WO2023042578A1 - Resin composition, and printed wiring board, cured product, prepreg, and electronic component for high frequency in which same is used - Google Patents

Resin composition, and printed wiring board, cured product, prepreg, and electronic component for high frequency in which same is used Download PDF

Info

Publication number
WO2023042578A1
WO2023042578A1 PCT/JP2022/030431 JP2022030431W WO2023042578A1 WO 2023042578 A1 WO2023042578 A1 WO 2023042578A1 JP 2022030431 W JP2022030431 W JP 2022030431W WO 2023042578 A1 WO2023042578 A1 WO 2023042578A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
mass
composition according
resin
Prior art date
Application number
PCT/JP2022/030431
Other languages
French (fr)
Japanese (ja)
Inventor
真樹 吉田
遼 宇佐美
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2023042578A1 publication Critical patent/WO2023042578A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a resin composition, and printed wiring boards, cured products, prepregs, and electronic components for high frequencies using the same.
  • the resin composition disclosed in Patent Document 1 is a resin composition with low dielectric properties and low melt viscosity, but has a high coefficient of thermal expansion and is an interlayer adhesive with a multilayer structure as it is. It was difficult to use as Here, as one means for lowering the thermal expansion coefficient of the resin composition, high filling of silica filler can be mentioned.
  • the resin composition mainly composed of a polymer elastomer as disclosed in Patent Document 1 has a problem that when it is highly filled with a silica filler, the melt viscosity becomes high and the embeddability into the substrate is deteriorated. .
  • the present invention has been made in view of such problems of the prior art.
  • the present invention provides a resin composition having low dielectric properties, good embeddability into a substrate, and excellent heat resistance. Furthermore, the present invention provides a printed wiring board, a cured product, a prepreg, and an electronic component for high frequencies using such a resin composition.
  • the following resin composition, printed wiring board, cured product, prepreg, and high-frequency electronic component are provided.
  • a resin composition comprising a compound.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 which may be the same or different, are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group; —(O—X—O)— is represented by the above structural formula (2), and in the structural formula (2), R 8 , R 9 , R 10 , R 14 and R 15 may be the same or different.
  • R 11 , R 12 and R 13 may be the same or different and may be a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group.
  • R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group
  • R 18 and R 19 may be the same or different, a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group
  • Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom
  • a and b are integers of 0 to 300, at least one of which is not 0
  • c and d are integers of 0 or 1;
  • R is an alkyl group having 4 to 14 carbon atoms.
  • the resin composition of the present invention has excellent dielectric properties and excellent heat resistance. Furthermore, the resin composition of the present invention has high fluidity, so that it can be easily embedded in a substrate and has excellent film-forming properties. Therefore, the resin composition of the present invention can be suitably used for printed wiring boards, cured products, prepregs, electronic components for high frequencies, and the like.
  • the printed wiring board, cured product, prepreg, and electronic component for high frequencies of the present invention use the resin composition of the present invention described above, and have excellent dielectric properties, as well as excellent heat resistance and embedding properties. .
  • FIG. 4 is a cross-sectional view of the multilayer wiring board, and is a diagram for explaining a process in which a conductor layer breaks due to a heat cycle;
  • One embodiment of the resin composition of the present invention includes (A) a polyphenylene ether resin having terminal functional groups containing carbon-carbon double bonds, and (B) an isocyanuric ring structure and two allyls in one molecule. and a compound that has a group and is liquid at 25°C.
  • the (A) polyphenylene ether resin having a terminal functional group containing a carbon-carbon double bond is sometimes referred to as the (A) component.
  • the compound (B) which has an isocyanuric ring structure and two allyl groups in one molecule and is liquid at 25°C is sometimes referred to as the (B) component.
  • the resin composition of this embodiment has excellent dielectric properties and excellent heat resistance. Furthermore, the resin composition of the present embodiment has high fluidity, so that it can be easily embedded in a substrate and has excellent film-forming properties.
  • the polyphenylene ether resin as the component (A) has a functional group containing a carbon-carbon double bond at its end, imparts low dielectric properties to the resin composition, and improves fluidity when heated. can be improved.
  • the compound as component (B) is a compound having an isocyanuric ring structure and two allyl groups in one molecule, which lowers the melt viscosity of the resin composition and improves the embeddability in wiring. can be made In addition, the compound as the component (B) has two allyl groups, so that extremely good low dielectric properties can be obtained.
  • the resin composition of the present embodiment can obtain high heat resistance by cross-linking and curing the components (A) and (B).
  • the resin composition of the present embodiment can reduce the coefficient of thermal expansion in the thickness direction in the cured product or cured layer of the resin composition.
  • the thickness direction of the cured product or cured layer of the resin composition is sometimes referred to as the "Z direction".
  • FIG. 1 is a cross-sectional view of a multilayer wiring board, and is a diagram for explaining the process in which a conductor layer breaks due to a heat cycle.
  • FIG. 1(a) shows the state before the conductor layer is broken
  • FIG. 1(b) shows the state after the conductor layer is broken by the heat cycle.
  • the direction of the arrow indicated by symbol Z is the "thickness direction (that is, the Z direction)" of the cured resin composition or cured layer that becomes the adhesive layer 16. show.
  • the multilayer wiring board 10 shown in FIG. 1(a) is formed by bonding five substrates 12 (12a to 12e) via conductor layers 14 and adhesive layers 16 (16a to 16d).
  • the adhesive layer 16 (16a to 16d) is composed of, for example, a cured layer obtained by curing a resin composition.
  • the conductor layer 14 is arranged between each substrate 12 and each adhesive layer 16 and so as to cover the entire surface of the multilayer wiring board 10 .
  • the multilayer wiring board 10 shown in FIG. 1A is provided with through holes 22 for electrically connecting lands on the front surface of the multilayer wiring board 10 and lands on the rear surface thereof. are also covered with the conductor layer 14 described above.
  • breakage 24 may occur in the conductor layer 14 as shown in (b) of FIG.
  • breakage 24 may occur in the conductor layer 14 as shown in (b) of FIG.
  • a multilayer wiring board 10 as shown in FIG. 1A is subjected to a heat cycle in which one cycle is a temperature change from -55° C. to 125° C.
  • stress is generated due to expansion due to the temperature change.
  • a break 24 is likely to occur in the conductor layer 14 .
  • the coefficient of thermal expansion of the adhesive layer 16 in the Z direction is large, a greater stress is generated on the conductor layer 14 covering the inner wall surface of the through hole 22, and the fracture 24 of the conductor layer 14 is more pronounced. becomes.
  • the resin composition of the present embodiment can reduce the thermal expansion coefficient in the thickness direction (i.e., “Z direction” in FIG. 1) of the cured product or cured layer.
  • the occurrence of fractures 24 in the conductor layer 14 can be effectively suppressed.
  • the resin composition of the present embodiment includes (C) an inorganic filler, (D) a polymerization initiator, (E) a thermoplastic resin, and (F) a polybutadiene. It may contain other ingredients such as Hereinafter, the respective components described above may be referred to as components (C) to (F) as appropriate.
  • Component (A) is a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at its end.
  • Functional groups containing carbon-carbon double bonds can include, for example, either terminal vinyl groups, vinylene groups, or vinylidene groups.
  • Component (A) is not particularly limited as long as it has a functional group containing a carbon-carbon double bond at its terminal and has polyphenylene ether in its skeleton. By including the component (A), it is possible to impart low dielectric properties to the resin composition and improve heat resistance and thermal expansion coefficient.
  • Component (A) is preferably a thermosetting resin.
  • the component (A) is preferably a polyphenylene ether resin having a terminal vinyl group. Low dielectric properties can be obtained by having a vinyl group at the end.
  • component (A) for example, a compound having a structure represented by the following general formula (1) can be mentioned.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 may be the same or different, and may be a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group. or a phenyl group.
  • -(O-X-O)- is represented by the above structural formula (2), in which R 8 , R 9 , R 10 , R 14 and R 15 are the same or different may be a halogen atom, an alkyl group having 6 or less carbon atoms , or a phenyl group; or a phenyl group.
  • -(Y-O)- is one type of structure represented by the above structural formula (3), or two or more types of structures represented by the above structural formula (3) arranged randomly
  • R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group
  • R 18 and R 19 may be the same or different. It is often a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom.
  • the compound represented by general formula (1) is as described in JP-A-2004-59644.
  • the compound represented by general formula (1) Since the compound represented by general formula (1) has styrene functional groups at both ends, the resin composition containing component (A) is easily cured by heating. From the viewpoint of curability, the compound represented by the general formula (1) preferably has hydrogen as R 1 to R 7 .
  • R 8 , R 9 , R 10 , R 14 and R 15 each have a carbon number
  • An alkyl group of 3 or less is preferable, and a methyl group is particularly preferable.
  • R 11 , R 12 and R 13 are preferably hydrogen atoms or alkyl groups having 3 or less carbon atoms, particularly preferably methyl groups.
  • the following structural formula (5) is mentioned.
  • R 16 and R 17 are preferably alkyl groups having 3 or less carbon atoms, A methyl group is particularly preferred.
  • R 18 and R 19 are preferably a hydrogen atom or an alkyl group having 3 or less carbon atoms, particularly preferably a methyl group.
  • the following structural formula (6) or structural formula (7) can be mentioned.
  • Z is, for example, an alkylene group having 3 or less carbon atoms, specifically a methylene group.
  • At least one of a and b represents an integer of 0 to 300, preferably an integer of 0 to 30.
  • the compound represented by general formula (1) preferably has a number average molecular weight of 1,000 to 3,000. Further, the compound represented by the general formula (1) has a functional group containing a carbon-carbon double bond at both ends, and the equivalent weight per functional group (functional group equivalent weight) is 1/2 of the above molecular weight. Those with a corresponding 500-1500 are suitable.
  • the functional group equivalent indicates the degree of cross-linking density of the cured product, and when the functional group equivalent is within this range, an appropriate cross-linking density is obtained and sufficient mechanical strength is provided. There is an advantage that the occurrence of cracks and the like can be avoided.
  • the number average molecular weight is a value obtained by using a standard polystyrene calibration curve by gel permeation chromatography (GPC).
  • the compound represented by general formula (1) can be prepared by the method described in JP-A-2004-59644. For example, a reaction in which a polycondensate of 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol and 2,6-dimethylphenol is further reacted with chloromethylstyrene. The product can be used.
  • the compound represented by the general formula (1) may be used alone, or two or more of the compounds represented by the general formula (1) may be used in combination.
  • the component (A) is preferably contained in an amount of 15 to 90% by mass, more preferably 17 to 80% by mass, particularly preferably 18 to 70% by mass, based on 100% by mass of non-volatile components in the resin composition.
  • the content ratio of the component (A) in 100% by mass of the non-volatile components in the resin composition is within this range, there is an advantage that the heat resistance of the resin composition and workability such as film formation are improved.
  • the content ratio of the component (A) in the non-volatile component can be measured by, for example, an infrared spectrophotometer (FTIR), gas chromatography mass spectrometry, or the like.
  • FTIR infrared spectrophotometer
  • component (A) described so far it is preferable to include 15 to 95 parts by mass of the component (A) with respect to the total 100 parts by mass of the resin components in the resin composition, and 23 to 90 parts by mass. It is more preferable to contain it, and it is particularly preferable to contain 32 to 85 parts by mass.
  • the content of component (A) in the total 100 parts by mass of the resin components is within this range, there is an advantage that the heat resistance of the cured product of the resin composition and workability such as film formation are improved.
  • the content of component (A) in the resin component can be measured, for example, by infrared spectrophotometer (FTIR), gas chromatography mass spectrometry, or the like.
  • the resin components in the resin composition include (A) component, (B) component, and optional components (E) and (F). Therefore, the content of component (A) with respect to the total 100 parts by mass of the resin components in the resin composition is, for example, the total mass of component (A), component (B), and other resin components of 100 parts by mass. It can be obtained as the content of the component (A) when The content of the component (B) with respect to the total 100 parts by mass of the resin components, which will be described later, can also be calculated as described above.
  • polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end of component (A) Mitsubishi Gas Chemical Co., Ltd. trade name "OPE-2St 1200" (number average molecular weight 1200) and "OPE-2St 2200” (number average molecular weight 2200). These are polyphenylene ether resins having vinyl groups at their ends.
  • polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end of component (A) a polyphenylene ether resin having a group represented by the following formula (8) at the end can be mentioned.
  • R20 represents a hydrogen atom or an alkyl group.
  • R 20 represents a hydrogen atom or an alkyl group.
  • the alkyl group for R 20 is preferably, for example, an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 carbon atom. Specific examples include a methyl group, an ethyl group, a propyl group and the like.
  • examples of the group represented by formula (8) include an acrylate group and a methacrylate group.
  • the modified polyphenylene ether having a group represented by formula (8) has a polyphenylene ether chain in the molecule, for example, a repeating unit represented by the following structural formula (9) in the molecule. preferably.
  • m represents 1-50.
  • R 22 to R 25 are each independent and may be the same as or different from each other.
  • R 22 to R 25 each represent a hydrogen atom or an alkyl group.
  • alkyl group for R 22 to R 25 is not particularly limited, for example, an alkyl group having 1 to 8 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is more preferable. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group and the like.
  • modified polyphenylene ether having a group represented by the above formula (8) for example, a group represented by the above formula (8) is attached to the end of the polyphenylene ether represented by the following formula (10) or (11).
  • modified polyphenylene ethers include modified polyphenylene ethers represented by the following formula (12) or (13).
  • s and t are preferably such that the sum of s and t is 1-30. Further, s is preferably 0-20, and t is preferably 0-20. That is, s represents 0-20, t represents 0-20, and the sum of s and t preferably represents 1-30.
  • Y represents an alkylene group having 1 to 3 carbon atoms or a direct bond, and examples of the alkylene group include dimethylmethylene group.
  • R 20 is the same as R 20 in formula (8) above and represents a hydrogen atom or an alkyl group.
  • the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 3 carbon atoms is preferable, and an alkyl group having 1 carbon atom is more preferable. Specific examples include a methyl group, an ethyl group, a propyl group and the like.
  • the number average molecular weight (Mn) of the modified polyphenylene ether having the group represented by formula (8) is not particularly limited. Specifically, it is preferably from 500 to 5,000, more preferably from 800 to 4,000, even more preferably from 1,000 to 3,000.
  • the number average molecular weight may be measured by a general molecular weight measurement method, and specific examples include values measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • m is the weight average molecular weight of the modified polyphenylene ether. It is preferable that the numerical value is within the range. Specifically, m is preferably from 1 to 50.
  • the number average molecular weight of the modified polyphenylene ether having the group represented by the formula (8) is within the numerical range as described above, it has excellent dielectric properties derived from the polyphenylene ether and has excellent embeddability into the substrate. .
  • the average number of groups represented by the above formula (8) per molecule of the modified polyphenylene ether (the number of terminal functional groups) at the end of the molecule is not particularly limited. . Specifically, the number is preferably 1 to 5, more preferably 1 to 3, even more preferably 1.5 to 3. If the number of terminal functional groups is too small, the curability will be poor, and it will tend to be difficult to obtain a cured product with sufficient strength, adhesiveness and heat resistance. On the other hand, if the number of terminal functional groups is too large, the reactivity becomes too high.
  • the terminal functional group number of the modified polyphenylene ether described above is a numerical value representing the average value of the groups represented by the above formula (8) per molecule of all modified polyphenylene ethers present in 1 mol of the modified polyphenylene ether. mentioned.
  • the number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the modified polyphenylene ether obtained and calculating the decrease from the number of hydroxyl groups of the polyphenylene ether before modification. The decrease from the number of hydroxyl groups of the polyphenylene ether before modification is the number of terminal functional groups.
  • the method for measuring the number of hydroxyl groups remaining in the modified polyphenylene ether is to add a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to the solution of the modified polyphenylene ether, and measure the UV absorbance of the mixed solution.
  • a quaternary ammonium salt tetraethylammonium hydroxide
  • the method for synthesizing the modified polyphenylene ether used as the component (A) is not particularly limited as long as the modified polyphenylene ether having the group represented by the above formula (8) at the end can be synthesized.
  • Component (A) may be a modified polyphenylene ether having a terminal group represented by the above formula (8) alone, or a modified polyphenylene ether having a terminal group represented by the above formula (8). You may use it in combination of 2 or more types.
  • the content of the component (A) having a group represented by formula (8) as described above at its end is not particular restriction.
  • the content of the component (A) in the total 100 parts by mass of the resin components is within this range, the heat resistance of the cured product of the resin composition and the workability such as film formation are improved, and the toughness of the cured product is improved. There is an advantage that it is not lost and the adhesion and the like do not deteriorate.
  • modified polyphenylene ether having a group represented by the above formula (8) at the end of component (A) include the product name "Noryl SA9000" manufactured by SABIC Innovative Plastics.
  • the present resin composition may contain an inorganic filler.
  • the component (A) preferably contains 40 to 90 parts by weight, more preferably 45 to 85 parts by weight, with respect to the total 100 parts by weight of the resin components. It is particularly preferable to contain up to 80 parts by mass. Within this range, there is an advantage that the coefficient of thermal expansion of the resin composition is improved.
  • Component (B) is a compound that has an isocyanuric ring structure and two allyl groups in one molecule and is liquid at 25°C.
  • the melt viscosity of the resin composition can be lowered, and the embedding property in the wiring can be improved.
  • the compound as the component (B) has two allyl groups, so that extremely good low dielectric properties can be obtained. For example, when a compound having an isocyanuric ring structure and three allyl groups in one molecule is used in place of component (B), sufficient low dielectric properties cannot be obtained.
  • a compound having a bifunctional allyl group such as the component (B) of the resin composition of the present embodiment, has a linear crosslinked structure, and the dipole moment, which is a measure of molecular polarization, becomes small. It is assumed that low dielectric properties are obtained. Furthermore, although the details are not clear, it is presumed that the heat resistance of the resin composition is improved when the component (B) has an isocyanuric ring structure.
  • component (B) of the resin composition of the present embodiment is a compound that is liquid at 25° C.
  • the embedding property is improved.
  • component (B) is a compound that is solid at 25°C, it is difficult to form a film, which is not preferred.
  • Component (B) is preferably one that reacts with component (A) without using a polymerization initiator.
  • the molecular weight of component (B) is preferably 300-400, more preferably 320-400. When the molecular weight of the component (B) is within the above range, excellent dielectric properties and fluidity are obtained.
  • the component (B) is preferably a compound represented by the following general formula (4).
  • R is an alkyl group having 4 to 14 carbon atoms, preferably an alkyl group having 8 to 14 carbon atoms, and an alkyl group having 10 to 12 carbon atoms. is particularly preferred.
  • the content of component (B) is preferably 10 to 70 parts by mass with respect to 100 parts by mass of component (A). By configuring in this way, the melt viscosity of the resin composition can be lowered, the embeddability into the wiring can be improved, and the heat resistance can be improved.
  • the content of component (B) is more preferably 15 to 65 parts by mass, more preferably 20 to 60 parts by mass, per 100 parts by mass of component (A). is more preferred.
  • it preferably contains 2 to 50% by mass of component (B), more preferably 3 to 40% by mass, and particularly 4 to 30% by mass. preferable.
  • the content ratio of the component (B) in 100% by mass of the non-volatile components in the resin composition is within this range, the dielectric properties of the resin composition are excellent.
  • the content ratio of the component (B) in the non-volatile component can be measured by, for example, an infrared spectrophotometer (FTIR), gas chromatography mass spectrometry, or the like.
  • component (B) It is preferable to contain 5 to 50 parts by mass of component (B), more preferably 7 to 45 parts by mass, and particularly 8 to 40 parts by mass with respect to the total 100 parts by mass of the resin components of the resin composition.
  • the content of component (B) is within this range with respect to the total of 100 parts by mass of the resin components, the resin composition will have good film formability and fluidity. Moreover, it is preferable in terms of obtaining the flexibility and heat resistance of the thermoset of the resin composition.
  • the present resin composition may contain an inorganic filler.
  • the component (B) preferably contains 1 to 30 parts by mass, more preferably 2 to 25 parts by mass, with respect to the total 100 parts by mass of the resin components. It is particularly preferable to contain up to 20 parts by mass. Within this range, there is an advantage that the fluidity of the resin composition can be improved and the embedding property is improved while containing the inorganic filler.
  • a component is an inorganic filler.
  • Inorganic fillers are required to have insulating properties and a low coefficient of thermal expansion.
  • Common inorganic fillers can be used as the inorganic filler.
  • inorganic fillers include silica, alumina, aluminum nitride, calcium carbonate, aluminum silicate, magnesium silicate, magnesium carbonate, barium sulfate, barium carbonate, lime sulfate, aluminum hydroxide, calcium silicate, potassium titanate, oxide Titanium, zinc oxide, silicon carbide, silicon nitride, boron nitride and the like can be mentioned.
  • the inorganic fillers may be used alone or in combination of two or more.
  • Silica filler and alumina filler are particularly preferred from the viewpoint of insulation. From the viewpoint of dielectric properties, silica filler is preferable.
  • the inorganic filler may be surface-treated with a silane coupling agent having one or more functional groups selected from acrylic, methacrylic, styryl, amino, epoxy, and vinyl.
  • silane coupling agent having one or more functional groups selected from acrylic, methacrylic, styryl, amino, epoxy, and vinyl.
  • inorganic fillers include aminosilane-based coupling agents, ureidosilane-based coupling agents, epoxysilane-based coupling agents, mercaptosilane-based coupling agents, silane-based coupling agents, vinylsilane-based coupling agents, and styrylsilane-based coupling agents.
  • silica filler it is more preferable to use a silica filler surface-treated with a vinylsilane coupling agent. By using a silica filler surface-treated with a vinylsilane coupling agent, it is possible to improve the thermal expansion coefficient (thickness).
  • the shape of the inorganic filler is not particularly limited, and may be spherical, scaly, acicular, irregular, and the like. A spherical shape is preferable from the point of workability.
  • the average particle size is preferably 0.1-10 ⁇ m, more preferably 0.1-4 ⁇ m. When the average particle size of the inorganic filler is within this range, the embedding property between fine structures is excellent.
  • the average particle size is the particle size at an integrated value of 50% in the volume-based particle size distribution measured by a laser diffraction/scattering method. The average particle size can be measured, for example, with a laser scattering diffraction particle size distribution analyzer: LS13320 (manufactured by Beckman Coulter, wet type).
  • the content of component (C) is preferably 1 to 90 parts by mass with respect to 100 parts by mass of non-volatile components in the resin composition.
  • the coefficient of thermal expansion can be favorably improved.
  • the content of component (C) is more preferably 20 to 80 parts by mass, more preferably 30 to 75 parts by mass, with respect to 100 parts by mass of non-volatile components in the resin composition. Part is more preferred.
  • component (C) In order to lower the coefficient of thermal expansion of the resin composition, when the component (C) is contained in an amount of 50 parts by mass or more with respect to 100 parts by mass of non-volatile components in the resin composition, when the inorganic filler is highly filled, the resin composition The melt viscosity tends to increase, and the embeddability into the substrate tends to deteriorate.
  • component (B) which has an isocyanuric ring structure and two allyl groups in one molecule and is a liquid compound at 25°C, even when the inorganic filler is highly filled, the resin composition It can lower the melt viscosity of the material and improve the embeddability in the wiring.
  • the silica filler used in component (C) includes fused silica, ordinary silica, spherical silica, crushed silica, crystalline silica, amorphous silica, etc., and is not particularly limited.
  • Spherical fused silica is desirable from the viewpoints of dispersibility of silica filler, fluidity of thermosetting resin composition, surface smoothness of cured product, dielectric properties, low coefficient of thermal expansion, adhesiveness, and the like.
  • the method of surface-treating the silica filler using the coupling agent described above is not particularly limited, and examples thereof include a dry method and a wet method.
  • silica filler and an appropriate amount of silane coupling agent with respect to the surface area of the silica filler are put in a stirring device and stirred under appropriate conditions, or silica filler is placed in a stirring device in advance and stirred under appropriate conditions.
  • an appropriate amount of silane coupling agent for the surface area of the silica filler is added dropwise or sprayed as a stock solution or solution, and the silane coupling agent is uniformly attached to the silica filler surface by stirring, It is a method of surface treatment (by hydrolysis).
  • the stirring device include, but are not particularly limited to, a mixer such as a Henschel mixer capable of stirring and mixing at high speed rotation.
  • a sufficient amount of silane coupling agent is dissolved in water or an organic solvent for the surface area of the silica filler to be surface treated, and the silica filler is added to the surface treatment solution and stirred to form a slurry.
  • the silica filler is separated from the surface treatment solution by filtration, centrifugation, or the like, dried by heating, and subjected to surface treatment.
  • (D) Component is a polymerization initiator.
  • the polymerization initiator as component (D) is an additive for favorably initiating the polymerization of components (A) and (B).
  • component (D) By including such component (D), the degree of curing of the resin composition can be improved for a given curing temperature and time. Therefore, the resin composition of the present embodiment preferably further contains a polymerization initiator as component (D).
  • the polymerization initiator of component (D) may be any one that has the curing ability of components (A) and (B), and conventionally known polymerization initiators can be used.
  • examples of polymerization initiators include organic peroxides, inorganic peroxides, and azo compounds.
  • Component polymerization initiators include organic peroxides manufactured by Nippon Oil & Fats Co., Ltd. under the trade names of "Permyl D" and "Perbutyl C”. Component (D) may be used alone or in combination of two or more.
  • the content of the component (D) is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the non-volatile components in the resin composition. By configuring in this way, heat resistance and adhesiveness can be improved satisfactorily.
  • the content of the component (D) is more preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of non-volatile components in the resin composition. It is more preferably 1 to 5 parts by mass.
  • thermoplastic resin as component (E) is not particularly limited, but preferably has a dielectric loss tangent (tan ⁇ ) of less than 0.005 in the frequency range of 1 to 100 GHz. This can contribute to the excellent dielectric properties in the high frequency range of the thermosetting film formed from the resin composition of the present embodiment.
  • the "thermoplastic resin having a dielectric loss tangent (tan ⁇ ) of less than 0.005 in the frequency range of 1 to 100 GHz” is not particularly limited, but examples thereof include styrene-based thermoplastic elastomers.
  • Styrenic thermoplastic elastomers can include, for example, block copolymers containing blocks of styrene or analogues thereof as at least one terminal block and elastomeric blocks of conjugated dienes as at least one intermediate block.
  • SBS styrene/butadiene/styrene block copolymer
  • SBBS styrene/butadiene/butylene/styrene block copolymer
  • SEBS styrene/ethylene/butylene/styrene block copolymer
  • SEEPS styrene/ethylene/ethylene/propylene/styrene block copolymer.
  • the number average molecular weight of component (E) is preferably 30,000 or more, more preferably 40,000 or more, and even more preferably 50,000 or more.
  • the number average molecular weight of component (E) is preferably 30,000 to 150,000, more preferably 40,000 to 120,000, and particularly preferably 50,000 to 100,000. When the number average molecular weight is within this range, solder heat resistance is improved.
  • the upper limit of the number average molecular weight of component (E) is not particularly limited, but if the number average molecular weight of the thermoplastic resin is too large, the thermoplastic resin may become difficult to melt. Therefore, the number average molecular weight of the thermoplastic resin as component (E) is preferably 150,000 or less, more preferably 120,000 or less, and particularly preferably 100,000 or less.
  • component (E) The higher the molecular weight of the component (E), the higher the melt viscosity of the resin composition, which tends to deteriorate the embeddability into the substrate.
  • component (B) which is a compound that has an isocyanuric ring structure and two allyl groups in one molecule and is liquid at 25°C, , the melt viscosity of the resin composition can be lowered, and the embeddability into the wiring can be improved.
  • the content of component (E) is not particularly limited. % by mass, more preferably 1 to 30% by mass. When the content of component (E) is within this range, the fluidity of the resin composition can be improved, and the embeddability into the substrate can be improved.
  • the present resin composition may contain an inorganic filler, and when the present resin composition contains an inorganic filler, the component (E) may contain 1 to 60 parts by mass with respect to the total 100 parts by mass of the resin components. Preferably, it is contained in an amount of 10 to 55 parts by mass, and particularly preferably in an amount of 20 to 50 parts by mass.
  • [(F) Component] (F) Component is polybutadiene.
  • polybutadiene By including polybutadiene as the component (F), the thermal expansion coefficient in the thickness direction of the cured product or cured layer of the resin composition can be made smaller.
  • Component (F) preferably has a vinyl group on the side chain of polybutadiene that reacts with component (A) or component (B). By doing so, although the details are not clear, it is presumed that the side chains of polybutadiene react with the component (A) or component (B) to lower the coefficient of thermal expansion in the thickness direction. be done. Therefore, by containing polybutadiene as the component (F), it is possible to extremely effectively suppress the occurrence of fractures 24 in the conductor layer 14 as shown in FIG. 1(b).
  • Polybutadiene as component (F) preferably has a number average molecular weight (Mn) of 500 to 3,000, more preferably 600 to 2,000, and even more preferably 700 to 1,800.
  • Mn number average molecular weight
  • the thermal expansion coefficient in the thickness direction of the cured product or cured layer of the resin composition can be made smaller.
  • (F) component polybutadiene includes polybutadiene (1,2-vinyl) product name "B-1000" manufactured by Nippon Soda Co., Ltd.
  • the content of the (F) component is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the non-volatile components in the resin composition.
  • the coefficient of thermal expansion can be made a good value.
  • the content of component (F) is more preferably 1 to 10 parts by mass, more preferably 1 to 5 parts by mass, with respect to 100 parts by mass of nonvolatile components in the resin composition. Part is more preferred.
  • the resin composition of the present embodiment may further contain components other than the components (A) to (F) described above.
  • components include various additives such as solvents, dispersants, silane coupling agents, antioxidants, flame retardants, fluxes, and the like.
  • the resin composition of this embodiment can be produced by a conventional method.
  • the resin composition of the present embodiment is obtained by dissolving and mixing each component described above together with a solvent using, for example, a Laikai machine, a pot mill, a three-roll mill, a rotary mixer, a twin-screw mixer, or the like. can be manufactured in
  • the resin composition of the present embodiment can be suitably used as a resin composition for adhesives and adhesive films used in electronic parts.
  • the resin composition of the present embodiment can also be suitably used as a bonding sheet for interlayer adhesion and an interlayer adhesive for multilayer wiring boards.
  • the electronic parts to be adhered are not particularly limited, and various printed wiring boards such as ceramic substrates and organic substrates, semiconductor chips, semiconductor devices, etc. mentioned.
  • the adhesive film, the bonding sheet for interlayer adhesion, the interlayer adhesive, and the like using the resin composition of the present embodiment are included as cured products of the resin composition in laminates and semiconductor devices that constitute electronic components and the like. Therefore, laminates and semiconductor devices that constitute electronic parts and the like preferably contain a cured product of the resin composition of the present embodiment.
  • the resin composition of the present embodiment can also be used as a prepreg using a cured product of the resin composition, or as an electronic component for high frequencies having a cured product of the resin composition.
  • Example preparation After weighing and blending each component so that the blending ratio (parts by mass) shown in Tables 1 to 4 below, they are put into a dissolving device heated to 70 ° C. and rotated at a rotation speed of 100 to 400 rpm. Atmospheric pressure mixing was carried out for 3 to 6 hours. As described above, solutions containing the resin compositions of Examples 1 to 15 and Comparative Examples 1 to 6 were prepared.
  • the raw materials used to prepare the solution containing the resin composition in Examples 1 to 15 and Comparative Examples 1 to 6 are as follows.
  • A'3 Polyphenylene ether having terminal hydroxyl groups, trade name "Noryl SA90” manufactured by SABIC Japan.
  • Component (B) a compound having an isocyanuric ring structure and two allyl groups in one molecule
  • B1 manufactured by Shikoku Kasei Co., Ltd., product name "L-DAIC”, a compound represented by the above general formula (4).
  • R is an alkyl group having 4 to 14 carbon atoms.
  • B'2 Daiwa Kasei Kogyo Co., Ltd., trade name "DABPA”, a compound having no isocyanuric ring structure in one molecule and having a phenolic hydroxyl group and an allyl group.
  • B'3 Mitsubishi Chemical Corporation, trade name "TAIC", a compound having an isocyanuric ring structure and three allyl groups in one molecule.
  • (C) component: inorganic filler] (C1): Spherical silica surface-treated with an aminosilane coupling agent, SC4050 SX (product name), Admatechs Co., Ltd., average particle size 1.0 ⁇ m.
  • (E1): Hydrogenated styrene-based thermoplastic elastomer manufactured by Asahi Kasei Corporation, trade name “Tuftec P1500", number average molecular weight (Mn) 49,000.
  • (E2): Hydrogenated styrene thermoplastic elastomer manufactured by Kuraray Co., Ltd., trade name "Septon 8006", number average molecular weight (Mn) 125,000.
  • (E3): Hydrogenated styrene thermoplastic elastomer manufactured by Kraton Polymer Japan, trade name "G1652", number average molecular weight (Mn) 53,000.
  • [(F) component: polybutadiene] (F1): Polybutadiene manufactured by Nippon Soda Co., Ltd., trade name "B-1000". It has a vinyl group in the side chain of polybutadiene. Number average molecular weight (Mn) 1200.
  • ratio (% by mass) of component (C) in the solid content raw material used to prepare the resin composition is indicated in the column of "Ratio of filler in solid content (% by mass)" in Tables 1 to 4. show.
  • ratio (% by mass) of filler in solid content means the ratio (% by mass) of filler to non-volatile components in the resin composition.
  • Tables 1 to 4 the column “Ratio of component (A) in non-volatile components (% by mass)” shows the ratio of component (A) in the non-volatile components of the raw materials used to prepare the resin composition (% by mass) ).
  • thermo expansion coefficient (thickness) [10 -5 /K] was measured by the following method for the film-formed compositions containing the resin compositions of Examples 5, 8, 10 and 13. Furthermore, for the film-formed compositions containing the resin compositions of Examples 1 to 11 and 13 and Comparative Examples 1 to 3 and 5, the following methods were used to measure the "minimum melt viscosity [Pa s]” and " The lowest melting temperature [°C]” was measured.
  • a release-treated PET film was coated with a solution containing each resin composition by a knife method. After that, the solution on the PET film was dried at a temperature of 80 to 130° C. to prepare a resin film having a thickness of 20 to 50 ⁇ m. The properties of the produced resin film were visually confirmed and evaluated based on the following evaluation criteria. If the evaluation result is " ⁇ ", it is regarded as a pass. O: A clean film. ⁇ : Film with streaks and unevenness. x: cracked.
  • the resin film prepared for the evaluation of the film forming properties was cured at a temperature of 200° C. for 1 hour to prepare a sample for measuring the dielectric constant and the dielectric loss tangent.
  • the dielectric constant and dielectric loss tangent of the fabricated samples were measured using a 10 GHz resonator of the cavity resonator perturbation method.
  • the dielectric constant is preferably less than 3.5, more preferably less than 3.0.
  • the dielectric loss tangent is preferably less than 0.0020, more preferably less than 0.0018.
  • Thermal expansion coefficient [10 -5 /K] The resin films prepared for evaluation of film forming properties were laminated so as to have a thickness of 50 to 100 ⁇ m and cured at a temperature of 200° C. for 1 hour to prepare a sample for measuring the coefficient of thermal expansion.
  • the prepared sample was measured by a TMA (thermo-mechanical analyzer) tensile method, and the average thermal expansion coefficient at 100 to 110° C. was taken as the read value (that is, the measured value of the thermal expansion coefficient).
  • the measurement conditions were as follows: after annealing to 230°C at a tensile load of 2 gf and 20°C/min, the sample was once returned to room temperature, and then measured at 5°C/min up to 230°C.
  • the coefficient of thermal expansion evaluated here is the coefficient of thermal expansion in the planar direction.
  • the coefficient of thermal expansion is preferably less than 20 [10 -5 /K], more preferably less than 10 [10 -5 /K].
  • Thermal expansion coefficient (thickness) [10 -5 /K]
  • the resin films prepared in the evaluation of the film forming properties are laminated to a thickness of about 2 mm, and cured at a temperature of 200 ° C. for 1 hour to prepare a sample for measuring the coefficient of thermal expansion (thickness). bottom.
  • the prepared sample was measured by compression with a TMA (thermo-mechanical analyzer), and the average thermal expansion coefficient at 100 to 110° C. was taken as the read value (that is, the measured value of the thermal expansion coefficient (thickness)).
  • the measurement conditions were as follows: annealing up to 250°C at a compressive load of 1 gf and 20°C/min, returning to room temperature once, and then measuring up to 250°C at 5°C/min.
  • the coefficient of thermal expansion evaluated here is the coefficient of thermal expansion in the thickness direction (that is, the Z direction).
  • the thermal expansion coefficient in the thickness direction is preferably less than 20 [10 -5 /K], more preferably less than 10 [10 -5 /K].
  • a double-sided copper-clad plate for measuring the peel strength of the copper foil was obtained by sandwiching the resin film prepared in the evaluation of the film forming properties between copper foils having a thickness of 18 ⁇ m and curing at a temperature of 200° C. for 1 hour under a pressure of 1 MPa. made.
  • the produced double-sided copper-clad plate was cut into a width of 1 cm, and the strength was measured when the copper foil on one side was peeled off in the direction of 180 degrees.
  • the measurement conditions were a tensile speed of 50 mm/min.
  • the copper foil peel strength is preferably 3.0 N/cm or more, more preferably 4.0 N/cm or more.
  • the resin films prepared for evaluation of film forming properties were laminated so as to have a thickness of 200 to 300 ⁇ m, and the melt viscosity was measured using a rheometer. Then, the lowest melt viscosity [Pa ⁇ s] and the lowest melting temperature [°C] at the time of measurement were read.
  • the measurement conditions were a parallel plate with a diameter of 5 mm, a load of 2 gf, a strain of 1%, a frequency of 1 Hz, and measurements from 30 to 160° C. at 5° C./min.
  • the minimum melting temperature is preferably less than 200°C, more preferably less than 160°C.
  • the minimum melt viscosity is preferably less than 10,000 Pa ⁇ s, more preferably less than 5,000 Pa ⁇ s.
  • thermo expansion coefficient (thickness) [10 -5 /K] 8.5 [10 -5 /K] for Example 5, 12.3 [10 -5 /K] for Example 8, Example 10 was 6.0 [10 -5 /K] and Example 13 was 6.6 [10 -5 /K].
  • the measurement results of "minimum melt viscosity [Pa s]" are 68 Pa s for Example 1, 1130 Pa s for Example 2, 45 Pa s for Example 3, 1166 Pa s for Example 4, and 1166 Pa s for Example 5. is 6168 Pa s, Example 6 is 124 Pa s, Example 7 is 8 Pa s, Example 8 is 3495 Pa s, Example 9 is 797 Pa s, Example 10 is 9980 Pa s, Example 11 is 164 Pa ⁇ s, and Example 13 was 5037 Pa ⁇ s. Further, Comparative Example 1 was 85 Pa ⁇ s, Comparative Example 2 was 86 Pa ⁇ s, Comparative Example 3 was 94 Pa ⁇ s, and Comparative Example 5 was 2735 Pa ⁇ s.
  • Example 1 The measurement results of "minimum melting temperature [° C.]" are 91° C. for Example 1, 120° C. for Example 2, 100° C. for Example 3, 116° C. for Example 4, 125° C. for Example 5, and Example 6 was 100°C, Example 7 was 121°C, Example 8 was 131°C, Example 9 was 134°C, Example 10 was 127°C, Example 11 was 110°C, and Example 13 was 122°C. Also, Comparative Example 1 was 104°C, Comparative Example 2 was 102°C, Comparative Example 3 was 102°C, and Comparative Example 5 was 141°C.
  • the resin composition of Example 1 was a mixture of only the solvents of components (A), (B) and (G), and had a low dielectric loss tangent, excellent heat resistance, and a particularly low minimum melting temperature. .
  • the resin composition of Example 6 has a reduced amount of component (B) compared to the resin composition of Example 1, and has a low dielectric loss tangent even when the component (B) is small, and has heat resistance. was excellent.
  • the resin composition of Example 7 has an increased amount of component (B) as compared to the resin composition of Example 1, and has a low dielectric loss tangent even when the amount of component (B) is increased. It had excellent heat resistance and a particularly low minimum melt viscosity.
  • the resin composition of Example 2 further contained the (E) component styrene-based thermoplastic elastomer, and even with the (E) component, it had a low dielectric loss tangent and excellent heat resistance.
  • the resin composition of Example 9 was obtained by changing the type of the styrene-based thermoplastic elastomer of the component (E). In addition, it had a low dielectric loss tangent, excellent heat resistance, and excellent copper foil peel strength.
  • the resin composition of Example 3 further contained the (D) component polymerization initiator, and even with the (D) component, it had a low dielectric loss tangent and excellent heat resistance.
  • the resin composition of Example 4 contained both the (D) component and the (E) component, and had a low dielectric loss tangent and excellent heat resistance.
  • the resin compositions of Examples 5, 8, and 10 further contain an inorganic filler (silica filler) as the component (C) in addition to the component (D) and the component (E). In addition, it had a low dielectric loss tangent and excellent heat resistance.
  • the resin composition of Example 11 is a blend of only the solvent of the components (A), (B), (C) and (G), and has a particularly excellent coefficient of thermal expansion and a low minimum melt viscosity.
  • the dielectric loss tangent was excellent in heat resistance.
  • the resin composition of Example 12 used a polyphenylene ether resin of component (A) having a number average molecular weight of 2200, and had a lower dielectric loss tangent than Example 1 and excellent heat resistance. rice field.
  • the resin composition of Example 13 further contains an inorganic filler (vinylsilane-treated silica filler) as the component (C), and has a particularly excellent coefficient of thermal expansion (thickness), a low dielectric loss tangent, and excellent heat resistance. Met.
  • the resin composition of Example 14 contains component (E) (styrene-based thermoplastic elastomer) different from that used in Examples 1 to 13, and is different from Examples 1 to 13 described above. Similarly, good results were obtained in each evaluation and measurement.
  • the resin composition of Example 15 contains a component (A) different from that used in Examples 1 to 13, and in the same manner as in Examples 1 to 13, in each evaluation and measurement Good results were obtained.
  • Example 6 in which the content ratio of component (A) in 100% by mass of non-volatile components in the resin composition was 90.57% by mass, had relatively low film-forming properties as compared with Example 1. .
  • Examples 3 and 12 in which the content ratio of the component (A) in 100% by mass of the non-volatile component is about 70% by mass, are also improved in film-forming properties with respect to Example 6, but are similar to those in Example 1. In comparison, the film formability was relatively low.
  • Example 8 in which the content ratio of component (A) in 100% by mass of non-volatile components was 17.00% by mass had relatively low copper foil peel strength.
  • Example 10 which had the lowest content ratio of component (B) in 100% by mass of non-volatile components, was higher than the other examples in terms of the lowest melt viscosity. From Examples 1, 6 and 7, it was found that the dielectric loss tangent tended to improve as the content ratio of component (B) in 100% by mass of non-volatile components increased.
  • Comparative Examples 1 and 2 a compound having an isocyanuric ring structure and three allyl groups in one molecule was used as the (B') component instead of the (B) component.
  • the resin compositions of Comparative Examples 1 and 2 using such compounds were poor in film-forming properties.
  • the resin compositions of Comparative Examples 1 and 2 exhibited high dielectric loss tangent values.
  • Comparative Examples 3 to 5 a compound having no isocyanuric ring structure in one molecule and having a phenolic hydroxyl group and an allyl group was used as the (B') component instead of the (B) component.
  • the resin composition of Comparative Example 3 peeling of the copper foil was confirmed in the evaluation of solder heat resistance.
  • the copper foil was peeled off even in the measurement of the copper foil peel strength, so the copper foil peel strength could not be measured.
  • the resin compositions of Comparative Examples 4 and 5 exhibited high dielectric loss tangent values. Moreover, the resin compositions of Comparative Examples 4 and 5 had low values of copper foil peel strength, and the copper foil was easily peeled off.
  • Comparative Example 6 instead of the (A) component, a polyphenylene ether having a terminal hydroxyl group was used as the (A') component.
  • the resin composition of Comparative Example 6 the film-formed composition containing the resin composition did not cure, and it was difficult to produce a cured resin film. For this reason, the resin composition of Comparative Example 6 could not be evaluated and measured except for evaluation of film forming properties.
  • the resin composition of the present invention can be used as an adhesive for electronic parts or as a resin composition for adhesive films.
  • the resin composition of the present invention can also be used as a bonding sheet for interlayer adhesion and an interlayer adhesive for multilayer wiring boards.
  • the resin composition of the present invention can also be used as a prepreg using a cured product of the resin composition, or as an electronic component for high frequencies having a cured product of the resin composition.

Abstract

Provided is a resin composition that has good substrate embeddability as well as superior heat resistance, while also having a low dielectric characteristic. The resin composition includes: (A) a polyphenylene ether resin that has, at a terminal end, a functional group including a carbon-carbon double bond; and (B) a compound that is liquid at 25°C and has an isocyanuric ring structure and two allyl groups per molecule.

Description

樹脂組成物、並びにこれを用いたプリント配線基板、硬化物、プリプレグ及び高周波向け電子部品Resin composition, printed wiring board, cured product, prepreg and electronic component for high frequency using the same
 本発明は、樹脂組成物、並びにこれを用いたプリント配線基板、硬化物、プリプレグ及び高周波向け電子部品に関する。 The present invention relates to a resin composition, and printed wiring boards, cured products, prepregs, and electronic components for high frequencies using the same.
 近年、スマートフォンやタブレットの端末や通信基地局などの通信電子機器(電子基板)に対して、通信速度の高速化が進んでおり、5G通信網の構築が進んでいる。このような通信速度の高速化に伴い、通信電子機器に用いられる基板への電気信号の低ロス化のため、材料の低誘電化や、基板の多層化高集積の要求が著しく、これを実現すべく、低誘電の樹脂基板やセラミック基板、低誘電の層間接着剤などが用いられている。更に、6Gなどの高周波信号の通信についても検討されつつある。 In recent years, communication speeds have increased for communication electronic devices (electronic substrates) such as smartphones and tablet terminals and communication base stations, and the construction of 5G communication networks is progressing. Accompanying this increase in communication speeds, there is a significant demand for low-dielectric materials and multi-layer substrates with high integration in order to reduce the loss of electrical signals to the substrates used in communication electronic devices. Therefore, low dielectric resin substrates, ceramic substrates, low dielectric interlayer adhesives, and the like are used. Furthermore, communication of high-frequency signals such as 6G is also under consideration.
 電子機器の製作において接着剤や封止材として種々の樹脂組成物が用いられている。樹脂組成物は、上述したような層間接着剤等として利用した場合、その流動性が低いと基板への埋め込みが困難となる。このため、層間接着剤等として利用される樹脂組成物は、低誘電特性の付与と流動性の低下を抑制することを重視して、敢えて耐熱性に劣る構造の樹脂が選定されることがあった。例えば、低誘電特性、且つ低い溶融粘度の配合の樹脂組成物として、特定のビニル化合物と、スチレン/エチレン/ブチレン/スチレンブロックコポリマー(SEBS)を含む熱硬化性樹脂組成物が提案されている(例えば、特許文献1参照)。 Various resin compositions are used as adhesives and sealing materials in the manufacture of electronic devices. When the resin composition is used as an interlayer adhesive or the like as described above, it becomes difficult to embed it in a substrate if its fluidity is low. For this reason, for resin compositions used as interlayer adhesives, etc., resins with poor heat resistance structures are sometimes intentionally selected with an emphasis on imparting low dielectric properties and suppressing a decrease in fluidity. rice field. For example, a thermosetting resin composition containing a specific vinyl compound and a styrene/ethylene/butylene/styrene block copolymer (SEBS) has been proposed as a resin composition with low dielectric properties and low melt viscosity ( For example, see Patent Document 1).
国際公開第2008/018483号WO2008/018483
 特許文献1に開示された樹脂組成物は、上述したように、低誘電特性、且つ、低い溶融粘度の配合の樹脂組成物であるが、熱膨張係数が高く、そのままでは多層構造の層間接着剤などとして利用することは困難であった。ここで、樹脂組成物の熱膨張係数を低くするための一手段として、シリカフィラーを高充填することが挙げられる。 As described above, the resin composition disclosed in Patent Document 1 is a resin composition with low dielectric properties and low melt viscosity, but has a high coefficient of thermal expansion and is an interlayer adhesive with a multilayer structure as it is. It was difficult to use as Here, as one means for lowering the thermal expansion coefficient of the resin composition, high filling of silica filler can be mentioned.
 しかしながら、特許文献1に開示されたような高分子エラストマーを主体として配合された樹脂組成物は、シリカフィラーを高充填すると溶融粘度が高くなり、基板への埋め込み性が悪くなるという問題があった。 However, the resin composition mainly composed of a polymer elastomer as disclosed in Patent Document 1 has a problem that when it is highly filled with a silica filler, the melt viscosity becomes high and the embeddability into the substrate is deteriorated. .
 本発明は、このような従来技術の有する問題点に鑑みてなされたものである。本発明は、低誘電特性でありながら基板への埋め込み性が良好であり、且つ耐熱性にも優れた樹脂組成物を提供する。更に、本発明は、このような樹脂組成物を用いたプリント配線基板、硬化物、プリプレグ及び高周波向け電子部品を提供する。 The present invention has been made in view of such problems of the prior art. The present invention provides a resin composition having low dielectric properties, good embeddability into a substrate, and excellent heat resistance. Furthermore, the present invention provides a printed wiring board, a cured product, a prepreg, and an electronic component for high frequencies using such a resin composition.
 本発明によれば、以下に示す樹脂組成物、プリント配線基板、硬化物、プリプレグ及び高周波向け電子部品が提供される。 According to the present invention, the following resin composition, printed wiring board, cured product, prepreg, and high-frequency electronic component are provided.
[1] (A)炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂と、(B)1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物と、を含む、樹脂組成物。 [1] (A) A polyphenylene ether resin having a terminal functional group containing a carbon-carbon double bond, and (B) an isocyanuric ring structure and two allyl groups in one molecule, which is liquid at 25°C. A resin composition comprising a compound.
[2] 前記(A)成分が、熱硬化性樹脂である、前記[1]に記載の樹脂組成物。 [2] The resin composition according to [1] above, wherein the component (A) is a thermosetting resin.
[3] 前記(B)成分の分子量が、300~400である、前記[1]又は[2]に記載の樹脂組成物。 [3] The resin composition according to [1] or [2] above, wherein the component (B) has a molecular weight of 300-400.
[4] 前記(A)成分が、下記一般式(1)で示されるポリフェニレンエーテルである、前記[1]~[3]のいずれかに記載の樹脂組成物。 [4] The resin composition according to any one of [1] to [3] above, wherein the component (A) is a polyphenylene ether represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1)中、
 R、R、R、R、R、R、Rは、同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基であり、
 -(O-X-O)-は、上記構造式(2)で示され、当該構造式(2)中、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、
 -(Y-O)-は、上記構造式(3)で示される1種類の構造、又は、上記構造式(3)で示される2種類以上の構造がランダムに配列したものであり、当該構造式(3)中、R16、R17は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R18、R19は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、
 Zは、炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともあり、
 a、bは、少なくともいずれか一方が0でない、0~300の整数を示し、c、dは、0又は1の整数を示す。
In the above general formula (1),
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , which may be the same or different, are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group;
—(O—X—O)— is represented by the above structural formula (2), and in the structural formula (2), R 8 , R 9 , R 10 , R 14 and R 15 may be the same or different. R 11 , R 12 and R 13 may be the same or different and may be a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group. is the basis,
-(Y-O)- is one type of structure represented by the above structural formula (3), or two or more types of structures represented by the above structural formula (3) arranged randomly, and the structure In formula (3), R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group, R 18 and R 19 may be the same or different, a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group;
Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom;
a and b are integers of 0 to 300, at least one of which is not 0; c and d are integers of 0 or 1;
[5] 前記(B)成分が、下記一般式(4)で表される化合物である、前記[1]~[4]のいずれかに記載の樹脂組成物。 [5] The resin composition according to any one of [1] to [4] above, wherein the component (B) is a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(4)中、Rは、炭素数が4~14個のアルキル基である。 In the above general formula (4), R is an alkyl group having 4 to 14 carbon atoms.
[6] (C)無機フィラーを更に含む、前記[1]~[6]のいずれかに記載の樹脂組成物。 [6] The resin composition according to any one of [1] to [6], further comprising (C) an inorganic filler.
[7] 樹脂組成物中の不揮発成分100質量%中に、前記(C)成分を50質量%以上含む、前記[6]に記載の樹脂組成物。 [7] The resin composition according to [6] above, which contains 50% by mass or more of the component (C) in 100% by mass of non-volatile components in the resin composition.
[8] 前記(A)成分及び前記(B)成分の重合を開始する(D)重合開始剤を更に含む、前記[1]~[7]のいずれかに記載の樹脂組成物。 [8] The resin composition according to any one of [1] to [7], further comprising (D) a polymerization initiator that initiates polymerization of the (A) component and the (B) component.
[9] (E)数平均分子量が30,000以上の熱可塑性樹脂を更に含む、前記[1]~[8]のいずれかに記載の樹脂組成物。 [9] The resin composition according to any one of the above [1] to [8], further comprising (E) a thermoplastic resin having a number average molecular weight of 30,000 or more.
[10] 樹脂組成物中の不揮発成分100質量部%中に、前記(E)成分を1~50質量%含む、前記[9]に記載の樹脂組成物。 [10] The resin composition according to [9] above, containing 1 to 50% by mass of the component (E) in 100% by mass of the non-volatile components in the resin composition.
[11] (F)ポリブタジエンを更に含む、前記[1]~[10]のいずれかに記載の樹脂組成物。 [11] The resin composition according to any one of [1] to [10], further comprising (F) polybutadiene.
[12] 樹脂組成物中の不揮発成分100質量%中に、前記(A)成分を15~90質量%含む、前記[1]~[11]のいずれかに記載の樹脂組成物。 [12] The resin composition according to any one of [1] to [11] above, containing 15 to 90% by mass of the component (A) in 100% by mass of non-volatile components in the resin composition.
[13] 前記(A)成分100質量部に対して、前記(B)成分を10~70質量部含む、前記[1]~[12]のいずれかに記載の樹脂組成物。 [13] The resin composition according to any one of [1] to [12], containing 10 to 70 parts by mass of the component (B) with respect to 100 parts by mass of the component (A).
[14] 前記[1]~[13]のいずれかに記載の樹脂組成物からなる硬化層を有する、プリント配線基板。 [14] A printed wiring board having a cured layer made of the resin composition according to any one of [1] to [13].
[15] 前記[1]~[13]のいずれかに記載の樹脂組成物の硬化物。 [15] A cured product of the resin composition according to any one of [1] to [13].
[16] 前記[1]~[13]のいずれかに記載の樹脂組成物を用いたプリプレグ。 [16] A prepreg using the resin composition according to any one of [1] to [13].
[17] 前記[15]に記載の硬化物を有する高周波向け電子部品。 [17] A high-frequency electronic component comprising the cured product according to [15] above.
 本発明の樹脂組成物は、誘電特性に優れ、且つ耐熱性にも優れるという効果を奏する。更に、本発明の樹脂組成物は、流動性も高いため基板への埋め込み性が良好であり、且つ優れた成膜性も有している。このため、本発明の樹脂組成物は、プリント配線基板、硬化物、プリプレグ及び高周波向け電子部品などに好適に用いることができる。 The resin composition of the present invention has excellent dielectric properties and excellent heat resistance. Furthermore, the resin composition of the present invention has high fluidity, so that it can be easily embedded in a substrate and has excellent film-forming properties. Therefore, the resin composition of the present invention can be suitably used for printed wiring boards, cured products, prepregs, electronic components for high frequencies, and the like.
 また、本発明のプリント配線基板、硬化物、プリプレグ及び高周波向け電子部品は、上述した本発明の樹脂組成物が用いられ、誘電特性に優れ、且つ耐熱性と埋め込み性にも優れるという効果を奏する。 In addition, the printed wiring board, cured product, prepreg, and electronic component for high frequencies of the present invention use the resin composition of the present invention described above, and have excellent dielectric properties, as well as excellent heat resistance and embedding properties. .
多層配線基板の断面図であり、ヒートサイクルにより導体層が破断する過程を説明するための図である。FIG. 4 is a cross-sectional view of the multilayer wiring board, and is a diagram for explaining a process in which a conductor layer breaks due to a heat cycle;
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。したがって、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。 Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments. Therefore, it is understood that the following modifications, improvements, etc., to the following embodiments are also included in the scope of the present invention without departing from the spirit of the present invention, based on the ordinary knowledge of those skilled in the art. should.
〔樹脂組成物〕
 本発明の樹脂組成物の一つの実施形態は、(A)炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂と、(B)1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物と、を含む、樹脂組成物である。以下、(A)炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂を、(A)成分ということがある。同様に、(B)1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物を、(B)成分ということがある。
[Resin composition]
One embodiment of the resin composition of the present invention includes (A) a polyphenylene ether resin having terminal functional groups containing carbon-carbon double bonds, and (B) an isocyanuric ring structure and two allyls in one molecule. and a compound that has a group and is liquid at 25°C. Hereinafter, the (A) polyphenylene ether resin having a terminal functional group containing a carbon-carbon double bond is sometimes referred to as the (A) component. Similarly, the compound (B) which has an isocyanuric ring structure and two allyl groups in one molecule and is liquid at 25°C is sometimes referred to as the (B) component.
 本実施形態の樹脂組成物は、誘電特性に優れ、且つ耐熱性にも優れる。更に、本実施形態の樹脂組成物は、流動性も高いため基板への埋め込み性も良好であり、且つ優れた成膜性も有している。(A)成分としてのポリフェニレンエーテル樹脂は、その末端に、炭素-炭素二重結合を含む官能基を有するものであり、樹脂組成物に低誘電特性を付与し、且つ、加熱時の流動性を向上させることができる。(B)成分としての化合物は、上述したように、1分子中にイソシアヌル環構造及び2個のアリル基を有する化合物であり、樹脂組成物の溶融粘度を低くし、配線への埋め込み性を向上させることができる。また、(B)成分としての化合物は、アリル基を2個有することにより、極めて良好な低誘電特性を得ることができる。そして、本実施形態の樹脂組成物は、このような(A)成分と(B)成分を架橋硬化させることにより、高い耐熱性を得ることができる。 The resin composition of this embodiment has excellent dielectric properties and excellent heat resistance. Furthermore, the resin composition of the present embodiment has high fluidity, so that it can be easily embedded in a substrate and has excellent film-forming properties. The polyphenylene ether resin as the component (A) has a functional group containing a carbon-carbon double bond at its end, imparts low dielectric properties to the resin composition, and improves fluidity when heated. can be improved. As described above, the compound as component (B) is a compound having an isocyanuric ring structure and two allyl groups in one molecule, which lowers the melt viscosity of the resin composition and improves the embeddability in wiring. can be made In addition, the compound as the component (B) has two allyl groups, so that extremely good low dielectric properties can be obtained. The resin composition of the present embodiment can obtain high heat resistance by cross-linking and curing the components (A) and (B).
 また、本実施形態の樹脂組成物は、樹脂組成物の硬化物や硬化層において、その厚さ方向の熱膨張係数を小さくすることができる。以下、樹脂組成物の硬化物や硬化層における厚さ方向を、「Z方向」ということがある。 In addition, the resin composition of the present embodiment can reduce the coefficient of thermal expansion in the thickness direction in the cured product or cured layer of the resin composition. Hereinafter, the thickness direction of the cured product or cured layer of the resin composition is sometimes referred to as the "Z direction".
 例えば、多層配線基板の接着剤層として樹脂組成物を用いた場合、接着剤層となる樹脂組成物の硬化物や硬化層の厚さ方向(Z方向)の熱膨張係数が大きいと、多層配線基板のスルーホール周辺にて破断が生じやすいという事象が発生し得る。例えば、図1は、多層配線基板の断面図であり、ヒートサイクルにより導体層が破断する過程を説明するための図である。図1の(a)は導体層が破断する前の状態を示し、図1の(b)は導体層がヒートサイクルにより破断した後の状態を示す。図1の(a)及び(b)において、符号Zで示される矢印の方向が、接着剤層16となる樹脂組成物の硬化物や硬化層の「厚さ方向(即ち、Z方向)」を示す。 For example, when a resin composition is used as an adhesive layer of a multilayer wiring board, if the thermal expansion coefficient in the thickness direction (Z direction) of the cured product or cured layer of the resin composition that becomes the adhesive layer is large, the multilayer wiring A phenomenon may occur in which breakage is likely to occur around the through hole of the substrate. For example, FIG. 1 is a cross-sectional view of a multilayer wiring board, and is a diagram for explaining the process in which a conductor layer breaks due to a heat cycle. FIG. 1(a) shows the state before the conductor layer is broken, and FIG. 1(b) shows the state after the conductor layer is broken by the heat cycle. In (a) and (b) of FIG. 1, the direction of the arrow indicated by symbol Z is the "thickness direction (that is, the Z direction)" of the cured resin composition or cured layer that becomes the adhesive layer 16. show.
 図1の(a)に示す多層配線基板10は、5枚の基板12(12a~12e)が導体層14及び接着剤層16(16a~16d)を介して接合されたものである。接着剤層16(16a~16d)は、例えば、樹脂組成物が硬化した硬化層によって構成される。導体層14は、各基板12と各接着剤層16との間、及び多層配線基板10の表面全域を覆うように配設されている。 The multilayer wiring board 10 shown in FIG. 1(a) is formed by bonding five substrates 12 (12a to 12e) via conductor layers 14 and adhesive layers 16 (16a to 16d). The adhesive layer 16 (16a to 16d) is composed of, for example, a cured layer obtained by curing a resin composition. The conductor layer 14 is arranged between each substrate 12 and each adhesive layer 16 and so as to cover the entire surface of the multilayer wiring board 10 .
 図1の(a)に示す多層配線基板10には、多層配線基板10の表面のランドと裏面のランドを電気的に導通させるためのスルーホール22が設けられており、スルーホール22の内壁面も上述した導体層14によって被覆されている。 The multilayer wiring board 10 shown in FIG. 1A is provided with through holes 22 for electrically connecting lands on the front surface of the multilayer wiring board 10 and lands on the rear surface thereof. are also covered with the conductor layer 14 described above.
 図1の(a)に示すような多層配線基板10は、温度変化が著しい環境で使用されると、図1の(b)に示すように、導体層14に破断24が生じることがある。例えば、図1の(a)に示すような多層配線基板10に対して、-55℃から125℃の温度変化を1サイクルとしたヒートサイクルが加わると、温度変化による膨張で応力が発生し、導体層14に破断24が生じ易くなる。そして、接着剤層16のZ方向の熱膨張係数が大きいと、スルーホール22の内壁面を被覆する導体層14に対してより大きな応力が発生し、導体層14の破断24がより顕著なものとなる。 When the multilayer wiring board 10 as shown in (a) of FIG. 1 is used in an environment where the temperature changes significantly, breakage 24 may occur in the conductor layer 14 as shown in (b) of FIG. For example, when a multilayer wiring board 10 as shown in FIG. 1A is subjected to a heat cycle in which one cycle is a temperature change from -55° C. to 125° C., stress is generated due to expansion due to the temperature change. A break 24 is likely to occur in the conductor layer 14 . If the coefficient of thermal expansion of the adhesive layer 16 in the Z direction is large, a greater stress is generated on the conductor layer 14 covering the inner wall surface of the through hole 22, and the fracture 24 of the conductor layer 14 is more pronounced. becomes.
 本実施形態の樹脂組成物は、その硬化物や硬化層における厚さ方向(即ち、図1における「Z方向」)の熱膨張係数を小さくすることでき、図1の(b)に示すような導体層14への破断24の発生を有効に抑制することができる。 The resin composition of the present embodiment can reduce the thermal expansion coefficient in the thickness direction (i.e., “Z direction” in FIG. 1) of the cured product or cured layer. The occurrence of fractures 24 in the conductor layer 14 can be effectively suppressed.
 なお、本実施形態の樹脂組成物は、上述した(A)成分及び(B)成分に加えて、(C)無機フィラー、(D)重合開始剤、(E)熱可塑性樹脂、(F)ポリブタジエンなどの他の成分を含んでいてもよい。以下、上述した各成分を、適宜、(C)成分~(F)成分ということがある。 In addition to the components (A) and (B) described above, the resin composition of the present embodiment includes (C) an inorganic filler, (D) a polymerization initiator, (E) a thermoplastic resin, and (F) a polybutadiene. It may contain other ingredients such as Hereinafter, the respective components described above may be referred to as components (C) to (F) as appropriate.
〔(A)成分〕
 (A)成分は、炭素-炭素二重結合を含む官能基を、その末端に有するポリフェニレンエーテル樹脂である。炭素-炭素二重結合を含む官能基としては、例えば、末端ビニル基、ビニレン基、又はビニリデン基のいずれかを挙げることができる。(A)成分は、その末端に炭素-炭素二重結合を含む官能基を有し、骨格にポリフェニレンエーテルがあれば特に制限はない。(A)成分を含むことにより、樹脂組成物に低誘電特性を付与し、且つ、耐熱性と熱膨張係数を向上させることができる。(A)成分は、熱硬化性樹脂であることが好ましい。また(A)成分はとくに末端にビニル基を有するポリフェニレンエーテル樹脂が好ましい。末端にビニル基を有することで低誘電特性が得られる。
[(A) Component]
Component (A) is a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at its end. Functional groups containing carbon-carbon double bonds can include, for example, either terminal vinyl groups, vinylene groups, or vinylidene groups. Component (A) is not particularly limited as long as it has a functional group containing a carbon-carbon double bond at its terminal and has polyphenylene ether in its skeleton. By including the component (A), it is possible to impart low dielectric properties to the resin composition and improve heat resistance and thermal expansion coefficient. Component (A) is preferably a thermosetting resin. Further, the component (A) is preferably a polyphenylene ether resin having a terminal vinyl group. Low dielectric properties can be obtained by having a vinyl group at the end.
 (A)成分としては、例えば、下記一般式(1)で示される構造の化合物を挙げることができる。 As the component (A), for example, a compound having a structure represented by the following general formula (1) can be mentioned.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(1)中、R、R、R、R、R、R、Rは、同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基である。また、-(O-X-O)-は、上記構造式(2)で示され、当該構造式(2)中、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基である。また、-(Y-O)-は、上記構造式(3)で示される1種類の構造、又は、上記構造式(3)で示される2種類以上の構造がランダムに配列したものであり、当該構造式(3)中、R16、R17は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R18、R19は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基である。また、Zは、炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともある。a、bは、少なくともいずれか一方が0でない、0~300の整数を示し、c、dは、0又は1の整数を示す。例えば、一般式(1)で示される化合物は、特開2004-59644号公報に記載されたとおりである。 In general formula (1) above, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 may be the same or different, and may be a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group. or a phenyl group. -(O-X-O)- is represented by the above structural formula (2), in which R 8 , R 9 , R 10 , R 14 and R 15 are the same or different may be a halogen atom, an alkyl group having 6 or less carbon atoms , or a phenyl group; or a phenyl group. In addition, -(Y-O)- is one type of structure represented by the above structural formula (3), or two or more types of structures represented by the above structural formula (3) arranged randomly, In the structural formula (3), R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group, and R 18 and R 19 may be the same or different. It is often a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom. a and b are integers of 0 to 300, at least one of which is not 0; c and d are integers of 0 or 1; For example, the compound represented by general formula (1) is as described in JP-A-2004-59644.
 一般式(1)で示される化合物は、両末端にスチレン官能基を有しているため、このような(A)成分を含む樹脂組成物は、加熱によって容易に硬化するものとなる。一般式(1)で示される化合物は、硬化性の点から、R~Rが水素であることが好ましい。 Since the compound represented by general formula (1) has styrene functional groups at both ends, the resin composition containing component (A) is easily cured by heating. From the viewpoint of curability, the compound represented by the general formula (1) preferably has hydrogen as R 1 to R 7 .
 一般式(1)で示される化合物の-(O-X-O)-の構成を示す上記構造式(2)おいて、R、R、R10、R14、R15は、炭素数3以下のアルキル基であることが好ましく、メチル基であることが特に好ましい。また、上記構造式(2)おいて、R11、R12、R13は、水素原子又は炭素数3以下のアルキル基であることが好ましく、メチル基であることが特に好ましい。具体的には、下記構造式(5)が挙げられる。 In the above structural formula (2) showing the configuration of —(O—X—O)— of the compound represented by the general formula (1), R 8 , R 9 , R 10 , R 14 and R 15 each have a carbon number An alkyl group of 3 or less is preferable, and a methyl group is particularly preferable. In the structural formula (2) above, R 11 , R 12 and R 13 are preferably hydrogen atoms or alkyl groups having 3 or less carbon atoms, particularly preferably methyl groups. Specifically, the following structural formula (5) is mentioned.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(1)で示される化合物の-(Y-O)-の構成を示す上記構造式(3)おいて、R16、R17は、炭素数3以下のアルキル基であることが好ましく、メチル基であることが特に好ましい。また、上記構造式(3)おいて、R18、R19は、水素原子又は炭素数3以下のアルキル基であることが好ましく、メチル基であることが特に好ましい。具体的には、下記構造式(6)又は構造式(7)が挙げられる。 In the above structural formula (3) showing the structure of —(Y—O)— of the compound represented by general formula (1), R 16 and R 17 are preferably alkyl groups having 3 or less carbon atoms, A methyl group is particularly preferred. In the structural formula (3) above, R 18 and R 19 are preferably a hydrogen atom or an alkyl group having 3 or less carbon atoms, particularly preferably a methyl group. Specifically, the following structural formula (6) or structural formula (7) can be mentioned.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 Zは、例えば、炭素数3以下のアルキレン基が挙げられ、具体的には、メチレン基である。 Z is, for example, an alkylene group having 3 or less carbon atoms, specifically a methylene group.
 a、bは、少なくともいずれか一方が0でない、0~300の整数を示し、0~30の整数であることが好ましい。 At least one of a and b represents an integer of 0 to 300, preferably an integer of 0 to 30.
 樹脂組成物の硬化物の弾性率を適正な範囲に制御するため、一般式(1)で示される化合物は、数平均分子量が1000~3000であることが好ましい。また、一般式(1)で示される化合物は、両末端に炭素-炭素二重結合を含む官能基を有するものであり、且つ官能基当たりの当量(官能基当量)として上記分子量の1/2相当の500~1500を有するものが適切である。官能基当量は、硬化物の架橋密度の度合いを示すものであり、官能基当量がこの範囲内であると、適切な架橋密度が得られ、十分な機械強度がもたらされるため、フィルムにした時にクラック等の発生が避けられ得るという利点がある。なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。 In order to control the elastic modulus of the cured product of the resin composition within an appropriate range, the compound represented by general formula (1) preferably has a number average molecular weight of 1,000 to 3,000. Further, the compound represented by the general formula (1) has a functional group containing a carbon-carbon double bond at both ends, and the equivalent weight per functional group (functional group equivalent weight) is 1/2 of the above molecular weight. Those with a corresponding 500-1500 are suitable. The functional group equivalent indicates the degree of cross-linking density of the cured product, and when the functional group equivalent is within this range, an appropriate cross-linking density is obtained and sufficient mechanical strength is provided. There is an advantage that the occurrence of cracks and the like can be avoided. In this specification, the number average molecular weight is a value obtained by using a standard polystyrene calibration curve by gel permeation chromatography (GPC).
 一般式(1)で示される化合物は、特開2004-59644号公報に記載された方法で調製することができる。例えば、2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’-ジオールと2,6-ジメチルフエノールとの重縮合物に、更にクロロメチルスチレンを反応させた反応生成物を使用することができる。 The compound represented by general formula (1) can be prepared by the method described in JP-A-2004-59644. For example, a reaction in which a polycondensate of 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol and 2,6-dimethylphenol is further reacted with chloromethylstyrene. The product can be used.
 (A)成分は、一般式(1)で示される化合物を単独で用いてもよいし、一般式(1)で示される化合物の2種以上組み合わせて用いてもよい。 As the component (A), the compound represented by the general formula (1) may be used alone, or two or more of the compounds represented by the general formula (1) may be used in combination.
 樹脂組成物中の不揮発成分100質量%中に、(A)成分を15~90質量%含むことが好ましく、17~80質量%含むことが更に好ましく、18~70質量%含むことが特に好ましい。樹脂組成物中の不揮発成分100質量%中の(A)成分の含有比率がこの範囲内であると、樹脂組成物の耐熱性や、成膜などの加工性が向上するという利点がある。なお、不揮発成分中の(A)成分の含有比率は、例えば、赤外分光光度計(FTIR)や、ガスクロマトグラフ質量分析等の方法によって測定することができる。 The component (A) is preferably contained in an amount of 15 to 90% by mass, more preferably 17 to 80% by mass, particularly preferably 18 to 70% by mass, based on 100% by mass of non-volatile components in the resin composition. When the content ratio of the component (A) in 100% by mass of the non-volatile components in the resin composition is within this range, there is an advantage that the heat resistance of the resin composition and workability such as film formation are improved. In addition, the content ratio of the component (A) in the non-volatile component can be measured by, for example, an infrared spectrophotometer (FTIR), gas chromatography mass spectrometry, or the like.
 また、これまでに説明した(A)成分を含む場合、樹脂組成物中の樹脂成分合計100質量部に対して、(A)成分を15~95質量部含むことが好ましく、23~90質量部含むことが更に好ましく、32~85質量部含むことが特に好ましい。樹脂成分の合計100質量部中の(A)成分の含有量がこの範囲内であると、樹脂組成物の硬化物の耐熱性や、成膜などの加工性が向上するという利点がある。なお、樹脂成分中の(A)成分の含有量は、例えば、赤外分光光度計(FTIR)や、ガスクロマトグラフ質量分析等の方法によって測定することができる。樹脂組成物中の樹脂成分としては、特に、(A)成分、(B)成分、及び任意成分としての(E)成分や(F)成分が挙げられる。このため、樹脂組成物中の樹脂成分の合計100質量部に対する(A)成分の含有量とは、例えば、(A)成分、(B)成分、及びその他の樹脂成分の合計質量を100質量部とした際の(A)成分の含有量として求めることができる。なお、後述する、樹脂成分の合計100質量部に対する(B)成分の含有量についても、上記のようにして算出することができる。 Further, when the component (A) described so far is included, it is preferable to include 15 to 95 parts by mass of the component (A) with respect to the total 100 parts by mass of the resin components in the resin composition, and 23 to 90 parts by mass. It is more preferable to contain it, and it is particularly preferable to contain 32 to 85 parts by mass. When the content of component (A) in the total 100 parts by mass of the resin components is within this range, there is an advantage that the heat resistance of the cured product of the resin composition and workability such as film formation are improved. The content of component (A) in the resin component can be measured, for example, by infrared spectrophotometer (FTIR), gas chromatography mass spectrometry, or the like. The resin components in the resin composition include (A) component, (B) component, and optional components (E) and (F). Therefore, the content of component (A) with respect to the total 100 parts by mass of the resin components in the resin composition is, for example, the total mass of component (A), component (B), and other resin components of 100 parts by mass. It can be obtained as the content of the component (A) when The content of the component (B) with respect to the total 100 parts by mass of the resin components, which will be described later, can also be calculated as described above.
 (A)成分の炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂として、三菱ガス化学社製の商品名「OPE-2St 1200」(数平均分子量1200)及び「OPE-2St 2200」(数平均分子量2200)を挙げることができる。これらは、その末端にビニル基を有するポリフェニレンエーテル樹脂である。 As the polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end of component (A), Mitsubishi Gas Chemical Co., Ltd. trade name "OPE-2St 1200" (number average molecular weight 1200) and "OPE-2St 2200" (number average molecular weight 2200). These are polyphenylene ether resins having vinyl groups at their ends.
 また、(A)成分の炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂として、下記式(8)に示される基を末端に有するポリフェニレンエーテル樹脂を挙げることができる。 In addition, as the polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end of component (A), a polyphenylene ether resin having a group represented by the following formula (8) at the end can be mentioned.
Figure JPOXMLDOC01-appb-C000014
(但し、上記式(8)中、R20は、水素原子又はアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000014
(However, in the above formula (8), R20 represents a hydrogen atom or an alkyl group.)
 上記式(8)中、R20は、水素原子又はアルキル基を示す。また、R20のアルキル基は、例えば、炭素数1~3のアルキル基が好ましく、炭素数1のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基等が挙げられる。 In formula (8) above, R 20 represents a hydrogen atom or an alkyl group. The alkyl group for R 20 is preferably, for example, an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 carbon atom. Specific examples include a methyl group, an ethyl group, a propyl group and the like.
 また、式(8)で表される基としては、例えば、アクリレート基、及びメタクリレート基等が挙げられる。 Also, examples of the group represented by formula (8) include an acrylate group and a methacrylate group.
 また、式(8)に示される基を有する変性ポリフェニレンエーテルは、ポリフェニレンエーテル鎖を分子中に有しており、例えば、下記構造式(9)で表される繰り返し単位を分子中に有していることが好ましい。 Further, the modified polyphenylene ether having a group represented by formula (8) has a polyphenylene ether chain in the molecule, for example, a repeating unit represented by the following structural formula (9) in the molecule. preferably.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記構造式(9)において、mは、1~50を示す。また、R22~R25は、それぞれ独立し、互いに同一であってもよいし、互いに異なっていてもよい。R22~R25は、水素原子、アルキル基を示す。 In the above structural formula (9), m represents 1-50. In addition, R 22 to R 25 are each independent and may be the same as or different from each other. R 22 to R 25 each represent a hydrogen atom or an alkyl group.
 R22~R25におけるアルキル基は、特に限定されないが、例えば、炭素数1~8のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びオクチル基等が挙げられる。 Although the alkyl group for R 22 to R 25 is not particularly limited, for example, an alkyl group having 1 to 8 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is more preferable. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group and the like.
 上記式(8)に示される基を有する変性ポリフェニレンエーテルとしては、例えば、下記式(10)又は式(11)で表されるポリフェニレンエーテルの末端に、上記式(8)で表される基を有するものが挙げられる。変性ポリフェニレンエーテルとしては、具体的には、下記式(12)又は式(13)で表される変性ポリフェニレンエーテルが挙げられる。 As the modified polyphenylene ether having a group represented by the above formula (8), for example, a group represented by the above formula (8) is attached to the end of the polyphenylene ether represented by the following formula (10) or (11). include those that have Specific examples of modified polyphenylene ethers include modified polyphenylene ethers represented by the following formula (12) or (13).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(10)~式(13)中、s,tは、例えば、sとtとの合計値が、1~30となるものであることが好ましい。また、sが、0~20であることが好ましく、tが、0~20であることが好ましい。すなわち、sは、0~20を示し、tは、0~20を示し、sとtとの合計は、1~30を示すことが好ましい。また、式(10)~式(13)中、Yは、炭素数1~3のアルキレン基又は直接結合を示し、また、このアルキレン基としては、例えば、ジメチルメチレン基等が挙げられる。また、式(12)及び式(13)中、R20は、上記式(8)のR20と同様であり、水素原子又はアルキル基を示す。また、アルキル基は、特に限定されず、例えば、炭素数1~3のアルキル基が好ましく、炭素数1のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基等が挙げられる。 In formulas (10) to (13), s and t are preferably such that the sum of s and t is 1-30. Further, s is preferably 0-20, and t is preferably 0-20. That is, s represents 0-20, t represents 0-20, and the sum of s and t preferably represents 1-30. In formulas (10) to (13), Y represents an alkylene group having 1 to 3 carbon atoms or a direct bond, and examples of the alkylene group include dimethylmethylene group. In formulas (12) and (13), R 20 is the same as R 20 in formula (8) above and represents a hydrogen atom or an alkyl group. Moreover, the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 3 carbon atoms is preferable, and an alkyl group having 1 carbon atom is more preferable. Specific examples include a methyl group, an ethyl group, a propyl group and the like.
 式(8)に示される基を有する変性ポリフェニレンエーテルの数平均分子量(Mn)は、特に限定されない。具体的には、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることが更に好ましい。ここで、数平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、式(8)に示される基を有する変性ポリフェニレンエーテルが、式(9)で表される繰り返し単位を分子中に有している場合、mは、変性ポリフェニレンエーテルの重量平均分子量がこのような範囲内になるような数値であることが好ましい。具体的には、mは、1~50であることが好ましい。 The number average molecular weight (Mn) of the modified polyphenylene ether having the group represented by formula (8) is not particularly limited. Specifically, it is preferably from 500 to 5,000, more preferably from 800 to 4,000, even more preferably from 1,000 to 3,000. Here, the number average molecular weight may be measured by a general molecular weight measurement method, and specific examples include values measured using gel permeation chromatography (GPC). Further, when the modified polyphenylene ether having a group represented by the formula (8) has a repeating unit represented by the formula (9) in the molecule, m is the weight average molecular weight of the modified polyphenylene ether. It is preferable that the numerical value is within the range. Specifically, m is preferably from 1 to 50.
 式(8)に示される基を有する変性ポリフェニレンエーテルの数平均分子量が上記したような数値範囲内であると、ポリフェニレンエーテルに由来する優れた誘電特性を有しつつ、基板への埋め込み性が優れる。 When the number average molecular weight of the modified polyphenylene ether having the group represented by the formula (8) is within the numerical range as described above, it has excellent dielectric properties derived from the polyphenylene ether and has excellent embeddability into the substrate. .
 また、(A)成分として用いられる変性ポリフェニレンエーテルにおける、変性ポリフェニレンエーテル1分子当たりの、分子末端に有する、上記式(8)で表される基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることが更に好ましい。この末端官能基数が少なすぎると、硬化性が悪くなり、硬化物の強度や接着性や耐熱性としては十分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存安定性が低下したり、樹脂組成物の流動性が低下したり、硬化物が脆くなったり接着性が低下したりする等の不具合が発生するおそれがある。即ち、このような変性ポリフェニレンエーテルを用いると、例えば、多層成形時にボイドが発生する等の成形不良が発生したり、基板の割れや層間剥離が発生しやすくなったり、信頼性の高いプリント配線板が得られにくいという問題が生じるおそれがある。 In the modified polyphenylene ether used as the component (A), the average number of groups represented by the above formula (8) per molecule of the modified polyphenylene ether (the number of terminal functional groups) at the end of the molecule is not particularly limited. . Specifically, the number is preferably 1 to 5, more preferably 1 to 3, even more preferably 1.5 to 3. If the number of terminal functional groups is too small, the curability will be poor, and it will tend to be difficult to obtain a cured product with sufficient strength, adhesiveness and heat resistance. On the other hand, if the number of terminal functional groups is too large, the reactivity becomes too high. There is a risk that problems such as a decrease in That is, when such a modified polyphenylene ether is used, for example, molding defects such as voids occur during multilayer molding, substrate cracks and delamination are likely to occur, and highly reliable printed wiring boards is difficult to obtain.
 上述した変性ポリフェニレンエーテルの末端官能基数は、変性ポリフェニレンエーテル1モル中に存在する全ての変性ポリフェニレンエーテルの1分子あたりの、上記式(8)で表される基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られた変性ポリフェニレンエーテルに残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、変性ポリフェニレンエーテルに残存する水酸基数の測定方法は、変性ポリフェニレンエーテルの溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。 The terminal functional group number of the modified polyphenylene ether described above is a numerical value representing the average value of the groups represented by the above formula (8) per molecule of all modified polyphenylene ethers present in 1 mol of the modified polyphenylene ether. mentioned. The number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the modified polyphenylene ether obtained and calculating the decrease from the number of hydroxyl groups of the polyphenylene ether before modification. The decrease from the number of hydroxyl groups of the polyphenylene ether before modification is the number of terminal functional groups. Then, the method for measuring the number of hydroxyl groups remaining in the modified polyphenylene ether is to add a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to the solution of the modified polyphenylene ether, and measure the UV absorbance of the mixed solution. can be obtained by
 また、このような(A)成分として用いられる変性ポリフェニレンエーテルの合成方法は、上記式(8)で表される基を末端に有する変性ポリフェニレンエーテルを合成できれば、特に限定されない。 In addition, the method for synthesizing the modified polyphenylene ether used as the component (A) is not particularly limited as long as the modified polyphenylene ether having the group represented by the above formula (8) at the end can be synthesized.
 (A)成分は、上記式(8)で表される基を末端に有する変性ポリフェニレンエーテルを単独で用いてもよいし、上記式(8)で表される基を末端に有する変性ポリフェニレンエーテルの2種以上を組み合わせて用いてもよい。 Component (A) may be a modified polyphenylene ether having a terminal group represented by the above formula (8) alone, or a modified polyphenylene ether having a terminal group represented by the above formula (8). You may use it in combination of 2 or more types.
 また、これまでに説明したような式(8)で表される基を末端に有する(A)成分の含有量についても特に制限はない。例えば、樹脂成分の合計100質量部に対して、このような(A)成分を15~95質量部含むことが好ましく、23~90質量部含むことが更に好ましく、32~85質量部含むことが特に好ましい。樹脂成分の合計100質量部中の(A)成分の含有量がこの範囲内であると、樹脂組成物の硬化物の耐熱性や、成膜などの加工性が向上し、硬化物の靭性が失われず、接着性などが低下しないという利点がある。 In addition, there is no particular restriction on the content of the component (A) having a group represented by formula (8) as described above at its end. For example, it is preferable to include 15 to 95 parts by mass, more preferably 23 to 90 parts by mass, and 32 to 85 parts by mass of component (A) with respect to the total 100 parts by mass of the resin components. Especially preferred. When the content of the component (A) in the total 100 parts by mass of the resin components is within this range, the heat resistance of the cured product of the resin composition and the workability such as film formation are improved, and the toughness of the cured product is improved. There is an advantage that it is not lost and the adhesion and the like do not deteriorate.
 (A)成分の上記式(8)で表される基を末端に有する変性ポリフェニレンエーテルとして、SABICイノベーティブプラスチックス社製の商品名「Noryl SA9000」が挙げられる。 Examples of the modified polyphenylene ether having a group represented by the above formula (8) at the end of component (A) include the product name "Noryl SA9000" manufactured by SABIC Innovative Plastics.
 また、後述するように、本樹脂組成物は無機フィラーを含んでも良い。本樹脂組成物が、無機フィラーを含む場合、(A)成分は樹脂成分の合計100質量部に対して、40~90質量部含むことが好ましく、45~85質量部含むことが更に好ましく、50~80質量部含むことが特に好ましい。この範囲内であると、樹脂組成物の熱膨張係数が向上するという利点がある。 In addition, as will be described later, the present resin composition may contain an inorganic filler. When the present resin composition contains an inorganic filler, the component (A) preferably contains 40 to 90 parts by weight, more preferably 45 to 85 parts by weight, with respect to the total 100 parts by weight of the resin components. It is particularly preferable to contain up to 80 parts by mass. Within this range, there is an advantage that the coefficient of thermal expansion of the resin composition is improved.
〔(B)成分〕
 (B)成分は、1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物である。(B)成分を含むことにより、樹脂組成物の溶融粘度を低くし、配線への埋め込み性を向上させることができる。また、(B)成分としての化合物は、アリル基を2個有することにより、極めて良好な低誘電特性を得ることができる。例えば、(B)成分の代わりに、1分子中にイソシアヌル環構造及び3個のアリル基を有する化合物を用いた場合、十分な低誘電特性を得ることができない。詳細は明らかではないが、3個のアリル基を有する化合物を用いる場合は立体的な架橋構造になるため、誘電特性が不十分になると推定される。一方、本実施形態の樹脂組成物の(B)成分のように2官能アリル基を有する化合物であれば、直線的な架橋構造になり、分子分極を示す尺度の双極子モーメントが小さくなるため、低誘電特性が得られると推定される。更に、詳細は明らかではないが、(B)成分がイソシアヌル環構造を有することで樹脂組成物の耐熱性が向上すると推定される。なお、本実施形態の樹脂組成物の(B)成分が25℃で液状の化合物であることにより、埋め込み性が向上する。一方、(B)成分が25℃で固形の化合物を用いた場合には、フィルム化が困難になり、好ましくない。(B)成分は、とくに重合開始剤を使用せずとも(A)成分と反応するものが好ましい。
[(B) component]
Component (B) is a compound that has an isocyanuric ring structure and two allyl groups in one molecule and is liquid at 25°C. By including the component (B), the melt viscosity of the resin composition can be lowered, and the embedding property in the wiring can be improved. In addition, the compound as the component (B) has two allyl groups, so that extremely good low dielectric properties can be obtained. For example, when a compound having an isocyanuric ring structure and three allyl groups in one molecule is used in place of component (B), sufficient low dielectric properties cannot be obtained. Although the details are not clear, it is presumed that when a compound having three allyl groups is used, a sterically crosslinked structure is formed, resulting in insufficient dielectric properties. On the other hand, a compound having a bifunctional allyl group, such as the component (B) of the resin composition of the present embodiment, has a linear crosslinked structure, and the dipole moment, which is a measure of molecular polarization, becomes small. It is assumed that low dielectric properties are obtained. Furthermore, although the details are not clear, it is presumed that the heat resistance of the resin composition is improved when the component (B) has an isocyanuric ring structure. In addition, since the component (B) of the resin composition of the present embodiment is a compound that is liquid at 25° C., the embedding property is improved. On the other hand, when the component (B) is a compound that is solid at 25°C, it is difficult to form a film, which is not preferred. Component (B) is preferably one that reacts with component (A) without using a polymerization initiator.
 (B)成分の分子量は、300~400であることが好ましく、320~400であることが更に好ましい。(B)成分の分子量が上記範囲内であることにより、誘電特性や流動性に優れる。 The molecular weight of component (B) is preferably 300-400, more preferably 320-400. When the molecular weight of the component (B) is within the above range, excellent dielectric properties and fluidity are obtained.
 (B)成分が、下記一般式(4)で表される化合物であることが好ましい。 The component (B) is preferably a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記一般式(4)中、Rは、炭素数が4~14個のアルキル基であり、炭素数が8~14個のアルキル基であることが好ましく、炭素数が10~12個のアルキル基であることが特に好ましい。 In the above general formula (4), R is an alkyl group having 4 to 14 carbon atoms, preferably an alkyl group having 8 to 14 carbon atoms, and an alkyl group having 10 to 12 carbon atoms. is particularly preferred.
 (B)成分の含有量は、(A)成分100質量部に対して、10~70質量部であることが好ましい。このように構成することによって、樹脂組成物の溶融粘度を低くし、配線への埋め込み性を良好にできるとともに、耐熱性も向上させることができる。なお、特に限定されることはないが、(B)成分の含有量は、(A)成分100質量部に対して、15~65質量部であることがより好ましく、20~60質量部であることが更に好ましい。また、樹脂組成物中の不揮発成分100質量%中に、(B)成分を2~50質量%含むことが好ましく、3~40質量%含むことが更に好ましく、4~30質量%含むことが特に好ましい。樹脂組成物中の不揮発成分100質量%中の(B)成分の含有比率がこの範囲内であると、樹脂組成物の誘電特性が優れる。なお、不揮発成分中の(B)成分の含有比率は、例えば、赤外分光光度計(FTIR)や、ガスクロマトグラフ質量分析等の方法によって測定することができる。 The content of component (B) is preferably 10 to 70 parts by mass with respect to 100 parts by mass of component (A). By configuring in this way, the melt viscosity of the resin composition can be lowered, the embeddability into the wiring can be improved, and the heat resistance can be improved. Although not particularly limited, the content of component (B) is more preferably 15 to 65 parts by mass, more preferably 20 to 60 parts by mass, per 100 parts by mass of component (A). is more preferred. Further, in 100% by mass of non-volatile components in the resin composition, it preferably contains 2 to 50% by mass of component (B), more preferably 3 to 40% by mass, and particularly 4 to 30% by mass. preferable. When the content ratio of the component (B) in 100% by mass of the non-volatile components in the resin composition is within this range, the dielectric properties of the resin composition are excellent. In addition, the content ratio of the component (B) in the non-volatile component can be measured by, for example, an infrared spectrophotometer (FTIR), gas chromatography mass spectrometry, or the like.
 樹脂組成物の樹脂成分の合計100質量部に対して、(B)成分を5~50質量部含むことが好ましく、7~45質量部含むことが更に好ましく、8~40質量部含むことが特に好ましい。樹脂成分の合計100質量部に対する(B)成分の含有比率がこの範囲内であると、樹脂組成物の成膜性、流動性が良好となる。また、樹脂組成物の熱硬物の柔軟性、耐熱性を得られる点で好ましい。 It is preferable to contain 5 to 50 parts by mass of component (B), more preferably 7 to 45 parts by mass, and particularly 8 to 40 parts by mass with respect to the total 100 parts by mass of the resin components of the resin composition. preferable. When the content of component (B) is within this range with respect to the total of 100 parts by mass of the resin components, the resin composition will have good film formability and fluidity. Moreover, it is preferable in terms of obtaining the flexibility and heat resistance of the thermoset of the resin composition.
 また、後述するように、本樹脂組成物は無機フィラーを含んでも良い。本樹脂組成物が、無機フィラーを含む場合、(B)成分は樹脂成分の合計100質量部に対して、1~30質量部含むことが好ましく、2~25質量部含むことが更に好ましく、3~20質量部含むことが特に好ましい。この範囲内であると、無機フィラーを含有しながらも、樹脂組成物の流動性を向上させることができ、埋め込み性が向上するという利点がある。 In addition, as will be described later, the present resin composition may contain an inorganic filler. When the present resin composition contains an inorganic filler, the component (B) preferably contains 1 to 30 parts by mass, more preferably 2 to 25 parts by mass, with respect to the total 100 parts by mass of the resin components. It is particularly preferable to contain up to 20 parts by mass. Within this range, there is an advantage that the fluidity of the resin composition can be improved and the embedding property is improved while containing the inorganic filler.
 (B)成分の1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物として、四国化成社製の商品名「L-DAIC」を挙げることができる。 An example of a compound (B) that has an isocyanuric ring structure and two allyl groups in one molecule and is liquid at 25°C is the trade name "L-DAIC" manufactured by Shikoku Kasei Co., Ltd.
〔(C)成分〕
 (C)成分は、無機フィラーである。無機フィラーには、絶縁性と低熱膨張係数が求められる。無機フィラーとしては、一般的な無機フィラーを用いることができる。例えば、無機フィラーとしては、シリカ、アルミナ、窒化アルミニウム、炭酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、炭酸マグネシウム、硫酸バリウム、炭酸バリウム、硫酸石灰、水酸化アルミニウム、ケイ酸カルシウム、チタン酸カリウム、酸化チタン、酸化亜鉛、炭化ケイ素、窒化ケイ素、窒化ホウ素等が挙げられる。無機フィラーは単独でも、2種以上併用してもよい。特に、絶縁性の点からは、シリカフィラー、アルミナフィラーが好ましい。また、誘電特性の観点からは、シリカフィラーが好ましい。無機フィラーは、アクリル、メタクリル、スチリル、アミノ、エポキシ、ビニルから選ばれる1種以上の官能基を有するシランカップリング剤で表面処理されていてもよい。例えば、無機フィラーは、アミノシラン系カップリング剤、ウレイドシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、ビニルシラン系カップリング剤、スチリルシラン系カップリング剤、アクリレートシラン系カップリング剤、イソシアネートシラン系カップリング剤、スルフィドシラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等の表面処理剤で表面処理してその耐熱性、耐湿性、分散性を向上させたものが好ましい。これらは1種又は2種以上組み合わせて使用してもよい。より好ましくは、表面処理したシリカフィラーの中でも、ビニルシラン系カップリング剤で表面処理されたシリカフィラーを用いることが好ましい。ビニルシラン系カップリング剤で表面処理されたシリカフィラーを用いることで、熱膨張係数(厚)を良好にすることができる。
[(C) component]
(C) A component is an inorganic filler. Inorganic fillers are required to have insulating properties and a low coefficient of thermal expansion. Common inorganic fillers can be used as the inorganic filler. For example, inorganic fillers include silica, alumina, aluminum nitride, calcium carbonate, aluminum silicate, magnesium silicate, magnesium carbonate, barium sulfate, barium carbonate, lime sulfate, aluminum hydroxide, calcium silicate, potassium titanate, oxide Titanium, zinc oxide, silicon carbide, silicon nitride, boron nitride and the like can be mentioned. The inorganic fillers may be used alone or in combination of two or more. Silica filler and alumina filler are particularly preferred from the viewpoint of insulation. From the viewpoint of dielectric properties, silica filler is preferable. The inorganic filler may be surface-treated with a silane coupling agent having one or more functional groups selected from acrylic, methacrylic, styryl, amino, epoxy, and vinyl. For example, inorganic fillers include aminosilane-based coupling agents, ureidosilane-based coupling agents, epoxysilane-based coupling agents, mercaptosilane-based coupling agents, silane-based coupling agents, vinylsilane-based coupling agents, and styrylsilane-based coupling agents. agent, acrylate silane-based coupling agent, isocyanate silane-based coupling agent, sulfide silane-based coupling agent, organosilazane compound, titanate-based coupling agent, etc. Those with improved properties are preferred. These may be used singly or in combination of two or more. Among the surface-treated silica fillers, it is more preferable to use a silica filler surface-treated with a vinylsilane coupling agent. By using a silica filler surface-treated with a vinylsilane coupling agent, it is possible to improve the thermal expansion coefficient (thickness).
 無機フィラーの形状は、特に限定されず、球状、りん片状、針状、不定形等が挙げられる。作業性の点から、球状が好ましい。平均粒子径は、0.1~10μmであることが好ましく、0.1~4μmであることが更に好ましい。無機フィラーの平均粒子径がこの範囲であることで、微細構造間への埋め込み性に優れる。平均粒子径は、レーザー回折・散乱法によって測定した、体積基準での粒度分布における積算値50%での粒径である。平均粒子径は、例えば、レーザー散乱回析法粒度分布測定装置:LS13320(ベックマンコールター社製、湿式)により測定できる。 The shape of the inorganic filler is not particularly limited, and may be spherical, scaly, acicular, irregular, and the like. A spherical shape is preferable from the point of workability. The average particle size is preferably 0.1-10 μm, more preferably 0.1-4 μm. When the average particle size of the inorganic filler is within this range, the embedding property between fine structures is excellent. The average particle size is the particle size at an integrated value of 50% in the volume-based particle size distribution measured by a laser diffraction/scattering method. The average particle size can be measured, for example, with a laser scattering diffraction particle size distribution analyzer: LS13320 (manufactured by Beckman Coulter, wet type).
 また、(C)成分を含有する場合、(C)成分の含有量は、樹脂組成物中の不揮発成分100質量部に対して、1~90質量部であることが好ましい。このように構成することによって、熱膨張係数を良好に向上させることができる。なお、特に限定されることはないが、(C)成分の含有量は、樹脂組成物中の不揮発成分100質量部に対して、20~80質量部であることがより好ましく、30~75質量部であることが更に好ましい。 Further, when component (C) is contained, the content of component (C) is preferably 1 to 90 parts by mass with respect to 100 parts by mass of non-volatile components in the resin composition. By configuring in this way, the coefficient of thermal expansion can be favorably improved. Although not particularly limited, the content of component (C) is more preferably 20 to 80 parts by mass, more preferably 30 to 75 parts by mass, with respect to 100 parts by mass of non-volatile components in the resin composition. Part is more preferred.
 なお、樹脂組成物の熱膨張係数を低くするために、(C)成分を樹脂組成物中の不揮発成分100質量部に対して50質量部以上含む場合、無機フィラーを高充填すると樹脂組成物の溶融粘度が高くなり、基板への埋め込み性が悪くなる傾向がある。しかしながら、1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物である(B)成分を含むことにより、無機フィラーを高充填した場合であっても、樹脂組成物の溶融粘度を低くし、配線への埋め込み性を向上させることができる。 In order to lower the coefficient of thermal expansion of the resin composition, when the component (C) is contained in an amount of 50 parts by mass or more with respect to 100 parts by mass of non-volatile components in the resin composition, when the inorganic filler is highly filled, the resin composition The melt viscosity tends to increase, and the embeddability into the substrate tends to deteriorate. However, by including component (B), which has an isocyanuric ring structure and two allyl groups in one molecule and is a liquid compound at 25°C, even when the inorganic filler is highly filled, the resin composition It can lower the melt viscosity of the material and improve the embeddability in the wiring.
 (C)成分に使用されるシリカフィラーとしては、溶融シリカ、普通珪石、球状シリカ、破砕シリカ、結晶性シリカ、非晶質シリカ等が挙げられ、特に限定されない。シリカフィラーの分散性、熱硬化性樹脂組成物の流動性、硬化物の表面平滑性、誘電特性、低熱膨張係数、接着性等の観点からは、球状の溶融シリカが、望ましい。 The silica filler used in component (C) includes fused silica, ordinary silica, spherical silica, crushed silica, crystalline silica, amorphous silica, etc., and is not particularly limited. Spherical fused silica is desirable from the viewpoints of dispersibility of silica filler, fluidity of thermosetting resin composition, surface smoothness of cured product, dielectric properties, low coefficient of thermal expansion, adhesiveness, and the like.
 上述のカップリング剤を用いてシリカフィラーを表面処理する方法は、特に限定されず、例えば、乾式法、湿式法等が、挙げられる。 The method of surface-treating the silica filler using the coupling agent described above is not particularly limited, and examples thereof include a dry method and a wet method.
 乾式法は、シリカフィラーと、シリカフィラーの表面積に対して適切な量のシランカップリング剤を撹拌装置に入れ、適切な条件で撹拌するか、予めシリカフィラーを撹拌装置に入れ、適切な条件で撹拌しながら、シリカフィラーの表面積に対して適切な量のシランカップリング剤を、原液または溶液にて滴下または噴霧等により添加し、撹拌によってシリカフィラー表面にシランカップリング剤を均一に付着させ、(加水分解させることによって)表面処理する方法である。撹拌装置としては、例えば、ヘンシェルミキサー等の高速回転で、撹拌・混合ができるミキサーが挙げられるが、特に、限定されるものではない。 In the dry method, silica filler and an appropriate amount of silane coupling agent with respect to the surface area of the silica filler are put in a stirring device and stirred under appropriate conditions, or silica filler is placed in a stirring device in advance and stirred under appropriate conditions. While stirring, an appropriate amount of silane coupling agent for the surface area of the silica filler is added dropwise or sprayed as a stock solution or solution, and the silane coupling agent is uniformly attached to the silica filler surface by stirring, It is a method of surface treatment (by hydrolysis). Examples of the stirring device include, but are not particularly limited to, a mixer such as a Henschel mixer capable of stirring and mixing at high speed rotation.
 湿式法は、表面処理をするシリカフィラーの表面積に対して、十分な量のシランカップリング剤を、水または有機溶剤に溶解した表面処理溶液に、シリカフィラーを添加し、スラリー状になるよう撹拌することにより、シランカップリング剤とシリカフィラーを、十分反応させた後、濾過や遠心分離等を用い、シリカフィラーを表面処理溶液から分離し、加熱乾燥して、表面処理を行う方法である。 In the wet method, a sufficient amount of silane coupling agent is dissolved in water or an organic solvent for the surface area of the silica filler to be surface treated, and the silica filler is added to the surface treatment solution and stirred to form a slurry. After sufficiently reacting the silane coupling agent and the silica filler, the silica filler is separated from the surface treatment solution by filtration, centrifugation, or the like, dried by heating, and subjected to surface treatment.
〔(D)成分〕
 (D)成分は、重合開始剤である。(D)成分としての重合開始剤は、(A)成分及び(B)成分の重合を良好に開始させるための添加剤である。このような(D)成分を含むことにより、一定の硬化温度・時間に対する、樹脂組成物の硬化度を向上させることができる。このため、本実施形態の樹脂組成物は、(D)成分としての重合開始剤を更に含むことが好ましい。
[(D) Component]
(D) Component is a polymerization initiator. The polymerization initiator as component (D) is an additive for favorably initiating the polymerization of components (A) and (B). By including such component (D), the degree of curing of the resin composition can be improved for a given curing temperature and time. Therefore, the resin composition of the present embodiment preferably further contains a polymerization initiator as component (D).
 (D)成分の重合開始剤は、(A)成分及び(B)成分の硬化能を有するものであればよく、従来公知の重合開始剤を用いることができる。例えば、重合開始剤としては、有機過酸化物、無機過酸化物、アゾ系化合物を挙げることができる。(D)成分の重合開始剤としては、日本油脂社製の有機過酸化物、商品名「パークミルD」及び商品名「パーブチルC」等を挙げることができる。(D)成分は、単独でも2種以上を併用してもよい。 The polymerization initiator of component (D) may be any one that has the curing ability of components (A) and (B), and conventionally known polymerization initiators can be used. Examples of polymerization initiators include organic peroxides, inorganic peroxides, and azo compounds. (D) Component polymerization initiators include organic peroxides manufactured by Nippon Oil & Fats Co., Ltd. under the trade names of "Permyl D" and "Perbutyl C". Component (D) may be used alone or in combination of two or more.
 また、(D)成分を含有する場合、(D)成分の含有量は、樹脂組成物中の不揮発成分100質量部に対して、0.1~10質量部であることが好ましい。このように構成することによって、耐熱性や接着性を良好に向上させることができる。なお、特に限定されることはないが、(D)成分の含有量は、樹脂組成物中の不揮発成分100質量部に対して、0.1~8質量部であることがより好ましく、0.1~5質量部であることが更に好ましい。 Further, when the component (D) is contained, the content of the component (D) is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the non-volatile components in the resin composition. By configuring in this way, heat resistance and adhesiveness can be improved satisfactorily. Although not particularly limited, the content of the component (D) is more preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of non-volatile components in the resin composition. It is more preferably 1 to 5 parts by mass.
〔(E)成分〕
 (E)成分は、熱可塑性樹脂である。(E)成分としての熱可塑性樹脂は、特に限定されることはないが、周波数1~100GHzの領域で、0.005未満の誘電正接(tanδ)を有する熱可塑性樹脂であることが好ましい。これにより、本実施形態の樹脂組成物から形成される熱硬化性フィルムの、高周波領域での優れた誘電特性に寄与することができる。「周波数1~100GHzの領域で、0.005未満の誘電正接(tanδ)を有する熱可塑性樹脂」としては、特に限定されるものではないが、例えば、スチレン系熱可塑性エラストマーが挙げられる。スチレン系熱可塑性エラストマーとしては、例えば、スチレン若しくはその類似体のブロックを少なくとも一つの末端ブロックとして含み、共役ジエンのエラストマーブロックを少なくとも一つの中間ブロックとして含むブロック共重合体を挙げることができる。例えば、スチレン/ブタジエン/スチレンブロックコポリマー(SBS)、スチレン/ブタジエン/ブチレン/スチレンブロックコポリマー(SBBS)、スチレン/エチレン/ブチレン/スチレンブロックコポリマー(SEBS)、スチレン/エチレン/エチレン/プロピレン/スチレンブロックポリマー(SEEPS)等を挙げることができる。スチレン系熱可塑性エラストマーを含むことで、樹脂組成物に柔軟性を付与し、硬化物の靭性を保ち、接着性を向上し、誘電特性を下げることができる。
[(E) component]
(E) Component is a thermoplastic resin. The thermoplastic resin as component (E) is not particularly limited, but preferably has a dielectric loss tangent (tan δ) of less than 0.005 in the frequency range of 1 to 100 GHz. This can contribute to the excellent dielectric properties in the high frequency range of the thermosetting film formed from the resin composition of the present embodiment. The "thermoplastic resin having a dielectric loss tangent (tan δ) of less than 0.005 in the frequency range of 1 to 100 GHz" is not particularly limited, but examples thereof include styrene-based thermoplastic elastomers. Styrenic thermoplastic elastomers can include, for example, block copolymers containing blocks of styrene or analogues thereof as at least one terminal block and elastomeric blocks of conjugated dienes as at least one intermediate block. For example, styrene/butadiene/styrene block copolymer (SBS), styrene/butadiene/butylene/styrene block copolymer (SBBS), styrene/ethylene/butylene/styrene block copolymer (SEBS), styrene/ethylene/ethylene/propylene/styrene block copolymer. (SEEPS) and the like. By including a styrene-based thermoplastic elastomer, flexibility can be imparted to the resin composition, toughness of the cured product can be maintained, adhesiveness can be improved, and dielectric properties can be lowered.
(E)成分の数平均分子量は、30,000以上が好ましく、40,000以上がより好ましく、50,000以上が更に好ましい。また、(E)成分の数平均分子量は、30,000~150,000が好ましく、40,000~120,000がより好ましく、50,000~100,000が特に好ましい。数平均分子量がこの範囲あることによりはんだ耐熱性が向上する。なお、(E)成分の数平均分子量の上限値については特に制限はないが、熱可塑性樹脂の数平均分子量が大きくなり過ぎると、当該熱可塑性樹脂が溶融し難くなってしまうことがある。このため、(E)成分としての熱可塑性樹脂の数平均分子量は、150,000以下であることが好ましく、120,000以下であることが更に好ましく、100,000以下であることが特に好ましい。なお、(E)成分は、分子量が大きくなるほど、樹脂組成物の溶融粘度が高くなり、基板への埋め込み性が悪くなる傾向がある。しかしながら、1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物である(B)成分を含むことにより、分子量が大きい熱可塑性樹脂を使用した場合であっても、樹脂組成物の溶融粘度を低くし、配線への埋め込み性を向上させることができる。 The number average molecular weight of component (E) is preferably 30,000 or more, more preferably 40,000 or more, and even more preferably 50,000 or more. The number average molecular weight of component (E) is preferably 30,000 to 150,000, more preferably 40,000 to 120,000, and particularly preferably 50,000 to 100,000. When the number average molecular weight is within this range, solder heat resistance is improved. The upper limit of the number average molecular weight of component (E) is not particularly limited, but if the number average molecular weight of the thermoplastic resin is too large, the thermoplastic resin may become difficult to melt. Therefore, the number average molecular weight of the thermoplastic resin as component (E) is preferably 150,000 or less, more preferably 120,000 or less, and particularly preferably 100,000 or less. The higher the molecular weight of the component (E), the higher the melt viscosity of the resin composition, which tends to deteriorate the embeddability into the substrate. However, even when a thermoplastic resin having a large molecular weight is used by containing component (B), which is a compound that has an isocyanuric ring structure and two allyl groups in one molecule and is liquid at 25°C, , the melt viscosity of the resin composition can be lowered, and the embeddability into the wiring can be improved.
 (E)成分の含有量については特に制限されるものではないが、(E)成分を含む場合には、樹脂組成物中の不揮発成分100質量%に対して、(E)成分を1~50質量%含むことが好ましく、1~30質量%含むことが更に好ましい。(E)成分の含有量がこの範囲であることにより、樹脂組成物の流動性が向上し、基板への埋め込み性を向上させることができる。 The content of component (E) is not particularly limited. % by mass, more preferably 1 to 30% by mass. When the content of component (E) is within this range, the fluidity of the resin composition can be improved, and the embeddability into the substrate can be improved.
また、本樹脂組成物は無機フィラーを含んでも良く、本樹脂組成物が、無機フィラーを含む場合、(E)成分は樹脂成分の合計100質量部に対して、1~60質量部含むことが好ましく、10~55質量部含むことが更に好ましく、20~50質量部含むことが特に好ましい。 In addition, the present resin composition may contain an inorganic filler, and when the present resin composition contains an inorganic filler, the component (E) may contain 1 to 60 parts by mass with respect to the total 100 parts by mass of the resin components. Preferably, it is contained in an amount of 10 to 55 parts by mass, and particularly preferably in an amount of 20 to 50 parts by mass.
〔(F)成分〕
 (F)成分は、ポリブタジエンである。(F)成分としてのポリブタジエンを含むことにより、樹脂組成物の硬化物や硬化層において、その厚さ方向の熱膨張係数をより小さくすることができる。(F)成分は、ポリブタジエンの側鎖に、(A)成分、又は(B)成分と反応する、ビニル基があるものが好ましい。このようにすることで、詳細は明らかではないが、ポリブタジエンの側鎖に、(A)成分、又は(B)成分と反応して、厚さ方向の熱膨張係数が下げられると考えられると推定される。このため、(F)成分としてのポリブタジエンを含むことにより、図1の(b)に示すような導体層14への破断24の発生を極めて有効に抑制することができる。
[(F) Component]
(F) Component is polybutadiene. By including polybutadiene as the component (F), the thermal expansion coefficient in the thickness direction of the cured product or cured layer of the resin composition can be made smaller. Component (F) preferably has a vinyl group on the side chain of polybutadiene that reacts with component (A) or component (B). By doing so, although the details are not clear, it is presumed that the side chains of polybutadiene react with the component (A) or component (B) to lower the coefficient of thermal expansion in the thickness direction. be done. Therefore, by containing polybutadiene as the component (F), it is possible to extremely effectively suppress the occurrence of fractures 24 in the conductor layer 14 as shown in FIG. 1(b).
 (F)成分としてのポリブタジエンは、数平均分子量(Mn)が500~3000であることが好ましく、600~2000であることがより好ましく、700~1800であることが更に好ましい。(F)成分としてのポリブタジエン数平均分子量(Mn)がこの範囲内であると、樹脂組成物の硬化物や硬化層の厚さ方向の熱膨張係数をより小さくすることができる。 Polybutadiene as component (F) preferably has a number average molecular weight (Mn) of 500 to 3,000, more preferably 600 to 2,000, and even more preferably 700 to 1,800. When the polybutadiene number average molecular weight (Mn) as component (F) is within this range, the thermal expansion coefficient in the thickness direction of the cured product or cured layer of the resin composition can be made smaller.
 (F)成分のポリブタジエンとしては、日本曹達社製のポリブタジエン(1,2-ビニル)商品名「B-1000」等が挙げられる。 (F) component polybutadiene includes polybutadiene (1,2-vinyl) product name "B-1000" manufactured by Nippon Soda Co., Ltd.
 また、(F)成分を含有する場合、(F)成分の含有量は、樹脂組成物中の不揮発成分100質量部に対して、1~20質量部であることが好ましい。このように構成することによって、熱膨張係数を良好な値とすることができる。なお、特に限定されることはないが、(F)成分の含有量は、樹脂組成物中の不揮発成分100質量部に対して、1~10質量部であることがより好ましく、1~5質量部であることが更に好ましい。 Further, when the (F) component is contained, the content of the (F) component is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the non-volatile components in the resin composition. By configuring in this way, the coefficient of thermal expansion can be made a good value. Although not particularly limited, the content of component (F) is more preferably 1 to 10 parts by mass, more preferably 1 to 5 parts by mass, with respect to 100 parts by mass of nonvolatile components in the resin composition. Part is more preferred.
〔その他の成分〕
 本実施形態の樹脂組成物は、これまでに説明した(A)成分~(F)成分以外の成分を更に含んでいてもよい。例えば、その他の成分としては、溶剤、分散剤、シランカップリング剤、酸化防止剤、難燃剤、融剤、等の各種添加剤などを挙げることができる。
[Other ingredients]
The resin composition of the present embodiment may further contain components other than the components (A) to (F) described above. Examples of other components include various additives such as solvents, dispersants, silane coupling agents, antioxidants, flame retardants, fluxes, and the like.
〔樹脂組成物の製造方法〕
 本実施形態の樹脂組成物は、慣用の方法により製造することができる。本実施形態の樹脂組成物は、これまでに説明した各成分を、例えば、ライカイ機、ポットミル、三本ロールミル、回転式混合機、二軸ミキサー等を用いて、溶剤と一緒に溶解混合することで製造することができる。
[Method for producing resin composition]
The resin composition of this embodiment can be produced by a conventional method. The resin composition of the present embodiment is obtained by dissolving and mixing each component described above together with a solvent using, for example, a Laikai machine, a pot mill, a three-roll mill, a rotary mixer, a twin-screw mixer, or the like. can be manufactured in
〔樹脂組成物の用途〕
 本実施形態の樹脂組成物は、電子部品に使用する接着剤や接着フィルム用の樹脂組成物として好適に用いることができる。また、本実施形態の樹脂組成物は、多層配線基板用の層間接着用ボンディングシートや層間接着剤としても好適に用いることができる。本実施形態の樹脂組成物を電子部品用の各種用途に用いる場合、接着対象となる電子部品については特に制限はなく、セラミック基板や有機基板などの各種プリント配線基板、半導体チップ、半導体装置等が挙げられる。
[Use of resin composition]
The resin composition of the present embodiment can be suitably used as a resin composition for adhesives and adhesive films used in electronic parts. The resin composition of the present embodiment can also be suitably used as a bonding sheet for interlayer adhesion and an interlayer adhesive for multilayer wiring boards. When the resin composition of the present embodiment is used for various applications for electronic parts, the electronic parts to be adhered are not particularly limited, and various printed wiring boards such as ceramic substrates and organic substrates, semiconductor chips, semiconductor devices, etc. mentioned.
 本実施形態の樹脂組成物を用いた接着フィルム、層間接着用ボンディングシート及び層間接着剤などは、電子部品等を構成する積層板や半導体装置において、樹脂組成物の硬化物として含まれる。このため、電子部品等を構成する積層板や半導体装置においては、本実施形態の樹脂組成物の硬化物を含むことが好ましい。 The adhesive film, the bonding sheet for interlayer adhesion, the interlayer adhesive, and the like using the resin composition of the present embodiment are included as cured products of the resin composition in laminates and semiconductor devices that constitute electronic components and the like. Therefore, laminates and semiconductor devices that constitute electronic parts and the like preferably contain a cured product of the resin composition of the present embodiment.
 また、本実施形態の樹脂組成物は、樹脂組成物の硬化物を用いたプリプレグや、樹脂組成物の硬化物を有する高周波向け電子部品として用いることもできる。 In addition, the resin composition of the present embodiment can also be used as a prepreg using a cured product of the resin composition, or as an electronic component for high frequencies having a cured product of the resin composition.
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited by these examples. In the following examples, parts and % represent parts by weight and % by weight unless otherwise specified.
(実施例1~15、比較例1~6)
〔サンプル作製〕
 各成分を下記表1~表4に示す配合割合(質量部)になるように計量配合した後、それらを70℃に加温された溶解させる器に投入し、回転数100~400rpmで回転させながら、常圧混合を3~6時間行った。以上のようにして、実施例1~15及び比較例1~6の樹脂組成物を含む溶解液を調製した。
(Examples 1 to 15, Comparative Examples 1 to 6)
[Sample preparation]
After weighing and blending each component so that the blending ratio (parts by mass) shown in Tables 1 to 4 below, they are put into a dissolving device heated to 70 ° C. and rotated at a rotation speed of 100 to 400 rpm. Atmospheric pressure mixing was carried out for 3 to 6 hours. As described above, solutions containing the resin compositions of Examples 1 to 15 and Comparative Examples 1 to 6 were prepared.
 実施例1~15及び比較例1~6において樹脂組成物を含む溶解液の調製に使用した原料は以下の通りである。 The raw materials used to prepare the solution containing the resin composition in Examples 1 to 15 and Comparative Examples 1 to 6 are as follows.
〔(A)成分:末端に炭素-炭素二重結合を含む官能基(ビニル基)を有するポリフェニレンエーテル樹脂〕
(A1):三菱ガス化学社製、商品名「OPE-2St」、数平均分子量(Mn)=1200。
(A2):三菱ガス化学社製、商品名「OPE-2St」、数平均分子量(Mn)=2200。
(A3):SABICジャパン社製、商品名「Noryl SA9000」、数平均分子量(Mn)=1850~1950。
〔(A’)成分:末端に炭素-炭素二重結合を含む官能基を有さないポリフェニレンエーテル〕
(A’3):SABICジャパン社製、商品名「Noryl SA90」、末端に水酸基を有するポリフェニレンエーテル。
[Component (A): polyphenylene ether resin having a functional group (vinyl group) containing a carbon-carbon double bond at the end]
(A1): manufactured by Mitsubishi Gas Chemical Company, trade name "OPE-2St", number average molecular weight (Mn) = 1200.
(A2): manufactured by Mitsubishi Gas Chemical Company, trade name "OPE-2St", number average molecular weight (Mn) = 2200.
(A3): trade name "Noryl SA9000" manufactured by SABIC Japan, number average molecular weight (Mn) = 1850-1950.
[(A') component: polyphenylene ether having no functional group containing a carbon-carbon double bond at the end]
(A'3): Polyphenylene ether having terminal hydroxyl groups, trade name "Noryl SA90" manufactured by SABIC Japan.
〔(B)成分:1分子中にイソシアヌル環構造及び2個のアリル基を有する化合物〕
(B1):四国化成社製、商品名「L-DAIC」、上記一般式(4)で表される化合物。上記一般式(4)中、Rは、炭素数が4~14個のアルキル基。
〔(B’)成分:1分子中にアリル基を有する(B)成分以外の化合物〕
(B’2):大和化成工業社製、商品名「DABPA」、1分子中にイソシアヌル環構造を有さず、フェノール性水酸基とアリル基を有する化合物。
(B’3):三菱ケミカル社製、商品名「TAIC」、1分子中にイソシアヌル環構造及び3個のアリル基を有する化合物。
[Component (B): a compound having an isocyanuric ring structure and two allyl groups in one molecule]
(B1): manufactured by Shikoku Kasei Co., Ltd., product name "L-DAIC", a compound represented by the above general formula (4). In general formula (4) above, R is an alkyl group having 4 to 14 carbon atoms.
[Component (B'): a compound other than component (B) having an allyl group in one molecule]
(B'2): Daiwa Kasei Kogyo Co., Ltd., trade name "DABPA", a compound having no isocyanuric ring structure in one molecule and having a phenolic hydroxyl group and an allyl group.
(B'3): Mitsubishi Chemical Corporation, trade name "TAIC", a compound having an isocyanuric ring structure and three allyl groups in one molecule.
〔(C)成分:無機フィラー〕
(C1):アミノシランカップリング剤で表面処理された球状シリカ、SC4050 SX(品名)、株式会社アドマテックス製、平均粒子径1.0μm。
(C2):ビニルシラン系カップリング剤で表面処理された球状シリカ、10SV-C12(品名)、株式会社アドマテックス製、平均粒子径1.0μm。
[(C) component: inorganic filler]
(C1): Spherical silica surface-treated with an aminosilane coupling agent, SC4050 SX (product name), Admatechs Co., Ltd., average particle size 1.0 μm.
(C2): Spherical silica surface-treated with a vinylsilane coupling agent, 10SV-C12 (product name), Admatechs Co., Ltd., average particle size 1.0 μm.
〔(D)成分:重合開始剤〕
(D1):日油化学社製、商品名「パークミルD」。
[(D) component: polymerization initiator]
(D1): manufactured by NOF Chemical Co., Ltd., trade name "Percumyl D".
〔(E)成分:熱可塑性樹脂〕
(E1):旭化成社製の水添スチレン系熱可塑性エラストマー、商品名「タフテックP1500」、数平均分子量(Mn)=49,000。
(E2):クラレ社製の水添スチレン系熱可塑性エラストマー、商品名「セプトン8006」、数平均分子量(Mn)=125,000。
(E3):クレイトンポリマージャパン社製の水添スチレン系熱可塑性エラストマー、商品名「G1652」、数平均分子量(Mn)=53,000。
[(E) component: thermoplastic resin]
(E1): Hydrogenated styrene-based thermoplastic elastomer manufactured by Asahi Kasei Corporation, trade name "Tuftec P1500", number average molecular weight (Mn) = 49,000.
(E2): Hydrogenated styrene thermoplastic elastomer manufactured by Kuraray Co., Ltd., trade name "Septon 8006", number average molecular weight (Mn) = 125,000.
(E3): Hydrogenated styrene thermoplastic elastomer manufactured by Kraton Polymer Japan, trade name "G1652", number average molecular weight (Mn) = 53,000.
〔(F)成分:ポリブタジエン〕
(F1):日本曹達社製のポリブタジエン、商品名「B-1000」。ポリブタジエンの側鎖にビニル基を有する。数平均分子量(Mn)=1200。
[(F) component: polybutadiene]
(F1): Polybutadiene manufactured by Nippon Soda Co., Ltd., trade name "B-1000". It has a vinyl group in the side chain of polybutadiene. Number average molecular weight (Mn) = 1200.
〔(G)成分:溶剤〕
 (G1):トルエン。
[(G) component: solvent]
(G1): Toluene.
 また、表1~表4の「固形分中のフィラーの比率(質量%)」の欄に、樹脂組成物の調製に用いた固形分原料中の、(C)成分の比率(質量%)を示す。なお、「固形分中のフィラーの比率(質量%)」とは、樹脂組成物中の不揮発成分に対するフィラーの比率(質量%)のことである。表1~表4の「不揮発成分中の(A)成分の比率(質量%)」の欄に、樹脂組成物の調製に用いた原料の不揮発成分中の、(A)成分の比率(質量%)を示す。表1~表4の「不揮発成分中の(B)成分の比率(質量%)」の欄に、樹脂組成物の調製に用いた原料の不揮発成分中の、(B)成分の比率(質量%)を示す。 In addition, the ratio (% by mass) of component (C) in the solid content raw material used to prepare the resin composition is indicated in the column of "Ratio of filler in solid content (% by mass)" in Tables 1 to 4. show. In addition, "ratio (% by mass) of filler in solid content" means the ratio (% by mass) of filler to non-volatile components in the resin composition. In Tables 1 to 4, the column "Ratio of component (A) in non-volatile components (% by mass)" shows the ratio of component (A) in the non-volatile components of the raw materials used to prepare the resin composition (% by mass) ). In Tables 1 to 4, the column "Ratio of component (B) in non-volatile components (% by mass)" shows the ratio of component (B) in the non-volatile components of the raw materials used to prepare the resin composition (% by mass) ).
 以上のようにして得られた実施例1~15及び比較例1~6の樹脂組成物を含む溶解液について、以下に示す方法で、「成膜性」、「誘電率」、「誘電正接」、「熱膨張係数[10-5/K]」、「銅箔ピール強度[N/cm]」、及び「はんだ熱耐(300℃×3分)」の評価及び測定を行った。結果を、表1~表4に示す。 For the solutions containing the resin compositions of Examples 1 to 15 and Comparative Examples 1 to 6 obtained as described above, the "film formability", "permittivity", and "dielectric loss tangent" were determined by the methods shown below. , “thermal expansion coefficient [10 −5 /K]”, “copper foil peel strength [N/cm]”, and “solder heat resistance (300° C.×3 minutes)” were evaluated and measured. The results are shown in Tables 1-4.
 また、実施例5,8,10,13の樹脂組成物を含む成膜した組成物について、以下の方法で、「熱膨張係数(厚)[10-5/K]」の測定を行った。更に、実施例1~11及び実施例13、比較例1~3,5の樹脂組成物を含む成膜した組成物について、以下の方法で、「最低溶融粘度[Pa・s]」、及び「最低溶融温度[℃]」の測定を行った。 Further, the "thermal expansion coefficient (thickness) [10 -5 /K]" was measured by the following method for the film-formed compositions containing the resin compositions of Examples 5, 8, 10 and 13. Furthermore, for the film-formed compositions containing the resin compositions of Examples 1 to 11 and 13 and Comparative Examples 1 to 3 and 5, the following methods were used to measure the "minimum melt viscosity [Pa s]" and " The lowest melting temperature [°C]” was measured.
〔成膜性〕
 まず、剥離処理されたPETフィルム上に、各樹脂組成物を含む溶解液をナイフ方式で塗布した。その後、PETフィルム上の溶解液を、温度80~130℃で乾燥させて、厚さ20~50μmの樹脂フィルムを作製した。作製した樹脂フィルムの性状を目視で確認し、以下の評価基準に基づいて評価を行った。評価結果が「〇」の場合を合格とする。
 〇:綺麗な膜。
 △:スジ・ムラ有りの膜。
 ×:亀裂あり。
[Film formability]
First, a release-treated PET film was coated with a solution containing each resin composition by a knife method. After that, the solution on the PET film was dried at a temperature of 80 to 130° C. to prepare a resin film having a thickness of 20 to 50 μm. The properties of the produced resin film were visually confirmed and evaluated based on the following evaluation criteria. If the evaluation result is "〇", it is regarded as a pass.
O: A clean film.
Δ: Film with streaks and unevenness.
x: cracked.
〔誘電率、誘電正接〕
 成膜性の評価にて作製した樹脂フィルムを、温度200℃で、1時間で硬化させて、誘電率及び誘電正接を測定するための試料を作製した。作製した試料について、空洞共振器摂動法の10GHz共振器を用いて、誘電率及び誘電正接を測定した。誘電率は、3.5未満であることが好ましく、3.0未満であることがより好ましい。また、誘電正接は、0.0020未満であることが好ましく、0.0018未満であることがより好ましい。
[Dielectric constant, dielectric loss tangent]
The resin film prepared for the evaluation of the film forming properties was cured at a temperature of 200° C. for 1 hour to prepare a sample for measuring the dielectric constant and the dielectric loss tangent. The dielectric constant and dielectric loss tangent of the fabricated samples were measured using a 10 GHz resonator of the cavity resonator perturbation method. The dielectric constant is preferably less than 3.5, more preferably less than 3.0. Also, the dielectric loss tangent is preferably less than 0.0020, more preferably less than 0.0018.
〔熱膨張係数[10-5/K]〕
 成膜性の評価にて作製した樹脂フィルムを、厚さが50~100μmになるように積層させ、温度200℃、1時間で硬化させて、熱膨張係数を測定するための試料を作製した。作製した試料について、TMA(熱機械分析装置)の引張り法による測定を行い、100~110℃の平均熱膨張係数を読み値(即ち、熱膨張係数の測定値)とした。測定条件は、引張荷重2gf、20℃/minで230℃まで焼きなましした後、室温まで一旦戻し、その後、5℃/minで230℃まで測定した。なお、ここで評価している熱膨張係数は平面方向の熱膨張係数である。熱膨張係数は、20[10-5/K]未満であることが好ましく、10[10-5/K]未満であることがより好ましい。
[Thermal expansion coefficient [10 -5 /K]]
The resin films prepared for evaluation of film forming properties were laminated so as to have a thickness of 50 to 100 μm and cured at a temperature of 200° C. for 1 hour to prepare a sample for measuring the coefficient of thermal expansion. The prepared sample was measured by a TMA (thermo-mechanical analyzer) tensile method, and the average thermal expansion coefficient at 100 to 110° C. was taken as the read value (that is, the measured value of the thermal expansion coefficient). The measurement conditions were as follows: after annealing to 230°C at a tensile load of 2 gf and 20°C/min, the sample was once returned to room temperature, and then measured at 5°C/min up to 230°C. Note that the coefficient of thermal expansion evaluated here is the coefficient of thermal expansion in the planar direction. The coefficient of thermal expansion is preferably less than 20 [10 -5 /K], more preferably less than 10 [10 -5 /K].
〔熱膨張係数(厚)[10-5/K]〕
 成膜性の評価にて作製した樹脂フィルムを、厚さが約2mmになるように積層させ、温度200℃、1時間で硬化させて、熱膨張係数(厚)を測定するための試料を作製した。作製した試料について、TMA(熱機械分析装置)の圧縮による測定を行い、100~110℃の平均熱膨張係数を読み値(即ち、熱膨張係数(厚)の測定値)とした。測定条件は、圧縮荷重1gf、20℃/minで250℃まで焼きなましした後、室温まで一旦戻し、その後、5℃/minで250℃まで測定した。なお、ここで評価している熱膨張係数は厚さ方向(即ちZ方向)の熱膨張係数である。厚さ方向の熱膨張係数は、20[10-5/K]未満であることが好ましく、10[10-5/K]未満であることがより好ましい。
[Thermal expansion coefficient (thickness) [10 -5 /K]]
The resin films prepared in the evaluation of the film forming properties are laminated to a thickness of about 2 mm, and cured at a temperature of 200 ° C. for 1 hour to prepare a sample for measuring the coefficient of thermal expansion (thickness). bottom. The prepared sample was measured by compression with a TMA (thermo-mechanical analyzer), and the average thermal expansion coefficient at 100 to 110° C. was taken as the read value (that is, the measured value of the thermal expansion coefficient (thickness)). The measurement conditions were as follows: annealing up to 250°C at a compressive load of 1 gf and 20°C/min, returning to room temperature once, and then measuring up to 250°C at 5°C/min. Note that the coefficient of thermal expansion evaluated here is the coefficient of thermal expansion in the thickness direction (that is, the Z direction). The thermal expansion coefficient in the thickness direction is preferably less than 20 [10 -5 /K], more preferably less than 10 [10 -5 /K].
〔銅箔ピール強度[N/cm]〕
 成膜性の評価にて作製した樹脂フィルムを、厚さ18μmの銅箔で挟み込み、温度200℃、1時間、圧力1MPaで硬化させて、銅箔ピール強度を測定するための両面銅貼り板を作製した。作製した両面銅貼り板を1cm幅に切り出し、片面の銅箔を180度方向に引き剥がした時の強度を測定した。測定条件は、引張速度50mm/minとした。銅箔ピール強度は、3.0N/cm以上であることが好ましく、4.0N/cm以上であることがより好ましい。
[Copper foil peel strength [N/cm]]
A double-sided copper-clad plate for measuring the peel strength of the copper foil was obtained by sandwiching the resin film prepared in the evaluation of the film forming properties between copper foils having a thickness of 18 μm and curing at a temperature of 200° C. for 1 hour under a pressure of 1 MPa. made. The produced double-sided copper-clad plate was cut into a width of 1 cm, and the strength was measured when the copper foil on one side was peeled off in the direction of 180 degrees. The measurement conditions were a tensile speed of 50 mm/min. The copper foil peel strength is preferably 3.0 N/cm or more, more preferably 4.0 N/cm or more.
〔はんだ耐熱(300℃×3分)〕
 銅箔ピール強度の評価にて作製した両面銅貼り板を2cm角に切り出し、300℃のはんだ浴へ3分浮かべて、その外観を目視にて確認し、以下の評価基準に基づいて評価を行った。評価結果が「PASS」の場合を合格とする。
 PASS:変化無し。
 ×:膨れ、銅箔の剥離有り。
[Solder heat resistance (300°C x 3 minutes)]
A double-sided copper-clad plate prepared for evaluation of copper foil peel strength was cut into 2 cm squares, floated in a solder bath at 300° C. for 3 minutes, and its appearance was visually confirmed, and evaluation was performed based on the following evaluation criteria. rice field. If the evaluation result is "PASS", it is regarded as a pass.
PASS: No change.
x: Swelling and peeling of copper foil.
〔最低溶融粘度[Pa・s]、最低溶融温度[℃]〕
 成膜性の評価にて作製した樹脂フィルムを、厚さが200~300μmになるように積層し、レオメータによる溶融粘度を測定した。そして、測定時の最低溶融粘度[Pa・s]、最低溶融温度[℃]を読み取った。測定の条件は、直径5mmのパラレルプレートを用い、荷重2gf、ひずみ1%、周波数1Hz、5℃/minで30~160℃まで測定することとした。最低溶融温度は、200℃未満であることが好ましく、160℃未満であることがより好ましい。また、最低溶融粘度は、10,000Pa・s未満であることが好ましく、5,000Pa・s未満であることがより好ましい。
[Minimum melt viscosity [Pa s], minimum melting temperature [°C]]
The resin films prepared for evaluation of film forming properties were laminated so as to have a thickness of 200 to 300 μm, and the melt viscosity was measured using a rheometer. Then, the lowest melt viscosity [Pa·s] and the lowest melting temperature [°C] at the time of measurement were read. The measurement conditions were a parallel plate with a diameter of 5 mm, a load of 2 gf, a strain of 1%, a frequency of 1 Hz, and measurements from 30 to 160° C. at 5° C./min. The minimum melting temperature is preferably less than 200°C, more preferably less than 160°C. Also, the minimum melt viscosity is preferably less than 10,000 Pa·s, more preferably less than 5,000 Pa·s.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
〔結果〕
 表1~表4に示すように、実施例1~15の樹脂組成物は、「成膜性」、「誘電率」、「誘電正接」、「熱膨張係数[10-5/K]」、「銅箔ピール強度[N/cm]」、及び「はんだ熱耐(300℃×3分)」の評価及び測定において良好な結果を示すものであった。
〔result〕
As shown in Tables 1 to 4, the resin compositions of Examples 1 to 15 have "film formability", "dielectric constant", "dielectric loss tangent", "thermal expansion coefficient [10 -5 /K]", Good results were obtained in evaluation and measurement of "copper foil peel strength [N/cm]" and "solder heat resistance (300°C x 3 minutes)".
 「熱膨張係数(厚)[10-5/K]」の測定結果は、実施例5が8.5[10-5/K]、実施例8が12.3[10-5/K]、実施例10が6.0[10-5/K]、実施例13が6.6[10-5/K]であった。 The measurement results of "thermal expansion coefficient (thickness) [10 -5 /K]" are 8.5 [10 -5 /K] for Example 5, 12.3 [10 -5 /K] for Example 8, Example 10 was 6.0 [10 -5 /K] and Example 13 was 6.6 [10 -5 /K].
 「最低溶融粘度[Pa・s]」の測定結果は、実施例1が68Pa・s、実施例2が1130Pa・s、実施例3が45Pa・s、実施例4が1166Pa・s、実施例5が6168Pa・s、実施例6が124Pa・s、実施例7が8Pa・s、実施例8が3495Pa・s、実施例9が797Pa・s、実施例10が9980Pa・s、実施例11が164Pa・s、実施例13が5037Pa・sであった。また、比較例1が85Pa・s、比較例2が86Pa・s、比較例3が94Pa・s、比較例5が2735Pa・sであった。 The measurement results of "minimum melt viscosity [Pa s]" are 68 Pa s for Example 1, 1130 Pa s for Example 2, 45 Pa s for Example 3, 1166 Pa s for Example 4, and 1166 Pa s for Example 5. is 6168 Pa s, Example 6 is 124 Pa s, Example 7 is 8 Pa s, Example 8 is 3495 Pa s, Example 9 is 797 Pa s, Example 10 is 9980 Pa s, Example 11 is 164 Pa ·s, and Example 13 was 5037 Pa·s. Further, Comparative Example 1 was 85 Pa·s, Comparative Example 2 was 86 Pa·s, Comparative Example 3 was 94 Pa·s, and Comparative Example 5 was 2735 Pa·s.
 「最低溶融温度[℃]」の測定結果は、実施例1が91℃、実施例2が120℃、実施例3が100℃、実施例4が116℃、実施例5が125℃、実施例6が100℃、実施例7が121℃、実施例8が131℃、実施例9が134℃、実施例10が127℃、実施例11が110℃、実施例13が122℃であった。また、比較例1が104℃、比較例2が102℃、比較例3が102℃、比較例5が141℃であった。 The measurement results of "minimum melting temperature [° C.]" are 91° C. for Example 1, 120° C. for Example 2, 100° C. for Example 3, 116° C. for Example 4, 125° C. for Example 5, and Example 6 was 100°C, Example 7 was 121°C, Example 8 was 131°C, Example 9 was 134°C, Example 10 was 127°C, Example 11 was 110°C, and Example 13 was 122°C. Also, Comparative Example 1 was 104°C, Comparative Example 2 was 102°C, Comparative Example 3 was 102°C, and Comparative Example 5 was 141°C.
 実施例1の樹脂組成物は、(A)成分と(B)成分と(G)成分の溶剤のみの配合であり、低誘電正接で耐熱性の優れ、最低溶融温度が特に低いものであった。実施例6の樹脂組成物は、実施例1の樹脂組成物に比して(B)成分の配合量を減量したものであり、(B)成分が少なくても低誘電正接であり、耐熱性が優れるものであった。一方、実施例7の樹脂組成物は、実施例1の樹脂組成物に比して(B)成分の配合量を増量したものであり、(B)成分を増やしても低誘電正接であり、耐熱性が優れ、最低溶融粘度が特に低いものであった。 The resin composition of Example 1 was a mixture of only the solvents of components (A), (B) and (G), and had a low dielectric loss tangent, excellent heat resistance, and a particularly low minimum melting temperature. . The resin composition of Example 6 has a reduced amount of component (B) compared to the resin composition of Example 1, and has a low dielectric loss tangent even when the component (B) is small, and has heat resistance. was excellent. On the other hand, the resin composition of Example 7 has an increased amount of component (B) as compared to the resin composition of Example 1, and has a low dielectric loss tangent even when the amount of component (B) is increased. It had excellent heat resistance and a particularly low minimum melt viscosity.
 実施例2の樹脂組成物は、(E)成分のスチレン系熱可塑性エラストマーを更に含むのであり、(E)成分を含んでも低誘電正接で耐熱性の優れるものであった。実施例9の樹脂組成物は、(E)成分のスチレン系熱可塑性エラストマーの種類を変えたものであり、実施例2に比べ最低溶融粘度が上昇したが流動性には問題無い範囲であり、且つ、低誘電正接で耐熱性、銅箔ピール強度が優れるものであった。 The resin composition of Example 2 further contained the (E) component styrene-based thermoplastic elastomer, and even with the (E) component, it had a low dielectric loss tangent and excellent heat resistance. The resin composition of Example 9 was obtained by changing the type of the styrene-based thermoplastic elastomer of the component (E). In addition, it had a low dielectric loss tangent, excellent heat resistance, and excellent copper foil peel strength.
 実施例3の樹脂組成物は、(D)成分の重合開始剤を更に含むのであり、(D)成分を含んでも低誘電正接で耐熱性が優れるものであった。実施例4の樹脂組成物は、(D)成分と(E)成分を共に含むのであり、低誘電正接で耐熱性が優れるものであった。実施例5,8,10の樹脂組成物は、(D)成分と(E)成分に加えて、(C)成分の無機フィラー(シリカフィラー)を更に含むのであり、熱膨張係数が特に優れ、且つ、低誘電正接で耐熱性が優れるものであった。 The resin composition of Example 3 further contained the (D) component polymerization initiator, and even with the (D) component, it had a low dielectric loss tangent and excellent heat resistance. The resin composition of Example 4 contained both the (D) component and the (E) component, and had a low dielectric loss tangent and excellent heat resistance. The resin compositions of Examples 5, 8, and 10 further contain an inorganic filler (silica filler) as the component (C) in addition to the component (D) and the component (E). In addition, it had a low dielectric loss tangent and excellent heat resistance.
 実施例11の樹脂組成物は、(A)成分と(B)成分と(C)成分と(G)成分の溶剤のみの配合であり、熱膨張係数と最低溶融粘度が特に優れ、且つ、低誘電正接で耐熱性が優れるものであった。実施例12の樹脂組成物は、(A)成分のポリフェニレンエーテル樹脂として数平均分子量が2200のものを用いたものであり、実施例1に比べ誘電正接が低く、耐熱性に優れたものであった。実施例13の樹脂組成物は、(C)成分の無機フィラー(ビニルシラン処理したシリカフィラー)を更に含むのであり、熱膨張係数(厚)が特に優れ、且つ、低誘電正接で耐熱性が優れるものであった。実施例14の樹脂組成物は、実施例1~13で使用したものとは別の(E)成分(スチレン系熱可塑性エラストマー)を含むものであり、これまでに説明した実施例1~13と同様に、各評価及び測定において良好な結果を示すものであった。また、実施例15の樹脂組成物は、実施例1~13で使用したものとは別の(A)成分を含むものであり、こちらも実施例1~13と同様に、各評価及び測定において良好な結果を示すものであった。 The resin composition of Example 11 is a blend of only the solvent of the components (A), (B), (C) and (G), and has a particularly excellent coefficient of thermal expansion and a low minimum melt viscosity. The dielectric loss tangent was excellent in heat resistance. The resin composition of Example 12 used a polyphenylene ether resin of component (A) having a number average molecular weight of 2200, and had a lower dielectric loss tangent than Example 1 and excellent heat resistance. rice field. The resin composition of Example 13 further contains an inorganic filler (vinylsilane-treated silica filler) as the component (C), and has a particularly excellent coefficient of thermal expansion (thickness), a low dielectric loss tangent, and excellent heat resistance. Met. The resin composition of Example 14 contains component (E) (styrene-based thermoplastic elastomer) different from that used in Examples 1 to 13, and is different from Examples 1 to 13 described above. Similarly, good results were obtained in each evaluation and measurement. In addition, the resin composition of Example 15 contains a component (A) different from that used in Examples 1 to 13, and in the same manner as in Examples 1 to 13, in each evaluation and measurement Good results were obtained.
 樹脂組成物中の不揮発成分100質量%中の(A)成分の含有比率が90.57質量%の実施例6は、実施例1と比較して成膜性が相対的に低いものであった。また、不揮発成分100質量%中の(A)成分の含有比率が70質量%程度の実施例3,12も、実施例6に対しては成膜性の改善がみられるものの、実施例1と比較して成膜性が相対的に低いものであった。不揮発成分100質量%中の(A)成分の含有比率が17.00質量%の実施例8は、銅箔ピール強度が相対的に低いものであった。 Example 6, in which the content ratio of component (A) in 100% by mass of non-volatile components in the resin composition was 90.57% by mass, had relatively low film-forming properties as compared with Example 1. . In addition, Examples 3 and 12, in which the content ratio of the component (A) in 100% by mass of the non-volatile component is about 70% by mass, are also improved in film-forming properties with respect to Example 6, but are similar to those in Example 1. In comparison, the film formability was relatively low. Example 8 in which the content ratio of component (A) in 100% by mass of non-volatile components was 17.00% by mass had relatively low copper foil peel strength.
 不揮発成分100質量%中の(B)成分の含有比率が最も低い実施例10は、最低溶融粘度の点で、その他の実施例より高いものであった。そして、実施例1,6,7より不揮発成分100質量%中の(B)成分の含有比率が増加するに従って、誘電正接が向上する傾向が見られた。 Example 10, which had the lowest content ratio of component (B) in 100% by mass of non-volatile components, was higher than the other examples in terms of the lowest melt viscosity. From Examples 1, 6 and 7, it was found that the dielectric loss tangent tended to improve as the content ratio of component (B) in 100% by mass of non-volatile components increased.
 比較例1,2においては、(B)成分の代わりに、(B’)成分として、1分子中にイソシアヌル環構造及び3個のアリル基を有する化合物を用いた。このような化合物を用いた比較例1,2の樹脂組成物は、成膜性の評価が悪いものであった。また、比較例1,2の樹脂組成物は、誘電正接が高い値を示すものであった。 In Comparative Examples 1 and 2, a compound having an isocyanuric ring structure and three allyl groups in one molecule was used as the (B') component instead of the (B) component. The resin compositions of Comparative Examples 1 and 2 using such compounds were poor in film-forming properties. Moreover, the resin compositions of Comparative Examples 1 and 2 exhibited high dielectric loss tangent values.
 比較例3~5においては、(B)成分の代わりに、(B’)成分として、1分子中にイソシアヌル環構造を有さず、フェノール性水酸基とアリル基を有する化合物を用いた。比較例3の樹脂組成物は、はんだ耐熱の評価において銅箔の剥離が確認された。そして、比較例3の樹脂組成物は、銅箔ピール強度の測定においても銅箔が剥がれてしまったため、銅箔ピール強度の測定ができなかった。比較例4,5の樹脂組成物は、誘電正接が高い値を示すものであった。また、比較例4,5の樹脂組成物は、銅箔ピール強度の値が低く、銅箔が剥がれ易いものであった。 In Comparative Examples 3 to 5, a compound having no isocyanuric ring structure in one molecule and having a phenolic hydroxyl group and an allyl group was used as the (B') component instead of the (B) component. For the resin composition of Comparative Example 3, peeling of the copper foil was confirmed in the evaluation of solder heat resistance. In the resin composition of Comparative Example 3, the copper foil was peeled off even in the measurement of the copper foil peel strength, so the copper foil peel strength could not be measured. The resin compositions of Comparative Examples 4 and 5 exhibited high dielectric loss tangent values. Moreover, the resin compositions of Comparative Examples 4 and 5 had low values of copper foil peel strength, and the copper foil was easily peeled off.
 比較例6においては、(A)成分の代わりに、(A’)成分として、末端に水酸基を有するポリフェニレンエーテルを用いた。比較例6の樹脂組成物は、樹脂組成物を含む成膜した組成物が硬化せず、硬化した樹脂フィルムの作製が困難であった。このため、比較例6の樹脂組成物については、成膜性の評価以外の評価及び測定ができなかった。 In Comparative Example 6, instead of the (A) component, a polyphenylene ether having a terminal hydroxyl group was used as the (A') component. With the resin composition of Comparative Example 6, the film-formed composition containing the resin composition did not cure, and it was difficult to produce a cured resin film. For this reason, the resin composition of Comparative Example 6 could not be evaluated and measured except for evaluation of film forming properties.
 本発明の樹脂組成物は、電子部品に使用する接着剤や接着フィルム用の樹脂組成物として用いることができる。また、本発明の樹脂組成物は、多層配線基板用の層間接着用ボンディングシートや層間接着剤としても用いることができる。また、本発明の樹脂組成物は、樹脂組成物の硬化物を用いたプリプレグや、樹脂組成物の硬化物を有する高周波向け電子部品として用いることもできる。 The resin composition of the present invention can be used as an adhesive for electronic parts or as a resin composition for adhesive films. The resin composition of the present invention can also be used as a bonding sheet for interlayer adhesion and an interlayer adhesive for multilayer wiring boards. The resin composition of the present invention can also be used as a prepreg using a cured product of the resin composition, or as an electronic component for high frequencies having a cured product of the resin composition.
10 多層配線基板
12,12a,12b,12c,12d,12e 基板
14 導体層
16,16a,16b,16c,16d 接着剤層
22 スルーホール
24 破断
Z 厚さ方向
10 multilayer wiring board 12, 12a, 12b, 12c, 12d, 12e substrate 14 conductor layer 16, 16a, 16b, 16c, 16d adhesive layer 22 through hole 24 fracture Z thickness direction

Claims (17)

  1.  (A)炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂と、
     (B)1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物と、
     を含む、樹脂組成物。
    (A) a polyphenylene ether resin terminated with a functional group containing a carbon-carbon double bond;
    (B) a compound having an isocyanuric ring structure and two allyl groups in one molecule and being liquid at 25°C;
    A resin composition comprising:
  2.  前記(A)成分が、熱硬化性樹脂である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the component (A) is a thermosetting resin.
  3.  前記(B)成分の分子量が、300~400である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the component (B) has a molecular weight of 300-400.
  4.  前記(A)成分が、下記一般式(1)で示されるポリフェニレンエーテルである、請求項1~3のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(1)中、
     R、R、R、R、R、R、Rは、同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基であり、
     -(O-X-O)-は、上記構造式(2)で示され、当該構造式(2)中、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、
     -(Y-O)-は、上記構造式(3)で示される1種類の構造、又は、上記構造式(3)で示される2種類以上の構造がランダムに配列したものであり、当該構造式(3)中、R16、R17は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R18、R19は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、
     Zは、炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともあり、
     a、bは、少なくともいずれか一方が0でない、0~300の整数を示し、c、dは、0又は1の整数を示す。)
    The resin composition according to any one of claims 1 to 3, wherein the component (A) is a polyphenylene ether represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In the above general formula (1),
    R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , which may be the same or different, are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group;
    —(O—X—O)— is represented by the above structural formula (2), and in the structural formula (2), R 8 , R 9 , R 10 , R 14 and R 15 may be the same or different. R 11 , R 12 and R 13 may be the same or different and may be a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group. is the basis,
    -(Y-O)- is one type of structure represented by the above structural formula (3), or two or more types of structures represented by the above structural formula (3) arranged randomly, and the structure In formula (3), R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group, R 18 and R 19 may be the same or different, a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group;
    Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom;
    a and b are integers of 0 to 300, at least one of which is not 0; c and d are integers of 0 or 1; )
  5.  前記(B)成分が、下記一般式(4)で表される化合物である、請求項1~4のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (但し、上記一般式(4)中、Rは、炭素数が4~14個のアルキル基である。)
    The resin composition according to any one of claims 1 to 4, wherein the component (B) is a compound represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (However, in the above general formula (4), R is an alkyl group having 4 to 14 carbon atoms.)
  6.  (C)無機フィラーを更に含む、請求項1~5のいずれか一項に記載の樹脂組成物。 (C) The resin composition according to any one of claims 1 to 5, further comprising an inorganic filler.
  7.  樹脂組成物中の不揮発成分100質量%中に、前記(C)成分を50質量%以上含む、請求項6に記載の樹脂組成物。 The resin composition according to claim 6, which contains 50% by mass or more of the component (C) in 100% by mass of non-volatile components in the resin composition.
  8.  前記(A)成分及び前記(B)成分の重合を開始する(D)重合開始剤を更に含む、請求項1~7のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising (D) a polymerization initiator that initiates polymerization of the (A) component and the (B) component.
  9.  (E)数平均分子量が30,000以上の熱可塑性樹脂を更に含む、請求項1~8のいずれか一項に記載の樹脂組成物。 (E) The resin composition according to any one of claims 1 to 8, further comprising a thermoplastic resin having a number average molecular weight of 30,000 or more.
  10.  樹脂組成物中の不揮発成分100質量部%中に、前記(E)成分を1~50質量%含む、請求項9に記載の樹脂組成物。 The resin composition according to claim 9, which contains 1 to 50% by mass of the component (E) in 100% by mass of non-volatile components in the resin composition.
  11.  (F)ポリブタジエンを更に含む、請求項1~10のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, further comprising (F) polybutadiene.
  12.  樹脂組成物中の不揮発成分100質量%中に、前記(A)成分を15~90質量%含む、請求項1~11のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, which contains 15 to 90% by mass of the component (A) in 100% by mass of non-volatile components in the resin composition.
  13.  前記(A)成分100質量部に対して、前記(B)成分を10~70質量部含む、請求項1~12のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 12, comprising 10 to 70 parts by mass of component (B) with respect to 100 parts by mass of component (A).
  14.  請求項1~13のいずれか一項に記載の樹脂組成物からなる硬化層を有する、プリント配線基板。 A printed wiring board having a cured layer made of the resin composition according to any one of claims 1 to 13.
  15.  請求項1~13のいずれか一項に記載の樹脂組成物の硬化物。 A cured product of the resin composition according to any one of claims 1 to 13.
  16.  請求項1~13のいずれか一項に記載の樹脂組成物を用いたプリプレグ。 A prepreg using the resin composition according to any one of claims 1 to 13.
  17.  請求項15に記載の硬化物を有する高周波向け電子部品。 A high-frequency electronic component comprising the cured product according to claim 15.
PCT/JP2022/030431 2021-09-14 2022-08-09 Resin composition, and printed wiring board, cured product, prepreg, and electronic component for high frequency in which same is used WO2023042578A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-149098 2021-09-14
JP2021149098 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023042578A1 true WO2023042578A1 (en) 2023-03-23

Family

ID=85602754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030431 WO2023042578A1 (en) 2021-09-14 2022-08-09 Resin composition, and printed wiring board, cured product, prepreg, and electronic component for high frequency in which same is used

Country Status (2)

Country Link
TW (1) TW202311432A (en)
WO (1) WO2023042578A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034398A1 (en) * 2022-08-09 2024-02-15 ナミックス株式会社 Resin composition, cured product in which resin composition is used, prepreg, printed wiring board, and electronic component for high frequencies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196718A1 (en) * 2019-03-28 2020-10-01 四国化成工業株式会社 Resin composition and use thereof
US20200377676A1 (en) * 2019-05-31 2020-12-03 Taiwan Union Technology Corporation Resin composition and uses of the same
WO2022049965A1 (en) * 2020-09-01 2022-03-10 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196718A1 (en) * 2019-03-28 2020-10-01 四国化成工業株式会社 Resin composition and use thereof
US20200377676A1 (en) * 2019-05-31 2020-12-03 Taiwan Union Technology Corporation Resin composition and uses of the same
WO2022049965A1 (en) * 2020-09-01 2022-03-10 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034398A1 (en) * 2022-08-09 2024-02-15 ナミックス株式会社 Resin composition, cured product in which resin composition is used, prepreg, printed wiring board, and electronic component for high frequencies

Also Published As

Publication number Publication date
TW202311432A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP7316569B2 (en) Prepregs, metal-clad laminates, and wiring boards
JPWO2020071154A1 (en) Resin compositions, films, laminates and semiconductor devices
CN109312156B (en) Thermosetting resin composition, prepreg, laminate, printed wiring board, and module for high-speed communication
TW201823335A (en) Epoxy resin composition, prepreg, laminated board and printed circuit board capable of significantly lowering the water absorption rate by adopting epoxy resin, maleimide compound and active ester compound
WO2023042578A1 (en) Resin composition, and printed wiring board, cured product, prepreg, and electronic component for high frequency in which same is used
TW202028329A (en) Resin composition, prepreg including the same, laminated plate including the same, resin-coated metal foil including the same
WO2019065942A1 (en) Prepreg, and metal-clad laminated board and wiring substrate obtained using same
TWI809006B (en) Heat curable resin composition, insulation film, interlayer insulation film, multilayer wiring board and semiconductor apparatus
CN112074553B (en) Thermosetting resin composition, film comprising the same, and multilayer wiring board using the same
JP6848215B2 (en) Thermosetting resin composition, prepreg, laminated board and printed wiring board
JP5309788B2 (en) Epoxy resin composition, cured product thereof, prepreg, copper-clad laminate, and resin composition for build-up adhesive film
WO2024034398A1 (en) Resin composition, cured product in which resin composition is used, prepreg, printed wiring board, and electronic component for high frequencies
JP5662858B2 (en) B-stage film and multilayer substrate
KR20240055726A (en) Resin compositions, printed wiring boards, cured products, prepregs, and high-frequency electronic components using the same
TW202411282A (en) Resin compositions, and cured products, prepregs, printed circuit boards and high-frequency electronic components using the same
CN117980362A (en) Resin composition, and printed wiring board, cured product, prepreg, and high-frequency electronic component using same
JP5727325B2 (en) Thermosetting resin material and multilayer substrate
JP3618290B2 (en) Curable polyvinyl benzyl ether resin composition
TWI772562B (en) Heat curable resin composition, insulation film, interlayer insulation film, multilayer wiring board and semiconductor apparatus
KR102506720B1 (en) Resin compositions, prepregs, resin sheets, laminates, metal foil-clad laminates, and printed wiring boards
JP7330648B2 (en) Thermosetting maleimide resin composition, and uncured resin film and cured resin film made of the resin composition
JP7251482B2 (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and semiconductor package
WO2019146105A1 (en) Thermosetting resin composition, interlayer insulating resin film, composite film, printed circuit board, and semiconductor package
JP2023035743A (en) Dielectric layer and wiring board
JP2024011810A (en) Thermosetting resin composition, prepreg using thermosetting resin composition, and substrate having cured product of thermosetting resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548162

Country of ref document: JP