WO2023040682A1 - 激光投影设备及投影图像的调节方法 - Google Patents

激光投影设备及投影图像的调节方法 Download PDF

Info

Publication number
WO2023040682A1
WO2023040682A1 PCT/CN2022/116820 CN2022116820W WO2023040682A1 WO 2023040682 A1 WO2023040682 A1 WO 2023040682A1 CN 2022116820 W CN2022116820 W CN 2022116820W WO 2023040682 A1 WO2023040682 A1 WO 2023040682A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
information
image
brightness
pixel
Prior art date
Application number
PCT/CN2022/116820
Other languages
English (en)
French (fr)
Inventor
董玉珍
刘芸
刘秀红
沈海杰
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111097851.9A external-priority patent/CN115840325A/zh
Priority claimed from CN202111507379.1A external-priority patent/CN114265569A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280060245.6A priority Critical patent/CN118077191A/zh
Publication of WO2023040682A1 publication Critical patent/WO2023040682A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to the technical field of projection display, and in particular, to a laser projection device and a method for adjusting a projected image.
  • laser projection equipment With the popularization of laser projection equipment, laser projection equipment has begun to enter thousands of households as a large-screen product that replaces TVs. Therefore, the requirements for the display effect of laser projection equipment are also getting higher and higher.
  • the laser projection equipment includes a light source assembly, an optical machine and a lens.
  • the light source assembly is used to provide a high-intensity laser illumination beam to the optical machine; the optical machine is used to modulate the image signal of the laser illumination beam to form a projection beam.
  • the formed projection beam enters the lens; the lens is used to project the projection beam onto the projection screen.
  • a laser projection device including a light source assembly, an optical engine, a lens, and a controller.
  • the light source assembly includes a monochromatic laser and a fluorescent wheel including a red conversion area, a green conversion area, a yellow conversion area and a transmissive area; the light source assembly is configured to provide an illumination beam.
  • the light machine is configured to modulate the illumination beam according to the image signal to obtain the projection beam.
  • the lens is configured to project the projection beam into an image.
  • the controller is configured to: acquire an image to be projected, the image to be projected includes a plurality of pixels, and the color corresponding to each pixel includes first color information, wherein the first color information includes at least one of the first brightness information and the first saturation information one.
  • the adjusted image to be projected is obtained according to the second color information corresponding to the color of at least one first pixel and the first color information corresponding to the color of the remaining second pixels except the at least one first pixel among the plurality of pixels.
  • the adjusted image to be projected is transmitted to the optical machine, so that the optical machine modulates the illumination light beam according to the adjusted image signal of the image to be projected.
  • some embodiments of the present disclosure provide a method for adjusting a projected image, which is applied to a laser projection device.
  • the method includes: first, acquiring an image to be projected, the image to be projected includes a plurality of pixels, and the color corresponding to each pixel includes First color information, wherein the first color information includes at least one of first brightness information and first saturation information. Secondly, adjusting the first color information corresponding to the color of at least one first pixel to obtain second color information corresponding to the color of each first pixel, wherein at least one first pixel is at least one of a plurality of pixels; the second The color information includes at least one of second brightness information and second saturation information.
  • the second brightness information is higher than the first brightness information
  • the second saturation information is higher than the first saturation information.
  • FIG. 1 is a structural diagram of a laser projection device according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of a light source assembly, an optical engine and a lens in a laser projection device according to some embodiments of the present disclosure
  • FIG. 3 is a structural diagram of an optical path in a laser projection device according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of the optical path principle of a light source assembly in a laser projection device according to some embodiments of the present disclosure
  • FIG. 5 is an arrangement structure diagram of tiny mirror mirrors in a digital micromirror device according to some embodiments of the present disclosure
  • Fig. 6 is a schematic diagram of the operation of a tiny mirror according to some embodiments of the present disclosure.
  • Fig. 7 is the schematic diagram of the position of the swing of a tiny mirror in the digital micromirror device shown in Fig. 5;
  • FIG. 8 is a schematic diagram of the positions of a laser projection device and a projection screen according to some embodiments of the present disclosure
  • FIG. 9 is a structural diagram of another laser projection device according to some embodiments of the present disclosure.
  • Fig. 10 is a structural diagram of a fluorescent wheel according to some embodiments of the present disclosure.
  • Fig. 11 is a schematic diagram of a color interval according to some embodiments of the present disclosure.
  • Fig. 12 is a schematic diagram of the corresponding relationship between colors and gray scales according to some embodiments of the present disclosure.
  • Fig. 13 is a schematic diagram of a corresponding relationship between a gray scale and a brightness curve according to some embodiments of the present disclosure
  • Fig. 14 is a schematic diagram of another corresponding relationship between gray scale and brightness curve according to some embodiments of the present disclosure.
  • Fig. 15 is a schematic diagram of another corresponding relationship between gray scale and brightness curve according to some embodiments of the present disclosure.
  • Fig. 16 is a schematic diagram of yet another corresponding relationship between gray scales and brightness curves according to some embodiments of the present disclosure.
  • Fig. 17 is a flowchart of a method for adjusting a projected image according to some embodiments of the present disclosure
  • Fig. 18 is a flowchart of another method for adjusting a projected image according to some embodiments of the present disclosure.
  • FIG. 1 is a structural diagram of a laser projection device according to some embodiments of the present disclosure.
  • the laser projection device includes a host 10, and the host 10 includes a complete machine housing 101 (only part of the housing is shown in the figure) , the light source assembly 100 , the light engine 200 , and the lens 300 assembled in the machine housing 101 .
  • the light source assembly 100 is configured to provide an illumination beam (ie, a laser beam).
  • the optical machine 200 is configured to use image signals to modulate the illumination beam provided by the light source assembly 100 to obtain a projection beam.
  • the lens 300 is configured to project the projection beam onto a projection screen or a wall for imaging.
  • the light source assembly 100 , the light engine 200 and the lens 300 are sequentially connected along the beam propagation direction, and each is wrapped by a corresponding housing.
  • the housings of the light source assembly 100 , the optical engine 200 and the lens 300 support the optical components and make the optical components meet certain sealing or airtight requirements.
  • One end of the light engine 200 is connected to the lens 300 and arranged along the first direction X of the whole machine, for example, the first direction X may be the width direction of the whole machine.
  • the light source assembly 100 is connected to the other end of the optical machine 200 .
  • the connection direction between the light source assembly 100 and the optical machine 200 is perpendicular to the connection direction between the optical machine 200 and the lens 300.
  • this connection structure can adapt to the optical path characteristics of the reflective light valve in the optical machine 200, and on the other hand On the one hand, it is also beneficial to shorten the length of the optical path in one dimension, which is beneficial to the structural arrangement of the whole machine.
  • the length of the optical path in this direction will be very long , which is not conducive to the structural arrangement of the whole machine.
  • light source assembly 100 may include three lasers.
  • Fig. 2 is a schematic diagram of a light source assembly, an optical engine and a lens in a laser projection device according to some embodiments of the present disclosure.
  • the three lasers may be a red laser 130 , a green laser 120 and a blue laser 110 . But it is not limited to this.
  • the three lasers may also all be blue lasers 110 , or two lasers may be blue lasers 110 and one laser may be red lasers 130 .
  • the light source assembly 100 can generate an illumination beam containing the three primary colors, so there is no need to arrange a fluorescent wheel in the light source assembly 100, thereby simplifying the structure of the light source assembly 100, reducing the The volume of the light source assembly 100 .
  • the light source assembly 100 may also include two lasers.
  • the two lasers may be a blue laser 110 and a red laser 130 .
  • the light source assembly 100 may also include a laser.
  • the light source assembly 100 is a monochromatic laser light source.
  • the light source assembly 100 only includes the blue laser 110 .
  • Fig. 4 is a schematic diagram of the optical path principle of a light source assembly in a laser projection device according to some embodiments of the present disclosure.
  • the laser may be a blue laser 110
  • the light source assembly 100 may also include: a fluorescent wheel 140 and a color filter wheel 150.
  • the blue laser 110 emits blue light
  • a part of the blue light is irradiated on the fluorescent wheel 140 to generate red fluorescent light (when the light source assembly 100 includes the red laser 130, there is no need to generate red fluorescent light) and green fluorescent light
  • the fluorescent light (or red laser light) and the green fluorescent light pass sequentially through the light combining mirror 160 and then pass through the color filter wheel 150 for color filtering, and sequentially output the three primary colors of light.
  • the human eye According to the phenomenon of persistence of vision of the human eye, the human eye cannot distinguish the color of light at a certain moment, and what it perceives is still mixed white light.
  • FIG. 3 is a diagram of an optical path structure in a laser projection device according to some embodiments of the present disclosure.
  • the optical machine 200 may include: a light guide 210, a lens assembly 220, a mirror 230, and a digital micromirror device (Digital Micromirror Device, DMD) 240 and prism assembly 250.
  • the light pipe 210 can receive the illumination beam provided by the light source assembly 100 and homogenize the illumination beam.
  • the lens assembly 220 can amplify the illumination light beam first, then converge it and output it to the reflector 230 .
  • the mirror 230 can reflect the illumination beam to the prism assembly 250 .
  • the prism assembly 250 reflects the illumination beam to the DMD 240, and the DMD 240 modulates the illumination beam, and reflects the modulated projection beam to the lens 300.
  • the DMD 240 uses the image signal to modulate the illumination beam provided by the light source assembly 100, that is, to control the illumination beam to display different colors and brightness for different pixels of the image to be displayed, so as to finally form an optical image, so the DMD 240 Also known as light modulating device or light valve.
  • the following embodiments take the DMD 240 as an optical modulation device as an example for illustration. According to whether the light modulation device transmits or reflects the illumination light beam, the light modulation device can be classified into a transmissive light modulation device or a reflective light modulation device. For example, as shown in FIG. 2 and FIG. 3, the DMD 240 reflects the illumination beam, which is a reflective light modulation device.
  • the liquid crystal light valve transmits the illumination beam, so it is a transmissive light modulation device.
  • the optical machine can be divided into a single-chip system, a two-chip system or a three-chip system.
  • the DMD 240 in the embodiments of the present disclosure can be applied to a digital light processing (Digital Light Processing, DLP) projection architecture.
  • DLP Digital Light Processing
  • FIG. 2 and FIG. 3 the optical machine 200 uses a DLP projection architecture.
  • FIG. 5 is an arrangement structure diagram of tiny reflective mirrors in a digital micromirror device according to some embodiments of the present disclosure.
  • DMD 240 includes thousands of tiny reflective mirrors 2401 that can be individually driven to rotate, These tiny mirrors 2401 are arranged in an array, and each tiny mirror 2401 corresponds to a pixel in the image to be displayed.
  • each tiny reflector 2401 is equivalent to a digital switch, which can swing within the range of plus or minus 12 degrees ( ⁇ 12°) or plus or minus 17 degrees ( ⁇ 17°) under the action of an external electric field, to The reflected light can be imaged on the screen through the lens 300 along the optical axis to form a bright pixel.
  • Fig. 6 is a schematic diagram of the operation of the micro-mirror mirror according to some embodiments of the present disclosure.
  • the light reflected by the micro-mirror mirror 2401 at a negative deflection angle is called OFF light, and the OFF light is invalid light. Absorbed on the casing of the machine 200 or on the light absorbing unit.
  • the light reflected by the tiny reflective lens 2401 at a positive deflection angle is called ON light.
  • the ON light is the effective light beam that the tiny reflective lens 2401 on the surface of the DMD 240 receives the illumination beam and enters the lens 300 through a positive deflection angle.
  • the open state of the micro-reflector 2401 is the state where the micro-reflector 2401 is and can be maintained when the illumination beam emitted by the light source assembly 100 is reflected by the micro-reflector 2401 and can enter the lens 300, that is, the micro-reflector 2401 is at a positive deflection angle status.
  • the closed state of the tiny reflective mirror 2401 is the state where the tiny reflective mirror 2401 is and can be maintained when the illuminating light beam emitted by the light source assembly 100 is reflected by the tiny reflective mirror 2401 and does not enter the lens 300, that is, the tiny reflective mirror 2401 is in a negative deflection angle status.
  • FIG. 7 is a schematic diagram of the swinging position of a tiny mirror in the digital micromirror device shown in FIG. 5. As shown in FIG. That is, the on state, the state at -12° is the off state, and for the deflection angle between -12° and +12°, the actual working state of the tiny mirror 2401 is only the on state and the off state.
  • part or all of the tiny mirrors 2401 will be switched once between the on state and the off state, so as to realize the display in one frame of image according to the duration time of the tiny mirrors 2401 respectively in the on state and the off state.
  • the gray scale of each pixel of Therefore, by controlling the state of each tiny mirror in the DMD 240 in the display period of a frame image and the maintenance time of each state through the image signal, the brightness (gray scale) of the pixel corresponding to the tiny mirror 2401 can be controlled to realize The purpose of modulating the illumination beam projected to the DMD 240.
  • the light guide 210 at the front end of the DMD 240, the lens assembly 220 and the reflector 230 form an illumination light path, and the illumination beam emitted by the light source assembly 100 passes through the illumination light path to form a beam size and an incident angle that meet the requirements of the DMD 240.
  • the lens 300 includes a combination of multiple lenses, which are usually divided into groups, such as the front group, the middle group and the front group.
  • the front group is the lens group near the light output side of the projection device (left side shown in FIG. 2 )
  • the rear group is the lens group near the light output side of the light engine 200 (right side shown in FIG. 2 ).
  • the lens 300 may also be a zoom lens, or a fixed focus adjustable focus lens, or a fixed focus lens.
  • the laser projection device is an ultra-short-focus projection device
  • the lens 300 is an ultra-short-focus lens
  • the throw ratio of the lens 300 is usually less than 0.3, such as 0.24.
  • the throw ratio refers to the ratio of the projection distance to the screen width. The smaller the ratio, the larger the projection screen width at the same projection distance.
  • the ultra-short-focus lens with a relatively small projection can adapt to a narrow space while ensuring the projection effect.
  • FIG. 8 is a schematic diagram of the positions of a laser projection device and a projection screen according to some embodiments of the present disclosure.
  • the host 10 of the laser projection device is set separately from the projection screen, and there is generally a certain distance between them.
  • the main body 10 of the laser projection device moves, that is, when the whole machine casing 101 moves, the projected image projected by the lens 300 on the projection screen 30 will also shift, which may cause the projected image to exceed the display on the projection screen 30.
  • the range of the situation will affect the projection display effect.
  • the laser projection device includes a host 10 and a camera 20 .
  • the photographing device 20 is a device capable of photographing the projection screen 30 .
  • the photographing device 20 may be a camera.
  • the photographing device 20 may be arranged on the whole machine casing 101 of the host 10, or the photographing device 20 may also be arranged at a position outside the whole machine casing 101 of the host 10.
  • the disposition of the photographing device 20 in the present disclosure The location is not limited.
  • the host 10 of the laser projection device further includes a power system architecture, which may be a printed circuit board assembly (PCBA).
  • the circuit system architecture is configured to control the operation of the light source assembly 100 and the light machine 200 .
  • the circuit system architecture may be disposed in the housing 101 of the complete machine.
  • FIG. 9 is a structural diagram of another laser projection device provided by an embodiment of the present disclosure.
  • the host 10 of the laser projection device includes a controller 410 and a light rod 170 .
  • the light source assembly 100 includes a monochromatic laser and a fluorescent wheel 140 , and the embodiment of the present disclosure takes the blue laser 110 as an example for illustration.
  • the controller 410 is coupled with the DMD 240, and is used to provide a driving signal to the DMD 240, and the DMD 240 drives the deflection angle of each tiny mirror according to the driving signal provided by the controller 410.
  • the controller 410 may be a driver chip or a processor, and a related program is preset on the driver chip or processor, and corresponding operations are performed according to the related program.
  • FIG. 10 is a schematic structural diagram of a fluorescent wheel 140 according to some embodiments of the present disclosure.
  • the fluorescent wheel 140 includes a red conversion region r, a green conversion region g, a transmission region b, and a yellow conversion region y.
  • the blue laser light emitted by the blue laser 110 is incident on the yellow conversion region y, yellow light can be excited. Since the transmittance of the yellow conversion region y is relatively high, it makes a relatively large contribution to brightness when white light is synthesized, and the brightness of a white field can be improved.
  • the laser projection device may further include a light rod 170 .
  • the light bar 170 may be disposed on the light emitting side of the fluorescent wheel 140 .
  • the light rod 170 may have a light collecting device with a preset diameter, which is used to collect the laser beams that reach the fluorescent wheel 140 and pass them through. The light rod 170 can reflect and homogenize the passing laser beam multiple times.
  • the fluorescent wheel 140 When the fluorescent wheel 140 rotates, most of the laser light from the blue laser 110 will irradiate the red conversion area r, the green conversion area g, the yellow conversion area y and the transmission area b of the fluorescent wheel 140 in turn.
  • the junction area of two adjacent conversion areas for example, in Figure 10, the junction area H of the red conversion area r and the green conversion area g, since the laser beam emitted by the laser has a certain divergence angle, the laser beam is in the The junction area H will simultaneously excite light of two colors, thereby generating mixed-color light.
  • the mixed color light has a greater contribution to the brightness of the white light, which can improve the brightness of the white field. Therefore, when displaying white light, the color mixing light can be turned on.
  • the controller 410 controls the DMD 240 to turn on or off the mixed color light.
  • the laser projection device displays white light
  • turn on the mixed color light to increase the brightness of the white field of the laser projection device, so that the brightness of the laser projection device to display the white field is comparable to that of a general display device (for example, a liquid crystal display device, and the liquid crystal display device is used as an example below to carry out Note) there is little difference in white point brightness.
  • a general display device for example, a liquid crystal display device, and the liquid crystal display device is used as an example below to carry out Note
  • the color mixing light will affect the display effect of the three primary colors of red, green and blue
  • the laser projection device displays monochromatic light
  • the color mixing light needs to be turned off. Therefore, when the laser projection device displays the three primary colors or other monochromatic lights synthesized from the three primary colors, its display brightness is lower than that of a liquid crystal display device.
  • the liquid crystal display device displays images through the three primary colors of red, green, and blue light, so the sum of the brightness of the three primary colors of red, green, and blue light is equal to the brightness of the white field.
  • the red light and the green light in the red, green and blue primary color light in the laser projection device are all obtained by the excitation of the blue laser 110 through the fluorescent wheel 140, and the sum of the brightness of the red, green and blue primary color light is about 50% to 60% of the brightness of the white field.
  • the white field brightness of the liquid crystal display device is 400 nits
  • the sum of the brightness of the three primary colors of red, green and blue light is also 400 nits.
  • the white field brightness of the laser projection device is 400 nits
  • the sum of the brightness of the three primary colors of red, green, and blue is 240 nits.
  • the brightness of the three primary color lights displayed by the laser projection device is lower than that of the three primary color lights displayed by the liquid crystal display device.
  • the brightness of the displayed white field can be similar to that of a liquid crystal display device, and therefore, there is no need to adjust the brightness of the white light emitted by the fluorescent wheel 140 accordingly.
  • the monochromatic laser laser projection device since the brightness of the three primary colors of red, green, and blue light emitted by the fluorescent wheel 140 is lower than the brightness of the three primary colors of light displayed by the liquid crystal display device, the three primary colors of red, green, and blue The brightness of the synthesized light of other colors is also dimmer than that of the liquid crystal display device. Therefore, compared with the liquid crystal display device, the monochromatic laser laser projection device has the problem that the overall display picture is dark and the display effect is not good.
  • an embodiment of the present disclosure provides a laser projection device. Aiming at the problems of dim display brightness and poor display effect when a monochrome laser performs monochrome display, the color displayed by each pixel in the image to be projected is used to Select a plurality of colors to be adjusted, and increase the brightness and/or saturation of the plurality of colors to be adjusted, so as to improve the overall display effect of the display screen of the laser projection device.
  • the controller 410 is configured to: acquire a to-be-projected image, the to-be-projected image includes a plurality of pixels, and a color (eg, a first color) corresponding to each pixel includes first color information.
  • the first color information includes at least one of first brightness information and first saturation information.
  • the controller 410 may acquire the color of each pixel in the image to be projected and first color information corresponding to the color.
  • the image to be projected includes a plurality of pixels, and each pixel displays a plurality of colors, and the colors displayed by the plurality of pixels may be the same or different.
  • the first color may be any color currently displayed by the first pixel.
  • the first brightness information may reflect the brightness of the first color, for example, the first brightness information may indicate the degree of lightness and darkness of the first color.
  • the first saturation information can reflect the saturation of the first color, for example, the first saturation information may indicate the fullness of the first color.
  • the controller 410 is further configured to: adjust the first color information corresponding to the color of at least one first pixel to obtain second color information corresponding to the color of each first pixel, wherein the second color information includes second brightness information and At least one of the second saturation information; the second brightness information is higher than the first brightness information, and the second saturation information is higher than the first saturation information.
  • the at least one first pixel is at least one pixel among the plurality of pixels.
  • the controller 410 adjusts the first color information corresponding to the first color, including the controller 410 adjusting the first brightness information and the first saturation information of the first color respectively, or the controller 410 adjusting the first color information of the first color
  • the brightness information or the first saturation information is used for adjustment.
  • the controller 410 respectively adjusts the first brightness information and the first saturation information of the first color as an example for the following description.
  • the controller 410 adjusts the first brightness information of the first color to the second brightness information, and adjusts the first saturation information to the second saturation information.
  • the second brightness information is higher than the first brightness information
  • the second saturation information is higher than the first saturation information. Therefore, when the adjusted first color is displayed according to the second color information, its brightness and saturation will all be improved, and the display effect will be better.
  • the first color may be generated by the three primary colors of red (R), green (G), and blue (B) according to different numerical ratios.
  • the first color information of the first color may include color information of red (R), first color information of green (G), and color information of blue (B).
  • the controller 410 adjusts the first color information corresponding to the first color, including the controller 410 adjusting the color information of the three primary colors R, G, and B respectively.
  • the controller 410 adjusts the first color information to the second color information, including the controller 410 adjusting the brightness information and saturation information of the three primary colors of red (R), green (G) and blue (B) that make up the first color Adjusted to the second brightness information and the second saturation information respectively.
  • the controller 410 can adjust the first brightness information to the second brightness information by adjusting the brightness gain coefficient of the first brightness information; adjust the saturation gain coefficient of the first saturation to adjust the first saturation information is the second saturation information.
  • the brightness gain coefficient of the second brightness information is larger than the brightness gain coefficient of the first brightness information
  • the saturation gain coefficient of the second saturation information is larger than the saturation gain coefficient of the first saturation information. That is to say, the controller 410 can increase the brightness and saturation of the first color by increasing the brightness gain coefficient and the saturation gain system of the first color.
  • the controller 410 is configured to: adjust the first color information corresponding to the color of at least one first pixel according to the first preset correspondence relationship to obtain second color information corresponding to the color of the first pixel.
  • the first preset correspondence includes a correspondence between multiple colors and multiple color information.
  • the correspondence between the plurality of colors and the plurality of color information includes the correspondence between the plurality of colors and brightness information and the correspondence between the plurality of colors and saturation information.
  • the first preset correspondence relationship may be preset and stored in the controller 410 .
  • the first preset correspondence relationship may be in the form of a data table, or may also be in other forms.
  • the target color information corresponding to each color can be set in the first preset correspondence, and the controller 410 adjusts the current color information according to the target color information corresponding to the color after acquiring the color of a pixel. is the target color information.
  • the controller 410 acquires the first color, the first brightness information, and the first saturation information, it can directly combine the corresponding relationship between the color and the brightness information and the relationship between the color and the saturation information according to the first color. Adjust the brightness and saturation according to the corresponding relationship. For example, if the first brightness information is the same as the second brightness information, then use the first brightness information as the second brightness information; if the first brightness information is different from the second brightness information, directly adjust the first brightness information to the second brightness information.
  • the mapping relationship of the color information corresponding to each color can be set in the first preset correspondence relationship. After the controller 410 acquires the color of a pixel, according to the mapping relationship, the current The color information (ie, the first color information) is adjusted to the target color information (ie, the second color information). For example, when the controller 410 acquires the current color information of the first color, it adjusts the current color information to the target color information according to the preset mapping relationship.
  • the mapping relationship can be, for example, a multiple relationship, for example, the current color information is multiplied by a preset value to obtain the target color information; or, the mapping relationship can also be a summation relationship, for example, the current color information plus a certain preset value can be Get the target color information.
  • the controller 410 Since the colors displayed by each pixel in the image to be projected may be different, if the first color information corresponding to the colors of all pixels in the image to be projected is adjusted, the controller 410 will generate a large amount of data calculations, which will affect the response speed of the controller 410 .
  • the controller 410 is configured to: preset a color interval, the color interval includes a plurality of colors; select at least one color from the plurality of colors in the color interval as the color to be adjusted. If the color of the first pixel is the color to be adjusted selected in the color interval, the first color information corresponding to the first color is adjusted to the second color information.
  • color intervals are preset and stored in the controller 410 .
  • the color interval may be a color interval in which the second color transitions to the third color, and the second color and the third color may be two ends of the color interval respectively.
  • the second color and the third color may be any color in image display, and the second color and the third color are different.
  • the color interval from the second color to the third color may include multiple colors. At least two colors are selected from a plurality of colors in the color interval as colors to be adjusted, and the controller 410 adjusts color information corresponding to the at least two colors to be adjusted.
  • the preset color interval in the controller 410 can be a color interval from red to magenta, and the color interval from red to magenta can be the first color interval, so that various The color in which the image is displayed.
  • FIG. 11 is a schematic diagram of a color range provided by the implementation of the present disclosure.
  • the first color range from red R to magenta M may include a plurality of colors (including red R and magenta M). Select at least one (that is, one or more) colors in the first color interval as the color to be adjusted, and the controller 410 adjusts the first color information corresponding to these colors to be adjusted.
  • colors such as red R, green G, and cyan C may be selected from the first color interval as colors to be adjusted.
  • the controller 410 acquires that the first color is any one of red R, green G, and cyan C, it adjusts the first color information corresponding to the first color to the second color information. For example, when the first color is red, since red is the color to be adjusted selected in the first color interval, the controller 410 will adjust the first color information corresponding to red to the second color according to the first preset correspondence relationship. color information.
  • the first color interval it is also possible to select more colors in the first color interval as the colors to be adjusted, so as to realize the adjustment of color information corresponding to more colors, thereby realizing higher-precision adjustment of the image to be projected.
  • fewer colors may be selected in the first color interval as the colors to be adjusted, so as to simplify the process of data processing by the controller 410 and improve the response speed of the controller 410 .
  • the multiple colors to be adjusted selected in the color interval in the embodiment of the present disclosure may be commonly used colors in image display, and these colors may cover the color range of image display.
  • the first color interval can be further divided into multiple color sub-intervals, and each color sub-interval includes at least two color.
  • the first color interval may be divided into five color sub-intervals.
  • the color interval from red R to yellow Y is divided into the first color sub-interval 121;
  • the color interval from yellow Y to green G is divided into the second color sub-interval 122;
  • the color interval from green G to cyan C is divided Divide into the third color sub-interval 123; divide the color interval from cyan C to blue B into the fourth color sub-interval 124; divide the color interval from blue B to magenta M into the fifth color sub-interval 125.
  • the colors common to two adjacent color subranges may be included in the previous color subrange, or may be included in the latter color subrange.
  • both the first color subrange 121 and the second color subrange 122 include yellow Y.
  • yellow Y may be included in the first color subrange 121 , or may also be included in the second color subrange 122 .
  • the following embodiments of the present disclosure are illustrated by taking the common color of two adjacent color sub-intervals as an example belonging to the previous color sub-interval. For example, yellow Y belongs to the color in the first color sub-interval.
  • At least one color is selected in each color subinterval as the color to be adjusted, and the controller 410 adjusts the first color information corresponding to the at least one color.
  • the number of colors to be adjusted selected in each color sub-interval may be the same or different. For example, when the first color displayed by the first pixel in the image to be projected is any color to be adjusted selected in any color sub-interval, the controller 410 may adjust the first color information corresponding to the first color.
  • the display of the person is usually the key point, and the skin color of the person's face can usually reflect the overall effect of the displayed image. Therefore, the color emphasis in the color interval corresponding to the facial skin color of the person can be adjusted.
  • the color interval corresponding to the facial skin color of the person is mainly the first color sub-interval 121 in which red R transitions to yellow Y. Therefore, in some examples, a larger number of colors may be selected in the first color sub-interval 121 as the colors to be adjusted.
  • the number of colors to be adjusted selected in the first color subrange 121 may be greater than the number of colors to be adjusted selected in any one of the second color subrange 122 to the fifth color subrange 125 the number of colors.
  • the numbers of colors to be adjusted selected in the second color sub-interval to the fifth color sub-interval may be the same or different.
  • a total of 31 colors can be selected as the colors to be adjusted in the first color interval from red R to magenta M.
  • 15 colors may be selected in the first color sub-section 121 as the colors to be adjusted, and 4 colors may be selected from the other four color sub-sections as the colors to be adjusted.
  • the controller 410 adjusts the first color information corresponding to the 31 colors among the colors displayed by all the pixels of the image to be projected.
  • the number of colors to be adjusted in each color subrange can be selected more or less.
  • the transmittance of the yellow Y is relatively high, the brightness and saturation of the yellow Y already meet the display requirements. Therefore, the colors selected in the first color interval may not include the yellow Y.
  • the color information corresponding to the first color can be recorded in one byte, for example, the byte has 8 bits, and each bit can represent a binary data of 0 or 1, and the 8-bit
  • the range from 0 to 255 can be represented by converting the binary number into decimal, and the 256 values from 0 to 255 can be called gray scales. That is to say, the color information corresponding to the first color can be represented by 256 gray scales ranging from 0 to 255.
  • FIG. 12 shows the corresponding relationship between colors and brightness at different gray scales in an embodiment of the present disclosure.
  • the abscissa represents different colors
  • the ordinate represents different gray scales. It can be seen from FIG. 12 that the brightness information of the same color in different gray scales is different.
  • the corresponding relationship between each color and brightness information in each gray scale can be preset and stored in the controller 410 .
  • the first color information corresponding to the color of each pixel includes first color information of multiple gray scales.
  • the controller 410 adjusting the first color information corresponding to the color of each pixel may include, the controller 410 adjusting the first color information of each pixel in different gray scales.
  • the controller 410 adjusts the first brightness information of the first color in different gray scales to the second brightness information, and adjusts the first saturation information to the second saturation information.
  • gray scales can represent different brightness levels of the first color from the darkest to the brightest.
  • the adjusted picture effect of the image to be projected will the better. For example, when the first color displayed by the first pixel has 256 gray scales, if the first brightness information and the first saturation information of the first color in all gray scales are adjusted, it will bring a lot of problems to the controller 410. The calculation amount affects the response speed of the controller 410.
  • the controller 410 is configured to: select at least two grayscales of the color of the first pixel (for example, the first color);
  • the first color information is to obtain the second color information of the color of the first pixel in at least two gray scales.
  • the multiple gray scales selected from all the gray scales of the first color may be referred to as node gray scales.
  • the selection of the gray scale of the nodes can be performed according to the rules preset in the controller 410 .
  • the gray scales of each node can be selected in an incremental manner, and the gray scale values that differ between the gray scales of two adjacent nodes are the same; or, the gray scales of nodes can also be selected in other ways.
  • the controller 410 may adjust the first brightness information and the first saturation information of the first color at each node gray scale to the second brightness information and the second saturation information respectively.
  • the controller 410 may perform smooth transition processing on the color information of other gray levels between the gray levels of two nodes.
  • the gray scale value of the ordinate is selected from the 9 node gray scales between the 0th gray scale and the 255th gray scale, and the 9 node gray scales are selected in an incremental manner, as shown in the figure
  • the gray levels of the nine nodes are gray levels 0, 32, 64, 96, 128, 160, 192, 224, and 255, and the difference between the gray levels of two adjacent nodes is 32.
  • node gray scales there may be more or less selections of node gray scales, and the selection of node gray scales may also be determined according to actual display. For example, when the color of each pixel in the image to be projected is in a certain grayscale range, for example, the brightness displayed in the 192nd grayscale to the 255th grayscale range is relatively low, more node grayscales can be selected in the grayscale range , and adjust the first color information of each color under the gray scale of these nodes. In other gray scale intervals, for example, between the 0th and 192nd gray scales, a smaller number of node gray scales may be selected.
  • the controller 410 is configured to: obtain the adjusted of the image to be projected.
  • the controller 410 adjusts the first color information corresponding to the color of at least one pixel in the image to be projected to the second color information according to the above preset rules.
  • the at least one first pixel may be all pixels in the image to be projected.
  • the number of second pixels in the image to be projected is zero.
  • the controller 410 adjusts the first color information of all pixels in the image to be projected to the second color information.
  • the at least one first pixel may also be some pixels (one or more pixels, not including all pixels) in the image to be projected. In this case, the remaining pixels in the image to be projected are just the first pixel. two pixels.
  • the controller 410 does not adjust the color information of the second pixel, therefore, the color information of the second pixel is still the first color information.
  • the adjusted image to be projected is obtained according to the first color information of at least one first pixel and the first color information of the second pixel.
  • the controller 410 can pre-select the color to be adjusted and the gray scale of the node according to the preset rule, and then according to the first preset relationship, the color to be adjusted in the image to be projected is
  • the first brightness information and the first saturation information under the gray scale of the node are adjusted to the second brightness information and the second saturation information respectively, so as to improve the brightness and saturation of the color to be adjusted, thereby improving the display effect of the image to be projected.
  • the brightness and saturation of the color of each pixel in the image to be projected cannot be increased without limit.
  • further enhancement may cause the display of the image to be projected to appear unnatural, such as oversaturation . Therefore, before the image to be projected is projected, on the basis of the processing in the foregoing embodiments, the embodiments of the present disclosure may further adjust the adjusted overall brightness of the image to be projected.
  • the controller 410 is configured to: obtain the adjusted average brightness of the image to be projected according to the second brightness information of at least one first pixel and the first brightness information of the second pixel; Determine the brightness curve corresponding to the brightness average of the image to be projected; adjust the second brightness information of at least one first pixel and the first brightness information of the second pixel according to the brightness curve corresponding to the brightness average.
  • the brightness information corresponding to the displayed color is still the first brightness information.
  • the display color of the second pixel may include yellow Y, for example.
  • the adjusted second brightness information of at least one first pixel and the first brightness information of multiple second pixels in the adjusted image to be projected the average brightness value of all pixels in the adjusted image to be projected can be obtained.
  • the adjusted image to be projected obtained through the processing of the above embodiment is a new image to be projected, and the adjusted image to be projected is referred to as a new image to be projected in the following embodiments.
  • the controller 410 is configured to: preset multiple grayscale thresholds; determine the grayscale corresponding to the average brightness of the new image to be projected according to the corresponding relationship between brightness and grayscale; The relationship between the gray scale corresponding to the value and multiple gray scale thresholds, and determine the brightness curve corresponding to the average brightness value.
  • each gray scale usually corresponds to one brightness value. Therefore, when the laser projection device displays an image to be projected, the brightness values corresponding to each gray scale are different.
  • the corresponding relationship between each gray scale and brightness of the laser projection device can be preset and stored in the controller 410 .
  • the relationship between the gray scale and the brightness may be expressed in the form of a brightness curve, for example, and the brightness curve can reflect the relationship between each gray scale and the corresponding brightness when the laser projection device performs image display.
  • the brightness curve may be a gamma curve (ie, a GAMMA curve), and the controller 410 may control the display of the image to be projected according to the preset GAMMA curve.
  • the controller 410 may determine the gray scale corresponding to the average brightness of the new image to be projected according to the corresponding relationship between brightness and gray scale. Then, the controller 410 determines the relationship between the gray scale value corresponding to the average brightness value of the new image to be projected and the multiple gray scale threshold values according to the preset multiple gray scale threshold values, and determines to call the corresponding brightness curve for the new image to be projected. to display.
  • the multiple grayscale thresholds preset in the controller 410 can divide the grayscale range of the new image to be projected into multiple grayscale intervals, each grayscale interval corresponds to a corresponding brightness curve, and by determining the average brightness The relationship between the corresponding gray scale and multiple gray scale thresholds determines which gray scale interval the gray scale corresponding to the brightness average value is in, so as to determine which brightness curve to call to display the new image to be projected.
  • the multiple grayscale thresholds include a first grayscale threshold A1, a second grayscale threshold A2, and a third grayscale threshold A3; wherein, the first grayscale threshold A1>the second grayscale threshold A2>the third grayscale threshold
  • the three grayscale thresholds A3, the first grayscale threshold A1, the second grayscale threshold A2 and the third grayscale threshold A3 can divide the grayscale range of the new image to be projected into four grayscale intervals.
  • the gray-scale interval (such as [0, A3]) corresponding to the gray-scale A of the average brightness value of the new image to be projected is less than or equal to the third gray-scale threshold A3 is the first gray-scale interval (also referred to as the low grayscale interval), the first brightness curve S1 corresponding to the first grayscale interval.
  • the gray scale interval corresponding to the average brightness value A is greater than the third gray scale threshold A3 and less than or equal to the second gray scale threshold A2 (such as (A3, A2]) is the second gray scale interval (also referred to as the middle and low gray scale interval). scale interval), the second gray scale interval corresponds to the second brightness curve S2.
  • the gray scale A corresponding to the average brightness value is greater than the second gray scale threshold A2 and less than or equal to the gray scale interval of the first gray scale threshold A1 (such as (A2, A1]) is the third grayscale interval (also known as the middle and high grayscale interval), and the brightness curve corresponding to the third grayscale interval is the third brightness curve S3.
  • the grayscale A corresponding to the average brightness value is greater than the first grayscale threshold value A1 (eg (A1, A0]) is the fourth grayscale interval (also referred to as a high grayscale interval), and the fourth grayscale interval corresponds to the fourth brightness curve S4.
  • A0 can be the maximum gray scale of the new image to be projected, and A0 can be determined according to the number of display bits of the laser projection device. For example, when the number of display bits of the laser projection device is 8 bits, A0 is 255. When the laser projection When the number of display bits of the device is 10 bits, A0 is 1023. In the following embodiments, A0 is 255 as an example for illustration.
  • the first luminance curve S1 , the second luminance curve S2 , the third luminance curve S3 and the fourth luminance curve S4 may be different GAMMA curves respectively.
  • the first brightness curve S1 and the fourth brightness curve S4 may be the same brightness curve.
  • both the first brightness curve S1 and the fourth brightness curve S4 are the original brightness curve S0 preset in the controller 410 .
  • the brightness distribution of the projected image can be determined according to the gray-scale distribution, and the brightness of the corresponding gray-scale interval can be increased according to which gray-scale interval most of the pictures in the projected image are distributed in, so that the entire projected image can be displayed When the brightness can be brighter.
  • the grayscale corresponding to the average brightness of the new image to be projected is grayscale A in the first grayscale interval
  • the grayscales of the new image to be projected are mostly distributed in the low grayscale interval.
  • the gray scale interval is close to the dark field display, and the brightness requirement of the dark field display is low, so no additional brightness adjustment is required. Therefore, when 0 ⁇ A ⁇ A3, the controller 410 can directly invoke the original brightness curve S0 shown in FIG. 13 to display the new image to be projected.
  • the controller 410 needs to invoke the second brightness curve S2 shown in FIG. 15 to display a new image to be projected.
  • the second brightness curve S2 comparing the second brightness curve S2 with the original brightness curve S0, it can be seen that the brightness value of the second brightness curve S2 in the second gray scale interval is greater than the brightness value of the original brightness curve S0 in the second gray scale interval .
  • the brightness of the low gray scale interval in the new image to be projected can be increased as a whole, so that the displayed brightness of the new image to be projected is brighter and the display effect is improved. better.
  • the controller 410 needs to call the third brightness curve S3 shown in FIG. 15 to display the new image to be projected.
  • the third brightness curve S3 As shown in Figure 15, comparing the third brightness curve S3 with the original brightness curve S0, it can be seen that the brightness value of the third brightness curve S3 in the third gray scale interval is greater than the brightness value of the original brightness curve S0 in the third gray scale interval .
  • the brightness of the high gray scale interval in the new image to be projected can be increased as a whole, so that the displayed brightness of the new image to be projected is brighter and the display effect is better. good.
  • the gray scale corresponding to the average brightness value of the new image to be projected is gray scale A in the fourth gray scale interval
  • the gray scales of the new image to be projected are mostly distributed in the high gray scale interval, and the high gray scale
  • the grayscale range is close to the white field display, and the white field brightness can meet the brightness requirement of the display, so no additional brightness adjustment is required. Therefore, when A1 ⁇ A ⁇ A0, the controller 410 can directly invoke the original brightness curve S0 shown in FIG. 16 to display the new image to be projected.
  • the values of the first grayscale threshold A1 , the second grayscale threshold A2 and the third grayscale threshold A3 may be set according to actual display conditions.
  • the value of the first grayscale threshold A1 may be a grayscale value from the 144th grayscale to the 216th grayscale;
  • the second grayscale The value of the threshold A2 can be a certain gray scale value from the 72nd gray scale to the 108th gray scale;
  • the value of the third gray scale threshold A3 can be a certain gray scale value from the 12th gray scale to the 18th gray scale .
  • the embodiment of the present disclosure does not limit the values of the first grayscale threshold A1 , the second grayscale threshold A2 and the third grayscale threshold A3 .
  • the laser projection device provided by the embodiments of the present disclosure can first improve the brightness and saturation of the selected color to be adjusted under the gray scale of each node, and then adjust the gray scale distribution of the image to be projected after adjustment.
  • the brightness of most gray scales in the gray scale range is increased to obtain a readjusted image to be projected.
  • the readjusted image to be projected is brighter and has a better display effect.
  • the region where the user is located or the region where the image or video that the user currently wants to watch belongs may be inferred from the user's language type.
  • the user's language type is Chinese
  • it can be inferred that the region where the user is located is China
  • the content of the image that the user wants to watch currently is a movie about China.
  • the avatar to be projected can be displayed according to the language type of Chinese, matching the invocation and the image quality parameters that meet the aesthetics of Chinese users.
  • the image quality parameter to be projected is determined through the language type information of the user, so that the display effect of the image to be projected can be more in line with the user's preference.
  • the image quality parameters in this embodiment of the present disclosure may include skin color image quality parameters.
  • the controller 410 is further configured to: acquire the input language type information; determine the first image quality parameter corresponding to the input language type information according to the second preset correspondence; the second preset correspondence includes Correspondence between multiple language types and multiple image quality parameters; according to the first image quality parameter, adjust the image to be projected to obtain the first image.
  • the laser projection device when the laser projection device is turned on, it will display an input interface for language type information, and the user can input the language type on the input interface.
  • a laser projection device when a laser projection device is turned on, it usually provides the user with a startup wizard process, which prompts the user to select or input language type information, and the user selects the corresponding language type information according to the language type in the region, or, Users can also select corresponding language type information according to their own language habits.
  • the second preset correspondence relationship is a correspondence relationship between language type information and image quality parameters, and the second preset correspondence relationship may be in the form of a data table or in other forms.
  • the second preset relationship includes, for example, correspondence between multiple language types and multiple image quality parameters.
  • the correspondence between multiple pieces of language type information and multiple picture quality parameters can be obtained by investigating picture quality preferred by users in different regions.
  • the image quality parameters may include: brightness and saturation.
  • the image quality parameter may also include hue.
  • the hue may include hues under different saturations and hues under different brightnesses, and the saturation may also include saturations under different brightnesses.
  • the language type can include: Chinese, English, Japanese, Korean, etc.
  • the image quality parameters preferred by users of different language types may be different. Therefore, image quality parameters corresponding to different language type information may be different.
  • the second preset correspondence relationship can be set in advance and stored in the controller 410.
  • the controller 410 acquires the first language type information input by the user, it can determine the correspondence of the first language type information according to the second preset correspondence relationship.
  • the first image quality parameter is used, and the image to be projected is adjusted by using the first image quality parameter to obtain the first image.
  • a default image quality parameter is preset in the controller 410, and when the controller 410 does not obtain input language type information, the default image quality parameter may be invoked to display the image with projection.
  • the skin color type may be determined first through the language type information, and then the image quality parameter may be determined according to the skin color type.
  • the controller 410 is configured to: determine the first skin color type corresponding to the language type information input by the user according to the correspondence between the multiple language type information and the multiple skin color types; The corresponding relationship of the parameters is used to determine the image quality parameters corresponding to the first skin color type.
  • the controller 410 may determine the skin color type corresponding to the first language type information input by the user according to the preset and stored correspondence between multiple language type information and multiple skin color types.
  • the skin color type may include, for example: rosy skin type, fair skin type, natural skin type, and the like.
  • the skin color types corresponding to different language type information may be the same or different. Different skin color types correspond to different image quality parameters, and the controller 410 presets and stores correspondences between multiple skin color types and multiple image quality parameters. For example, the value of at least one parameter among the image quality parameters corresponding to different skin color types is different.
  • the controller 410 can determine the first skin color type corresponding to the first language type information according to the correspondence between multiple language type information and multiple skin color types, and then according to the multiple The corresponding relationship between a skin color type and multiple image quality parameters determines the first image quality parameter corresponding to the first skin color type.
  • the controller 410 displays the image to be projected by calling the first image quality parameter, the displayed image quality is more in line with the image quality. The display effect preferred by the user.
  • the controller 410 calls the first image quality parameter determined according to the first language type information to adjust the image to be projected to obtain the first image
  • the controller 410 transmits the first image to the DMD 240, and the DMD 240 utilizes the image signal of the first image
  • the illumination beam is modulated to obtain a projection beam
  • the lens 300 projects the projection beam into an image to display the first image.
  • the controller 410 may further acquire image type information of the first image.
  • the image type information may include: American TV series, British TV series, Japanese TV series, Korean documentaries, French movies, and so on.
  • the different image type information may reflect information about the region to which the person in the first image belongs.
  • people in different regions have different skin color types, so the used skin color quality parameters may also be different.
  • the skin color style of the characters may be a natural skin color style.
  • the image type may reflect the actual background of the currently displayed image.
  • the image type of the currently displayed image is an American TV series
  • displaying images displaying images in the skin color style of people in Europe and the United States will be more in line with the needs of users at this time. Therefore, when displaying an image by invoking a corresponding image quality parameter according to the image type information, the user's viewing experience can be further improved.
  • the controller 410 is configured to: acquire the image type information of the first image; determine the second image quality parameter corresponding to the image type information of the first image according to the third preset correspondence; the third preset The corresponding relationship includes the corresponding relationship between a plurality of image type information and a plurality of image quality parameters; judging whether the second image quality parameter is the same as the first image quality parameter; if the second image quality parameter is different from the first image quality parameter, according to The second quality parameter adjusts the first image.
  • the controller 410 may acquire image type information of the first image, such as first image type information.
  • the controller 410 may acquire the first image type information through the photographing device 20 .
  • the photographing device 20 may photograph the first image displayed on the projection screen 30, and send the photographed first image to the controller 410, and the controller 410 determines the first image type information of the first image.
  • the third preset correspondence relationship is a correspondence relationship between image type information and image quality parameters, and the third preset correspondence relationship includes correspondence relationships between a plurality of image type information and a plurality of image quality parameters.
  • the third preset correspondence relationship may be in the form of a data table or in other forms.
  • the third preset correspondence relationship can be set in advance and stored in the controller 410.
  • the controller 410 acquires the first image type information, it can determine the second image type information corresponding to the first image type information according to the third preset correspondence relationship. Quality parameters.
  • the controller 410 is configured to: determine the second skin color type corresponding to the image type information of the first image according to the correspondence between the multiple image type information and the multiple skin color types; The corresponding relationship of the image quality parameters is to determine the image quality parameters corresponding to the second skin color type.
  • the controller 410 may also preset and store the relationship between multiple image type information and multiple skin color types.
  • the controller 410 determines the image quality parameter corresponding to the first image type information according to the correspondence between the multiple image quality parameters of the multiple skin color types.
  • the second image quality parameter may be the same as or different from the first image quality parameter.
  • the controller 410 judges whether the second image quality parameter is the same as the first image quality parameter; if the second image quality parameter is different from the first image quality parameter, then calls the second image quality parameter pair First image adjustment.
  • the display effect of the first image adjusted by the second image quality parameter is better than the display effect of the first image.
  • the second image quality parameter determined according to the image type information of the currently displayed image is different from the previously determined according to the language type information selected by the user
  • the second image quality determined according to the image type information is selected for image display.
  • the displayed picture of the second image quality determined according to the image type information better matches the real scene and background, thereby improving the viewing experience of the user.
  • the controller 410 When the second image quality parameter is the same as the first image quality parameter, continue to display the first image. In some examples, when the controller 410 does not acquire the first image type information, or the second image quality parameter corresponding to the first image type information is the same as the first image quality parameter, it may continue to display the image according to the first image quality parameter. . For example, when the first image only displays some still images instead of video, the controller 410 cannot obtain the image type information of the first image, and at this time cannot obtain the image type information of the currently displayed image.
  • relevant parameters in the color interval corresponding to the skin color of the person may be adjusted.
  • relevant parameters in other color intervals except skin color smooth transition processing can be performed.
  • the relevant parameters in the color intervals corresponding to the colors other than the skin color are basically the same, so that it can be displayed that other regions in the image except the human face have a better and consistent display effect.
  • the color interval corresponding to the skin color may be the first color sub-interval 121 where red R transitions to yellow Y.
  • the brightness of the skin color of the human face can be changed to darken or brighten the human face.
  • the ordinate in Fig. 12 can represent the brightness.
  • the skin color of the human face becomes brighter; when the ordinate value decreases, the skin color of the human face darken.
  • the color tone of the human face skin color can be changed.
  • tone color matching can be divided into three parts: hue, hue at different saturations, and hue at different brightnesses.
  • the hue is the adjustment of the overall skin tone; the hue under different saturation can be used to adjust the hue of the face under different saturation; the hue under different brightness can be used to adjust the hue of the face under different brightness.
  • the ordinate in Fig. 12 can respectively represent the hue, the hue under different saturations and the hue under different brightness.
  • the first color sub-range 121 when the value of the ordinate increases, the human face The skin color of the face will be more reddish-purple; when the ordinate value decreases, the skin color of the face will be more yellow-green.
  • the concentration of the skin color of the face can be changed. Due to the complexity of the skin color of the face, the saturation is divided into saturation and saturation under different brightness. Harmony is the adjustment of the overall skin color concentration, which can be adjusted according to different areas of the skin color; the saturation under different brightness can be used to adjust the concentration of the face under different brightness.
  • the vertical coordinates in Figure 12 can respectively represent the saturation and the saturation under different brightness. For the first color sub-range 121, when the value of the vertical axis increases, the skin color of the face will be thicker , when the value decreases, the skin color of the face will be lighter.
  • the hue, hue at different saturations, and hues at different brightnesses in the skin tone quality parameters need to be adjusted slightly larger, and the color saturation of the face skin tone should also be adjusted. slightly thicker.
  • the saturation in the skin tone quality parameters and the saturation under different brightness needs to be adjusted to be smaller to make the skin tone lighter. It should be noted that, in addition to the three skin color types in the above embodiment, skin color types may also be set, or the above three skin color types may be further refined.
  • FIG. 17 is a flowchart of a method for adjusting a projected image according to some embodiments of the present disclosure. As shown in FIG. 17 , the method include the following steps:
  • Step 1711 acquire an image to be projected, the image to be projected includes a plurality of pixels, the color corresponding to each pixel includes first color information, and the first color information includes at least one of first brightness information and first saturation information.
  • Step 1712 adjusting the first color information corresponding to the color of at least one first pixel to obtain second color information corresponding to the color of each first pixel, wherein at least one first pixel is at least one of the plurality of pixels;
  • the two-color information includes at least one of second brightness information and second saturation information.
  • Step 1713 Obtain an adjusted image to be projected according to the second color information of at least one first pixel and the first color information of the remaining second pixels in the plurality of pixels except the at least one first pixel.
  • the second brightness information corresponding to the first pixel is higher than the first brightness information corresponding to the first pixel, and the second saturation information corresponding to the first pixel is higher than the first saturation information corresponding to the first pixel.
  • the first color information includes first brightness information
  • the second color includes second brightness information
  • the method further includes: according to the second brightness information of at least one first pixel and the first brightness information of the second pixel , to obtain the adjusted average brightness of the image to be projected; according to the adjusted average brightness of the image to be projected, determine the brightness curve corresponding to the average brightness; adjust at least one first pixel according to the brightness curve corresponding to the average brightness The second brightness information and the first brightness information of the second pixel.
  • adjusting the first color information corresponding to the color of at least one first pixel to obtain the second color information corresponding to the color of each first pixel includes: adjusting at least one first pixel according to the first preset correspondence relationship.
  • the first color information corresponding to the color of a pixel is obtained to obtain the second color information corresponding to the color of each first pixel; the first preset correspondence includes the correspondence between multiple colors and multiple color information.
  • the first color information corresponding to the color of at least one first pixel is adjusted to obtain the second color information corresponding to the color of each first pixel, including: a preset color interval, and the color interval includes a plurality of colors; Select at least one color from a plurality of colors in the color interval; if the color of the first pixel is one of at least one color in the color interval, adjust the first color information corresponding to the color of the first pixel to obtain the first Second color information corresponding to the color of the pixel.
  • the first color information corresponding to the color of the first pixel includes first color information of multiple gray scales; if the color of the first pixel is one of at least one color in the color interval, adjust the first pixel
  • the first color information corresponding to the color of the first pixel includes: selecting at least two gray levels in the color of the first pixel; adjusting the first color information of the color of the first pixel in at least two gray levels to obtain the color of the first pixel in Second color information of at least two gray scales.
  • the laser projection device presets a plurality of grayscale thresholds; according to the adjusted average brightness of the image to be projected, determining the brightness curve corresponding to the average brightness includes: according to the corresponding relationship between brightness and gray scale, determining The adjusted gray scale corresponding to the average brightness of the image to be projected; determining the brightness curve corresponding to the average brightness according to the relationship between the adjusted gray scale corresponding to the average brightness of the image to be projected and a plurality of gray scale thresholds.
  • Some embodiments of the present disclosure provide another method for adjusting a projected image, as shown in FIG. 18 , the method includes the following steps:
  • Step 1811 acquire the input language type information.
  • the laser projection device when the laser projection device is turned on, it will provide the user with a language type information input interface for obtaining the language type information input by the user.
  • Step 1812 judge whether the input language type information is obtained.
  • execute step 1813 If obtained, execute step 1813; if not obtained, execute step 1821.
  • Step 1813 Determine the first image quality parameter corresponding to the input language type information according to the second preset correspondence.
  • the second preset correspondence includes correspondences between multiple language types and multiple image quality parameters.
  • Step 1814 adjust the image to be projected according to the first image quality parameter to obtain the first image.
  • Step 1815 acquire image type information of the first image.
  • Step 1816 determine whether the image type information of the first image is obtained.
  • execute step 1817 If obtained, execute step 1817; if not obtained, execute step 1819.
  • Step 1817 determine the second image quality parameter corresponding to the image type information of the first image.
  • the third preset correspondence includes a correspondence between a plurality of image type information and a plurality of image quality parameters.
  • Step 1818 determine whether the second image quality parameter is the same as the first image quality parameter.
  • step 1819 If they are the same, go to step 1819; if not, go to step 1820.
  • Step 1819 display the first image according to the first quality parameter.
  • Step 1820 adjust the first image according to the second quality parameter.
  • Step 1821 call the default image quality parameters to display the image to be projected.
  • Step 1822 acquire image type information of the image to be projected.
  • Step 1823 determine whether the image type information of the image to be projected is obtained.
  • execute step 1824 If obtained, execute step 1824; if not obtained, execute step 1821.
  • Step 1824 determine the second image quality parameter corresponding to the image type information of the image to be projected.
  • Step 1825 adjust the image to be projected according to the second image quality parameter.
  • the method for adjusting the projected image above has the same beneficial effect as the laser projection device described in some of the above embodiments, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种激光投影设备,包括控制器(410)。控制器(410)被配置为:获取待投影图像,待投影图像包括多个像素,每个像素对应的颜色包括第一颜色信息,其中,第一颜色信息包括第一亮度信息和第一饱和度信息中的至少一个(1711);调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应第二颜色信息,其中,至少一个第一像素为多个像素中的至少一个;第二颜色信息包括第二亮度信息和第二饱和度信息中至少一个(1712);第二亮度信息高于第一亮度信息,第二饱和度信息高于第一饱和度信息;根据至少一个第一像素的第二颜色信息和多个像素中除了至少一个第一像素以外剩余的第二像素的第一颜色信息,得到调整后的待投影图像(1713)。

Description

激光投影设备及投影图像的调节方法
本申请要求于2021年9月18日提交的、申请号为202111097851.9的中国专利申请,于2021年12月10日提交的、申请号为202111507379.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及投影显示技术领域,尤其涉及一种激光投影设备及投影图像的调节方法。
背景技术
随着激光投影设备的普及,激光投影设备开始作为替代电视等的大屏幕产品走进了千家万户,因而,对于激光投影设备的显示效果的要求也越来越高。
激光投影设备包括光源组件、光机和镜头,该光源组件用于向光机提供高强度的激光照明光束;该光机用于对激光照明光束进行图像信号调制形成投影光束,经光机调制后形成的投影光束进入镜头;该镜头用于将投影光束投射至投影屏幕上。
发明内容
一方面,本公开一些实施例提供一种激光投影设备,包括光源组件、光机、镜头和控制器。光源组件包括单色激光器和荧光轮,荧光轮包括红色转换区域、绿色转换区域、黄色转换区域和透射区域;光源组件被配置为提供照明光束。光机被配置为根据图像信号对照明光束进行调制,以获得投影光束。镜头被配置为将投影光束投射成像。控制器被配置为:获取待投影图像,待投影图像包括多个像素,每个像素对应的颜色包括第一颜色信息,其中,第一颜色信息包括第一亮度信息和第一饱和度信息中至少一个。调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应第二颜色信息,其中,至少一个第一像素为多个像素中的至少一个;第二颜色信息包括第二亮度信息和第二饱和度信息中至少一个;第二亮度信息高于第一亮度信息,第二饱和度信息高于第一饱和度信息。根据至少一个第一像素的颜色对应的第二颜色信息和多个像素中除了至少一个第一像素以外剩余的第二像素的颜色对应第一颜色信息,得到调整后的待投影图像。向光机传输调整后的待投影图像,以使光机根据调整后的待投影图像的图像信号,对照明光束进行调制。
另一方面,本公开一些实施例提供一种投影图像的调节方法,应用于激光投影设备,该方法包括:首先,获取待投影图像,待投影图像包括多个像素,每个像素对应的颜色包括第一颜色信息,其中,第一颜色信息包括第一亮度信息和第一饱和度信中至少一个。其次,调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应的第二颜色信息,其中,至少一个第一像素为多个像素中的至少一个;第二颜色信息包括第二亮度信息和第二饱和度信息中至少一个。第二亮度信息高于第一亮度信息,第二饱和度信息高于第一饱和度信息。最后,根据至少一个第一像素的颜色对应的第二颜色信息和多个像素中除了至少一个第一像素以外剩余的第二像素的颜色对应的第一颜色信息,得到调整后的待投影图像。
附图说明
图1为根据本公开一些实施例的一种激光投影设备的结构图;
图2为根据本公开一些实施例的激光投影设备中光源组件、光机和镜头的示意图;
图3为根据本公开一些实施例的激光投影设备中的光路架构图;
图4为根据本公开一些实施例的激光投影设备中光源组件的光路原理示意图;
图5为根据本公开一些实施例的数字微镜器件中的微小反射镜片的排列结构图;
图6为根据本公开一些实施例的微小反射镜片的工作示意图;
图7为图5所示数字微镜器件中一个微小反射镜片摆动的位置示意图;
图8为根据本公开一些实施例的一种激光投影设备与投影屏幕的位置示意图;
图9为根据本公开一些实施例的另一种激光投影设备的结构图;
图10为根据本公开一些实施例的一种荧光轮的结构图;
图11为根据本公开一些实施例的一种颜色区间的示意图;
图12为根据本公开一些实施例的颜色与灰阶对应关系的示意图;
图13为根据本公开一些实施例的一种灰阶与亮度曲线对应关系的示意图;
图14为根据本公开一些实施例的另一种灰阶与亮度曲线对应关系的示意图;
图15为根据本公开一些实施例的又一种灰阶与亮度曲线对应关系的示意图;
图16为根据本公开一些实施例的再一种灰阶与亮度曲线对应关系的示意图;
图17为根据本公开一些实施例的一种投影图像的调节方法的流程图;
图18为根据本公开一些实施例的另一种投影图像的调节方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
图1为根据本公开一些实施例的一种激光投影设备的结构图,如图1所示,激光投影设备包括主机10,主机10包括整机壳体101(图中仅示出部分壳体),装配于整机壳体101中的光源组件100、光机200,以及镜头300。
光源组件100被配置为提供照明光束(即激光束)。光机200被配置为利用图像信号对光源组件100提供的照明光束进行调制以获得投影光束。镜头300被配置为将投影光束投射在投影屏幕或墙壁上成像。光源组件100、光机200和镜头300沿着光束传播方向依次连接,各自由对应的壳体进行包裹。光源组件100、光机200和镜头300各自的壳体对各光学部件进行支撑并使得各光学部件达到一定的密封或气密要求。
光机200的一端和镜头300连接且沿着整机第一方向X设置,比如第一方向X可以为整机的宽度方向。在光机200的另一端连接有光源组件100。在本示例中,光源组件100与光机200的连接方向,垂直于光机200与镜头300的连接方向,这种连接结构一方面可以适应光机200中反射式光阀的光路特点,另一方面,还有利于缩短一个维度方向上光路的长度,利于整机的结构排布。例如,当将光源组件100、光机200和镜头300设置在一个维度方向(例如第二方向,第二方向与第一方向X垂直的方向)上时,该方向上光路的长度就会很长,从而不利于整机的结构排布。
在一些实施例中,光源组件100可以包括三个激光器。图2为根据本公开一些实施例的激光投影设备中光源组件、光机和镜头的示意图。如图2所示,以光源组件100为三色激光光源为例,该三个激光器可分别为红色激光器130、绿色激光器120和蓝色激光器110。但并不局限于此。该三个激光器也可以均为蓝色激光器110,或者两个激光器为蓝色激光器110、一个激光器为红色激光器130。当光源组件100包括的多个激光器可以产生三基色,则光源组件100可以产生包含三基色光的照明光束,因此光源组件100内不需要设置荧光轮,进而能够简化光源组件100的结构,减小光源组件100的体积。
在一些实施例中,光源组件100还可以包括两个激光器。例如,该两个激光器可以为蓝色激光器110和红色激光器130。
在另一些实施例中,光源组件100还可以包括一个激光器,此时,光源组件100为单色激光光源,例如,光源组件100仅包括蓝色激光器110。图4为根据本公开一些实施例的激光投影设备中光源组件的光路原理示意图,如图4所示,激光器可以为蓝色激光器110,该光源组件100还可以包括:荧光轮140和滤色轮150。蓝色激光器110发射蓝光后,一部分蓝光照射到荧光轮140上以产生红光荧光(当光源组件100包括红色激光器130时,则不需要再产生红色荧光)和绿光荧光;该蓝光激光、红光荧光(或红色激光)以及绿光荧光依次通过合光镜160后再通过滤色轮150进行滤色,并时序性地输出三基色光。根据人眼的视觉暂留现象,人眼分辨不出某一时刻光的颜色,感知到的仍然是混合的白光。
光源组件100发出的照明光束进入光机200。图3为根据本公开一些实施例的激光投影设备中的光路架构图,如图2和图3所示,光机200可以包括:光导管210,透镜组件220,反射镜230,数字微镜器件(Digital Micromirror Device,DMD)240以及棱镜组件250。该光导管210可以接收光源组件100提供的照明光束,并对该照明光束进行匀化。 透镜组件220可以对照明光束先进行放大后进行会聚并出射至反射镜230。反射镜230可以将照明光束反射至棱镜组件250。棱镜组件250将照明光束反射至DMD 240,DMD 240对照明光束进行调制,并将调制后得到的投影光束反射至镜头300中。
光机200中,DMD 240是利用图像信号对光源组件100提供的照明光束进行调制,即:控制照明光束针对待显示图像的不同像素显示不同的颜色和亮度,以最终形成光学图像,因此DMD 240也被称为光调制器件或光阀。以下实施例以DMD 240为光调制器件为例进行示例性说明。根据光调制器件对照明光束进行透射还是进行反射,可以将光调制器件分为透射式光调制器件或反射式光调制器件。例如,如图2和图3所示,DMD 240对照明光束进行反射,即为一种反射式光调制器件。而液晶光阀对照明光束进行透射,因此是一种透射式光调制器件。此外,根据光机中使用的光调制器件的数量,可以将光机分为单片***、双片***或三片***。
在一些示例中,本公开实施例中的DMD 240可以应用于数字光处理(Digital Light Processing,DLP)投影架构中,如图2和图3所示,光机200使用了DLP投影架构。图5为根据本公开一些实施例的数字微镜器件中的微小反射镜片的排列结构图,如图5所示,DMD 240包含成千上万个可被单独驱动以旋转的微小反射镜片2401,这些微小反射镜片2401呈阵列排布,每个微小反射镜片2401对应待显示图像中的一个像素。在DLP投影架构中,每个微小反射镜片2401相当于一个数字开关,在外加电场作用下可以在正负12度(±12°)或者正负17度(±17°)的范围内摆动,以使得被反射的光能够沿光轴方向通过镜头300成像在屏上,形成一个亮的像素。
图6为根据本公开一些实施例的微小反射镜片的工作示意图,如图6所示,微小反射镜片2401在负的偏转角度反射出的光,称之为OFF光,OFF光为无效光,光机200的壳体上或者光吸收单元上吸收掉。微小反射镜片2401在正的偏转角度反射出的光,称之为ON光,ON光是DMD 240表面的微小反射镜片2401接收照明光束照射,并通过正的偏转角度射入镜头300的有效光束,用于投影成像。微小反射镜片2401的开状态为光源组件100发出的照明光束经微小反射镜片2401反射后可以进入镜头300时,微小反射镜片2401所处且可以保持的状态,即微小反射镜片2401处于正的偏转角度的状态。微小反射镜片2401的关状态为光源组件100发出的照明光束经微小反射镜片2401反射后未进入镜头300时,微小反射镜片2401所处且可以保持的状态,即微小反射镜片2401处于负的偏转角度的状态。
示例性地,图7为图5所示数字微镜器件中一个微小反射镜片摆动的位置示意图,如图7所示,对于偏转角度为±12°的微小反射镜片2401,位于+12°的状态即为开状态,位于-12°的状态即为关状态,而对于-12°和+12°之间的偏转角度,微小反射镜片2401的实际工作状态仅开状态和关状态。
在一帧图像的显示周期内,部分或全部微小反射镜片2401会在开状态和关状态之间切换一次,从而根据微小反射镜片2401在开状态和关状态分别持续的时间来实现一帧图像中的各个像素的灰阶。因此,通过图像信号控制DMD 240中每个微小反射镜片在一帧图像的显示周期内所处的状态以及各状态的维持时间,可以控制该微小反射镜片2401对应像素的亮度(灰阶),实现对投射至DMD 240的照明光束进行调制的目的。
DMD 240前端的光导管210,透镜组件220和反射镜230形成照明光路,光源组件100发出的照明光束经过照明光路后形成符合DMD 240所要求的光束尺寸和入射角度。
如图2所示,本公开一些实施例的激光投影设备中光源组件、光机和镜头的示意图中,镜头300包括多片透镜组合,通常按照群组进行划分,分为前群、中群和后群三段式,或者前群和后群两段式。前群是靠近投影设备出光侧(图2所示的左侧)的镜片群组,后群是靠近光机200出光侧(图2所示的右侧)的镜片群组。根据上述多种镜片组组合,镜头300也可以是变焦镜头,或者为定焦可调焦镜头,或者为定焦镜头。在一些实施例中,激光投影设备为超短焦投影设备,镜头300为超短焦镜头,镜头300的投射比通常小于0.3,比如0.24。投射比是指投影距离与画面宽度之比,比值越小,说明相同投影距离,投射画面的宽度越大。投射比较小的超短焦镜头保证投射效果的同时,能够适应较狭窄的空间。
图8为根据本公开一些实施例的一种激光投影设备与投影屏幕的位置示意图,如图8所示,激光投影设备的主机10与投影屏幕分开设置,两者之间一般相距一段距离。当激光投影设备的主机10发生移动时,也就是整机壳体101发生移动时,镜头300投射到投影屏幕30上的投影图像也会产生移位,因此可能会造成投影图像超出投影屏幕30显示范围的情况,影响投影显示效果。
在一些示例中,如图8所示,激光投影设备包括主机10和拍摄装置20。该拍摄装置20为能够对投影屏幕30进行拍摄的设备。例如,该拍摄装置20可以为摄像头。示例性地,拍摄装置20可以设置于主机10的整机壳体101上,或者,拍摄设备20也可以设置于主机10的整机壳体101之外的位置,本公开对于拍摄装置20的设置位置并不限定。
在一些实施例中,激光投影设备的主机10还包括电路***架构(power system architecture),该电路***架构可以为印刷电路板组件(Printed Circuit Board Assembly,PCBA)。该电路***架构被配置为控制光源组件100和光机200运行。示例性地,如图1所示,电路***架构可以设置于整机壳体101内。
图9为本公开实施例提供的另一种激光投影设备的结构图,如图9所示,激光投影设备的主机10包括控制器410和光棒170。其中,光源组件100包括单色激光器和荧光轮140,本公开实施例以单色激光器为蓝色激光器110为例进行说明。
示例性地,控制器410与DMD 240耦接,用于向DMD 240提供驱动信号,DMD 240按照控制器410提供的驱动信号驱动各微小反射镜的偏转角度。在一些示例中,控制器410可以为驱动芯片或处理器,该驱动芯片或处理器上预设相关程序,并按照该相关程序执行相应操作。
图10为本公开一些实施例的一种荧光轮140的结构示意图。如图10所示,荧光轮140包括红色转换区域r、绿色转换区域g、透射区域b和黄色转换区域y。当蓝色激光器110出射的蓝色激光入射到黄色转换区域y时,可以激发出黄色光。由于黄色转换区域y的透过率比较高,因而在合成白色光时,对亮度的贡献比较大,能够提高白场的亮度。
示例性地,激光投影设备还可以包括光棒170。如图9所示,光棒170可以设置在荧光轮140的出光侧。例如,光棒170可以具有一个预设大小的口径的集光装置,用于将到达荧光轮140后的激光光束进行集合并集中通过。光棒170可以对通过的激光光束进行多次反射和匀光。
当荧光轮140转动时,蓝色激光器110大部分的激光会轮流照射在荧光轮140的红色转换区域r、绿色转换区域g、黄色转换区域y和透射区域b上。在相邻的两个转换区域的交界区,例如,在图10中,红色转换区域r和绿色转换区域g的交界区H,由于激光器发出的激光光束具有一定的发散角度,因此,激光光束在交界区H会同时激发出来两种颜色的光,从而产生混色光。混色光对白光的亮度具有较大的贡献,可以提高白场亮度。因此,在显示白光时,可以打开混色光。
在一些示例中,控制器410通过控制DMD 240来实现对混色光的打开或关闭。在激光投影设备显示白光时,打开混色光,提高激光投影设备的白场亮度,以使激光投影设备显示白场的亮度与一般显示装置(例如,液晶显示装置,以下以液晶显示装置为例进行说明)的白场亮度差别不大。由于混色光会对红、绿、蓝三基色的显示效果产生影响,因而,在一些示例中,激光投影设备显示单色光时,需要关闭混色光。因此,当激光投影设备在显示三基色光或者由三基色光合成的其他单色光时,与液晶显示装置相比,其显示亮度较低。
需要说明的是,液晶显示装置是通过红、绿、蓝三基色光进行图像显示,因此红、绿、蓝三基色光的亮度之和等于白场的亮度。而激光投影设备中的红、绿、蓝三基色光中的红色光和绿色光均是由蓝色激光器110通过荧光轮140激发获得的,其红、绿、蓝三基色光的亮度之和约为白场亮度的50%~60%。
例如,当液晶显示装置的白场亮度为400nits时,其红、绿、蓝三基色光的亮度和为也为400nits。当激光投影设备的白场亮度是400nits时,其红、绿、蓝三基色光的亮度和为240nits。激光投影设备显示的三基色光的亮度比液晶显示装置显示的三基色光的亮度低。
因此,对于单色激光器的激光投影设备来说,其显示白场的亮度可以与液晶显示装置的白场亮度相差不大,因而,无需对荧光轮140发出的白光的亮度进行相应调整。但是,在显示单色光时,由于荧光轮140发出的红、绿、蓝三基色光的亮度比液晶显示装置所显示的三基色的光的亮度低,因此,由红、绿、蓝三基色合成的其他颜色的光的亮度也比液晶显示装置也要暗淡一些。从而单色激光器的激光投影设备相比于液晶显示装置,存在显示画面整体暗淡,显示效果不佳的问题。
有鉴于此,本公开实施例提供一种激光投影设备,针对单色激光器在进行单色显示时,存在的显示亮度暗淡、显示效果不好的问题,通过从待投影图像中各像素显示的颜色中选取出多个待调整的颜色,并对这多个待调整颜色的亮度和/或饱和度进行提升,从而提升激光投影设备显示画面的整体显示效果。
控制器410被配置为:获取待投影图像,该待投影图像包括多个像素,每个像素对应的颜色(例如:第一颜色)包括第一颜色信息。第一颜色信息包括第一亮度信息和第一饱和度信息中的至少一个。
例如,控制器410可以获取待投影图像中各像素的颜色以及该颜色对应的第一颜色信息。待投影图像包括多个像素,每个像素所显示的多种颜色,多个像素显示的颜色可以相同,也可以不同。
第一颜色可以为第一像素当前显示的任一颜色。其中,第一亮度信息可以反映第一颜色的亮度情况,例如,第一亮度信息可以指示第一颜色的明暗程度。第一饱和度信息能够反映第一颜色的饱和度情况,例如,第一饱和度信息可以指示第一颜色的饱满程度。
控制器410还被配置为:调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应的第二颜色信息,其中,第二颜色信息包括第二亮度信息和第二饱和度信息中至少一个;第二亮度信息高于第一亮度信息,第二饱和度信息高于第一饱和度信息。示例性地,至少一个第一像素为多个像素中的至少一个像素。
例如,待投影图像中第一像素的第一颜色按照第一颜色信息显示时,存在亮度偏暗,显示效果不好的问题。控制器410对第一颜色对应的第一颜色信息进行调整,包括控制器410分别对第一颜色的第一亮度信息和第一饱和度信息进行调整,或者,控制器410对第一颜色的第一亮度信息或第一饱和度信息进行调整。本公开实施例以控制器410分别对第一颜色的第一亮度信息和第一饱和度信息进行调整为例进行以下说明。
示例性地,控制器410将第一颜色的第一亮度信息调整为第二亮度信息,将第一饱和度信息调整为第二饱和度信息。第二亮度信息高于第一亮度信息,第二饱和度信息高于第一饱和度信息。因此,调整后的第一颜色按照第二颜色信息进行显示时,其亮度和饱和度都会所有提升,显示效果更好。
示例性地,第一颜色可以通过红(R)、绿(G)、蓝(B)三基色按照不同的数值配比生成。因此,第一颜色的第一颜色信息可以包括红(R)的颜色信息、绿(G)的第一颜色信息和蓝(B)的颜色信息。控制器410对第一颜色对应的第一颜色信息进行调整,包括控制器410分别对R、G、B三基色的颜色信息进行调整。例如,控制器410将第一颜色信息调整为第二颜色信息,包括控制器410将组成第一颜色的红(R)、绿(G)、蓝(B)三基色的亮度信息和饱和度信息分别调整为第二亮度信息和第二饱和度信息。
在一些示例中,控制器410可以通过调整第一亮度信息的亮度增益系数,将第一亮度信息调整为第二亮度信息;调整第一饱和度的饱和度增益系数,将第一饱和度信息调整为第二饱和度信息。其中,第二亮度信息的亮度增益系数大于第一亮度信息的亮度增益系数,第二饱和度信息的饱和度的增益系数大于第一饱和度信息的饱和度增益系数。也就是说,控制器410可以通过提高第一颜色的亮度增益系数和饱和度增益***,来提高第一颜色的亮度和饱和度。
在一些实施例中,控制器410被配置为:根据第一预设对应关系,调整至少一个第一像素的颜色对应的第一颜色信息,得到第一像素的颜色对应的第二颜色信息。
示例性地,第一预设对应关系包括多个颜色与多个颜色信息之间的对应关系。多个颜色与多个颜色信息之间的对应关系包括多个颜色与亮度信息之间的对应关系以及多个颜 色与饱和度信息之间的对应关系。
第一预设对应关系可以预先设定,并存储在控制器410中。例如,第一预设对应关系可以为数据表的形式,或者也可以其他形式。
在一些示例中,第一预设对应关系中可以设定每个颜色对应的目标颜色信息,控制器410在获取到一像素的颜色后,按照该颜色对应的目标颜色信息,将当前颜色信息调整为目标颜色信息。例如,当控制器410获取到第一颜色以及第一亮度信息和第一饱和度信息后,可以直接根据第一颜色,结合颜色与亮度信息之间的对应关系以及颜色与饱和度信息之间的对应关系进行亮度和饱和度的调整。例如,如果第一亮度信息和第二亮度信息相同,则将第一亮度信息作为第二亮度信息,如果第一亮度信息和第二亮度信息不同,则直接将第一亮度信息调整为第二亮度信息。
在另一些示例中,第一预设对应关系中可以设定每个颜色对应的颜色信息的映射关系,控制器410在获取到一像素的颜色后,按照该映射关系,将该颜色对应的当前颜色信息(即第一颜色信息)调整为目标颜色信息(即第二颜色信息)。例如,当控制器410获取到第一颜色的当前颜色信息时,按照预设的映射关系,将当前颜色信息调整为目标颜色信息。其中,该映射关系例如可以为倍数关系,例如,当前颜色信息乘以预设数值得到目标颜色信息;或者,该映射关系也可以为求和关系,例如,当前颜色信息加某一预设数值可以得到目标颜色信息。
由于待投影图像中各像素显示的颜色可能不同,如果对待投影图像中所有像素的颜色对应的第一颜色信息都进行调整,会使控制器410产生大量的数据运算,影响控制器410的响应速度。
为此,在一些实施例中,控制器410被配置为:预设颜色区间,该颜色区间包括多个颜色;在该颜色区间中的多个颜色中个选取至少一个颜色作为待调整颜色。若第一像素的颜色为该颜色区间中选取的待调整颜色,则将第一颜色对应的第一颜色信息调整为第二颜色信息。
示例性地,控制器410中预设并存储有颜色区间。该颜色区间可以为第二颜色过渡到第三颜色的颜色区间,第二颜色和第三颜色可以分别为该颜色区间的两端。例如,第二颜色和第三颜色可以分别为图像显示中的任一颜色,且第二颜色和第三颜色不同。第二颜色过渡到第三颜色的颜色区间可以包括多个颜色。在颜色区间的多个颜色中选取至少两个颜色作为待调整的颜色,控制器410对这至少两个待调整的颜色对应的颜色信息进行调整。
在一些示例中,控制器410中预设的颜色区间可以为红色过渡到品红色的颜色区间,红色过渡到品红色的颜色区间可以为第一颜色区间,这样,可以较大程度上满足各种图像显示的颜色。
图11为本公开实施提供的一种颜色区间的示意图。如图11所示,红色R到品红色M的第一颜色区间可以包括多个颜色(包括红色R和品红色M)。在第一颜色区间中选取至少一个(即一个或多个)颜色作为待调整颜色,控制器410对这些待调整颜色所对应的第一颜色信息进行调整。
例如,可以在第一颜色区间中选取出红色R、绿色G、青色C等颜色为待调整的颜色。当控制器410获取到第一颜色为红色R、绿色G、青色C中的任一颜色时,将第一颜色对应的第一颜色信息调整为第二颜色信息。例如,当第一颜色为红色时,由于红色是第一颜色区间中选取的待调整颜色,因此,控制器410会根据第一预设对应关系,将红色对应的第一颜色信息调整为第二颜色信息。
在一些示例中,还可以在第一颜色区间中选取更多的颜色作为待调整颜色,实现对更多颜色对应的颜色信息的调整,从而实现对待投影图像更高精度的调整。或者,也可以在第一颜色区间中选取更少的颜色作为待调整颜色,从而简化控制器410处理数据的流程,提高控制器410的响应速度。
需要说明的是,本公开实施例在颜色区间中选取出的多个待调整颜色可以为图像显示中常用的颜色,这些颜色可以涵盖图像显示的颜色范围。
示例性地,为了兼顾控制器410的调节精度和处理速度,还可以对第一颜色区间进行 进一步的划分,将第一颜色区间划分为多个颜色子区间,每个颜色子区间包括至少两个颜色。
例如,如图11所示,可以将第一颜色区间划分为五个颜色子区间。其中,将红色R过渡到黄色Y的颜色区间划分为第一颜色子区间121;将黄色Y过渡到绿色G的颜色区间划分为第二颜色子区间122;将绿色G过渡到青色C的颜色区间划分为第三颜色子区间123;将青色C过渡到蓝色B的颜色区间划分为第四颜色子区间124;将蓝色B过渡到品红色M的颜色区间划分第五颜色子区间125。
需要说明的是,两个相邻颜色子区间共有的颜色可以包括在前一个颜色子区间,也可以包括在后一个颜色子区间。例如第一颜色子区间121和第二颜色子区间122均包括黄色Y,这种情况下,黄色Y可以包括在第一颜色子区间121内,或者也可以包括在第二颜色子区间122内。本公开下面实施例以两个相邻颜色子区间共有的颜色属于前一个颜色子区间为例进行示例性说明,例如,黄色Y属于第一颜色子区间内的颜色。
在一些示例中,在每个颜色子区间中选取至少一个颜色作为待调整颜色,控制器410对该至少一个颜色对应的第一颜色信息进行调整。其中,每个颜色子区间选取的待调整颜色的数量可以相同,也可以不相同。例如,当待投影图像中第一像素显示的第一颜色为任一颜色子区间中选取的任一待调整颜色时,控制器410可以对第一颜色对应的第一颜色信息进行调整。
需要说明的是,在图像显示中,人物的显示通常为重点,而人物面部肤色通常可以反应出显示图像的整体效果。因此,可以对人物面部肤色所对应的颜色区间中的颜色重点进行调整。例如,人物面部肤色对应的颜色区间主要为红色R过渡到黄色Y的第一颜色子区间121。因此,在一些示例中,可以在第一颜色子区间121中选取更多数量的颜色作为待调整颜色。
示例性地,如图11所示,在第一颜色子区间121选取的待调整颜色的数量可以大于第二颜色子区间122至第五颜色子区间125中任一个颜色子区间中选取的待调整颜色的数量。第二颜色子区间至第五颜色子区间中选取的待调整颜色的数量可以相同,也可以不同。
如图11所示,在红色R过渡到品红色M的第一颜色区间可以共选取31个颜色作为待调整颜色。其中,可以在第一颜色子区间121选取15个颜色作为待调整颜色,其他四个颜色子区间分别选取4个颜色作为待调整颜色。控制器410在待投影图像的所有像素显示的颜色中,对这31个颜色对应的第一颜色信息进行调整。
需要说明的是,对于每个颜色子区间中待调整颜色的数量的选取可以更多,或者更少。在一些示例中,由于黄色Y的透过率较高,黄色Y的亮度和饱和度已经满足显示要求,因此,在第一颜色区间中选取的颜色可以不包括黄色Y。
在一些示例中,第一颜色对应的颜色信息可以采用一个字节来记录,例如,该字节具有8个比特位,每个比特位可以代表一个为0或者1的二进制数据,将8位的二进制数转换成十进制可以表示从0到255的范围,该0到255的256个数值可以称为灰阶。也就是说,第一颜色对应的颜色信息可以采用0到255的256个灰阶表示。
图12为本公开实施例中的颜色在不同灰阶下与亮度的对应关系。如图12所示,横坐标表示不同的颜色,纵坐标表示不同的灰阶。由图12可知,同一颜色在不同灰阶下的亮度信息是不相同的。其中,每个颜色在每个灰阶下与亮度信息的对应关系是可以预先设定并存储在控制器410中。
示例性地,每个像素的颜色对应的第一颜色信息包括多个灰阶的第一颜色信息。控制器410对每个像素的颜色对应的第一颜色信息进行调整可以包括,控制器410对每个像素的颜色在不同灰阶的第一颜色信息进行调整。例如,控制器410将第一颜色在不同灰阶的第一亮度信息调整为第二亮度信息,将第一饱和度信息调整为第二饱和度信息。
需要说明的是,不同灰阶可以代表第一颜色由最暗到最亮之间不同亮度的层次级别,当中间层次级别(即灰阶数)越多时,调整后的待投影图像呈现的画面效果越好。例如,当第一像素显示的第一颜色具有256个灰阶时,如果对第一颜色在所有灰阶下的第一亮度信息和第一饱和度信息进行调整,会对控制器410带来大量的运算量,影响控制器410的 响应速度。
为此,在一些实施例中,控制器410被配置为:选取第一像素的颜色(例如第一颜色)中的至少两个灰阶;调整第一像素的颜色在至少两个灰阶的第一颜色信息,得到第一像素的颜色在至少两个灰阶的第二颜色信息。
示例性地,从第一颜色的所有灰阶中选取出的多个灰阶可以称为节点灰阶。节点灰阶的选取可以按照控制器410中预设的规律进行选取。例如,每个节点灰阶之间可以按照等差递增的方式进行选取,两个相邻节点灰阶之间相差的灰阶值均相同;或者,节点灰阶也可以按照其他方式进行选取。控制器410可以将第一颜色在各节点灰阶的第一亮度信息和第一饱和度信息分别调整为第二亮度信息和第二饱和度信息。在一些示例中,控制器410可以对两个节点灰阶之间的其他灰阶的颜色信息进行平滑过度处理。
例如,参照图12,纵坐标的灰阶值为第0灰阶到第255灰阶之间选取的9个节点灰阶,这个9个节点灰阶是按照等差递增的方式选取的,如图12所示,9个节点灰阶分别为第0、32、64、96、128、160、192、224和255灰阶,其中相邻两个节点灰阶之间分别相差32。
需要说明的是,对于节点灰阶的选取还可以更多,或者更少,还可以按照实际显示来确定节点灰阶的选取。例如,当待投影图像中各像素的颜色在某一灰阶区间,例如在第192灰阶到第255灰阶区间显示的亮度相对较低时,可以在该灰阶区间选取更多节点灰阶,并对各颜色在这些节点灰阶下的第一颜色信息进行调整。在其他灰阶区间,例如第0到192灰阶之间,可以选取较少数量的节点灰阶。
控制器410被配置为:根据至少一个第一像素的颜色对应的第二颜色信息和多个像素中除了至少一个第一像素外剩余的第二像素的颜色对应的第一颜色信息,得到调整后的待投影图像。
控制器410按照上述预设规律将待投影图像中至少一个像素的颜色对应的第一颜色信息调整为第二颜色信息。
在一些示例中,该至少一个第一像素可以为待投影图像中的所有像素,在此情况下,待投影图像中第二像素的个数为0。控制器410将待投影图像中所有像素的第一颜色信息调整为第二颜色信息。
在另一些示例中,该至少一个第一像素也可以为待投影图像中的部分像素(一个或者多个像素,不包括全部像素),在此情况下,待投影图像中的其余像素就为第二像素。控制器410未对第二像素的颜色信息进行调整,因此,第二像素的颜色信息仍为第一颜色信息。
因此,调整后的待投影图像是根据至少一个第一像素的第一颜色信息和第二像素的第一颜色信息得到。
本公开实施例提供的激光投影设备中,控制器410可以按照预设规律,预先选出待调整的颜色和节点灰阶,再按照第一预设关系,将待投影图像中的待调整颜色在节点灰阶下的第一亮度信息和第一饱和度信息分别调整为第二亮度信息和第二饱和度信息,提高待调整颜色的亮度和饱和度,从而提高待投影图像的显示效果。
待投影图像中各像素的颜色的亮度和饱和度是不能无限制提升的,当颜色的亮度和饱和度提升到一定程度后,再提升可能会导致待投影图像的显示出现过饱和等不自然情况。因此,在待投影图像进行投影之前,在上述实施例处理的基础上,本公开实施例对调整后待投影图像的整体亮度还可以进一步的调整。
在一些实施例中,控制器410被配置为:根据至少一个第一像素的第二亮度信息和第二像素的第一亮度信息,得到调整后的待投影图像的亮度平均值;根据调整后的待投影图像的亮度平均值,确定亮度平均值对应的亮度曲线;根据亮度平均值对应的亮度曲线,调整至少一个第一像素的第二亮度信息和第二像素的第一亮度信息。
示例性地,对于调整后的待投影图像,除过至少一个第一像素外的其他多个第二像素来说,其显示的颜色对应的亮度信息仍为第一亮度信息。第二像素的显示颜色例如可以包括黄色Y。
根据调整后的待投影图像中至少一个第一像素的第二亮度信息和多个第二像素的第 一亮度信息,可以得到调整后的待投影图像中所有像素的平均亮度值。需要说明的是,经过上述实施例处理得到的调整后的待投影图像为新的待投影图像,以下实施例将调整后的待投影图像称为新待投影图像。
示例性地,控制器410被配置为:预设多个灰阶阈值;根据亮度与灰阶的对应关系,确定新待投影图像的亮度平均值对应的灰阶;根据新待投影图像的亮度平均值对应的灰阶与多个灰阶阈值的关系,确定亮度平均值对应的亮度曲线。
需要说明的是,对于已出厂的激光投影设备来说,一个灰阶通常对应一个亮度值。因此,激光投影设备在显示待投影图像时,每个灰阶对应的亮度值是不同的。激光投影设备的每个灰阶与亮度之间的对应关系可以预先设置并存储在控制器410中。
示例性地,灰阶与亮度的关系例如可以表现为亮度曲线的形式,亮度曲线能够反应激光投影设备进行图像显示时,每个灰阶与对应的亮度之间的关系。例如,该亮度曲线可以为伽马曲线(即GAMMA曲线),控制器410可以根据预设的GAMMA曲线,控制待投影图像的显示。
因此,控制器410在得到新待投影图像的亮度平均值后,可以根据亮度与灰阶的对应关系,确定该新待投影图像的亮度平均值所对应的灰阶。然后,控制器410根据预设的多个灰阶阈值,确定新待投影图像的亮度平均值所对应的灰阶值与多个灰阶阈值的关系,确定调用相应的亮度曲线对新待投影图像进行显示。
示例性地,控制器410中预设的多个灰阶阈值可以将新待投影图像的灰机范围分为多个灰阶区间,每个灰阶区间对应相应的亮度曲线,通过确定亮度平均值对应的灰阶与多个灰阶阈值之间的关系,判断该亮度平均值对应的灰阶在哪个灰阶区间,从而确定调用哪一个亮度曲线对新待投影图像进行显示。
在一些实施例中,多个灰阶阈值包括第一灰阶阈值A1、第二灰阶阈值A2和第三灰阶阈值A3;其中,第一灰阶阈值A1>第二灰阶阈值A2>第三灰阶阈值A3,第一灰阶阈值A1、第二灰阶阈值A2和第三灰阶阈值A3可以将新待投影图像的灰阶范围分为四个灰阶区间。
在一些示例中,新待投影图像的亮度平均值对应的灰阶A小于或等于第三灰阶阈值A3的灰阶区间(如[0,A3])为第一灰阶区间(也称为低灰阶区间),第一灰阶区间对应的第一亮度曲线S1。亮度平均值对应的灰阶A大于第三灰阶阈值A3且小于或等于第二灰阶阈值A2的灰阶区间(如(A3,A2])为第二灰阶区间(也称为中低灰阶区间),第二灰阶区间对应第二亮度曲线S2。亮度平均值对应的灰阶A大于第二灰阶阈值A2且小于或等于第一灰阶阈值A1的灰阶区间(如(A2,A1])为第三灰阶区间(也称为中高灰阶区间),第三灰阶区间对应的亮度曲线为第三亮度曲线S3。亮度平均值对应的灰阶A大于第一灰阶阈值A1(如(A1,A0])为第四灰阶区间(也称为高灰阶区间),第四灰阶区间对应第四亮度曲线S4。
其中,A0可以为新待投影图像的最大灰阶,A0可以根据激光投影设备的显示比特位数决定,例如,当激光投影设备的显示比特位数为8比特时,A0为255,当激光投影设备的显示比特位数为10比特时,A0为1023。下面实施例可以A0为255为例进行示例性说明。
在一些示例中,第一亮度曲线S1、第二亮度曲线S2、第三亮度曲线S3和第四亮度曲线S4可以分别为不同的GAMMA曲线。或者,在另一些示例中,第一亮度曲线S1和第四亮度曲线S4可以为同一条亮度曲线。例如,第一亮度曲线S1和第四亮度曲线S4均为控制器410中预设的原始亮度曲线S0。
需要说明的是,投影图像的亮度分布可以根据灰阶分布来确定,可以根据投影图像中大部分画面分布在哪个灰阶区间,以此提高相应灰阶区间的亮度,以使整个投影图像在显示时的亮度可以更加亮一些。
例如,如图13所示,当新待投影图像的亮度平均值对应的灰阶为灰阶A在第一灰阶区间时,新待投影图像的灰阶多分布于低灰阶区间,由于低灰阶区间接近暗场显示,暗场显示的亮度需求较低,因此,不需要额外进行亮度的调整。因此,当0≤A≤A3时,控制器 410可以直接调用图13所示原始亮度曲线S0对新待投影图像进行显示。
再例如,如图14所示,当新待投影图像的亮度平均值对应的灰阶A在第二灰阶区间时,新待投影图像的灰阶多分布于中低灰阶区间,中低灰阶区间的亮度较暗,因此,当A3<A≤A2时,控制器410需要调用图15所示的第二亮度曲线S2对新待投影图像进行显示。如图14所示,第二亮度曲线S2与原始亮度曲线S0相比可以看出,第二亮度曲线S2在第二灰阶区间的亮度值大于原始亮度曲线S0在第二灰阶区间的亮度值。在此情况下,调用第二亮度曲线S2对新待投影图像进行显示时,可以将新待投影图像中低灰阶区间的亮度整体提升,以使新待投影图像显示的亮度更亮,显示效果更好。
再例如,如图15所示,当新待投影图像的亮度平均值对应的灰阶为灰阶A在第三阶区间时,新待投影图像的灰阶多分布于中高灰阶区间,中高灰阶区间的亮度也较暗,因此,当A2<A≤A1时,控制器410需要调用如图15所示的第三亮度曲线S3对新待投影图像进行显示。如图15所示,第三亮度曲线S3与原始亮度曲线S0相比可以看出,第三亮度曲线S3在第三灰阶区间的亮度值大于原始亮度曲线S0在第三灰阶区间的亮度值。在此情况下,调用第三亮度曲线S3对新待投影图像进行显示时,可以将新待投影图像中高灰阶区间的亮度整体提升,以使新待投影图像显示的亮度更亮,显示效果更好。
又例如,如图16所示,当新待投影图像的亮度平均值对应的灰阶为灰阶A在第四灰阶区间时,新待投影图像的灰阶多分布于高灰阶区间,高灰阶区间接近白场显示,白场亮度可以达到显示的亮度需求,因此,不需要额外进行亮度的调整。因此,当A1<A≤A0时,控制器410可以直接调用如图16所示的原始亮度曲线S0对新待投影图像进行显示。
示例性地,第一灰阶阈值A1、第二灰阶阈值A2和第三灰阶阈值A3的取值可以根据实际显示情况进行设定。在一些示例中,当激光投影设备的显示比特数为8比特时,第一灰阶阈值A1的取值可以为第144灰阶到第216灰阶中的某一个灰阶值;第二灰阶阈值A2的取值可以为第72灰阶到第108灰阶中的某一个灰阶值;第三灰阶阈值A3的取值可以为第12灰阶到第18灰阶中某一个灰阶值。本公开实施例对第一灰阶阈值A1、第二灰阶阈值A2和第三灰阶阈值A3的取值不作限定。
综上,本公开实施例提供的激光投影设备可以先对选取的待调整颜色在各节点灰阶下的亮度和饱和度进行提升,再根据调整后的待投影图像的灰阶分布情况,对大多数灰阶在在的灰阶区间的亮度进行提升,得到再次调整后的待投影图像。再次调整后的待投影图像更加明亮,显示效果更好。
不同地区的用户对显示画面的画质的喜好不尽相同,例如,亚洲地区的用户可能更加偏好白皙的人物肤色因而,激光投影设备需要根据不同地区用户的喜好采用不同的画质参数来显示待投影图像,以此更加适应于不同地区的用户的需求。
在一些示例中,可以从用户的语言类型推测该用户所处的地区或者该用户当前想要观看的图像或视频所属的地区。例如,当用户的语言类型为汉语时,可以推测出用户所处地区为中国,或者,用户当前想要观看的图像的内容关于中国的影视。在这种情况下,可以根据汉语的语言类型,来匹配调用与符合中国用户审美的画质参数来对待投影头像进行显示。
因此,通过用户的语言类型信息确定待投影的画质参数,可以使待投影图像的显示效果更加符合该用户的偏好。示例性地,本公开实施例中的画质参数可以包括肤色画质参数。
在一些实施例中,控制器410还被配置为:获取输入的语言类型信息;根据第二预设对应关系,确定输入的语言类型信息对应的第一画质参数;第二预设对应关系包括多个语言类型与多个画质参数之间的对应关系;根据第一画质参数,调整待投影图像,得到第一图像。
示例性地,激光投影设备在开机时,会显示语言类型信息的输入界面,用户可以在该输入界面上输入语言类型。例如,激光投影设备在开机时,通常会向用户提供开机向导流程,该开机向导流程会提示用户进行语言类型信息的选择或输入,用户根据所在地区的语言类型选择相应的语言类型信息,或者,用户也可以根据自身的语言习惯选择相应的语言类型信息。
第二预设对应关系为语言类型信息和画质参数之间的对应关系,第二预设对应关系可以为数据表的形式,也可以为其他形式。第二预设关系例如包括多个语言类型与多个画质参数之间的对应关系。在一些示例中,多个语言类型信息和多个画质参数之间的对应关系可以通过对不同地区用户所偏好的画质的调查而获取。
示例性地,画质参数可以包括:亮度和饱和度。另外,画质参数还可以包括色调。其中,色调可以包括不同饱和度下的色调和不同亮度下的色调,饱和度还包括不同亮度下的饱和度等。待投影图像采用不同画质参数进行显示时,显示的效果不同。
语言类型可以包括:汉语、英语、日语、韩语等。使用不同语言类型的用户所偏好的画质参数可能不同。因而,不同语言类型信息对应的画质参数可以不同。
第二预设对应关系可以提前设定并存储在控制器410中,当控制器410获取到用户输入的第一语言类型信息时,可以根据第二预设对应关系,确定第一语言类型信息对应的第一画质参数,并采用第一画质参数对待投影图像进行调整,得到第一图像。
示例性地,控制器410中预设默认画质参数,当控制器410未获取到输入的语言类型信息时,可以调用该默认画质参数对带投影图像进行显示。
不同地区用户使用的语言类型可能不同,不同地区的用户所偏好的肤色类型也可能不同。因此,可以先通过语言类型信息确定肤色类型,再根据肤色类型确定画质参数。
示例性地,控制器410被配置为:根据多个语言类型信息与多个肤色类型的对应关系,确定用户输入的语言类型信息对应的第一肤色类型;根据多个肤色类型与多个画质参数的对应关系,确定所述第一肤色类型对应的画质参数。
控制器410可以根据预先设定并存储多个语言类型信息和多个肤色类型的对应关系,确定用户输入的第一语言类型信息对应的肤色类型。肤色类型例如可以包括:红润肤色类型、白皙肤色类型和自然肤色类型等。
不同语言类型信息对应的肤色类型可以相同,也可以不同。不同的肤色类型对应不同画质参数,控制器410中预先设定并存储有多个肤色类型与多个画质参数的对应关系。例如,不同肤色类型所对应的画质参数中的至少一个参数的取值不同。
因此,当用户输入的语言类型信息为第一语言类型信息,控制器410可以根据多个语言类型信息与多个肤色类型的对应关系确定第一语言类型信息对应的第一肤色类型,再根据多个肤色类型与多个画质参数的对应关系确定第一肤色类型对应的第一画质参数,控制器410通过调用第一画质参数对待投影图像进行显示时,所显示的画质更加符合该用户所偏好的显示效果。
当控制器410调用根据第一语言类型信息确定的第一画质参数对待投影图像进行调整,得到第一图像,控制器410将第一图像传输给DMD 240,DMD 240利用第一图像的图像信号对照明光束进行调制,得到投影光束,镜头300将该投影光束投影成像,显示第一图像。当第一图像显示时,控制器410可以进一步获取第一图像的图像类型信息。
示例性地,图像类型信息可以包括:美剧、英剧、日剧、韩国纪录片、法国电影等。不同的图像类型信息可以反映出第一图像中人物所属地区的信息。
在一些示例中,不同地区的人物的肤色类型不相同,因而所使用的肤色画质参数也可能不相同。例如,对于美剧、英剧等,显示图像中的人物大多为欧美地区的人物,因此人物的肤色风格可能为自然肤色风格。
在另一些示例中,图像类型可以反映出当前显示图像的真实背景。例如,如果当前显示图像的图像类型为美剧时,那么美剧中的人物具有欧美地区人物的肤色会更加真实和自然。那么在进行图像显示时,以欧美地区人物的肤色风格进行图像显示会更加符合此时用户的需求。因此,根据图像类型信息调用对应的画质参数进行图像显示时,可以进一步提高用户的观看体验。
在一些实施例中,控制器410被配置为:获取第一图像的图像类型信息;根据第三预设对应关系,确定第一图像的图像类型信息对应的第二画质参数;第三预设对应关系包括多个图像类型信息与多个画质参数之间的对应关系;判断第二画质参数与第一画质参数是否相同;若第二画质参数与第一画质参数不同,根据第二画质参数调整第一图像。
示例性地,在激光投影设备对第一图像进行显示时,控制器410可以获取第一图像的图像类型信息,如第一图像类型信息。例如,在图8中,控制器410可以通过拍摄装置20来获取第一图像类型信息。拍摄装置20可以通过对投影屏幕30显示的第一图像进行拍摄,并将拍摄的第一图像发送给控制器410,控制器410确定该第一图像的第一图像类型信息。
第三预设对应关系为图像类型信息与画质参数的对应的关系,第三预设对应关系包括多个图像类型信息与多个画质参数之间的对应关系。第三预设对应关系可以为数据表的形式,也可以为其他形式。
第三预设对应关系可以提前设定并存储在控制器410中,当控制器410获取到第一图像类型信息时,可以根据第三预设对应关系,确定第一图像类型信息对应的第二画质参数。
在一些实施例中,控制器410配置为:根据多个图像类型信息与多个肤色类型的对应关系,确定第一图像的图像类型信息对应的第二肤色类型;根据多个肤色类型与多个画质参数的对应关系,确定第二肤色类型对应的画质参数。
与上述实施例中多个语言类型和多个肤色类型的对应关系相似,控制器410中也可以预先设置并存储多个图像类型信息和多个肤色类型的关系。
因此,控制器410在确定肤色类型后,再根据多个肤色类型的多个画质参数的对应关系,确定第一图像类型信息对应的画质参数。
示例性地,第二画质参数可以与第一画质参数相同,也可以与第一画质参数不同。当确定了第二画质参数后,控制器410判断第二画质参数与第一画质参数是否相同;若第二画质参数与第一画质参数不同,则调用第二画质参数对第一图像调整。采用第二画质参数调整后的第一图像的显示效果优于第一图像的显示效果。
由于用户在观看激光投影设备的显示图像时,更加关注当前所显示的图像,因此如果根据当前显示图像的图像类型信息确定出的第二画质参数与之前根据用户选择的语言类型信息确定出的第一画质参数不同时,选择根据图像类型信息确定出的第二画质进行图像显示。根据图像类型信息确定出的第二画质显示的画面与真实情景和背景更加匹配,从而可以提升用户的观看体验。
当第二画质参数与第一画质参数相同时,则继续显示第一图像。在一些示例中,控制器410未获取到第一图像类型信息,或者第一图像类型信息对应的第二画质参数与第一画质参数相同时,可以继续根据第一画质参数进行图像显示。例如,当第一图像仅显示某些静止画面而非视频时,控制器410无法获取到第一图像的图像类型信息,此时无法获取到当前显示图像的图像类型信息。
示例性地,在显示图像中,可以对人物肤色所对应的颜色区间内的相关参数进行调整。而对于除肤色以外的其他颜色区间内的相关参数可以进行平滑过度处理。
在一些示例中,在除了肤色以外的其他颜色所对应的颜色区间内的相关参数基本相同,这样可以显示图像中除人脸以外的其他区域具有较好且一致的显示效果。如图12所示,肤色对应的颜色所在的颜色区间可以为红色R过渡到黄色Y的第一颜色子区间121。
例如,对于画质参数中亮度的调整,可以改变人脸肤色的亮度,以使人脸变暗或者变明亮。在对亮度进行调整时,图12中的纵坐标可以表示亮度,对于第一颜色子区间121,当纵坐标数值增大时,人脸的肤色变亮;当纵坐标数值减小时,人脸肤色变暗。
再例如,对于画质参数中色调的调整,可以改变人脸肤色的色调。由于人脸肤色的复杂性,色调调色可以分为三部分,分别为:色调、不同饱和度下的色调以及不同亮度下的色调。其中,色调是对整体肤色色调的调整;不同饱和度下的色调可以用来调试不同色饱和度下人脸的色调;不同亮度下的色调可以用来调试不同亮度下人脸的色调。在不同的参数进行调整时,图12中的纵坐标可以分别表示色调、不同饱和度下的色调和不同亮度下的色调,对于第一颜色子区间121,当纵坐标数值增大时,人脸的肤色会偏红紫色一些;当纵坐标数值减小时,人脸肤色会偏黄绿色一些。
再例如,对饱和度进行调整时,可以改变人脸肤色的浓度,由于人脸肤色的复杂性,饱和度分为饱和度和不同亮度下的饱和度。调和度是对整体肤色浓度调整,可以按照肤色不同区域来调整肤色浓度;不同亮度下的饱和度可用来调试不同亮度下的人脸浓度。在对 不同的参数进行调整时,图12中的纵坐标可以分别表示饱和度和不同亮度下的饱和度,对于第一颜色子区间121,当纵轴数值增大时,人脸肤色会偏浓,数值减小时,人脸肤色会偏淡。
在一些示例中,在红润肤色风格类型中,肤色画质参数中的色调、不同饱和度下的色调以及不同亮度下的色调均需要调试得稍大一些,同时人脸肤色的色饱和度也调试稍浓一些。在白皙肤色风格类型中,肤色画质参数中的饱和度以及不同亮度下的饱和度需要调试得偏小一些,使肤色偏淡一些。需要说明的是,除了上述实施例中的三种肤色类型外,还可以设置肤色类型,或者还可以将上述三种肤色类型进一步细化。
本公开的一些实施例提供一种投影图像的调节方法,应用于激光投影设备,图17为根据本公开一些实施例的一种投影图像的调节方法的流程图,如图17所示,该方法包括以下步骤:
步骤1711,获取待投影图像,待投影图像包括多个像素,每个像素对应的颜色包括第一颜色信息,第一颜色信息包括第一亮度信息和第一饱和度信息中至少一个。
步骤1712,调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应的第二颜色信息,其中,至少一个第一像素为多个像素中的至少一个;第二颜色信息包括第二亮度信息和第二饱和度信息中至少一个。
步骤1713,根据至少一个第一像素的第二颜色信息和多个像素中除了至少一个第一像素以外剩余的第二像素的第一颜色信息,得到调整后的待投影图像。
在一些实施中,第一像素对应的第二亮度信息高于第一像素对应的第一亮度信息,第一像素对应的第二饱和度信息高于第一像素对应的第一饱和度信息。
在一些实施例中,第一颜色信息包括第一亮度信息,第二颜色包括第二亮度信息;该方法还包括:根据至少一个第一像素的第二亮度信息和第二像素的第一亮度信息,得到调整后的待投影图像的亮度平均值;根据调整后的待投影图像的亮度平均值,确定亮度平均值对应的亮度曲线;根据亮度平均值对应的亮度曲线,调整至少一个第一像素的第二亮度信息和第二像素的第一亮度信息。
在一些实施例中,调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应的第二颜色信息,包括:根据第一预设对应关系,调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应的第二颜色信息;第一预设对应关系包括多个颜色与多个颜色信息之间的对应关系。
在一些实施例中,调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应的第二颜色信息,包括:预设颜色区间,颜色区间包括多个颜色;在颜色区间中的多个颜色中选取至少一个颜色;若所述第一像素的颜色为颜色区间中至少一个颜色中的一个颜色,调整第一像素的颜色对应的第一颜色信息,得到第一像素的颜色对应的第二颜色信息。
在一些实施例中,第一像素的颜色对应的第一颜色信息包括多个灰阶的第一颜色信息;若第一像素的颜色为颜色区间中至少一个颜色中的一个颜色,调整第一像素的颜色对应的第一颜色信息,包括:选取第一像素的颜色中的至少两个灰阶;调整第一像素的颜色在至少两个灰阶的第一颜色信息,得到第一像素的颜色在至少两个灰阶的第二颜色信息。
在一些实施例中,激光投影设备预设多个灰阶阈值;根据调整后的待投影图像的亮度平均值,确定亮度平均值对应的亮度曲线,包括:根据亮度与灰阶的对应关系,确定调整后的待投影图像的亮度平均值对应的灰阶;根据调整后的待投影图像的亮度平均值对应的灰阶与多个灰阶阈值的关系,确定亮度平均值对应的亮度曲线。
本公开的一些实施例提供另一种投影图像的调节方法,如图18所示,该方法包括以下步骤:
步骤1811,获取输入的语言类型信息。
其中,激光投影设备在开机时,会向用户提供语言类型信息输入界面,用于获取用户输入的语言类型信息。
步骤1812,判断是否获取到输入的语言类型信息。
若获取到,执行步骤1813,若未获取到,执行步骤1821。
步骤1813,根据第二预设对应关系,确定输入的语言类型信息对应的第一画质参数。
其中,第二预设对应关系包括多个语言类型与多个画质参数之间的对应关系。
步骤1814,根据第一画质参数,调整待投影图像,得到第一图像。
步骤1815,获取第一图像的图像类型信息。
步骤1816,判断是否获取到第一图像的图像类型信息。
若获取到,执行步骤1817,若未获取到,执行步骤1819。
步骤1817,根据第三预设关系,确定第一图像的图像类型信息对应的第二画质参数。
其中,第三预设对应关系包括多个图像类型信息与多个画质参数之间的对应关系。
步骤1818,判断第二画质参数与第一画质参数是否相同。
若相同,执行步骤1819,若不相同执行步骤1820。
步骤1819,根据第一画质参数显示第一图像。
步骤1820,根据第二画质参数调整第一图像。
步骤1821,调用默认画质参数对待投影图像进行显示。
步骤1822,获取待投影图像的图像类型信息。
步骤1823,判断是否获取到待投影图像的图像类型信息。
若获取到,执行步骤1824,若未获取到,执行步骤1821。
步骤1824,根据第三预设关系,确定待投影图像的图像类型信息对应的第二画质参数。
步骤1825,根据第二画质参数,调整待投影图像。
上述投影图像的调节方法和上述一些实施例所述的激光投影设备有益效果相同,此处不再赘述。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种激光投影设备,包括:
    光源组件,包括单色激光器和荧光轮,所述荧光轮包括红色转换区域、绿色转换区域、黄色转换区域和透射区域;所述光源组件被配置为提供照明光束;
    光机,被配置为根据图像信号,对所述照明光束进行调制,以获得投影光束;
    镜头,被配置为将投影光束投影成像;
    控制器,被配置为:
    获取待投影图像,所述待投影图像包括多个像素,每个像素对应的颜色包括第一颜色信息,其中,所述第一颜色信息包括第一亮度信息和第一饱和度信息中的至少一个;
    调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应第二颜色信息,其中,所述至少一个第一像素为所述多个像素中的至少一个;所述第二颜色信息包括第二亮度信息和第二饱和度信息中至少一个;所述第二亮度信息高于所述第一亮度信息,所述第二饱和度信息高于所述第一饱和度信息;
    根据所述至少一个第一像素的颜色对应的第二颜色信息和所述多个像素中除了所述至少一个第一像素以外剩余的第二像素的颜色对应的第一颜色信息,得到调整后的待投影图像;以及
    向所述光机传输所述调整后的待投影图像,以使所述光机根据所述调整后的待投影图像的图像信号,对所述照明光束进行调制。
  2. 根据权利要求1所述的激光投影设备,其中,所述第一颜色信息包括第一亮度信息,所述第二颜色包括第二亮度信息,所述控制器还被配置为:
    根据所述至少一个第一像素的第二亮度信息和所述第二像素的第一亮度信息,得到所述调整后的待投影图像的亮度平均值;
    根据所述调整后的待投影图像的亮度平均值,确定所述亮度平均值对应的亮度曲线;
    根据所述亮度平均值对应的亮度曲线,调整所述至少一个第一像素的第二亮度信息和所述第二像素的第一亮度信息。
  3. 根据权利要求1所述的激光投影设备,其中,所述控制器被配置:
    根据第一预设对应关系,调整所述至少一个第一像素的颜色对应的第一颜色信息,得到所述第一像素的颜色对应第二颜色信息;所述第一预设对应关系包括多个颜色与多个颜色信息之间的对应关系。
  4. 根据权利要求1所述的激光投影设备,所述控制器被配置为:
    预设颜色区间,所述颜色区间包括多个颜色;
    在所述颜色区间中的多个颜色中选取至少一个颜色;
    若所述第一像素的颜色为所述颜色区间中至少一个颜色中的一个颜色,调整所述第一像素的颜色对应的第一颜色信息,得到所述第一像素的颜色对应的第二颜色信息。
  5. 根据权利要求4所述的激光投影设备,其中,所述第一像素的颜色对应的第一颜色信息包括多个灰阶的第一颜色信息;所述控制器被配置为:
    选取所述第一像素的颜色中的至少两个灰阶;
    调整所述第一像素的颜色在所述至少两个灰阶的第一颜色信息,得到所述第一像素的颜在所述至少两个灰阶的第二颜色信息。
  6. 根据权利要求2所述的激光投影设备,其中,所述控制器被配置为:
    预设多个灰阶阈值;
    根据亮度与灰阶的对应关系,确定所述调整后的待投影图像的亮度平均值对应的灰阶;
    根据所述调整后的待投影图像的亮度平均值对应的灰阶与所述多个灰阶阈值的关系,确定所述亮度平均值对应的亮度曲线。
  7. 根据权利要求6所述的激光投影设备,其中,所述多个灰阶阈值包括第一灰阶阈值、第二灰阶阈值和第三灰阶阈值,其中,第一灰阶阈值>第二灰阶阈值>第三灰阶阈值;所述控制器被配置为:
    若所述亮度平均值对应的灰阶小于或等于第三灰阶阈值,确定所述亮度平均值对应的 亮度曲线为第一亮度曲线;
    若所述亮度平均值对应的灰阶大于第三灰阶阈值,且小于或等于第二灰阶阈值,确定所述亮度平均值对应的亮度曲线为第二亮度曲线;
    若所述亮度平均值对应的灰阶大于第二灰阶阈值,且小于或等于第一灰阶阈值,确定所述亮度平均值对应的亮度曲线为第三亮度曲线;
    若所述亮度平均值对应的灰阶大于第一灰阶阈值,确定所述亮度平均值对应的亮度曲线为第四亮度曲线。
  8. 根据权利要求1-7中任一项所述的激光投影设备,其中,所述控制器还被配置为:
    获取输入的语言类型信息;
    根据第二预设对应关系,确定所述输入的语言类型信息对应的第一画质参数;所述第二预设对应关系包括多个语言类型与多个画质参数之间的对应关系;
    根据所述第一画质参数,调整所述待投影图像,得到第一图像。
  9. 根据权利要求8所述的激光投影设备,其中,所述控制器被配置为:
    根据多个语言类型信息与多个肤色类型的对应关系,确定所述输入的语言类型信息对应的第一肤色类型;
    根据多个肤色类型与多个画质参数的对应关系,确定所述第一肤色类型对应的画质参数,以得到所述输入的语言类型信息对应的画质参数。
  10. 根据权利要求8或9所述的激光投影设备,其中,所述控制器还被配置为:
    获取所述第一图像的图像类型信息;
    根据第三预设关系,确定所述第一图像的图像类型信息对应的第二画质参数;所述第三预设对应关系包括多个图像类型信息与多个画质参数之间的对应关系;
    判断所述第二画质参数与所述第一画质参数是否相同;
    若所述第二画质参数与所述第一画质参数不同,根据所述第二画质参数,调整所述第一图像。
  11. 根据权利要求10所述的激光投影设备,其中,所述控制器被配置为:
    根据多个图像类型信息与多个肤色类型的对应关系,确定所述第一图像的图像类型信息对应的第二肤色类型;
    根据多个肤色类型与多个画质参数的对应关系,确定所述第二肤色类型对应的画质参数,以得到所述第一图像的图像类型信息对应的画质参数。
  12. 一种投影图像的调节方法,应用于激光投影设备,所述方法包括:
    获取待投影图像,所述待投影图像包括多个像素,每个像素对应的颜色包括第一颜色信息,所述第一颜色信息包括第一亮度信息和第一饱和度信息中至少一个;
    调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应的第二颜色信息;其中,所述至少一个第一像素为所述多个像素中的至少一个;所述第二颜色信息包括第二亮度信息和第二饱和度信息中至少一个;所述第二亮度信息高于所述第一亮度信息,所述第二饱和度信息高于所述第一饱和度信息;
    根据所述至少一个第一像素的颜色对应的第二颜色信息和所述多个像素中除了所述至少一个第一像素以外剩余的第二像素的颜色对应的第一颜色信息,得到调整后的待投影图像。
  13. 根据权利要求12所述的方法,其中,所述第一颜色信息包括第一亮度信息,所述第二颜色包括第二亮度信息;所述方法还包括:
    根据所述至少一个第一像素的第二亮度信息和所述第二像素的第一亮度信息,得到所述调整后的待投影图像的亮度平均值;
    根据所述调整后的待投影图像的亮度平均值,确定所述亮度平均值对应的亮度曲线;
    根据所述亮度平均值对应的亮度曲线,调整所述至少一个第一像素的第二亮度信息和所述第二像素的第一亮度信息。
  14. 根据权利要求12所述的方法,其中,所述调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应的第二颜色信息,包括:
    根据第一预设对应关系,调整所述至少一个第一像素的颜色对应的第一颜色信息,得到所述第一像素的颜色对应的第二颜色信息;所述第一预设对应关系包括多个颜色与多个颜色信息之间的对应关系。
  15. 根据权利要求12所述的方法,其中,所述调整至少一个第一像素的颜色对应的第一颜色信息,得到每个第一像素的颜色对应的第二颜色信息,包括:
    预设颜色区间,所述颜色区间包括多个颜色;
    在所述颜色区间中的多个颜色中选取至少一个颜色;
    若所述第一像素的颜色为所述颜色区间中至少一个颜色中的一个颜色,调整所述第一像素的颜色对应的第一颜色信息,得到所述第一像素的颜色对应的第二颜色信息。
  16. 根据权利要求15所述的方法,其中,所述第一像素的颜色对应的第一颜色信息包括多个灰阶的第一颜色信息;
    所述若所述第一像素的颜色为所述颜色区间中至少一个颜色中的一个颜色,调整所述第一像素的颜色对应的第一颜色信息,包括:
    选取所述第一像素的颜色中的至少两个灰阶;
    调整所述第一像素的颜色在所述至少两个灰阶的第一颜色信息,得到所述第一像素的颜色在所述至少两个灰阶的第二颜色信息。
  17. 根据权利要求14所述的方法,其中,所述激光投影设备中预设有多个灰阶阈值;
    所述根据所述调整后的待投影图像的亮度平均值,确定所述亮度平均值对应的亮度曲线,包括:
    根据亮度与灰阶的对应关系,确定所述调整后的待投影图像的亮度平均值对应的灰阶;
    根据所述调整后的待投影图像的亮度平均值对应的灰阶与所述多个灰阶阈值的关系,确定所述亮度平均值对应的亮度曲线。
  18. 根据权利要求13-17中任一项所述的方法,还包括:
    获取输入的语言类型信息;
    根据第二预设对应关系,确定所述输入的语言类型信息对应的第一画质参数;其中,所述第二预设对应关系包括多个语言类型与多个画质参数之间的对应关系;
    根据所述第一画质参数,调整所述待投影图像,得到第一图像。
  19. 根据权利要求18所述的方法,还包括:
    获取所述第一图像的图像类型信息;
    根据第三预设关系,确定所述第一图像的图像类型信息对应的第二画质参数;其中,所述第三预设对应关系包括多个图像类型信息与多个画质参数之间的对应关系;
    判断所述第二画质参数与所述第一画质参数是否相同;
    若所述第二画质参数与所述第一画质参数不同,根据所述第二画质参数,调整所述第一图像。
PCT/CN2022/116820 2021-09-18 2022-09-02 激光投影设备及投影图像的调节方法 WO2023040682A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280060245.6A CN118077191A (zh) 2021-09-18 2022-09-02 激光投影设备及投影图像的调节方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111097851.9A CN115840325A (zh) 2021-09-18 2021-09-18 激光显示装置、其亮度调节方法和可读性存储介质
CN202111097851.9 2021-09-18
CN202111507379.1 2021-12-10
CN202111507379.1A CN114265569A (zh) 2021-12-10 2021-12-10 激光投影显示方法、激光投影设备和可读性存储介质

Publications (1)

Publication Number Publication Date
WO2023040682A1 true WO2023040682A1 (zh) 2023-03-23

Family

ID=85602412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116820 WO2023040682A1 (zh) 2021-09-18 2022-09-02 激光投影设备及投影图像的调节方法

Country Status (2)

Country Link
CN (1) CN118077191A (zh)
WO (1) WO2023040682A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219289A (ja) * 2007-03-01 2008-09-18 Sanyo Electric Co Ltd 映像補正装置、映像表示装置、撮像装置および映像補正プログラム
CN102137245A (zh) * 2010-01-27 2011-07-27 三菱电机株式会社 多画面显示装置
CN102737610A (zh) * 2011-03-31 2012-10-17 青岛海信电器股份有限公司 一种光源亮度调整方法、装置及显示设备
US20150109533A1 (en) * 2012-03-13 2015-04-23 Nec Display Solutions, Ltd. Projection type display device and method for producing recorded images
CN104618671A (zh) * 2015-01-26 2015-05-13 联想(北京)有限公司 一种信息处理方法及电子设备
CN108063928A (zh) * 2017-11-16 2018-05-22 北京奇艺世纪科技有限公司 一种投影仪的成像图像自动调整方法、装置及电子设备
CN113055752A (zh) * 2021-03-11 2021-06-29 深圳创维-Rgb电子有限公司 一种画质调节方法、装置及智能电视

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219289A (ja) * 2007-03-01 2008-09-18 Sanyo Electric Co Ltd 映像補正装置、映像表示装置、撮像装置および映像補正プログラム
CN102137245A (zh) * 2010-01-27 2011-07-27 三菱电机株式会社 多画面显示装置
CN102737610A (zh) * 2011-03-31 2012-10-17 青岛海信电器股份有限公司 一种光源亮度调整方法、装置及显示设备
US20150109533A1 (en) * 2012-03-13 2015-04-23 Nec Display Solutions, Ltd. Projection type display device and method for producing recorded images
CN104618671A (zh) * 2015-01-26 2015-05-13 联想(北京)有限公司 一种信息处理方法及电子设备
CN108063928A (zh) * 2017-11-16 2018-05-22 北京奇艺世纪科技有限公司 一种投影仪的成像图像自动调整方法、装置及电子设备
CN113055752A (zh) * 2021-03-11 2021-06-29 深圳创维-Rgb电子有限公司 一种画质调节方法、装置及智能电视

Also Published As

Publication number Publication date
CN118077191A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US7460179B2 (en) Adaptive image display
US7391475B2 (en) Display image generation with differential illumination
US7605828B2 (en) Method and system for reducing gray scale discontinuities in contrast enhancing screens affected by ambient light
US7283181B2 (en) Selectable color adjustment for image display
KR100591386B1 (ko) 조명 장치, 투사형 표시 장치 및 그 구동 방법
US7154458B2 (en) Video display device with spatial light modulator
JP3719411B2 (ja) 画像表示システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
JP3781743B2 (ja) 映像表示装置
JP4110408B2 (ja) 画像表示システム、プロジェクタ、画像処理方法および情報記憶媒体
JPH0756545A (ja) 投写型液晶ディスプレイの階調性補正方法及び階調性補正装置
JP2005537503A (ja) 高輝度広色域ディスプレイ
JP2003131322A (ja) 照明装置および投射型表示装置とその駆動方法
JP2004045989A (ja) 投影型表示装置及びその表示駆動方法
JP2004163518A (ja) 画像表示装置および画像表示方法
US7145520B2 (en) Display apparatus box using a spatial light modulator
CN109429045A (zh) 图像处理装置、显示装置、图像处理及显示装置及方法
JP4937539B2 (ja) 映像表示方法及びディスプレイ装置の出力映像の輝度を上昇させる方法
CN109417615A (zh) 投射型影像显示装置
JP4739035B2 (ja) プロジェクタ装置
WO2023040682A1 (zh) 激光投影设备及投影图像的调节方法
US20060227147A1 (en) Method and apparatus for an image presentation device with illumination control for black image processing
JP5150183B2 (ja) 投写型映像表示装置
JP2008058897A (ja) 色順次画像表示方法、および色順次画像表示装置
US8330771B2 (en) Projection display device and control method thereof
US20240040095A1 (en) Projection system and calibration method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE