WO2023039878A1 - Imaging lens assembly, camera module and imaging device - Google Patents

Imaging lens assembly, camera module and imaging device Download PDF

Info

Publication number
WO2023039878A1
WO2023039878A1 PCT/CN2021/119320 CN2021119320W WO2023039878A1 WO 2023039878 A1 WO2023039878 A1 WO 2023039878A1 CN 2021119320 W CN2021119320 W CN 2021119320W WO 2023039878 A1 WO2023039878 A1 WO 2023039878A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
imaging
lens assembly
imaging lens
optical axis
Prior art date
Application number
PCT/CN2021/119320
Other languages
French (fr)
Inventor
Daigo Katsuragi
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to CN202180100527.XA priority Critical patent/CN117651906A/en
Priority to PCT/CN2021/119320 priority patent/WO2023039878A1/en
Publication of WO2023039878A1 publication Critical patent/WO2023039878A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/04Bodies collapsible, foldable or extensible, e.g. book type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present disclosure relates to an imaging lens assembly, a camera module, and an imaging device, and more specifically, to an imaging lens assembly, a camera module, and an imaging device that are small and enable good optical performance.
  • a conventional imaging lens assembly secures a long focal length of the imaging lens assembly within a restricted space by disposing a prism on an object side of a lens group.
  • the volume of the prism disposed in the imaging device is restricted by the thickness of the imaging device. Due to the restricted volume of the prism, it is difficult for the prism to secure a sufficient reflection area and take in a sufficient amount of light.
  • the image sensor is disposed so as to be perpendicular to the optical axis of the imaging lens assembly, it is difficult to install a large image sensor due to the restricted thickness of the imaging device.
  • the present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide an imaging lens assembly, a camera module, and an imaging device.
  • an imaging lens assembly includes:
  • At least one lens disposed on the imaging surface side of the mirror and having a positive refractive power
  • At least one lens disposed on the imaging surface side of the mirror and having a negative refractive power
  • the mirror is configured to tilt at a first angle with respect to an optical axis direction of a first optical axis, which is a part of an optical axis of the imaging lens assembly and is positioned between the mirror and the reflection member, in a stored mirror state so that most of the incoming light incident on the mirror is reflected in a direction deviated from the lenses, and is configured to tilt at a second angle larger than the first angle with respect to the optical axis direction in a shooting state so that most of the incoming light incident on the mirror reflected towards the lenses to form an optical path optically connecting the mirror, the lenses and the reflection member, and
  • the imaging lens assembly is configured so that:
  • ⁇ Ld is a distance on an optical axis of the imaging lens assembly from the mirror to a surface on the imaging surface side of a most imaging surface side disposed lens
  • ⁇ d is a distance on an optical axis of the imaging lens assembly from the mirror to the imaging surface
  • Mh is an effective height of the mirror at an intersection of the optical axis and the mirror
  • Yh is an image height.
  • the imaging lens assembly may be further configured so that:
  • the imaging lens assembly may be further configured so that:
  • f is a focal length of the imaging lens assembly.
  • the imaging lens assembly may be further configured so that:
  • BF is a distance on an optical axis of the imaging lens assembly from a surface on the imaging surface side of the most imaging surface side disposed lens to the imaging surface.
  • the imaging lens assembly may be further configured so that:
  • Fno is an F number of the imaging lens assembly.
  • the imaging lens assembly may be further configured so that:
  • the most imaging surface side disposed lens may have a positive refractive power.
  • the lenses may include, in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, a fourth lens having a positive refractive power, a fifth lens having a negative refractive power, a sixth lens having a negative refractive power, and a seventh lens having a positive refractive power.
  • the reflection member may be a prism.
  • a camera module includes:
  • an image sensor including an imaging surface parallel to an optical axis direction of the first optical axis, and perpendicular to an optical axis direction of a second optical axis which is the remaining part of the optical axis of the imaging lens assembly and is positioned between the reflection member and the imaging surface.
  • the camera module may further include an IR filter disposed between the imaging lens assembly and the image sensor.
  • an imaging device includes:
  • a housing for storing the imaging lens assembly
  • a drive mechanism rotationally driving the mirror about the one end of the mirror.
  • the mirror may be configured to be stored inside the housing in the stored mirror state and may be configured so that the other end of the mirror protrudes from a surface of the housing in the shooting state.
  • FIG. 1A is a diagram of a camera module according to the present disclosure illustrating an imaging lens assembly in a stored mirror state
  • FIG. 1B is a diagram of the camera module according to the present disclosure illustrating the imaging lens assembly in a shooting state
  • FIG. 2A is a diagram of an imaging device according to the present disclosure illustrating the imaging device in the stored mirror state
  • FIG. 2B is a diagram of the imaging device according to the present disclosure illustrating the imaging device in the shooting state
  • FIG. 3 is a diagram illustrating an example of a drive mechanism
  • FIG. 4 is a configuration diagram of a camera module according to a first example of the present disclosure
  • FIG. 5 is an aberration diagram of the camera module according to the first example of the present disclosure.
  • FIG. 6 is a configuration diagram of a camera module according to a second example of the present disclosure.
  • FIG. 7 is an aberration diagram of the camera module according to the second example of the present disclosure.
  • FIG. 8 is a configuration diagram of a camera module according to a third example of the present disclosure.
  • FIG. 9 is an aberration diagram of the camera module according to the third example of the present disclosure.
  • FIG. 10 is a configuration diagram of a camera module according to a fourth example of the present disclosure.
  • FIG. 11 is an aberration diagram of the camera module according to the fourth example of the present disclosure.
  • a camera module to which the present disclosure is applied is a camera module which has a compact construction with a movable (collapsible) mirror, and which improves a brightness of an image.
  • an imaging lens assembly 21 of a camera module 11 includes a mirror 31, a plurality of lenses 32 and a reflection member 33.
  • the lenses 32 include at least one lens having a positive refractive power and at least one lens having a negative refractive power.
  • the mirror 31 is rotatable about one end 31a on an imaging surface S side of the mirror 31.
  • the lenses 32 are disposed on the imaging surface S side of the mirror 31.
  • the reflection member 33 is disposed between a most imaging surface S side disposed lens and the imaging surface S.
  • the reflection member 33 includes a reflection surface 33a reflecting an incoming light, which is incident from the subject (object side) via the mirror 31 and the lenses 32, to the imaging surface S side.
  • the reflection member 33 is, for example, a prism or a mirror. In the explanation hereafter, the reflection member 33 is a prism.
  • the dash–dot line represents an optical axis OA of the camera module 11 (hereinafter the same applies) .
  • the optical axis OA of the camera module 11 includes a first optical axis OA1, which is a part of the optical axis OA and is positioned between the mirror 31 and the reflection surface 33a of the prism 33, and a second optical axis OA2 which is the remaining part of the optical axis OA and is positioned between the reflection surface 33a of the prism 33 and the imaging surface S.
  • the first optical axis OA1 and the second optical axis OA2 are continuous with each other at an intersection 33b with the prism 33.
  • the mirror 31 in a stored mirror state where the mirror 31 is entirely stored inside a housing of the camera module 11, the mirror 31 is configured to tilt at a first angle ⁇ 1 with respect to an optical axis direction D1 of the first optical axis OA1 of the imaging lens assembly 21 so that most of the incoming light incident on the mirror 31 is reflected in a direction deviated from the lenses 32. That is, the incoming light incident on the mirror 31 from an object side in a state where the mirror 31 is tilted at the first angle ⁇ 1 is not properly reflected toward the lenses 32 side and is not properly imaged on the imaging surface S.
  • the mirror 31 in a shooting state where a subject (object) is shot (recorded as an image) , the mirror 31 is configured to tilt at a second angle ⁇ 2 larger than the first angle ⁇ 1 with respect to the optical axis direction D1 so that most of the incoming light incident on the mirror 31 reflected towards the lenses 32 to form an optical path optically connecting the mirror 31, the lenses 32 and the prism 33.
  • the incoming light incident on the mirror 31 from an object side in a state where the mirror 31 is tilted at the second angle ⁇ 2 is properly reflected toward the lenses 32 side, and the incoming light is properly reflected to the imaging surface S side by the reflecting surface 33a of the prism 33 via the lenses 32 and is properly imaged on the imaging surface S.
  • the mirror 31 is configured to rotate about one end 31a toward the lenses 32 until the mirror 31 is tilted at the second angle ⁇ 2.
  • the mirror 31 is configured to rotate about one end 31a toward a side opposite to the lenses 32 side until the mirror 31 is tilted at the first angle ⁇ 1.
  • the camera module 11 is housed inside the housing 4 to form an imaging device.
  • the lenses 32 are held in the barrel 26.
  • the mirror 31 in the stored mirror state, the mirror 31 is entirely stored inside the housing 4 together with a light-permeable cover plate 5 which covers the mirror 31 from the object side.
  • the mirror 31 In order to store the mirror 31 in the restricted space of the housing 4, the mirror 31 is tilted at the first angle ⁇ 1 with respect to the optical axis direction D1. From a viewpoint of suppressing the thickness T of the housing 4, the first angle ⁇ 1 is preferably less than 45°, for example.
  • the camera module 11 is switched from the stored mirror state to the shooting state when a predetermined user operation to switch from the stored mirror state to the shooting state is performed.
  • the camera module 11 drives the mirror 31 and the cover plate 5 stored inside the housing 4 in a direction protruding from a surface 4a of the housing 4 by using a drive mechanism 24.
  • the drive mechanism 24 rotationally drives the mirror 31 until it is tilted at the second angle ⁇ 2 with respect to the optical axis direction D1.
  • the second angle ⁇ 2 is preferably 45°.
  • the second angle ⁇ 2 may be between 42° or more and 48° or less.
  • the drive mechanism 24 may include an actuator such as a motor.
  • the drive mechanism 24 may include a spring 241, a rotation restricting member 242, and a motor 243 such as a voice coil motor.
  • the spring 241 applies to the mirror 31 an elastic force which rotates the mirror 31 in a clockwise direction D2.
  • the rotation restricting member 242 is a rod-shaped member extending from the lower surface of the upper wall portion 51 of the cover plate 5 toward the mirror 31.
  • the rotation restricting member 242 restricts a rotation of the mirror 31 by abutting against the mirror 31.
  • the motor 243 drives the cover plate 5 along a thickness direction D3 of the housing 4.
  • the motor 243 raises the cover plate 5 along the thickness direction D3 during the switching from the stored mirror state to the shooting state.
  • the rotation restricting member 242 fixed to the cover plate 5 also rises.
  • the mirror 31 is rotated in a clockwise direction D2 by the elastic force of the spring 241 until the mirror 31 is tilted at the second angle ⁇ 2.
  • the drive mechanism 24 may have a completely mechanical configuration that does not require electrical control, such as a spring and a cam.
  • the camera module 11 is switched from the shooting state to the stored mirror state when a predetermined user operation to switch from the shooting state to the stored mirror state is performed.
  • the drive mechanism 24 retracts and stores the cover plate 5 and the mirror 31 inside the housing 4. At this time, the drive mechanism 24 rotationally drives the mirror 31 until it is tilted at the first angle ⁇ 1 with respect to the optical axis direction D1.
  • the motor 243 lowers the cover plate 5 along the thickness direction D3 during the switching from the shooting state to the stored mirror state.
  • the rotation restricting member 242 fixed to the cover plate 5 is also lowered. As the rotation restricting member 242 is lowered, the mirror 31 rotates in a counterclockwise direction D4 until the mirror 31 is tilted at the first angle ⁇ 1.
  • the camera module 11 to which the present disclosure is applied is configured as shown in FIG. 4, FIG. 6, FIG. 8, and FIG. 10, for example.
  • the camera module 11 includes an imaging lens assembly 21, an optical filter 22 and an image sensor 23.
  • the imaging lens assembly 21 includes the mirror 31, the lenses 32 and the prism 33.
  • the lenses 32 include at least one lens having a positive refractive power and at least one lens having a negative refractive power.
  • the lenses 32 have large diameters adapted to a large-sized image sensor 23 and are designed to maintain its good optical performance.
  • the prism 33 reflects incoming light from the subject (object side) via the mirror 31 and the lenses 32 to the optical filter 22 and the image sensor 23.
  • the imaging lens assembly 21 may include a plurality of prisms (or mirrors) . In this case, incoming light from the subject (object side) may be reflected a plurality of times by the plurality of prisms (or mirrors) and then be incident on the optical filter 22 and the image sensor 23.
  • the image sensor 23 is, for example, a solid-state image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device) .
  • the image sensor 23 has the imaging surface S which is an imaging plane of the imaging lens assembly 21.
  • the image sensor 23 is disposed so that the imaging surface S is parallel to the optical axis direction of the first optical axis OA1 and is perpendicular to the optical axis direction of the second optical axis OA2.
  • the optical axis direction of the second optical axis OA2 is equal to the thickness direction D3 of the housing 4.
  • the image sensor 23 receives incoming light from the subject (object side) via the imaging lens assembly 21 and the optical filter 22, photoelectrically converts the light, and outputs an image data, obtained by photoelectric conversion of the light, to a subsequent stage.
  • the optical filter 22 disposed between the imaging lens assembly 21 and the image sensor 23 may be, for example, an IR (infrared) filter which cuts infrared light from incoming light.
  • the camera module 11 provided with the movable mirror 31 on the object side of the lenses 32 as described above, enables a reflection area of the mirror 31, which is a light capture area, to be larger than a reflection area of a conventional immovable prism while suppressing the thickness T of the housing 4.
  • a small imaging device having a long focal length and a small thickness T it is possible for a small imaging device having a long focal length and a small thickness T to capture a bright image by using an imaging lens assembly 21 having a large diameter and a large imaging sensor 23 which are suited for the mirror 31 which has a large reflection area.
  • the camera module 11 provided with the prism 33 on the imaging surface S side of the lenses 32 enables a larger image sensor 23 to be disposed inside the housing 4 while suppressing the thickness T of the housing 4.
  • the abovementioned configurations of the camera module 11 may be selectively combined with the following configurations represented by formulas (1) to (8) .
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formulas (1) to (3) :
  • ⁇ Ld is a distance on an optical axis OA of the imaging lens assembly 21 from the mirror 31 to a surface on the imaging surface S side of a most imaging surface S side disposed lens
  • ⁇ d is a distance on an optical axis OA of the imaging lens assembly 21 from the mirror 31 to the imaging surface S (hereinafter the same applies)
  • Mh is an effective height of the mirror 31 at an intersection 31c (see FIG. 1B) of the first optical axis OA1 and the mirror 31 (hereinafter the same applies) . As shown in FIG.
  • the effective height of the mirror 31 is a height of a light L at the intersection 31c, the light L being reflected from the mirror 31 and incident on the lenses 32.
  • Yh is an image height (hereinafter the same applies) .
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (4) :
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (5) :
  • f is a focal length of the imaging lens assembly 21 (hereinafter the same applies) .
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (6) :
  • BF is a back focus which is a distance on an optical axis OA of the imaging lens assembly 21 from a surface on the imaging surface S side of a most imaging surface S side disposed lens to the imaging surface S (hereinafter the same applies) .
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (7) :
  • Fno is an F number of the imaging lens assembly 21 (hereinafter the same applies) .
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (8) :
  • the most imaging surface S side disposed lens may have a positive refractive power.
  • an aspheric lens in the imaging lens assembly 21 is formed of a plastic material.
  • lenses having a size equal to or smaller than a specific size are preferably formed of a plastic material, and lenses larger than the specific size are preferably formed of a glass material. This is because it is difficult to form an aspheric lens or a relatively small lens using a material other than a plastic material.
  • Such a camera module 11 including the imaging lens assembly 21 can be used in compact digital devices (imaging devices) such as mobile phones, wearable cameras, and surveillance cameras.
  • Si indicates the ordinal number of the i-th surface which sequentially increases from the object side toward the imaging surface S side.
  • Optical elements of the corresponding surfaces are indicated by the corresponding surface number “Si” .
  • Denotations of “first surface” or “1st surface” indicate a surface on the object side of the lens
  • denotations of “second surface” or “2nd surface” indicate a surface on the imaging surface S side of the lens.
  • “Pr surface” indicates the reflection surface 33a of the prism 33.
  • R indicates the value of a central curvature radius (mm) of the surface.
  • E + i indicates an exponential expression with a base of 10, i.e., "10 i " .
  • “1.00 E +18” indicates “1.00 ⁇ 10 18 " .
  • Such an exponential expression is also applied to an aspheric coefficient described later.
  • “Di” indicates a value of a distance on the optical axis between the i-th surface and the (i + 1) -th surface (mm) .
  • “Ndi” indicates a value of a refractive index at d-line (587.6 nm wavelength) of the material of the optical element having the i-th surface.
  • “ ⁇ di” indicates a value of the Abbe number at d-line of the material of the optical element having the i-th surface.
  • the imaging lens assembly 21 used in the following examples includes lenses having aspheric surfaces.
  • the aspheric shape of the lens is defined by the following formula (9) :
  • Z is a depth of the aspheric surface
  • C is a paraxial curvature which is equal to 1 /R
  • h is a distance from the optical axis to a lens surface
  • K is a conic constant (second-order aspheric coefficient)
  • An is an nth-order aspheric coefficient.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a mirror 31, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a positive refractive power, a fifth lens L5 having a negative refractive power, a sixth lens L6 having a negative refractive power, a seventh lens L7 having a positive refractive power with a convex surface facing the imaging surface S side, and a prism 33 having a reflection surface 33a.
  • An aperture stop 34 is disposed between the third lens L3 and the fourth lens L4.
  • Table 1 shows lens data of the first example.
  • the unit of length or distance shown in each of the following tables is mm.
  • Table 2 shows a focal length of each lens.
  • Table 3 shows the focal length f of the imaging lens assembly 21, the F number Fno, the angle of view 2 ⁇ , the full length of the imaging lens assembly 21 which is obtained when an object point is taken at infinity ⁇ d, a distance on an optical axis OA of the imaging lens assembly 21 from the mirror 31 to a surface on the imaging surface S side of a most imaging surface S side disposed lens ⁇ Ld, the back focus BF, the image height Yh and the effective height Mh of the mirror 31.
  • Table 4 shows values corresponding to the conditional expressions.
  • Table 5 shows the aspheric coefficients of the imaging lens assembly 21.
  • FIG. 5 shows, as examples of aberrations, spherical aberration, astigmatism (field curvature) and distortion.
  • Each of these aberration diagrams shows aberrations with d-line (587.56 nm) as a reference wavelength.
  • spherical aberration diagram Aberrations with respect to g-line (435.84 nm) and C-line (656.27 nm) are also shown.
  • S indicates a value of aberration on a sagittal image surface
  • T indicates a value of aberration on a tangential image surface.
  • IMG HT indicates an image height. The same applies to aberration diagrams in other examples.
  • the camera module 11 in the first example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
  • the imaging lens assembly 21 includes the mirror 31, the first to seventh lenses L1 to L7 and the prism 33 having the reflection surface 33a.
  • the aperture stop 34 is disposed between the third lens L3 and the fourth lens L4.
  • the lens parameters corresponding to those in the first embodiment are shown in Tables 6 to 10.
  • the imaging lens assembly 21 includes the mirror 31, the first to seventh lenses L1 to L7 and the prism 33 having the reflection surface 33a.
  • the aperture stop 34 is disposed between the third lens L3 and the fourth lens L4.
  • the lens parameters corresponding to those in the first embodiment are shown in Tables 11 to 15.
  • the imaging lens assembly 21 includes the mirror 31, the first to seventh lenses L1 to L7 and the prism 33 having the reflection surface 33a.
  • the aperture stop 34 is disposed between the third lens L3 and the fourth lens L4.
  • the lens parameters corresponding to those in the first embodiment are shown in Tables 16 to 20.
  • first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features.
  • a feature defined as “first” and “second” may comprise one or more of this feature.
  • a plurality of means “two or more than two” , unless otherwise specified.
  • the terms “mounted” , “connected” , “coupled” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements which can be understood by those skilled in the art according to specific situations.
  • a structure in which a first feature is "on" or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are in contact via an additional feature formed therebetween.
  • a first feature "on” , “above” or “on top of” a second feature may include an embodiment in which the first feature is orthogonally or obliquely “on” , “above” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below” , “under” or “on bottom of” a second feature may include an embodiment in which the first feature is orthogonally or obliquely “below” , "under” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.
  • Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
  • the logic and/or step described in other manners herein or shown in the flow chart may be specifically achieved in any computer readable medium to be used by the instructions execution system, device or equipment (such as a system based on computers, a system comprising processors or other systems capable of obtaining instructions from the instructions execution system, device and equipment executing the instructions) , or to be used in combination with the instructions execution system, device and equipment.
  • the computer readable medium may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment.
  • the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (amagnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) .
  • the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, this is because, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
  • each part of the present disclosure may be realized by the hardware, software, firmware or their combination.
  • a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instructions execution system.
  • the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
  • each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module.
  • the integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An imaging lens assembly (21) includes a mirror (31) rotatable about one end (31a), at least one lens (L1,L3,L4,L7) having a positive refractive power, at least one lens (L2,L5,L6) having a negative refractive power, and a reflection member (33) being disposed between a most imaging surface (S) side disposed lens (L7) and the imaging surface (S), wherein the mirror (31) tilts at a first angle (01) in a stored mirror state so that most of the incoming light incident on the mirror (31) is reflected in a direction deviated from the lenses (32), and tilts at a second angle (02) in a shooting state so that most of the incoming light incident on the mirror (31) reflected towards the lenses (32) to form an optical path (OA1) optically connecting the mirror (31), the lenses (32) and the reflection member (33), and the imaging lens assembly (21) is configured so that: 0.5 < ∑Ld /∑d < 0.8, Mh x 2 > 7.0 mm, Yh > 6.5 mm.

Description

IMAGING LENS ASSEMBLY, CAMERA MODULE AND IMAGING DEVICE TECHNICAL FIELD
The present disclosure relates to an imaging lens assembly, a camera module, and an imaging device, and more specifically, to an imaging lens assembly, a camera module, and an imaging device that are small and enable good optical performance.
BACKGROUND
In recent years, portable imaging devices such as mobile phones and digital cameras are being widely used. With the recent miniaturization of imaging devices, the imaging lens assembly mounted on such imaging devices also requires downsizing. In order to meet such a demand for miniaturization, a conventional imaging lens assembly secures a long focal length of the imaging lens assembly within a restricted space by disposing a prism on an object side of a lens group.
However, in the conventional imaging lens assembly, the volume of the prism disposed in the imaging device is restricted by the thickness of the imaging device. Due to the restricted volume of the prism, it is difficult for the prism to secure a sufficient reflection area and take in a sufficient amount of light.
Therefore, it is difficult for the small imaging device having a long focal length to capture a bright image which requires a sufficient amount of light, using an imaging lens assembly having a large aperture and a large image sensor.
Furthermore, in the conventional imaging device, since the image sensor is disposed so as to be perpendicular to the optical axis of the imaging lens assembly, it is difficult to install a large image sensor due to the restricted thickness of the imaging device.
Therefore, it is difficult for the small imaging device to capture a bright image using a large image sensor.
SUMMARY
The present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide an imaging lens assembly, a camera module, and an imaging device.
In accordance with the present disclosure, an imaging lens assembly includes:
a mirror rotatable about one end on an imaging surface side of the mirror;
at least one lens disposed on the imaging surface side of the mirror and having a positive refractive power;
at least one lens disposed on the imaging surface side of the mirror and having a negative refractive power; and
the mirror is configured to tilt at a first angle with respect to an optical axis direction of a first optical axis, which is a part of an optical axis of the imaging lens assembly and is positioned between the mirror and the reflection member, in a stored mirror state so that most of the incoming light incident on the mirror is reflected in a direction deviated from the lenses, and is configured to tilt at a second angle larger than the first angle with respect to the optical axis direction in a shooting state so that most of the incoming light incident on the mirror reflected towards the lenses to form an optical path optically connecting the mirror, the lenses and the reflection member, and
the imaging lens assembly is configured so that:
0.5 < ∑Ld /∑d < 0.8,
Mh x 2 > 7.0 mm,
Yh > 6.5 mm,
where ∑Ld is a distance on an optical axis of the imaging lens assembly from the mirror to a surface on the imaging surface side of a most imaging surface side disposed lens, ∑d is a distance on an optical axis of the imaging lens assembly from the mirror to the imaging surface, Mh is an effective height of the mirror at an intersection of the optical axis and the mirror, and Yh is an image height.
In one example, the imaging lens assembly may be further configured so that:
Yh /∑d <0.2.
In one example, the imaging lens assembly may be further configured so that:
∑d /f<2.5,
where f is a focal length of the imaging lens assembly.
In one example, the imaging lens assembly may be further configured so that:
BF /Yh <3.0,
where BF is a distance on an optical axis of the imaging lens assembly from a surface on the imaging surface side of the most imaging surface side disposed lens to the imaging surface.
In one example, the imaging lens assembly may be further configured so that:
Fno /Mh <0.5,
where Fno is an F number of the imaging lens assembly.
In one example, the imaging lens assembly may be further configured so that:
Yh /f <0.35.
In one example, the most imaging surface side disposed lens may have a positive refractive power.
In one example, the lenses may include, in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, a fourth lens having a positive refractive power, a fifth lens having a negative refractive power, a sixth lens having a negative refractive power, and a seventh lens having a positive refractive power.
In one example, the reflection member may be a prism.
In accordance with the present disclosure, a camera module includes:
the imaging lens assembly; and
an image sensor including an imaging surface parallel to an optical axis direction of the first optical axis, and perpendicular to an optical axis direction of a second optical axis which is the remaining part of the optical axis of the imaging lens assembly and is positioned between the reflection member and the imaging surface.
In one example, the camera module may further include an IR filter disposed between the imaging lens assembly and the image sensor.
In accordance with the present disclosure, an imaging device includes:
the camera module;
a housing for storing the imaging lens assembly, and
a drive mechanism rotationally driving the mirror about the one end of the mirror.
In one example, the mirror may be configured to be stored inside the housing in the stored mirror state and may be configured so that the other end of the mirror protrudes from a surface of the housing in the shooting state.
BRIEF DESCRIPTION OF THE DRAWINGS
These and/or other aspects and advantages of the embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with reference to the drawings, in which:
FIG. 1A is a diagram of a camera module according to the present disclosure illustrating an imaging lens assembly in a stored mirror state;
FIG. 1B is a diagram of the camera module according to the present disclosure illustrating the imaging lens assembly in a shooting state;
FIG. 2A is a diagram of an imaging device according to the present disclosure illustrating the imaging device in the stored mirror state;
FIG. 2B is a diagram of the imaging device according to the present disclosure illustrating the imaging device in the shooting state;
FIG. 3 is a diagram illustrating an example of a drive mechanism;
FIG. 4 is a configuration diagram of a camera module according to a first example of the present disclosure;
FIG. 5 is an aberration diagram of the camera module according to the first example of the present disclosure;
FIG. 6 is a configuration diagram of a camera module according to a second example of the present disclosure;
FIG. 7 is an aberration diagram of the camera module according to the second example of the present disclosure;
FIG. 8 is a configuration diagram of a camera module according to a third example of the present disclosure;
FIG. 9 is an aberration diagram of the camera module according to the third example of the present disclosure;
FIG. 10 is a configuration diagram of a camera module according to a fourth example of the present disclosure, and
FIG. 11 is an aberration diagram of the camera module according to the fourth example of the present disclosure.
DETAILED DESCRIPTION
Embodiments of the present disclosure will be described in detail and examples of the embodiments will be illustrated in the accompanying drawings. The same or similar elements and elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to the drawings are explanatory and aim to illustrate the present disclosure, but they shall not be construed to limit the present disclosure.
<Outline of the disclosure>
First, an outline of the present disclosure will be described. A camera module to which the present disclosure is applied is a camera module which has a compact construction with a movable (collapsible) mirror, and which improves a brightness of an image. Specifically, as shown in FIG. 1A and FIG. 1B, an imaging lens assembly 21 of a camera module 11 includes a mirror 31, a plurality of lenses 32 and a reflection member 33. The lenses 32 include at least one lens having a positive refractive power and at least one lens having a negative refractive power.
The mirror 31 is rotatable about one end 31a on an imaging surface S side of the mirror 31.
The lenses 32 are disposed on the imaging surface S side of the mirror 31.
The reflection member 33 is disposed between a most imaging surface S side disposed lens and the imaging surface S. The reflection member 33 includes a reflection surface 33a reflecting an incoming light, which is incident from the subject (object side) via the mirror 31 and the lenses 32, to the imaging surface S side. The reflection member 33 is, for example, a prism or a mirror. In the explanation hereafter, the reflection member 33 is a prism.
In FIG. 1A and FIG. 1B, the dash–dot line represents an optical axis OA of the camera module 11 (hereinafter the same applies) .
As shown in FIG. 1A and FIG. 1B, the optical axis OA of the camera module 11 includes a first optical axis OA1, which is a part of the optical axis OA and is positioned between the mirror 31 and the reflection surface 33a of the prism 33, and a second optical axis OA2 which is the remaining part of the optical axis OA and is positioned between the reflection surface 33a of the prism 33 and the imaging surface S.
The first optical axis OA1 and the second optical axis OA2 are continuous with each other at an intersection 33b with the prism 33.
As shown in FIG. 1A, in a stored mirror state where the mirror 31 is entirely stored inside a housing of the camera module 11, the mirror 31 is configured to tilt at a first angle θ1 with respect to an optical axis direction D1 of the first optical axis OA1 of the imaging lens assembly 21 so that most of the incoming light incident on the mirror 31 is reflected in a direction deviated from the lenses 32. That is, the incoming light incident on the mirror 31 from an object side in a state where the mirror 31 is tilted at the first angle θ1 is not properly reflected toward the lenses 32 side and is not properly imaged on the imaging surface S.
On the other hand, as shown in FIG. 1B, in a shooting state where a subject (object) is shot (recorded as an image) , the mirror 31 is configured to tilt at a second angle θ2 larger than the first angle θ1 with respect to the optical axis direction D1 so that most of the incoming light incident on the mirror 31 reflected towards the lenses 32 to form an optical path optically connecting the mirror 31, the lenses 32 and the prism 33. That is, the incoming light incident on the mirror 31 from an object side in a state where the mirror 31 is tilted at the second angle θ2 is properly reflected toward the lenses 32 side, and the incoming light is properly reflected to the imaging surface S side by the reflecting surface 33a of the prism 33 via the lenses 32 and is properly imaged on the imaging surface S.
More specifically, during a switching from the stored mirror state to the shooting state, the mirror 31 is configured to rotate about one end 31a toward the lenses 32 until the mirror 31 is tilted at the second angle θ2.
During a switching from the shooting state to the stored mirror state, the mirror 31 is configured to rotate about one end 31a toward a side opposite to the lenses 32 side until the mirror 31 is tilted at the first angle θ1.
As shown in FIG. 2A and FIG. 2B, the camera module 11 is housed inside the housing 4 to form an imaging device. As shown in FIG. 2A and FIG. 2B, the lenses 32 are held in the barrel 26.
As shown in FIG. 2A, in the stored mirror state, the mirror 31 is entirely stored inside the housing 4 together with a light-permeable cover plate 5 which covers the mirror 31 from the object side. In order to store the mirror 31 in the restricted space of the housing 4, the mirror 31 is tilted at the first angle θ1 with respect to the optical axis direction D1. From a viewpoint of suppressing the thickness T of the housing 4, the first angle θ1 is preferably less than 45°, for example.
As shown in FIG. 2B, the camera module 11 is switched from the stored mirror state to the shooting state when a predetermined user operation to switch from the stored mirror state to the shooting state is performed.
During the switching from the stored mirror state to the shooting state, the camera module 11 drives the mirror 31 and the cover plate 5 stored inside the housing 4 in a direction protruding from a surface 4a of the housing 4 by using a drive mechanism 24. At this time, the drive mechanism 24 rotationally drives the mirror 31 until it is tilted at the second angle θ2 with respect to the optical axis direction D1. From a viewpoint of capturing a bright image while suppressing the thickness T of the housing 4, the second angle θ2 is preferably 45°. The second angle θ2 may be between 42° or more and 48° or less. In the shooting state, a part of the mirror 31 on the other end 31b side protrudes from the surface 4a of the housing 4.
The drive mechanism 24 may include an actuator such as a motor. For example, as shown in FIG. 3, the drive mechanism 24 may include a spring 241, a rotation restricting member 242, and a motor 243 such as a voice coil motor. The spring 241 applies to the mirror 31 an elastic force which rotates the mirror 31 in a clockwise direction D2. In the example shown in FIG. 3, the rotation restricting member 242 is a rod-shaped member extending from the lower surface of the upper wall portion 51 of the cover plate 5 toward the mirror 31. The rotation restricting member 242 restricts a rotation of the mirror 31 by abutting against the mirror 31. The motor  243 drives the cover plate 5 along a thickness direction D3 of the housing 4. Specifically, the motor 243 raises the cover plate 5 along the thickness direction D3 during the switching from the stored mirror state to the shooting state. As the cover plate 5 rises, the rotation restricting member 242 fixed to the cover plate 5 also rises. As the rotation restricting member 242 rises, the mirror 31 is rotated in a clockwise direction D2 by the elastic force of the spring 241 until the mirror 31 is tilted at the second angle θ2.
The drive mechanism 24 may have a completely mechanical configuration that does not require electrical control, such as a spring and a cam.
On the other hand, the camera module 11 is switched from the shooting state to the stored mirror state when a predetermined user operation to switch from the shooting state to the stored mirror state is performed.
During the switching from the shooting state to the stored mirror state, the drive mechanism 24 retracts and stores the cover plate 5 and the mirror 31 inside the housing 4. At this time, the drive mechanism 24 rotationally drives the mirror 31 until it is tilted at the first angle θ1 with respect to the optical axis direction D1. In the example shown in FIG. 3, the motor 243 lowers the cover plate 5 along the thickness direction D3 during the switching from the shooting state to the stored mirror state. As the cover plate 5 is lowered, the rotation restricting member 242 fixed to the cover plate 5 is also lowered. As the rotation restricting member 242 is lowered, the mirror 31 rotates in a counterclockwise direction D4 until the mirror 31 is tilted at the first angle θ1.
The camera module 11, to which the present disclosure is applied, is configured as shown in FIG. 4, FIG. 6, FIG. 8, and FIG. 10, for example.
The camera module 11 includes an imaging lens assembly 21, an optical filter 22 and an image sensor 23. The imaging lens assembly 21 includes the mirror 31, the lenses 32 and the prism 33. The lenses 32 include at least one lens having a positive refractive power and at least one lens having a negative refractive power. The lenses 32 have large diameters adapted to a large-sized image sensor 23 and are designed to maintain its good optical performance.
The prism 33 reflects incoming light from the subject (object side) via the mirror 31 and the lenses 32 to the optical filter 22 and the image sensor 23. The imaging lens assembly 21 may include a plurality of prisms (or mirrors) . In this case, incoming light from the subject (object side) may be reflected a plurality of times by the plurality of prisms (or mirrors) and then be incident on the optical filter 22 and the image sensor 23.
The image sensor 23 is, for example, a solid-state image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device) . The image sensor 23 has the imaging surface S which is an imaging plane of the imaging lens assembly 21. The image sensor 23 is disposed so that the imaging surface S is parallel to the optical axis direction of the first optical axis OA1 and is perpendicular to the optical axis direction of the second optical axis OA2. The optical axis direction of the second optical axis OA2 is equal to the thickness direction D3 of the housing 4. The image sensor 23 receives incoming light from the subject (object side) via the imaging lens assembly 21 and the optical filter 22, photoelectrically converts the light, and outputs an image data, obtained by photoelectric conversion of the light, to a subsequent stage. The optical filter 22 disposed between the imaging lens assembly 21 and the image sensor 23 may be, for example, an IR (infrared) filter which cuts infrared light from incoming light.
The camera module 11, provided with the movable mirror 31 on the object side of the lenses 32 as described above, enables a reflection area of the mirror 31, which is a light capture area, to be larger than a reflection area of a conventional immovable prism while suppressing the thickness T of the housing 4.
Thus, it is possible for a small imaging device having a long focal length and a small thickness T to capture a bright image by using an imaging lens assembly 21 having a large  diameter and a large imaging sensor 23 which are suited for the mirror 31 which has a large reflection area.
Furthermore, the camera module 11 provided with the prism 33 on the imaging surface S side of the lenses 32 enables a larger image sensor 23 to be disposed inside the housing 4 while suppressing the thickness T of the housing 4.
Thus, it is possible for a small imaging device having a small thickness T to capture a bright image by using a large image sensor 23.
The abovementioned configurations of the camera module 11 may be selectively combined with the following configurations represented by formulas (1) to (8) .
The imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formulas (1) to (3) :
0.5 < ∑Ld /∑d < 0.8 (1)
Mh x 2 > 7.0 mm (2)
Yh > 6.5 mm (3)
In the formula (1) , ∑Ld is a distance on an optical axis OA of the imaging lens assembly 21 from the mirror 31 to a surface on the imaging surface S side of a most imaging surface S side disposed lens, ∑d is a distance on an optical axis OA of the imaging lens assembly 21 from the mirror 31 to the imaging surface S (hereinafter the same applies) . In the formula (2) , Mh is an effective height of the mirror 31 at an intersection 31c (see FIG. 1B) of the first optical axis OA1 and the mirror 31 (hereinafter the same applies) . As shown in FIG. 1B, the effective height of the mirror 31 is a height of a light L at the intersection 31c, the light L being reflected from the mirror 31 and incident on the lenses 32. In the formula (3) , Yh is an image height (hereinafter the same applies) .
If the value of ∑Ld /∑d deviates from the range of the formula (1) , it is difficult to miniaturize the imaging lens assembly 21 and it is difficult to maintain the good optical performance.
If the value of 2Mh falls below the lower limit value of the formula (2) , the increase in the amount of light uptake by adopting the movable mirror 31 becomes insufficient.
If the value of Yh falls below the lower limit value of the formula (3) , it is difficult to sufficiently utilize the advantage of the image sensor 23 being disposed so that the imaging surface S is parallel to the first optical axis OA1 which allows increasing the size of the imaging sensor 23.
The imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (4) :
Yh /∑d <0.2 (4)
If the value of Yh /∑d exceeds the upper limit value of the formula (4) , it is difficult to miniaturize the imaging lens assembly 21 and it is difficult to maintain the good optical performance.
The imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (5) :
∑d /f <2.5 (5)
In the formula (5) , f is a focal length of the imaging lens assembly 21 (hereinafter the same applies) .
If the value of ∑d /f exceeds the upper limit value of the formula (5) , it is difficult to miniaturize the imaging lens assembly 21 and it is difficult to maintain the good optical performance.
The imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (6) :
BF /Yh <3.0 (6)
In the formula (6) , BF is a back focus which is a distance on an optical axis OA of the imaging lens assembly 21 from a surface on the imaging surface S side of a most imaging surface S side disposed lens to the imaging surface S (hereinafter the same applies) .
If the value of BF /Yh exceeds the upper limit value of the formula (6) , it is difficult to miniaturize the imaging lens assembly 21 and it is difficult to maintain the good optical performance.
The imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (7) :
Fno /Mh <0.5 (7)
In the formula (7) , Fno is an F number of the imaging lens assembly 21 (hereinafter the same applies) .
If the value of Fno /Mh exceeds the upper limit value of the formula (7) , it is difficult to miniaturize the imaging lens assembly 21 and it is difficult to maintain the good optical performance.
The imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (8) :
Yh /f <0.35 (8)
If the value of Yh /f exceeds the upper limit value of the formula (8) , it is difficult to miniaturize the imaging lens assembly 21 and it is difficult to maintain the good optical performance.
The most imaging surface S side disposed lens may have a positive refractive power.
Furthermore, in view of lens forming, it is preferable that an aspheric lens in the imaging lens assembly 21, particularly an aspheric lens of aspheric shape having an inflection point, is formed of a plastic material. Regarding the lenses which constitute the imaging lens assembly 21, lenses having a size equal to or smaller than a specific size are preferably formed of a plastic material, and lenses larger than the specific size are preferably formed of a glass material. This is because it is difficult to form an aspheric lens or a relatively small lens using a material other than a plastic material.
Such a camera module 11 including the imaging lens assembly 21 can be used in compact digital devices (imaging devices) such as mobile phones, wearable cameras, and surveillance cameras.
<Configuration examples of the camera module>
Next, more specific examples to which the present disclosure is applied will be described. In the following examples, “Si” indicates the ordinal number of the i-th surface which sequentially increases from the object side toward the imaging surface S side. Optical elements of the corresponding surfaces are indicated by the corresponding surface number “Si” . Denotations of “first surface” or “1st surface” indicate a surface on the object side of the lens, and denotations of “second surface” or “2nd surface” indicate a surface on the imaging surface S side of the lens. “Pr surface” indicates the reflection surface 33a of the prism 33. “R” indicates the value of a central curvature radius (mm) of the surface. Regarding “R” , “E + i” indicates an exponential expression with a base of 10, i.e., "10 i " . For example, "1.00 E +18" indicates "1.00 × 10 18" . Such an exponential expression is also applied to an aspheric coefficient described later. “Di” indicates a value of a distance on the optical axis between the i-th surface and the (i + 1) -th surface (mm) . “Ndi” indicates a value of a refractive index at d-line (587.6 nm wavelength) of the material of the optical element having the i-th surface. “νdi” indicates a value of the Abbe number at d-line of the material of the optical element having the i-th surface.
The imaging lens assembly 21 used in the following examples includes lenses having aspheric surfaces. The aspheric shape of the lens is defined by the following formula (9) :
Z = C × h  2 / {1 + (1 -K × C  2 × h  21/2} + Σ An × h  n (9)
(n = an integer greater than or equal to 3) .
In the formula (8) , Z is a depth of the aspheric surface, C is a paraxial curvature which is equal to 1 /R, h is a distance from the optical axis to a lens surface, K is a conic constant (second-order aspheric coefficient) , and An is an nth-order aspheric coefficient.
[First example]
A first example in which specific numerical values are applied to the camera module 11 shown in FIG. 4, will be described.
In the first example, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a mirror 31, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a positive refractive power, a fifth lens L5 having a negative refractive power, a sixth lens L6 having a negative refractive power, a seventh lens L7 having a positive refractive power with a convex surface facing the imaging surface S side, and a prism 33 having a reflection surface 33a. An aperture stop 34 is disposed between the third lens L3 and the fourth lens L4.
Table 1 shows lens data of the first example. The unit of length or distance shown in each of the following tables is mm. Table 2 shows a focal length of each lens. Table 3 shows the focal length f of the imaging lens assembly 21, the F number Fno, the angle of view 2ω, the full length of the imaging lens assembly 21 which is obtained when an object point is taken at infinity Σd, a distance on an optical axis OA of the imaging lens assembly 21 from the mirror 31 to a surface on the imaging surface S side of a most imaging surface S side disposed lens ΣLd, the back focus BF, the image height Yh and the effective height Mh of the mirror 31. Table 4 shows values corresponding to the conditional expressions. Table 5 shows the aspheric coefficients of the imaging lens assembly 21.
TABLE 1
Si Ri Di Ndi νdi
1 (Mirror)   7.000    
2 (L1 1st Surface) 12.812 2.405 1.5439 56.07
3 (L1 2nd Surface) 15.756 0.089    
4 (L2 1st Surface) 9.959 1.991 1.6503 21.51
5 (L2 2nd Surface) 7.035 1.234    
6 (L3 1st Surface) 15.939 3.849 1.5439 56.07
7 (L3 2nd Surface) 65.159 0.446    
8 (Aperture Stop)   2.009    
9 (L4 1st Surface) 12.154 3.982 1.5350 55.73
10 (L4 2nd Surface) -27.048 0.089    
11 (L5 1st Surface) 145.604 1.672 1.6503 21.51
12 (L5 2nd Surface) 80.530 0.995    
13 (L6 1st Surface) -17.559 0.995 1.5350 55.73
14 (L6 2nd Surface) 17.307 1.797    
15 (L7 1st Surface) -25.104 4.200 1.6349 23.97
16 (L7 2nd Surface) -22.948 8.021    
17 (Pr Surface)   6.650    
18 (Optical Filter)   0.385 1.5168 64.20
19 (Optical Filter)   0.299    
20 (Image Plane)        
TABLE 2
Lens Focal Length
L1 98.04
L2 -50.33
L3 37.80
L4 16.28
L5 -279.88
L6 -16.16
L7 239.56
TABLE 3
f 34.27
Fno 2.72
20.65
Σd 48.11
ΣLd 32.76
BF 15.35
Yh 7.00
Mh 7.83
TABLE 4
0.5<ΣLd/Σd<0.8 0.68
Mh*2>7.0 15.65
Yh>6.5 7.00
Yh/ΣD<0.2 0.15
Σd/f<2.5 1.40
BF/Yh<3.0 2.19
Fno/Mh <0.5 0.35
Yh/f<0.35 0.20
TABLE 5
  S2 (L1 1st Surface) S3 (L1 2nd Surface) S4 (L2 1st Surface)
R 1.281230453336310E+01 1.575625106467550E+01 9.959392220335340E+00
K 0.000000000000000E+00 0.000000000000000E+00 -3.492134221837500E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -1.284805579232390E-04 -6.558744232748160E-05 2.510195629862830E-04
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.913941909995260E-06 -1.062385392510870E-06 -1.882717850763470E-06
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 1.823026418796630E-08 7.167379404759180E-09 -1.131025121772810E-08
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 0.000000000000000E+00 0.000000000000000E+00 -1.773297723383590E-10
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S5 (L2 2nd Surface) S6 (L3 1st Surface) S7 (L3 2nd Surface)
R 7.034701103451170E+00 1.593911434081130E+01 6.515918841490300E+01
K -1.480675704478770E+00 0.000000000000000E+00 0.000000000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 9.659814899893730E-05 1.582824992031920E-04 5.901909346222100E-05
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.117921152490590E-06 -1.588354491724200E-06 2.057629029939200E-06
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -4.592087633132450E-08 4.880726553673520E-08 2.670262283284340E-08
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -1.620297276313060E-10 -7.775793468212120E-10 -8.743695159948210E-10
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S9 (L4 1st Surface) S10 (L4 2nd Surface) S11 (L5 1st Surface)
R 1.215390167392290E+01 -2.704806836032220E+01 1.456035763653320E+02
K 0.000000000000000E+00 -1.452531852807530E+01 -9.877475695899510E+55
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -1.529903152502370E-04 7.453721416315590E-05 2.176729491159580E-04
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 4.734669804423950E-06 2.902264272494220E-07 -2.162719743918730E-05
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 2.008174393521540E-08 -1.610747102187230E-08 2.003607384864370E-07
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -9.581752720116740E-10 3.568129398501790E-09 9.488664009549270E-09
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S12 (L5 2nd Surface) S13 (L6 1st Surface) S14 (L6 2nd Surface)
R 8.053035008176600E+01 -1.755937253757120E+01 1.730668690158180E+01
K 0.000000000000000E+00 0.000000000000000E+00 1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 1.806981173091000E-04 1.257377672930120E-03 -8.389559192696050E-05
A5 0.000000000000000E+00 3.899874386188470E-05 4.960639876977910E-05
A6 -3.145909240139330E-05 -2.186936285821030E-05 1.630212305221200E-05
A7 0.000000000000000E+00 1.439876872714440E-06 -4.633779412602800E-07
A8 3.877286014816970E-07 -6.407903913433460E-07 -9.327037720814570E-07
A9 0.000000000000000E+00 -4.903325645422970E-08 4.098259351897670E-08
A10 1.654908549225830E-08 3.227347471816320E-08 -2.116716092741450E-09
A11 0.000000000000000E+00 6.364228289161810E-10 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S15 (L7 1st Surface) S16 (L7 2nd Surface)
R -2.510363514536940E+01 -2.294750867653840E+01
K 0.000000000000000E+00 0.000000000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00
A4 -1.417301699557220E-03 -4.823569602253180E-04
A5 0.000000000000000E+00 0.000000000000000E+00
A6 9.255009308863880E-06 3.534719978347250E-06
A7 0.000000000000000E+00 0.000000000000000E+00
A8 -1.340706107802120E-07 -1.716474264162520E-08
A9 0.000000000000000E+00 0.000000000000000E+00
A10 0.000000000000000E+00 0.000000000000000E+00
A11 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00
Aberrations in the first example are shown in FIG. 5. FIG. 5 shows, as examples of aberrations, spherical aberration, astigmatism (field curvature) and distortion. Each of these aberration diagrams shows aberrations with d-line (587.56 nm) as a reference wavelength. In the spherical aberration diagram, aberrations with respect to g-line (435.84 nm) and C-line (656.27 nm) are also shown. In the graph showing astigmatism, “S” indicates a value of aberration on a sagittal image surface and “T” indicates a value of aberration on a tangential image surface. “IMG HT” indicates an image height. The same applies to aberration diagrams in other examples.
As can be seen from the aberration diagrams in FIG. 5, it is clear that the camera module 11 in the first example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
[Second example]
Next, a second example in which specific numerical values are applied to the camera module 11 shown in FIG. 6, will be described.
As shown in FIG. 6, in the second example, the imaging lens assembly 21 includes the mirror 31, the first to seventh lenses L1 to L7 and the prism 33 having the reflection surface 33a. The aperture stop 34 is disposed between the third lens L3 and the fourth lens L4.
The lens parameters corresponding to those in the first embodiment are shown in Tables 6 to 10.
TABLE 6
Si Ri DiNdi νdi
1 (Mirror)   7.000  
2 (L1 1st Surface) 13.403 2.3661.5439 56.07
3 (L1 2nd Surface) 16.411 0.140  
4 (L2 1st Surface) 10.085 2.0651.6503 21.51
5 (L2 2nd Surface) 7.387 1.575  
6 (L3 1st Surface) 21.213 3.9221.5439 56.07
7 (L3 2nd Surface) 84.638 0.287  
8 (Aperture Stop)   6.542  
9 (L4 1st Surface) 11.197 4.1921.5350 55.73
10 (L4 2nd Surface) -28.899 0.140  
11 (L5 1st Surface) 95.931 1.8601.6503 21.51
12 (L5 2nd Surface) 52.307 0.625  
13 (L6 1st Surface) -21.316 1.1371.5350 55.73
14 (L6 2nd Surface) 17.140 1.775  
15 (L7 1st Surface) -38.797 5.3691.6349 23.97
16 (L7 2nd Surface) -32.971 8.021  
17 (Pr Surface)   6.650  
18 (Optical Filter)   0.3851.5168 64.20
19 (Optical Filter)   0.299  
20 (Image Plane)      
TABLE 7
Lens Focal Length
L1 105.41
L2 -60.77
L3 51.00
L4 15.68
L5 -179.88
L6 -17.61
L7 254.66
TABLE 8
f 35.00
Fno 2.67
19.47
Σd 54.35
ΣLd 38.99
BF 15.35
Yh 7.00
Mh 9.15
TABLE 9
0.5<ΣLd/Σd<0.8 0.72
Mh*2>7.0 18.30
Yh>6.5 7.00
Yh/ΣD<0.2 0.13
Σd/f<2.5 1.55
BF/Yh<3.0 2.19
Fno/Mh <0.5 0.29
Yh/f <0.35 0.20
TABLE 10
Figure PCTCN2021119320-appb-000001
Figure PCTCN2021119320-appb-000002
Figure PCTCN2021119320-appb-000003
Aberrations in the second example are shown in FIG. 7. According to the second example, by making the lens parameters different from those of the first example, the degree of freedom in designing the camera module 11 according to the present disclosure can be further increased while obtaining the same effects as in the first example.
[Third example]
Next, a third example in which specific numerical values are applied to the camera module 11 shown in FIG. 8, will be described.
As shown in FIG. 8, in the third example, the imaging lens assembly 21 includes the mirror 31, the first to seventh lenses L1 to L7 and the prism 33 having the reflection surface 33a. The aperture stop 34 is disposed between the third lens L3 and the fourth lens L4.
The lens parameters corresponding to those in the first embodiment are shown in Tables 11 to 15.
TABLE 11
Si Ri Di Ndi νdi
1 (Mirror)    7.000    
2 (L1 1st Surface) 13.417 2.394 1.5439 56.07
3 (L1 2nd Surface) 16.464 0.140    
4 (L2 1st Surface) 10.385 2.015 1.6503 21.51
5 (L2 2nd Surface) 7.623 1.575    
6 (L3 1st Surface) 21.985 4.393 1.5439 56.07
7 (L3 2nd Surface) 79.137 2.463    
8 (Aperture Stop)   5.562    
9 (L4 1st Surface) 11.678 4.881 1.5350 55.73
10 (L4 2nd Surface) -24.978 0.140    
11 (L5 1st Surface) 228.689 2.179 1.6503 21.51
12 (L5 2nd Surface) 47.043 0.201    
13 (L6 1st Surface) -22.566 1.446 1.5350 55.73
14 (L6 2nd Surface) 17.239 2.625    
15 (L7 1st Surface) -21.874 2.800 1.6349 23.97
16 (L7 2nd Surface) -20.352 8.021    
17 (Pr Surface)   6.650    
18 (Optical Filter)   0.385 1.5168 64.20
19 (Optical Filter)   0.299    
20 (Image Plane)        
TABLE 12
Lens Focal Length
L1 104.56
L2 -61.87
L3 54.57
L4 15.62
L5 -91.49
L6 -18.07
L7 260.71
TABLE 13
f 38.50
Fno 2.86
19.22
Σd 55.17
ΣLd 39.81
BF 15.35
Yh 7.00
Mh 9.85
TABLE 14
0.5<ΣLd/Σd<0.8 0.72
Mh*2>7.0 19.70
Yh>6.5 7.00
Yh/ΣD<0.2 0.13
Σd/f<2.5 1.43
BF/Yh<3.0 2.19
Fno/Mh <0.5 0.29
Yh/f <0.35 0.18
TABLE 15
Figure PCTCN2021119320-appb-000004
Figure PCTCN2021119320-appb-000005
Figure PCTCN2021119320-appb-000006
Aberrations in the third example are shown in FIG. 9. According to the third example, by making the lens parameters different from those of the first and second examples, the degree of freedom in designing the camera module 11 according to the present disclosure can be further increased while obtaining the same effects as in the first example.
[Fourth example]
Next, a fourth example in which specific numerical values are applied to the camera module 11 shown in FIG. 10, will be described.
As shown in FIG. 10, in the fourth example, the imaging lens assembly 21 includes the mirror 31, the first to seventh lenses L1 to L7 and the prism 33 having the reflection surface 33a. The aperture stop 34 is disposed between the third lens L3 and the fourth lens L4.
The lens parameters corresponding to those in the first embodiment are shown in Tables 16 to 20.
TABLE 16
Si Ri Di Ndi νdi
1 (Mirror)    7.393    
2 (L1 1st Surface) 14.218 2.313 1.5439 56.07
3 (L1 2nd Surface) 17.212 0.148    
4 (L2 1st Surface) 11.286 2.295 1.6503 21.51
5 (L2 2nd Surface) 8.326 1.664    
6 (L3 1st Surface) 29.402 7.780 1.5439 56.07
7 (L3 2nd Surface) -982.370 0.224    
8 (Aperture Stop)   1.217    
9 (L4 1st Surface) 12.164 6.080 1.5350 55.73
10 (L4 2nd Surface) -47.613 0.148    
11 (L5 1st Surface) 27.545 3.025 1.6503 21.51
12 (L5 2nd Surface) 22.332 0.346    
13 (L6 1st Surface) -33.742 1.548 1.5350 55.73
14 (L6 2nd Surface) 18.525 1.792    
15 (L7 1st Surface) -45.467 1.725 1.6349 23.97
16 (L7 2nd Surface) -21.044 8.471    
17 (Pr Surface)   7.024    
18 (Optical Filter)   0.407 1.5168 64.20
19 (Optical Filter)   0.316    
20 (Image Plane)        
TABLE 17
Lens Focal Length
L1 118.28
L2 -69.50
L3 52.70
L4 18.81
L5 -235.18
L6 -22.16
L7 57.68
TABLE 18
f 25.20
Fno 2.31
20.51
Σd 53.92
ΣLd 37.70
BF 16.22
Yh 7.39
Mh 8.93
TABLE 19
0.5<ΣLd/Σd<0.8 0.70
Mh*2>7.0 17.87
Yh>6.5 7.39
Yh/ΣD<0.2 0.14
Σd/f<2.5 2.14
BF/Yh<3.0 2.19
Fno/Mh <0.5 0.26
Yh/f <0.35 0.29
TABLE 20
Figure PCTCN2021119320-appb-000007
Figure PCTCN2021119320-appb-000008
Figure PCTCN2021119320-appb-000009
Aberrations in the fourth example are shown in FIG. 11. According to the fourth example, by making the lens parameters different from those of the first to third examples, the degree of freedom in designing the camera module 11 according to the present disclosure can be further increased while obtaining the same effects as in the first example.
In the description of embodiments of the present disclosure, it is to be understood that terms such as "central" , "longitudinal" , "transverse" , "length" , "width" , "thickness" , "upper" , "lower" , "front" , "rear" , "back" , "left" , "right" , "vertical" , "horizontal" , "top" , "bottom" , "inner" , "outer" , "clockwise" and "counterclockwise" should be construed to refer to the orientation or the position as described or as shown in the drawings in discussion. These relative terms are only used to simplify the description of the present disclosure, and do not indicate or imply that the  device or element referred to must have a particular orientation, or must be constructed or operated in a particular orientation. Thus, these terms cannot be constructed to limit the present disclosure.
In addition, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, a feature defined as "first" and "second" may comprise one or more of this feature. In the description of the present disclosure, "a plurality of" means “two or more than two” , unless otherwise specified.
In the description of embodiments of the present disclosure, unless specified or limited otherwise, the terms "mounted" , "connected" , "coupled" and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements which can be understood by those skilled in the art according to specific situations.
In the embodiments of the present disclosure, unless specified or limited otherwise, a structure in which a first feature is "on" or "below" a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are in contact via an additional feature formed therebetween. Furthermore, a first feature "on" , "above" or "on top of" a second feature may include an embodiment in which the first feature is orthogonally or obliquely "on" ,  "above" or "on top of" the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature "below" , "under" or "on bottom of" a second feature may include an embodiment in which the first feature is orthogonally or obliquely "below" , "under" or "on bottom of" the second feature, or just means that the first feature is at a height lower than that of the second feature.
Various embodiments and examples are provided in the above description to implement different structures of the present disclosure. In order to simplify the present disclosure, certain elements and settings are described in the above. However, these elements and settings are only by way of example and are not intended to limit the present disclosure. In addition, reference numbers and/or reference letters may be repeated in different examples in the present disclosure. This repetition is for the purpose of simplification and clarity and does not refer to relations between different embodiments and/or settings. Furthermore, examples of different processes and materials are provided in the present disclosure. However, it would be appreciated by those skilled in the art that other processes and/or materials may also be applied.
Reference throughout this specification to "an embodiment" , "some embodiments" , "an exemplary embodiment" , "an example" , "a specific example" or "some examples" means that a particular feature, structure, material, or characteristics described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the above phrases throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
The logic and/or step described in other manners herein or shown in the flow chart, for example, a particular sequence table of executable instructions for realizing the logical function, may be specifically achieved in any computer readable medium to be used by the instructions execution system, device or equipment (such as a system based on computers, a system comprising processors or other systems capable of obtaining instructions from the instructions execution system, device and equipment executing the instructions) , or to be used in combination with the instructions execution system, device and equipment. As to the specification, "the computer readable medium" may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment. More specific examples of the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (amagnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) . In addition, the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, this is because, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
It should be understood that each part of the present disclosure may be realized by the hardware, software, firmware or their combination. In the above embodiments, a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instructions execution system. For example, if it is realized by the hardware, likewise in another embodiment, the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
Those skilled in the art shall understand that all or parts of the steps in the above exemplifying method of the present disclosure may be achieved by commanding the related hardware with programs. The programs may be stored in a computer readable storage medium, and the programs comprise one or a combination of the steps in the method embodiments of the present disclosure when run on a computer.
In addition, each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module. The integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
The storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.
Although embodiments of the present disclosure have been shown and described, it should be appreciated by those skilled in the art that the embodiments are explanatory and cannot be construed to limit the present disclosure, and changes, modifications, alternatives and variations can be made in the embodiments without departing from the scope of the present disclosure.

Claims (13)

  1. An imaging lens assembly, comprising:
    a mirror rotatable about one end on an imaging surface side of the mirror;
    at least one lens disposed on the imaging surface side of the mirror and having a positive refractive power;
    at least one lens disposed on the imaging surface side of the mirror and having a negative refractive power; and
    a reflection member disposed between a most imaging surface side disposed lens and the imaging surface, wherein
    the mirror is configured to tilt at a first angle with respect to an optical axis direction of a first optical axis, which is a part of an optical axis of the imaging lens assembly and is positioned between the mirror and the reflection member, in a stored mirror state so that most of the incoming light incident on the mirror is reflected in a direction deviated from the lenses, and is configured to tilt at a second angle larger than the first angle with respect to the optical axis direction in a shooting state so that most of the incoming light incident on the mirror reflected towards the lenses to form an optical path optically connecting the mirror, the lenses and the reflection member, and
    the imaging lens assembly is configured so that:
    0.5 < ∑Ld /∑d < 0.8,
    Mh x 2 > 7.0 mm,
    Yh > 6.5 mm,
    where ∑Ld is a distance on an optical axis of the imaging lens assembly from the mirror to a surface on the imaging surface side of a most imaging surface side disposed lens, ∑d is a distance on an optical axis of the imaging lens assembly from the mirror to the imaging surface, Mh is an effective height of the mirror at an intersection of the optical axis and the mirror, and Yh is an image height.
  2. The imaging lens assembly according to claim 1, further configured so that:
    Yh /∑d <0.2.
  3. The imaging lens assembly according to claim 1, further configured so that:
    ∑d /f<2.5,
    where f is a focal length of the imaging lens assembly.
  4. The imaging lens assembly according to claim 1, further configured so that:
    BF /Yh <3.0,
    where BF is a distance on an optical axis of the imaging lens assembly from a surface on the imaging surface side of the most imaging surface side disposed lens to the imaging surface.
  5. The imaging lens assembly according to claim 1, further configured so that:
    Fno /Mh <0.5,
    where Fno is an F number of the imaging lens assembly.
  6. The imaging lens assembly according to claim 1, further configured so that:
    Yh /f <0.35.
  7. The imaging lens assembly according to claim 1, wherein
    the most imaging surface side disposed lens has a positive refractive power.
  8. The imaging lens assembly according to claim1, wherein
    the lenses comprise, in order from the object side,
    a first lens having a positive refractive power,
    a second lens having a negative refractive power,
    a third lens having a positive refractive power,
    a fourth lens having a positive refractive power,
    a fifth lens having a negative refractive power,
    a sixth lens having a negative refractive power, and
    a seventh lens having a positive refractive power.
  9. The imaging lens assembly according to claim 1, wherein
    the reflection member is a prism.
  10. A camera module, comprising:
    an imaging lens assembly according to any one of claims 1-9; and
    an image sensor including an imaging surface parallel to an optical axis direction of the first optical axis, and perpendicular to an optical axis direction of a second optical axis which is the remaining part of the optical axis of the imaging lens assembly and is positioned between the reflection member and the imaging surface.
  11. The camera module according to claim 10, further comprising an IR filter disposed between the imaging lens assembly and the image sensor.
  12. An imaging device, comprising:
    a camera module according to claim 10 or 11;
    a housing for storing the imaging lens assembly, and
    a drive mechanism rotationally driving the mirror about the one end of the mirror.
  13. The imaging device according to claim 12, wherein
    the mirror is configured to be stored inside the housing in the stored mirror state and is configured so that the other end of the mirror protrudes from a surface of the housing in the shooting state.
PCT/CN2021/119320 2021-09-18 2021-09-18 Imaging lens assembly, camera module and imaging device WO2023039878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100527.XA CN117651906A (en) 2021-09-18 2021-09-18 Imaging lens assembly, camera module and imaging device
PCT/CN2021/119320 WO2023039878A1 (en) 2021-09-18 2021-09-18 Imaging lens assembly, camera module and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119320 WO2023039878A1 (en) 2021-09-18 2021-09-18 Imaging lens assembly, camera module and imaging device

Publications (1)

Publication Number Publication Date
WO2023039878A1 true WO2023039878A1 (en) 2023-03-23

Family

ID=85602358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119320 WO2023039878A1 (en) 2021-09-18 2021-09-18 Imaging lens assembly, camera module and imaging device

Country Status (2)

Country Link
CN (1) CN117651906A (en)
WO (1) WO2023039878A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740898A (en) * 2004-08-26 2006-03-01 佳能株式会社 Image sensing apparatus
CN1932573A (en) * 1996-06-18 2007-03-21 索尼株式会社 Optical image recording system, and associated processing system
JP2014052565A (en) * 2012-09-07 2014-03-20 Ricoh Co Ltd Imaging lens, image capturing device, and information device
CN110208927A (en) * 2019-07-12 2019-09-06 浙江舜宇光学有限公司 Optical imaging lens
CN113253436A (en) * 2021-07-14 2021-08-13 江西晶超光学有限公司 Optical system, camera module and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932573A (en) * 1996-06-18 2007-03-21 索尼株式会社 Optical image recording system, and associated processing system
CN1740898A (en) * 2004-08-26 2006-03-01 佳能株式会社 Image sensing apparatus
JP2014052565A (en) * 2012-09-07 2014-03-20 Ricoh Co Ltd Imaging lens, image capturing device, and information device
CN110208927A (en) * 2019-07-12 2019-09-06 浙江舜宇光学有限公司 Optical imaging lens
CN113253436A (en) * 2021-07-14 2021-08-13 江西晶超光学有限公司 Optical system, camera module and electronic equipment

Also Published As

Publication number Publication date
CN117651906A (en) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2021159406A1 (en) Imaging lens, camera module and imaging device
JP4844012B2 (en) Variable magnification optical system and imaging apparatus
JP3695449B2 (en) Imaging lens
JP5015720B2 (en) Four-element compact imaging lens, camera module, and imaging device
US7458737B2 (en) Taking lens system
JP5022172B2 (en) Four-element compact imaging lens, camera module, and imaging device
JP2005024969A (en) Imaging lens
JP5015719B2 (en) Four-element compact imaging lens, camera module, and imaging device
WO2021128064A1 (en) Imaging lens, camera module and imaging device
EP3929646A1 (en) Optical system, camera module, and electronic device
JP3713813B2 (en) Camera device
WO2023039878A1 (en) Imaging lens assembly, camera module and imaging device
WO2023159432A1 (en) Imaging lens assembly, camera module and imaging device
WO2022016329A1 (en) Imaging lens assembly, camera module and imaging device
WO2023044854A1 (en) Imaging lens assembly, camera module and imaging device
WO2022236552A1 (en) Imaging lens assembly, camera module and imaging device
WO2023245548A1 (en) Imaging lens assembly, camera module and imaging device
WO2023087146A1 (en) Imaging lens assembly, camera module and imaging device
WO2023092384A1 (en) Imaging lens assembly, camera module and imaging device
WO2022165847A1 (en) Imaging lens assembly, camera module and imaging device
WO2021258295A1 (en) Imaging lens assembly, camera module and imaging device
WO2023000142A1 (en) Imaging lens assembly, camera module and imaging device
WO2022252164A1 (en) Imaging lens assembly, camera module and imaging device
WO2023272484A1 (en) Imaging lens assembly, camera module and imaging device
WO2024055279A1 (en) Imaging lens assembly, camera module and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100527.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE