to the type of the polymer chain 3 .
  • the method for producing the composite base material 10B includes, for example, contacting a group of monomers with the underlayer 2 containing the polymerization initiation group in the composite base material 10A described above, and polymerizing the monomer group by the polymerization initiation group, thereby forming the polymer chain 3.
  • the step (II) of forming is included.
  • the polymerization of the monomer group by the polymerization initiation group is, for example, radical polymerization, preferably living radical polymerization.
  • Living radical polymerization includes atom transfer radical polymerization (ATRP), nitroxide mediated radical polymerization (NMP) and the like, preferably ATRP.
  • ATRP atom transfer radical polymerization
  • NMP nitroxide mediated radical polymerization
  • the polymerization initiation group is preferably a halogen group.
  • NMP the polymerization initiation group is preferably a nitroxide group.
  • the polymerization of the monomer group by the polymerization initiating group can be performed in detail by the following method.
  • a solution B containing a group of monomers is prepared.
  • solution B may contain a transition metal complex as a catalyst.
  • a transition metal complex contains a transition metal and a ligand.
  • transition metals include metals of Groups 7 to 11 of the periodic table, preferably ruthenium, copper, iron, nickel, rhodium, palladium, rhenium and the like, and particularly preferably copper.
  • ligands include 1,1,4,7,10,10-hexamethyltriethylenetetramine, tris[2-(dimethylamino)ethyl]amine, N,N,N',N'',N ''-Pentamethyldiethylenetriamine, triphenylphosphine, tributylphosphine, chlorine, bromine, iodine, indene, fluorene, 2,2'-bipyridine, 4,4'-diheptyl-2,2'-bipyridine, 1,10-phenanthroline , and Spartein.
  • a transition metal complex can be prepared in solution B by adding the ligand and the compound containing the transition metal to solution B separately.
  • the solution B may further contain a polymerization initiator.
  • the polymerization initiator is not particularly limited as long as it is a compound having the polymerization initiation group described above, and is, for example, 2-bromo-N-hexyl-2-methylpropanamide.
  • polymerization of the monomer group proceeds also with the polymerization initiator.
  • the molecular weight (number-average molecular weight and weight-average molecular weight) and molecular weight distribution of the polymer obtained by growing the monomer group from the polymerization initiator are comparable to those of polymer chain 3 . Therefore, the molecular weight and molecular weight distribution of the polymer obtained from the polymerization initiator may be measured, and the obtained values may be regarded as the molecular weight and molecular weight distribution of the polymer chain 3 .
  • Solution B may or may not further contain a solvent.
  • the solvent can be appropriately selected depending on the composition of the monomer group, polymerization conditions, etc. Examples include water; alcohols such as isopropanol and 1,1,1,3,3,3-hexafluoro-2-propanol; ethers such as; ketones such as acetone.
  • the ratio of the weight of the monomer group to the total weight of the solvent and the weight of the monomer group is not particularly limited, and is, for example, 10 wt % to 100 wt %.
  • the composite base material 10A is immersed in the solution B.
  • the monomer group contained in the solution B is brought into contact with the underlying layer 2 .
  • freezing and degassing may be performed while the substrate 1 is immersed in the solution B.
  • the monomer group can be polymerized by the polymerization initiation groups contained in the underlayer 2 .
  • the heating temperature of solution B can be appropriately adjusted according to the composition of solution B, and is, for example, 30°C to 120°C.
  • the heating time of solution B is not particularly limited, and is, for example, 0.5 to 48 hours.
  • Polymerization of the monomer group is preferably carried out in an inert gas atmosphere such as nitrogen gas.
  • radicals are generated by irradiating the surface of a base material with energy rays or plasma, and the radicals are used to polymerize a monomer group.
  • an energy beam having relatively high energy such as an electron beam or a gamma ray
  • the main chain may be cut and the structure of the substrate may be altered. The change significantly reduces its mechanical strength.
  • the polymer chains 3 can be introduced onto the surface 1a of the base material 1 without using energy rays having high energy.
  • the material of the base material 1 is hardly restricted.
  • the polymer chains 3 can be easily introduced to the surface 1a of the substrate 1 even when the substrate 1 contains PTFE.
  • the production method of the present embodiment is suitable for introducing polymer chains 3 to the surface 1a of the substrate 1 to control the properties while suppressing changes in the structure of the substrate 1 itself.
  • Penetration of the monomer may also change the structure of the porous substrate, eg, the shape of the pores. If the monomer that permeates the substrate is polymerized, there is a possibility that the polymer chains will not be sufficiently introduced to the surface of the substrate. Since the manufacturing method of the present embodiment uses the underlying layer 2, these problems are less likely to occur.
  • the base layer 2 contains the polymer P described above.
  • the underlayer 2 tends to have relatively high durability against acids and bases, compared to, for example, underlayers made of inorganic materials. Therefore, the composite base material 10B provided with this base layer 2 may be used in a wide range of applications.
  • TEM transmission electron microscope
  • SEM-EDX scanning electron microscope-energy dispersive X-ray spectroscopy
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • the base layer 2 may be composed of multiple layers. As shown in FIGS. 2A and 2B, in composite substrates 11A and 11B according to modifications, the base layer 2 has a first layer 5 and a second layer 6 .
  • the first layer 5 is in direct contact with the surface 1a of the substrate 1 .
  • the second layer 6 covers the first layer 5 and is in direct contact with the first layer 5, for example.
  • at least one of (a2) the second layer 6 includes a polymerization initiation group and (b2) the second layer 6 is bound to the polymer chain 3 is established.
  • FIG. 2A shows an example of a composite substrate 11A that satisfies requirement (a2).
  • FIG. 2B shows an example of a composite substrate 11B that satisfies requirement (b2).
  • the first layer 5 has, for example, the same composition as the base layer 2 of the composite substrate 10A described above, except that it does not contain a polymerization initiation group.
  • the first layer 5 is formed by the same method as the method for producing the base layer 2 of the composite base material 10A described above, except that only catecholamines containing no polymerization initiation group are added to the liquid L in the above step (ib). can be made.
  • Examples of the catecholamines containing no polymerization initiation group include the compound (NE) represented by the above formula (C1).
  • the first layer 5 may be formed only from catecholamines other than the catecholamines represented by formula (1), such as the compound (DA) represented by formula (D1).
  • the first layer 5 tends to have better formability than the underlayer 2 of the composite substrate 10A. Therefore, the entire surface 1a of the substrate 1 can be easily covered with the first layer 5 .
  • the second layer 6 of the composite base material 11A has, for example, the same composition as the underlying layer 2 of the composite base material 10A described above. That is, the second layer 6 may contain a polymer P containing a polymerization initiation group. The composition of the second layer 6 may be the same as or different from that of the first layer 5 except that it contains a polymerization initiation group.
  • the second layer 6 can be produced by the same method as the method for producing the base layer 2 of the composite substrate 10A described above. In this embodiment, the second layer 6 tends to be easily formed over the first layer 5 because the compositions of the first layer 5 and the second layer 6 are relatively similar.
  • the polymer chain 3 of the composite base material 11B can be produced, for example, by a polymerization reaction of a monomer group starting from the polymerization initiation group contained in the second layer 6 of the composite base material 11A, specifically the polymer P.
  • the polymer P contained in the second layer 6 may bond with the polymer chains 3 .
  • the second layer 6, particularly the polymer P contained in the second layer 6, may not contain a polymerization initiation group.
  • ATRP-DA compound represented by formula (D2) was synthesized by the method described in Polymer, 2011, Vol. 52, p. 2141-2149.
  • a PTFE porous membrane A (average pore size: 3.0 ⁇ m, porosity: 85%, thickness: 70 ⁇ m) was prepared as a substrate.
  • the PTFE porous membrane A was immersed in methanol and subjected to ultrasonic treatment for 10 minutes, thereby filling the inside of the pores of the PTFE porous membrane A with methanol.
  • distilled water was slowly added to the PTFE porous membrane A.
  • the inside of the pores of the PTFE porous membrane A was filled with the aqueous methanol solution (liquid L).
  • aqueous methanol solution liquid L
  • Tris-HCl buffer solution Tris-HCl
  • the concentration of Tris-HCl in the aqueous methanol solution was adjusted to 10 mM.
  • dopamine hydrochloride (DA, manufactured by Tokyo Kasei Kogyo Co., Ltd.) and ATRP-NE were added at a molar ratio of 5:5 to an aqueous methanol solution, and a polymerization reaction was carried out at room temperature (23° C.) for 24 hours.
  • Example 1 By the polymerization reaction of DA and ATRP-NE, an underlayer containing a polymerization initiation group (Br) was formed on the outer surface of the PTFE porous membrane A and the surfaces of the pores. Thus, a composite base material of Example 1 was obtained. The formation of the underlayer on the surface of the pores of the PTFE porous membrane A was confirmed by analyzing the cross section of the composite substrate by TEM, SEM-EDX, TOF-SIMS and XPS.
  • Example 2 A composite substrate of Example 2 was obtained by the same method as in Example 1, except that NE and ATRP-DA were added to the aqueous methanol solution at a molar ratio of 5:5. As in Example 1, in the composite base material of Example 2, a base layer containing a polymerization initiation group was formed on the outer surface of the PTFE porous membrane A and the surfaces of the pores.
  • the concentration of Tris-HCl in the aqueous methanol solution was adjusted to 10 mM.
  • DA was added to the aqueous methanol solution, and a polymerization reaction was carried out at room temperature (23° C.) for 24 hours.
  • a polydopamine layer (first layer) was formed on the outer surface of the PTFE porous membrane A and the surface of the pores by the polymerization reaction of DA.
  • DA and ATRP-NE were added to an aqueous methanol solution at a molar ratio of 2:8, and a polymerization reaction was carried out at room temperature (23° C.) for 24 hours.
  • a second layer containing polymerization initiation groups (Br) was formed on the first layer by the polymerization reaction of DA and ATRP-NE.
  • an underlying layer having a laminated structure of the first layer and the second layer was produced.
  • a porous membrane with a base layer formed thereon, a monomer group, a polymerization initiator, a compound containing a transition metal, a ligand, and a solvent were added to the polymerization tube.
  • the monomer group consisted of polyethylene glycol methacrylate (PEGMA). 2-bromo-N-hexyl-2-methylpropanamide was used as a polymerization initiator.
  • CuCl was used as the compound containing a transition metal.
  • N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) was used as a ligand.
  • Anisole (PhOMe) was used as a solvent.
  • the molar ratio of monomer group, polymerization initiator, compound containing transition metal and ligand was 50/1/1/1.
  • the ratio of the weight of the monomer group to the sum of the weight of the solvent and the weight of the monomer group was 50 wt%.
  • the inside of the polymerization tube was freeze-degassed three times, and then filled with nitrogen gas.
  • the monomer group was then polymerized by heating the polymerization tube to 60°C.
  • air was injected into the reaction solution for bubbling.
  • the porous membrane was taken out from the inside of the polymerization tube and washed three times with a washing liquid. Acetone was used as the cleaning liquid.
  • the composite substrate of Example 3 was obtained by drying the porous membrane in a drying oven at 60° C. for 1 hour.
  • Example 4 A composite substrate of Example 4 was obtained by the same method as in Example 3, except that NE and ATRP-NE were used in a molar ratio of 2:8 to form the second layer. As in Example 3, in the composite substrate of Example 4, a base layer bound to polymer chains was formed on the surface of the pores of the PTFE porous membrane A.
  • Example 3 was prepared by the same method as in Example 3, except that NE was used to prepare the first layer, and NE and ATRP-NE were used in a molar ratio of 2:8 to prepare the second layer. 5 composite substrates were obtained. As in Example 3, in the composite substrate of Example 5, a base layer bound to polymer chains was formed on the surface of the pores of the PTFE porous membrane A.
  • Example 7 A composite substrate of Example 7 was obtained by the same method as in Example 6, except that NE and ATRP-DA were added to the aqueous methanol solution at a molar ratio of 2:8. As in Example 6, in the composite substrate of Example 7, a base layer containing a polymerization initiation group was formed on the surface of the silicon wafer.
  • NE and ATRP-NE were added to an aqueous methanol solution at a molar ratio of 5:5, and a polymerization reaction was carried out at room temperature (23° C.) for 24 hours.
  • the polymerization reaction of NE and ATRP-NE formed an underlayer containing polymerization initiation groups on the surface of the PTFE sheet.
  • a composite base material of Example 8 was obtained.
  • Example 9 A composite substrate of Example 9 was obtained by the same method as in Example 8, except that NE and ATRP-NE were added to the aqueous methanol solution at a molar ratio of 2:8. As in Example 8, in the composite base material of Example 9, a base layer containing a polymerization initiation group was formed on the surface of the PTFE sheet.
  • the composite substrate of the present invention can be used in various applications such as sound-permeable membranes, gas-permeable membranes, separation membranes, ion-exchange membranes, diaphragms, catalysts, liquid absorbers, medical materials, etc., depending on its function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a novel composite base material including an underlayer that contains a specific polymer. This composite base material includes: a base material; and an underlayer which covers the surface of the base material and contains a polymer having constituent units derived from a catecholamine compound represented by formula (1). In the composite base material, at least one of the following features is established: (a) the underlayer contains a polymerization initiation group; and (b) the underlayer is bonded to a polymer chain.

Description

複合基材及びその製造方法Composite base material and manufacturing method thereof
 本発明は、複合基材及びその製造方法に関する。 The present invention relates to a composite base material and a manufacturing method thereof.
 基材の表面にポリマー鎖を導入することによって、基材の機能を向上できる、又は、基材に新たな機能を付与できることが知られている。ポリマー鎖の導入は、例えば、基材の表面上にラジカルを発生させ、当該ラジカルによりモノマー群を重合させることによって行うことができる。ラジカルは、例えば、基材の表面に対して、紫外線、電子線、ガンマ線などのエネルギー線やプラズマを照射することによって発生させることができる。 It is known that by introducing polymer chains onto the surface of the base material, the function of the base material can be improved or new functions can be imparted to the base material. Polymer chains can be introduced, for example, by generating radicals on the surface of the base material and polymerizing the monomer group with the radicals. Radicals can be generated, for example, by irradiating the surface of the substrate with energy rays such as ultraviolet rays, electron rays, gamma rays, or plasma.
 特許文献1には、エネルギー線やプラズマを利用せずに、基材の表面にポリマー鎖を導入する方法が開示されている。詳細には、特許文献1は、重合開始剤が固定された下地層を基材の表面に形成すること、及び、当該重合開始剤を起点としてモノマーを重合させて高分子膜を作製することを開示している。特許文献1は、下地層としてポリドーパミン膜のみを開示している。 Patent Document 1 discloses a method of introducing polymer chains onto the surface of a substrate without using energy rays or plasma. Specifically, Patent Document 1 discloses that a base layer to which a polymerization initiator is fixed is formed on the surface of a base material, and a polymer film is produced by polymerizing a monomer starting from the polymerization initiator. disclosed. Patent Document 1 discloses only a polydopamine film as an underlayer.
特開2010-261001号公報Japanese Patent Application Laid-Open No. 2010-261001
 ポリマー鎖が導入される下地層については、さらなる検討の余地がある。 There is room for further investigation regarding the underlying layer into which polymer chains are introduced.
 そこで本発明は、特定のポリマーを含む下地層を備えた新たな複合基材を提供することを目的とする。 Therefore, an object of the present invention is to provide a new composite base material having a base layer containing a specific polymer.
 本発明は、
 基材と、
 前記基材の表面を被覆し、かつ、下記式(1)で表されるカテコールアミン類に由来する構成単位を有するポリマーを含む下地層と、
を備え、
 (a)前記下地層が重合開始基を含む、及び、(b)前記下地層がポリマー鎖と結合している、の少なくとも1つが成立する、複合基材を提供する。
Figure JPOXMLDOC01-appb-C000004
 前記式(1)において、R1~R4は、互いに独立して、水素原子(ただし、R1及びR2の両方が水素原子の場合を除く)又は任意の置換基であり、
 Zは、下記式(2)又は(3)で表される。
Figure JPOXMLDOC01-appb-C000005
 前記式(2)において、X-は、任意のアニオンであり、
 前記式(3)において、R5は、水素原子又は任意の置換基である。
The present invention
a substrate;
a base layer covering the surface of the base material and containing a polymer having a structural unit derived from catecholamines represented by the following formula (1);
with
A composite base material is provided, wherein at least one of (a) the underlayer includes a polymerization initiating group, and (b) the underlayer is bound to a polymer chain.
Figure JPOXMLDOC01-appb-C000004
In the above formula (1), R 1 to R 4 are each independently a hydrogen atom (excluding the case where both R 1 and R 2 are hydrogen atoms) or any substituent;
Z is represented by the following formula (2) or (3).
Figure JPOXMLDOC01-appb-C000005
In the formula (2), X - is any anion,
In formula (3) above, R 5 is a hydrogen atom or an arbitrary substituent.
 さらに本発明は、その別の側面から、
 上記の複合基材の製造方法であって、
 前記製造方法は、
 前記基材の前記表面が被覆されるように、前記重合開始基を含む前記下地層を形成する工程(I)を含む、複合基材の製造方法を提供する。
Furthermore, from another aspect of the present invention,
A method for manufacturing the above composite base material,
The manufacturing method is
Provided is a method for producing a composite substrate, comprising the step (I) of forming the underlayer containing the polymerization initiation group so as to cover the surface of the substrate.
 本発明によれば、特定のポリマーを含む下地層を備えた新たな複合基材を提供できる。 According to the present invention, it is possible to provide a new composite base material having a base layer containing a specific polymer.
本発明の一実施形態にかかる複合基材の概略断面図である。1 is a schematic cross-sectional view of a composite substrate according to one embodiment of the present invention; FIG. 本発明の一実施形態にかかる複合基材の概略断面図である。1 is a schematic cross-sectional view of a composite substrate according to one embodiment of the present invention; FIG. 本発明の変形例にかかる複合基材の概略断面図である。FIG. 4 is a schematic cross-sectional view of a composite base material according to a modified example of the present invention; 本発明の変形例にかかる複合基材の概略断面図である。FIG. 4 is a schematic cross-sectional view of a composite base material according to a modified example of the present invention;
 本発明の第1態様にかかる複合基材は、
 基材と、
 前記基材の表面を被覆し、かつ、下記式(1)で表されるカテコールアミン類に由来する構成単位を有するポリマーを含む下地層と、
を備え、
 (a)前記下地層が重合開始基を含む、及び、(b)前記下地層がポリマー鎖と結合している、の少なくとも1つが成立する。
Figure JPOXMLDOC01-appb-C000006
 前記式(1)において、R1~R4は、互いに独立して、水素原子(ただし、R1及びR2の両方が水素原子の場合を除く)又は任意の置換基であり、
 Zは、下記式(2)又は(3)で表される。
Figure JPOXMLDOC01-appb-C000007
 前記式(2)において、X-は、任意のアニオンであり、
 前記式(3)において、R5は、水素原子又は任意の置換基である。
The composite substrate according to the first aspect of the present invention is
a substrate;
a base layer covering the surface of the base material and containing a polymer having a structural unit derived from catecholamines represented by the following formula (1);
with
At least one of (a) the underlying layer includes a polymerization initiation group and (b) the underlying layer is bound to a polymer chain is established.
Figure JPOXMLDOC01-appb-C000006
In the above formula (1), R 1 to R 4 are each independently a hydrogen atom (excluding the case where both R 1 and R 2 are hydrogen atoms) or any substituent;
Z is represented by the following formula (2) or (3).
Figure JPOXMLDOC01-appb-C000007
In the formula (2), X - is any anion,
In formula (3) above, R 5 is a hydrogen atom or an arbitrary substituent.
 本発明の第2態様において、例えば、第1態様にかかる複合基材では、(a1)前記ポリマーが前記重合開始基を含む、及び、(b1)前記ポリマーが前記ポリマー鎖と結合している、の少なくとも1つが成立する。 In the second aspect of the present invention, for example, in the composite substrate according to the first aspect, (a1) the polymer contains the polymerization initiation group, and (b1) the polymer is bonded to the polymer chain. At least one of is established.
 本発明の第3態様において、例えば、第1又は第2態様にかかる複合基材では、前記R1及び前記R2において、前記任意の置換基は、ヒドロキシル基、カルボキシル基又はハロゲン基である。 In the third aspect of the present invention, for example, in the composite substrate according to the first or second aspect, the optional substituents in R 1 and R 2 are hydroxyl group, carboxyl group or halogen group.
 本発明の第4態様において、例えば、第1~第3態様のいずれか1つにかかる複合基材では、前記R1がヒドロキシル基であり、かつ、前記R2が水素原子である。 In the fourth aspect of the present invention, for example, in the composite substrate according to any one of the first to third aspects, R 1 is a hydroxyl group and R 2 is a hydrogen atom.
 本発明の第5態様において、例えば、第1~第4態様のいずれか1つにかかる複合基材では、前記Zは、下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000008
 前記式(4)において、R6は、置換基を有していてもよい2価の炭化水素基であり、
 Aは、前記重合開始基である。
In the fifth aspect of the present invention, for example, in the composite substrate according to any one of the first to fourth aspects, Z is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000008
In the formula (4), R 6 is a divalent hydrocarbon group which may have a substituent,
A is the polymerization initiation group.
 本発明の第6態様において、例えば、第1~第5態様のいずれか1つにかかる複合基材では、前記重合開始基は、ハロゲン基及びニトロキシド基からなる群より選ばれる少なくとも1つである。 In the sixth aspect of the present invention, for example, in the composite substrate according to any one of the first to fifth aspects, the polymerization initiation group is at least one selected from the group consisting of halogen groups and nitroxide groups. .
 本発明の第7態様において、例えば、第1~第6態様のいずれか1つにかかる複合基材では、前記ポリマー鎖は、ラジカル重合性モノマーに由来する構成単位を含む。 In the seventh aspect of the present invention, for example, in the composite substrate according to any one of the first to sixth aspects, the polymer chain contains a structural unit derived from a radically polymerizable monomer.
 本発明の第8態様において、例えば、第1~第7態様のいずれか1つにかかる複合基材では、前記基材は、疎水性樹脂を含む。 In the eighth aspect of the present invention, for example, in the composite base material according to any one of the first to seventh aspects, the base material contains a hydrophobic resin.
 本発明の第9態様において、例えば、第1~第8態様のいずれか1つにかかる複合基材では、前記基材は、フッ素樹脂を含む。 In the ninth aspect of the present invention, for example, in the composite base material according to any one of the first to eighth aspects, the base material contains a fluororesin.
 本発明の第10態様において、例えば、第1~第9態様のいずれか1つにかかる複合基材では、前記基材は、ポリテトラフルオロエチレンを含む。 In the tenth aspect of the present invention, for example, in the composite base material according to any one of the first to ninth aspects, the base material contains polytetrafluoroethylene.
 本発明の第11態様において、例えば、第1~第10態様のいずれか1つにかかる複合基材では、前記基材は、複数の孔を有する。 In the eleventh aspect of the present invention, for example, in the composite substrate according to any one of the first to tenth aspects, the substrate has a plurality of pores.
 本発明の第12態様において、例えば、第1~第11態様のいずれか1つにかかる複合基材では、前記下地層は、前記基材の前記表面に直接接している第1層と、前記第1層を被覆する第2層とを有し、
 (a2)前記第2層が重合開始基を含む、及び、(b2)前記第2層がポリマー鎖と結合している、の少なくとも1つが成立する。
In the twelfth aspect of the present invention, for example, in the composite base material according to any one of the first to eleventh aspects, the underlayer comprises a first layer in direct contact with the surface of the base material; a second layer covering the first layer;
At least one of (a2) the second layer includes a polymerization initiation group, and (b2) the second layer is bound to a polymer chain is established.
 本発明の第13態様にかかる複合基材の製造方法は、
 第1~第12態様のいずれか1つにかかる複合基材の製造方法であって、
 前記製造方法は、
 前記基材の前記表面が被覆されるように、前記重合開始基を含む前記下地層を形成する工程(I)を含む。
The method for producing a composite substrate according to the thirteenth aspect of the present invention comprises:
A method for manufacturing a composite substrate according to any one of the first to twelfth aspects, comprising:
The manufacturing method is
A step (I) of forming the underlayer containing the polymerization initiation group so as to cover the surface of the base material.
 本発明の第14態様において、例えば、第13態様にかかる製造方法では、前記工程(I)は、
 前記カテコールアミン類を含む溶液を前記表面に接触させる工程(i)と、
 前記カテコールアミン類の重合反応を進行させる工程(ii)と、
を含む。
In the fourteenth aspect of the present invention, for example, in the manufacturing method according to the thirteenth aspect, the step (I) includes:
a step (i) of contacting the surface with a solution containing the catecholamines;
a step (ii) of allowing the polymerization reaction of the catecholamines to proceed;
including.
 本発明の第15態様において、例えば、第14態様にかかる製造方法では、前記カテコールアミン類が前記重合開始基を含む。 In the fifteenth aspect of the present invention, for example, in the production method according to the fourteenth aspect, the catecholamines contain the polymerization initiation group.
 本発明の第16態様において、例えば、第14又は第15態様にかかる製造方法では、前記工程(i)は、
 前記表面に、水を含む液体を接触させる工程(ia)と、
 前記液体に前記カテコールアミン類を添加する工程(ib)と、
を含む。
In the sixteenth aspect of the present invention, for example, in the manufacturing method according to the fourteenth or fifteenth aspect, the step (i) includes
a step (ia) of contacting the surface with a liquid comprising water;
a step (ib) of adding the catecholamines to the liquid;
including.
 本発明の第17態様において、例えば、第14~第16態様のいずれか1つにかかる製造方法では、前記溶液のpHを調整することによって、前記カテコールアミン類の前記重合反応を進行させる。 In the 17th aspect of the present invention, for example, in the production method according to any one of the 14th to 16th aspects, the polymerization reaction of the catecholamines is allowed to proceed by adjusting the pH of the solution.
 本発明の第18態様において、例えば、第13~第17態様のいずれか1つにかかる製造方法は、前記重合開始基を含む前記下地層にモノマー群を接触させ、前記重合開始基により前記モノマー群を重合させることによって、前記ポリマー鎖を形成する工程(II)をさらに含む。 In the 18th aspect of the present invention, for example, the production method according to any one of the 13th to 17th aspects includes contacting a group of monomers with the underlayer containing the polymerization initiation group, and Further comprising step (II) of forming said polymer chain by polymerizing groups.
 以下、本発明の詳細を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。 Although the details of the present invention will be described below, the following description is not intended to limit the present invention to specific embodiments.
(複合基材の実施形態)
 図1A及び1Bに示すとおり、本実施形態の複合基材10A及び10Bは、基材1と、下地層2とを備える。下地層2は、基材1の表面1aを被覆している。下地層2は、表面1aを全体的に被覆していてもよく、表面1aを部分的に被覆していてもよい。さらに、本実施形態において、(a)下地層2が重合開始基を含む、及び、(b)下地層2がポリマー鎖3と結合している、の少なくとも1つが成立する。図1Aは、要件(a)を満たす複合基材10Aの一例を示している。図1Bは、要件(b)を満たす複合基材10Bの一例を示している。
(Embodiment of Composite Substrate)
As shown in FIGS. 1A and 1B, composite substrates 10A and 10B of this embodiment comprise a substrate 1 and a base layer 2. FIG. The underlying layer 2 covers the surface 1 a of the base material 1 . The underlayer 2 may entirely cover the surface 1a or partially cover the surface 1a. Furthermore, in the present embodiment, at least one of (a) the underlying layer 2 contains a polymerization initiation group and (b) the underlying layer 2 is bound to the polymer chains 3 is established. FIG. 1A shows an example of a composite substrate 10A that satisfies requirement (a). FIG. 1B shows an example of a composite substrate 10B that satisfies requirement (b).
 図1A及び1Bは、基材1の表面の部分拡大断面図である。図1A及び1Bでは、単純化のために表面1aの断面を直線により示しているが、表面1aの形状はこれに限られない。表面1aは、典型的には、基材1の外形を規定する外表面である。ただし、基材1が孔を有する場合、表面1aは、基材1の内部の孔に面する表面であってもよい。一例として、下地層2は、基材1の外表面とともに、基材1の孔の表面を被覆していてもよい。 1A and 1B are partially enlarged cross-sectional views of the surface of the substrate 1. FIG. In FIGS. 1A and 1B, the cross section of the surface 1a is shown by a straight line for simplification, but the shape of the surface 1a is not limited to this. Surface 1 a is typically an outer surface that defines the outer shape of base material 1 . However, if the substrate 1 has pores, the surface 1a may be the surface facing the pores inside the substrate 1 . As an example, the underlayer 2 may cover the surface of the pores of the substrate 1 as well as the outer surface of the substrate 1 .
<要件(a)を満たす複合基材>
 以下では、まず、要件(a)を満たす複合基材10Aについて説明する。複合基材10Aは、例えば、下地層2と結合しているポリマー鎖3を含まない。
<Composite base material satisfying requirement (a)>
Below, 10 A of composite base materials which satisfy|fill requirement (a) are demonstrated first. Composite substrate 10A does not include, for example, polymer chains 3 bound to underlying layer 2 .
[基材]
 本実施形態において、基材1の材料及び構造は、特に限定されない。基材1は、有機材料を含んでいてもよく、無機材料を含んでいてもよく、有機材料及び無機材料の両方を含んでいてもよい。基材1に含まれる有機材料としては、例えば、疎水性樹脂、親水性樹脂などの樹脂が挙げられる。一例として、基材1は、疎水性樹脂を含んでいてもよい。本明細書において、「疎水性樹脂」とは、含水率が0.1%以下である樹脂を意味し、「親水性樹脂」とは、含水率が0.1%を上回る樹脂を意味する。ここで、「含水率」は、乾燥時の樹脂の重量に対する、含水時の樹脂の重量と乾燥時の樹脂の重量との差の比率を意味する。「乾燥時の樹脂の重量」は、樹脂を60℃の雰囲気下に2時間以上静置して乾燥させた時点で樹脂を秤量した値である。「含水時の樹脂の重量」は、上記の乾燥時の樹脂を30℃に保温した水中に浸漬させた状態を2時間以上維持した後に、この樹脂を秤量した値である。「樹脂を60℃の雰囲気下に2時間以上静置して乾燥させる」操作は、樹脂の重量変化が生じない状態となるまで行う。樹脂を静置する時間は、2時間以上であり、かつ樹脂の重量変化が生じない状態になる限り特に限定されず、2時間であってもよく、3時間であってもよい。「樹脂の重量変化が生じない状態」とは、例えば、樹脂を60℃の雰囲気下に2時間以上の所定の時間(t時間)静置して乾燥させた場合の樹脂の重量Wtと、さらに30分間(t+0.5時間)静置して乾燥させた場合の樹脂の重量Wt+0.5との差が、重量Wtの±0.5%の範囲内にあることを意味する。「樹脂を30℃に保温した水中に浸漬させた状態を2時間以上維持する」操作は、上記と同様の判断基準で、樹脂の重量変化が生じない状態となるまで行う。
[Base material]
In this embodiment, the material and structure of the substrate 1 are not particularly limited. The substrate 1 may contain an organic material, may contain an inorganic material, or may contain both an organic material and an inorganic material. Examples of organic materials contained in the substrate 1 include resins such as hydrophobic resins and hydrophilic resins. As an example, the base material 1 may contain a hydrophobic resin. As used herein, "hydrophobic resin" means a resin having a water content of 0.1% or less, and "hydrophilic resin" means a resin having a water content of more than 0.1%. Here, the "moisture content" means the ratio of the difference between the weight of the resin when it is wet and the weight of the resin when it is dry to the weight of the resin when it is dry. The "weight of the resin when dried" is a value obtained by weighing the resin when the resin is left to stand in an atmosphere of 60°C for 2 hours or more to dry. "Weight of resin when wet" is a value obtained by weighing the above-mentioned dried resin after immersing the resin in water kept at 30°C for 2 hours or more. The operation of "drying the resin by leaving it in an atmosphere of 60° C. for 2 hours or longer" is performed until the weight of the resin does not change. The time for which the resin is allowed to stand is not particularly limited as long as it is 2 hours or more and the weight of the resin does not change, and it may be 2 hours or 3 hours. "The state in which the weight of the resin does not change" is, for example, the weight W t of the resin when the resin is left to stand for a predetermined time (t hours) of 2 hours or more in an atmosphere of 60 ° C. and dried, It means that the difference from the weight Wt+0.5 of the resin when left to stand for 30 minutes (t+0.5 hours) to dry is within the range of ±0.5% of the weight Wt . The operation of "keeping the resin immersed in water kept at 30° C. for 2 hours or more" is performed according to the same criteria as above until the weight of the resin does not change.
 疎水性樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチレン-ポリテトラフルオロエチレン共重合体(ETFE)、パーフルオロアルコキシアルカン(PFA)などのフッ素樹脂;ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン樹脂;ポリスチレン樹脂;ゴム系樹脂などが挙げられる。基材1は、好ましくは、疎水性樹脂として、フッ素樹脂、特にPTFE、を含む。 Hydrophobic resins include, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-polytetrafluoroethylene copolymer (ETFE), perfluoroalkoxyalkane (PFA) and other fluorine resins; polyethylene ( PE), polyolefin resins such as polypropylene (PP); polystyrene resins; rubber-based resins; The substrate 1 preferably contains a fluororesin, particularly PTFE, as the hydrophobic resin.
 親水性樹脂としては、例えば、ポリイミド樹脂;ポリエーテルイミド樹脂;ポリエーテルエーテルケトン樹脂;ポリエーテルサルホン樹脂;ポリエチレンテレフタレート樹脂;ポリカーボネート樹脂;ナイロンなどのポリアミド樹脂;セルロース樹脂;エポキシ樹脂;ポリ(メタ)アクリル酸メチルなどの(メタ)アクリル樹脂;ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体(EVOH)などのポリビニルアルコール樹脂などが挙げられる。なお、本明細書において、(メタ)アクリル酸は、アクリル酸及び/又はメタクリル酸を意味する。 Examples of hydrophilic resins include polyimide resins; polyetherimide resins; polyetheretherketone resins; polyethersulfone resins; polyethylene terephthalate resins; polycarbonate resins; ) (meth)acrylic resins such as methyl acrylate; and polyvinyl alcohol resins such as polyvinyl alcohol (PVA) and ethylene-vinyl alcohol copolymer (EVOH). In addition, in this specification, (meth)acrylic acid means acrylic acid and/or methacrylic acid.
 無機材料としては、例えば、シリコン、ガラス、金属、金属酸化物、合金などが挙げられる。 Examples of inorganic materials include silicon, glass, metals, metal oxides, and alloys.
 基材1は、フッ素樹脂、特にPTFE、を主成分として含んでいてもよく、好ましくは実質的にフッ素樹脂のみからなる。本明細書において、「主成分」とは、基材1に重量比で最も多く含まれる成分を意味する。「実質的に~からなる」は、言及された材料の本質的特徴を変更する他の成分を排除することを意味する。ただし、基材1は、フッ素樹脂の他に不純物を含んでいてもよい。 The base material 1 may contain a fluororesin, particularly PTFE, as a main component, and preferably consists essentially of a fluororesin. As used herein, the term “main component” means a component contained in the base material 1 in the largest amount by weight. "Consisting essentially of" means excluding other ingredients that modify the essential characteristics of the referenced material. However, the substrate 1 may contain impurities in addition to the fluororesin.
 基材1は、複数の孔を有する多孔質基材であってもよく、孔を有していなくてもよい。基材1の形状としては、例えば、膜状、粒子状などが挙げられる。膜状の基材1の具体的な形態は、シート、フィルム、織布、不織布などである。織布、不織布などを構成する繊維は、コアと、当該コアを被覆しているシェルとを備えていてもよい。一例として、コアが、疎水性樹脂以外の他の材料(親水性樹脂、無機材料など)で構成され、かつ、シェルが疎水性樹脂で構成されていてもよい。基材1の具体例としては、PTFE多孔質膜、シリコンウェハ、PTFEシートなどが挙げられる。 The substrate 1 may be a porous substrate having a plurality of pores, or may have no pores. Examples of the shape of the base material 1 include a film shape and a particle shape. Specific forms of the film-like substrate 1 are sheets, films, woven fabrics, non-woven fabrics, and the like. Fibers comprising woven fabrics, non-woven fabrics, etc. may comprise a core and a shell covering the core. As an example, the core may be made of a material other than hydrophobic resin (hydrophilic resin, inorganic material, etc.), and the shell may be made of hydrophobic resin. Specific examples of the base material 1 include a PTFE porous membrane, a silicon wafer, a PTFE sheet, and the like.
 基材1が膜状である場合、基材1の厚さは、例えば、1~1000μmである。 When the base material 1 is in the form of a film, the thickness of the base material 1 is, for example, 1 to 1000 μm.
 基材1が多孔質基材である場合、多孔質基材に含まれる孔の形状は、特に限定されない。多孔質基材は、三次元状に連続して形成されている連続孔を有していてもよく、独立孔を有していてもよい。多孔質基材は、多孔質基材を貫通する貫通孔を有していてもよい。一例として、貫通孔は、多孔質基材の厚さ方向に延びていてもよい。 When the base material 1 is a porous base material, the shape of the pores included in the porous base material is not particularly limited. The porous substrate may have continuous pores formed continuously in a three-dimensional shape, or may have closed pores. The porous substrate may have through-holes passing through the porous substrate. As an example, the through holes may extend in the thickness direction of the porous substrate.
 多孔質基材の平均孔径は、例えば、0.01~100μmである。多孔質基材の平均孔径は、ASTM(米国試験材料協会)F316-86に準拠した方法によって測定することができる。 The average pore size of the porous substrate is, for example, 0.01 to 100 μm. The average pore size of the porous substrate can be measured by a method according to ASTM (American Society for Testing and Materials) F316-86.
 多孔質基材の気孔率は、例えば、10%~90%である。多孔質基材の気孔率は、多孔質基材の重量W(g)、体積V(cm3)及び真密度D(g/cm3)を下記式に代入することによって算出できる。
 気孔率(%)={1-(W/(V・D))}×100
The porosity of the porous substrate is, for example, 10% to 90%. The porosity of the porous substrate can be calculated by substituting the weight W (g), volume V (cm 3 ) and true density D (g/cm 3 ) of the porous substrate into the following formula.
Porosity (%) = {1-(W/(V D))} x 100
 多孔質基材において、窒素ガス吸着によるBET(Brunauer-Emmett-Teller)比表面積は、特に限定されず、例えば、0.01~100m2/gである。 In the porous substrate, the BET (Brunauer-Emmett-Teller) specific surface area by nitrogen gas adsorption is not particularly limited, and is, for example, 0.01 to 100 m 2 /g.
[下地層]
 上述のとおり、要件(a)を満たす複合基材10Aにおいて、下地層2は、重合開始基を含む。重合開始基は、例えば、ハロゲン基及びニトロキシド基からなる群より選ばれる少なくとも1つである。これらの重合開始基は、ラジカル重合、特にリビングラジカル重合、を開始させることに適している。ハロゲン基は、例えば、F、Cl、Br又はIであり、好ましくはBrである。
[Underlayer]
As described above, in the composite substrate 10A that satisfies the requirement (a), the base layer 2 contains a polymerization initiation group. The polymerization initiation group is, for example, at least one selected from the group consisting of halogen groups and nitroxide groups. These polymerization initiating groups are suitable for initiating radical polymerization, especially living radical polymerization. A halogen group is for example F, Cl, Br or I, preferably Br.
 下地層2は、下記式(1)で表されるカテコールアミン類に由来する構成単位を有するポリマーPを含む。なお、本明細書において、「カテコールアミン類」は、カテコール基とアミノ基とを有する化合物及び/又はその誘導体を意味する。本実施形態において、(a1)ポリマーPが重合開始基を含む、の要件が成立していてもよい。
Figure JPOXMLDOC01-appb-C000009
The underlayer 2 contains a polymer P having structural units derived from catecholamines represented by the following formula (1). In this specification, "catecholamines" means compounds and/or derivatives thereof having a catechol group and an amino group. In the present embodiment, the requirement (a1) that the polymer P contains a polymerization initiation group may be satisfied.
Figure JPOXMLDOC01-appb-C000009
 式(1)において、R1~R4は、互いに独立して、水素原子(ただし、R1及びR2の両方が水素原子の場合を除く)又は任意の置換基である。R1及びR2において、任意の置換基は、特に限定されず、例えば、ヒドロキシル基、カルボキシル基又はハロゲン基である。R1及びR2において、ハロゲン基は、ブロモ基であることが好ましい。一例として、R1がヒドロキシル基であり、かつ、R2が水素原子であってもよい。 In formula (1), R 1 to R 4 are each independently a hydrogen atom (except when both R 1 and R 2 are hydrogen atoms) or an optional substituent. Optional substituents for R 1 and R 2 are not particularly limited and are, for example, hydroxyl groups, carboxyl groups or halogen groups. In R 1 and R 2 , the halogen group is preferably a bromo group. As an example, R 1 may be a hydroxyl group and R 2 may be a hydrogen atom.
 R3及びR4において、任意の置換基は、特に限定されず、例えば、置換基を有していてもよいアシル基である。アシル基は、-CORaで表される。Raは、例えば、置換基を有していてもよい炭化水素基である。炭化水素基は、直鎖状、分岐鎖状のいずれであってもよい。炭化水素基の炭素数は、特に限定されず、例えば1~10であり、好ましくは1~5である。炭化水素基としては、メチル基、エチル基、プロピル基などが挙げられ、好ましくはイソプロピル基である。炭化水素基の置換基としては、例えば、ハロゲン基などの重合開始基が挙げられる。 The optional substituents for R 3 and R 4 are not particularly limited, and are, for example, acyl groups optionally having substituents. An acyl group is represented by -COR a . R a is, for example, a hydrocarbon group optionally having a substituent. The hydrocarbon group may be linear or branched. The number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1-10, preferably 1-5. Examples of the hydrocarbon group include methyl group, ethyl group, propyl group and the like, preferably isopropyl group. Substituents of the hydrocarbon group include, for example, polymerization initiation groups such as halogen groups.
 R3及びR4において、任意の置換基は、下記式(5)で表されてもよい。
Figure JPOXMLDOC01-appb-C000010
Any substituents in R 3 and R 4 may be represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000010
 式(5)において、R7は、置換基を有していてもよい2価の炭化水素基である。R7において、2価の炭化水素基は、直鎖状、分岐鎖状のいずれであってもよい。2価の炭化水素基の炭素数は、特に限定されず、例えば1~10であり、好ましくは1~5である。2価の炭化水素基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基などが挙げられ、好ましくはプロパン-2,2-ジイル基である。2価の炭化水素基は、置換基を有していなくてもよい。R7は、好ましくはプロパン-2,2-ジイル基である。式(5)において、Aは、重合開始基である。重合開始基としては、上述のものが挙げられる。Aは、好ましくはブロモ基である。 In formula (5), R7 is a divalent hydrocarbon group which may have a substituent. In R 7 , the divalent hydrocarbon group may be linear or branched. The number of carbon atoms in the divalent hydrocarbon group is not particularly limited, and is, for example, 1-10, preferably 1-5. The divalent hydrocarbon group includes a methylene group, an ethylene group, a propane-1,3-diyl group, a propane-2,2-diyl group and the like, preferably a propane-2,2-diyl group. A divalent hydrocarbon group may not have a substituent. R 7 is preferably a propane-2,2-diyl group. In formula (5), A is a polymerization initiation group. Examples of the polymerization initiation group include those described above. A is preferably a bromo group.
 R3及びR4は、典型的には水素原子である。ただし、R3及びR4からなる群より選ばれる少なくとも1つが上記の式(5)で表される置換基であってもよい。 R 3 and R 4 are typically hydrogen atoms. However, at least one selected from the group consisting of R 3 and R 4 may be a substituent represented by the above formula (5).
 式(1)において、Zは、下記式(2)又は(3)で表される。
Figure JPOXMLDOC01-appb-C000011
In formula (1), Z is represented by the following formula (2) or (3).
Figure JPOXMLDOC01-appb-C000011
 式(2)において、X-は、任意のアニオンである。X-は、4級アンモニウムカチオンと塩を形成するものであれば、特に限定されず、例えば、ハロゲン化物イオン又はカルボン酸イオンである。ハロゲン化物イオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどが挙げられる。カルボン酸イオンとしては、例えば、酒石酸イオンが挙げられる。X-は、好ましくは塩化物イオンである。 In formula (2), X is any anion. X is not particularly limited as long as it forms a salt with a quaternary ammonium cation, and is, for example, a halide ion or a carboxylate ion. Halide ions include, for example, fluoride ions, chloride ions, bromide ions, and iodide ions. Carboxylate ions include, for example, tartaric acid ions. X is preferably chloride ion.
 式(3)において、R5は、水素原子又は任意の置換基である。R5において、任意の置換基は、特に限定されず、例えば、置換基を有していてもよい炭化水素基、又は、置換基を有していてもよいアシル基である。R5において、炭化水素基は、直鎖状、分岐鎖状のいずれであってもよい。炭化水素基の炭素数は、特に限定されず、例えば1~10であり、好ましくは1~5である。炭化水素基としては、メチル基、エチル基、プロピル基などが挙げられ、好ましくはメチル基である。炭化水素基の置換基としては、例えば、ハロゲン基などの重合開始基が挙げられる。 In formula (3), R 5 is a hydrogen atom or any substituent. The optional substituent in R 5 is not particularly limited, and examples thereof include an optionally substituted hydrocarbon group or an optionally substituted acyl group. In R 5 , the hydrocarbon group may be linear or branched. The number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1-10, preferably 1-5. Examples of the hydrocarbon group include methyl group, ethyl group, propyl group and the like, preferably methyl group. Substituents of the hydrocarbon group include, for example, polymerization initiation groups such as halogen groups.
 R5において、アシル基は、-CORaで表される。Raは、例えば、置換基を有していてもよい炭化水素基である。この炭化水素基としては、上述のものが挙げられる。 In R 5 , the acyl group is represented by —COR a . R a is, for example, a hydrocarbon group optionally having a substituent. Examples of the hydrocarbon group include those described above.
 式(1)のZは、下記式(4)で表されてもよい。式(4)は、上記の式(3)をより詳細に示したものである。
Figure JPOXMLDOC01-appb-C000012
Z in formula (1) may be represented by the following formula (4). Equation (4) is a more detailed representation of Equation (3) above.
Figure JPOXMLDOC01-appb-C000012
 式(4)において、R6は、置換基を有していてもよい2価の炭化水素基である。R6において、2価の炭化水素基は、直鎖状、分岐鎖状のいずれであってもよい。2価の炭化水素基の炭素数は、特に限定されず、例えば1~10であり、好ましくは1~5である。2価の炭化水素基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基などが挙げられ、好ましくはプロパン-2,2-ジイル基である。2価の炭化水素基は、置換基を有していなくてもよい。 In formula (4), R 6 is a divalent hydrocarbon group which may have a substituent. In R 6 , the divalent hydrocarbon group may be linear or branched. The number of carbon atoms in the divalent hydrocarbon group is not particularly limited, and is, for example, 1-10, preferably 1-5. The divalent hydrocarbon group includes a methylene group, an ethylene group, a propane-1,3-diyl group, a propane-2,2-diyl group and the like, preferably a propane-2,2-diyl group. A divalent hydrocarbon group may not have a substituent.
 式(4)において、Aは、重合開始基である。重合開始基としては、上述のものが挙げられる。Aは、好ましくはブロモ基である。 In formula (4), A is a polymerization initiation group. Examples of the polymerization initiation group include those described above. A is preferably a bromo group.
 カテコールアミン類は、下記式(6)で表されてもよい。
Figure JPOXMLDOC01-appb-C000013
Catecholamines may be represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000013
 式(6)のカテコールアミン類は、式(1)において、R3及びR4が水素原子である化合物に相当する。式(6)において、R1、R2及びZは、式(1)と同じである。式(6)で表されるカテコールアミン類の具体例としては、下記式(C1)~(C7)が挙げられる。
Figure JPOXMLDOC01-appb-C000014
The catecholamines of formula (6) correspond to compounds of formula (1) in which R 3 and R 4 are hydrogen atoms. In formula (6), R 1 , R 2 and Z are the same as in formula (1). Specific examples of catecholamines represented by formula (6) include the following formulas (C1) to (C7).
Figure JPOXMLDOC01-appb-C000014
 式(C1)~(C3)は、ノルエピネフリン誘導体を表している。式(C4)は、エピネフリンを表している。式(C5)は、レボドパを表している。式(C6)は、ドロキシドパを表している。本明細書では、式(C1)のノルエピネフリン塩酸塩をNEと呼び、式(C2)のノルエピネフリン誘導体をATRP-NEと呼ぶことがある。 Formulas (C1) to (C3) represent norepinephrine derivatives. Formula (C4) represents epinephrine. Formula (C5) represents levodopa. Formula (C6) represents droxidopa. The norepinephrine hydrochloride of formula (C1) is sometimes referred to herein as NE, and the norepinephrine derivative of formula (C2) as ATRP-NE.
 カテコールアミン類は、上記の式(6)で表される化合物と、他の化合物との反応物であってもよい。他の化合物としては、例えば、重合開始基と、カテコールアミン類と反応可能な官能基とを有する化合物Fが挙げられる。カテコールアミン類と反応可能な官能基は、典型的には、ハロゲン化アシル基である。化合物Fは、例えば、下記式(7)で表される。
Figure JPOXMLDOC01-appb-C000015
The catecholamines may be reaction products of the compound represented by the above formula (6) and other compounds. Other compounds include, for example, compound F having a polymerization initiation group and a functional group capable of reacting with catecholamines. Functional groups capable of reacting with catecholamines are typically acyl halide groups. Compound F is represented, for example, by the following formula (7).
Figure JPOXMLDOC01-appb-C000015
 式(7)において、X1は、ハロゲン基であり、好ましくはブロモ基である。R8は、置換基を有していてもよい2価の炭化水素基である。R8の炭化水素基としては、R7について上述したものが挙げられる。R8は、好ましくはプロパン-2,2-ジイル基である。式(7)において、Aは、重合開始基である。重合開始基としては、上述のものが挙げられる。Aは、好ましくはブロモ基である。化合物Fの具体例は、2-ブロモイソブチリルブロミド(BiBB)である。 In formula (7), X 1 is a halogen group, preferably a bromo group. R 8 is a divalent hydrocarbon group optionally having a substituent. Hydrocarbon groups for R 8 include those described above for R 7 . R 8 is preferably a propane-2,2-diyl group. In formula (7), A is a polymerization initiation group. Examples of the polymerization initiation group include those described above. A is preferably a bromo group. A specific example of compound F is 2-bromoisobutyryl bromide (BiBB).
 式(6)で表される化合物と、式(7)で表される化合物Fとの反応物は、例えば、下記式(8)で表される。
Figure JPOXMLDOC01-appb-C000016
The reaction product of the compound represented by formula (6) and compound F represented by formula (7) is represented by, for example, the following formula (8).
Figure JPOXMLDOC01-appb-C000016
 式(8)において、R1及びR2は、式(6)と同じである。R9及びR10は、互いに独立して、水素原子、又は一般式-C(=O)-R8-Aで表される基である。R11は、水素原子、式(6)のZに含まれる置換基、又は一般式-C(=O)-R8-Aで表される基である。R9~R11からなる群より選ばれる少なくとも1つは、一般式-C(=O)-R8-Aで表される基である。一般式-C(=O)-R8-Aで表される基は、式(7)の化合物Fに由来している。 In formula (8), R 1 and R 2 are the same as in formula (6). R 9 and R 10 are each independently a hydrogen atom or a group represented by the general formula -C(=O)-R 8 -A. R 11 is a hydrogen atom, a substituent contained in Z in formula (6), or a group represented by the general formula —C(═O)—R 8 —A. At least one selected from the group consisting of R 9 to R 11 is a group represented by the general formula -C(=O)-R 8 -A. The group represented by the general formula --C(=O)--R 8 --A is derived from compound F of formula (7).
 カテコールアミン類は、上述のものを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。カテコールアミン類は、ノルエピネフリン誘導体を含むことが好ましく、式(C1)~(C2)で表される化合物のうちの少なくとも1つを含むことがより好ましい。 The above-mentioned catecholamines may be used singly or in combination of two or more. The catecholamines preferably contain a norepinephrine derivative, and more preferably contain at least one of the compounds represented by formulas (C1) to (C2).
 ポリマーPは、式(1)で表されるカテコールアミン類以外の他のカテコールアミン類に由来する構成単位をさらに有していてもよい。他のカテコールアミン類は、式(1)において、R1及びR2の両方が水素原子であるドーパミン誘導体であってもよい。他のカテコールアミン類の具体例としては、下記式(D1)~(D3)が挙げられる。
Figure JPOXMLDOC01-appb-C000017
The polymer P may further have structural units derived from catecholamines other than the catecholamines represented by formula (1). Other catecholamines may be dopamine derivatives in which both R 1 and R 2 are hydrogen atoms in formula (1). Specific examples of other catecholamines include formulas (D1) to (D3) below.
Figure JPOXMLDOC01-appb-C000017
 式(D1)~(D2)は、ドーパミン誘導体を表している。式(D3)は、メチルドパを表している。本明細書では、式(D1)のドーパミン塩酸塩をDAと呼び、式(D2)のドーパミン誘導体をATRP-DAと呼ぶことがある。 Formulas (D1) to (D2) represent dopamine derivatives. Formula (D3) represents methyldopa. The dopamine hydrochloride of formula (D1) is sometimes referred to herein as DA, and the dopamine derivative of formula (D2) is sometimes referred to as ATRP-DA.
 カテコールアミン類は、例えば、酸素原子の存在下で自己酸化重合することができる。一例として、式(1)で表されるカテコールアミン類では、以下の反応式(S1)に示す重合反応が進行する。反応式(S1)において、式(E1)で表されるインドール誘導体は、重合反応の中間体である。反応式(S1)では、カテコールアミン類に由来する構成単位(p1)を有するポリマーPが形成される。すなわち、ポリマーPは、下記の構成単位(p1)を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000018
Catecholamines, for example, can self-oxidize and polymerize in the presence of oxygen atoms. As an example, catecholamines represented by formula (1) undergo a polymerization reaction represented by the following reaction formula (S1). In reaction formula (S1), the indole derivative represented by formula (E1) is an intermediate of the polymerization reaction. In Reaction Formula (S1), a polymer P having structural units (p1) derived from catecholamines is formed. That is, the polymer P may contain the following structural unit (p1).
Figure JPOXMLDOC01-appb-C000018
 式(E1)のインドール誘導体及び構成単位(p1)において、R1~R4は、式(1)と同じである。R12は、水素原子又はR5に対応する置換基である。反応式(S1)からわかるとおり、重合開始基を含むカテコールアミン類を用いることによって、重合開始基を含むポリマーPを作製することができる。なお、構成単位(p1)では、インドール環の4位の位置及び7位の位置において、重合反応が進行している。ただし、インドール誘導体(E1)において、R2が水素原子である場合、構成単位(p1)では、インドール環の2位の位置でも重合反応が進行することがある。このとき、ポリマーPは、三次元的な架橋構造を有する。 In the indole derivative and structural unit (p1) of formula (E1), R 1 to R 4 are the same as in formula (1). R12 is a hydrogen atom or a substituent corresponding to R5 . As can be seen from the reaction formula (S1), a polymer P containing a polymerization initiation group can be produced by using catecholamines containing a polymerization initiation group. In addition, in the structural unit (p1), the polymerization reaction proceeds at the 4-position and 7-position of the indole ring. However, when R 2 is a hydrogen atom in the indole derivative (E1), the polymerization reaction may proceed even at the 2-position of the indole ring in the structural unit (p1). At this time, the polymer P has a three-dimensional crosslinked structure.
 ポリマーPにおける、式(1)で表されるカテコールアミン類に由来する構成単位の含有率は、特に限定されず、例えば10モル%以上であり、30モル%以上であってもよく、50モル%以上であってもよく、70モル%以上であってもよく、90モル%以上であってもよく、95モル%以上であってもよい。ポリマーPは、実質的に、式(1)で表されるカテコールアミン類に由来する構成単位のみから構成されていてもよい。 The content of structural units derived from the catecholamines represented by formula (1) in the polymer P is not particularly limited, and is, for example, 10 mol% or more, may be 30 mol% or more, or 50 mol%. 70 mol % or more, 90 mol % or more, or 95 mol % or more. The polymer P may be substantially composed only of structural units derived from catecholamines represented by formula (1).
 下地層2は、ポリマーPを主成分として含んでいてもよく、好ましくは実質的にポリマーPのみからなる。ただし、下地層2は、ポリマーPの他に不純物を含んでいてもよい。 The underlayer 2 may contain the polymer P as a main component, and preferably consists essentially of the polymer P only. However, the underlying layer 2 may contain impurities in addition to the polymer P.
 下地層2の厚さは、特に限定されず、例えば1~200nmである。 The thickness of the underlying layer 2 is not particularly limited, and is, for example, 1 to 200 nm.
 式(1)で表されるカテコールアミン類に由来する構成単位を有するポリマーPは、基材1の種類を問わず、基材1の表面に強く接着する傾向がある。さらに、このポリマーPを含む下地層2は、表面の平滑性に優れている傾向がある。平滑な下地層2によれば、ポリマー鎖3を導入することによる基材1の特性の調整を容易に行うことができる傾向がある。なお、本発明者らの検討によれば、式(1)において、R1及びR2の両方が水素原子であるドーパミン誘導体のみを用いて下地層を形成した場合、得られた下地層の表面を走査型電子顕微鏡(SEM)で観察すると、平均粒子径が50~150nm程度の微小な粒子が数多く確認される傾向がある。この粒子に起因して、下地層の表面には凹凸が数多く存在する傾向がある。 Polymer P having structural units derived from catecholamines represented by formula (1) tends to strongly adhere to the surface of substrate 1 regardless of the type of substrate 1 . Furthermore, the underlying layer 2 containing the polymer P tends to have excellent surface smoothness. A smooth underlayer 2 tends to facilitate adjustment of the properties of the substrate 1 by introducing polymer chains 3 . According to the studies of the present inventors, in the case where the underlayer is formed using only a dopamine derivative in which both R 1 and R 2 are hydrogen atoms in formula (1), the surface of the underlayer obtained is observed with a scanning electron microscope (SEM), there tends to be a large number of fine particles with an average particle size of about 50 to 150 nm. Due to these particles, the surface of the underlayer tends to have many irregularities.
[複合基材の製造方法]
 複合基材10Aの製造方法は、基材1の表面1aが被覆されるように、重合開始基を含む下地層2を形成する工程(I)を含む。工程(I)は、例えば、式(1)で表されるカテコールアミン類を含む溶液Sを基材1の表面1aに接触させる工程(i)と、カテコールアミン類の重合反応を進行させる工程(ii)とを含む。
[Method for producing composite substrate]
The manufacturing method of the composite base material 10A includes a step (I) of forming an underlayer 2 containing a polymerization initiation group so that the surface 1a of the base material 1 is covered. The step (I) includes, for example, a step (i) of contacting the surface 1a of the substrate 1 with a solution S containing catecholamines represented by formula (1), and a step (ii) of allowing the polymerization reaction of the catecholamines to proceed. including.
 さらに、工程(i)は、基材1の表面1aに、水を含む液体Lを接触させる工程(ia)と、液体Lにカテコールアミン類を添加する工程(ib)と、を含む。工程(ia)では、例えば、基材1を液体Lに浸漬させることによって、基材1の表面1aに液体Lを接触させる。液体Lは、水のみから構成されていてもよく、アルコールと水との混合液体であってもよい。アルコールは、好ましくは、メタノール、エタノールなどの低級アルコールである。液体Lがアルコールと水との混合液体である場合、液体Lにおける水の含有率は、特に限定されず、例えば、50vol%~70vol%である。 Furthermore, step (i) includes step (ia) of bringing liquid L containing water into contact with surface 1a of substrate 1 and step (ib) of adding catecholamines to liquid L. In step (ia), the surface 1a of the base material 1 is brought into contact with the liquid L by immersing the base material 1 in the liquid L, for example. The liquid L may consist only of water, or may be a mixed liquid of alcohol and water. Alcohols are preferably lower alcohols such as methanol and ethanol. When the liquid L is a mixed liquid of alcohol and water, the content of water in the liquid L is not particularly limited, and is, for example, 50 vol % to 70 vol %.
 次に、工程(ib)において、液体Lにカテコールアミン類を添加する。これにより、カテコールアミン類が液体Lに溶解し、溶液Sが形成される。なお、上述のとおり、式(6)で表される化合物と、式(7)で表される化合物Fとを反応させることによって、式(8)で表されるカテコールアミン類を合成することができる。この反応は、例えば、N,N-ジメチルホルムアミド(DMF)などの有機溶媒中で、トリエチルアミンを用いて行うことができる。この反応によれば、式(8)で表されるカテコールアミン類を含む反応液が得られる。上記の液体Lには、この反応液を添加してもよい。この場合であっても、反応液と液体Lとが混合されることによって、溶液Sが形成される。液体Lが基材1の表面1aと接触しているため、液体Lにカテコールアミン類を添加することによって得られた溶液Sは表面1aに接触する。 Next, catecholamines are added to liquid L in step (ib). Thereby, the catecholamines are dissolved in the liquid L to form a solution S. As described above, the catecholamines represented by the formula (8) can be synthesized by reacting the compound represented by the formula (6) with the compound F represented by the formula (7). . This reaction can be carried out, for example, using triethylamine in an organic solvent such as N,N-dimethylformamide (DMF). According to this reaction, a reaction solution containing catecholamines represented by formula (8) is obtained. This reaction liquid may be added to the liquid L described above. Even in this case, the solution S is formed by mixing the reaction liquid and the liquid L. Since the liquid L is in contact with the surface 1a of the substrate 1, the solution S obtained by adding catecholamines to the liquid L contacts the surface 1a.
 本実施形態の製造方法では、カテコールアミン類は、重合開始基を含む。このとき、工程(ii)の重合反応によって、重合開始基を含むポリマーPを作製することができる。ただし、工程(ib)において、重合開始基を含むカテコールアミン類とともに、重合開始基を含まないカテコールアミン類を液体Lに添加してもよい。重合開始基を含まないカテコールアミン類を混合させることによって、下地層2の厚さを容易に調整できる傾向がある。重合開始基を含むカテコールアミン類と、重合開始基を含まないカテコールアミン類とのモル比は、特に限定されず、例えば、2:8~8:2である。 In the production method of this embodiment, the catecholamines contain a polymerization initiation group. At this time, a polymer P containing a polymerization initiation group can be produced by the polymerization reaction of step (ii). However, in step (ib), catecholamines containing no polymerization initiation group may be added to the liquid L together with catecholamines containing a polymerization initiation group. By mixing catecholamines containing no polymerization initiation group, the thickness of the underlayer 2 tends to be easily adjusted. The molar ratio of catecholamines containing a polymerization initiating group to catecholamines not containing a polymerization initiating group is not particularly limited, and is, for example, 2:8 to 8:2.
 次に、工程(ii)において、カテコールアミン類の重合反応を進行させる。本実施形態では、溶液Sに含まれるカテコールアミン類が表面1aに接触した状態でカテコールアミン類の重合反応が進行する。これにより、表面1aの上に、重合開始基を含むポリマーPが形成され、下地層2が得られる。表面1aの上に、重合開始基を含む下地層2が形成されることによって、複合基材10Aを得ることができる。 Next, in step (ii), the polymerization reaction of catecholamines is allowed to proceed. In this embodiment, the polymerization reaction of the catecholamines proceeds while the catecholamines contained in the solution S are in contact with the surface 1a. As a result, the polymer P containing the polymerization initiation group is formed on the surface 1a, and the base layer 2 is obtained. 10 A of composite base materials can be obtained by forming the base layer 2 containing a polymerization initiation group on the surface 1a.
 カテコールアミン類の重合反応は、溶液SのpHを調整することによって進行させることができる。例えば、溶液SのpHを8以上、好ましくは8~9、に調整することによって、カテコールアミン類の重合反応を進行させることができる。溶液SのpHの調整は、例えば、トリスヒドロキシメチルアミノメタン(トリス)などを含む緩衝液によって行うことができる。緩衝液は、トリス塩酸緩衝液(TRIS-HCl)であってもよい。緩衝液は、工程(ib)を行う前に、液体Lに添加してもよい。この場合、工程(ib)で、緩衝液を含む液体Lにカテコールアミン類が添加されたときに、得られた溶液SのpHが適切に調整されている傾向がある。カテコールアミン類の重合反応は、例えば、室温(23℃)で行うことができる。 The polymerization reaction of catecholamines can be advanced by adjusting the pH of solution S. For example, by adjusting the pH of the solution S to 8 or more, preferably 8 to 9, the polymerization reaction of catecholamines can be advanced. The pH of the solution S can be adjusted with a buffer containing trishydroxymethylaminomethane (Tris), for example. The buffer may be Tris-HCl buffer (TRIS-HCl). A buffer may be added to liquid L before performing step (ib). In this case, when the catecholamines are added to the liquid L containing the buffer in step (ib), the pH of the resulting solution S tends to be adjusted appropriately. The polymerization reaction of catecholamines can be performed at room temperature (23° C.), for example.
 複合基材10Aの製造方法は、上述の方法に限定されない。例えば、工程(i)を次の方法によって行ってもよい。まず、上述の方法によって、式(8)で表されるカテコールアミン類を含む反応液を作製する。この反応液と水を混合することによって溶液Sを調製する。このとき、水とともに、トリス塩酸緩衝液などの緩衝液を反応液と混合してもよい。得られた溶液Sに基材1を浸漬させることによって、溶液Sを基材1の表面1aに接触させることができる。 The manufacturing method of the composite base material 10A is not limited to the method described above. For example, step (i) may be performed by the following method. First, a reaction solution containing catecholamines represented by formula (8) is prepared by the method described above. A solution S is prepared by mixing this reaction solution and water. At this time, a buffer such as Tris-HCl buffer may be mixed with the reaction solution together with water. By immersing the base material 1 in the obtained solution S, the solution S can be brought into contact with the surface 1a of the base material 1 .
 なお、基材1が多孔質基材である場合、多孔質基材と水を含む液体L(又は溶液S)とを単に接触させても、当該液体Lは、多孔質基材の孔の内部にほとんど充填されない傾向がある。特に、多孔質基材が疎水性樹脂を含む場合、多孔質基材の孔の内部に液体Lを充填することは難しい。基材1が多孔質基材である場合は、次の方法によって、多孔質基材の孔の表面に液体Lを接触させることができる。まず、工程(ia)の前に、多孔質基材とアルコールとを接触させる。詳細には、多孔質基材をアルコールに浸漬させる。アルコールとしては、上述のものが挙げられる。多孔質基材とアルコールとを接触させると、アルコールが多孔質基材の孔の内部に浸み込むことによって、孔の内部にアルコールが充填される。これにより、孔の内部がアルコールで満たされる。多孔質基材とアルコールとを接触させた状態で超音波処理を行ってもよい。超音波処理を行うことによって、アルコールが多孔質基材の孔の内部に容易に浸み込むことができる。 When the substrate 1 is a porous substrate, even if the porous substrate and the liquid L (or the solution S) containing water are simply brought into contact with each other, the liquid L will be trapped inside the pores of the porous substrate. tend to fill very little. In particular, when the porous substrate contains a hydrophobic resin, it is difficult to fill the liquid L inside the pores of the porous substrate. When the substrate 1 is a porous substrate, the surface of the pores of the porous substrate can be brought into contact with the liquid L by the following method. First, prior to step (ia), the porous substrate is brought into contact with alcohol. Specifically, the porous substrate is immersed in alcohol. Alcohols include those mentioned above. When the porous substrate and alcohol are brought into contact with each other, the alcohol penetrates into the pores of the porous substrate, thereby filling the pores with alcohol. As a result, the inside of the holes is filled with alcohol. Ultrasonic treatment may be performed while the porous substrate and alcohol are in contact with each other. The ultrasonic treatment allows the alcohol to easily penetrate into the pores of the porous substrate.
 次に、工程(ia)において、孔の内部にアルコールが充填された多孔質基材を水と接触させる。このとき、水は、多孔質基材の孔の内部に浸み込みつつ、アルコールと混合される。これにより、孔の内部において、水を含む液体Lが形成され、孔の内部を液体Lで充填することができる。このとき、多孔質基材を水と接触させた状態で超音波処理を行ってもよい。超音波処理を行うことによって、水が多孔質基材の孔の内部に容易に浸み込むことができる。超音波処理の条件は、特に限定されない。超音波処理は、例えば、1時間以上行ってもよい。 Next, in step (ia), the porous substrate with alcohol filled inside the pores is brought into contact with water. At this time, the water is mixed with the alcohol while permeating into the pores of the porous substrate. As a result, the liquid L containing water is formed inside the hole, and the inside of the hole can be filled with the liquid L. At this time, the ultrasonic treatment may be performed while the porous substrate is in contact with water. By performing ultrasonic treatment, water can easily penetrate into the pores of the porous substrate. Conditions for ultrasonic treatment are not particularly limited. Sonication may be performed, for example, for one hour or longer.
 工程(ia)において、孔の内部にアルコールが充填された多孔質基材に対して、水とともに界面活性剤を加えてもよい。界面活性剤によれば、水が多孔質基材の孔の内部により容易に浸み込むことができる。この操作によって形成された液体Lは、界面活性剤をさらに含んでいる。界面活性剤としては、特に限定されず、例えばフッ素系界面活性剤を用いることができる。 In step (ia), a surfactant may be added together with water to the porous substrate in which the inside of the pores is filled with alcohol. Surfactants allow water to more easily penetrate into the pores of the porous substrate. The liquid L formed by this operation further contains a surfactant. The surfactant is not particularly limited, and for example, a fluorosurfactant can be used.
 多孔質基材の孔の内部に液体Lを充填する方法は、上述の方法に限定されない。多孔質基材の孔の内部に液体Lを充填できる限り、工程(ia)の前に、孔の内部がアルコールで満たされた多孔質基材を準備しておく必要は必ずしもない。一例として、界面活性剤を含む液体Lを多孔質基材と接触させて、さらに超音波処理を行うことによって、多孔質基材の孔の内部に液体Lを充填してもよい。この方法において、液体Lは、アルコールを含んでいなくてもよく、水と界面活性剤との混合物であってもよい。 The method of filling the inside of the pores of the porous substrate with the liquid L is not limited to the method described above. As long as the inside of the pores of the porous substrate can be filled with the liquid L, it is not always necessary to prepare a porous substrate in which the inside of the pores is filled with alcohol before step (ia). As an example, the pores of the porous substrate may be filled with the liquid L by bringing the liquid L containing the surfactant into contact with the porous substrate and further performing ultrasonic treatment. In this method, the liquid L may be alcohol-free and may be a mixture of water and a surfactant.
 多孔質基材の孔の内部に液体Lが充填されている状態で、液体Lにカテコールアミン類を添加することによって、溶液Sが形成される。液体Lが多孔質基材の孔の内部に充填されているため、液体Lにカテコールアミン類を添加することによって得られた溶液Sは、孔の表面1aに接触する。この状態でカテコールアミン類の重合反応を進行させる(工程(II))ことによって、孔の表面の上にも下地層2を形成することができる。 A solution S is formed by adding catecholamines to the liquid L in a state in which the pores of the porous substrate are filled with the liquid L. Since the liquid L is filled inside the pores of the porous substrate, the solution S obtained by adding catecholamines to the liquid L contacts the surface 1a of the pores. By allowing the polymerization reaction of the catecholamines to proceed in this state (step (II)), the underlayer 2 can be formed also on the surfaces of the pores.
<要件(b)を満たす複合基材>
 次に、要件(b)を満たす複合基材10Bについて説明する。複合基材10Bでは、下地層2がポリマー鎖3と結合している。このことを除き、複合基材10Bは、複合基材10Aと同じである。したがって、上述の複合基材10Aと本実施形態の複合基材10Bとで共通する要素には同じ参照符号を付し、それらの説明を省略することがある。すなわち、以下の各実施形態に関する説明は、技術的に矛盾しない限り、相互に適用されうる。さらに、技術的に矛盾しない限り、各実施形態は、相互に組み合わされてもよい。
<Composite base material satisfying requirement (b)>
Next, the composite base material 10B that satisfies the requirement (b) will be described. In composite base material 10B, underlayer 2 is bonded to polymer chains 3 . Except for this, the composite substrate 10B is the same as the composite substrate 10A. Therefore, elements common to the composite substrate 10A described above and the composite substrate 10B of the present embodiment are denoted by the same reference numerals, and description thereof may be omitted. That is, the descriptions of the respective embodiments below can be applied to each other as long as they are not technically inconsistent. Furthermore, each embodiment may be combined with each other unless it is technically inconsistent.
 ポリマー鎖3は、例えば、複合基材10Aの下地層2、詳細にはポリマーP、に含まれる重合開始基を起点としたモノマー群の重合反応によって作製することができる。本実施形態において、(b1)ポリマーPがポリマー鎖3と結合している、の要件が成立していてもよい。複合基材10Bにおいて、下地層2、特にポリマーP、は、重合開始基を含んでいなくてもよい。 The polymer chain 3 can be produced, for example, by a polymerization reaction of a group of monomers starting from a polymerization initiation group contained in the underlayer 2 of the composite substrate 10A, specifically the polymer P. In the present embodiment, the requirement (b1) that the polymer P is bound to the polymer chain 3 may be satisfied. In the composite base material 10B, the underlayer 2, especially the polymer P, may not contain a polymerization initiation group.
[ポリマー鎖]
 図1Bに示すとおり、ポリマー鎖3は、例えば、下地層2の表面2aに結合しており、下地層2の厚さ方向に延びている。ポリマー鎖3は、例えば、基材1の外部に露出している。基材1が多孔質基材であり、かつ下地層2が多孔質基材の孔の表面も被覆している場合、一部のポリマー鎖3は、多孔質基材の孔の内部に存在していてもよい。
[Polymer chain]
As shown in FIG. 1B, the polymer chains 3 are, for example, attached to the surface 2a of the underlayer 2 and extend in the thickness direction of the underlayer 2 . The polymer chains 3 are exposed to the outside of the substrate 1, for example. When the substrate 1 is a porous substrate and the underlayer 2 also covers the surface of the pores of the porous substrate, some of the polymer chains 3 exist inside the pores of the porous substrate. may be
 ポリマー鎖3を形成するためのモノマー群は、例えば、ラジカル重合性モノマーを含む。言い換えると、ポリマー鎖3は、ラジカル重合性モノマーに由来する構成単位を含む。ラジカル重合性モノマーとしては、例えば、(メタ)アクリル酸エステル、(メタ)アクリル酸、(メタ)アクリルアミド、スチレン誘導体、オレフィン、ハロゲン化オレフィン、ビニルエステル、ビニルアルコール及びニトリルが挙げられる。 The group of monomers for forming the polymer chain 3 includes, for example, radically polymerizable monomers. In other words, the polymer chain 3 contains structural units derived from radically polymerizable monomers. Examples of radically polymerizable monomers include (meth)acrylic esters, (meth)acrylic acid, (meth)acrylamides, styrene derivatives, olefins, halogenated olefins, vinyl esters, vinyl alcohols and nitriles.
 (メタ)アクリル酸エステルは、例えば、下記式(9)で表される。
Figure JPOXMLDOC01-appb-C000019
(Meth)acrylic acid ester is represented, for example, by the following formula (9).
Figure JPOXMLDOC01-appb-C000019
 式(9)において、R13は、水素原子又はメチル基である。R14は、置換基を有していてもよい炭化水素基である。R14において、炭化水素基の炭素数は、特に限定されず、例えば1~20であり、好ましくは1~15である。炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよい。炭化水素基の置換基は、窒素原子、酸素原子、ハロゲン原子などのヘテロ原子を含んでいてもよい。炭化水素基の置換基としては、例えば、ヒドロキシル基、アミノ基、アルコキシ基、ハロゲン基などが挙げられる。 In formula (9), R 13 is a hydrogen atom or a methyl group. R 14 is a hydrocarbon group optionally having a substituent. In R 14 , the number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1-20, preferably 1-15. The hydrocarbon group may be linear or branched. A substituent of the hydrocarbon group may contain a heteroatom such as a nitrogen atom, an oxygen atom, or a halogen atom. Substituents for the hydrocarbon group include, for example, a hydroxyl group, an amino group, an alkoxy group, and a halogen group.
 一例として、R14は、下記式(10)により表されてもよい。
 -(R15-O)n-H  (10)
As an example, R 14 may be represented by the following formula (10).
—(R 15 —O) n —H (10)
 式(10)において、R15は、炭素数1~8のアルキレン基であり、好ましくはエチレン基である。式(10)において、複数のR15が存在する場合、複数のR15は、互いに同じであってもよく、異なっていてもよい。式(10)において、nは、1以上の整数である。nの上限値は、特に限定されず、例えば200である。 In formula (10), R 15 is an alkylene group having 1 to 8 carbon atoms, preferably an ethylene group. In formula (10), when multiple R 15 are present, the multiple R 15 may be the same or different. In formula (10), n is an integer of 1 or more. The upper limit of n is not particularly limited, and is 200, for example.
 R14は、フッ素含有炭化水素基であってもよい。フッ素含有炭化水素基は、分岐鎖状であってもよいが、直鎖状であることが好ましい。フッ素含有炭化水素基は、例えば、下記式(11)により表されてもよい。
 -R16-Rf  (11)
R 14 may be a fluorine-containing hydrocarbon group. The fluorine-containing hydrocarbon group may be branched, but preferably linear. A fluorine-containing hydrocarbon group may be represented, for example, by the following formula (11).
-R16 -Rf (11)
 式(11)において、R16は、炭素数1~8のアルキレン基であり、好ましくはエチレン基である。Rfは、炭素数1~12のパーフルオロアルキル基である。Rfにおいて、パーフルオロアルキル基の炭素数は、フッ素化合物に関する環境規制の観点から、好ましくは1~6であり、より好ましくは1~4である。 In formula (11), R 16 is an alkylene group having 1 to 8 carbon atoms, preferably an ethylene group. Rf is a perfluoroalkyl group having 1 to 12 carbon atoms. In Rf, the number of carbon atoms in the perfluoroalkyl group is preferably 1 to 6, more preferably 1 to 4, from the viewpoint of environmental regulations regarding fluorine compounds.
 式(9)のR14の具体例としては、ポリエチレングリコール基、1H,1H,2H,2H-ヘプタデカフルオロ-n-デシル基、1H,1H,2H,2H-トリデカフルオロ-n-オクチル基、メチル基、エチル基、ブチル基、t-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基、2-ヒドロキシエチル基、2-[2-(2-メトキシエトキシ)エトキシ]エチル基、ジメチルアミノエチル基などが挙げられる。 Specific examples of R 14 in formula (9) include a polyethylene glycol group, a 1H,1H,2H,2H-heptadecafluoro-n-decyl group, and a 1H,1H,2H,2H-tridecafluoro-n-octyl group. , methyl group, ethyl group, butyl group, t-butyl group, hexyl group, 2-ethylhexyl group, octyl group, 2-hydroxyethyl group, 2-[2-(2-methoxyethoxy)ethoxy]ethyl group, dimethylamino An ethyl group etc. are mentioned.
 (メタ)アクリルアミドとしては、例えば、(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド、(メタ)アクリルアミド-2-メチルプロパンスルホン酸などが挙げられる。 Examples of (meth)acrylamide include (meth)acrylamide, N-isopropyl(meth)acrylamide, dimethylaminopropyl(meth)acrylamide, (meth)acrylamidopropyltrimethylammonium chloride, and (meth)acrylamido-2-methylpropanesulfonic acid. etc.
 スチレン誘導体としては、例えば、スチレン、α-メチルスチレン、ビニルベンジルクロライド、ブトキシスチレン、ビニルアニリン、スチレンスルホン酸ナトリウム、ビニル安息香酸、ビニルピリジン、ジメチルアミノメチルスチレン、ビニルベンジルトリメチルアンモニウムクロライドなどが挙げられる。 Examples of styrene derivatives include styrene, α-methylstyrene, vinylbenzyl chloride, butoxystyrene, vinylaniline, sodium styrenesulfonate, vinylbenzoic acid, vinylpyridine, dimethylaminomethylstyrene, vinylbenzyltrimethylammonium chloride, and the like. .
 オレフィンとしては、例えば、エチレン、プロピレン、ブタジエン、ブテン、イソプレンなどが挙げられる。ハロゲン化オレフィンとしては、例えば、塩化ビニル、塩化ビニリデン、テトラフルオロエチレンなどが挙げられる。 Examples of olefins include ethylene, propylene, butadiene, butene, and isoprene. Halogenated olefins include, for example, vinyl chloride, vinylidene chloride, tetrafluoroethylene, and the like.
 ビニルエステルとしては、例えば、酢酸ビニル、プロピオン酸ビニルなどが挙げられる。ビニルアルコールとしては、例えば、上述したビニルエステルのけん化物などが挙げられる。 Examples of vinyl esters include vinyl acetate and vinyl propionate. Vinyl alcohols include, for example, saponified vinyl esters described above.
 ニトリルとしては、例えば、(メタ)アクリロニトリルなどが挙げられる。 Nitriles include, for example, (meth)acrylonitrile.
 モノマー群は、上述したモノマーを1種又は2種以上含んでいてもよい。モノマー群は、例えば、ラジカル重合性モノマーを主成分として含み、好ましくは、実質的にラジカル重合性モノマーからなる。 The monomer group may contain one or more of the above monomers. The monomer group contains, for example, a radically polymerizable monomer as a main component, and preferably consists essentially of a radically polymerizable monomer.
 基材1の表面に対するポリマー鎖3の密度が高い場合、透過型電子顕微鏡などによって、複数のポリマー鎖3を層として観察することができる。この層の厚さは、特に限定されず、例えば10nm~10mmであり、1mm以下であってもよく、100nm以下であってもよく、50nm以下であってもよい。 When the density of polymer chains 3 with respect to the surface of substrate 1 is high, a plurality of polymer chains 3 can be observed as layers using a transmission electron microscope or the like. The thickness of this layer is not particularly limited, and is, for example, 10 nm to 10 mm, may be 1 mm or less, may be 100 nm or less, or may be 50 nm or less.
 例えば、リビングラジカル重合によってモノマー群を重合した場合、ポリマー鎖3の分子量を容易に制御できる。例えば、複数のポリマー鎖3における分子量のばらつきを抑制することができる。複数のポリマー鎖3における分子量分布(数平均分子量に対する重量平均分子量の比)は、特に限定されず、例えば1.5以下である。ポリマー鎖3の1本当たりの分子量は、特に限定されず、例えば、500~500,000である。 For example, when a monomer group is polymerized by living radical polymerization, the molecular weight of polymer chain 3 can be easily controlled. For example, it is possible to suppress variations in molecular weight among the plurality of polymer chains 3 . The molecular weight distribution (ratio of weight-average molecular weight to number-average molecular weight) of the plurality of polymer chains 3 is not particularly limited, and is, for example, 1.5 or less. The molecular weight per polymer chain 3 is not particularly limited, and is, for example, 500 to 500,000.
 モノマー群がポリエチレングリコール基を有する(メタ)アクリル酸エステルを含む場合、得られたポリマー鎖3は、ポリエチレングリコール基を有する。ポリエチレングリコール基を有するポリマー鎖3によって、基材1の表面1aが被覆されている場合、基材1の親水性が大きく向上する傾向がある。このように、本実施形態では、ポリエチレングリコール基を含むポリマー鎖3を基材1の表面1aに導入することによって、基材1に親水性を付与できる傾向がある。ただし、本実施形態において、基材1に付与できる特性は、親水性に限定されない。本実施形態によれば、ポリマー鎖3の種類に応じて、様々な特性を基材1に付与することができる。 When the monomer group contains a (meth)acrylic acid ester having a polyethylene glycol group, the resulting polymer chain 3 has a polyethylene glycol group. When the surface 1a of the substrate 1 is coated with the polymer chains 3 having polyethylene glycol groups, the hydrophilicity of the substrate 1 tends to be greatly improved. Thus, in the present embodiment, introduction of the polymer chains 3 containing polyethylene glycol groups to the surface 1a of the substrate 1 tends to impart hydrophilicity to the substrate 1 . However, in this embodiment, the property that can be imparted to the substrate 1 is not limited to hydrophilicity. According to this embodiment, various properties can be imparted to the base material 1 according to the type of the polymer chain 3 .
[複合基材の製造方法]
 複合基材10Bの製造方法は、例えば、上記の複合基材10Aにおける重合開始基を含む下地層2にモノマー群を接触させ、当該重合開始基によりモノマー群を重合させることによって、ポリマー鎖3を形成する工程(II)を含む。
[Method for producing composite substrate]
The method for producing the composite base material 10B includes, for example, contacting a group of monomers with the underlayer 2 containing the polymerization initiation group in the composite base material 10A described above, and polymerizing the monomer group by the polymerization initiation group, thereby forming the polymer chain 3. The step (II) of forming is included.
 重合開始基によるモノマー群の重合は、例えば、ラジカル重合であり、好ましくはリビングラジカル重合である。リビングラジカル重合としては、原子移動ラジカル重合(ATRP)、ニトロキシド介在ラジカル重合(NMP)などが挙げられ、好ましくはATRPである。ATRPを行う場合、重合開始基は、ハロゲン基であることが好ましい。NMPを行う場合、重合開始基は、ニトロキシド基であることが好ましい。 The polymerization of the monomer group by the polymerization initiation group is, for example, radical polymerization, preferably living radical polymerization. Living radical polymerization includes atom transfer radical polymerization (ATRP), nitroxide mediated radical polymerization (NMP) and the like, preferably ATRP. When performing ATRP, the polymerization initiation group is preferably a halogen group. When performing NMP, the polymerization initiation group is preferably a nitroxide group.
 重合開始基によるモノマー群の重合は、詳細には、次の方法によって行うことができる。まず、モノマー群を含む溶液Bを調製する。ATRPによってモノマー群を重合する場合、溶液Bは、触媒として遷移金属錯体を含んでいてもよい。  The polymerization of the monomer group by the polymerization initiating group can be performed in detail by the following method. First, a solution B containing a group of monomers is prepared. When polymerizing the monomer group by ATRP, solution B may contain a transition metal complex as a catalyst.
 遷移金属錯体は、遷移金属及び配位子を含む。遷移金属としては、例えば、周期表第7族~第11族の金属が挙げられ、好ましくはルテニウム、銅、鉄、ニッケル、ロジウム、パラジウム、レニウムなどであり、特に好ましくは銅である。配位子としては、例えば、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、トリス[2-(ジメチルアミノ)エチル]アミン、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン、トリフェニルホスフィン、トリブチルホスフィン、塩素、臭素、ヨウ素、インデン、フルオレン、2,2’-ビピリジン、4,4’-ジヘプチル-2,2’-ビピリジン、1,10-フェナントロリン、スパルテインなどが挙げられる。遷移金属錯体は、配位子と遷移金属を含む化合物とを個別に溶液Bに添加することによって、溶液B中で調製することができる。 A transition metal complex contains a transition metal and a ligand. Examples of transition metals include metals of Groups 7 to 11 of the periodic table, preferably ruthenium, copper, iron, nickel, rhodium, palladium, rhenium and the like, and particularly preferably copper. Examples of ligands include 1,1,4,7,10,10-hexamethyltriethylenetetramine, tris[2-(dimethylamino)ethyl]amine, N,N,N',N'',N ''-Pentamethyldiethylenetriamine, triphenylphosphine, tributylphosphine, chlorine, bromine, iodine, indene, fluorene, 2,2'-bipyridine, 4,4'-diheptyl-2,2'-bipyridine, 1,10-phenanthroline , and Spartein. A transition metal complex can be prepared in solution B by adding the ligand and the compound containing the transition metal to solution B separately.
 溶液Bは、重合開始剤をさらに含んでいてもよい。重合開始剤は、上述した重合開始基を有する化合物であれば、特に限定されず、例えば、2-ブロモ-N-ヘキシル-2-メチルプロパンアミドである。溶液Bが重合開始剤を含む場合、重合開始剤によってもモノマー群の重合が進行する。重合開始剤からモノマー群が成長することによって得られたポリマーの分子量(数平均分子量及び重量平均分子量)及び分子量分布は、ポリマー鎖3と同程度である。そのため、重合開始剤から得られたポリマーについて分子量及び分子量分布を測定し、得られた値をポリマー鎖3の分子量及び分子量分布とみなしてもよい。 The solution B may further contain a polymerization initiator. The polymerization initiator is not particularly limited as long as it is a compound having the polymerization initiation group described above, and is, for example, 2-bromo-N-hexyl-2-methylpropanamide. When the solution B contains a polymerization initiator, polymerization of the monomer group proceeds also with the polymerization initiator. The molecular weight (number-average molecular weight and weight-average molecular weight) and molecular weight distribution of the polymer obtained by growing the monomer group from the polymerization initiator are comparable to those of polymer chain 3 . Therefore, the molecular weight and molecular weight distribution of the polymer obtained from the polymerization initiator may be measured, and the obtained values may be regarded as the molecular weight and molecular weight distribution of the polymer chain 3 .
 溶液Bは、溶媒をさらに含んでいてもよく、含んでいなくてもよい。溶媒は、モノマー群の組成、重合条件などに応じて適宜選択することができ、例えば、水;イソプロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールなどのアルコール;アニソールなどのエーテル;アセトンなどのケトンが挙げられる。溶媒の重量とモノマー群の重量との合計値に対するモノマー群の重量の比率は、特に限定されず、例えば10wt%~100wt%である。 Solution B may or may not further contain a solvent. The solvent can be appropriately selected depending on the composition of the monomer group, polymerization conditions, etc. Examples include water; alcohols such as isopropanol and 1,1,1,3,3,3-hexafluoro-2-propanol; ethers such as; ketones such as acetone. The ratio of the weight of the monomer group to the total weight of the solvent and the weight of the monomer group is not particularly limited, and is, for example, 10 wt % to 100 wt %.
 次に、溶液B中に複合基材10Aを浸漬させる。これにより、溶液Bに含まれるモノマー群が下地層2と接触する。このとき、溶液B中に基材1を浸漬させた状態で凍結脱気を行ってもよい。次に、溶液Bを加熱することによって、下地層2に含まれる重合開始基によりモノマー群を重合させることができる。溶液Bの加熱温度は、溶液Bの組成に応じて適宜調節でき、例えば30℃~120℃である。溶液Bの加熱時間は、特に限定されず、例えば0.5~48時間である。モノマー群の重合は、窒素ガスなどの不活性ガスの雰囲気下で行うことが好ましい。 Next, the composite base material 10A is immersed in the solution B. Thereby, the monomer group contained in the solution B is brought into contact with the underlying layer 2 . At this time, freezing and degassing may be performed while the substrate 1 is immersed in the solution B. Next, by heating the solution B, the monomer group can be polymerized by the polymerization initiation groups contained in the underlayer 2 . The heating temperature of solution B can be appropriately adjusted according to the composition of solution B, and is, for example, 30°C to 120°C. The heating time of solution B is not particularly limited, and is, for example, 0.5 to 48 hours. Polymerization of the monomer group is preferably carried out in an inert gas atmosphere such as nitrogen gas.
 上述のとおり、従来では、基材の表面に対して、エネルギー線やプラズマを照射することによってラジカルを発生させ、当該ラジカルによりモノマー群を重合させる方法が知られている。しかし、高分子化合物を含む基材に対して、電子線、ガンマ線などの比較的大きいエネルギーを有するエネルギー線を照射した場合、高分子化合物によっては、その主鎖が切断され、基材の構造の変化によりその機械的強度が大幅に低下する。 As described above, conventionally, a method is known in which radicals are generated by irradiating the surface of a base material with energy rays or plasma, and the radicals are used to polymerize a monomer group. However, when a substrate containing a polymer compound is irradiated with an energy beam having relatively high energy such as an electron beam or a gamma ray, depending on the polymer compound, the main chain may be cut and the structure of the substrate may be altered. The change significantly reduces its mechanical strength.
 本実施形態の製造方法によれば、下地層2を予め形成することによって、大きいエネルギーを有するエネルギー線などを用いることなく、基材1の表面1aにポリマー鎖3を導入することができる。本実施形態の製造方法では、下地層2を用いるため、基材1の材料がほとんど制限されない。例えば、従来の方法によって、疎水性樹脂、特にPTFE、を含む基材の表面にポリマー鎖を導入することは難しい。しかし、本実施形態の製造方法によれば、基材1がPTFEを含む場合であっても、基材1の表面1aにポリマー鎖3を容易に導入することができる。 According to the manufacturing method of the present embodiment, by forming the base layer 2 in advance, the polymer chains 3 can be introduced onto the surface 1a of the base material 1 without using energy rays having high energy. In the manufacturing method of the present embodiment, since the base layer 2 is used, the material of the base material 1 is hardly restricted. For example, it is difficult to introduce polymer chains onto the surface of substrates containing hydrophobic resins, especially PTFE, by conventional methods. However, according to the manufacturing method of the present embodiment, the polymer chains 3 can be easily introduced to the surface 1a of the substrate 1 even when the substrate 1 contains PTFE.
 さらに、下地層2によれば、基材1の表面1aの大部分がモノマー群に直接接触することが抑制されるため、モノマー群に含まれるモノマーの一部が基材1に浸透し、基材1を膨潤させることを抑制できる。これにより、基材1の構造の変化を抑制できる。本実施形態の製造方法は、基材1自体の構造の変化を抑制しつつ、基材1の表面1aにポリマー鎖3を導入して特性を制御することに適している。 Furthermore, since the base layer 2 prevents most of the surface 1a of the base material 1 from directly contacting the monomer group, part of the monomers contained in the monomer group permeate the base material 1, Swelling of the material 1 can be suppressed. Thereby, the change of the structure of the base material 1 can be suppressed. The production method of the present embodiment is suitable for introducing polymer chains 3 to the surface 1a of the substrate 1 to control the properties while suppressing changes in the structure of the substrate 1 itself.
 なお、エネルギー線やプラズマを利用する従来の方法によってポリマー鎖を導入するためには、基材をモノマー群に直接接触させる必要がある。基材の表面の大部分がモノマー群に直接接触していると、モノマー群に含まれるモノマーの一部が基材に浸透し、基材が膨潤する傾向がある。この場合、基材について、機械的強度、化学耐久性などの特性が低下する。特に、基材として、孔径が小さい(例えば孔径がナノメートルオーダーである)多孔質基材を用いた場合、モノマーの浸透による多孔質基材の特性の低下が顕著に生じる傾向がある。モノマーの浸透によって、多孔質基材の構造、例えば孔の形状、が変化することもある。基材に浸透したモノマーが重合すると、基材の表面にポリマー鎖が十分に導入されない可能性もある。本実施形態の製造方法では、下地層2を用いるため、これらの問題が生じにくい。 In addition, in order to introduce polymer chains by conventional methods using energy rays or plasma, it is necessary to bring the base material into direct contact with the monomer group. If most of the surface of the substrate is in direct contact with the monomer group, some of the monomers contained in the monomer group tend to permeate the substrate and swell the substrate. In this case, the properties of the substrate, such as mechanical strength and chemical durability, are degraded. In particular, when a porous substrate having a small pore size (for example, a pore size on the order of nanometers) is used as the substrate, the properties of the porous substrate tend to significantly deteriorate due to permeation of the monomer. Penetration of the monomer may also change the structure of the porous substrate, eg, the shape of the pores. If the monomer that permeates the substrate is polymerized, there is a possibility that the polymer chains will not be sufficiently introduced to the surface of the substrate. Since the manufacturing method of the present embodiment uses the underlying layer 2, these problems are less likely to occur.
<複合基材の特性>
 複合基材10A及び10Bにおいて、下地層2は、上述のポリマーPを含んでいる。この下地層2は、例えば無機材料で構成された下地層と比べて、酸や塩基に対する耐久性が比較的高い傾向がある。そのため、この下地層2を備えた複合基材10Bは、幅広い用途に利用できる可能性がある。
<Characteristics of composite substrate>
In the composite substrates 10A and 10B, the base layer 2 contains the polymer P described above. The underlayer 2 tends to have relatively high durability against acids and bases, compared to, for example, underlayers made of inorganic materials. Therefore, the composite base material 10B provided with this base layer 2 may be used in a wide range of applications.
 なお、複合基材10A及び10Bが下地層2を備えていることは、複合基材10A又は10Bの断面について、透過型電子顕微鏡(TEM)、走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などによる分析を行うことによって確認することができる。 In addition, the fact that the composite substrates 10A and 10B are provided with the underlayer 2 can be confirmed by transmission electron microscope (TEM), scanning electron microscope-energy dispersive X-ray spectroscopy ( SEM-EDX), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), or the like.
(複合基材の変形例)
 複合基材10A及び10Bにおいて、下地層2は、複数の層から構成されていてもよい。図2A及び2Bに示すとおり、変形例にかかる複合基材11A及び11Bにおいて、下地層2は、第1層5及び第2層6を有する。第1層5は、基材1の表面1aに直接接している。第2層6は、第1層5を被覆しており、例えば第1層5に直接接している。本実施形態において、例えば、(a2)第2層6が重合開始基を含む、及び、(b2)第2層6がポリマー鎖3と結合している、の少なくとも1つが成立する。図2Aは、要件(a2)を満たす複合基材11Aの一例を示している。図2Bは、要件(b2)を満たす複合基材11Bの一例を示している。
(Modified example of composite base material)
In the composite substrates 10A and 10B, the base layer 2 may be composed of multiple layers. As shown in FIGS. 2A and 2B, in composite substrates 11A and 11B according to modifications, the base layer 2 has a first layer 5 and a second layer 6 . The first layer 5 is in direct contact with the surface 1a of the substrate 1 . The second layer 6 covers the first layer 5 and is in direct contact with the first layer 5, for example. In this embodiment, for example, at least one of (a2) the second layer 6 includes a polymerization initiation group and (b2) the second layer 6 is bound to the polymer chain 3 is established. FIG. 2A shows an example of a composite substrate 11A that satisfies requirement (a2). FIG. 2B shows an example of a composite substrate 11B that satisfies requirement (b2).
 第1層5は、例えば、重合開始基を含まないことを除き、上述した複合基材10Aの下地層2と同じ組成を有する。第1層5は、上記の工程(ib)において、重合開始基を含まないカテコールアミン類のみを液体Lに添加することを除き、上述した複合基材10Aの下地層2の作製方法と同じ方法によって作製できる。重合開始基を含まないカテコールアミン類としては、上述の式(C1)で表される化合物(NE)などが挙げられる。第1層5は、式(1)で表されるカテコールアミン類以外の他のカテコールアミン類、例えば式(D1)で表される化合物(DA)、のみから形成されていてもよい。第1層5は、複合基材10Aの下地層2に比べて、成形性に優れている傾向がある。そのため、第1層5によって、基材1の表面1aの全体を容易に被覆することができる。 The first layer 5 has, for example, the same composition as the base layer 2 of the composite substrate 10A described above, except that it does not contain a polymerization initiation group. The first layer 5 is formed by the same method as the method for producing the base layer 2 of the composite base material 10A described above, except that only catecholamines containing no polymerization initiation group are added to the liquid L in the above step (ib). can be made. Examples of the catecholamines containing no polymerization initiation group include the compound (NE) represented by the above formula (C1). The first layer 5 may be formed only from catecholamines other than the catecholamines represented by formula (1), such as the compound (DA) represented by formula (D1). The first layer 5 tends to have better formability than the underlayer 2 of the composite substrate 10A. Therefore, the entire surface 1a of the substrate 1 can be easily covered with the first layer 5 .
 複合基材11Aの第2層6は、例えば、上述した複合基材10Aの下地層2と同じ組成を有する。すなわち、第2層6は、重合開始基を含むポリマーPを含んでいてもよい。第2層6の組成は、重合開始基を含むことを除き、第1層5と同じであってもよく、異なっていてもよい。この第2層6は、上述した複合基材10Aの下地層2の作製方法と同じ方法によって作製できる。本実施形態において、第1層5及び第2層6の組成が比較的類似しているため、第2層6は、第1層5の上に容易に形成できる傾向がある。 The second layer 6 of the composite base material 11A has, for example, the same composition as the underlying layer 2 of the composite base material 10A described above. That is, the second layer 6 may contain a polymer P containing a polymerization initiation group. The composition of the second layer 6 may be the same as or different from that of the first layer 5 except that it contains a polymerization initiation group. The second layer 6 can be produced by the same method as the method for producing the base layer 2 of the composite substrate 10A described above. In this embodiment, the second layer 6 tends to be easily formed over the first layer 5 because the compositions of the first layer 5 and the second layer 6 are relatively similar.
 複合基材11Bのポリマー鎖3は、例えば、複合基材11Aの第2層6、詳細にはポリマーP、に含まれる重合開始基を起点としたモノマー群の重合反応によって作製することができる。本実施形態において、第2層6に含まれるポリマーPがポリマー鎖3と結合していてもよい。複合基材11Bにおいて、第2層6、特に第2層6に含まれるポリマーP、は、重合開始基を含んでいなくてもよい。 The polymer chain 3 of the composite base material 11B can be produced, for example, by a polymerization reaction of a monomer group starting from the polymerization initiation group contained in the second layer 6 of the composite base material 11A, specifically the polymer P. In this embodiment, the polymer P contained in the second layer 6 may bond with the polymer chains 3 . In the composite substrate 11B, the second layer 6, particularly the polymer P contained in the second layer 6, may not contain a polymerization initiation group.
 以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下に示す実施例に限定されない。 The present invention will be described in more detail below with reference to examples. The invention is not limited to the examples shown below.
[ATRP-NEの合成]
 まず、窒素雰囲気下で、DL-ノルエピネフリン塩酸塩(NE、アルドリッチ社製)512mg(2.5mmol)、イミダゾール613mg(9.0mmol)、及びジクロロメタン(超脱水、富士フイルム和光純薬社製)10mLを混合した。次に、この混合物に、クロロトリエチルシラン(TESCl、東京化成工業社製)1.5mL(9.0mmol)を滴下し、室温で4時間攪拌した。次に、氷浴を行いながら、2-ブロモイソブチリルブロミド(BiBB、東京化成工業社製)0.35mL(2.75mmol)をゆっくりと混合物に滴下した。次に、氷浴中で30分攪拌した後、室温でさらに12時間攪拌した。このとき、混合物を氷浴から取り出した時点から、30分毎に、イミダゾール567mg(6.6mmol)をジクロロメタン(超脱水)1.4mLに溶かした溶液を0.2mLずつ混合物に加えた。反応が終了した後に、得られた反応溶液をろ過した。ろ液の溶媒を留去し、さらに、シリカゲルカラムクロマトグラフィーにより精製することによって、無色透明のオイル状であるATRP-NE-TESを1.19g得た(収率72%)。なお、シリカゲルカラムクロマトグラフィーでは、展開溶媒として、ヘキサン及び酢酸エチルの混合溶媒(ヘキサン:酢酸エチル=19:1(v/v))を用いた。
Figure JPOXMLDOC01-appb-C000020
[Synthesis of ATRP-NE]
First, under a nitrogen atmosphere, 512 mg (2.5 mmol) of DL-norepinephrine hydrochloride (NE, manufactured by Aldrich), 613 mg (9.0 mmol) of imidazole, and 10 mL of dichloromethane (superdehydrated, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were added. Mixed. Next, 1.5 mL (9.0 mmol) of chlorotriethylsilane (TESCl, manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise to this mixture, and the mixture was stirred at room temperature for 4 hours. Next, 0.35 mL (2.75 mmol) of 2-bromoisobutyryl bromide (BiBB, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was slowly added dropwise to the mixture while performing an ice bath. Next, after stirring in an ice bath for 30 minutes, the mixture was further stirred at room temperature for 12 hours. At this time, 0.2 mL of a solution obtained by dissolving 567 mg (6.6 mmol) of imidazole in 1.4 mL of dichloromethane (superdehydrated) was added to the mixture every 30 minutes from the time the mixture was taken out of the ice bath. After the reaction was completed, the resulting reaction solution was filtered. The solvent in the filtrate was distilled off, and the residue was purified by silica gel column chromatography to obtain 1.19 g of ATRP-NE-TES in the form of colorless, transparent oil (yield: 72%). In silica gel column chromatography, a mixed solvent of hexane and ethyl acetate (hexane:ethyl acetate=19:1 (v/v)) was used as a developing solvent.
Figure JPOXMLDOC01-appb-C000020
 次に、得られたATRP-NE-TES596mg(0.90mmol)をテトラヒドロフラン(THF)8mLに溶解させた。次に、得られた溶液に、2MのHCl水溶液2mLを加え、室温で攪拌した。30分攪拌した後、10mLのジクロロメタンによる抽出操作を3回行った。得られた有機相について、30mLの蒸留水による洗浄操作を3回行い、さらに、30mLの飽和食塩水による洗浄操作を1回行った。次に、有機相に含まれるジクロロメタンを減圧留去し、再沈殿処理により精製することによって、白色固体である目的のATRP-NEを180mg得た(収率63%)。なお、再沈殿処理では、THF及びヘキサンを用いた。
Figure JPOXMLDOC01-appb-C000021
Next, 596 mg (0.90 mmol) of the resulting ATRP-NE-TES was dissolved in 8 mL of tetrahydrofuran (THF). Next, 2 mL of 2M HCl aqueous solution was added to the resulting solution and stirred at room temperature. After stirring for 30 minutes, extraction with 10 mL of dichloromethane was performed three times. The obtained organic phase was washed three times with 30 mL of distilled water, and further washed once with 30 mL of saturated saline. Next, the dichloromethane contained in the organic phase was distilled off under reduced pressure, and the product was purified by reprecipitation to obtain 180 mg of the target ATRP-NE as a white solid (yield 63%). Note that THF and hexane were used in the reprecipitation treatment.
Figure JPOXMLDOC01-appb-C000021
[ATRP-DAの合成]
 ATRP-DA(式(D2)で表される化合物)は、Polymer, 2011, Vol. 52, p. 2141-2149.に記載された方法によって合成した。
[Synthesis of ATRP-DA]
ATRP-DA (compound represented by formula (D2)) was synthesized by the method described in Polymer, 2011, Vol. 52, p. 2141-2149.
(実施例1)
 まず、基材として、PTFE多孔質膜A(平均孔径3.0μm、気孔率85%、厚さ70μm)を準備した。PTFE多孔質膜Aをメタノール中に浸漬し、10分間超音波処理を行うことによって、PTFE多孔質膜Aの孔の内部をメタノールで満たした。次に、PTFE多孔質膜Aに蒸留水をゆっくりと加えた。このとき、メタノール及び蒸留水の体積比は、メタノール:蒸留水=2:3であった。PTFE多孔質膜Aに蒸留水を加えた状態で超音波処理を2時間行った。これにより、PTFE多孔質膜Aの孔の内部がメタノール水溶液(液体L)で満たされた。次に、1.0Mのトリス塩酸緩衝液(TRIS-HCl)をメタノール水溶液に添加した。このとき、メタノール水溶液におけるトリス塩酸の濃度を10mMに調整した。次に、ドーパミン塩酸塩(DA、東京化成工業社製)とATRP-NEとを5:5のmol比でメタノール水溶液に加え、室温(23℃)で24時間、重合反応を行った。DA及びATRP-NEの重合反応によって、PTFE多孔質膜Aの外表面及び孔の表面の上に、重合開始基(Br)を含む下地層が形成された。これにより、実施例1の複合基材を得た。なお、PTFE多孔質膜Aの孔の表面上に下地層が形成されたことは、複合基材の断面について、TEM、SEM-EDX、TOF-SIMS及びXPSによる分析を行うことによって確認した。
(Example 1)
First, a PTFE porous membrane A (average pore size: 3.0 μm, porosity: 85%, thickness: 70 μm) was prepared as a substrate. The PTFE porous membrane A was immersed in methanol and subjected to ultrasonic treatment for 10 minutes, thereby filling the inside of the pores of the PTFE porous membrane A with methanol. Next, distilled water was slowly added to the PTFE porous membrane A. At this time, the volume ratio of methanol and distilled water was methanol:distilled water=2:3. Ultrasonic treatment was performed for 2 hours in a state in which distilled water was added to the PTFE porous membrane A. As a result, the inside of the pores of the PTFE porous membrane A was filled with the aqueous methanol solution (liquid L). Next, 1.0 M Tris-HCl buffer solution (TRIS-HCl) was added to the aqueous methanol solution. At this time, the concentration of Tris-HCl in the aqueous methanol solution was adjusted to 10 mM. Next, dopamine hydrochloride (DA, manufactured by Tokyo Kasei Kogyo Co., Ltd.) and ATRP-NE were added at a molar ratio of 5:5 to an aqueous methanol solution, and a polymerization reaction was carried out at room temperature (23° C.) for 24 hours. By the polymerization reaction of DA and ATRP-NE, an underlayer containing a polymerization initiation group (Br) was formed on the outer surface of the PTFE porous membrane A and the surfaces of the pores. Thus, a composite base material of Example 1 was obtained. The formation of the underlayer on the surface of the pores of the PTFE porous membrane A was confirmed by analyzing the cross section of the composite substrate by TEM, SEM-EDX, TOF-SIMS and XPS.
(実施例2)
 NEとATRP-DAとを5:5のmol比でメタノール水溶液に加えたことを除き、実施例1と同じ方法によって、実施例2の複合基材を得た。実施例1と同様に、実施例2の複合基材では、PTFE多孔質膜Aの外表面及び孔の表面の上に、重合開始基を含む下地層が形成されていた。
(Example 2)
A composite substrate of Example 2 was obtained by the same method as in Example 1, except that NE and ATRP-DA were added to the aqueous methanol solution at a molar ratio of 5:5. As in Example 1, in the composite base material of Example 2, a base layer containing a polymerization initiation group was formed on the outer surface of the PTFE porous membrane A and the surfaces of the pores.
(実施例3)
 まず、PTFE多孔質膜Aをメタノール中に浸漬し、10分間超音波処理を行うことによって、PTFE多孔質膜Aの孔の内部をメタノールで満たした。次に、PTFE多孔質膜Aに蒸留水をゆっくりと加えた。このとき、メタノール及び蒸留水の体積比は、メタノール:蒸留水=2:3であった。PTFE多孔質膜Aに蒸留水を加えた状態で超音波処理を2時間行った。これにより、PTFE多孔質膜Aの孔の内部がメタノール水溶液で満たされた。次に、TRIS-HClをメタノール水溶液に添加した。このとき、メタノール水溶液におけるトリス塩酸の濃度を10mMに調整した。次に、DAをメタノール水溶液に加え、室温(23℃)で24時間、重合反応を行った。DAの重合反応によって、PTFE多孔質膜Aの外表面及び孔の表面の上に、ポリドーパミン層(第1層)が形成された。
(Example 3)
First, the PTFE porous membrane A was immersed in methanol and subjected to ultrasonic treatment for 10 minutes, thereby filling the inside of the pores of the PTFE porous membrane A with methanol. Next, distilled water was slowly added to the PTFE porous membrane A. At this time, the volume ratio of methanol and distilled water was methanol:distilled water=2:3. Ultrasonic treatment was performed for 2 hours in a state in which distilled water was added to the PTFE porous membrane A. As a result, the inside of the pores of the PTFE porous membrane A was filled with the aqueous methanol solution. Next, TRIS-HCl was added to the aqueous methanol solution. At this time, the concentration of Tris-HCl in the aqueous methanol solution was adjusted to 10 mM. Next, DA was added to the aqueous methanol solution, and a polymerization reaction was carried out at room temperature (23° C.) for 24 hours. A polydopamine layer (first layer) was formed on the outer surface of the PTFE porous membrane A and the surface of the pores by the polymerization reaction of DA.
 次に、ポリドーパミン層が形成された多孔質膜をメタノール中に浸漬し、10分間超音波処理を行うことによって、多孔質膜の孔の内部をメタノールで満たした。次に、多孔質膜に蒸留水をゆっくりと加えた。このとき、メタノール及び蒸留水の体積比は、メタノール:蒸留水=2:3であった。多孔質膜に蒸留水を加えた状態で超音波処理を2時間行った。これにより、多孔質膜の孔の内部がメタノール水溶液で満たされた。次に、TRIS-HClをメタノール水溶液に添加した。このとき、メタノール水溶液におけるトリス塩酸の濃度を10mMに調整した。次に、DAとATRP-NEとを2:8のmol比でメタノール水溶液に加え、室温(23℃)で24時間、重合反応を行った。DA及びATRP-NEの重合反応によって、第1層の上に、重合開始基(Br)を含む第2層が形成された。これにより、第1層及び第2層の積層構造を有する下地層を作製した。 Next, the porous membrane with the polydopamine layer formed thereon was immersed in methanol and subjected to ultrasonic treatment for 10 minutes to fill the pores of the porous membrane with methanol. Distilled water was then slowly added to the porous membrane. At this time, the volume ratio of methanol and distilled water was methanol:distilled water=2:3. Ultrasonic treatment was performed for 2 hours while distilled water was added to the porous membrane. As a result, the inside of the pores of the porous membrane was filled with the aqueous methanol solution. Next, TRIS-HCl was added to the aqueous methanol solution. At this time, the concentration of Tris-HCl in the aqueous methanol solution was adjusted to 10 mM. Next, DA and ATRP-NE were added to an aqueous methanol solution at a molar ratio of 2:8, and a polymerization reaction was carried out at room temperature (23° C.) for 24 hours. A second layer containing polymerization initiation groups (Br) was formed on the first layer by the polymerization reaction of DA and ATRP-NE. Thus, an underlying layer having a laminated structure of the first layer and the second layer was produced.
 重合管に、下地層が形成された多孔質膜、モノマー群、重合開始剤、遷移金属を含む化合物、配位子及び溶媒を投入した。モノマー群は、ポリエチレングリコールメタクリレート(PEGMA)で構成されていた。重合開始剤としては、2-ブロモ-N-ヘキシル-2-メチルプロパンアミドを用いた。遷移金属を含む化合物としては、CuClを用いた。配位子としては、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン(PMDETA)を用いた。溶媒としては、アニソール(PhOMe)を用いた。モノマー群、重合開始剤、遷移金属を含む化合物及び配位子のモル比は、50/1/1/1であった。溶媒の重量とモノマー群の重量との合計値に対するモノマー群の重量の比率は、50wt%であった。 A porous membrane with a base layer formed thereon, a monomer group, a polymerization initiator, a compound containing a transition metal, a ligand, and a solvent were added to the polymerization tube. The monomer group consisted of polyethylene glycol methacrylate (PEGMA). 2-bromo-N-hexyl-2-methylpropanamide was used as a polymerization initiator. CuCl was used as the compound containing a transition metal. N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) was used as a ligand. Anisole (PhOMe) was used as a solvent. The molar ratio of monomer group, polymerization initiator, compound containing transition metal and ligand was 50/1/1/1. The ratio of the weight of the monomer group to the sum of the weight of the solvent and the weight of the monomer group was 50 wt%.
 次に、重合管内について、凍結脱気を3回行った後に、窒素ガスを封入した。次に、重合管を60℃まで加熱することによって、モノマー群を重合させた。重合終了後に、反応溶液に空気を注入し、バブリングを行った。これにより、反応溶液中のラジカルを消失させた。重合管内から多孔質膜を取り出し、洗浄液で3回洗浄した。洗浄液としては、アセトンを用いた。この多孔質膜を60℃の乾燥オーブン中で1時間乾燥させることによって、実施例3の複合基材を得た。実施例3の複合基材の断面について、TEM、SEM-EDX、TOF-SIMS及びXPSによる分析を行うことによって、PTFE多孔質膜Aの孔の表面上に、ポリマー鎖と結合している下地層が形成されたことを確認した。 Next, the inside of the polymerization tube was freeze-degassed three times, and then filled with nitrogen gas. The monomer group was then polymerized by heating the polymerization tube to 60°C. After the polymerization was completed, air was injected into the reaction solution for bubbling. As a result, the radicals in the reaction solution disappeared. The porous membrane was taken out from the inside of the polymerization tube and washed three times with a washing liquid. Acetone was used as the cleaning liquid. The composite substrate of Example 3 was obtained by drying the porous membrane in a drying oven at 60° C. for 1 hour. Analysis by TEM, SEM-EDX, TOF-SIMS and XPS of the cross-section of the composite substrate of Example 3 revealed that the underlayer bound to the polymer chains on the surface of the pores of the PTFE porous membrane A was confirmed to be formed.
(実施例4)
 NEとATRP-NEとを2:8のmol比で用いて第2層を作製したことを除き、実施例3と同じ方法によって、実施例4の複合基材を得た。実施例3と同様に、実施例4の複合基材では、PTFE多孔質膜Aの孔の表面の上に、ポリマー鎖と結合している下地層が形成されていた。
(Example 4)
A composite substrate of Example 4 was obtained by the same method as in Example 3, except that NE and ATRP-NE were used in a molar ratio of 2:8 to form the second layer. As in Example 3, in the composite substrate of Example 4, a base layer bound to polymer chains was formed on the surface of the pores of the PTFE porous membrane A.
(実施例5)
 NEを用いて第1層を作製したこと、及び、NEとATRP-NEとを2:8のmol比で用いて第2層を作製したことを除き、実施例3と同じ方法によって、実施例5の複合基材を得た。実施例3と同様に、実施例5の複合基材では、PTFE多孔質膜Aの孔の表面の上に、ポリマー鎖と結合している下地層が形成されていた。
(Example 5)
Example 3 was prepared by the same method as in Example 3, except that NE was used to prepare the first layer, and NE and ATRP-NE were used in a molar ratio of 2:8 to prepare the second layer. 5 composite substrates were obtained. As in Example 3, in the composite substrate of Example 5, a base layer bound to polymer chains was formed on the surface of the pores of the PTFE porous membrane A.
(実施例6)
 まず、基材としてシリコンウェハを準備し、当該シリコンウェハをメタノール及び蒸留水の混合液体に浸漬させた。混合液体において、メタノール及び蒸留水の体積比は、メタノール:蒸留水=2:3であった。次に、TRIS-HClをメタノール水溶液に添加した。このとき、メタノール水溶液におけるトリス塩酸の濃度を10mMに調整した。次に、NEとATRP-DAとを5:5のmol比でメタノール水溶液に加え、室温(23℃)で24時間、重合反応を行った。NE及びATRP-DAの重合反応によって、シリコンウェハの表面の上に、重合開始基を含む下地層が形成された。これにより、実施例6の複合基材を得た。
(Example 6)
First, a silicon wafer was prepared as a base material and immersed in a mixed liquid of methanol and distilled water. In the mixed liquid, the volume ratio of methanol and distilled water was methanol:distilled water=2:3. Next, TRIS-HCl was added to the aqueous methanol solution. At this time, the concentration of Tris-HCl in the aqueous methanol solution was adjusted to 10 mM. Next, NE and ATRP-DA were added to an aqueous methanol solution at a molar ratio of 5:5, and a polymerization reaction was carried out at room temperature (23° C.) for 24 hours. The polymerization reaction of NE and ATRP-DA formed an underlayer containing polymerization initiation groups on the surface of the silicon wafer. Thus, a composite base material of Example 6 was obtained.
(実施例7)
 NEとATRP-DAとを2:8のmol比でメタノール水溶液に加えたことを除き、実施例6と同じ方法によって、実施例7の複合基材を得た。実施例6と同様に、実施例7の複合基材では、シリコンウェハの表面の上に、重合開始基を含む下地層が形成されていた。
(Example 7)
A composite substrate of Example 7 was obtained by the same method as in Example 6, except that NE and ATRP-DA were added to the aqueous methanol solution at a molar ratio of 2:8. As in Example 6, in the composite substrate of Example 7, a base layer containing a polymerization initiation group was formed on the surface of the silicon wafer.
(実施例8)
 まず、基材としてPTFEシート(NITOFLON(登録商標) No.900UL、厚さ50μm、日東電工社製)を準備し、当該PTFEシートをメタノール及び蒸留水の混合液体に浸漬させた。混合液体において、メタノール及び蒸留水の体積比は、メタノール:蒸留水=2:3であった。次に、TRIS-HClをメタノール水溶液に添加した。このとき、メタノール水溶液におけるトリス塩酸の濃度を10mMに調整した。次に、NEとATRP-NEとを5:5のmol比でメタノール水溶液に加え、室温(23℃)で24時間、重合反応を行った。NE及びATRP-NEの重合反応によって、PTFEシートの表面の上に、重合開始基を含む下地層が形成された。これにより、実施例8の複合基材を得た。
(Example 8)
First, a PTFE sheet (NITOFLON (registered trademark) No. 900UL, thickness 50 μm, manufactured by Nitto Denko) was prepared as a base material, and the PTFE sheet was immersed in a mixed liquid of methanol and distilled water. In the mixed liquid, the volume ratio of methanol and distilled water was methanol:distilled water=2:3. Next, TRIS-HCl was added to the aqueous methanol solution. At this time, the concentration of Tris-HCl in the aqueous methanol solution was adjusted to 10 mM. Next, NE and ATRP-NE were added to an aqueous methanol solution at a molar ratio of 5:5, and a polymerization reaction was carried out at room temperature (23° C.) for 24 hours. The polymerization reaction of NE and ATRP-NE formed an underlayer containing polymerization initiation groups on the surface of the PTFE sheet. Thus, a composite base material of Example 8 was obtained.
(実施例9)
 NEとATRP-NEとを2:8のmol比でメタノール水溶液に加えたことを除き、実施例8と同じ方法によって、実施例9の複合基材を得た。実施例8と同様に、実施例9の複合基材では、PTFEシートの表面の上に、重合開始基を含む下地層が形成されていた。
(Example 9)
A composite substrate of Example 9 was obtained by the same method as in Example 8, except that NE and ATRP-NE were added to the aqueous methanol solution at a molar ratio of 2:8. As in Example 8, in the composite base material of Example 9, a base layer containing a polymerization initiation group was formed on the surface of the PTFE sheet.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 上述のとおり、実施例1~2及び6~9において、基材の表面の上に、重合開始基を含む下地層が形成された複合基材を作製した。実施例3~5では、下地層に含まれる重合開始基を利用してポリマー鎖を導入できることを確認した。実施例1~9では、走査型電子顕微鏡(SEM)を用いて、下地層の表面が比較的平滑であることを確認した。 As described above, in Examples 1 to 2 and 6 to 9, composite substrates were produced in which a base layer containing a polymerization initiating group was formed on the surface of the substrate. In Examples 3 to 5, it was confirmed that polymer chains could be introduced using the polymerization initiation groups contained in the underlayer. In Examples 1-9, a scanning electron microscope (SEM) was used to confirm that the surface of the underlayer was relatively smooth.
 本発明の複合基材は、その機能に応じて、通音膜、通気膜、分離膜、イオン交換膜、隔膜、触媒、液体吸収体、医療材料などの様々な用途に使用できる。
 
The composite substrate of the present invention can be used in various applications such as sound-permeable membranes, gas-permeable membranes, separation membranes, ion-exchange membranes, diaphragms, catalysts, liquid absorbers, medical materials, etc., depending on its function.

Claims (18)

  1.  基材と、
     前記基材の表面を被覆し、かつ、下記式(1)で表されるカテコールアミン類に由来する構成単位を有するポリマーを含む下地層と、
    を備え、
     (a)前記下地層が重合開始基を含む、及び、(b)前記下地層がポリマー鎖と結合している、の少なくとも1つが成立する、複合基材。
    Figure JPOXMLDOC01-appb-C000001
     前記式(1)において、R1~R4は、互いに独立して、水素原子(ただし、R1及びR2の両方が水素原子の場合を除く)又は任意の置換基であり、
     Zは、下記式(2)又は(3)で表される。
    Figure JPOXMLDOC01-appb-C000002
     前記式(2)において、X-は、任意のアニオンであり、
     前記式(3)において、R5は、水素原子又は任意の置換基である。
    a substrate;
    a base layer covering the surface of the base material and containing a polymer having a structural unit derived from catecholamines represented by the following formula (1);
    with
    A composite substrate wherein at least one of (a) the underlying layer includes a polymerization initiating group, and (b) the underlying layer is bound to a polymer chain.
    Figure JPOXMLDOC01-appb-C000001
    In the above formula (1), R 1 to R 4 are each independently a hydrogen atom (excluding the case where both R 1 and R 2 are hydrogen atoms) or any substituent;
    Z is represented by the following formula (2) or (3).
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), X - is any anion,
    In formula (3) above, R 5 is a hydrogen atom or an arbitrary substituent.
  2.  (a1)前記ポリマーが前記重合開始基を含む、及び、(b1)前記ポリマーが前記ポリマー鎖と結合している、の少なくとも1つが成立する、請求項1に記載の複合基材。 The composite substrate according to claim 1, wherein at least one of (a1) the polymer includes the polymerization initiation group, and (b1) the polymer is bonded to the polymer chain.
  3.  前記R1及び前記R2において、前記任意の置換基は、ヒドロキシル基、カルボキシル基又はハロゲン基である、請求項1に記載の複合基材。 2. The composite substrate according to claim 1 , wherein the optional substituents in R1 and R2 are a hydroxyl group, a carboxyl group, or a halogen group.
  4.  前記R1がヒドロキシル基であり、かつ、前記R2が水素原子である、請求項1に記載の複合基材。 The composite substrate according to claim 1 , wherein said R1 is a hydroxyl group and said R2 is a hydrogen atom.
  5.  前記Zは、下記式(4)で表される、請求項1に記載の複合基材。
    Figure JPOXMLDOC01-appb-C000003
     前記式(4)において、R6は、置換基を有していてもよい2価の炭化水素基であり、
     Aは、前記重合開始基である。
    The composite substrate according to claim 1, wherein Z is represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000003
    In the formula (4), R 6 is a divalent hydrocarbon group which may have a substituent,
    A is the polymerization initiation group.
  6.  前記重合開始基は、ハロゲン基及びニトロキシド基からなる群より選ばれる少なくとも1つである、請求項1に記載の複合基材。 The composite substrate according to claim 1, wherein the polymerization initiation group is at least one selected from the group consisting of halogen groups and nitroxide groups.
  7.  前記ポリマー鎖は、ラジカル重合性モノマーに由来する構成単位を含む、請求項1に記載の複合基材。 The composite base material according to claim 1, wherein the polymer chain contains a structural unit derived from a radically polymerizable monomer.
  8.  前記基材は、疎水性樹脂を含む、請求項1に記載の複合基材。 The composite base material according to claim 1, wherein the base material contains a hydrophobic resin.
  9.  前記基材は、フッ素樹脂を含む、請求項1に記載の複合基材。 The composite base material according to claim 1, wherein the base material contains a fluororesin.
  10.  前記基材は、ポリテトラフルオロエチレンを含む、請求項1に記載の複合基材。 The composite base material according to claim 1, wherein the base material contains polytetrafluoroethylene.
  11.  前記基材は、複数の孔を有する、請求項1に記載の複合基材。 The composite base material according to claim 1, wherein the base material has a plurality of pores.
  12.  前記下地層は、前記基材の前記表面に直接接している第1層と、前記第1層を被覆する第2層とを有し、
     (a2)前記第2層が重合開始基を含む、及び、(b2)前記第2層がポリマー鎖と結合している、の少なくとも1つが成立する、請求項1に記載の複合基材。
    The underlayer has a first layer in direct contact with the surface of the substrate and a second layer covering the first layer,
    2. The composite substrate of claim 1, wherein at least one of (a2) the second layer comprises polymerization initiating groups; and (b2) the second layer is bound to polymer chains.
  13.  請求項1~12のいずれか1項に記載の複合基材の製造方法であって、
     前記製造方法は、
     前記基材の前記表面が被覆されるように、前記重合開始基を含む前記下地層を形成する工程(I)を含む、複合基材の製造方法。
    A method for producing a composite substrate according to any one of claims 1 to 12,
    The manufacturing method is
    A method for producing a composite substrate, comprising the step (I) of forming the underlayer containing the polymerization initiation group so as to cover the surface of the substrate.
  14.  前記工程(I)は、
     前記カテコールアミン類を含む溶液を前記表面に接触させる工程(i)と、
     前記カテコールアミン類の重合反応を進行させる工程(ii)と、
    を含む、請求項13に記載の製造方法。
    The step (I) is
    a step (i) of contacting the surface with a solution containing the catecholamines;
    a step (ii) of allowing the polymerization reaction of the catecholamines to proceed;
    14. The manufacturing method of claim 13, comprising:
  15.  前記カテコールアミン類が前記重合開始基を含む、請求項14に記載の製造方法。 The production method according to claim 14, wherein the catecholamines contain the polymerization initiation group.
  16.  前記工程(i)は、
     前記表面に、水を含む液体を接触させる工程(ia)と、
     前記液体に前記カテコールアミン類を添加する工程(ib)と、
    を含む、請求項14に記載の製造方法。
    The step (i) is
    a step (ia) of contacting the surface with a liquid comprising water;
    a step (ib) of adding the catecholamines to the liquid;
    15. The manufacturing method of claim 14, comprising:
  17.  前記溶液のpHを調整することによって、前記カテコールアミン類の前記重合反応を進行させる、請求項14に記載の製造方法。 The production method according to claim 14, wherein the polymerization reaction of the catecholamines is allowed to proceed by adjusting the pH of the solution.
  18.  前記重合開始基を含む前記下地層にモノマー群を接触させ、前記重合開始基により前記モノマー群を重合させることによって、前記ポリマー鎖を形成する工程(II)をさらに含む、請求項13に記載の製造方法。 14. The method according to claim 13, further comprising step (II) of forming the polymer chain by contacting a group of monomers with the underlayer containing the polymerization initiation group and polymerizing the group of monomers with the polymerization initiation group. Production method.
PCT/JP2022/032888 2021-09-15 2022-08-31 Composite base material and method for producing same WO2023042666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023548398A JPWO2023042666A1 (en) 2021-09-15 2022-08-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021150527 2021-09-15
JP2021-150527 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023042666A1 true WO2023042666A1 (en) 2023-03-23

Family

ID=85602797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032888 WO2023042666A1 (en) 2021-09-15 2022-08-31 Composite base material and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2023042666A1 (en)
WO (1) WO2023042666A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046529A (en) * 2007-08-14 2009-03-05 Nitto Denko Corp Fluororesin molded body having hydrophilic polymer on surface and method for producing the same
WO2014185361A1 (en) * 2013-05-13 2014-11-20 独立行政法人科学技術振興機構 Novel composite material, and polymer coating material precursor produced using same
JP2016508776A (en) * 2013-02-04 2016-03-24 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Substrate coating
US20170210872A1 (en) * 2014-07-22 2017-07-27 Universite De Strasbourg Method for modifying the surface properties of elastomer cellular foams
JP2018173306A (en) * 2017-03-31 2018-11-08 日立化成株式会社 Separation material and column
WO2020202320A1 (en) * 2019-03-29 2020-10-08 株式会社メニコン Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046529A (en) * 2007-08-14 2009-03-05 Nitto Denko Corp Fluororesin molded body having hydrophilic polymer on surface and method for producing the same
JP2016508776A (en) * 2013-02-04 2016-03-24 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Substrate coating
WO2014185361A1 (en) * 2013-05-13 2014-11-20 独立行政法人科学技術振興機構 Novel composite material, and polymer coating material precursor produced using same
US20170210872A1 (en) * 2014-07-22 2017-07-27 Universite De Strasbourg Method for modifying the surface properties of elastomer cellular foams
JP2018173306A (en) * 2017-03-31 2018-11-08 日立化成株式会社 Separation material and column
WO2020202320A1 (en) * 2019-03-29 2020-10-08 株式会社メニコン Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst

Also Published As

Publication number Publication date
JPWO2023042666A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US6670403B2 (en) Polymer electrolyte membrane and method of fabrication
CN107683273B (en) Thin film composite membrane for separating alkane and alkene
WO2015125597A1 (en) Curable composition and cured polymer product
JP6644216B2 (en) Organic polymer porous particles, method for producing organic polymer porous particles, and block copolymer
JP6644215B2 (en) Porous particles, method for producing porous particles, and block copolymer
TWI724171B (en) Method for producing dn gel membrane
TW201634537A (en) Hydrophilically modified fluorinated membrane
JP5196236B2 (en) Cation exchange membrane and method for producing the same
WO2023042666A1 (en) Composite base material and method for producing same
WO2023042665A1 (en) Composite base material and manufacturing method thereof
TWI324614B (en) Polymer grafted support polymers
JP4905980B2 (en) Antibacterial film
JP7303227B2 (en) Method for producing porous substrate with modified pore surface and porous substrate with modified pore surface
JP2007009163A (en) Fluorine-containing styrene derivative and polymer thereof
JPWO2017026425A1 (en) Silica gel porous particles and method for producing the same
Liu Modification of Polymeric Materials via Surface-Initiated Controlled/” Living” Radical Polymerization
JP4692752B2 (en) Solvent for polymerization reaction and method for producing polymer
JP2007161857A (en) Method for modifying substrate surface
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
JP2008255350A (en) Cation exchange membrane for salt production and method for producing the same
JP5421688B2 (en) Solid acid catalyst
JPWO2020116590A1 (en) Polymer materials, methods for producing them, and polymer compositions
JP2006083342A (en) Method for producing perfluorocarbon polymer bearing sulfonic acid type functional group and method for producing ion exchanging membrane
JP3650056B2 (en) Super water-repellent organic / inorganic composite film
CN112218913B (en) Porous body and method for producing porous body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548398

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE