WO2023040685A1 - 一种线激光设备的***标定方法和装置 - Google Patents

一种线激光设备的***标定方法和装置 Download PDF

Info

Publication number
WO2023040685A1
WO2023040685A1 PCT/CN2022/116862 CN2022116862W WO2023040685A1 WO 2023040685 A1 WO2023040685 A1 WO 2023040685A1 CN 2022116862 W CN2022116862 W CN 2022116862W WO 2023040685 A1 WO2023040685 A1 WO 2023040685A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
estimated
parameters
parameter
calibration parameters
Prior art date
Application number
PCT/CN2022/116862
Other languages
English (en)
French (fr)
Inventor
杨煦
邓志辉
Original Assignee
杭州海康机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康机器人股份有限公司 filed Critical 杭州海康机器人股份有限公司
Priority to EP22869056.6A priority Critical patent/EP4403896A1/en
Priority to KR1020247012392A priority patent/KR20240055137A/ko
Publication of WO2023040685A1 publication Critical patent/WO2023040685A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2504Calibration devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements

Definitions

  • the present application relates to the field of artificial intelligence, in particular to a system calibration method and device for line laser equipment.
  • the system calibration of the line laser equipment refers to the calibration of the relationship between the line laser equipment and the moving mechanism, such as the coordinate system transformation between the line laser equipment and the moving mechanism, the movement speed of the moving mechanism, etc.
  • the moving mechanism here may be a moving conveyor belt.
  • the commonly used system calibration method of line laser equipment is to use the calibration board to complete.
  • the method can be as follows: use an optical camera to take images of the calibration board at two positions before and after moving along the motion mechanism, and calculate the coordinates of several designated points on the calibration board in the camera coordinate system according to the predetermined camera internal parameters. Coordinate values; and, when the two images are taken, use a measuring tool to determine the coordinate values of the specified point in the coordinate system of the motion mechanism; Set the coordinate values and determine the transformation matrix between the two coordinate systems, thus realizing the system calibration of the line laser equipment.
  • the coordinate value of the specified point is usually estimated by using the measurement tool and the grid of the calibration board, and if the accuracy of the calibration board or the measurement tool is low, the measured The error of the coordinate value is also large, which affects the reliability of the calibration results.
  • the embodiment of the present application provides a system calibration method for line laser equipment to provide another alternative system calibration method for line laser equipment, and avoid the above-mentioned inconveniences in the system calibration method for line laser equipment in the related art.
  • a system calibration method for a line laser device is provided, the system calibration method for a line laser device is used to calibrate the relationship between the line laser device and a motion mechanism, and the motion mechanism At least one calibration object is set on it, and the calibration size of the at least one calibration object in the first coordinate system is known.
  • the first coordinate system is the coordinate system where the motion mechanism is located.
  • the at least one calibration object is in the The initial position of the motion mechanism is outside the range of the laser line area where the laser line output by the line laser device is located, and the method includes:
  • the scanning data of the line laser device scanning the at least one calibration object at different scanning time points are obtained; wherein, For each calibration object in the at least one calibration object, the scan data includes scanning time information and the coordinates of at least one position point on the calibration object scanned by the line laser device in the second coordinate system information; the second coordinate system is the coordinate system where the line laser equipment is located;
  • a system calibration device for line laser equipment the system calibration device for line laser equipment is used to calibrate the relationship between the line laser equipment and a motion mechanism, and the motion mechanism At least one calibration object is set on it, and the calibration size of the at least one calibration object in the first coordinate system is known.
  • the first coordinate system is the coordinate system where the motion mechanism is located.
  • the at least one calibration object is in the The initial position of the motion mechanism is outside the range of the laser line area where the laser line output by the line laser equipment is located, and the device includes:
  • a scanning data acquisition unit configured to acquire the scanning of the at least one calibration object by the line laser device at different scanning time points during the process of the movement mechanism driving the at least one calibration object through the range of the laser line area Scanning data at the time; wherein, for each of the at least one calibration object, the scan data includes scanning time information corresponding to the scanning time point, and the calibration object scanned by the line laser device
  • the coordinate information of at least one position point in the second coordinate system; the second coordinate system is the coordinate system where the line laser equipment is located;
  • a calibration parameter determination unit configured to predict the at least one calibration object in the at least one calibration object based on the obtained scan data of the at least one calibration object and the estimated multiple sets of estimated calibration parameters used for the system calibration of the line laser equipment.
  • the predicted size of each calibration object, and according to the predicted size of each calibration object in the at least one calibration object, and the calibration size of each calibration object in the at least one calibration object, from the plurality of groups of estimated calibration parameters Determine the target calibration parameters used in the calibration of the line laser equipment system.
  • an electronic device including: a processor;
  • memory for storing machine-executable instructions
  • the processor is prompted to realize the system calibration method of the line laser device in the first aspect above.
  • An embodiment of the present application achieves the acquisition of the scan data output by the line laser device after scanning the calibration object, and then predicting the predicted size of the calibration object based on the scan data and multiple sets of estimated calibration parameters, and then the predicted size and the calibration object can be to determine the target calibration parameters for system calibration. According to the method of this embodiment, there is no need for measuring tools and manual measurement, avoiding the accuracy of tools and errors caused by manual measurement, and improving the reliability of system calibration.
  • Fig. 1 is a schematic diagram of a scenario of system calibration using a calibration board according to an exemplary embodiment.
  • Fig. 2a is a schematic diagram of an application scenario shown by an exemplary embodiment.
  • Fig. 2b is a schematic diagram of another application scenario shown by an exemplary embodiment.
  • Fig. 3 is a schematic flowchart of a system calibration method for a line laser device shown in an exemplary embodiment.
  • Fig. 4 is a schematic flowchart of another system calibration method for a line laser device shown in an exemplary embodiment.
  • Fig. 5 is a schematic flowchart of another system calibration method for a line laser device shown in an exemplary embodiment.
  • Fig. 6 is a schematic flowchart of a method for determining estimated calibration parameters shown in an exemplary embodiment.
  • Fig. 7 is a schematic flowchart of determining a prediction size shown in an exemplary embodiment.
  • Fig. 8 is a schematic structural diagram of a system calibration device for line laser equipment shown in an exemplary embodiment of the present application.
  • Fig. 9 is a block diagram of a system calibration device for a line laser device shown in an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this specification to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of this specification, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • Three-dimensional reconstruction is a very important technology in the field of artificial intelligence, and it is a common method to use line laser equipment to scan objects to determine object coordinates, so as to perform three-dimensional reconstruction based on object coordinates.
  • a line laser device usually includes a camera and a line laser sensor.
  • the line laser sensor can output laser light and form a laser plane
  • the camera can receive the laser light reflected by the object when the object passes through the laser plane. Therefore, the line laser device can determine the coordinates of each position point on the scanned object according to the laser light emitted by the sensor and the reflected laser light received by the camera, and by using the principle of triangulation.
  • the coordinates determined by the line laser device are the coordinate system established by the line laser device itself, for example, the coordinate system may be established with the laser source as the origin and the laser plane as the xOz plane.
  • the coordinate system specified by the user can be the coordinate system established according to the movement of the object , for example, the direction of object motion can be a coordinate axis, and the plane of object motion is a coordinate plane.
  • the commonly used system calibration method of line laser equipment is completed by using a calibration plate.
  • the moving mechanism is a conveyor belt
  • the calibration plate can be set on the conveyor belt.
  • the conveyor belt moves, it drives the calibration plate.
  • the line laser device uses the camera to take images of the calibration plate at two positions before and after moving along the conveyor belt, and then calculates the coordinates of several specified points on the calibration plate in the camera coordinate system with the help of the pre-obtained camera internal parameters.
  • a measuring tool such as a scale
  • the transformation parameters between the two coordinate systems are determined.
  • this method has many inconveniences, such as requiring the user to manually measure with a measuring tool, which is cumbersome to operate, and tool accuracy and manual measurement may cause errors, resulting in low reliability of system calibration.
  • this application proposes a system calibration method for line laser equipment, which can avoid the inconvenience of the system calibration method for line laser equipment in the above-mentioned related art, and the method of this application is easy to operate and has high reliability.
  • Fig. 2a is a schematic diagram of the application scene of the embodiment of the present application.
  • the motion mechanism is a conveyor belt
  • the calibration object is a cuboid ABCDEFGH.
  • the calibration object is set on the conveyer belt, and the initial position of the calibration object is outside the area range of the laser line where the laser line output by the line laser device is located.
  • the area range of the laser line here can be regarded as a laser plane, that is, the O2PQ plane shown in FIG. 2a.
  • the conveyor belt moves, it can drive the calibration object to pass through the laser line area.
  • the laser line emitted by the line laser device can scan the calibration object until the calibration object completely passes through the laser line area.
  • the motion mechanism may also be other motion equipment, and the calibration object may also be in other shapes, which are not limited in this embodiment.
  • an embodiment of the present application provides a system calibration method for a line laser device, which is used to calibrate the relationship between the line laser device and the motion mechanism, wherein the motion mechanism At least one calibration object is set on it, the calibration size of the at least one calibration object in the first coordinate system is known, the first coordinate system is the coordinate system where the motion mechanism is located, and the at least one calibration object is in the motion mechanism The initial position of is outside the range of the laser line area where the laser line output by the line laser device is located.
  • FIG. 3 it is a schematic flow chart of the system calibration method for the line laser equipment.
  • This method can be applied to electronic equipment, such as servers, PCs, etc.
  • the electronic equipment can interact with the line laser equipment and obtain relevant data from the line laser equipment.
  • the method may include:
  • Step S301 Obtain scan data of the line laser device scanning the calibration object at different scanning time points during the process of the movement mechanism driving the calibration object through the laser line area.
  • the scan data includes scan time information corresponding to the scan time point, and coordinate information of at least one position point on the calibration object scanned by the line laser device in the second coordinate system;
  • the second The coordinate system is the coordinate system where the line laser device is located.
  • the first coordinate system may be a coordinate system set according to the motion mechanism.
  • the motion plane of the motion mechanism can be taken as the xOy plane, and the motion direction of the motion mechanism can be used as the y-axis.
  • the coordinate axis is based on a specified point O1 on the conveyor belt as the origin, the y-axis is horizontally to the right, and the z-axis is vertically upward.
  • first coordinate system can also be set in other ways, which is not limited in this embodiment.
  • the calibrated size of the calibrated object in the first coordinate system is consistent with the actual size of the calibrated object in the world coordinate system, and the electronic device can obtain the calibrated size of the calibrated object in advance, for example, the electronic device can be based on User instruction to determine nominal size.
  • the calibration size may include the side lengths of each side in the calibration object.
  • the calibration object can be a cuboid, and you can get the side lengths of its three sides; or the calibration object can also be a cube, and you can get only the side length of one side. .
  • the movement mechanism can drive the calibration object to move and pass through the laser line area, and the calibration object moves from outside the laser line area to entering the laser line area, and then moves to leave the laser line area.
  • the line laser equipment scans the calibration object at different scanning time points, and outputs the scanning time information corresponding to the scanning time point and the time information corresponding to the The scanned coordinate information of several position points on the calibration object.
  • the scanning time information output by the line laser device may be a specific time stamp or a scanning frame number.
  • the electronic device can determine the time difference between the scan data and the scan data output when the line laser device scans the calibration object for the first time according to the scanning time information, for example: according to the time
  • the time difference can be determined by the difference of the stamps, or the time difference can be determined according to the product of the frame number difference and the pre-acquired frame interval.
  • the scanning time information output by the line laser device may also be the time difference from the first scanning to the calibration object.
  • the line laser device records and outputs time information as 0, and when the calibration object is subsequently scanned, the line laser device can directly output the time difference from the first scan to the calibration object to the electronic device.
  • the electronic device can directly obtain the time difference without additional calculation.
  • the coordinate information in the scan data output by the line laser device corresponds to the coordinate system established by the line laser device itself.
  • the coordinate system may be a coordinate system established by the line laser device with the laser light source as the origin and the laser plane as the xOz plane.
  • the laser light source is O2
  • the coordinate system O2X2Y2Z2 can be established with O2 as the origin.
  • Step S302 Predict the predicted size of the calibration object according to the obtained scan data of the calibration object and the estimated multiple sets of calibration parameters used for system calibration of the line laser equipment, and according to the calibration The predicted size of the object and the calibrated size of the calibrated object are used to determine target calibration parameters for system calibration of the line laser device from the multiple sets of estimated calibration parameters.
  • the calibration parameters used for system calibration of the line laser equipment may include multiple categories, and for convenience of description, the calibration parameters of multiple categories may be referred to as a set of calibration parameters.
  • a set of estimated calibration parameters may include the following seven types of parameter values: the x-axis rotation transformation parameter ⁇ between the first coordinate system and the second coordinate system, the y-axis rotation transformation parameter ⁇ , and the z-axis rotation transformation parameter One or more of ⁇ , an x-axis translation transformation parameter tx, a y-axis translation transformation parameter ty, a z-axis translation transformation parameter tz, and a movement speed speed of the movement mechanism.
  • the electronic device can first estimate multiple sets of estimated calibration parameters, and use each set of estimated calibration parameters to perform specified operations with the scan data, thereby converting the coordinate information in the scan data to the first coordinate system , and predict the predicted size of the calibration object according to the converted coordinate information.
  • the calibration object can be reconstructed according to the converted coordinate information, and then the side length, surface area, volume and other information of the calibration object can be determined according to the coordinates of each vertex of the calibration object.
  • the electronic device can calculate the predicted size of each calibration object under the set of estimated calibration parameters, and then determine each The deviation value corresponding to the calibration object and the set of estimated calibration parameters.
  • the electronic device may use the deviation value corresponding to the calibration object determined according to each set of estimated calibration parameters as the deviation value corresponding to the set of estimated calibration parameters .
  • the electronic device can combine the deviation values corresponding to the multiple calibration objects determined according to each set of estimated calibration parameters, for example, the multiple calibration objects The sum of deviation values corresponding to the group of estimated calibration parameters is used as the deviation value corresponding to the group of estimated calibration parameters.
  • a calibration object ABCDEFGH If a calibration object ABCDEFGH is set, calculate the predicted size p1 of the calibration object ABCDEFGH under the estimated calibration parameter group 1, and calculate the deviation value q1 between the predicted size and the calibrated size, which can be determined with the estimated calibration parameter group 1 The corresponding deviation value is q1.
  • the deviation value corresponding to the estimated calibration parameter set 1 can be determined as (q1+q'1).
  • the electronic device can determine the deviation value of each group of estimated calibration parameters according to the above method. Subsequently, the target calibration parameter can be determined based on the deviation value of each group of estimated calibration parameters. For example, the minimum deviation value can be corresponding to A set of estimated calibration parameters of is used as the target calibration parameters.
  • the target calibration parameters can be determined based on the deviation value of each group of estimated calibration parameters.
  • the minimum deviation value can be corresponding to A set of estimated calibration parameters of is used as the target calibration parameters.
  • FIG. 4-FIG. 5 which will not be described here. So far, the embodiment shown in FIG. 3 is completed.
  • the electronic device can obtain the scan data output by the line laser device after scanning the calibration object, and then predict the predicted size of the calibration object according to the scan data and the estimated calibration parameters, and then can use the predicted size and Calibration Dimensions to determine the target calibration dimensions for system calibration. According to the method of this embodiment, there is no need for measuring tools and manual measurement, avoiding the accuracy of tools and errors caused by manual measurement, and improving the reliability of system calibration.
  • Fig. 4 is a schematic flowchart of another system calibration method for a line laser device shown in an exemplary embodiment.
  • step S302 "according to the obtained scan data of the calibration object and the estimated multiple sets of estimated calibration parameters used for the calibration of the line laser equipment system, predict the calibration object's Predict the size, and according to the predicted size of the calibration object and the calibration size of the calibration object, determine the target calibration parameters for the system calibration of the line laser equipment from the multiple sets of estimated calibration parameters", Can include:
  • Step S401 Based on the acquired scan data of the calibration object and the multiple sets of estimated calibration parameters, predict the predicted size of the calibration object under each set of estimated calibration parameters.
  • the line laser device scans the calibration object at different scanning time points, and outputs the scanning coordinates and scanning time information of the calibration object scanned at the scanning time points.
  • the scanning time information may be a time stamp, or may also be a frame number and the like.
  • the electronic device can calculate the predicted size of the calibration object under each set of estimated calibration parameters according to the scan data obtained from the line laser device. For example, the electronic device may first calculate the predicted coordinates of the calibration object based on the first coordinate system under each set of estimated calibration parameters, so as to calculate the predicted size.
  • the predicted size may be the length, area, volume, etc. of several sides in the calibrated object.
  • Step S402 For each set of estimated calibration parameters, calculate a deviation value between the predicted size of the calibration object predicted under the set of estimated calibration parameters and the calibrated size of the calibration object.
  • the electronic device can calculate the deviation value corresponding to each set of estimated calibration parameters for each set of estimated calibration parameters, for example, according to each set of estimated calibration parameters, the difference between the predicted size and the calibrated size to determine the deviation value.
  • the electronic device may, for each set of estimated calibration parameters, calculate a deviation value between the predicted size of each calibration object under the set of estimated calibration parameters and the calibrated size of the calibration object.
  • the deviation value of the calibration object under each set of estimated calibration parameters may be used as the deviation value corresponding to the set of estimated calibration parameters.
  • the sum of the deviation values of the multiple calibration objects under the same set of estimated calibration parameters can be used as the deviation corresponding to the set of estimated calibration parameters value.
  • the predicted size p1 of the calibration object H under the estimated calibration parameter group GP1 can be calculated, and thus the deviation q1 between the predicted size and the calibrated size can be determined. That is to say, the deviation value corresponding to the estimated calibration parameter group GP1 is q1.
  • the deviation value corresponding to the estimated calibration parameter group GP1 is (q1+q'1).
  • the calibrated object includes at least one specified side
  • the calibrated size may include a calibrated side length of each specified side
  • the predicted size may include a predicted side length of each specified side. Therefore, the method for the electronic device to determine the deviation value corresponding to each set of estimated calibration parameters may include:
  • For each of the calibration objects calculate the deviation value between the predicted side length of each specified side of the calibration object under the set of estimated calibration parameters and the calibration side length of the specified side, and use the calibration The sum of the deviation values corresponding to each specified edge of the object is used as the deviation value corresponding to the calibration object.
  • the specified side can be the N sides of the calibration object, then for each of the N sides, the deviation value between the predicted side length and the calibrated side length of the side is calculated, for example, the deviation value can be The absolute value of the difference between the predicted side length and the calibrated side length; then, add the N deviation values corresponding to the N sides, and the obtained sum is used as the deviation value of the calibration object under the estimated calibration parameter.
  • the specified side can be the length, width and height of the cuboid, and the length, width and height of the cuboid can be determined in advance as a, b and c respectively.
  • the length, width, and height of the predicted size are a1, b1, and c1 respectively, then it can be determined that the corresponding deviation value of the cuboid under the estimated calibration parameter group GP1 is
  • the thickness of the calibration board is usually ignored, that is, the coordinates of the specified point on the calibration board in the camera coordinate system are determined , treat the z-axis coordinate as 0.
  • the calibration object in this application is usually a three-dimensional object such as a cuboid, and the height of the calibration object is not ignored, thereby reducing errors and improving the reliability of system calibration.
  • Step S403 Determine the minimum deviation value among the deviation values corresponding to the plurality of sets of estimated calibration parameters, and use the set of estimated calibration parameters corresponding to the minimum deviation value as target calibration parameters.
  • the electronic device after the electronic device determines the deviation value corresponding to each set of estimated calibration parameters, it can compare the magnitudes of the deviation values, and determine the deviation value with the smallest value. Therefore, the electronic device may use a group of estimated calibration parameters corresponding to the smallest deviation value as target calibration parameters.
  • the electronic device in addition to the method shown in FIG. 4, can also use the method shown in FIG. multiple sets of estimated calibration parameters calibrated by the line laser equipment system, predict the predicted size of the calibration object, and estimate the calibration parameters from the multiple groups according to the predicted size of the calibration object and the calibration size of the calibration object The step of determining the target calibration parameters used for the calibration of the line laser equipment system.
  • Fig. 5 is a schematic flowchart of another system calibration method for a line laser device shown in an exemplary embodiment. As shown in Figure 5, the method may include:
  • Step S501 Based on the value ranges corresponding to various estimated calibration parameters and the first preset step size, multiple sets of estimated calibration parameters are determined. Wherein, each group of estimated calibration parameters includes estimated calibration parameter values respectively corresponding to various estimated calibration parameters.
  • the type of the estimated calibration parameter may be determined according to the type of the target calibration parameter to be determined.
  • the x-axis rotation transformation parameter ⁇ between the first coordinate system and the second coordinate system
  • the y-axis rotation transformation parameter ⁇ the z-axis rotation transformation parameter ⁇
  • the x-axis translation The transformation parameter tx, the y-axis translation transformation parameter ty, the z-axis translation transformation parameter tz, and the movement speed speed of the motion mechanism, the estimated calibration parameters also include the above seven categories.
  • a corresponding value range and a first preset step size may be determined, thereby determining multiple sets of estimated calibration parameters.
  • the value range and the first preset step size corresponding to each type of estimated calibration parameter can be preset by the user according to actual application conditions.
  • the value range of each type of estimated calibration parameter can be determined according to the deployment method of the line laser equipment and the motion mechanism. Taking the application scenario shown in Figure 2a as an example, since the line laser must be irradiated to the surface of the object, when the line laser device takes the laser plane as the xOz plane, the values of the x-axis rotation transformation parameter ⁇ and the y-axis rotation transformation parameter ⁇ The range can be (-pi/2, pi/2), and the z-axis rotation transformation parameter ⁇ is (-pi, pi). For other parameters, it can also be determined according to the actual situation.
  • the movement speed of the movement mechanism can be determined according to the movement speed of the conveyor belt, and its value range is determined to be (1m/s, 2m/s); for the x-axis translation transformation parameters tx, The y-axis translation transformation parameter ty and the z-axis translation transformation parameter tz may both be (0,10) and so on.
  • the above range of values is only an illustration, and is not limited in this embodiment.
  • the determination of multiple sets of estimated calibration parameters based on the range of values corresponding to various estimated calibration parameters and the first preset step size includes:
  • Step S5011 For each type of estimated calibration parameter, determine the value range and first preset step size of this type of estimated calibration parameter, and select at least one estimated value range from the value range according to the first preset step size. Estimated calibration parameter values to form a set of parameter values corresponding to this type of estimated calibration parameters.
  • the electronic device can predetermine the value range and first preset step size of each group of estimated calibration parameters, so that within the value range, according to the first preset step size, parameter values are selected one by one , forming a set of parameter values.
  • the value range may be (-pi/2, pi/2), and the first preset step size may be pi/8.
  • seven estimated calibration parameter values can be selected within this value range, which are -3pi/8, -pi/4, -pi/8, 0, pi/8, pi/4, 3pi/8 .
  • the y-axis rotation transformation parameter ⁇ with a value range of (-pi/2,pi/2) seven estimated calibration parameter values can be selected according to the step size pi/8; for the value range of (- pi,pi) z-axis rotation transformation parameter ⁇ , 15 estimated calibration parameter values can be selected according to the step size pi/8.
  • a similar method can also be used to determine estimated calibration parameter values, which will not be repeated here.
  • Step S5012 Based on the parameter value sets corresponding to various estimated calibration parameters, multiple sets of estimated calibration parameters are formed; wherein, the estimated calibration parameter values contained in each set of estimated calibration parameters are not completely the same.
  • the electronic device when the electronic device determines each group of estimated calibration parameters, it may select one estimated calibration parameter value from the set of parameter values corresponding to each type of estimated calibration parameter to form a set of estimated calibration parameters.
  • the electronic device uses the same method to go through all combinations, and can form multiple sets of estimated calibration parameters.
  • x-axis rotation transformation parameter ⁇ includes 7 estimated calibration parameter values
  • y-axis rotation transformation parameter ⁇ includes 7 estimated calibration parameter values
  • z-axis rotation transformation parameter ⁇ includes 15 estimated calibration parameter values
  • Select a parameter value from the parameter value set corresponding to each category for example, select -3pi/8 from the parameter value set corresponding to the x-axis rotation transformation parameter ⁇ , and select from the parameter value set corresponding to the y-axis rotation transformation parameter ⁇ -3pi/8, select -7pi/8 from the parameter value set corresponding to the z-axis rotation transformation parameter ⁇ to form a set of estimated calibration parameters ⁇ -3pi/8, -3pi/8, -7pi/8 ⁇ .
  • traverse all the combinations of parameter values and you can get 7*7*15 sets of estimated calibration parameters.
  • the electronic device can determine the parameter value set corresponding to each type of estimated calibration parameter according to the value range of each type of estimated calibration parameter and the first preset step size, so that it can The set of parameter values corresponding to the calibration parameters form multiple sets of estimated calibration parameters.
  • Step S502 Based on the acquired scan data of the calibration object and the multiple sets of estimated calibration parameters, predict the predicted size of the calibration object under each set of estimated calibration parameters.
  • Step S503 For each set of estimated calibration parameters, calculate a deviation value between the predicted size of the calibration object predicted under the set of estimated calibration parameters and the calibrated size of the calibration object.
  • the method for determining the predicted size by the electronic device and determining the deviation value may refer to the embodiment shown in FIG. 4 , which will not be repeated here.
  • Step S504 Determine the minimum deviation value among the deviation values corresponding to each group of estimated calibration parameters, and use the group of estimated calibration parameters corresponding to the minimum deviation value as a candidate calibration parameter group.
  • the electronic device may determine the minimum deviation value with reference to the method in the embodiment shown in FIG. 4 .
  • the difference from the embodiment shown in Figure 4 is that this embodiment does not directly use the estimated calibration parameter corresponding to the minimum deviation value as the target calibration parameter, but on the basis of the estimated calibration parameter corresponding to the minimum deviation value, and then re- Determine a new set of estimated calibration parameters.
  • the electronic device may use a set of estimated calibration parameters corresponding to the minimum deviation value as a set of candidate calibration parameters, and then determine multiple sets of new estimated calibration parameters according to the method in steps S505-S506.
  • Step S505 For each type of estimated calibration parameter, based on the estimated calibration parameter value corresponding to this type of estimated calibration parameter in the candidate calibration parameter group and the second preset step size corresponding to this type of estimated calibration parameter, determine The set of parameter values corresponding to the estimated calibration parameters of this type. Wherein, the second preset step size is smaller than the first preset step size.
  • the electronic device may use the estimated calibration parameter value corresponding to this type of estimated calibration parameter in the candidate calibration parameter group as a reference, and use the estimated calibration parameter value corresponding to this type of estimated calibration parameter
  • the corresponding second preset step size is an interval, and the value is taken in the directions of numerical increase and numerical decrease respectively to obtain a preset number of estimated calibration parameter values as a set of parameter values corresponding to this type of estimated calibration parameter.
  • the set of parameter values corresponding to ⁇ can be determined based on “-pi/8” respectively, and according to “pi/ 8" as the reference to determine the parameter value set corresponding to ⁇ , and determine the parameter value set corresponding to ⁇ based on "pi/4" as the reference.
  • the electronic device For each type of estimated calibration parameter, in addition to the reference in the candidate calibration parameter group, the electronic device also presets a second preset step size corresponding to each type of candidate calibration parameter, and a preset number corresponding to each type of candidate calibration parameter .
  • the second preset step size is smaller than the first preset step size, for example, it can be 1/10, 1/5, 1/2, etc. of the first preset step size; the preset number can be set by the user, for example, 5 , 10, etc. Therefore, based on the estimated calibration parameter values corresponding to this type of estimated calibration parameter in the candidate calibration parameter group, the value can be increased and decreased respectively at the interval of the second preset step size corresponding to this type. , to obtain a preset number of estimated calibration parameter values.
  • the preset numbers corresponding to different types of candidate calibration parameters may be the same or different.
  • the corresponding parameter value among the candidate calibration parameters is -pi/8.
  • the second preset step size can be pi/16, and the preset number M can be 5 (including the parameter value in the candidate calibration parameter), then take 2 parameter values to increase and decrease the value respectively, and obtain the parameter value including the candidate calibration 5 parameter values including the parameter value in the parameter, get the parameter value set ⁇ -4pi/16, -3pi/16, -2pi/16, -pi/16, 0 ⁇ .
  • a similar method can also be used to determine the corresponding set of parameter values, which will not be repeated here.
  • Step S506 Based on the parameter value sets corresponding to various estimated calibration parameters, multiple sets of new estimated calibration parameters are formed; wherein, the estimated calibration parameter values contained in the multiple sets of new estimated calibration parameters are not completely the same.
  • the method for the electronic device to determine multiple sets of new estimated calibration parameters according to the set of parameter values is similar to step S5012. That is, when determining each new set of estimated calibration parameters, one estimated calibration parameter value is selected from the set of parameter values corresponding to each type of estimated calibration parameter, and all combinations are traversed in a similar way to form multiple Set new estimated calibration parameters.
  • Step S507 Based on the multiple sets of new estimated calibration parameters, re-execute the calibration based on the obtained scan data of the calibration object and the multiple sets of estimated calibration parameters, and predict the calibration under each set of estimated calibration parameters.
  • step S502 may be performed again: based on the acquired scan data of the calibration object and the multiple sets of estimated calibration parameters, predict the The predicted size of the calibration object under the estimated calibration parameters; and step S503, for each set of estimated calibration parameters, calculate the predicted size of the calibration object predicted under the set of estimated calibration parameters, and the calibration object The deviation value between the calibrated dimensions.
  • step S503 after step S503 is performed for the second time to determine the deviation values corresponding to multiple sets of new estimated calibration parameters, the minimum deviation value among the deviation values corresponding to multiple sets of new estimated calibration parameters may be determined again, and The minimum deviation value is compared with a preset threshold. If the minimum deviation value is less than the preset threshold value, a set of estimated calibration parameters corresponding to the minimum deviation value is determined as the target calibration parameter; if the minimum deviation value is greater than or equal to the preset threshold value, it can be considered that the system calibration error is too large, and re-calibrate the system. For example, after adjusting the placement position of the calibration object, adjusting the motion speed of the motion mechanism, etc., the system calibration can be performed again according to the method described in the above embodiment.
  • the prediction of the predicted size of the calibration object under each set of estimated calibration parameters based on the obtained scan data of the calibration object and the multiple sets of estimated calibration parameters includes:
  • Step S4011 For each set of estimated calibration parameters, perform specified calculations on the set of estimated calibration parameters and each scan data obtained when the line laser device scans each calibration object to obtain each calibration
  • the predicted coordinates corresponding to the object under the set of estimated calibration parameters, the predicted coordinates are coordinates based on the first coordinate system.
  • the electronic device may use each set of estimated calibration parameters as an operation parameter in a specified operation, and then perform specified operations on the scan data to obtain the corresponding predicted coordinates of each calibration object under the set of estimated calibration parameters.
  • each set of estimated calibration parameters may include: x-axis rotation transformation parameter ⁇ , y-axis rotation transformation parameter ⁇ , z-axis rotation transformation parameter ⁇ , x-axis rotation transformation parameter ⁇ between the first coordinate system and the second coordinate system.
  • the electronic device can determine a rotation transformation matrix R by estimating the rotation transformation parameter ⁇ of the x-axis, the rotation transformation parameter ⁇ of the y-axis, and the rotation transformation parameter ⁇ of the z-axis in the calibration parameters, as shown in formula (1) .
  • the coordinate information in the scan data is recorded as (x1, y1, z1), and each number r11, r12, r13, r21, r22 in the rotation transformation matrix determined based on the above formula (1) , r23, r31, r32, r33, combined with the x-axis translation transformation parameter tx, y-axis translation transformation parameter ty, and z-axis translation transformation parameter tz in the estimated calibration parameters, calculate through the following formula (2) to obtain a candidate Predict coordinates x2, y20 and z2.
  • the coordinates in the moving direction of the moving mechanism (that is, the y-axis direction in the moving mechanism) determined by it are constant, and it is necessary to combine the time information in the scanning data with the prediction Estimate the speed of the motion mechanism in the calibration parameters to further determine the coordinate value y2 of the y-axis in the predicted coordinates, for example, it can be calculated by formula (3).
  • the first set of scanning data is the scanning data output when the line laser device scans to the first position of the calibrated object.
  • the above formula is applicable to the case where the y-axis direction in the coordinate system of the motion mechanism is consistent with the motion direction of the motion mechanism.
  • the velocity components in each direction can also be calculated according to the angle difference between the motion direction and the coordinate system, and then combined with the above formula to determine the predicted coordinates corresponding to the calibration object. Therefore, in practical applications, the electronic device may choose other methods for determining the predicted coordinates of the calibration object according to the actual situation, which will not be repeated here.
  • Step S4012 According to the predicted coordinates corresponding to each calibration object, predict the predicted size of each calibration object in the at least one calibration object under the set of estimated calibration parameters.
  • the predicted coordinates corresponding to each scan data may be determined. Since the scanning range of the line laser equipment is a plane, the obtained scanning data is the data of each point on the line intersecting the line laser plane (that is, the points on the contour of the calibration object), and the predicted coordinates obtained from this are also on the contour of the calibration object. The coordinates of the point. Therefore, based on the coordinates of each contour point obtained during the scanning process, the complete contour of the calibration object can be determined. For example, if the calibration object is a cuboid, the coordinates of each vertex of the cuboid can be determined.
  • the predicted size of the calibration object can be determined according to the above predicted coordinates.
  • the length, width and height of the cuboid can be determined according to the coordinates of the vertices of the cuboid.
  • the moving speed of the moving mechanism is also used as a calibration parameter for system calibration, that is, the determined target calibration parameters for system calibration may include transformation parameters of coordinate axes and moving speed of the moving mechanism. That is to say, while determining the target calibration parameters through this embodiment, the transformation parameters and movement speed of the coordinate axes can also be determined.
  • the calibration board when the calibration board is used for system calibration, at least two images need to be collected by the calibration board moving with the motion mechanism, and the coordinates of the designated points on the calibration board under the coordinate system of the motion mechanism need to be measured separately when the two images are collected.
  • the method of this embodiment does not need to separately calculate the transformation parameters of the coordinate axes and the movement speed of the movement mechanism, which simplifies the process of system calibration and improves the efficiency.
  • the embodiment shown in FIG. 7 is completed.
  • the predicted size of each calibration object can be determined for each group of estimated calibration parameters.
  • the embodiment shown in FIG. 4 or FIG. 5 can be used to calculate the deviation value corresponding to each group of estimated calibration parameters, so as to determine the target calibration parameters.
  • the present application also provides embodiments of a system calibration device for line laser equipment.
  • Embodiments of the system calibration device for line laser equipment in the present application can be applied to electronic equipment.
  • the device embodiments can be implemented by software, or by hardware or a combination of software and hardware. Taking software implementation as an example, as a device in a logical sense, it is formed by reading the corresponding computer program instructions in the non-volatile memory into the memory for operation by the processor of the electronic device where it is located.
  • FIG. 8 it is a hardware structure diagram of the electronic equipment where the system calibration device of the line laser equipment of the present application is located, except for the processor, memory, network interface, and non-volatile
  • the electronic device where the device in the embodiment is located usually may also include other hardware according to the actual function of the electronic device, which will not be repeated here.
  • Fig. 9 is a block diagram of a system calibration device for a line laser device shown in an exemplary embodiment of the present application.
  • the system calibration device 900 of the line laser equipment can be applied in the electronic equipment shown in FIG. 8, the system calibration method of the line laser equipment is used to calibrate the relationship between the line laser equipment and the movement mechanism , at least one calibration object is set on the motion mechanism, the calibration size of the at least one calibration object in the first coordinate system is known, the first coordinate system is the coordinate system where the motion mechanism is located, and the at least A calibration object is outside the range of the laser line area where the laser line output by the line laser equipment is located at the initial position of the movement mechanism, and the device includes:
  • the scan data acquisition unit 901 is configured to obtain the at least one calibration object scanned by the line laser device at different scanning time points during the process of the movement mechanism driving the at least one calibration object through the range of the laser line area. Scanning data of objects; wherein, for each of the at least one calibration object, the scan data includes scanning time information and at least one position point on the calibration object scanned by the line laser device Coordinate information in the second coordinate system; the second coordinate system is the coordinate system where the line laser equipment is located;
  • a calibration parameter determination unit 802 configured to predict the at least one calibration object based on the obtained scan data of the at least one calibration object and estimated multiple sets of estimated calibration parameters used for system calibration of the line laser equipment The predicted size of each calibration object in the at least one calibration object, and according to the predicted size of each calibration object in the at least one calibration object, and the calibration size of each calibration object in the at least one calibration object, from the plurality of groups of estimated calibration Parameters determine the target calibration parameters used for system calibration of the line laser equipment.
  • the prediction size determining unit 802 is specifically configured to:
  • each calibration object in the at least one calibration object based on the scan data of the calibration object and the multiple sets of estimated calibration parameters, predict each set of estimated calibration parameters in the multiple sets of estimated calibration parameters described below Calibrate the predicted size of the object;
  • each set of estimated calibration parameters in the multiple sets of estimated calibration parameters and each calibration object in the at least one calibration object calculate the predicted size of the calibration object predicted under the set of estimated calibration parameters, and the calculated The deviation value between the calibration sizes of the calibration objects, and based on the deviation value between the predicted size of each calibration object in the at least one calibration object predicted under the set of estimated calibration parameters and the corresponding calibration size, determine The deviation value corresponding to the set of estimated calibration parameters;
  • the prediction size determining unit 802 is specifically configured to:
  • each set of estimated calibration parameters in the multiple sets of estimated calibration parameters includes Describe the estimated calibration parameter values corresponding to the various estimated calibration parameters;
  • each calibration object in the at least one calibration object based on the scan data of the calibration object and the multiple sets of estimated calibration parameters, predict each set of estimated calibration parameters in the multiple sets of estimated calibration parameters described below Calibrate the predicted size of the object;
  • Multiple sets of new estimated calibration parameters are formed based on the parameter value sets corresponding to the various estimated calibration parameters; wherein, the estimated calibration parameter values contained in the multiple new sets of estimated calibration parameters are not completely the same ;
  • the prediction size determination unit 802 determines the multiple sets of estimated calibration parameters based on the value ranges corresponding to various estimated calibration parameters and the first preset step size, specifically for:
  • the multiple sets of estimated calibration parameters are formed; wherein, the estimated calibration parameter values included in the multiple sets of estimated calibration parameters are not completely the same.
  • the predictive size determination unit 802 implements a second preset step based on the estimated calibration parameter value corresponding to this type of estimated calibration parameter in the candidate calibration parameter group and the second preset step corresponding to this type of estimated calibration parameter.
  • the parameter value set corresponding to this type of estimated calibration parameter it is specifically used for:
  • the estimated calibration parameter value corresponding to this type of estimated calibration parameter in the candidate calibration parameter group is used as a reference, and the second preset step size corresponding to this type of estimated calibration parameter is Intervals, taking values in the direction of numerical increase and numerical decrease, respectively, to obtain a preset number of estimated calibration parameter values, as a parameter value set corresponding to this type of estimated calibration parameter; wherein, the second preset step size is less than The first preset step size corresponding to this type of estimated calibration parameter.
  • the prediction size determination unit 802 is specifically configured to:
  • Each group of estimated calibration parameters in the M groups of estimated calibration parameters is formed by the following method: one estimated calibration parameter value is selected from the set of parameter values corresponding to each type of estimated calibration parameter in the N types of estimated calibration parameters .
  • the predicted size determination unit 802 based on the scan data of the calibration object and the multiple sets of estimated calibration parameters, predicts the size of each set of estimated calibration parameters in the multiple sets of estimated calibration parameters.
  • it is specifically used for:
  • For each set of estimated calibration parameters in the multiple sets of estimated calibration parameters perform a specified operation on the set of estimated calibration parameters and the obtained scan data output when the line laser device scans the calibration object, to obtain the Calibrate the predicted coordinates corresponding to the set of estimated calibration parameters of the object, the predicted coordinates are coordinates based on the first coordinate system;
  • the predicted size of the calibration object under the set of estimated calibration parameters is predicted.
  • the predicted size determining unit 802 when implementing the deviation value between the predicted size of each calibration object in the at least one calibration object predicted under the set of estimated calibration parameters and the corresponding calibration size, Determine the deviation value corresponding to the group of estimated calibration parameters, specifically for:
  • the deviation value of the calibration object is used as the deviation value corresponding to the set of estimated calibration parameters
  • the sum of the deviation values corresponding to the multiple calibration objects is used as the deviation value corresponding to the set of estimated calibration parameters.
  • each of the at least one calibrated object includes at least one specified side; the calibrated size includes a calibrated side length of each specified side in the at least one specified side; the predicted size includes the The predicted side length of each specified side in at least one specified side; the predicted size determination unit 802, when realizing the calculation of the predicted size of the calibration object predicted under the set of estimated calibration parameters, and the calibration size of the calibration object When the deviation value between the specific is used:
  • the calibration object is a cuboid
  • the specified sides include the length, width and height of the cuboid.
  • each set of estimated calibration parameters in the multiple sets of estimated calibration parameters includes: an x-axis rotation transformation parameter ⁇ between the first coordinate system and the second coordinate system, and a y-axis rotation transformation parameter ⁇ .
  • the predicted size determination unit 802 performs a specified operation on the set of estimated calibration parameters and the obtained scanning data output by the line laser device when scanning the calibration object, and obtains the calibration object in the set of estimated dimensions. When calibrating the corresponding predicted coordinates under the parameters, it is specifically used for:
  • the rotation transformation matrix is determined by the following formula:
  • the predicted coordinates (x2, y2, z2) are determined by the following formula:
  • (x1, y1, z1) is the coordinate information in the scan data corresponding to the calibration object
  • ⁇ T is the time difference between the time information corresponding to the scan data corresponding to the calibration object and the time information corresponding to the first set of scan data.
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this application. It can be understood and implemented by those skilled in the art without creative effort.
  • a typical implementing device is a computer, which may take the form of a personal computer, laptop computer, cellular phone, camera phone, smart phone, personal digital assistant, media player, navigation device, e-mail device, game control device, etc. desktops, tablets, wearables, or any combination of these.
  • the present application further provides a system calibration device for a line laser device, which includes: a processor and a memory for storing machine-executable instructions.
  • the processor and the memory are usually connected to each other by an internal bus.
  • the device may further include an external interface, so as to be able to communicate with other devices or components.
  • the processor is prompted to:
  • the scanning data of the line laser device scanning the at least one calibration object at different scanning time points are obtained; wherein, For each calibration object in the at least one calibration object, the scan data includes scanning time information and coordinate information of at least one position point on the calibration object scanned by the line laser device in the second coordinate system ;
  • the second coordinate system is the coordinate system where the line laser equipment is located;
  • the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the following steps are implemented :
  • the scanning data of the line laser device scanning the at least one calibration object at different scanning time points are obtained; wherein , for each of the at least one calibration object, the scan data includes scanning time information, and at least one position point on the calibration object scanned by the line laser device in the second coordinate system Coordinate information; the second coordinate system is the coordinate system where the line laser equipment is located;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本申请披露一种线激光设备的***标定方法和装置。本申请中,可以获取线激光设备扫描到标定物体后输出的扫描数据,然后根据扫描数据、以及多组预估标定参数来预测标定物体的预测尺寸,继而可以根据预测尺寸和标定物体的标定尺寸来确定***标定的目标标定参数。

Description

一种线激光设备的***标定方法和装置
相关申请的交叉引用
本申请要求于2021年09月16日提交的、申请号为202111088009.9的中国专利申请的优先权,该申请以引用的方式并入本文中。
技术领域
本申请涉及人工智能领域,尤其涉及一种线激光设备的***标定方法和装置。
背景技术
线激光设备的***标定是指线激光设备与运动机构之间的关系标定,比如标定线激光设备与运动机构之间的坐标系变换、运动机构的运动速度等。可选地,这里的运动机构可以是运动的传送带。
目前,常用的线激光设备的***标定方法是使用标定板完成。举例来说,其方法可以为:利用光学相机拍摄沿运动机构运动时前后两个位置的标定板图像,根据预先确定出的相机内参,计算出标定板上若干个指定点在相机坐标系下的坐标值;以及,在该两张图像拍摄时,利用测量工具确定指定点在运动机构坐标系下的坐标值;然后从而根据该若干个指定点分别在相机坐标系和运动机构坐标系中的若干组坐标值,确定两个坐标系之间的变换矩阵,从而实现了线激光设备的***标定。
但是,目前常用的线激光设备的***标定,存在很多不便。举例来说,在上述使用标定板的方法中,通常利用测量工具、以及标定板的网格来估算指定点的坐标值,而若标定板的精度、或者测量工具的精度较低时,测量得到的坐标值误差也较大,从而影响标定结果的可靠性。
发明内容
有鉴于此,本申请实施例提供一种线激光设备的***标定方法,以提供另一种替代的线激光设备的***标定方式,避免相关技术中线激光设备的***标定方法所存在的上述不便。
具体地,本申请是通过如下技术方案实现的:
根据本申请实施例的第一方面,提供一种线激光设备的***标定方法,所述线激光设备的***标定方法用于所述标定线激光设备和运动机构之间的关系,所述运动机构上设置了至少一个标定物体,所述至少一个标定物体在第一坐标系下的标定尺寸已知,所述第一坐标系为所述运动机构所在的坐标系,所述至少一个标定物体在所述运动机构的初始位置处于所述线激光设备输出的激光线所处的激光线区域范围之外,所述方法包括:
在所述运动机构带动所述至少一个标定物体穿过所述激光线区域范围的过程中,获得所述线激光设备在不同扫描时间点下扫描所述至少一个标定物体时的扫描数据;其中,针对所述至少一个标定物体中的每个标定物体,所述扫描数据包括扫描时间信息、以及所述线激光设备扫描到的所述标定物体上的至少一个位置点在第二坐标系下的坐标信息;所述第二坐标系为所述线激光设备所处的坐标系;
依据已获得的所述至少一个标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述至少一个标定物体中每个标定物体的预测尺寸,并依据所述至少一个标定物体中每个标定物体的预测尺寸、以及所述至少一个标定物体中每个标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数。
根据本申请实施例的第二方面,提供一种线激光设备的***标定装置,所述线激光设备的***标定装置用于标定所述线激光设备和运动机构之间的关系,所述运动机构上设置了至少一个标定物体,所述至少一个标定物体在第一坐标系下的标定尺寸已知,所述第一坐标系为所述运动机构所在的坐标系,所述至少一个标定物体在所述运动机构的初始位置处于所述线激光设备输出的激光线所处的激光线区域范围之外,所述装置包括:
扫描数据获取单元,用于在所述运动机构带动所述至少一个标定物体穿过所述激光线区域范围的过程中,获得所述线激光设备在不同扫描时间点下扫描所述至少一个标定物体时的扫描数据;其中,针对所述至少一个标定物体中的每个标定物体,所述扫描数据包括与扫描时间点对应的扫描时间信息、以及所述线激光设备扫描到的所述标定物体上的至少一个位置点在第二坐标系下的坐标信息;所述第二坐标系为所述线激光设备所处的坐标系;
标定参数确定单元,用于依据已获得的所述至少一个标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述至少一个标定物体中每个标定物体的预测尺寸,并依据所述至少一个标定物体中每个标定物体的预测尺寸、以及所述至少一个标定物体中每个标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数。
根据本申请实施例的第三方面,提供一种电子设备,包括:处理器;
用于存储机器可执行指令的存储器;
其中,通过读取并执行所述存储器存储的与线激光设备的***标定逻辑对应的机器可执行指令,所述处理器被促使实现上述第一方面中线激光设备的***标定方法。
本申请一个实施例实现了,获取线激光设备扫描到标定物体后输出的扫描数据,然后根据扫描数据、以及多组预估标定参数来预测标定物体的预测尺寸,继而可以根据预测尺寸和标定物体的标定尺寸来确定***标定的目标标定参数。根据本实施例的方法,不需要借助测量工具以及人工测量,避免了工具的精度和人工测量所引起的误差,提高了***标定的可靠性。
附图说明
图1是一示例性实施例示出的一种使用标定板来***标定的场景示意图。
图2a是一示例性实施例示出的一种应用场景示意图。
图2b是一示例性实施例示出的另一种应用场景示意图。
图3是一示例性实施例示出的一种线激光设备的***标定方法的流程示意图。
图4是一示例性实施例示出的另一种线激光设备的***标定方法的流程示意图。
图5是一示例性实施例示出的另一种线激光设备的***标定方法的流程示意图。
图6是一示例性实施例示出的一种确定预估标定参数方法的流程示意图。
图7是一示例性实施例示出的一种确定预测尺寸的流程示意图。
图8是本申请一示例性实施例示出的一种用于线激光设备的***标定装置的一结构示意图。
图9是本申请一示例性实施例示出的一种线激光设备的***标定装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本说明书相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本说明书的一些方面相一致的装置和方法的例子。
在本说明书使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本说明书。 在本说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本说明书可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本说明书范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
三维重建是人工智能领域中非常重要的技术,而利用线激光设备扫描物体来确定物体坐标,以根据物体坐标进行三维重建是一种常见的方法。
线激光设备中通常包括一枚相机和一枚线激光传感器。其中,线激光传感器可以输出激光并形成一个激光平面,在物体穿过该激光平面的过程中,相机可以接收物体反射的激光。从而,线激光设备可以根据传感器发出的激光和相机接收到的反射激光,并利用三角测量的原理,确定扫描到的物体上的各位置点的坐标。
可以理解的是,线激光设备确定出的坐标,是线激光设备根据自身建立的坐标系,例如可以是以激光源为原点、激光平面为xOz平面所建立的坐标系。
而在实际应用中,通常需要将物体在线激光设备建立的坐标系中的坐标,转换到用户指定的坐标系中,一般来说,用户指定的坐标系可以是根据物体运动情况所建立的坐标系,例如物体运动的方向可以为一个坐标轴,物体运动的平面为坐标平面。在相关技术中,通常可以确定***标定的标定参数,后续直接根据该标定参数,将线激光设备输出的坐标转换到用户指定的坐标系下。
在相关技术中,常用的线激光设备的***标定方法是使用标定板完成的,例如图1所示的测量***中,运动机构为传送带,标定板可以设置在传送带上,传送带运动时带动标定板运动。首先,线激光设备利用相机拍摄沿传送带运动时前后两个位置的标定板的图像,然后借助预先得到的相机内参,计算出标定板上若干个指定点在相机坐标系下的坐标。同时,在该两张图像拍摄时,利用测量工具(例如刻度尺)确定该指定点在传送带坐标系下的坐标值。由此,根据该若干个指定点分别在相机坐标系、以及在传送带坐标系下的若干组坐标值,确定两个坐标系之间的变换参数。然而,该方法存在诸多不便之处,比如需要用户通过测量工具手动进行测量,操作繁琐,而且工具精度和人工测量可能引起误差,造成***标定可靠性低。
有鉴于此,本申请提出了一种线激光设备的***标定的方法,可以避免上述相关技术中线激光设备的***标定方法所存在的不便,且本申请方法操作简便、可靠性高。
图2a为本申请实施例的应用场景示意图,图2a中,运动机构为传送带,标定物体为长方体ABCDEFGH。该标定物体被设置在传送带上,且该标定物体的初始位置处于所述线激光设备输出的激光线所处的激光线的区域范围之外。可以理解的是,这里线激光线的区域范围可以视为一个激光平面,即图2a中示出的O2PQ平面。当传送带运动时,可以带动该标定物体穿过激光线区域范围,例如图2b所示,线激光设备发出的激光线可以扫描到标定物体,直到该标定物体完全通过激光线区域范围。
当然,图2a所示的应用场景只是示例性说明,运动机构也可以是其他运动设备,标定物体也可以是其他形状等,本实施例并不进行限定。
基于图2a所示的应用场景,本申请实施例提供一种线激光设备的***标定方法,该线激光设备的***标定方法用于标定线激光设备和运动机构之间的关系,其中,运动机构上设置了至少一个标定物体,该至少一个标定物体在第一坐标系下的标定尺寸已知,所述第一坐标系为运动机构所在的坐标系,所述至少一个标定物体在所述运动机构的初始位置处于所述线激光设备输出的激光线所处的激光线区域范围之外。
参见图3,为该线激光设备的***标定方法的流程示意图,该方法可以应用在电子 设备上,例如服务器、PC机等,该电子设备可以与线激光设备交互,从线激光设备获取相关数据。在本实施例中,该方法可以包括:
步骤S301:在所述运动机构带动所述标定物体穿过所述激光线区域范围的过程中,获得所述线激光设备在不同扫描时间点下扫描所述标定物体时的扫描数据。
其中,所述扫描数据包括与扫描时间点对应的扫描时间信息、以及所述线激光设备扫描到的所述标定物体上的至少一个位置点在第二坐标系下的坐标信息;所述第二坐标系为所述线激光设备所处的坐标系。
本实施例中,第一坐标系可以是根据运动机构设置的坐标系。举例来说,该第一坐标系中,可以将运动机构的运动平面作为xOy平面,并将运动机构的运动方向作为y轴。例如图2a中示出的坐标系O1X1Y1Z1,该坐标轴以传送带上的指定一个点O1为原点,水平向右为y轴,垂直向上为z轴。
当然,第一坐标系也可以通过其他方式设定,本实施例并不进行限定。
可以理解的是,标定物体在该第一坐标系下的标定尺寸,与标定物体在世界坐标系下的实际尺寸是一致的,电子设备可以预先获取该标定物体的标定尺寸,例如电子设备可以根据用户指令来确定标定尺寸。
本实施例中,标定尺寸可以包括标定物体中各条边的边长。一般来说,为了方便操作,通常可以选用形状较为规则的标定物体,例如标定物体可以是长方体,可以获取其三条边的边长;或者标定物体也可以是立方体,可以仅获取一条边的边长。
本实施例中,运动机构可以带动标定物体运动并穿过激光线区域范围,标定物体从激光线区域范围之外,运动至进入激光线区域范围,再运动至离开激光线区域范围。在所述标定物体穿过所述激光线区域范围的过程中,线激光设备在不同扫描时间点下对标定物体进行扫描,并输出与扫描时间点对应的扫描时间信息、以及该时间信息对应的扫描到的该标定物体上若干个位置点的坐标信息。
本实施例中,线激光设备输出的扫描时间信息,可以是具体的时间戳,也可以是扫描的帧号。电子设备在从线激光设备获取到扫描数据后,可以根据扫描时间信息,确定该次扫描数据、与线激光设备首次扫描到该标定物体时输出的扫描数据之间的时间差,例如:可以根据时间戳的差值来确定时间差、或者可以根据帧号差与预先获取的帧间隔的乘积来确定时间差。
或者,线激光设备输出的扫描时间信息,也可以是距首次扫描到标定物体的时间差。例如在首次扫描到标定物体时,线激光设备记录并输出时间信息为0,在后续扫描到该标定物体时,线激光设备可以直接向电子设备输出距首次扫描到标定物体的时间差。由此,电子设备可以直接获取到时间差,而不需要再进行额外计算。
本实施例中,线激光设备输出的扫描数据中的坐标信息,对应于线激光设备自身建立的坐标系。例如,该坐标系可以是线激光设备以激光光源为原点,以激光平面为xOz面所建立的坐标系。例如图2a中,激光光源为O2,可以以O2为原点建立坐标系O2X2Y2Z2。
步骤S302:依据已获得的所述标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述标定物体的预测尺寸,并依据所述标定物体的预测尺寸、以及所述标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数。
本实施例中,用于线激光设备***标定的标定参数可以包括多种类别,为方便描述,可以将该多种类别的标定参数称为一组标定参数。
本实施例中,一组预估标定参数可以包括以下7类参数值:第一坐标系和第二坐标系之间的x轴旋转变换参数α、y轴旋转变换参数β、z轴旋转变换参数γ、x轴平移变换参数tx、y轴平移变换参数ty、z轴平移变换参数tz、所述运动机构的运动速度speed中的一个或多个。
本实施例中,电子设备可以先预估多组预估标定参数,并通过每一组预估标定参数,与扫描数据进行指定的运算,从而将扫描数据中的坐标信息转换到第一坐标系下,并根据转换后的坐标信息预测该标定物体的预测尺寸。
例如,可以根据转换后的坐标信息重建该标定物体,然后根据该标定物体各个顶点的坐标确定该标定物体的边长、表面积、体积等信息。
本实施例中,电子设备可以针对每一组预估标定参数,计算每个标定物体在该组预估标定参数下的预测尺寸,然后根据每个标定物体的预测尺寸和标定尺寸,确定每个标定物体与该组预估标定参数对应的偏差值。本实施例中,标定物体可以是一个或多个。
在一个例子中,当所述运动机构上设置有一个标定物体时,电子设备可以将根据每组预估标定参数确定的该标定物体对应的偏差值,作为该组预估标定参数对应的偏差值。在一个例子中,当所述运动机构上设置有多个标定物体时,电子设备可以将根据每组预估标定参数确定的多个标定物体分别对应的偏差值综合起来,例如将多个标定物体与该组预估标定参数对应的偏差值之和,作为该组预估标定参数对应的偏差值。
以预估标定参数组1为例:
若设置一个标定物体ABCDEFGH,则计算在预估标定参数组1下,该标定物体ABCDEFGH的预测尺寸p1,并计算该预测尺寸与标定尺寸的偏差值q1,可以确定与该预估标定参数组1对应的偏差值为q1。
若设置多个标定物体,例如标定物体ABCDEFGH和标定物体A’B’C’D’E’F’G’H’,则计算在预估标定参数组1下,标定物体ABCDEFGH的预测尺寸p1,并计算该预测尺寸与标定尺寸的偏差值q1;计算标定物体A’B’C’D’E’F’G’H’的预测尺寸p’1,并计算该预测尺寸与标定尺寸的偏差值q’1,从而,可以确定与该预估标定参数组1对应的偏差值为(q1+q’1)。
本实施例中,电子设备可以根据上述方法可以确定每组预估标定参数的偏差值,后续,可以基于每组预估标定参数的偏差值来确定目标标定参数,例如,可以将最小偏差值对应的一组预估标定参数作为目标标定参数。当然,还可以采用其他方法来确定,具体参见下文图4-图5所示实施例,这里暂不赘述。至此,完成了图3所示的实施例。根据图3所示的实施例,电子设备可以获取线激光设备扫描到标定物体后输出的扫描数据,然后根据扫描数据、以及预估标定参数来预测标定物体的预测尺寸,继而可以根据预测尺寸和标定尺寸来确定用于***标定的目标标定尺寸。根据本实施例的方法,不需要借助测量工具以及人工测量,避免了工具的精度和人工测量所引起的误差,提高了***标定的可靠性。
图4是一示例性实施例示出的另一种线激光设备的***标定方法的流程示意图。如图4所示,上述步骤S302中“依据已获得的所述标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述标定物体的预测尺寸,并依据所述标定物体的预测尺寸、以及所述标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数”的步骤,可以包括:
步骤S401:基于已获得的所述标定物体的扫描数据、以及所述多组预估标定参数,预测每组预估标定参数下所述标定物体的预测尺寸。
本实施例中,线激光设备在各个不同扫描时间点下对标定物体进行扫描,并输出该扫描时间点扫描得到的标定物体的扫描坐标、以及扫描时间信息。举例来说,扫描时间信息可以是时间戳,或者也可以是帧号等。
在一个实施例中,电子设备可以根据从线激光设备获取的扫描数据,计算标定物体在每组预估标定参数下的预测尺寸。举例来说,电子设备可以先计算标定物体在每组预估标定参数下基于第一坐标系的预测坐标,从而来计算预测尺寸。可选的,预测尺寸可以是标定物体中若干条边的边长、面积、体积等。
这里,电子设备计算标定物体的预测尺寸的方法将在下文结合图7介绍具体实施例, 这里暂不赘述。
步骤S402:针对所述每组预估标定参数,计算该组预估标定参数下预测出的所述标定物体的预测尺寸、与所述标定物体的标定尺寸之间的偏差值。
在本实施例,电子设备可以针对每组预估标定参数,计算每组预估标定参数对应的偏差值,例如可以根据每组预估标定参数下,各个标定物体的预测尺寸与标定尺寸之间的偏差值来确定。
在本实施例中,电子设备可以针对每组预估标定参数,计算每个标定物体在该组预估标定参数下的预测尺寸、与该标定物体的标定尺寸之间的偏差值。
在一个例子中,当所述运动机构上设置有一个标定物体时,可以将该一个标定物体在每组预估标定参数下的偏差值,作为与该组预估标定参数对应的偏差值。在一个例子中,当所述运动机构上设置有多个标定物体时,可以将该多个标定物体在同一组预估标定参数下的偏差值之和,作为该组预估标定参数对应的偏差值。
下面以预估标定参数组GP1为例:
若设置一个标定物体H,则可以计算得到在预估标定参数组GP1下,该标定物体H的预测尺寸p1,由此可以确定预测尺寸与标定尺寸的偏差值q1。也就是说,该预估标定参数组GP1对应的偏差值为q1。
若设置多个标定物体(例如标定物体H和H’),则可以计算得到在预估标定参数组GP1下:标定物体H的预测尺寸p1,以及确定该预测尺寸与标定尺寸的偏差值q1;标定物体H’的预测尺寸p’1,以及确定该预测尺寸与标定尺寸的偏差值q’1。由此,该预估标定参数组GP1对应的偏差值为(q1+q’1)。
在一个实施例中,标定物体包括至少一条指定边,则标定尺寸可以包括每条指定边的标定边长,预测尺寸可以包括每条指定边的预测边长。由此,电子设备确定每组预估标定参数对应的偏差值的方法可以包括:
针对所述每个标定物体,分别计算该标定物体的每条指定边在该组预估标定参数下的预测边长、与该条指定边的标定边长之间的偏差值,并将该标定物体的各条指定边对应的偏差值之和,作为该标定物体对应的偏差值。
举例来说,指定边可以是标定物体的N条边,则针对该N条边中的每一条,分别计算该条边的预测边长与标定边长之间的偏差值,例如偏差值可以为预测边长与标定边长之差的绝对值;然后,将该N条边分别对应的N个偏差值相加,得到的总和作为与该标定物体在该预估标定参数下的偏差值。
以标定物体为一个长方体为例,指定边可以是长方体的长、宽和高,预先可以确定该长方体的长、宽、高分别为a、b、c,若在预估标定参数组GP1下的预测尺寸的长宽高分别为a1、b1、c1,则可以确定该长方体在该预估标定参数组GP1下对应的偏差值为|a-a1|+|b-b1|+|c-c1|。
需要说明的是,在利用标定板来进行***标定的相关技术中,将标定板放置在运动机构后,通常会忽略标定板的厚度,即在确定标定板上指定点在相机坐标系下的坐标时,将z轴坐标视为0。然而,虽然标定板的厚度不大,但直接忽略也会造成误差,导致***标定不可靠。而本申请中的标定物体通常为长方体等立体物体,并不会忽略标定物体的高度,从而可以减小误差,提高***标定的可靠性。
步骤S403:确定所述多组预估标定参数对应的偏差值中的最小偏差值,并将所述最小偏差值对应的一组预估标定参数作为目标标定参数。
在一个实施例中,电子设备在确定每组预估标定参数对应的偏差值后,可以比较各偏差值的大小,确定出其中数值最小的偏差值。由此,电子设备可以将该数值最小的偏差值所对应的一组预估标定参数,作为目标标定参数。
在一个实施例中,除图4所示方法外,电子设备还可以采用图5所示方法来实现上述步骤S302中依据已获得的所述标定物体的扫描数据、以及预估的用于所述线激光设 备***标定的多组预估标定参数,预测所述标定物体的预测尺寸,并依据所述标定物体的预测尺寸、以及所述标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数的步骤。下面进行具体介绍。
图5是一示例性实施例示出的另一种线激光设备的***标定方法的流程示意图。如图5所示,该方法可以包括:
步骤S501:基于各类预估标定参数对应的取值范围和第一预设步长,确定多组预估标定参数。其中,每组预估标定参数包括与各类预估标定参数分别对应的预估标定参数值。
本实施例中,可以根据待确定的目标标定参数的种类,来确定预估标定参数的种类。以待确定的目标标定参数包括以下7类为例:第一坐标系和第二坐标系之间的x轴旋转变换参数α、y轴旋转变换参数β、z轴旋转变换参数γ、x轴平移变换参数tx、y轴平移变换参数ty、z轴平移变换参数tz、运动机构的运动速度speed,则预估标定参数也包括上述7类。
在确定预估标定参数时,可以针对每一类预估标定参数,确定对应的取值范围和第一预设步长,从而确定多组预估标定参数。
可选的,每类预估标定参数对应的取值范围和第一预设步长,可以由用户根据实际应用情况预先设置。举例来说,每类预估标定参数的取值范围可以根据线激光设备与运动机构的部署方式确定。以图2a所示的应用场景为例,由于线激光必须照射到物体表面,因此,当线激光设备以激光平面为xOz平面时,x轴旋转变换参数α、y轴旋转变换参数β的取值范围可以均为(-pi/2,pi/2)、z轴旋转变换参数γ为(-pi,pi)。对于其他参数,也可以根据实际情况确定,例如运动机构的运动速度speed,可以确定根据传送带运动速度,确定其取值范围为(1m/s,2m/s);对于x轴平移变换参数tx、y轴平移变换参数ty、z轴平移变换参数tz,可以均为(0,10)等。当然,上述取值范围只是示例性说明,本实施例不进行限定。
下面结合图6介绍一种确定多组预估标定参数的具体实施例。如图6所示,所述基于各类预估标定参数对应的取值范围和第一预设步长,确定多组预估标定参数,包括:
步骤S5011:针对每类预估标定参数,确定该类预估标定参数的取值范围和第一预设步长,并依据该第一预设步长从该取值范围内选择出至少一个预估标定参数值,形成该类预估标定参数对应的参数值集合。
在本实施例中,电子设备可以预先确定每组预估标定参数的取值范围和第一预设步长,从而在该取值范围内,依据该第一预设步长,逐个选取参数值,形成参数值集合。
以x轴旋转变换参数α为例,取值范围可以为(-pi/2,pi/2),第一预设步长可以为pi/8。由此,可以在该取值范围内选择出7个预估标定参数值,分别为-3pi/8、-pi/4、-pi/8、0、pi/8、pi/4、3pi/8。同样的,对于取值范围为(-pi/2,pi/2)的y轴旋转变换参数β,可以按照步长pi/8选择出7个预估标定参数值;对于取值范围为(-pi,pi)的z轴旋转变换参数γ,可以按照步长pi/8选择出15个预估标定参数值。对于其他类的预估标定参数,也可以采用类似的方法来确定预估标定参数值,这里不再赘述。
步骤S5012:基于各类预估标定参数对应的参数值集合,形成多组预估标定参数;其中,各组预估标定参数所包含的预估标定参数值不完全相同。
在一个实施例中,电子设备在确定每一组预估标定参数时,可以从每类预估标定参数对应的参数值集合中各选择一个预估标定参数值,形成一组预估标定参数。
在一个实施例中,电子设备采用同样的方法遍历所有的组合情况,可以形成多组预估标定参数。
举例来说,若预估标定参数共有N类,且第i类预估标定参数对应的参数值集合所包含的参数值的数量为Ai(i=1,2,…,N)。例如,第一类预估标定参数对应的参数值集合中包含A1个参数值;第二类预估标定参数对应的参数值集合中包含A2个参数值;第N 类预估标定参数对应的参数值集合中包含AN个参数值。当然,这里的第i类只是为了区分不同类的预估标定参数,而不是对顺序进行限定。基于此,电子设备可以基于N类预估标定参数对应的参数值集合,形成M组预估标定参数,其中,M=A1*A2*...*AN。
以上述实施例中的x轴旋转变换参数α、y轴旋转变换参数β、z轴旋转变换参数γ为例,为便于描述,例如,一组预估标定参数中仅包括该3类,其中x轴旋转变换参数α包含7个预估标定参数值,y轴旋转变换参数β包含7个预估标定参数值,z轴旋转变换参数γ包含15个预估标定参数值。从每一类对应的参数值集合中各选取一个参数值,例如从x轴旋转变换参数α对应的参数值集合中选取-3pi/8,从y轴旋转变换参数β对应的参数值集合中选取-3pi/8,从z轴旋转变换参数γ对应的参数值集合中选取-7pi/8,形成一组预估标定参数{-3pi/8,-3pi/8,-7pi/8}。采用同样的方法,对所有的参数值组合情况进行遍历,可以得到7*7*15组预估标定参数。
需要说明的是,这里只是以一组预估标定参数中仅包括3类预估标定参数为例,对于包括7类预估标定参数、或者包括其他数量的预估标定参数,也可以类似的方法得到多组预估标定参数,这里不再赘述。
至此,完成了图6所示实施例。根据图6所示实施例,电子设备可以根据每类预估标定参数的取值范围和第一预设步长,确定该类预估标定参数对应的参数值集合,从而可以基于各类预估标定参数对应的参数值集合,形成多组预估标定参数。
步骤S502:基于已获得的所述标定物体的扫描数据、以及所述多组预估标定参数,预测每组预估标定参数下所述标定物体的预测尺寸。
步骤S503:针对所述每组预估标定参数,计算该组预估标定参数下预测出的所述标定物体的预测尺寸、与所述标定物体的标定尺寸之间的偏差值。
本实施例中,电子设备确定预测尺寸、以及根据确定偏差值的方法可以参照图4所示实施例,这里不再赘述。
步骤S504:确定各组预估标定参数对应的偏差值中的最小偏差值,并将所述最小偏差值对应的一组预估标定参数作为候选标定参数组。
本实施例中,电子设备可以参照图4所示实施例的方法来确定最小偏差值。与图4所示实施例不同的是,本实施例不是直接将最小偏差值对应的预估标定参数作为目标标定参数,而是将该最小偏差值对应的预估标定参数的基础上,再重新确定一组新的预估标定参数。
举例来说,电子设备可以将该最小偏差值对应的一组预估标定参数作为候选标定参数组,然后按照步骤S505-S506的方法来确定多组新的预估标定参数。
步骤S505:针对每类预估标定参数,基于候选标定参数组中与该类预估标定参数对应的预估标定参数值、和与该类预估标定参数对应的第二预设步长,确定该类预估标定参数对应的参数值集合。其中,所述第二预设步长小于所述第一预设步长。
在一个实施例中,电子设备可以针对每类预估标定参数,以所述候选标定参数组中与该类预估标定参数对应的预估标定参数值为基准、以与该类预估标定参数对应的第二预设步长为间隔,分别向数值增大和数值减小方向取值,得到预设数量的预估标定参数值,作为与该类预估标定参数对应的参数值集合。
以一组预估标定参数中包括上述实施例所述的x轴旋转变换参数α、y轴旋转变换参数β、z轴旋转变换参数γ为例,若确定的候选标定参数为{-pi/8(对应于α),pi/8(对应于β),pi/4(对应于γ)},则可以分别根据“-pi/8”为基准确定与α对应的参数值集合、根据“pi/8”为基准确定与β对应的参数值集合、以及根据“pi/4”为基准确定与γ对应的参数值集合。
针对每类预估标定参数,除了候选标定参数组中的基准外,电子设备还预设与每类候选标定参数对应的第二预设步长、以及与每类候选标定参数对应的预设数量。其中,第二预设步长小于第一预设步长,例如可以为第一预设步长的1/10、1/5、1/2等;预设 数量可以由用户设定,例如5、10等。由此,基于候选标定参数组中与该类预估标定参数对应的预估标定参数值,可以以与该类对应的第二预设步长为间隔,分别向数值增大和数值减小取值,得到预设数量的预估标定参数值。其中,不同类候选标定参数对应的预设数量可以相同也可以不同。
以预估标定参数“x轴旋转变换参数α”为例,候选标定参数中对应的参数值为-pi/8。例如第二预设步长可以为pi/16、预设数量M可以为5(包含该候选标定参数中的参数值),则分别向数值增大和减少取2个参数值,得到包含该候选标定参数中的参数值在内的5个参数值,得到参数值集合{-4pi/16、-3pi/16、-2pi/16、-pi/16、0}。对于其他预估标定参数,也可以采用类似的方法来确定对应的参数值集合,这里不再赘述。
步骤S506:基于各类预估标定参数对应的参数值集合,形成多组新的预估标定参数;其中,所述多组新的预估标定参数所包含的预估标定参数值不完全相同。
在一个实施例中,电子设备根据参数值集合来确定多组新的预估标定参数的方法,与步骤S5012类似。即在确定每一组新的预估标定参数时,分别从每类预估标定参数对应的参数值集合中各选择一个预估标定参数值,以及按照类似的方法遍历所有的组合情况,形成多组新的预估标定参数。
步骤S507:基于所述多组新的预估标定参数,重新执行基于已获得的所述标定物体的扫描数据、以及所述多组预估标定参数,预测每组预估标定参数下所述标定物体的预测尺寸的步骤;以及针对所述每组预估标定参数,计算该组预估标定参数下预测出的所述标定物体的预测尺寸、与所述标定物体的标定尺寸之间的偏差值,确定所述多组预估标定参数对应的偏差值中的最小偏差值的步骤;若确定出的最小偏差值小于预设阈值,则将所述最小偏差值对应的预估标定参数作为目标标定参数。
在一个实施例中,根据步骤S507确定的新的预估标定参数后,可以再次执行步骤S502:基于已获得的所述标定物体的扫描数据、以及所述多组预估标定参数,预测每组预估标定参数下所述标定物体的预测尺寸;以及步骤S503针对所述每组预估标定参数,计算该组预估标定参数下预测出的所述标定物体的预测尺寸、与所述标定物体的标定尺寸之间的偏差值。
在一个实施例中,在第二次执行步骤S503确定多组新的预估标定参数对应的偏差值后,可以再次确定多组新的预估标定参数对应的偏差值中的最小偏差值,并将该最小偏差值、与预设阈值进行比较。若该最小偏差值小于预设阈值,则将该最小偏差值对应的一组预估标定参数确定为目标标定参数;若该最小偏差值大于或等于预设阈值,则可以认为本次***标定误差太大,并重新进行***标定。例如,可以调整标定物体的摆放位置、调整运动机构的运动速度等之后,再次按照上述实施例所述的方法进行***标定。
下面结合图7介绍“一组预估标定参数下,预测一个标定物体的预测尺寸”的方法的一个具体实施例。如图7所示,所述基于已获得的所述标定物体的扫描数据、以及所述多组预估标定参数,预测每组预估标定参数下所述标定物体的预测尺寸,包括:
步骤S4011:针对每组预估标定参数,将该组预估标定参数、以及已获得的所述线激光设备扫描每一标定物体时输出的每一扫描数据,分别进行指定运算,得到每一标定物体在该组预估标定参数下对应的预测坐标,所述预测坐标为基于第一坐标系的坐标。
在一个实施例中,电子设备可以将每组预估标定参数作为指定运算中的运算参数,然后对扫描数据进行指定运算,得到每一标定物体在该组预估标定参数下对应的预测坐标。
举例来说,每组所述预估标定参数可以包括:第一坐标系和第二坐标系之间的x轴旋转变换参数α、y轴旋转变换参数β、z轴旋转变换参数γ、x轴平移变换参数tx、y轴平移变换参数ty、z轴平移变换参数tz、所述运动机构的运动速度speed。
首先,电子设备可以通过预估标定参数中的x轴的旋转变换参数α、y轴的旋转变换参数β以及z轴的旋转变换参数γ来确定一个旋转变换矩阵R,如公式(1)所示。
Figure PCTCN2022116862-appb-000001
针对每一扫描数据,例如将扫描数据中的坐标信息记为(x1、y1、z1),可以基于上述公式(1)确定出的旋转变换矩阵中的各个数r11、r12、r13、r21、r22、r23、r31、r32、r33,同时结合预估标定参数中的x轴平移变换参数tx、y轴平移变换参数ty、z轴平移变换参数tz,通过如下公式(2)进行计算,得到一个候选预测坐标x2、y20和z2。
Figure PCTCN2022116862-appb-000002
对于上述候选预测坐标中的x2和z2,即为预测坐标中x轴和z轴的坐标值。
需要说明的是,由于线激光设备是固定的,因此其所确定出的运动机构运动方向(即运动机构中y轴方向)上的坐标是恒定的,还需要结合扫描数据中的时间信息和预估标定参数中的运动机构速度,以进一步确定预测坐标中y轴的坐标值y2,例如可以通过公式(3)来计算。
y2=y20+ΔT*speed                 (3)
其中,y20为公式(2)中计算得到的数值;ΔT为扫描数据对应的时间信息与第一组扫描数据对应的时间信息之间的时间差,例如电子设备可以根据扫描数据对应的时间戳来计算,或者电子设备也可以根据帧号和帧间隔来计算;speed为预估标定参数中的运动机构的运动速度。其中,第一组扫描数据,为线激光设备扫描到标定物体的首个位置时输出的扫描数据。
需要说明的是,上述公式适用于运动机构的坐标系中y轴方向与运动机构的运动方向一致的情况。在其他情况下,还可以根据运动方向与坐标系的角度差来计算各个方向上的速度分量,再结合上述公式来确定标定物体对应的预测坐标。因此,在实际应用中,电子设备可以根据实际情况来选择其他的确定标定物体的预测坐标的方法,这里不再赘述。
步骤S4012:依据每一标定物体对应的预测坐标,预测在该组预估标定参数下所述至少一个标定物体中每一标定物体预测尺寸。
本实施例中,在步骤S4011中,可以确定每一扫描数据对应的预测坐标。由于线激光设备的扫描范围是平面,得到的扫描数据为与线激光平面相交线上的各个点的数据(即标定物体的轮廓上的点),由此得到的预测坐标也是标定物体的轮廓上点的坐标。从而,基于扫描过程中所得到的各个轮廓点的坐标,可以确定标定物体的完整轮廓。例如,若标定物体为长方体,可以确定长方体各个顶点的坐标。
根据本实施例中,可以根据上述预测坐标,确定该标定物体的预测尺寸。举例来说,若标定物体为长方体,则可以根据长方体各顶点的坐标确定该长方体的长、宽、高的边长。
需要说明的是,上述步骤是针对一组预估标定参数来计算一个标定物体对应的预测坐标。若该组预估标定参数下还计算其他标定物体,以及对于其他组预估标定参数,也可以采用相同的方法进行计算,这里不再赘述。
需要说明的是,本实施例中将运动机构的运动速度speed也作为***标定的标定参数,即确定出的用于***标定的目标标定参数可以包括坐标轴的变换参数和运动机构的运动速度。也就是说,通过本实施例来确定目标标定参数的同时,还可以确定坐标轴的 变换参数和运动速度。而相关技术中在采用标定板进行***标定时,需要随运动机构运动的标定板采集至少两张图像、以及需要分别测量该两张图像采集时标定板上指定点在运动机构坐标系下的坐标值,从而确定运动机构的运动速度;以及根据指定点分别在运动机构坐标系下的坐标值、以及在线激光设备坐标系下的坐标值来确定坐标轴的变换参数。而本实施例方法不需要分别进行计算坐标轴的变换参数和运动机构的运动速度,简化了***标定的流程,提高效率。
至此,完成了图7所示的实施例。根据本实施例所示的方法,可以针对每一组预估标定参数,确定各标定物体的预测尺寸。后续可以采用图4或图5所示实施例,计算每组预估标定参数对应的偏差值,从而确定目标标定参数。
与前述线激光设备的***标定方法的实施例相对应,本申请还提供了线激光设备的***标定装置的实施例。
本申请线激光设备的***标定装置的实施例可以应用在电子设备上。装置实施例可以通过软件实现,也可以通过硬件或者软硬件结合的方式实现。以软件实现为例,作为一个逻辑意义上的装置,是通过其所在电子设备的处理器将非易失性存储器中对应的计算机程序指令读取到内存中运行形成的。从硬件层面而言,如图8所示,为本申请线激光设备的***标定装置所在电子设备的一种硬件结构图,除了图8所示的处理器、内存、网络接口、以及非易失性存储器之外,实施例中装置所在的电子设备通常根据该电子设备的实际功能,还可以包括其他硬件,对此不再赘述。
图9是本申请一示例性实施例示出的一种线激光设备的***标定装置的框图。
请参考图9,所述线激光设备的***标定装置900可以应用在前述图8所示的电子设备中,所述线激光设备的***标定方法用于标定线激光设备和运动机构之间的关系,所述运动机构上设置了至少一个标定物体,所述至少一个标定物体在第一坐标系下的标定尺寸已知,所述第一坐标系为所述运动机构所在的坐标系,所述至少一个标定物体在所述运动机构的初始位置处于所述线激光设备输出的激光线所处的激光线区域范围之外,所述装置包括:
扫描数据获取单元901,用于在所述运动机构带动所述至少一个标定物体穿过所述激光线区域范围的过程中,获得所述线激光设备在不同扫描时间点下扫描所述至少一个标定物体时的扫描数据;其中,针对所述至少一个标定物体中的每个标定物体,所述扫描数据包括扫描时间信息、以及所述线激光设备扫描到的所述标定物体上的至少一个位置点在第二坐标系下的坐标信息;所述第二坐标系为所述线激光设备所处的坐标系;
标定参数确定单元802,用于依据已获得的所述至少一个标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述至少一个标定物体中每个标定物体的预测尺寸,并依据所述至少一个标定物体中每个标定物体的预测尺寸、以及所述至少一个标定物体中每个标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数。
可选的,所述预测尺寸确定单元802,具体用于:
针对所述至少一个标定物体中每个标定物体,基于该标定物体的扫描数据、以及所述多组预估标定参数,预测所述多组预估标定参数中每组预估标定参数下所述标定物体的预测尺寸;
针对所述多组预估标定参数中每组预估标定参数和所述至少一个标定物体中每个标定物体,计算该组预估标定参数下预测出的所述标定物体的预测尺寸、与所述标定物体的标定尺寸之间的偏差值,并基于在该组预估标定参数下预测的所述至少一个标定物体中每个标定物体的预测尺寸与对应的标定尺寸之间的偏差值,确定该组预估标定参数对应的偏差值;
确定所述多组预估标定参数对应的偏差值中的最小偏差值,并将所述最小偏差值对应的一组预估标定参数作为目标标定参数。
可选的,所述预测尺寸确定单元802,具体用于:
基于各类预估标定参数对应的取值范围和第一预设步长,确定所述多组预估标定参数;其中,所述多组预估标定参数中每组预估标定参数包括与所述各类预估标定参数分别对应的预估标定参数值;
针对所述至少一个标定物体中每个标定物体,基于该标定物体的扫描数据、以及所述多组预估标定参数,预测所述多组预估标定参数中每组预估标定参数下所述标定物体的预测尺寸;
针对所述多组预估标定参数中每组预估标定参数,计算该组预估标定参数下预测出的所述标定物体的预测尺寸、与所述标定物体的标定尺寸之间的偏差值,并基于在该组预估标定参数下预测的所述至少一个标定物体中每个标定物体的预测尺寸与对应的标定尺寸之间的偏差值,确定该组预估标定参数对应的偏差值;
确定所述多组预估标定参数对应的偏差值中的最小偏差值,并将所述最小偏差值对应的一组预估标定参数作为候选标定参数组;
针对所述每类预估标定参数,基于所述候选标定参数组中与该类预估标定参数对应的预估标定参数值、和与该类预估标定参数对应的第二预设步长,确定该类预估标定参数对应的参数值集合;其中,所述第二预设步长小于与该类预估标定参数对应的所述第一预设步长;
基于所述各类预估标定参数对应的参数值集合,形成多组新的预估标定参数;其中,所述多组新的各组预估标定参数所包含的预估标定参数值不完全相同;
基于所述多组新的预估标定参数,重新执行针对所述至少一个标定物体中每个标定物体,基于该标定物体的扫描数据、以及所述多组预估标定参数,预测所述多组预估标定参数中每组预估标定参数下该标定物体的预测尺寸的步骤;以及针对所述多组预估标定参数中每组预估标定参数,计算该组预估标定参数下预测出的所述标定物体的预测尺寸、与所述标定物体的标定尺寸之间的偏差值,基于在该组预估标定参数下预测的所述至少一个标定物体中每个标定物体的预测尺寸与对应的标定尺寸之间的偏差值,确定该组预估标定参数对应的偏差值,以及确定所述多组预估标定参数对应的偏差值中的最小偏差值的步骤;若重新确定出的最小偏差值小于预设阈值,则将所述重新确定的最小偏差值对应的一组预估标定参数作为目标标定参数。
可选的,所述预测尺寸确定单元802,在实现基于各类预估标定参数对应的取值范围和第一预设步长,确定所述多组预估标定参数,具体用于:
针对所述每类预估标定参数,确定该类预估标定参数的取值范围和第一预设步长,并依据该第一预设步长从该取值范围内选择出至少一个预估标定参数值,形成该类预估标定参数对应的参数值集合;
基于所述各类预估标定参数对应的参数值集合,形成所述多组预估标定参数;其中,所述多组预估标定参数所包含的预估标定参数值不完全相同。
可选的,所述预测尺寸确定单元802,在实现基于候选标定参数组中与该类预估标定参数对应的预估标定参数值、和与该类预估标定参数对应的第二预设步长,确定该类预估标定参数对应的参数值集合时,具体用于:
针对每类预估标定参数,以所述候选标定参数组中与该类预估标定参数对应的预估标定参数值为基准、以与该类预估标定参数对应的第二预设步长为间隔,分别向数值增大和数值减小方向取值,得到预设数量的预估标定参数值,作为与该类预估标定参数对应的参数值集合;其中,所述第二预设步长小于与该类预估标定参数对应的第一预设步长。
可选的,所述预测尺寸确定单元802,在实现基于所述各类预估标定参数对应的参数值集合,形成所述多组预估标定参数时,具体用于:
基于N类预估标定参数对应的参数值集合,形成M组预估标定参数, M=A1*A2*...*AN;其中,Ai(i=1,2,…,N)为第i类预估标定参数对应的参数值集合所包含的参数值数量;
所述M组预估标定参数中每组预估标定参数通过如下方法形成:从所述N类预估标定参数中每类预估标定参数对应的参数值集合中各选择一个预估标定参数值。
可选的,所述预测尺寸确定单元802,在实现基于该标定物体的扫描数据、以及所述多组预估标定参数,预测所述多组预估标定参数中每组预估标定参数下该标定物体的预测尺寸时,具体用于:
针对所述多组预估标定参数中每组预估标定参数,将该组预估标定参数、以及已获得的所述线激光设备扫描该标定物体时输出的扫描数据,进行指定运算,得到该标定物体在该组预估标定参数下对应的预测坐标,所述预测坐标为基于所述第一坐标系的坐标;
依据该标定物体对应的预测坐标,预测在该组预估标定参数下该标定物体的预测尺寸。
可选的,所述预测尺寸确定单元802,在实现基于在该组预估标定参数下预测的所述至少一个标定物体中每个标定物体的预测尺寸与对应的标定尺寸之间的偏差值,确定该组预估标定参数对应的偏差值,具体用于:
当所述运动机构上设置有一个标定物体时,将所述一个标定物体的偏差值作为该组预估标定参数对应的偏差值;
当所述运动机构上设置有多个标定物体时,将所述多个标定物体对应的偏差值之和,作为该组预估标定参数对应的偏差值。
可选的,所述至少一个标定物体中每个标定物体中包括至少一条指定边;所述标定尺寸包括所述至少一条指定边中每条指定边的标定边长;所述预测尺寸包括所述至少一条指定边中每条指定边的预测边长;所述预测尺寸确定单元802,在实现计算在该组预估标定参数下预测出的该标定物体的预测尺寸、与该标定物体的标定尺寸之间的偏差值时,具体被用于:
分别计算该标定物体的所述至少一条指定边中每条指定边在该组预估标定参数下的预测边长、与该条指定边的标定边长之间的偏差值,并将该标定物体的所述至少一条指定边对应的偏差值之和,作为该标定物体对应的偏差值。
可选的,所述标定物体为长方体,所述指定边包括长方体的长、宽和高。
可选的,所述多组预估标定参数中每组所述预估标定参数包括:所述第一坐标系和所述第二坐标系之间的x轴旋转变换参数α、y轴旋转变换参数β、z轴旋转变换参数γ、x轴平移变换参数tx、y轴平移变换参数ty、z轴平移变换参数tz、所述运动机构的运动速度speed;
所述预测尺寸确定单元802,在实现将该组预估标定参数、以及已获得的所述线激光设备扫描该标定物体时输出的扫描数据,进行指定运算,得到该标定物体在该组预估标定参数下对应的预测坐标时,具体用于:
针对该组预估标定参数,通过如下公式确定旋转变换矩阵:
Figure PCTCN2022116862-appb-000003
针对该标定物体对应的扫描数据,基于该组预估标定参数下确定的所述旋转变换矩阵,通过如下公式确定预测坐标(x2,y2,z2):
Figure PCTCN2022116862-appb-000004
y2=y20+ΔT*speed;
其中,(x1,y1,z1)为该标定物体对应的扫描数据中的坐标信息;
ΔT为该标定物体对应的扫描数据对应的时间信息与第一组扫描数据对应的时间信息之间的时间差。
上述装置中各个单元的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
上述实施例阐明的***、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
与前述线激光设备的***标定方法的实施例相对应,本申请还提供一种线激光设备的***标定装置,该装置包括:处理器以及用于存储机器可执行指令的存储器。其中,处理器和存储器通常借由内部总线相互连接。在其他可能的实现方式中,所述设备还可能包括外部接口,以能够与其他设备或者部件进行通信。
在本实施例中,通过读取并执行所述存储器存储的与线激光设备的***标定逻辑对应的机器可执行指令,所述处理器被促使:
在所述运动机构带动所述至少一个标定物体穿过所述激光线区域范围的过程中,获得所述线激光设备在不同扫描时间点下扫描所述至少一个标定物体时的扫描数据;其中,针对所述至少一个标定物体中的每个标定物体,所述扫描数据包括扫描时间信息、以及所述线激光设备扫描到的该标定物体上的至少一个位置点在第二坐标系下的坐标信息;所述第二坐标系为所述线激光设备所处的坐标系;
依据已获得的所述至少一个标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述至少一个标定物体中每个标定物体的预测尺寸,并依据所述至少一个标定物体中每个标定物体的预测尺寸、以及所述至少一个标定物体中每个标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数。
与前述线激光设备的***标定方法的实施例相对应,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现以下步骤:
在所述运动机构带动所述标至少一个定物体穿过所述激光线区域范围的过程中,获得所述线激光设备在不同扫描时间点下扫描所述至少一个标定物体时的扫描数据;其中,针对所述至少一个标定物体中的每个标定物体,所述扫描数据包括扫描时间信息、以及所述线激光设备扫描到的所述标定物体上的至少一个位置点在第二坐标系下的坐标信息;所述第二坐标系为所述线激光设备所处的坐标系;
依据已获得的所述至少一个标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述至少一个标定物体中每个标定物体的预测尺寸,并依据所述至少一个标定物体中每个标定物体的预测尺寸、以及所述至少一个标定物体中每个标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数。
上述对本申请特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在 一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (12)

  1. 一种线激光设备的***标定方法,所述线激光设备的***标定方法用于标定所述线激光设备和运动机构之间的关系,所述运动机构上设置了至少一个标定物体,所述至少一个标定物体在第一坐标系下的标定尺寸已知,所述第一坐标系为所述运动机构所在的坐标系,所述至少一个标定物体在所述运动机构的初始位置处于所述线激光设备输出的激光线所处的激光线区域范围之外,所述方法包括:
    在所述运动机构带动所述至少一个标定物体穿过所述激光线区域范围的过程中,获得所述线激光设备在不同扫描时间点下扫描所述至少一个标定物体时的扫描数据;其中,针对所述至少一个标定物体中的每个标定物体,所述扫描数据包括扫描时间信息、以及所述线激光设备扫描到的该标定物体上的至少一个位置点在第二坐标系下的坐标信息;所述第二坐标系为所述线激光设备所处的坐标系;
    依据已获得的所述至少一个标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述至少一个标定物体中每个标定物体的预测尺寸,并依据所述至少一个标定物体中每个标定物体的预测尺寸、以及所述至少一个标定物体中每个标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数。
  2. 根据权利要求1所述的方法,其特征在于,依据已获得的所述至少一个标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述至少一个标定物体中每个标定物体的预测尺寸,并依据所述至少一个标定物体中每个标定物体的预测尺寸、以及所述至少一个标定物体中每个标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数,包括:
    针对所述至少一个标定物体中每个标定物体,基于该标定物体的扫描数据、以及所述多组预估标定参数,预测所述多组预估标定参数中每组预估标定参数下该标定物体的预测尺寸;
    针对所述多组预估标定参数中每组预估标定参数和所述至少一个标定物体中每个标定物体,计算该组预估标定参数下预测出的该标定物体的预测尺寸、与该标定物体的标定尺寸之间的偏差值,并基于在该组预估标定参数下预测的所述至少一个标定物体中每个标定物体的预测尺寸与对应的标定尺寸之间的偏差值,确定该组预估标定参数对应的偏差值;
    确定所述多组预估标定参数对应的偏差值中的最小偏差值,并将所述最小偏差值对应的一组预估标定参数作为目标标定参数。
  3. 根据权利要求1所述的方法,其特征在于,依据已获得的所述至少一个标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述至少一个标定物体中每个标定物体的预测尺寸,并依据所述至少一个标定物体中每个标定物体的预测尺寸、以及所述至少一个标定物体中每个标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数,包括:
    基于各类预估标定参数分别对应的取值范围和第一预设步长,确定所述多组预估标定参数;其中,所述多组预估标定参数中每组预估标定参数包括与所述各类预估标定参数分别对应的预估标定参数值;
    针对所述至少一个标定物体中每个标定物体,基于该标定物体的扫描数据、以及所述多组预估标定参数,预测所述多组预估标定参数中每组预估标定参数下该标定物体的预测尺寸;
    针对所述多组预估标定参数中每组预估标定参数,计算该组预估标定参数下预测出的该标定物体的预测尺寸、与该标定物体的标定尺寸之间的偏差值,并基于在该组预估标定参数下预测的所述至少一个标定物体中每个标定物体的预测尺寸与对应的标定尺寸之间的偏差值,确定该组预估标定参数对应的偏差值;
    确定所述多组预估标定参数对应的偏差值中的最小偏差值,并将所述最小偏差值对应的一组预估标定参数作为候选标定参数组;
    针对所述每类预估标定参数,基于所述候选标定参数组中与该类预估标定参数对应的预估标定参数值、和与该类预估标定参数对应的第二预设步长,确定该类预估标定参数对应的参数值集合;其中,所述第二预设步长小于与该类预估标定参数对应的第一预设步长;
    基于所述各类预估标定参数对应的参数值集合,形成多组新的预估标定参数;其中,所述多组新的预估标定参数所包含的预估标定参数值不完全相同;
    基于所述多组新的预估标定参数,重新执行针对所述至少一个标定物体中每个标定物体,基于该标定物体的扫描数据、以及所述多组预估标定参数,预测所述多组预估标定参数中每组预估标定参数下该标定物体的预测尺寸的步骤;以及针对所述多组预估标定参数中每组预估标定参数,计算该组预估标定参数下预测出的该标定物体的预测尺寸、与该标定物体的标定尺寸之间的偏差值,基于在该组预估标定参数下预测的所述至少一个标定物体中每个标定物体的预测尺寸与对应的标定尺寸之间的偏差值,确定该组预估标定参数对应的偏差值,以及确定所述多组预估标定参数对应的偏差值中的最小偏差值的步骤;
    若重新确定出的最小偏差值小于预设阈值,则将所述重新确定的最小偏差值对应的一组预估标定参数作为目标标定参数。
  4. 根据权利要求3所述的方法,其特征在于,所述基于各类预估标定参数对应的取值范围和第一预设步长,确定所述多组预估标定参数,包括:
    针对所述每类预估标定参数,确定该类预估标定参数的取值范围和第一预设步长,并依据该第一预设步长从该取值范围内选择出至少一个预估标定参数值,形成该类预估标定参数对应的参数值集合;
    基于所述各类预估标定参数对应的参数值集合,形成所述多组预估标定参数;其中,所述多组预估标定参数所包含的预估标定参数值不完全相同;
    基于所述候选标定参数组中与该类预估标定参数对应的预估标定参数值、和与该类预估标定参数对应的第二预设步长,确定该类预估标定参数对应的参数值集合,包括:
    针对所述每类预估标定参数,以所述候选标定参数组中与该类预估标定参数对应的预估标定参数值为基准、以与该类预估标定参数对应的第二预设步长为间隔,分别向数值增大和数值减小方向取值,得到预设数量的预估标定参数值,作为与该类预估标定参数对应的参数值集合;其中,所述第二预设步长小于与该类预估标定参数对应的第一预设步长。
  5. 根据权利要求3或4所述的方法,其特征在于,基于所述各类预估标定参数对应的参数值集合,形成所述多组预估标定参数,包括:
    基于N类预估标定参数对应的参数值集合,形成M组预估标定参数,M=A1*A2*...*AN;
    其中,Ai(i=1,2,…,N)为第i类预估标定参数对应的参数值集合所包含的参数值数量;
    所述M组预估标定参数中每组预估标定参数通过如下方法形成:从所述N类预估标定参数中每类预估标定参数对应的参数值集合中各选择一个预估标定参数值。
  6. 根据权利要求2或3所述的方法,其特征在于,基于该标定物体的扫描数据、以及所述多组预估标定参数,预测所述多组预估标定参数中每组预估标定参数下该标定物体的预测尺寸,包括:
    针对所述多组预估标定参数中每组预估标定参数,将该组预估标定参数、以及已获得的所述线激光设备扫描该标定物体时输出的扫描数据,进行指定运算,得到该标定物体在该组预估标定参数下对应的预测坐标,所述预测坐标为基于所述第一坐标系的坐标;
    依据该标定物体在该组预估标定参数下对应的预测坐标,预测在该组预估标定参数下该标定物体的预测尺寸。
  7. 根据权利要求2或3所述的方法,其特征在于,基于在该组预估标定参数下预测的所述至少一个标定物体中每个标定物体的预测尺寸与对应的标定尺寸之间的偏差值,确定该组预估标定参数对应的偏差值,包括:
    当所述运动机构上设置有一个标定物体时,将所述一个标定物体的偏差值作为该组预估标定参数对应的偏差值;
    当所述运动机构上设置有多个标定物体时,将所述多个标定物体对应的偏差值之和,作为该组预估标定参数对应的偏差值。
  8. 根据权利要求7所述的方法,其特征在于,所述至少一个标定物体中每个标定物体中包括至少一条指定边;所述标定尺寸包括所述至少一条指定边中每条指定边的标定边长;所述预测尺寸包括所述至少一条指定边中每条指定边的预测边长;
    计算在该组预估标定参数下预测出的该标定物体的预测尺寸、与该标定物体的标定尺寸之间的偏差值,包括:
    分别计算该标定物体的所述至少一条指定边中每条指定边在该组预估标定参数下的预测边长、与该条指定边的标定边长之间的偏差值,并将该标定物体的所述至少一条指定边对应的偏差值之和,作为该标定物体对应的偏差值。
  9. 根据权利要求8所述的方法,其特征在于,所述标定物体为长方体,所述指定边包括长方体的长、宽和高。
  10. 根据权利要求6所述的方法,其特征在于,所述多组预估标定参数中每组所述预估标定参数包括:
    所述第一坐标系和所述第二坐标系之间的x轴旋转变换参数α、y轴旋转变换参数β、z轴旋转变换参数γ、x轴平移变换参数tx、y轴平移变换参数ty、z轴平移变换参数tz、所述运动机构的运动速度speed;
    将该组预估标定参数、以及已获得的所述线激光设备扫描该标定物体时输出的扫描数据,进行指定运算,得到该标定物体在该组预估标定参数下对应的预测坐标,包括:
    针对该组预估标定参数,通过如下公式确定旋转变换矩阵:
    Figure PCTCN2022116862-appb-100001
    针对该标定物体对应的扫描数据,基于该组预估标定参数下确定的所述旋转变换矩阵,通过如下公式确定预测坐标(x2,y2,z2):
    Figure PCTCN2022116862-appb-100002
    y2=y20+ΔT*speed;
    其中,(x1,y1,z1)为该标定物体对应的扫描数据中的坐标信息;
    ΔT为该标定物体对应的扫描数据对应的时间信息与第一组扫描数据对应的时间信息之间的时间差。
  11. 一种线激光设备的***标定装置,所述线激光设备的***标定装置用于标定所述线激光设备和运动机构之间的关系,所述运动机构上设置了至少一个标定物体,所述至少一个标定物体在第一坐标系下的标定尺寸已知,所述第一坐标系为所述运动机构所在的坐标系,所述至少一个标定物体在所述运动机构的初始位置处于所述线激光设备输出的激光线所处的激光线区域范围之外,所述装置包括:
    扫描数据获取单元,用于在所述运动机构带动所述至少一个标定物体穿过所述激光 线区域范围的过程中,获得所述线激光设备在不同扫描时间点下扫描所述至少一个标定物体时的扫描数据;其中,针对所述至少一个标定物体中的每个标定物体,所述扫描数据包括与扫描时间点对应的扫描时间信息、以及所述线激光设备扫描到的该标定物体上的至少一个位置点在第二坐标系下的坐标信息;所述第二坐标系为所述线激光设备所处的坐标系;
    标定参数确定单元,用于依据已获得的所述至少一个标定物体的扫描数据、以及预估的用于所述线激光设备***标定的多组预估标定参数,预测所述至少一个标定物体中每个标定物体的预测尺寸,并依据所述至少一个标定物体中每个标定物体的预测尺寸、以及所述至少一个标定物体中每个标定物体的标定尺寸,从所述多组预估标定参数中确定用于所述线激光设备***标定的目标标定参数。
  12. 一种电子设备,包括:
    处理器;
    用于存储机器可执行指令的存储器;
    其中,通过读取并执行所述存储器存储的与线激光设备的***标定对应的机器可执行指令,所述处理器被促使实现权利要求1至10中任一项所述的线激光设备的***标定方法。
PCT/CN2022/116862 2021-09-16 2022-09-02 一种线激光设备的***标定方法和装置 WO2023040685A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22869056.6A EP4403896A1 (en) 2021-09-16 2022-09-02 System calibration method and apparatus for line laser device
KR1020247012392A KR20240055137A (ko) 2021-09-16 2022-09-02 라인 레이저 디바이스의 시스템 캘리브레이션 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111088009.9A CN113884278B (zh) 2021-09-16 2021-09-16 一种线激光设备的***标定方法和装置
CN202111088009.9 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023040685A1 true WO2023040685A1 (zh) 2023-03-23

Family

ID=79009310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116862 WO2023040685A1 (zh) 2021-09-16 2022-09-02 一种线激光设备的***标定方法和装置

Country Status (4)

Country Link
EP (1) EP4403896A1 (zh)
KR (1) KR20240055137A (zh)
CN (1) CN113884278B (zh)
WO (1) WO2023040685A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116147635A (zh) * 2023-04-17 2023-05-23 天津宜科自动化股份有限公司 一种应用于多轮廓传感器的处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884278B (zh) * 2021-09-16 2023-10-27 杭州海康机器人股份有限公司 一种线激光设备的***标定方法和装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017286A (ja) * 2003-06-06 2005-01-20 Mitsubishi Electric Corp カメラキャリブレーション方法およびカメラキャリブレーション装置
CN107564069A (zh) * 2017-09-04 2018-01-09 北京京东尚科信息技术有限公司 标定参数的确定方法、装置及计算机可读存储介质
CN107767422A (zh) * 2017-09-18 2018-03-06 深圳开阳电子股份有限公司 一种鱼眼镜头的校正方法、装置及便携式终端
CN109297436A (zh) * 2018-11-30 2019-02-01 北京伟景智能科技有限公司 双目线激光立体测量基准标定方法
CN109990698A (zh) * 2017-12-29 2019-07-09 广州智信科技有限公司 快速标定装置及快速标定方法
CN110221275A (zh) * 2019-05-21 2019-09-10 菜鸟智能物流控股有限公司 一种激光雷达与相机之间的标定方法和装置
CN110930463A (zh) * 2019-12-06 2020-03-27 北京迈格威科技有限公司 一种监控摄像头内参标定方法、装置和电子设备
CN111190153A (zh) * 2020-04-09 2020-05-22 上海高仙自动化科技发展有限公司 外参标定方法及装置、智能机器人及计算机可读存储介质
CN111308448A (zh) * 2018-12-10 2020-06-19 杭州海康威视数字技术股份有限公司 图像采集设备与雷达的外参确定方法及装置
CN111623727A (zh) * 2020-07-17 2020-09-04 泉州深索思传感器科技有限公司 一种3d线激光轮廓传感器的快速标定方法
CN113375566A (zh) * 2021-06-09 2021-09-10 江苏中科贯微自动化科技有限公司 物体尺寸的精确测量方法及***
CN113884278A (zh) * 2021-09-16 2022-01-04 杭州海康机器人技术有限公司 一种线激光设备的***标定方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568152A (en) * 1994-02-04 1996-10-22 Trimble Navigation Limited Integrated image transfer for remote target location
CN109425365B (zh) * 2017-08-23 2022-03-11 腾讯科技(深圳)有限公司 激光扫描设备标定的方法、装置、设备及存储介质
CN111207670A (zh) * 2020-02-27 2020-05-29 河海大学常州校区 一种线结构光标定装置及方法
CN111192331B (zh) * 2020-04-09 2020-09-25 浙江欣奕华智能科技有限公司 一种激光雷达和相机的外参标定方法及装置
CN111272102A (zh) * 2020-05-06 2020-06-12 中国空气动力研究与发展中心低速空气动力研究所 一种线激光扫描三维测量标定方法
CN112654886B (zh) * 2020-05-27 2022-01-11 华为技术有限公司 外参标定方法、装置、设备及存储介质
CN112417591B (zh) * 2020-11-16 2022-06-28 上海交通大学 基于云台与扫描仪的车辆建模方法、***、介质及设备
CN112797915B (zh) * 2020-12-29 2023-09-12 杭州海康机器人股份有限公司 一种线结构光测量***的标定方法、标定装置、以及***
CN112833791B (zh) * 2021-02-02 2021-11-19 浙江大学 一种自旋转线结构光扫描***时空标定方法
CN113063368A (zh) * 2021-04-07 2021-07-02 杭州江奥光电科技有限公司 一种线激光旋转扫描三维轮廓测量方法及装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017286A (ja) * 2003-06-06 2005-01-20 Mitsubishi Electric Corp カメラキャリブレーション方法およびカメラキャリブレーション装置
CN107564069A (zh) * 2017-09-04 2018-01-09 北京京东尚科信息技术有限公司 标定参数的确定方法、装置及计算机可读存储介质
CN107767422A (zh) * 2017-09-18 2018-03-06 深圳开阳电子股份有限公司 一种鱼眼镜头的校正方法、装置及便携式终端
CN109990698A (zh) * 2017-12-29 2019-07-09 广州智信科技有限公司 快速标定装置及快速标定方法
CN109297436A (zh) * 2018-11-30 2019-02-01 北京伟景智能科技有限公司 双目线激光立体测量基准标定方法
CN111308448A (zh) * 2018-12-10 2020-06-19 杭州海康威视数字技术股份有限公司 图像采集设备与雷达的外参确定方法及装置
CN110221275A (zh) * 2019-05-21 2019-09-10 菜鸟智能物流控股有限公司 一种激光雷达与相机之间的标定方法和装置
CN110930463A (zh) * 2019-12-06 2020-03-27 北京迈格威科技有限公司 一种监控摄像头内参标定方法、装置和电子设备
CN111190153A (zh) * 2020-04-09 2020-05-22 上海高仙自动化科技发展有限公司 外参标定方法及装置、智能机器人及计算机可读存储介质
CN111623727A (zh) * 2020-07-17 2020-09-04 泉州深索思传感器科技有限公司 一种3d线激光轮廓传感器的快速标定方法
CN113375566A (zh) * 2021-06-09 2021-09-10 江苏中科贯微自动化科技有限公司 物体尺寸的精确测量方法及***
CN113884278A (zh) * 2021-09-16 2022-01-04 杭州海康机器人技术有限公司 一种线激光设备的***标定方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 December 2011, TIANJIN UNIVERSITY, CN, article WEI, HONGJUN: "Research on Three-dimensional Scanning Technology with a Single-line Laser", pages: 1 - 54, XP009544537 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116147635A (zh) * 2023-04-17 2023-05-23 天津宜科自动化股份有限公司 一种应用于多轮廓传感器的处理方法
CN116147635B (zh) * 2023-04-17 2023-07-28 天津宜科自动化股份有限公司 一种应用于多轮廓传感器的处理方法

Also Published As

Publication number Publication date
CN113884278B (zh) 2023-10-27
KR20240055137A (ko) 2024-04-26
EP4403896A1 (en) 2024-07-24
CN113884278A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2023040685A1 (zh) 一种线激光设备的***标定方法和装置
JP6937995B2 (ja) 物体認識処理装置及び方法、並びに、物体ピッキング装置及び方法
JP5548482B2 (ja) 位置姿勢計測装置、位置姿勢計測方法、プログラム及び記憶媒体
EP2466543B1 (en) Position and orientation measurement device and position and orientation measurement method
US10325336B2 (en) Information processing apparatus, information processing method, and program
US11667036B2 (en) Workpiece picking device and workpiece picking method
TWI677413B (zh) 用於機械手臂系統之校正方法及裝置
US10203197B2 (en) Range measurement apparatus and range measurement method
JP7173285B2 (ja) カメラ校正装置、カメラ校正方法、及びプログラム
US11426876B2 (en) Information processing apparatus, information processing method, and program
JP2011179908A (ja) 3次元計測装置、その処理方法及びプログラム
JP2011027623A (ja) 位置姿勢計測方法及び装置
JP7151879B2 (ja) カメラ校正装置、カメラ校正方法、及びプログラム
CN112541946A (zh) 一种基于透视多点投影的机械臂的位姿实时检测方法
US8699757B2 (en) Software embodied on a non-transitory storage media for distance measurement using speckle pattern
CN115375771A (zh) 五轴运动平台的参数标定方法、终端设备及存储介质
WO2016123813A1 (zh) 一种智能设备的姿态关系计算方法和智能设备
KR102152217B1 (ko) Vr 장비와 ar 장비간의 좌표계 일치용 지그 및 이를 이용한 물리 공간 공유 방법
CN113822920A (zh) 结构光相机获取深度信息的方法、电子设备及存储介质
Iversen et al. Optimizing sensor placement: A mixture model framework using stable poses and sparsely precomputed pose uncertainty predictions
WO2016084316A1 (en) Information processing apparatus, information processing method, and program
KR101418873B1 (ko) 자세 측정 장치의 교정 방법, 자세 측정 장치의 교정 장치, 이를 구비한 휴대용 단말기, 이동 물체의 제어 시스템 및 컴퓨터 판독 가능한 기록 매체
CN110866951A (zh) 一种单目摄像机光轴倾斜的校正方法
CN111474519A (zh) 一种定位方法、装置、设备及存储介质
WO2024105847A1 (ja) 制御装置、3次元位置計測システム、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247012392

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022869056

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022869056

Country of ref document: EP

Effective date: 20240416