WO2023040191A1 - 零碳船舶动力***及驱动船舶的方法 - Google Patents

零碳船舶动力***及驱动船舶的方法 Download PDF

Info

Publication number
WO2023040191A1
WO2023040191A1 PCT/CN2022/076896 CN2022076896W WO2023040191A1 WO 2023040191 A1 WO2023040191 A1 WO 2023040191A1 CN 2022076896 W CN2022076896 W CN 2022076896W WO 2023040191 A1 WO2023040191 A1 WO 2023040191A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
changing device
heat exchanger
energy
evaporator
Prior art date
Application number
PCT/CN2022/076896
Other languages
English (en)
French (fr)
Inventor
吴加林
Original Assignee
成都佳灵绿色能源有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111100989.XA external-priority patent/CN114248899A/zh
Application filed by 成都佳灵绿色能源有限责任公司 filed Critical 成都佳灵绿色能源有限责任公司
Publication of WO2023040191A1 publication Critical patent/WO2023040191A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to the technical field of ship power, in particular to a zero-carbon ship power system and a method for driving a ship.
  • a zero-carbon ship power system including a condensation-evaporator, a temperature changing device and a propulsion system, and the condensation-evaporator is used for collecting water Heat energy, the system working fluid absorbs the heat energy and converts it into low-temperature steam, the temperature-changing device is used to convert the low-temperature steam generated by the condensation-evaporator into high-temperature steam, and the propulsion system is used to convert the high-temperature steam generated by the temperature-changing device into The electrical or mechanical energy that drives a ship.
  • the propulsion system includes an all-electric propulsion system
  • the all-electric propulsion system includes a turbo-generator, a propulsion motor and a propeller
  • the high-voltage input end of the turbo-generator communicates with a temperature changing device
  • the turbo-generator The low-pressure output end of the generator communicates with the condensing-evaporator
  • the turbo-generator converts the high-temperature steam generated by the temperature-changing device into electric energy, and at the same time, the exhaust gas energy generated is converted into low-temperature steam through the condensing-evaporator and flows to the temperature-changing device.
  • the electric energy generated by the steam turbine generator drives the propulsion motor, and the propulsion motor drives the propeller to rotate, thereby driving the ship to move.
  • the all-electric propulsion system further includes a propulsion motor governor, the propulsion motor governor is connected in series between the turbogenerator and the propulsion motor, and is used to adjust the speed of the propulsion motor.
  • the zero-carbon marine power system further includes a storage battery, which is connected in series between the turbogenerator and the propulsion motor or between the turbogenerator and the propulsion motor governor, and the turbogenerator supplements the battery Electric energy, the storage battery supplies power to the propulsion motor or the propulsion motor governor.
  • a storage battery which is connected in series between the turbogenerator and the propulsion motor or between the turbogenerator and the propulsion motor governor, and the turbogenerator supplements the battery Electric energy, the storage battery supplies power to the propulsion motor or the propulsion motor governor.
  • the propulsion system includes a mechanical propulsion system
  • the mechanical propulsion system includes a steam turbine and a propeller
  • the high-pressure input end of the steam turbine communicates with the temperature changing device
  • the low-pressure output end of the steam turbine communicates with the condensing-evaporator
  • the steam turbine converts the high-temperature steam generated by the temperature-changing device into mechanical energy
  • the exhaust gas energy is converted into low-temperature steam through the condenser-evaporator and flows to the temperature-changing device.
  • the mechanical energy generated by the steam turbine drives the propeller to rotate, thereby driving the ship to move.
  • the mechanical propulsion system further includes a speed reducer, which is connected in series between the steam turbine and the propeller, and is used to control the output torque of the steam turbine to the propeller.
  • a speed reducer which is connected in series between the steam turbine and the propeller, and is used to control the output torque of the steam turbine to the propeller.
  • turbo-generator and a storage battery
  • the high-voltage input end of the turbo-generator communicates with the temperature changing device
  • the low-voltage output end of the turbo-generator communicates with the condensation-evaporator
  • the turbo-generator generates electricity
  • the electric energy output end of the machine is electrically connected with the storage battery
  • the steam turbine generator converts the high-temperature steam generated by the temperature-changing device into electric energy
  • the exhaust gas energy generated is converted into low-temperature steam through the condensation-evaporator and flows to the temperature-changing device.
  • the electric energy generated by the generator is supplemented to the storage battery, and the storage battery provides electric energy to the temperature changing device.
  • a controller is also included, the controller is connected in series between the turbogenerator and the storage battery, and is used to control the magnitude of the electric energy output by the turbogenerator and the AC/DC conversion.
  • a governor is also included, which is connected in series between the battery and the temperature changing device, and adjusts the amount of electric energy output from the battery to the temperature changing device.
  • the temperature changing device includes a heat exchanger mechanism and a blower
  • the heat exchange mechanism has a low-pressure circuit and a high-pressure circuit
  • the inlet end of the blower communicates with the low-pressure circuit of the heat exchange mechanism
  • the outlet of the blower The end communicates with the high pressure circuit of the heat exchange mechanism.
  • the heat exchange mechanism includes a first heat exchanger, a heat recovery heat exchanger and a second heat exchanger, the heat recovery heat exchanger, the second heat exchanger and a blower are connected in series in sequence, and the first The heat exchanger is connected in parallel with the second heat exchanger.
  • the temperature changing device further includes a temperature regulating valve, which is arranged in the high-pressure circuit of the temperature changing device, and is used to control the flow of high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger. flow distribution, thereby controlling the temperature range of the high-temperature steam output by the first heat exchanger.
  • a temperature regulating valve which is arranged in the high-pressure circuit of the temperature changing device, and is used to control the flow of high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger. flow distribution, thereby controlling the temperature range of the high-temperature steam output by the first heat exchanger.
  • the heat exchange mechanism further includes a third heat exchanger, the third heat exchanger is used to increase the temperature difference between the high pressure circuit and the low pressure circuit at the high temperature end of the second heat exchanger;
  • blower and/or the first heat exchanger and/or the second heat exchanger and/or the third heat exchanger are provided with an insulation layer.
  • a liquid booster pump is also included, the low-pressure inlet port of the liquid booster pump communicates with the condenser-evaporator, the high-pressure outlet port of the liquid booster pump communicates with the temperature changing device, and the liquid booster pump pumps Absorb the system working fluid in the condensing-evaporator, convert the system working fluid into high-pressure liquid, and transmit it to the temperature changing device, and the temperature changing device converts the high-pressure liquid into high-temperature steam.
  • a method for driving a ship by the above-mentioned zero-carbon ship power system including:
  • the heat energy in the water is collected through the condensation-evaporator, and the system working fluid absorbs the heat energy and converts it into low-temperature steam;
  • the low-temperature steam generated by the condensation-evaporator is converted into high-temperature steam through a temperature-changing device;
  • the high-temperature steam generated by the temperature-changing device is converted into electrical energy or mechanical energy through the propulsion system to drive the movement of the ship.
  • the heat energy in the water is collected through the condensation-evaporator, and the system working fluid absorbs the heat energy and converts it into low-temperature steam;
  • the low-temperature steam generated by the condensation-evaporator is converted into high-temperature steam through a temperature-changing device;
  • the high-temperature steam generated by the temperature-changing device is converted into electrical energy or mechanical energy to drive the ship;
  • part of the ambient heat energy can also be directly input between the high-pressure end of the liquid booster pump and the low-temperature inlet end of the temperature-variable device, thereby reducing the capacity of the temperature-variable device and reducing the system cost ;
  • the step of converting the high-temperature steam generated by the temperature changing device into electrical energy or mechanical energy through the propulsion system includes:
  • High-temperature steam is used to drive a turbogenerator to generate electricity
  • the propeller is driven to rotate through the rotation of the propulsion motor.
  • the step of converting the high-temperature steam generated by the temperature changing device into electrical energy or mechanical energy through the propulsion system includes:
  • the steam turbine is driven by high-temperature steam to generate mechanical energy
  • the mechanical energy generated by the steam turbine drives the propeller to rotate.
  • the battery is charged by the electric energy generated by the turbo generator
  • the variable temperature device is powered by a battery.
  • the zero-carbon ship power system of the present invention is designed for the continuous power of the ship, so as to achieve the purpose of providing continuous power for the ship by utilizing the energy in the water and recovering the exhausted energy in the propulsion system.
  • the invention provides all the power for the ship.
  • the zero-carbon ship power system uses the heat in the water as the energy source.
  • the ship is naturally on the water surface and can replenish energy at any time. It completely solves the problems of carbon emissions, water and air pollution caused by fuel-fueled ships, and it is particularly important that there will be no limit on cruising range from now on.
  • the ship can continue to generate electricity no matter in the process of driving or stopping the ship, so the capacity of the battery on the ship can be reduced, and it can only be used to maintain the ability to start at any time. It is then necessary to use oil and liquefied natural gas, so that the operating cost can be greatly reduced to close to zero.
  • the speed governor, the propulsion motor, the turbo generator, and the storage battery are cooled by the cold flow medium to further improve the performance.
  • the volume and weight of the key components are reduced, thereby further reducing the cost.
  • the zero-carbon ship power system of the present invention can also generate electricity when the ship is stopped. In summer, the cabin can be cooled when the ship is stopped, and when the ship is stopped in winter, the cabin can be heated to improve comfort; and the energy input system can be properly adjusted.
  • the capacity configuration of batteries and generators can meet the needs of large passenger ships, large cargo ships, cruise ships and various engineering ships.
  • Fig. 1 is a schematic diagram of an embodiment of the zero-carbon ship power system of the present invention
  • Fig. 2 is a schematic diagram of another embodiment of the zero-carbon ship power system of the present invention.
  • connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • the present invention provides a zero-carbon ship power system, including a condensing-evaporator, a temperature changing device and a propulsion system , the condensing-evaporator is used to collect heat energy in water, the system working fluid absorbs the heat energy and converts it into low-temperature steam, the temperature changing device is used to convert the low-temperature steam generated by the condensing-evaporator into high-temperature steam, and the propulsion system uses It is used to convert the high-temperature steam generated by the temperature-changing device into electrical energy or mechanical energy for driving the ship.
  • the condensing-evaporator is used to collect heat energy in water
  • the system working fluid absorbs the heat energy and converts it into low-temperature steam
  • the temperature changing device is used to convert the low-temperature steam generated by the condensing-evaporator into high-temperature steam
  • the propulsion system uses It is used to convert the high-temperature steam generated by the temperature-changing device into electrical energy or mechanical energy for driving the ship.
  • the method of driving the ship by the above-mentioned zero-carbon ship power system includes:
  • the heat energy in the water is collected through the condensation-evaporator, and the system working fluid absorbs the heat energy and converts it into low-temperature steam;
  • the low-temperature steam generated by the condensation-evaporator is converted into high-temperature steam through a temperature-changing device;
  • the high-temperature steam generated by the temperature-changing device is converted into electrical energy or mechanical energy through the propulsion system to drive the movement of the ship.
  • Fig. 1 is a schematic diagram of an embodiment of the zero-carbon ship power system of the present invention.
  • the propulsion system of the zero-carbon ship power system is an all-electric propulsion system
  • the all-electric propulsion system includes steam turbine power generation Machine 11, propulsion motor 17 and propeller 18, the high-voltage input end of the turbogenerator 11 communicates with the temperature changing device 2, the low-voltage output end of the turbogenerator 11 communicates with the condensation-evaporator 1, and the steam turbine generator
  • the generator 11 converts the high-temperature steam generated by the temperature-changing device 2 into electric energy, and at the same time, the exhaust energy generated is converted into low-temperature steam through the condensation-evaporator 1 and flows to the temperature-changing device 2.
  • the electric energy generated by the turbogenerator 11 drives the propulsion motor 17 , the propulsion motor 17 drives the propeller 18 to rotate, thereby driving the ship to move.
  • the all-electric propulsion system further includes a propulsion motor governor 16, and the propulsion motor governor 16 is connected in series between the turbogenerator 11 and the propulsion motor 17, and is used to adjust the speed of the propulsion motor 17. Rotating speed.
  • the zero-carbon ship power system further includes a battery 13, and the battery 13 is connected in series between the turbogenerator 11 and the propulsion motor 17 or between the turbogenerator 11 and the propulsion motor governor 16, so The turbo generator 11 supplements electric energy to the storage battery 13 , and the storage battery 13 supplies power to the propulsion motor 17 or the propulsion motor governor 16 .
  • the zero-carbon ship power system further includes a controller 12, the controller 12 is connected in series between the turbo-generator 11 and the storage battery 13, and is used to control the amount of electric energy output by the turbo-generator 11 .
  • the zero-carbon ship power system further includes a governor 14, which is connected in series between the battery 13 and the temperature changing device 2, and adjusts the amount of electric energy output from the battery 13 to the temperature changing device 2.
  • the zero-carbon marine power system further includes a liquid booster pump 10, the low-pressure inlet of the liquid booster pump 10 communicates with the condenser-evaporator 1, and the high-pressure outlet of the liquid booster pump 10 The end communicates with the temperature changing device 2, the liquid booster pump 10 sucks the system working fluid in the condensation-evaporator 1, converts the system working fluid into a high-pressure liquid, and transmits it to the temperature changing device 2, and the temperature changing device 2 will High-pressure liquid is converted into high-temperature steam.
  • the method of driving the ship by the above-mentioned zero-carbon ship power system includes:
  • the heat energy in the water is collected through the condensation-evaporator 1, and the system working fluid absorbs the heat energy and converts it into low-temperature steam;
  • the low-temperature steam generated by the condensation-evaporator 1 is converted into high-temperature steam by the temperature changing device 2;
  • the propeller 18 is driven to rotate by the rotation of the propulsion motor 17, thereby driving the ship to move.
  • the above method also includes:
  • the battery 13 is charged by the electric energy generated by the turbo generator 11;
  • the temperature changing device 2 is powered by the storage battery 13 .
  • FIG 2 is a schematic diagram of another embodiment of the zero-carbon ship power system of the present invention, as shown in Figure 2, the propulsion system of the zero-carbon ship power system is a mechanical propulsion system, and the mechanical propulsion system includes a steam turbine 20 and a propeller 18.
  • the high-pressure input end of the steam turbine 20 communicates with the temperature changing device 2
  • the low-pressure output end of the steam turbine 20 communicates with the condenser-evaporator 1
  • the steam turbine 20 converts the high-temperature steam generated by the temperature changing device 2 into mechanical energy simultaneously
  • the exhaust gas energy is converted into low-temperature steam through the condensing-evaporator 1 and flows to the temperature changing device 2, and the mechanical energy generated by the steam turbine 20 drives the propeller 18 to rotate, thereby driving the ship to move.
  • the mechanical propulsion system further includes a speed reducer 19, which is connected in series between the steam turbine 20 and the propeller 18, and is used to control the output torque of the steam turbine 20 to the propeller 18.
  • the zero-carbon ship power system further includes a turbogenerator 11 and a storage battery 13, the high voltage input end of the turbogenerator 11 communicates with the temperature changing device 2, and the low voltage input end of the turbogenerator 11 The output end communicates with the condensing-evaporator 1, and the electric energy output end of the turbogenerator 11 is electrically connected with the storage battery 13, and the turbogenerator 11 converts the high-temperature steam generated by the temperature changing device 2 into the exhaust gas generated by the electric energy at the same time The energy is converted into low-temperature steam through the condensing-evaporator 1 and flows to the temperature changing device 2 , and the electric energy generated by the turbo generator 11 is supplemented to the battery 13 , and the battery 13 provides electric energy to the temperature changing device 2 .
  • the zero-carbon ship power system further includes a controller 12, the controller 12 is connected in series between the turbo-generator 11 and the storage battery 13, and is used to control the amount of electric energy output by the turbo-generator 11 and AC to DC conversion.
  • the zero-carbon ship power system further includes a governor 14, which is connected in series between the battery 13 and the temperature changing device 2, and adjusts the amount of electric energy output from the battery 13 to the temperature changing device 2.
  • the zero-carbon marine power system further includes a liquid booster pump 10, the low-pressure inlet of the liquid booster pump 10 communicates with the condenser-evaporator 1, and the high-pressure outlet of the liquid booster pump 10 The end communicates with the temperature changing device 2, the liquid booster pump 10 sucks the system working fluid in the condensation-evaporator 1, converts the system working fluid into a high-pressure liquid, and transmits it to the temperature changing device 2, and the temperature changing device 2 will High-pressure liquid is converted into high-temperature steam.
  • the method of driving the ship by the above-mentioned zero-carbon ship power system includes:
  • the heat energy in the water is collected through the condensation-evaporator 1, and the system working fluid absorbs the heat energy and converts it into low-temperature steam;
  • the low-temperature steam generated by the condensation-evaporator 1 is converted into high-temperature steam by the temperature changing device 2;
  • the mechanical energy generated by the steam turbine 20 drives the propeller 18 to rotate, thereby driving the ship to move.
  • the heat energy in the water is collected through the condensation-evaporator, and the system working fluid absorbs the heat energy and converts it into low-temperature steam;
  • the low-temperature steam generated by the condensation-evaporator is converted into high-temperature steam through a temperature-changing device;
  • the high-temperature steam generated by the temperature-changing device is converted into electrical energy or mechanical energy to drive the ship;
  • part of the ambient heat energy can also be directly input between the high-pressure end of the liquid booster pump and the low-temperature inlet end of the temperature-variable device, thereby reducing the capacity of the temperature-variable device and reducing the system cost .
  • the above method also includes:
  • the battery 13 is charged by the electric energy generated by the turbo generator 11;
  • the temperature changing device 2 is powered by the storage battery 13 .
  • the temperature changing device 2 includes a heat exchanger mechanism and a blower 8, and the heat exchange mechanism has a low-pressure circuit and a high-pressure circuit 5, and the inlet end of the blower 8 is connected to the low-pressure circuit of the heat exchange mechanism.
  • the outlet end of the blower 8 communicates with the high pressure circuit 5 of the heat exchange mechanism.
  • the low-temperature steam enters the low-pressure circuit of the heat exchange mechanism, and returns to the high-pressure circuit of the heat exchange mechanism after being pressurized and heated by the blower.
  • the heat exchange mechanism includes a first heat exchanger 3, a heat recovery heat exchanger 4 and a second heat exchanger 7, and the heat recovery heat exchanger 4, the second heat exchanger 7 and a blower 8 in series in sequence, and the first heat exchanger 3 and the second heat exchanger 7 are connected in parallel.
  • the temperature changing device 2 further includes a temperature regulating valve 9, which is arranged in the high-pressure circuit of the temperature changing device, and is used to control the flow of the high-temperature and high-pressure steam output by the blower between the first heat exchanger and the second heat exchanger.
  • the flow distribution between the exchangers, so as to control the temperature range of the high-temperature steam output by the first heat exchanger, that is, the temperature regulating valve is arranged in the high-pressure circuit between the second heat exchanger 7 and the first heat exchanger 3
  • the temperature regulating valve is controlled to meet the change of the flow ratio caused by the change of the output temperature range of the first heat exchanger 3 and the range of the second heat exchanger 7 raising the temperature.
  • the heat exchange mechanism further includes a third heat exchanger 7A, and the third heat exchanger 7A is used to increase the temperature difference between the high pressure circuit 5 and the low pressure circuit at the high temperature end of the second heat exchanger 7 .
  • blower 8 and/or the first heat exchanger 3 and/or the second heat exchanger 7 and/or the third heat exchanger 7A are provided with an insulation layer.
  • the steam turbine generator 11 adopts a steam turbine, and the isentropic efficiency is required to be above 0.88. Its rotating speed is also selected according to the cost-effective target of 3000rpm-25,000rpm, and the power selection can be from 100 kilowatts to 300 megawatts. It can also be composed of several smaller power parallel-connected, for example, a 240-megawatt DC medium-voltage power system on a ship is composed of four 60-megawatt steam turbine generators 11, and at the same time, it is composed of five 20-megawatt propulsion motors 17.
  • the multi-axis tail thruster system of course, can also be used for side thruster, bow thruster, and underwater cantilever propulsion. Due to sufficient electric energy, some advanced technologies can be embodied here. At the same time, with sufficient electric energy, various Any kind of equipment can give full play to its role.
  • the zero-carbon ship power system can automatically meet the high temperature of 50 degrees near the equator, and can also adapt to the low temperature of minus 30 degrees in the north.
  • the zero-carbon ship power system When sailing in the North and South Poles, it must have It has the ability to fetch water from under the ice, and water at 4 degrees is fine. As long as the underwater vehicle can obtain the water source, it can obtain energy:
  • the flow required by the 60MW generator set is:
  • C-specific heat capacity of normal temperature water 4.2kj/kg.K
  • Q is the power of turbogenerator 11, preferably 60MW
  • the main shaft of the steam turbine 20 adopts a magnetic suspension bearing, and the volume and weight of the steam turbine 20 can be greatly reduced.
  • the propulsion system can also use the combination of mechanical propulsion system and all-electric propulsion system to realize hybrid propulsion, which makes the flexibility of the ship unparalleled.
  • adjusting the speed governor 14 can control the speed of the blower 8 , thereby controlling the output power of the turbogenerator 11 .
  • the storage battery 13 is mainly to meet the needs of starting and emergency use, and can be selected according to the size of the ship.
  • the steam turbine generator 11, the controller 12, the storage battery 13 and the governor 14 form a low-voltage or medium-voltage DC power supply system on board.
  • controlling the flow of the external water source 15 into the condenser-evaporator 1 can control the input power of the zero-carbon ship power system, thereby controlling the propulsion speed of the ship.
  • the propulsion system includes an all-electric propulsion system or/and a mechanical propulsion system. If the power is relatively small, the shared steam turbine 20 for power generation can be used; when the power is relatively large, a single or multiple steam turbines 20 can be used. Its temperature changing device 2 can adopt common or independent.
  • the all-electric propulsion system of the zero-carbon ship power system of the present invention is a propulsion system composed of a turbo generator 11, a controller 12, a propulsion motor governor 16, a propulsion motor 17 and a propeller 18, and is suitable for new ships; mechanical
  • the propulsion system is a propulsion system composed of a steam turbine 20, a speed reducer 19 and a propeller 18, and is applicable to the transformation of existing ships.
  • the zero-carbon ship power system of the present invention is suitable for large-scale artificial floating cities on the sea, or underwater submersibles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种零碳船舶动力***,包括冷凝-蒸发器(1)、变温装置(2)和推进***,冷凝-蒸发器(1)用于采集水中热能,***工质吸收热能后转变为低温蒸汽,变温装置(2)用于将冷凝-蒸发器(1)产生的低温蒸汽转变为高温蒸汽,推进***用于将变温装置(2)产生的高温蒸汽转换为驱动船舶的电能或机械能。该零碳船舶动力***能够利用水中的能量为船舶提供持续动力,减少碳排放,降低了营运成本。

Description

零碳船舶动力***及驱动船舶的方法 技术领域
本发明涉及船舶动力技术领域,具体而言,涉及一种零碳船舶动力***及驱动船舶的方法。
背景技术
全世界各国政府都推出了零碳排放船舶计划,但氢燃料电池船舶技术复杂,成本高昂,安全存在巨大隐患,液化天然气动力也不能解决零碳问题,并且大量占用船上体积,随着全球化的发展,水面运输也将需要得到大力的发展,但是现有的所有新能源船舶动力***都存在着成本高昂,难以持续,如果离开了国家补贴就很难推广的问题。
然而水面运输最大的优势处于水中,如果利用好水中蕴含的能量,就能彻底的解决船舶的动力问题。
发明内容
针对现有技术存在问题中的一个或多个,根据本发明的一个方面,提供一种零碳船舶动力***,包括冷凝-蒸发器、变温装置和推进***,所述冷凝-蒸发器用于采集水中热能,***工质吸收所述热能后转变为低温蒸汽,所述变温装置用于将冷凝-蒸发器产生的低温蒸汽转变为高温蒸汽,所述推进***用于将变温装置产生的高温蒸汽转换为驱动船舶的电能或机械能。
可选地,所述推进***包括全电推动***,所述全电推动***包括汽 轮发电机、推进电机和螺旋桨,所述汽轮发电机的高压输入端与变温装置连通,所述汽轮发电机的低压输出端与冷凝-蒸发器连通,所述汽轮发电机将变温装置产生的高温蒸汽转换为电能同时产生的乏气能量通过冷凝-蒸发器转换为低温蒸汽流至变温装置,所述汽轮发电机产生的电能驱动推进电机,所述推进电机驱动螺旋桨转动,从而驱动船舶运动。
可选地,所述全电推动***还包括推进电机调速器,所述推进电机调速器串联在汽轮发电机与推进电机之间,用于调节推进电机的转速。
可选地,所述零碳船舶动力***还包括蓄电池,所述蓄电池串联在汽轮发电机和推进电机或汽轮发电机和推进电机调速器之间,所述汽轮发电机向蓄电池补充电能,所述蓄电池向推进电机或推进电机调速器供电。
可选地,所述推进***包括机械推动***,所述机械推动***包括汽轮机和螺旋桨,所述汽轮机的高压输入端与变温装置连通,所述汽轮机的低压输出端与冷凝-蒸发器连通,所述汽轮机将变温装置产生的高温蒸汽转换为机械能同时产生的乏气能量通过冷凝-蒸发器转换为低温蒸汽流至变温装置,所述汽轮机产生的机械能驱动螺旋桨转动,从而驱动船舶运动。
可选地,所述机械推动***还包括减速机,所述减速机串联在汽轮机和螺旋桨之间,用于控制汽轮机向螺旋桨输出扭矩的大小。
可选地,还包括汽轮发电机和蓄电池,所述汽轮发电机的高压输入端与变温装置连通,所述汽轮发电机的低压输出端与冷凝-蒸发器连通,所述汽轮发电机的电能输出端与蓄电池电连接,所述汽轮发电机将变温装置产生的高温蒸汽转换为电能同时产生的乏气能量通过冷凝-蒸发器转换为低温蒸汽流至变温装置,所述汽轮发电机产生的电能补充给蓄电池,所述蓄电池向变温装置提供电能。
可选地,还包括控制器,所述控制器串联在汽轮发电机和蓄电池之间, 用于控制汽轮发电机输出的电能的大小和交直流转换。
可选地,还包括调速器,串联在蓄电池和变温装置之间,调节蓄电池向变温装置输出电能的大小。
可选地,所述变温装置包括热交换器机构和鼓风机,所述热交换机构具有低压回路和高压回路,所述鼓风机的进口端与所述热交换机构的低压回路连通,所述鼓风机的出口端与所述热交换机构的高压回路连通。
可选地,所述热交换机构包括第一热交换器、回热热交换器和第二热交换器,所述回热热交换器、第二热交换器和鼓风机依次串联,所述第一热交换器与第二热交换器并联。
可选地,所述变温装置还包括温度调节阀,温度调节阀被配置于变温装置的高压回路中,用于控制鼓风机输出的高温高压蒸汽在第一热交换器和第二热交换器之间的流量分配,从而控制第一热交换器输出的高温蒸汽温度范围。
可选地,所述热交换机构还包括第三热交换器,所述第三热交换器用于增大第二热交换器高温端的高压回路和低压回路的温差;
可选地,所述鼓风机和/或第一热交换器和/或第二热交换器和/或第三热交换器设置有保温层。
可选地,还包括液体加压泵,所述液体加压泵的低压进口端和冷凝-蒸发器连通,所述液体加压泵的高压出口端和变温装置连通,所述液体加压泵抽吸冷凝-蒸发器中的***工质,将所述***工质转变为高压液体,传输给变温装置,所述变温装置将高压液体转换为高温蒸汽。
根据本发明的另一个方面,提供一种上述零碳船舶动力***驱动船舶的方法,包括:
通过冷凝-蒸发器采集水中热能,***工质吸收所述热能后转变为低温蒸汽;
通过变温装置将冷凝-蒸发器产生的低温蒸汽转变为高温蒸汽;
通过推进***将变温装置产生的高温蒸汽转换为电能或机械能,驱动船舶运动。
通过冷凝-蒸发器采集水中热能,***工质吸收所述热能后转变为低温蒸汽;
通过变温装置将冷凝-蒸发器产生的低温蒸汽转变为高温蒸汽;
通过推进***将变温装置产生的高温蒸汽转换为电能或机械能,驱动船舶运动;
可选地,当冷凝-蒸发器相对环境温度温差很大时,部分环境热能也可以直接输入液体加压泵的高压端与变温装置的低温进口端之间,从而减少变温装置容量,降低***成本;
可选地,所述通过推进***将变温装置产生的高温蒸汽转换为电能或机械能的步骤包括:
通过高温蒸汽驱动汽轮发电机,产生电能;
通过电能驱动推进电机旋转;
通过推进电机旋转带动螺旋桨旋转。
可选地,所述通过推进***将变温装置产生的高温蒸汽转换为电能或机械能的步骤包括:
通过高温蒸汽驱动汽轮机,产生机械能;
通过汽轮机产生的机械能驱动螺旋桨转动。
可选地,还包括:
通过汽轮发电机产生的电能对蓄电池充电;
通过蓄电池为变温装置供能。
本发明实施例的技术方案至少具有如下优点和有益效果:
本发明所述零碳船舶动力***针对船舶持续动力而设计,达到能够利用水中的能量和回收推进***中乏气的能量为船舶提供持续动力的目的。
本发明为船舶提供全部的所有动力,零碳船舶动力***以水中的热量作为能量来源,船舶自然的就处于水面之上,随时可以补充能量,彻底免除了使用者加气、加油之苦,并彻底解决了燃油船舶带来的碳排放和水及空气污染问题,特别重要的是从今以后将再没有续航里程的限制。
在船舶配备本发明所述零碳船舶动力******后,船舶无论在行驶和停船过程中都能不断发电,所以船上的蓄电池的容量可以减少,仅为保持随时有启动能力所用就可以了,不再需要使用油和液化天然气,使运营成本大幅度降低接近至0。
本发明全部用的是安全材料,特别是不再采用油和天然气,不再有燃烧***之危险,提高了安全性能。
利用本发明中冷凝-蒸发器的制冷功能,采用冷流介质对调速器、推进电机、汽轮发电机、蓄电池进行低温冷却,进一步提高性能.减小了关键部件的体积重量,从而进一步降低成本。
本发明所述零碳船舶动力***在停船时也能发电工作,夏天可以在停船时对船舱内进行冷却,冬天停船时可以对船舱内进行供暖,提高了舒适性;并且适当调节能量输入***、蓄电池和发电机的容量配置,就可满足大客船、大货船、邮轮及各种工程船的需要。
附图说明
图1是本发明所述零碳船舶动力***一个实施例的示意图;
图2是本发明所述零碳船舶动力***另一个实施例的示意图;
图中:1-冷凝-蒸发器,2-变温装置,3-第一热交换器,4-回热热交换器,5-高压回路,6-低压回路,7-第二热交换器,7A-第三热交换器,8-鼓风机,9-温度调节阀,10-液体加压泵,11-汽轮发电机,12-控制器,13-蓄电池,14-调速器,15-外部水源,16-推进电机调速器,17-推进电机,18-螺旋桨,19-减速机,20-汽轮机。
具体实施方式
术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
针对船舶持续动力,达到能够利用水中的能量和回收推进***中乏气的能量为船舶提供持续动力的目的,本发明提供一种零碳船舶动力***,包括冷凝-蒸发器、变温装置和推进***,所述冷凝-蒸发器用于采集水中热能,***工质吸收所述热能后转变为低温蒸汽,所述变温装置用于将冷 凝-蒸发器产生的低温蒸汽转变为高温蒸汽,所述推进***用于将变温装置产生的高温蒸汽转换为驱动船舶的电能或机械能。
上述零碳船舶动力***驱动船舶的方法包括:
通过冷凝-蒸发器采集水中热能,***工质吸收所述热能后转变为低温蒸汽;
通过变温装置将冷凝-蒸发器产生的低温蒸汽转变为高温蒸汽;
通过推进***将变温装置产生的高温蒸汽转换为电能或机械能,驱动船舶运动。
图1是本发明所述零碳船舶动力***一个实施例的示意图,如图1所示,所述零碳船舶动力***的推进***为全电推动***,所述全电推动***包括汽轮发电机11、推进电机17和螺旋桨18,所述汽轮发电机11的高压输入端与变温装置2连通,所述汽轮发电机11的低压输出端与冷凝-蒸发器1连通,所述汽轮发电机11将变温装置2产生的高温蒸汽转换为电能同时产生的乏气能量通过冷凝-蒸发器1转换为低温蒸汽流至变温装置2,所述汽轮发电机11产生的电能驱动推进电机17,所述推进电机17驱动螺旋桨18转动,从而驱动船舶运动。
在一个实施例中,所述全电推动***还包括推进电机调速器16,所述推进电机调速器16串联在汽轮发电机11与推进电机17之间,用于调节推进电机17的转速。
在一个实施例中,所述零碳船舶动力***还包括蓄电池13,所述蓄电池13串联在汽轮发电机11和推进电机17或汽轮发电机11和推进电机调速器16之间,所述汽轮发电机11向蓄电池13补充电能,所述蓄电池13向推进电机17或推进电机调速器16供电。
在一个实施例中,所述零碳船舶动力***还包括控制器12,所述控制器12串联在汽轮发电机11和蓄电池13之间,用于控制汽轮发电机11输出的电能的大小。
在一个实施例中,所述零碳船舶动力***还包括调速器14,串联在蓄电池13和变温装置2之间,调节蓄电池13向变温装置2输出电能的大小。
在一个实施例中,所述零碳船舶动力***还包括液体加压泵10,所述液体加压泵10的低压进口端和冷凝-蒸发器1连通,所述液体加压泵10的高压出口端和变温装置2连通,所述液体加压泵10抽吸冷凝-蒸发器1中的***工质,将所述***工质转变为高压液体,传输给变温装置2,所述变温装置2将高压液体转换为高温蒸汽。
在一个实施例中,如图1所示,
上述零碳船舶动力***驱动船舶的方法包括:
通过冷凝-蒸发器1采集水中热能,***工质吸收所述热能后转变为低温蒸汽;
通过变温装置2将冷凝-蒸发器1产生的低温蒸汽转变为高温蒸汽;
通过高温蒸汽驱动汽轮发电机11,产生电能;
通过电能驱动推进电机17旋转;
通过推进电机17旋转带动螺旋桨18旋转,从而驱动船舶运动。
在一个实施例中,上述方法还包括:
通过汽轮发电机11产生的电能对蓄电池13充电;
通过蓄电池13为变温装置2供能。
图2是本发明所述零碳船舶动力***另一个实施例的示意图,如图2 所示,所述零碳船舶动力***的推进***为机械推动***,所述机械推动***包括汽轮机20和螺旋桨18,所述汽轮机20的高压输入端与变温装置2连通,所述汽轮机20的低压输出端与冷凝-蒸发器1连通,所述汽轮机20将变温装置2产生的高温蒸汽转换为机械能同时产生的乏气能量通过冷凝-蒸发器1转换为低温蒸汽流至变温装置2,所述汽轮机20产生的机械能驱动螺旋桨18转动,从而驱动船舶运动。
在一个实施例中,所述机械推动***还包括减速机19,所述减速机19串联在汽轮机20和螺旋桨18之间,用于控制汽轮机20向螺旋桨18输出扭矩的大小。
在一个实施例中,所述零碳船舶动力***还包括汽轮发电机11和蓄电池13,所述汽轮发电机11的高压输入端与变温装置2连通,所述汽轮发电机11的低压输出端与冷凝-蒸发器1连通,所述汽轮发电机11的电能输出端与蓄电池13电连接,所述汽轮发电机11将变温装置2产生的高温蒸汽转换为电能同时产生的乏气能量通过冷凝-蒸发器1转换为低温蒸汽流至变温装置2,所述汽轮发电机11产生的电能补充给蓄电池13,所述蓄电池13向变温装置2提供电能。
在一个实施例中,所述零碳船舶动力***还包括控制器12,所述控制器12串联在汽轮发电机11和蓄电池13之间,用于控制汽轮发电机11输出的电能的大小和交直流转换。
在一个实施例中,所述零碳船舶动力***还包括调速器14,串联在蓄电池13和变温装置2之间,调节蓄电池13向变温装置2输出电能的大小。
在一个实施例中,所述零碳船舶动力***还包括液体加压泵10,所述液体加压泵10的低压进口端和冷凝-蒸发器1连通,所述液体加压泵10的高压出口端和变温装置2连通,所述液体加压泵10抽吸冷凝-蒸发器1中 的***工质,将所述***工质转变为高压液体,传输给变温装置2,所述变温装置2将高压液体转换为高温蒸汽。
上述零碳船舶动力***驱动船舶的方法包括:
通过冷凝-蒸发器1采集水中热能,***工质吸收所述热能后转变为低温蒸汽;
通过变温装置2将冷凝-蒸发器1产生的低温蒸汽转变为高温蒸汽;
通过高温蒸汽驱动汽轮机20,产生机械能;
通过汽轮机20产生的机械能驱动螺旋桨18转动,从而驱动船舶运动。
通过冷凝-蒸发器采集水中热能,***工质吸收所述热能后转变为低温蒸汽;
通过变温装置将冷凝-蒸发器产生的低温蒸汽转变为高温蒸汽;
通过推进***将变温装置产生的高温蒸汽转换为电能或机械能,驱动船舶运动;
可选地,当冷凝-蒸发器相对环境温度温差很大时,部分环境热能也可以直接输入液体加压泵的高压端与变温装置的低温进口端之间,从而减少变温装置容量,降低***成本。
在一个实施例中,上述方法还包括:
通过汽轮发电机11产生的电能对蓄电池13充电;
通过蓄电池13为变温装置2供能。
在上述各实施例中,所述变温装置2包括热交换器机构和鼓风机8,所述热交换机构具有低压回路和高压回路5,所述鼓风机8的进口端与所述热交换机构的低压回路连通,所述鼓风机8的出口端与所述热交换机构的高 压回路5连通。在鼓风机的抽压作用下,低温蒸汽进入热交换机构的低压回路,通过鼓风机加压升温后返回到热交换机构的高压回路,热交换机构的高压回路和低压回路出现温差,高压回路对低压回路进行加热,实现低压回路增焓,高压回路降焓。
在一个实施例中,所述热交换机构包括第一热交换器3、回热热交换器4和第二热交换器7,所述回热热交换器4、第二热交换器7和鼓风机8依次串联,所述第一热交换器3与第二热交换器7并联。
在一个实施例中,所述变温装置2还包括温度调节阀9,温度调节阀被配置于变温装置的高压回路中,用于控制鼓风机输出的高温高压蒸汽在第一热交换器和第二热交换器之间的流量分配,从而控制第一热交换器输出的高温蒸汽温度范围,也就是说,温度调节阀被配置于第二热交换器7和第一热交换器3之间的高压回路上,控制温度调节阀满足第一热交换器3输出温度范围的变化和第二热交换器7提升温度的范围所带来的流量比例变化。
在一个实施例中,所述热交换机构还包括第三热交换器7A,所述第三热交换器7A用于增大第二热交换器7高温端的高压回路5和低压回路的温差。
优选地,所述鼓风机8和/或第一热交换器3和/或第二热交换器7和/或第三热交换器7A设置有保温层。
除了变温装置2外,其他与环境温度相差较大的其他构件也具有保温层。
在上述各实施例中,汽轮发电机11采用蒸汽轮机,等熵效率要求达到0.88以上,其转速同样根据性价比目标进行选择3000rpm-25,000rpm,功率选择可以从100千瓦到300兆瓦,为了冗余也可以由几台较小功率的并联组 成,比如由4台60兆瓦的汽轮发电机11组成240兆瓦的船上直流中压电力***,同时由5台20兆瓦的推进电机17组成多轴尾推***,当然也可以侧推、艏推,水下悬臂式推进,由于有了充足的电能,一些先进的技术,都可以在这里得到体现,同时有了充足的电能,各种各样的装备,都可以充分发挥作用。
在一个具体实施例中,运用绿色冷媒r32或水做介质,零碳船舶动力***能自动满足赤道附近50度的高温,同时也能适应北方零下30度的低温,在南北极航行时,必须具备有从冰下取水的能力,4度的水也行,水下航行器只要保证能够取得水源,就能获得能量:
如果水温15度,60兆瓦的发电机组需要的流量是:
Q=V×C×△T×γ
其中,C-常温水的比热容:4.2kj/kg.K;△T-蒸发器-冷凝器1水进出端相对能够达到的温差,水的低温端一般取零度,15度的水温时温差为15度,△T=15;Q为汽轮发电机11功率,优选为60MW;V为水流量M3/S;γ为水密度,取每立方1吨则:V=Q/△T×C×γ=60/15×4.2×1=0.95M3/S。
由于船舶推进消耗的能量与推进的速度的立方成正比,为了节约能量远程的大型海上运输船舶,都把船舶的巡航速度控制在13节以内,采用零碳船舶动力***以后,能源无限,动力无限,可以轻松的将船舶的巡航速度提高到30~50节从而大大的缩短海上运输的时间,更有利于实现全球化。
现在在役的船舶大多数采用的都是机械传动推动,为了节约能源,都在千方百计的提高发动机的效率,为此很多大功率的发动机都是低转速的,导致在船上占地面积大,非常笨重,特别是目前的天然气加柴油的双燃料船,更是占据了船上巨大的空间,减少了有效的载货量;对于在役的船舶如果改成电力推动,难度较大,为了减少推广的阻力,可以保留原来的螺旋桨18,可 利用发电的汽轮发电机11,或者与发电的汽轮发电机11并联的汽轮机20,通过减速机19将汽轮机20和螺旋桨18相连,就构成了机械传动的推进***,由于不需要考虑汽轮机20的效率问题,汽轮机20可以制成高速汽轮机20和减速机19,优选地,汽轮机20的主轴采用磁悬浮轴承,汽轮机20的体积和重量都可大大缩小,优选地,推动***还可以采用机械推动***和全电推动***结合,实现混合推动,使船舶的灵活性无与伦比。
在上述各实施例中,调节调速器14可以控制鼓风机8的转速,从而可以控制汽轮发电机11的输出功率。
在上述各实施例中,蓄电池13主要为满足启动和应急时的使用需要,可根据船舶的大小进行选择。汽轮发电机11、控制器12、蓄电池13和调速器14组成船上低压或中压直流供电***。
在上述各实施例中,控制外部水源15进入冷凝-蒸发器1的流量,就可以控制零碳船舶动力***的输入功率,从而就可以控制船的推进速度。
在上述各实施例中,推进***包括全电推动***或/和机械推动***,功率比较小时,可以采用发电共用的汽轮机20;功率比较大时,可以采用单独的单台或多台汽轮机20,其变温装置2可以采用公用的或者单独的。
本发明所述零碳船舶动力***的全电推动***是由汽轮发电机11、控制器12、推进电机调速器16、推进电机17和螺旋桨18组成的推进***,适用于新造船舶;机械推动***是由汽轮机20、减速机19和螺旋桨18组成的推进***,适用于现有船舶的改造。
本发明所述零碳船舶动力***适用于大型的海上人造漂浮城市,或者水下的潜航器。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和 原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种零碳船舶动力***,其特征在于:包括冷凝-蒸发器、变温装置和推进***,所述冷凝-蒸发器用于采集水中热能,***工质吸收所述热能后转变为低温蒸汽,所述变温装置用于将冷凝-蒸发器产生的低温蒸汽转变为高温蒸汽,所述推进***用于将变温装置产生的高温蒸汽转换为驱动船舶的电能或机械能。
  2. 根据权利要求1所述的零碳船舶动力***,其特征在于:所述推进***包括全电推动***,所述全电推动***包括汽轮发电机、推进电机和螺旋桨,所述汽轮发电机的高压输入端与变温装置连通,所述汽轮发电机的低压输出端与冷凝-蒸发器连通,所述汽轮发电机将变温装置产生的高温蒸汽转换为电能同时产生的乏气能量通过冷凝-蒸发器转换为低温蒸汽流至变温装置,所述汽轮发电机产生的电能驱动推进电机,所述推进电机驱动螺旋桨转动,从而驱动船舶运动;
    优选地,所述全电推动***还包括推进电机调速器,所述推进电机调速器串联在汽轮发电机与推进电机之间,用于调节推进电机的转速;
    优选地,所述零碳船舶动力***还包括蓄电池,所述蓄电池串联在汽轮发电机和推进电机或汽轮发电机和推进电机调速器之间,所述汽轮发电机向蓄电池补充电能,所述蓄电池向推进电机或推进电机调速器供电。
  3. 根据权利要求1所述的零碳船舶动力***,其特征在于:所述推进***包括机械推动***,所述机械推动***包括汽轮机和螺旋桨,所述汽轮机的高压输入端与变温装置连通,所述汽轮机的低压输出端与冷凝-蒸发器连通,所述汽轮机将变温装置产生的高温蒸汽转换为机械能同时产生的乏气能量通过冷凝-蒸发器转换为低温蒸汽流至变温装置,所述汽轮机产生的机械能驱动螺旋桨转动,从而驱动船舶运动;
    优选地,所述机械推动***还包括减速机,所述减速机串联在汽轮机 和螺旋桨之间,用于控制汽轮机向螺旋桨输出扭矩的大小;
    优选地,还包括汽轮发电机和蓄电池,所述汽轮发电机的高压输入端与变温装置连通,所述汽轮发电机的低压输出端与冷凝-蒸发器连通,所述汽轮发电机的电能输出端与蓄电池电连接,所述汽轮发电机将变温装置产生的高温蒸汽转换为电能同时产生的乏气能量通过冷凝-蒸发器转换为低温蒸汽流至变温装置,所述汽轮发电机产生的电能补充给蓄电池,所述蓄电池向变温装置提供电能。
  4. 根据权利要求2或3所述的零碳船舶动力***,其特征在于:还包括控制器,所述控制器串联在汽轮发电机和蓄电池之间,用于控制汽轮发电机输出的电能的大小和交直流转换。
  5. 根据权利要求2或3所述的零碳船舶动力***,其特征在于:还包括调速器,串联在蓄电池和变温装置之间,调节蓄电池向变温装置输出电能的大小。
  6. 根据权利要求1-5中任一所述的零碳船舶动力***,其特征在于:所述变温装置包括热交换器机构和鼓风机,所述热交换机构具有低压回路和高压回路,所述鼓风机的进口端与所述热交换机构的低压回路连通,所述鼓风机的出口端与所述热交换机构的高压回路连通;
    优选地,所述热交换机构包括第一热交换器、回热热交换器和第二热交换器,所述回热热交换器、第二热交换器和鼓风机依次串联,所述第一热交换器与第二热交换器并联;
    优选地,所述变温装置还包括温度调节阀,温度调节阀被配置于变温装置的高压回路中,用于控制鼓风机输出的高温高压蒸汽在第一热交换器和第二热交换器之间的流量分配,从而控制第一热交换器输出的高温蒸汽温度范围;
    优选地,所述热交换机构还包括第三热交换器,所述第三热交换器用于增大第二热交换器高温端的高压回路和低压回路的温差;
    优选地,所述鼓风机和/或第一热交换器和/或第二热交换器和/或第三热交换器设置有保温层。
  7. 根据权利要求1-6中任一所述的零碳船舶动力***,其特征在于:还包括液体加压泵,所述液体加压泵的低压进口端和冷凝-蒸发器连通,所述液体加压泵的高压出口端和变温装置连通,所述液体加压泵抽吸冷凝-蒸发器中的***工质,将所述***工质转变为高压液体,传输给变温装置,所述变温装置将高压液体转换为高温蒸汽。
  8. 一种利用权利要求1所述的零碳船舶动力***驱动船舶的方法,其特征在于:包括:
    通过冷凝-蒸发器采集水中热能,***工质吸收所述热能后转变为低温蒸汽;
    通过变温装置将冷凝-蒸发器产生的低温蒸汽转变为高温蒸汽;
    通过推进***将变温装置产生的高温蒸汽转换为电能或机械能,驱动船舶运动;
    可选地,当冷凝-蒸发器相对环境温度温差很大时,部分环境热能也可以直接输入液体加压泵的高压端与变温装置的低温进口端之间,从而减少变温装置容量,降低***成本;
    优选地,还包括:通过汽轮发电机产生的电能对蓄电池充电;
    通过蓄电池为变温装置供能。
  9. 根据权利要求8所述的方法,其特征在于:所述通过推进***将变温装置产生的高温蒸汽转换为电能或机械能的步骤包括:
    通过高温蒸汽驱动汽轮发电机,产生电能;
    通过电能驱动推进电机旋转;
    通过推进电机旋转带动螺旋桨旋转;
    优选地,还包括:
    通过汽轮发电机产生的电能对蓄电池充电;
    通过蓄电池为变温装置供能。
  10. 根据权利要求8所述的方法,其特征在于:所述通过推进***将变温装置产生的高温蒸汽转换为电能或机械能的步骤包括:
    通过高温蒸汽驱动汽轮机,产生机械能;
    通过汽轮机产生的机械能驱动螺旋桨转动。
PCT/CN2022/076896 2021-09-18 2022-02-18 零碳船舶动力***及驱动船舶的方法 WO2023040191A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111100989.XA CN114248899A (zh) 2021-09-18 2021-09-18 零碳船舶动力***及驱动船舶的方法
CN202122296217.X 2021-09-18
CN202111100989.X 2021-09-18
CN202122296217 2021-09-18

Publications (1)

Publication Number Publication Date
WO2023040191A1 true WO2023040191A1 (zh) 2023-03-23

Family

ID=85602388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076896 WO2023040191A1 (zh) 2021-09-18 2022-02-18 零碳船舶动力***及驱动船舶的方法

Country Status (1)

Country Link
WO (1) WO2023040191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117494596A (zh) * 2023-10-26 2024-02-02 中国船舶集团有限公司第七一九研究所 船舶核动力二回路流体与运行姿态的联合仿真方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785774A (zh) * 2011-09-21 2012-11-21 颜维直 推动船只前进的方法和船只的动力***
CN103245126A (zh) * 2013-04-09 2013-08-14 天津大学 船用发动机的冷电双效余热回收***
CN103604107A (zh) * 2013-10-22 2014-02-26 浙江大学 一种热泵式太阳能生物质锅炉***及其方法
CN105683551A (zh) * 2013-11-27 2016-06-15 三菱重工业株式会社 余热回收***、船用推进***、船舶及余热回收方法
CN105757978A (zh) * 2016-04-23 2016-07-13 广东合即得能源科技有限公司 一种船载热泵热水器***及制热方法
CN208396762U (zh) * 2018-03-02 2019-01-18 云南师范大学 一种船舶废气余温和光伏混合发电***
CN111980769A (zh) * 2019-05-21 2020-11-24 北京宏远佰思德科技有限公司 一种低温工质超临界动力***和机动设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785774A (zh) * 2011-09-21 2012-11-21 颜维直 推动船只前进的方法和船只的动力***
CN103245126A (zh) * 2013-04-09 2013-08-14 天津大学 船用发动机的冷电双效余热回收***
CN103604107A (zh) * 2013-10-22 2014-02-26 浙江大学 一种热泵式太阳能生物质锅炉***及其方法
CN105683551A (zh) * 2013-11-27 2016-06-15 三菱重工业株式会社 余热回收***、船用推进***、船舶及余热回收方法
EP3051111A1 (en) * 2013-11-27 2016-08-03 Mitsubishi Heavy Industries, Ltd. Waste heat recovery system, ship propulsion system, ship, and waste heat recovery method
CN105757978A (zh) * 2016-04-23 2016-07-13 广东合即得能源科技有限公司 一种船载热泵热水器***及制热方法
CN208396762U (zh) * 2018-03-02 2019-01-18 云南师范大学 一种船舶废气余温和光伏混合发电***
CN111980769A (zh) * 2019-05-21 2020-11-24 北京宏远佰思德科技有限公司 一种低温工质超临界动力***和机动设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117494596A (zh) * 2023-10-26 2024-02-02 中国船舶集团有限公司第七一九研究所 船舶核动力二回路流体与运行姿态的联合仿真方法及***

Similar Documents

Publication Publication Date Title
JP7171002B1 (ja) アンモニア-水素駆動に基づく複合型船舶混合動力システム
CN109941417B (zh) 一种带超级电容的气电混联式船舶混合动力***
CN108657406B (zh) 一种带燃料电池的柴气电混联式船舶混合动力***
CN108639299B (zh) 一种带燃料电池的气电混联式船舶混合动力***
US11034424B2 (en) Gas-electric parallel-serial hybrid marine power train system with LNG cooling
CN108438189B (zh) 一种双轴式气电混合船舶动力***
WO2017147950A1 (zh) 一种发动机前置的增程式电动乘用车
US7891186B1 (en) System and method of waste heat recovery and utilization
CN101767645A (zh) 新型电力推进***
CN108528735B (zh) 串联式混合动力飞机及其控制方法
CN100453403C (zh) 巨型船舶燃气-蒸汽动力的推进、供电、供汽联合***
CN108674627A (zh) 一种带燃料电池的双轴式船舶混合动力***
WO2023040191A1 (zh) 零碳船舶动力***及驱动船舶的方法
CN201694383U (zh) 一种电力推进***
CN114074763A (zh) 一种基于涡轴发动机的串联混合动力推进***及设计方法
CN114248899A (zh) 零碳船舶动力***及驱动船舶的方法
CN112249292A (zh) 一种液氢高温超导电机全电力推进***
CN109878680B (zh) 一种带lng冷却的气电并联式船舶混合动力***
CN112572744A (zh) 双轴四机式船舶混合动力***及其推进控制方法
KR20120058561A (ko) 내연 기관 시스템 및 선박
CN116729609A (zh) 一种带可逆燃料电池的船舶氨-电混合动力***
CN216508979U (zh) 一种船舶动力***及船舶
CN109878686B (zh) 一种双机单桨式气电混合船舶动力动力***
CN109878687B (zh) 一种带复合储能的双机三浆式船舶混合动力***
CN112706929B (zh) 一种固定翼无人机用混合动力***及推进方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE