WO2023038103A1 - 発電素子、発電素子の製造方法、発電装置、及び電子機器 - Google Patents

発電素子、発電素子の製造方法、発電装置、及び電子機器 Download PDF

Info

Publication number
WO2023038103A1
WO2023038103A1 PCT/JP2022/033831 JP2022033831W WO2023038103A1 WO 2023038103 A1 WO2023038103 A1 WO 2023038103A1 JP 2022033831 W JP2022033831 W JP 2022033831W WO 2023038103 A1 WO2023038103 A1 WO 2023038103A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
electrode
generation element
fine particles
intermediate portion
Prior art date
Application number
PCT/JP2022/033831
Other languages
English (en)
French (fr)
Inventor
博史 後藤
稔 坂田
拓夫 安田
ラーシュ マティアス アンダーソン
誠司 岡田
貴宏 中村
Original Assignee
株式会社Gceインスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021147809A external-priority patent/JP7011361B1/ja
Application filed by 株式会社Gceインスティチュート filed Critical 株式会社Gceインスティチュート
Priority to CA3231369A priority Critical patent/CA3231369A1/en
Priority to EP22867424.8A priority patent/EP4401538A1/en
Priority to KR1020247011171A priority patent/KR20240054352A/ko
Priority to CN202280061449.1A priority patent/CN117941489A/zh
Publication of WO2023038103A1 publication Critical patent/WO2023038103A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00

Definitions

  • the present invention relates to a method for manufacturing a power generation element, a power generation element, a power generation device, and an electronic device that eliminate the need for a temperature difference between electrodes when converting thermal energy into electrical energy.
  • Patent Document 1 discloses a generation step of generating nanoparticles dispersed in a solvent or an organic solvent using a femtosecond pulse laser, a first electrode portion forming step of forming a first electrode portion on a first substrate, a second electrode portion forming step of forming a second electrode portion on a second substrate; and the first substrate with the solvent or the organic solvent sandwiched between the first electrode portion and the second electrode portion. and a bonding step of bonding the second substrate and the like.
  • the work function difference between the electrodes is mainly cited as a parameter that affects the power generation amount. Therefore, if the selection of materials used for each electrode is limited, it is difficult to improve the amount of power generation.
  • an object of the present invention is to provide a power generation element capable of improving the amount of power generation, a method for manufacturing the power generation element, a power generation device, and an electronic device. It is to provide equipment.
  • a power generation element is a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy, and comprises: a first electrode; and a second electrode provided on the intermediate portion and having a work function different from that of the first electrode.
  • a power generation element according to a second invention is characterized in that, in the first invention, the fine particles contain at least one of titanium and zirconium.
  • a power generation element is the power generating element according to the first aspect or the second aspect, wherein the fine particles include barium titanate, strontium titanate, calcium titanate, lead titanate, tin titanate, cadmium titanate, and strontium zirconate. characterized by containing at least one of
  • a power generation element according to a fourth invention is the power generation element according to any one of the first to third inventions, wherein the intermediate portion includes a non-conductor layer that encloses the fine particles and supports the first electrode and the second electrode. characterized by
  • a power generation element according to a fifth invention is characterized in that, in the fourth invention, the non-conductor layer contains a hydrophilic material.
  • a power generation element according to a sixth invention is characterized in that, in the fifth invention, the nonconductor layer contains an organic polymer compound.
  • a power generating element according to a seventh invention is the power generating element according to any one of the fourth to sixth inventions, wherein the intermediate portion includes a plurality of locking portions that support the first electrode and the second electrode. .
  • a power generation element is characterized in that, in the seventh invention, the engaging portion is spherical with a larger median diameter than the fine particles.
  • a method for manufacturing a power generation element according to a ninth aspect of the present invention is a method for manufacturing a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy, and comprises a first electrode and fine particles having a perovskite structure. and a second electrode having a work function different from that of the first electrode.
  • a power generator includes the power generation element according to the first aspect of the invention, a first wiring electrically connected to the first electrode, and a second wiring electrically connected to the second electrode. It is characterized by having
  • An electronic device is characterized by comprising the power generation element according to the first invention and an electronic component driven by using the power generation element as a power supply.
  • the intermediate portion contains fine particles exhibiting a perovskite structure. For this reason, protons generated from water molecules contained in the atmosphere around the power generating element, etc. move to the electrode on the low potential side due to the electric field between the electrodes. Electron transfer between the electrodes is activated along with the proton transfer. This makes it possible to improve the amount of power generation.
  • the intermediate portion includes a non-conductor layer containing fine particles. That is, the non-conductor layer suppresses movement of the fine particles between the electrodes. For this reason, it is possible to prevent the fine particles from becoming unevenly distributed on one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the intermediate portion includes a non-conductor layer that supports the first electrode and the second electrode. Therefore, compared to the case where a solvent or the like is used instead of the non-conductive layer, there is no need to provide a support portion or the like for maintaining the distance (gap) between the electrodes, and the gap resulting from the formation accuracy of the support portion is eliminated. Distortion can be removed. This makes it possible to increase the amount of power generation.
  • the nonconductor layer contains a hydrophilic material. Therefore, it is possible to easily maintain the state in which the water molecules are close to the fine particles. This makes it possible to further stabilize the power generation amount.
  • the nonconductor layer contains an organic polymer compound. Therefore, the non-conductor layer can be formed flexibly. As a result, it is possible to obtain a power generation element having a shape suitable for the application.
  • the intermediate portion includes a plurality of locking portions that support the first electrode and the second electrode. Therefore, it is possible to suppress variations in the gap caused by the non-conductor layer. This makes it possible to further increase the amount of power generation.
  • the engaging portion is spherical with a larger median diameter than the fine particles. Therefore, the contact area between the locking portion and each electrode can be minimized. This makes it possible to suppress a decrease in the amount of power generated due to the arrangement of the locking portion.
  • the power generator includes the power generation element according to the first invention. Therefore, it is possible to realize a power generation device that stabilizes the power generation amount.
  • an electronic device includes the power generation element according to the first invention. Therefore, it is possible to realize an electronic device that stabilizes the amount of power generation.
  • FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device in the first embodiment
  • FIG. 1(b) is a schematic cross-sectional view along AA in FIG. 1(a).
  • FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion
  • FIG. 3 is a flow chart showing an example of a method for manufacturing a power generation element according to the first embodiment
  • 4(a) to 4(d) are schematic cross-sectional views showing an example of the method for manufacturing the power generation element according to the first embodiment.
  • FIG. 5A is a schematic cross-sectional view showing a first modification of the power generation element and the power generation device in the first embodiment
  • FIG. 5B is a schematic cross-sectional view of the power generation element and the power generation device in the first embodiment. It is a schematic cross section which shows a 2nd modification.
  • FIG. 6 is a schematic cross-sectional view showing a first modification of the intermediate portion.
  • FIG. 7 is a schematic cross-sectional view showing a second modification of the intermediate portion.
  • FIG. 8 is a schematic cross-sectional view showing an example of an intermediate portion of the power generation element in the second embodiment.
  • FIGS. 9(a) to 9(d) are schematic block diagrams showing examples of electronic devices having power generation elements, and FIGS. 9(e) to 9(h) show power generation devices including power generation elements. It is a schematic block diagram which shows the example of the electronic device provided.
  • FIG. 10 is a schematic diagram showing an operation example of the power generation element in the first embodiment.
  • the height direction in which each electrode is stacked is defined as a first direction Z
  • one planar direction that intersects, for example, is orthogonal to the first direction Z is defined as a second direction X.
  • a third direction Y is another planar direction that intersects, for example, is orthogonal to each of the directions X.
  • the configuration in each drawing is schematically described for explanation, and for example, the size of each configuration and the comparison of the size of each configuration may differ from those in the drawings.
  • FIG. 1 is a schematic diagram showing an example of a power generation element 1 and a power generation device 100 in this embodiment.
  • FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element 1 and a power generation device 100 in this embodiment
  • FIG. 1(b) is a schematic cross section along AA in FIG. 1(a). It is a diagram.
  • the power generation device 100 includes a power generation element 1 , first wiring 101 and second wiring 102 .
  • the power generation element 1 converts thermal energy into electrical energy.
  • the power generation device 100 including such a power generation element 1 is, for example, mounted or installed on a heat source (not shown), and based on the thermal energy of the heat source, the electrical energy generated from the power generation element 1 is transferred to the first wiring 101 and the second wiring 101. 2 output to the load R via the wiring 102 .
  • One end of the load R is electrically connected to the first wiring 101 and the other end is electrically connected to the second wiring 102 .
  • a load R indicates, for example, an electrical device.
  • the load R is driven, for example, using the generator 100 as a main power source or an auxiliary power source.
  • heat sources for the power generation element 1 include electronic devices or electronic parts such as CPUs (Central Processing Units), light emitting elements such as LEDs (Light Emitting Diodes), engines such as automobiles, production equipment in factories, human bodies, sunlight, and environmental temperature.
  • electronic devices, electronic parts, light-emitting elements, engines, production equipment, etc. are artificial heat sources.
  • the human body, sunlight, ambient temperature, etc. are natural heat sources.
  • the power generation device 100 including the power generation element 1 can be provided inside mobile devices such as IoT (Internet of Things) devices and wearable devices and self-supporting sensor terminals, and can be used as an alternative or supplement to batteries. Furthermore, the power generation device 100 can also be applied to larger power generation devices such as solar power generation.
  • the power generation element 1 converts, for example, thermal energy generated by the artificial heat source or thermal energy possessed by the natural heat source into electrical energy to generate current.
  • the power generation element 1 can be provided not only inside the power generation device 100, but also inside the mobile device, the self-contained sensor terminal, or the like. In this case, the power generation element 1 itself can serve as an alternative or auxiliary part of the battery, such as the mobile device or the self-contained sensor terminal.
  • the power generation element 1 includes, for example, a first electrode 11, a second electrode 12, and an intermediate portion 14, as shown in FIG. 1(a).
  • the power generation element 1 may include at least one of the first substrate 15 and the second substrate 16, for example.
  • the first electrode 11 and the second electrode 12 are provided facing each other.
  • the first electrode 11 and the second electrode 12 have different work functions.
  • the intermediate portion 14 is provided in a space 140 including a gap G between the first electrode 11 and the second electrode 12, as shown in FIG. 2, for example.
  • the work function of the first electrode 11 is larger than the work function of the second electrode 12.
  • an electric field is generated in the gap G, the first electrode 11 exhibits a low potential, and the second electrode 12 exhibits a high potential.
  • the intermediate portion 14 contains fine particles 141 exhibiting a perovskite structure.
  • water molecules contained in the atmosphere around the power generating element 1 can react with metal ions such as barium contained in the perovskite structure.
  • metal ions such as barium contained in the perovskite structure.
  • water molecules produce hydronium (H 3 O + ) and hydroxide ions (OH ⁇ ).
  • Hydronium transfers protons (H + ) to adjacent water molecules.
  • the proton transmission speed tends to be much faster than that of ion conduction or the like.
  • the protons move toward the electrode on the low potential side (the first electrode 11 in FIG.
  • the protons receive electrons from the first electrode 11 on the low potential side, and the hydroxide ions supply electrons to the second electrode 12 on the high potential side. Therefore, electron transfer between the electrodes 11 and 12 is activated. This makes it possible to improve the amount of power generation.
  • the first electrode 11 and the second electrode 12 are spaced apart in the first direction Z, as shown in FIG. 1(a), for example.
  • Each of the electrodes 11 and 12 may extend in the second direction X and the third direction Y, for example, and may be provided in plurality.
  • one second electrode 12 may be provided facing the plurality of first electrodes 11 at different positions.
  • one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
  • a conductive material is used as the material of the first electrode 11 and the second electrode 12 .
  • materials for the first electrode 11 and the second electrode 12 for example, materials having different work functions are used. The same material may be used for the electrodes 11 and 12, and in this case, the electrodes 11 and 12 may have different work functions.
  • non-metallic conductor As the material of the electrodes 11 and 12, for example, a material composed of a single element such as iron, aluminum, or copper may be used, or an alloy material composed of, for example, two or more elements may be used.
  • a non-metallic conductor for example, may be used as the material of the electrodes 11 and 12 .
  • Examples of nonmetallic conductors include silicon (Si: for example, p-type Si or n-type Si) and carbon-based materials such as graphene.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 ⁇ m or less.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 50 nm or less.
  • the gap G which indicates the distance between the first electrode 11 and the second electrode 12, can be arbitrarily set by changing the thickness of the non-conductor layer 142, for example. For example, by narrowing the gap G, the electric field generated between the electrodes 11 and 12 can be increased, so that the power generation amount of the power generation element 1 can be increased. Further, for example, by narrowing the gap G, the thickness of the power generation element 1 along the first direction Z can be reduced.
  • the gap G is a finite value of 500 ⁇ m or less, for example.
  • the gap G is, for example, 10 nm or more and 1 ⁇ m or less.
  • variations in the gap G on the surfaces along the second direction X and the third direction Y may lead to a decrease in the power generation amount.
  • the gap G is larger than 1 ⁇ m, the electric field generated between the electrodes 11 and 12 may weaken.
  • the gap G is preferably larger than 200 nm and 1 ⁇ m or less.
  • the intermediate portion 14 includes, for example, fine particles 141 and a non-conductor layer 142 .
  • the non-conductor layer 142 contains the fine particles 141 and supports the first electrode 11 and the second electrode 12 . In this case, movement of the particles 141 in the gap G is suppressed by the non-conductor layer 142 . Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the side of one of the electrodes 11 and 12 over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the non-conductor layer 142 is formed, for example, by curing a non-conductor material.
  • the non-conductor layer 142 exhibits a solid, for example.
  • the non-conducting layer 142 may include, for example, diluent residue and uncured portions of the non-conducting material. In this case as well, it is possible to stabilize the power generation amount in the same manner as described above.
  • the fine particles 141 are fixed in a dispersed state in the non-conductor layer 142, for example. In this case as well, it is possible to stabilize the power generation amount in the same manner as described above.
  • the intermediate portion 14 is provided on the first electrode 11 .
  • the second electrode 12 is provided on the non-conductor layer 142 .
  • the amount of power generation can be increased.
  • a liquid such as a solvent is used as the intermediate portion, it is necessary to provide a support portion or the like for maintaining the gap G.
  • the gap G may vary greatly with the formation of the supporting portion and the like.
  • the second electrode 12 is provided on the non-conductor layer 142, so there is no need to provide a supporting portion or the like for maintaining the gap G, and the supporting portion or the like is not required. It is possible to eliminate gap variations due to formation accuracy. This makes it possible to increase the amount of power generation.
  • the fine particles 141 may come into contact with the support and aggregate around the support.
  • the power generating element 1 of the present embodiment it is possible to eliminate the state in which the fine particles 141 aggregate due to the supporting portion. This makes it possible to maintain a stable power generation amount.
  • the intermediate portion 14 extends on a plane along the second direction X and the third direction Y, as shown in FIG. 1(b), for example.
  • the intermediate portion 14 is provided within a space 140 formed between the electrodes 11 , 12 .
  • the intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, and may also be in contact with the side surfaces of the electrodes 11 and 12, for example.
  • the fine particles 141 may be dispersed in the non-conductor layer 142 and partially exposed from the non-conductor layer 142, for example.
  • the particles 141 may be filled in the gap G, for example, and the non-conductor layer 142 may be provided in the gaps between the particles 141 .
  • the particle diameter of the fine particles 141 is smaller than the gap G, for example.
  • the particle diameter of the fine particles 141 is set to a finite value of 1/10 or less of the gap G, for example. If the particle diameter of the fine particles 141 is set to 1/10 or less of the gap G, it becomes easier to form the intermediate portion 14 containing the fine particles 141 in the space 140 . This makes it possible to improve the workability when generating the power generation element 1 .
  • the fine particles 141 include particles having a particle diameter of, for example, 2 nm or more and 1000 nm or less.
  • the fine particles 141 may include, for example, particles having a median diameter (median diameter: D50) of 3 nm or more and 8 nm or less, or particles having an average particle diameter of 3 nm or more and 8 nm or less.
  • the median diameter or average particle diameter can be measured, for example, by using a particle size distribution analyzer.
  • a particle size distribution measuring instrument for example, a particle size distribution measuring instrument using a dynamic light scattering method (eg, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.
  • the fine particles 141 exhibit a perovskite structure.
  • Fine particles 141 contain, for example, at least one of titanium and zirconium.
  • the fine particles 141 are, for example, barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), calcium titanate (CaTiO 3 ), lead titanate (PbTiO 3 ), tin titanate (SnTiO 3 ), cadmium titanate (CdTiO 3 ). 3 ) and strontium zirconate (SrZrO 3 ).
  • the microparticles 141 include, for example, a coating 141a on the surface.
  • the thickness of the coating 141a is, for example, a finite value of 20 nm or less.
  • a material having, for example, a thiol group or a disulfide group is used as the coating 141a.
  • Alkanethiol such as dodecanethiol is used as the material having a thiol group.
  • a material having a disulfide group for example, an alkane disulfide or the like is used.
  • the non-conductor layer 142 is provided between the electrodes 11 and 12 and is in contact with the electrodes 11 and 12, for example.
  • the thickness of the non-conductor layer 142 is a finite value of 500 ⁇ m or less, for example.
  • the thickness of the non-conductor layer 142 affects the value and variation of the gap G described above. Therefore, for example, when the thickness of the non-conductor layer 142 is 200 nm or less, variations in the gap G in the planes along the second direction X and the third direction Y may lead to a decrease in power generation. Also, if the thickness of the non-conductor layer 142 is greater than 1 ⁇ m, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the thickness of the non-conductor layer 142 is preferably greater than 200 nm and equal to or less than 1 ⁇ m.
  • the non-conductor layer 142 may contain, for example, one type of material, or may contain a plurality of materials depending on the application. Materials described in ISO 1043-1 or JIS K 6899-1, for example, may be used as the non-conductor layer 142 .
  • the non-conductor layer 142 may include a plurality of layers containing different materials, for example, and may include a structure in which each layer is laminated. When the non-conductor layer 142 includes a plurality of layers, for example, particles 141 containing different materials may be included (eg, dispersed) in each layer.
  • the non-conductor layer 142 has insulating properties, for example.
  • the material used for the non-conductor layer 142 is arbitrary as long as it is a non-conductor material that can fix the fine particles 141 in a dispersed state, but an organic polymer compound is preferable.
  • the non-conductor layer 142 contains an organic polymer compound, the non-conductor layer 142 can be formed flexibly, so that the power generating element 1 can be formed in a shape such as curved or bent according to the application.
  • organic polymer compounds include polyimides, polyamides, polyesters, polycarbonates, poly(meth)acrylates, radically polymerizable photo- or thermosetting resins, photo-cationically polymerizable photo- or thermosetting resins, epoxy resins, and acrylonitrile components.
  • the non-conductor layer 142 contains, for example, a hydrophilic material.
  • a hydrophilic material such as polyvinyl alcohol, methyl cellulose, and polyethylene glycol are used for the non-conductor layer 142 .
  • hydrophilic materials include known materials such as nonionic polymers, anionic polymers, cationic polymers, acrylic resins, polyester resins, and polyurethane resins.
  • An inorganic substance may be used as the non-conductor layer 142, for example.
  • inorganic substances include porous inorganic substances such as zeolite and diatomaceous earth, as well as cage-like molecules.
  • the first substrate 15 and the second substrate 16 are spaced apart in the first direction Z with the electrodes 11 and 12 and the intermediate portion 14 interposed therebetween, as shown in FIG. 1A, for example.
  • the first substrate 15 is, for example, in contact with the first electrode 11 and separated from the second electrode 12 .
  • the first substrate 15 fixes the first electrode 11 .
  • the second substrate 16 is in contact with the second electrode 12 and separated from the first electrode 11 .
  • a second substrate 16 fixes the second electrode 12 .
  • each of the substrates 15 and 16 along the first direction Z is, for example, 10 ⁇ m or more and 2 mm or less.
  • the thickness of each substrate 15, 16 can be set arbitrarily.
  • the shape of each of the substrates 15 and 16 may be, for example, square, rectangular, or disk-like, and can be arbitrarily set according to the application.
  • the substrates 15 and 16 for example, plate-shaped members having insulation properties can be used, and known members such as silicon, quartz, and Pyrex (registered trademark) can be used.
  • a film-like member may be used, and for example, a known film-like member such as PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like may be used.
  • a member having conductivity can be used, such as iron, aluminum, copper, or an alloy of aluminum and copper.
  • a member such as a conductive polymer may be used in addition to a conductive semiconductor such as Si or GaN. If conductive members are used for the substrates 15 and 16, wiring for connecting to the electrodes 11 and 12 becomes unnecessary.
  • the first substrate 15 may have a degenerate portion that contacts the first electrode 11 .
  • the contact resistance between the first electrode 11 and the first substrate 15 can be reduced as compared with the case without the degenerate portion.
  • the first substrate 15 may have a recessed portion on a surface different from the surface in contact with the first electrode 11 . In this case, the contact resistance between the wiring (for example, the first wiring 101) electrically connected to the first substrate 15 can be reduced.
  • contact resistance can be reduced by providing contraction portions on the contact surfaces of the substrates 15 and 16 that are in contact with each other as the power generation elements 1 are stacked.
  • the above-mentioned degenerate portion is generated, for example, by ion-implanting an n-type dopant into a semiconductor at a high concentration, coating a semiconductor with a material such as glass containing an n-type dopant, and performing heat treatment after coating.
  • impurities to be doped into the semiconductor first substrate 15 known impurities such as P, As, Sb, etc. for n-type, and B, Ba, Al, etc. for p-type are mentioned. Further, electrons can be efficiently emitted when the impurity concentration in the degenerate portion is, for example, 1 ⁇ 10 19 ions/cm 3 .
  • the specific resistance value of the first substrate 15 may be, for example, 1 ⁇ 10 ⁇ 6 ⁇ cm or more and 1 ⁇ 10 6 ⁇ cm or less. If the resistivity value of the first substrate 15 is less than 1 ⁇ 10 ⁇ 6 ⁇ cm, it is difficult to select the material. Also, if the specific resistance value of the first substrate 15 is greater than 1 ⁇ 10 6 ⁇ cm, there is a concern that current loss may increase.
  • the second substrate 16 may be a semiconductor. In this case, the description is omitted because it is the same as the above.
  • the power generation element 1 may include only the first substrate 15 as shown in FIG. 5(a), or may include only the second substrate 16, for example.
  • the power generation element 1 has a laminated structure in which a plurality of the first electrode 11, the intermediate portion 14, and the second electrode 12 are laminated in this order without the respective substrates 15 and 16. (e.g. 1a, 1b, 1c, etc.), for example, a laminated structure comprising at least one of the substrates 15, 16 may be indicated.
  • the intermediate portion 14 may contain a solvent 142s instead of the non-conductor layer 142, as shown in FIG. 6, for example.
  • the fine particles 141 are dispersed in the solvent 142s.
  • each of the electrodes 11 and 12 is supported by a supporting portion (not shown).
  • a known liquid such as water or toluene is used as the solvent 142s. Even in this case, it is possible to improve the amount of power generation by including the fine particles 141 exhibiting the perovskite structure described above.
  • the intermediate portion 14 may not include the non-conductor layer 142, as shown in FIG. 7, for example.
  • the gap G is filled with the fine particles 141 .
  • each of the electrodes 11 and 12 is supported by a supporting portion (not shown). Even in this case, it is possible to improve the amount of power generation by including the fine particles 141 exhibiting the perovskite structure described above.
  • ⁇ Example of operation of power generation element 1> For example, when thermal energy is applied to the power generation element 1, a current is generated between the first electrode 11 and the second electrode 12, and the thermal energy is converted into electrical energy. The amount of current generated between the first electrode 11 and the second electrode 12 depends on thermal energy and also depends on the difference between the work function of the second electrode 12 and the work function of the first electrode 11 .
  • the amount of current generated can be increased, for example, by increasing the work function difference between the first electrode 11 and the second electrode 12 and by decreasing the gap G.
  • the amount of electrical energy generated by the power generation element 1 can be increased by considering at least one of increasing the work function difference and decreasing the gap G.
  • the amount of electrons moving between the electrodes 11 and 12 can be increased, which can lead to an increase in the amount of current.
  • the power generation element 1 of the present embodiment includes fine particles 141 exhibiting a perovskite structure. Therefore, the electron transfer between the electrodes 11, 12 is activated due to the proton characteristics described above. This makes it possible to improve the amount of power generation.
  • the "work function” indicates the minimum energy required to extract electrons in a solid into a vacuum.
  • the work function is measured using, for example, ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES). can be done.
  • UPS ultraviolet photoelectron spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • AES Auger electron spectroscopy
  • FIG. 3 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • the method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
  • the element forming step S100 forms the first electrode 11, the intermediate portion 14, and the second electrode 12, respectively.
  • a plurality of first electrodes 11, intermediate portions 14, and second electrodes 12 may be laminated.
  • the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique.
  • the element forming step S100 includes, for example, a first electrode forming step S110, an intermediate portion forming step S120, and a second electrode forming step S130. The order in which steps S110, S120, and S130 are performed is arbitrary.
  • the first electrode forming step S110 forms the first electrode 11 .
  • the first electrode 11 is formed on the first substrate 15, as shown in FIG. 4A, for example.
  • the first electrode 11 is formed by, for example, a sputtering method or a vacuum deposition method under a reduced pressure environment, or is formed using a known electrode forming technique.
  • the first electrode 11 may be formed by processing a stretched electrode material into an arbitrary size. In this case, the first substrate 15 may not be used.
  • the first electrode 11 may be formed on the first substrate 15, for example.
  • the first electrode 11 can be applied onto the first substrate 15, and the first substrate 15 and the first electrodes 11 can be rolled up. After that, for example, in at least one of the intermediate portion forming step S120, the second electrode forming step S130, and the sealing material forming step S140, which will be described later, it may be cut into an area according to the application.
  • the intermediate portion 14 including the non-conductor layer 142 is formed on the first electrode 11, as shown in FIG. 4B, for example.
  • a non-conductor material containing fine particles 141 is applied to the surface of the first electrode 11 or the like, and the non-conductor layer 142 is formed by curing the non-conductor material. As a result, the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
  • a non-conductive material is applied to the surface of the first electrode 11 by a known coating technique such as screen printing or spin coating.
  • the film thickness of the non-conducting material can be arbitrarily set according to the design of the gap G described above.
  • the non-conducting material a polymer material with known insulating properties such as epoxy resin is used.
  • a thermosetting resin is used, and for example, an ultraviolet curable resin is used.
  • the non-conductor layer 142 may be formed by heating, UV irradiation, or the like on the applied non-conductor material according to the properties of the non-conductor material.
  • a fine particle material may be mixed in any inorganic material and laser irradiation may be performed.
  • the non-conductor layer 142 containing the fine particles 141 is formed, and the intermediate portion 14 is formed.
  • the second electrode forming step S130 forms the second electrode 12 on the non-conductor layer 142, as shown in FIG. 4C, for example.
  • the second electrode 12 is formed using a material having a work function lower than that of the first electrode 11, for example.
  • the second electrode 12 is formed using a known electrode forming technique such as nanoimprinting.
  • the second electrode forming step S130 is formed, for example, on the surface of the non-conductor layer 142 by sputtering or vacuum deposition under a reduced pressure environment.
  • the main surface of the second electrode 12 is in contact with the non-conductor layer 142 without being exposed to the air or the like. Therefore, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
  • the surface of the second electrode 12 provided in advance on the second substrate 16 is brought into contact with the surface of the non-conductor layer 142 to form the second electrode 12. good too.
  • variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to increase the amount of power generation.
  • the second substrate 16 when a film member is used as the second substrate 16, it can be realized by preparing the second substrate 16 coated with the second electrode 12.
  • the second substrate 16 and the second electrode 12 are wound into a roll. It can be prepared as is. After that, for example, before or after the sealing material forming step S140, which will be described later, it may be cut into areas according to the application.
  • the intermediate portion 14 and the second electrode 12 may be heated.
  • the heating of the intermediate portion 14 and the second electrode 12 may be performed, for example, instead of the heating in the intermediate portion forming step S120, or may be performed in addition to the heating in the intermediate portion forming step S120.
  • the surface of the nonconductor layer 142 in contact with the second electrode 12 is easily flattened. Therefore, it is possible to suppress the generation of a slight gap between the non-conductor layer 142 and the second electrode 12 . This makes it possible to increase the amount of power generation.
  • the sealing material forming step S140 may be performed after the second electrode forming step S130.
  • the sealing material 17 is formed in contact with at least one of the first electrode 11, the intermediate portion 14 and the second electrode 12, as shown in FIG.
  • the sealing material 17 is formed using a known technique such as nanoimprinting.
  • an insulating material is used, for example, a known insulating resin such as a fluorine-based insulating resin is used.
  • a known insulating resin such as a fluorine-based insulating resin is used.
  • the sealing material 17 is formed so as to cover the intermediate portion 14, the intermediate portion 14 is not exposed to the outside, so durability can be further improved.
  • the power generating element 1 in the present embodiment is formed by performing the steps described above.
  • a second substrate 16 shown in FIG. 1A may be formed on the second electrode 12 .
  • the power generator 100 in the present embodiment is formed.
  • the intermediate portion 14 contains fine particles 141 exhibiting a perovskite structure. Therefore, protons generated from water molecules contained in the atmosphere around the power generating element 1 move to the electrode (first electrode 11) on the low potential side due to the electric field between the electrodes (first electrode 11, second electrode 12). do. Electron transfer between the electrodes is activated along with the proton transfer. This makes it possible to improve the amount of power generation.
  • the intermediate portion 14 includes the non-conductor layer 142 containing the fine particles 141 . That is, the non-conductor layer 142 suppresses movement of the fine particles 141 between the electrodes. Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the intermediate portion 14 includes the non-conductor layer 142 that supports the first electrode 11 and the second electrode 12 . Therefore, compared to the case where a solvent or the like is used instead of the non-conductor layer 142, there is no need to provide a supporting portion or the like for maintaining the distance (gap G) between the electrodes, and the accuracy of forming the supporting portion is reduced. Variation in the gap G can be eliminated. This makes it possible to increase the amount of power generation.
  • the non-conductor layer 142 contains a hydrophilic material. Therefore, the state in which the water molecules are close to the fine particles 141 can be easily maintained. This makes it possible to further stabilize the power generation amount.
  • the non-conductor layer 142 contains an organic polymer compound. Therefore, the non-conductor layer 142 can be formed flexibly. As a result, the power generation element 1 having a shape suitable for the application can be obtained.
  • the sealing material forming step S140 forms the sealing material 17 in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12 after the second electrode forming step S130.
  • the sealing material forming step S140 forms the sealing material 17 in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12 after the second electrode forming step S130.
  • the second electrode forming step S130 may form the second electrode 12 on the surface of the non-conductor layer 142 under a reduced pressure environment. In this case, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
  • the second electrode forming step S130 includes bringing the surface of the second electrode 12 provided on the second substrate 16 in advance and the surface of the non-conductor layer 142 into contact with each other. may contain.
  • variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to increase the amount of power generation.
  • the intermediate portion 14 is provided on the first electrode 11 and includes a solid non-conductor layer 142 and fine particles 141 dispersed and fixed in the non-conductor layer 142. may contain. That is, the non-conductor layer 142 suppresses movement of the fine particles 141 between the electrodes (the first electrode 11 and the second electrode 12). In this case, it is possible to prevent the fine particles 141 from becoming unevenly distributed on one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the intermediate portion 14 may be provided on the first electrode 11 and include a solid non-conductor layer 142 .
  • the second electrode 12 may be provided on the non-conductor layer 142 and have a work function different from that of the first electrode 11 .
  • the intermediate portion 14 includes a plurality of locking portions 143 that support the first electrode 11 and the second electrode 12, as shown in FIG. 8, for example.
  • the engaging portion 143 may be, for example, spherical, or may have a columnar shape or the like, depending on the application.
  • An insulating material such as a metal oxide is used as the locking portion 143 .
  • Materials such as zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), and iron oxide (Fe 2 O 3 , Fe 2 O 5 ) are used for the locking portion 143 . Used.
  • the locking portion 143 has a size equivalent to, for example, the value of the gap G described above.
  • the locking portion 143 has a size equivalent to the thickness of the non-conductor layer 142 described above, for example.
  • the locking portion 143 is, for example, spherical with a larger median diameter than the fine particles 141 .
  • a non-conducting material in which fine particles 141 and a plurality of locking portions 143 are mixed is applied to the surface of the first electrode 11 or the like.
  • a non-conductive material containing fine particles 141 may be applied.
  • the intermediate portion 14 includes a plurality of locking portions 143 that support the first electrodes 11 and the second electrodes 12 . Therefore, it is possible to suppress variations in the gap caused by the non-conductor layer 142 . This makes it possible to further increase the amount of power generation.
  • the locking portion 143 is spherical with a larger median diameter than the fine particles 141 . Therefore, the contact area between the locking portion 143 and the electrodes 11 and 12 can be minimized. This makes it possible to suppress a decrease in the amount of power generated due to the arrangement of the locking portion 143 .
  • the power generation element 1 and the power generation device 100 described above can be mounted on, for example, an electronic device. Some embodiments of the electronic device are described below.
  • FIGS. 9(a) to 9(d) are schematic block diagrams showing an example of an electronic device 500 including the power generation element 1.
  • FIG. 9(e) to 9(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1.
  • an electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502, and an auxiliary power supply 503.
  • Each of the electronic device 500 and the electronic component 501 is an electrical device.
  • the electronic component 501 is driven using the main power supply 502 as a power supply.
  • Examples of the electronic component 501 include, for example, a CPU, motors, sensor terminals, lighting, and the like. If electronic component 501 is, for example, a CPU, electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU). If the electronic components 501 include at least one of, for example, motors, sensor terminals, and lighting, the electronic device 500 includes electronic devices that can be controlled by an external master or person.
  • the main power supply 502 is, for example, a battery. Batteries also include rechargeable batteries. A plus terminal (+) of the main power supply 502 is electrically connected to a Vcc terminal (Vcc) of the electronic component 501 . A negative terminal ( ⁇ ) of the main power supply 502 is electrically connected to a GND terminal (GND) of the electronic component 501 .
  • Vcc Vcc terminal
  • GND GND terminal
  • the auxiliary power supply 503 is the power generation element 1.
  • the power generation element 1 includes at least one power generation element 1 described above.
  • the auxiliary power supply 503 is used, for example, together with the main power supply 502, and is used as a power supply for assisting the main power supply 502 or as a power supply for backing up the main power supply 502 when the capacity of the main power supply 502 runs out. be able to. If the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.
  • the main power source 502 may be the power generation element 1.
  • An electronic device 500 shown in FIG. 9B includes a power generation element 1 used as a main power supply 502 and an electronic component 501 that can be driven using the power generation element 1 .
  • the power generation element 1 is an independent power supply (for example, an off-grid power supply). Therefore, the electronic device 500 can be, for example, an independent type (standalone type).
  • the power generating element 1 is of the energy harvesting type.
  • the electronic device 500 shown in FIG. 9B does not require battery replacement.
  • the electronic component 501 may include the power generation element 1 as shown in FIG. 9(c).
  • the anode of the power generation element 1 is electrically connected to, for example, a GND wiring of a circuit board (not shown).
  • the cathode of the power generation element 1 is electrically connected to, for example, Vcc wiring of a circuit board (not shown).
  • the power generating element 1 can be used as, for example, an auxiliary power source 503 for the electronic component 501 .
  • the power generation element 1 can be used as the main power source 502 of the electronic component 501, for example.
  • the electronic device 500 may include the power generator 100.
  • the power generation device 100 includes a power generation element 1 as a source of electrical energy.
  • the embodiment shown in FIG. 9(d) comprises a power generation element 1 in which an electronic component 501 is used as a main power supply 502.
  • the embodiment shown in FIG. 9(h) comprises a generator 100 in which an electronic component 501 is used as the main power source.
  • electronic component 501 has an independent power supply. Therefore, the electronic component 501 can be made self-supporting, for example. Free-standing electronic component 501 can be effectively used, for example, in an electronic device that includes multiple electronic components and in which at least one electronic component is separate from another electronic component.
  • An example of such electronics 500 is a sensor.
  • the sensor has a sensor terminal (slave) and a controller (master) remote from the sensor terminal.
  • Each of the sensor terminals and controller is an electronic component 501 .
  • a sensor terminal can also be regarded as one of the electronic devices 500 .
  • the sensor terminals considered electronic device 500 further include, in addition to sensor terminals of sensors, for example, IoT wireless tags and the like.
  • the electronic device 500 includes a power generation element 1 that converts thermal energy into electrical energy, and uses the power generation element 1 as a power source. and an electronic component 501 that can be driven.
  • the electronic device 500 may be an autonomous type with an independent power supply.
  • autonomous electronic devices include, for example, robots.
  • the electronic component 501 with the power generation element 1 or the power generation device 100 may be autonomous with an independent power supply.
  • autonomous electronic components include, for example, movable sensor terminals.
  • Reference Signs List 1 power generation element 11: first electrode 12: second electrode 14: intermediate portion 15: first substrate 16: second substrate 17: sealing material 100: power generation device 101: first wiring 102: second wiring 140: space 141: fine particle 141a: coating 142: non-conductor layer 142s: solvent 143: locking portion 500: electronic device 501: electronic component 502: main power supply 503: auxiliary power supply G: gap R: load S100: element forming step S110: first Electrode forming step S120: Intermediate portion forming step S130: Second electrode forming step S140: Sealing material forming step Z: First direction X: Second direction Y: Third direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】発電量の向上を図ることができる発電素子、発電素子の製造方法、発電装置、及び電子機器を提供する。 【解決手段】熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子1であって、第1電極11と、前記第1電極11の上に設けられ、ペロブスカイト構造を示す微粒子を含む中間部14と、前記中間部14の上に設けられ、前記第1電極11とは異なる仕事関数を有する第2電極12と、を備えることを特徴とする。前記微粒子は、例えばチタン及びジルコニウムの少なくとも何れかを含有することを特徴とする。

Description

発電素子、発電素子の製造方法、発電装置、及び電子機器
 この発明は、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子の製造方法、発電素子、発電装置、及び電子機器に関する。
 近年、熱エネルギーを利用して電気エネルギーを生成する発電素子の開発が盛んに行われている。特に、電極間の温度差を不要とした発電素子に関し、例えば特許文献1に開示された発電素子等が提案されている。このような発電素子は、電極間に与える温度差を利用して電気エネルギーを生成する構成に比べて、様々な用途への利用が期待されている。
 特許文献1には、フェムト秒パルスレーザーを用いて溶媒又は有機溶媒に分散されたナノ粒子を生成する生成工程と、第1基板に、第1電極部を形成する第1電極部形成工程と、第2基板に、第2電極部を形成する第2電極部形成工程と、前記第1電極部と前記第2電極部との間に前記溶媒又は前記有機溶媒を挟んだ状態で前記第1基板と前記第2基板とを接合する接合工程と、を備える発電素子の製造方法等が開示されている。
特許第6781437号公報
 ここで、特許文献1に開示されたような発電素子では、発電量に影響するパラメータとして、主に電極間の仕事関数差が挙げられる。このため、各電極に用いられる材料の選択が制限される場合、発電量の向上が難しいという事情がある。
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、発電量の向上を図ることができる発電素子、発電素子の製造方法、発電装置、及び電子機器を提供することにある。
 第1発明に係る発電素子は、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子であって、第1電極と、前記第1電極の上に設けられ、ペロブスカイト構造を示す微粒子を含む中間部と、前記中間部の上に設けられ、前記第1電極とは異なる仕事関数を有する第2電極と、を備えることを特徴とする。
 第2発明に係る発電素子は、第1発明において、前記微粒子は、チタン及びジルコニウムの少なくとも何れかを含有することを特徴とする。
 第3発明に係る発電素子は、第1発明又は第2発明において、前記微粒子は、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸鉛、チタン酸錫、チタン酸カドミウム、及びジルコン酸ストロンチウムの少なくとも何れかを含有することを特徴とする。
 第4発明に係る発電素子は、第1発明~第3発明の何れかにおいて、前記中間部は、前記微粒子を内包し、前記第1電極及び前記第2電極を支持する不導体層を含むことを特徴とする。
 第5発明に係る発電素子は、第4発明において、前記不導体層は、親水性を有する材料を含むことを特徴とする。
 第6発明に係る発電素子は、第5発明において、前記不導体層は、有機高分子化合物を含むことを特徴とする。
 第7発明に係る発電素子は、第4発明~第6発明の何れかにおいて、前記中間部は、前記第1電極及び前記第2電極を支持する複数の係止部を含むことを特徴とする。
 第8発明に係る発電素子は、第7発明において、前記係止部は、前記微粒子よりも大きい中央径を有する球状であることを特徴とする。
 第9発明に係る発電素子の製造方法は、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子の製造方法であって、第1電極、ペロブスカイト構造を示す微粒子を含む中間部、及び前記第1電極とは異なる仕事関数を有する第2電極、をそれぞれ形成する素子形成工程を備えることを特徴とする。
 第10発明に係る発電装置は、第1発明における発電素子と、前記第1電極と電気的に接続された第1配線と、前記第2電極と電気的に接続された第2配線と、を備えることを特徴とする。
 第11発明に係る電子機器は、第1発明における発電素子と、前記発電素子を電源に用いて駆動する電子部品とを備えることを特徴とする。
 第1発明~第9発明によれば、中間部は、ペロブスカイト構造を示す微粒子を含む。このため、発電素子周辺の雰囲気等に含まれる水分子から発生したプロトンが、電極間の電界により低電位側の電極へ移動する。そして、プロトンの移動に伴い、電極間における電子の移動が活性化される。これにより、発電量の向上を図ることが可能となる。
 特に、第4発明によれば、中間部は、微粒子を内包する不導体層を含む。即ち、不導体層により、電極間における微粒子の移動が抑制される。このため、経時に伴い微粒子が一方の電極側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。
 特に、第4発明によれば、中間部は、第1電極及び第2電極を支持する不導体層を含む。このため、不導体層の代わりに溶媒等を用いた場合に比べて、電極間の距離(ギャップ)を維持するための支持部等を設ける必要がなく、支持部の形成精度に起因するギャップのバラつきを除くことができる。これにより、発電量の増加を図ることが可能となる。
 特に、第5発明によれば、不導体層は、親水性を有する材料を含む。このため、水分子が微粒子に近接する状態を、容易に維持することができる。これにより、発電量のさらなる安定化を図ることが可能となる。
 特に、第6発明によれば、不導体層は、有機高分子化合物を含む。このため、不導体層をフレキシブルに形成できる。これにより、用途に応じた形状を有する発電素子とすることが可能となる。
 特に、第7発明によれば、中間部は、第1電極及び第2電極を支持する複数の係止部を含む。このため、不導体層に起因するギャップのバラつきを抑制することができる。これにより、発電量のさらなる増加を図ることが可能となる。
 特に、第8発明によれば、係止部は、微粒子よりも大きい中央径を有する球状である。このため、係止部と、各電極との接触面積を最小に抑えることができる。これにより、係止部の配置に伴う発電量の低下を抑制することが可能となる。
 特に、第10発明によれば、発電装置は、第1発明における発電素子を備える。このため、発電量の安定化を図る発電装置の実現が可能となる。
 特に、第11発明によれば、電子機器は、第1発明における発電素子を備える。このため、発電量の安定化を図る電子機器の実現が可能となる。
図1(a)は、第1実施形態における発電素子、及び発電装置の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式断面図である。 図2は、中間部の一例を示す模式断面図である。 図3は、第1実施形態における発電素子の製造方法の一例を示すフローチャートである。 図4(a)~図4(d)は、第1実施形態における発電素子の製造方法の一例を示す模式断面図である。 図5(a)は、第1実施形態における発電素子、及び発電装置の第1変形例を示す模式断面図であり、図5(b)は、第1実施形態における発電素子、及び発電装置の第2変形例を示す模式断面図である。 図6は、中間部の第1変形例を示す模式断面図である。 図7は、中間部の第2変形例を示す模式断面図である。 図8は、第2実施形態における発電素子の中間部の一例を示す模式断面図である。 図9(a)~図9(d)は、発電素子を備えた電子機器の例を示す模式ブロック図であり、図9(e)~図9(h)は、発電素子を含む発電装置を備えた電子機器の例を示す模式ブロック図である。 図10は、第1実施形態における発電素子の動作例を示す模式図である。
 以下、本発明の実施形態としての発電素子の製造方法、発電素子、発電装置、及び電子機器の一例について、図面を参照しながら説明する。なお、各図において、各電極が積層される高さ方向を第1方向Zとし、第1方向Zと交差、例えば直交する1つの平面方向を第2方向Xとし、第1方向Z及び第2方向Xのそれぞれと交差、例えば直交する別の平面方向を第3方向Yとする。また、各図における構成は、説明のため模式的に記載されており、例えば各構成の大きさや、構成毎における大きさの対比等については、図とは異なってもよい。
(第1実施形態:発電素子1、発電装置100)
 図1は、本実施形態における発電素子1、及び発電装置100の一例を示す模式図である。図1(a)は、本実施形態における発電素子1、及び発電装置100の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式断面図である。
(発電装置100)
 図1(a)に示すように、発電装置100は、発電素子1と、第1配線101と、第2配線102とを備える。発電素子1は、熱エネルギーを電気エネルギーに変換する。このような発電素子1を備えた発電装置100は、例えば、図示せぬ熱源に搭載又は設置され、熱源の熱エネルギーを元として、発電素子1から発生した電気エネルギーを、第1配線101及び第2配線102を介して負荷Rへ出力する。負荷Rの一端は第1配線101と電気的に接続され、他端は第2配線102と電気的に接続される。負荷Rは、例えば電気的な機器を示す。負荷Rは、例えば発電装置100を主電源又は補助電源に用いて駆動される。
 発電素子1の熱源としては、例えば、CPU(Central Processing Unit)等の電子デバイス又は電子部品、LED(Light Emitting Diode)等の発光素子、自動車等のエンジン、工場の生産設備、人体、太陽光、及び環境温度等が挙げられる。例えば、電子デバイス、電子部品、発光素子、エンジン、及び生産設備等は、人工熱源である。人体、太陽光、及び環境温度等は自然熱源である。発電素子1を備えた発電装置100は、例えばIoT(Internet of Things)デバイス及びウェアラブル機器等のモバイル機器や自立型センサ端末の内部に設けることができ、電池の代替又は補助として用いることができる。さらに、発電装置100は、太陽光発電等のような、より大型の発電装置への応用も可能である。
(発電素子1)
 発電素子1は、例えば、上記人工熱源が発した熱エネルギー、又は上記自然熱源が持つ熱エネルギーを電気エネルギーに変換し、電流を生成する。発電素子1は、発電装置100内に設けるだけでなく、発電素子1自体を、上記モバイル機器や上記自立型センサ端末等の内部に設けることもできる。この場合、発電素子1自体が、上記モバイル機器又は上記自立型センサ端末等の、電池の代替部品又は補助部品となり得る。
 発電素子1は、例えば図1(a)に示すように、第1電極11と、第2電極12と、中間部14とを備える。発電素子1は、例えば第1基板15、及び第2基板16の少なくとも何れかを備えてもよい。
 第1電極11及び第2電極12は、互いに対向して設けられる。第1電極11及び第2電極12は、それぞれ異なる仕事関数を有する。中間部14は、例えば図2に示すように、第1電極11と、第2電極12との間(ギャップG)を含む空間140に設けられる。
 例えば第1電極11の仕事関数は、第2電極12の仕事関数よりも大きい。この場合、ギャップGには電界が発生し、第1電極11が低電位、第2電極12が高電位を示す。
 中間部14は、ペロブスカイト構造を示す微粒子141を含む。ここで、例えば図10に示すように、発電素子1の周辺の雰囲気に含まれる水分子は、ペロブスカイト構造に含有されるバリウム等の金属イオンと反応し得る。これにより、水分子は、ヒドロニウム(H)、及び水酸化物イオン(OH)が生成される。ヒドロニウムは、隣接する水分子に対しプロトン(H)を伝達させる。この際、プロトンの伝達速度は、イオン伝導等に比べて極めて速い傾向を示すことが想定される。ここで、各電極11、12の仕事関数差に基づき発生したギャップGの電界により、プロトンは低電位側の電極(図10では第1電極11)に向かって移動し、水酸化物イオンは高電位側の電極(図10では第2電極12)に向かって移動する。その後、プロトンは、低電位側の第1電極11から電子を受取り、水酸化物イオンは、高電位側の第2電極12に電子を供給する。このため、各電極11、12の間における電子の移動が活性化される。これにより、発電量の向上を図ることが可能となる。
 以下、各構成についての詳細を説明する。
 <第1電極11、第2電極12>
 第1電極11及び第2電極12は、例えば図1(a)に示すように、第1方向Zに離間する。各電極11、12は、例えば第2方向X及び第3方向Yに延在し、複数設けられてもよい。例えば1つの第2電極12は、複数の第1電極11とそれぞれ異なる位置で対向して設けられてもよい。また、例えば1つの第1電極11は、複数の第2電極12とそれぞれ異なる位置で対向して設けられてもよい。
 第1電極11及び第2電極12の材料として、導電性を有する材料が用いられる。第1電極11及び第2電極12の材料として、例えばそれぞれ異なる仕事関数を有する材料が用いられる。なお、各電極11、12に同一の材料を用いてもよく、この場合、それぞれ異なる仕事関数を有していればよい。
 各電極11、12の材料として、例えば鉄、アルミニウム、銅等の単一元素からなる材料が用いられるほか、例えば2種類以上の元素からなる合金の材料が用いられてもよい。各電極11、12の材料として、例えば非金属導電物が用いられてもよい。非金属導電物の例としては、シリコン(Si:例えばp型Si、あるいはn型Si)、及びグラフェン等のカーボン系材料等を挙げることができる。
 第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上1μm以下である。第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上50nm以下でもよい。
 第1電極11と、第2電極12との間の距離を示すギャップGは、例えば不導体層142の厚さを変更することで任意に設定することができる。例えばギャップGを狭くすることで、各電極11、12の間に発生する電界を大きくすることができるため、発電素子1の発電量を増加させることができる。また、例えばギャップGを狭くすることで、発電素子1の第1方向Zに沿った厚さを薄くすることができる。
 ギャップGは、例えば500μm以下の有限値である。ギャップGは、例えば10nm以上1μm以下である。例えばギャップGが200nm以下の場合、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきに起因する発電量の低下につながり得る。また、ギャップGが1μmよりも大きい場合、各電極11、12の間に発生する電界が弱まる可能性がある。これらのため、ギャップGは、200nmよりも大きく、1μm以下であることが好ましい。
 <中間部14>
 中間部14は、例えば微粒子141と、不導体層142とを含む。不導体層142は、微粒子141を内包し、第1電極11及び第2電極12を支持する。この場合、不導体層142により、ギャップGにおける微粒子141の移動が抑制される。このため、経時に伴い微粒子141が一方の電極11、12側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。
 不導体層142は、例えば不導体材料を硬化させて形成される。不導体層142は、例えば固体を示す。不導体層142は、例えば希釈剤の残渣や、不導体材料の未硬化部を含んでもよい。この場合においても、上記と同様に、発電量の安定化を図ることが可能となる。また、微粒子141は、例えば不導体層142に分散された状態で固定される。この場合においても、上記と同様に、発電量の安定化を図ることが可能となる。
 中間部14は、第1電極11の上に設けられる。また、第2電極12は、不導体層142の上に設けられる。ここで、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子1では、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきを抑制することで、発電量の増加を図ることができる。この点、中間部として溶媒等の液体を用いる場合、ギャップGを維持するための支持部等を設ける必要がある。しかしながら、支持部等の形成に伴い、上記ギャップGのバラつきを大きくし得ることが懸念されていた。これに対し、本実施形態における発電素子1では、第2電極12は、不導体層142の上に設けられるため、ギャップGを維持するための支持部等を設ける必要がなく、支持部等の形成精度に起因するギャップのバラつきを除くことができる。これにより、発電量の増加を図ることが可能となる。
 また、ギャップを維持するための支持部等を設ける場合、支持部に微粒子141が接触し、支持部周辺に凝集する懸念が挙げられる。これに対し、本実施形態における発電素子1では、支持部に起因して微粒子141が凝集する状態を排除することができる。これにより、安定した発電量を維持することが可能となる。
 中間部14は、例えば図1(b)に示すように、第2方向X及び第3方向Yに沿った平面に延在する。中間部14は、各電極11、12の間に形成された空間140内に設けられる。中間部14は、各電極11、12の互いに対向する主面に接するほか、例えば各電極11、12の側面に接してもよい。
 微粒子141は、不導体層142に分散され、例えば一部が不導体層142から露出してもよい。微粒子141は、例えばギャップG内に充填され、微粒子141の隙間に不導体層142が設けられてもよい。微粒子141の粒子径は、例えばギャップGよりも小さい。微粒子141の粒子径は、例えばギャップGの1/10以下の有限値とされる。微粒子141の粒子径を、ギャップGの1/10以下とすると、空間140内に微粒子141を含む中間部14を、形成しやすくなる。これにより、発電素子1を生成する際、作業性を向上させることが可能となる。
 ここで、「微粒子」とは、複数の粒子を含んだものを示す。微粒子141は、例えば2nm以上1000nm以下の粒子径を有する粒子を含む。微粒子141は、例えば、メディアン径(中央径:D50)が3nm以上8nm以下の粒子径を有する粒子を含んでもよいほか、例えば平均粒径が3nm以上8nm以下の粒子径を有する粒子を含んでもよい。メディアン径又は平均粒径は、例えば粒度分布計測器を用いることで、測定することができる。粒度分布計測器としては、例えば、動的光散乱法を用いた粒度分布計測器(例えばMalvern Panalytical 製ゼータサイザーUltra等)を用いればよい。
 微粒子141は、ペロブスカイト構造を示す。微粒子141は、例えばチタン及びジルコニウムの少なくとも何れかを含有する。
 微粒子141は、例えばチタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、チタン酸カルシウム(CaTiO)、チタン酸鉛(PbTiO)、チタン酸錫(SnTiO)、チタン酸カドミウム(CdTiO)、及びジルコン酸ストロンチウム(SrZrO)の少なくとも何れかを含有する。
 微粒子141は、例えば被膜141aを表面に含む。被膜141aの厚さは、例えば20nm以下の有限値である。このような被膜141aを微粒子141の表面に設けることで、例えば不導体層142に分散させる際の凝集を抑制することができる。また、例えば電子が、第1電極11と微粒子141との間、複数の微粒子141の間、及び第2電極12と微粒子141との間を、トンネル効果等を利用して移動する可能性を高めることが可能となる。
 被膜141aとして、例えばチオール基又はジスルフィド基を有する材料が用いられる。チオール基を有する材料として、例えばドデカンチオール等のアルカンチオールが用いられる。ジスルフィド基を有する材料として、例えばアルカンジスルフィド等が用いられる。
 不導体層142は、各電極11、12の間に設けられ、例えば各電極11、12に接する。不導体層142の厚さは、例えば500μm以下の有限値である。不導体層142の厚さは、上述したギャップGの値やバラつきに影響する。このため、例えば不導体層142の厚さが200nm以下の場合、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきに起因する発電量の低下につながり得る。また、不導体層142の厚さが1μmよりも大きい場合、各電極11、12の間に発生する電界が弱まる可能性がある。これらのため、不導体層142の厚さは、200nmよりも大きく、1μm以下であることが好ましい。
 不導体層142は、例えば1種類の材料を含むほか、用途に応じて複数の材料を含んでもよい。不導体層142として、例えばISO1043-1、又はJIS K 6899-1に記載の材料が用いられてもよい。不導体層142は、例えば異なる材料を含む複数の層を含み、各層を積層した構成を含んでもよい。不導体層142が複数の層を含む場合、例えば各層にはそれぞれ異なる材料を含む微粒子141が内包(例えば分散)されてもよい。
 不導体層142は、例えば絶縁性を有する。不導体層142に用いられる材料は、微粒子141を分散した状態で固定できる不導体の材料であれば任意であるが、有機高分子化合物が好ましい。不導体層142が有機高分子化合物を含む場合、不導体層142をフレキシブルに形成できるため、湾曲や屈曲等の用途に応じた形状を有する発電素子1を形成することができる。
 有機高分子化合物としては、ポリイミド、ポリアミド、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ラジカル重合系の光または熱硬化性樹脂、光カチオン重合系の光または熱硬化性樹脂、あるいはエポキシ樹脂、アクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリスチレン、ノボラック樹脂、ポリフッ化ビニリデンなどを用いることができる。
 不導体層142は、例えば親水性を有する材料を含む。この場合、水分子が微粒子141に近接する状態を、容易に維持することができる。不導体層142として、例えばポリビニルアルコール、メチルセルロース、ポリエチレングリコール等の材料が用いられる。なお、親水性を有する材料として、例えば非イオン高分子、アニオン性高分子、カチオン性高分子、アクリル樹脂、ポリエステル樹脂、及びポリウレタン樹脂等の公知の材料が挙げられる。
 なお、例えば不導体層142として、無機物質が用いられてもよい。無機物質として、例えばゼオライトや珪藻土等の多孔無機物質のほか、籠状分子等が挙げられる。
 <第1基板15、第2基板16>
 第1基板15及び第2基板16は、例えば図1(a)に示すように、各電極11、12及び中間部14を挟み、第1方向Zに離間して設けられる。第1基板15は、例えば第1電極11と接し、第2電極12と離間する。第1基板15は、第1電極11を固定する。第2基板16は、第2電極12と接し、第1電極11と離間する。第2基板16は、第2電極12を固定する。
 各基板15、16の第1方向Zに沿った厚さは、例えば10μm以上2mm以下である。各基板15、16の厚さは、任意に設定することができる。各基板15、16の形状は、例えば正方形や長方形の四角形のほか、円盤状等でもよく、用途に応じて任意に設定することができる。
 各基板15、16として、例えば絶縁性を有する板状の部材を用いることができ、例えばシリコン、石英、パイレックス(登録商標)等の公知の部材を用いることができる。各基板15、16は、例えばフィルム状の部材が用いられてもよく、例えばPET(polyethylene terephthalate)、PC(polycarbonate)、及びポリイミド等の公知のフィルム状部材が用いられてもよい。
 各基板15、16として、例えば導電性を有する部材を用いることができ、例えば鉄、アルミニウム、銅、又はアルミニウムと銅との合金等を挙げることができる。また、各基板15、16としては、例えばSi、GaN等の導電性を有する半導体の他、導電性高分子等の部材を用いてもよい。各基板15、16に導電性を有する部材を用いる場合、各電極11、12に接続するための配線が不要となる。
 例えば、第1基板15が半導体の場合、第1電極11と接する縮退部を有してもよい。この場合、縮退部を有しない場合に比べて、第1電極11と第1基板15との間における接触抵抗を低減させることができる。また、第1基板15は、第1電極11と接する面とは異なる表面に、縮退部を有してもよい。この場合、第1基板15と電気的に接続される配線(例えば第1配線101)との接触抵抗を低減させることができる。
 例えば図1(a)に示す発電素子1を複数用いて積層する場合、第1基板15及び第2基板16として、半導体を用いてもよい。この場合、各発電素子1の積層に伴い接する各基板15、16の接触面に縮退部を設けることで、接触抵抗を低減させることができる。
 上述した縮退部は、例えばn型のドーパントを高濃度に半導体にイオン注入することや、n型のドーパントを含むガラスなどの材料を半導体にコーティングし、コーティング後に熱処理を行うことによって生成される。
 なお、半導体の第1基板15にドープされる不純物として、n型であればP、As、Sb等、p型であればB、Ba、Al等の公知の不純物が挙げられる。また、縮退部の不純物の濃度は、例えば、1×1019イオン/cmであれば、電子を効率よく放出させることができる。
 例えば、第1基板15が半導体の場合、第1基板15の比抵抗値は、例えば1×10-6Ω・cm以上1×10Ω・cm以下であればよい。第1基板15の比抵抗値が1×10-6Ω・cmを下回ると、材料の選定が難しい。また、第1基板15の比抵抗値が1×10Ω・cmよりも大きいと、電流のロスが増大する懸念がある。
 なお、上記では、第1基板15が半導体の場合について説明したが、第2基板16が半導体でもよい。この場合、上記と同様のため、説明を省略する。
 なお、発電素子1は、例えば図5(a)に示すように第1基板15のみを備えるほか、第2基板16のみを備えてもよい。また、発電素子1は、例えば図5(b)に示すように、各基板15、16を備えずに、第1電極11、中間部14、及び第2電極12の順に複数積層された積層構造(例えば1a、1b、1c等)を示すほか、例えば各基板15、16の少なくとも何れかを備えた積層構造を示してもよい。
 なお、中間部14は、例えば図6に示すように、不導体層142の代わりに、溶媒142sを含んでもよい。この場合、微粒子141は、溶媒142sに分散される。また、各電極11、12は、図示しない支持部により支持される。溶媒142sとして、たとえば水やトルエン等のような公知の液体が用いられる。この場合においても、上述したペロブスカイト構造を示す微粒子141を含むことで、発電量の向上を図ることが可能となる。
 なお、中間部14は、例えば図7に示すように、不導体層142を含まなくてもよい。この場合、微粒子141は、ギャップGに充填される。また、各電極11、12は、図示しない支持部により支持される。この場合においても、上述したペロブスカイト構造を示す微粒子141を含むことで、発電量の向上を図ることが可能となる。
 <発電素子1の動作例>
 例えば、熱エネルギーが発電素子1に与えられると、第1電極11と第2電極12との間に電流が発生し、熱エネルギーが電気エネルギーに変換される。第1電極11と第2電極12との間に発生する電流量は、熱エネルギーに依存する他、第2電極12の仕事関数と、第1電極11の仕事関数との差に依存する。
 発生する電流量は、例えば第1電極11と第2電極12との仕事関数差を大きくすること、及びギャップGを小さくすることで、増やすことができる。例えば、発電素子1が発生させる電気エネルギーの量は、上記仕事関数差を大きくすること、及び上記ギャップGを小さくすること、の少なくとも何れか1つを考慮することで、増加させることができる。また、各電極11、12の間に、微粒子141を設けることで、各電極11、12の間を移動する電子の量を増大させることができ、電流量の増加に繋げることが可能となる。
 上記に加え、本実施形態の発電素子1では、ペロブスカイト構造を示す微粒子141を含む。このため、このため、上述したプロトンの特徴により、各電極11、12の間における電子の移動が活性化される。これにより、発電量の向上を図ることが可能となる。
 なお、「仕事関数」とは、固体内にある電子を真空中に取出すために必要な最小限のエネルギーを示す。仕事関数は、例えば、紫外光電子分光法(UPS:Ultraviolet Photoelectron Spectroscopy)、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)やオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて測定することができる。なお、「仕事関数」として、発電素子1の各構成を対象とした実測値が用いられるほか、例えば材料に対して計測された公知の値が用いられてもよい。
(実施形態:発電素子1の製造方法)
 次に、本実施形態における発電素子1の製造方法の一例を説明する。図3は、本実施形態における発電素子1の製造方法の一例を示すフローチャートである。
 発電素子1の製造方法は、素子形成工程S100を備え、例えば封止材形成工程S140を備えてもよい。
 <素子形成工程S100>
 素子形成工程S100は、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば第1電極11、中間部14、及び第2電極12をそれぞれ複数積層してもよい。素子形成工程S100では、例えば公知の形成技術を用いて、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130とを含む。なお、各工程S110、S120、S130を実施する順番は、任意である。
 <第1電極形成工程S110>
 第1電極形成工程S110は、第1電極11を形成する。第1電極形成工程S110は、例えば図4(a)に示すように、第1基板15の上に第1電極11を形成する。第1電極11は、例えば減圧環境下におけるスパッタリング法又は真空蒸着法により形成されるほか、公知の電極形成技術を用いて形成される。なお、第1電極形成工程S110では、例えば第1基板15の代わりに、延伸された電極材料を任意の大きさに加工することで、第1電極11を形成してもよい。この場合、第1基板15を用いなくてもよい。
 第1電極形成工程S110は、例えば第1基板15の上に、第1電極11を形成してもよい。例えば第1基板15としてフィルム状の部材を用いた場合、第1電極11を第1基板15の上に塗布し、第1基板15及び第1電極11をロール状に巻き取ることができる。その後、例えば後述する中間部形成工程S120、第2電極形成工程S130、及び封止材形成工程S140の少なくとも何れかの工程において、用途に応じた面積に切断してもよい。
 <中間部形成工程S120>
 中間部形成工程S120は、例えば図4(b)に示すように、第1電極11の上に、不導体層142を含む中間部14を形成する。中間部形成工程S120は、例えば微粒子141を内包した不導体材料を、第1電極11の表面等に塗布し、不導体材料を硬化させることで不導体層142を形成する。これにより、微粒子141を内包した不導体層142を含む中間部14が形成される。
 中間部形成工程S120は、例えばスクリーン印刷法やスピンコート法等の公知の塗布技術により、第1電極11の表面に不導体材料を塗布する。不導体材料を塗布する膜厚は、上述したギャップGの設計に伴い任意に設定することができる。
 不導体材料として、エポキシ樹脂等のような公知の絶縁性を有する高分子材料が用いられる。不導体材料として、熱硬化性樹脂が用いられるほか、例えば紫外線硬化樹脂が用いられる。中間部形成工程S120は、不導体材料の特性に応じて、塗布された不導体材料に対して加熱やUV照射等を行い、不導体層142を形成してもよい。
 中間部形成工程S120は、例えば任意の無機物質材料の中に微粒子材料を混ぜ、レーザ照射を実施してもよい。これにより、微粒子141を内包した不導体層142が形成され、中間部14が形成される。
 <第2電極形成工程S130>
 第2電極形成工程S130は、例えば図4(c)に示すように、不導体層142の上に、第2電極12を形成する。第2電極12は、例えば第1電極11よりも低い仕事関数を有する材料を用いて形成される。第2電極12は、例えばナノインプリンティング法等の公知の電極形成技術を用いて形成される。
 第2電極形成工程S130は、例えば不導体層142の表面に、減圧環境下でスパッタリング法又は真空蒸着法により形成される。この場合、第2電極12を形成した時点で、第2電極12の主面が大気等に曝されずに不導体層142に接する。このため、第2電極12の仕事関数の変動を抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。
 第2電極形成工程S130は、例えば予め第2基板16の上に設けられた第2電極12の表面と、不導体層142の表面とを当接させることで、第2電極12を形成してもよい。この場合、不導体層142の表面に直接第2電極12を形成する場合に比べて、不導体層142の表面状態に起因する第2電極12の表面状態のバラつきを抑制することができる。これにより、発電量の増加を図ることが可能となる。
 例えば第2基板16としてフィルム状の部材を用いた場合、第2電極12を塗布した第2基板16を準備することで実現でき、例えば第2基板16及び第2電極12をロール状に巻き取った状態で準備してもよい。その後、例えば後述する封止材形成工程S140の前後において、用途に応じた面積に切断してもよい。
 なお、第2電極形成工程S130は、例えば不導体層142の上に、第2電極12を形成したあと、中間部14及び第2電極12を加熱してもよい。中間部14及び第2電極12の加熱は、例えば中間部形成工程S120における加熱の代わりに実施してもよく、中間部形成工程S120における加熱に加えて実施してもよい。この場合、不導体層142における第2電極12と接する表面が平坦化され易くなる。このため、不導体層142と、第2電極12との間における僅かな隙間の発生を抑制することができる。これにより、発電量の増加を図ることが可能となる。
 <封止材形成工程S140>
 例えば第2電極形成工程S130のあと、封止材形成工程S140を実施してもよい。封止材形成工程S140は、例えば図4(d)に示すように、第1電極11、中間部14、及び第2電極12の少なくとも何れかと接する封止材17を形成する。封止材17は、ナノインプリンティング法等の公知の技術を用いて形成される。
 封止材17として、絶縁性材料が用いられ、例えばフッ素系絶縁性樹脂等の公知の絶縁性樹脂が用いられる。封止材17を形成することで、外部環境に起因する不導体層142及び微粒子141の劣化を抑制することができる。これにより、耐久性の向上を図ることが可能となる。
 特に、中間部14を覆うように封止材17を形成する場合、中間部14が外部に晒されないため、耐久性のさらなる向上を図ることが可能となる。
 上述した各工程を実施することで、本実施形態における発電素子1が形成される。なお、例えば図1(a)に示す第2基板16を、第2電極12の上に形成してもよい。また、例えば各配線101、102等を形成することで、本実施形態における発電装置100が形成される。
 本実施形態によれば、中間部14は、ペロブスカイト構造を示す微粒子141を含む。このため、発電素子1周辺の雰囲気等に含まれる水分子から発生したプロトンが、電極間(第1電極11、第2電極12)の電界により低電位側の電極(第1電極11)へ移動する。そして、プロトンの移動に伴い、電極間における電子の移動が活性化される。これにより、発電量の向上を図ることが可能となる。
 また、本実施形態によれば、中間部14は、微粒子141を内包する不導体層142を含む。即ち、不導体層142により、電極間における微粒子141の移動が抑制される。このため、経時に伴い微粒子141が一方の電極側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。
 また、本実施形態によれば、中間部14は、第1電極11及び第2電極12を支持する不導体層142を含む。このため、不導体層142の代わりに溶媒等を用いた場合に比べて、電極間の距離(ギャップG)を維持するための支持部等を設ける必要がなく、支持部の形成精度に起因するギャップGのバラつきを除くことができる。これにより、発電量の増加を図ることが可能となる。
 また、本実施形態によれば、不導体層142は、親水性を有する材料を含む。このため、水分子が微粒子141に近接する状態を、容易に維持することができる。これにより、発電量のさらなる安定化を図ることが可能となる。
 また、本実施形態によれば、不導体層142は、有機高分子化合物を含む。このため、不導体層142をフレキシブルに形成できる。これにより、用途に応じた形状を有する発電素子1とすることが可能となる。
 また、本実施形態によれば、例えば封止材形成工程S140は、第2電極形成工程S130のあと、第1電極11、中間部14、及び第2電極12と接する封止材17を形成してもよい。この場合、外部環境に起因する不導体層142及び微粒子141の劣化を抑制することができる。これにより、耐久性の向上を図ることが可能となる。
 また、本実施形態によれば、例えば第2電極形成工程S130は、不導体層142の表面に、減圧環境下で第2電極12を形成してもよい。この場合、第2電極12の仕事関数の変動を抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。
 また、本実施形態によれば、例えば第2電極形成工程S130は、予め第2基板16の上に設けられた第2電極12の表面と、不導体層142の表面とを当接させることを含んでもよい。この場合、不導体層142の表面に直接第2電極12を形成する場合に比べて、不導体層142の表面状態に起因する第2電極12の表面状態のバラつきを抑制することができる。これにより、発電量の増加を図ることが可能となる。
 また、本実施形態によれば、例えば中間部14は、第1電極11の上に設けられ、固体の不導体層142と、不導体層142に分散された状態で固定された微粒子141とを含んでもよい。即ち、不導体層142により、電極間(第1電極11、第2電極12)における微粒子141の移動が抑制される。この場合、経時に伴い微粒子141が一方の電極側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。
 また、本実施形態によれば、例えば中間部14は、第1電極11の上に設けられ、固体の不導体層142を含んでもよい。また、第2電極12は、不導体層142の上に設けられ、第1電極11とは異なる仕事関数を有してもよい。この場合、不導体層142の代わりに溶媒等を用いた場合に比べて、電極間の距離(ギャップG)を維持するための支持部等を設ける必要がなく、支持部等の形成精度に起因するギャップGのバラつきを除くことができる。これにより、発電量の増加を図ることが可能となる。
(第2実施形態:発電素子1)
 次に、第2実施形態における発電素子1の一例について説明する。上述した実施形態と、本実施形態との違いは、中間部14が係止部143を含む点である。なお、上述した構成と同様の内容については、説明を省略する。
 中間部14は、例えば図8に示すように、第1電極11及び第2電極12を支持する複数の係止部143を含む。係止部143は、例えば球状であるほか、円柱状等のような形状でもよく、用途に応じて任意である。
 係止部143として、絶縁性の材料が用いられ、例えば金属酸化物が用いられる。係止部143として、例えばジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化鉄(Fe、Fe)等の材料が用いられる。
 係止部143は、例えば上述したギャップGの値と同等の大きさを示す。係止部143は、例えば上述した不導体層142の厚さと同等の大きさを示す。係止部143は、例えば微粒子141よりも大きい中央径を有する球状である。
(第2実施形態:発電素子1の製造方法)
 次に、第2実施形態における発電素子1の製造方法の一例について説明する。上述した実施形態と、本実施形態との違いは、中間部形成工程S120において、係止部143を形成する点である。なお、上述した構成と同様の内容については、説明を省略する。
 本実施形態における中間部形成工程S120は、例えば微粒子141及び複数の係止部143を混合した不導体材料を、第1電極11の表面等に塗布する。中間部形成工程S120では、例えば第1電極11の表面等に複数の係止部143を形成したあと、微粒子141を内包した不導体材料を塗布してもよい。係止部143を形成することで、硬化前後における不導体材料の上に第2電極12を形成する際、ギャップGの幅を容易に制御することができる。
 本実施形態によれば、中間部14は、第1電極11及び第2電極12を支持する複数の係止部143を含む。このため、不導体層142に起因するギャップのバラつきを抑制することができる。これにより、発電量のさらなる増加を図ることが可能となる。
 また、本実施形態によれば、係止部143は、微粒子141よりも大きい中央径を有する球状である。このため、係止部143と、各電極11、12との接触面積を最小に抑えることができる。これにより、係止部143の配置に伴う発電量の低下を抑制することが可能となる。
(実施形態:電子機器500)
 <電子機器500>
 上述した発電素子1及び発電装置100は、例えば電子機器に搭載することが可能である。以下、電子機器の実施形態のいくつかを説明する。
 図9(a)~図9(d)は、発電素子1を備えた電子機器500の例を示す模式ブロック図である。図9(e)~図9(h)は、発電素子1を含む発電装置100を備えた電子機器500の例を示す模式ブロック図である。
 図9(a)に示すように、電子機器500(エレクトリックプロダクト)は、電子部品501(エレクトロニックコンポーネント)と、主電源502と、補助電源503と、を備えている。電子機器500及び電子部品501のそれぞれは、電気的な機器(エレクトリカルデバイス)である。
 電子部品501は、主電源502を電源に用いて駆動される。電子部品501の例としては、例えば、CPU、モーター、センサ端末、及び照明等を挙げることができる。電子部品501が、例えばCPUである場合、電子機器500には、内蔵されたマスター(CPU)によって制御可能な電子機器が含まれる。電子部品501が、例えば、モーター、センサ端末、及び照明等の少なくとも1つを含む場合、電子機器500には、外部にあるマスター、あるいは人によって制御可能な電子機器が含まれる。
 主電源502は、例えば電池である。電池には、充電可能な電池も含まれる。主電源502のプラス端子(+)は、電子部品501のVcc端子(Vcc)と電気的に接続される。主電源502のマイナス端子(-)は、電子部品501のGND端子(GND)と電気的に接続される。
 補助電源503は、発電素子1である。発電素子1は、上述した発電素子1の少なくとも1つを含む。電子機器500において、補助電源503は、例えば主電源502と併用され、主電源502をアシストするための電源や、主電源502の容量が切れた場合、主電源502をバックアップするための電源として使うことができる。主電源502が充電可能な電池である場合には、補助電源503は、さらに、電池を充電するための電源としても使うことができる。
 図9(b)に示すように、主電源502は、発電素子1とされてもよい。図9(b)に示す電子機器500は、主電源502として使用される発電素子1と、発電素子1を用いて駆動されることが可能な電子部品501と、を備えている。発電素子1は、独立した電源(例えばオフグリッド電源)である。このため、電子機器500は、例えば自立型(スタンドアローン型)にできる。しかも、発電素子1は、環境発電型(エナジーハーベスト型)である。図9(b)に示す電子機器500は、電池の交換が不要である。
 図9(c)に示すように、電子部品501が発電素子1を備えていてもよい。発電素子1のアノードは、例えば、回路基板(図示は省略する)のGND配線と電気的に接続される。発電素子1のカソードは、例えば、回路基板(図示は省略する)のVcc配線と電気的に接続される。この場合、発電素子1は、電子部品501の、例えば補助電源503として使うことができる。
 図9(d)に示すように、電子部品501が発電素子1を備えている場合、発電素子1は、電子部品501の、例えば主電源502として使うことができる。
 図9(e)~図9(h)のそれぞれに示すように、電子機器500は、発電装置100を備えていてもよい。発電装置100は、電気エネルギーの源として発電素子1を含む。
 図9(d)に示した実施形態は、電子部品501が主電源502として使用される発電素子1を備えている。同様に、図9(h)に示した実施形態は、電子部品501が主電源として使用される発電装置100を備えている。これらの実施形態では、電子部品501が、独立した電源を持つ。このため、電子部品501を、例えば自立型とすることができる。自立型の電子部品501は、例えば、複数の電子部品を含み、かつ、少なくとも1つの電子部品が別の電子部品と離れているような電子機器に有効に用いることができる。そのような電子機器500の例は、センサである。センサは、センサ端末(スレーブ)と、センサ端末から離れたコントローラ(マスター)と、を備えている。センサ端末及びコントローラのそれぞれは、電子部品501である。センサ端末が、発電素子1又は発電装置100を備えていれば、自立型のセンサ端末となり、有線での電力供給の必要がない。発電素子1又は発電装置100は環境発電型であるので、電池の交換も不要である。センサ端末は、電子機器500の1つと見なすこともできる。電子機器500と見なされるセンサ端末には、センサのセンサ端末に加えて、例えば、IoTワイヤレスタグ等が、さらに含まれる。
 図9(a)~図9(h)のそれぞれに示した実施形態において共通することは、電子機器500は、熱エネルギーを電気エネルギーに変換する発電素子1と、発電素子1を電源に用いて駆動されることが可能な電子部品501と、を含むことである。
 電子機器500は、独立した電源を備えた自律型(オートノマス型)であってもよい。自律型の電子機器の例は、例えばロボット等を挙げることができる。さらに、発電素子1又は発電装置100を備えた電子部品501は、独立した電源を備えた自律型であってもよい。自律型の電子部品の例は、例えば可動センサ端末等を挙げることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1    :発電素子
11   :第1電極
12   :第2電極
14   :中間部
15   :第1基板
16   :第2基板
17   :封止材
100  :発電装置
101  :第1配線
102  :第2配線
140  :空間
141  :微粒子
141a :被膜
142  :不導体層
142s :溶媒
143  :係止部
500  :電子機器
501  :電子部品
502  :主電源
503  :補助電源
G    :ギャップ
R    :負荷
S100 :素子形成工程
S110 :第1電極形成工程
S120 :中間部形成工程
S130 :第2電極形成工程
S140 :封止材形成工程
Z    :第1方向
X    :第2方向
Y    :第3方向

Claims (11)

  1.  熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子であって、
     第1電極と、
     前記第1電極の上に設けられ、ペロブスカイト構造を示す微粒子を含む中間部と、
     前記中間部の上に設けられ、前記第1電極とは異なる仕事関数を有する第2電極と、
     を備えること
     を特徴とする発電素子。
  2.  前記微粒子は、チタン及びジルコニウムの少なくとも何れかを含有すること
     を特徴とする請求項1記載の発電素子。
  3.  前記微粒子は、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸鉛、チタン酸錫、チタン酸カドミウム、及びジルコン酸ストロンチウムの少なくとも何れかを含有すること
     を特徴とする請求項1又は2記載の発電素子。
  4.  前記中間部は、前記微粒子を内包し、前記第1電極及び前記第2電極を支持する不導体層を含むこと
     を特徴とする請求項1~3のうち何れか1項記載の発電素子。
  5.  前記不導体層は、親水性を有する材料を含むこと
     を特徴とする請求項4記載の発電素子。
  6.  前記不導体層は、有機高分子化合物を含むこと
     を特徴とする請求項5記載の発電素子。
  7.  前記中間部は、前記第1電極及び前記第2電極を支持する複数の係止部を含むこと
     を特徴とする請求項4~6の何れか1項記載の発電素子。
  8.  前記係止部は、前記微粒子よりも大きい中央径を有する球状であること
     を特徴とする請求項7記載の発電素子。
  9.  熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子の製造方法であって、
      第1電極、
      ペロブスカイト構造を示す微粒子を含む中間部、及び
      前記第1電極とは異なる仕事関数を有する第2電極、
     をそれぞれ形成する素子形成工程を備えること
     を特徴とする発電素子の製造方法。
  10.  請求項1記載の発電素子と、
     前記第1電極と電気的に接続された第1配線と、
     前記第2電極と電気的に接続された第2配線と、
     を備えること
     を特徴とする発電装置。
  11.  請求項1記載の発電素子と、
     前記発電素子を電源に用いて駆動する電子部品と
     を備えること
     を特徴とする電子機器。
PCT/JP2022/033831 2021-09-10 2022-09-09 発電素子、発電素子の製造方法、発電装置、及び電子機器 WO2023038103A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3231369A CA3231369A1 (en) 2021-09-10 2022-09-09 Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
EP22867424.8A EP4401538A1 (en) 2021-09-10 2022-09-09 Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
KR1020247011171A KR20240054352A (ko) 2021-09-10 2022-09-09 발전 소자, 발전 소자의 제조 방법, 발전 장치 및 전자 기기
CN202280061449.1A CN117941489A (zh) 2021-09-10 2022-09-09 发电元件、发电元件的制造方法、发电装置以及电子设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021147809A JP7011361B1 (ja) 2021-09-10 2021-09-10 発電素子の製造方法、発電素子、発電装置、及び電子機器
JP2021-147809 2021-09-10
JP2021-211370 2021-12-24
JP2021211370 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023038103A1 true WO2023038103A1 (ja) 2023-03-16

Family

ID=85506368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033831 WO2023038103A1 (ja) 2021-09-10 2022-09-09 発電素子、発電素子の製造方法、発電装置、及び電子機器

Country Status (4)

Country Link
EP (1) EP4401538A1 (ja)
KR (1) KR20240054352A (ja)
CA (1) CA3231369A1 (ja)
WO (1) WO2023038103A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225719A (ja) * 2009-03-23 2010-10-07 Ishikawa Prefecture 熱電変換素子、熱電変換モジュール、及び製造方法
WO2017142074A1 (ja) * 2016-02-19 2017-08-24 積水化学工業株式会社 固体接合型光電変換素子、及びその製造方法
JP2019179845A (ja) * 2018-03-30 2019-10-17 株式会社Nbcメッシュテック 熱電変換素子及び熱電変換素子の製造方法
JP6781437B1 (ja) 2019-07-19 2020-11-04 株式会社Gceインスティチュート 発電素子、及び発電素子の製造方法
JP6828939B1 (ja) * 2020-10-02 2021-02-10 株式会社Gceインスティチュート 発電素子、発電装置、電子機器、及び発電方法
JP2021077803A (ja) * 2019-11-12 2021-05-20 株式会社Gceインスティチュート 電極の仕事関数の制御方法、発電素子及び発電素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225719A (ja) * 2009-03-23 2010-10-07 Ishikawa Prefecture 熱電変換素子、熱電変換モジュール、及び製造方法
WO2017142074A1 (ja) * 2016-02-19 2017-08-24 積水化学工業株式会社 固体接合型光電変換素子、及びその製造方法
JP2019179845A (ja) * 2018-03-30 2019-10-17 株式会社Nbcメッシュテック 熱電変換素子及び熱電変換素子の製造方法
JP6781437B1 (ja) 2019-07-19 2020-11-04 株式会社Gceインスティチュート 発電素子、及び発電素子の製造方法
JP2021077803A (ja) * 2019-11-12 2021-05-20 株式会社Gceインスティチュート 電極の仕事関数の制御方法、発電素子及び発電素子の製造方法
JP6828939B1 (ja) * 2020-10-02 2021-02-10 株式会社Gceインスティチュート 発電素子、発電装置、電子機器、及び発電方法

Also Published As

Publication number Publication date
CA3231369A1 (en) 2023-03-16
KR20240054352A (ko) 2024-04-25
EP4401538A1 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
WO2020213558A1 (ja) 発電素子、発電装置、電子機器、及び発電素子の製造方法
WO2019088002A1 (ja) 熱電素子、発電装置、及び熱電素子の製造方法
WO2019088003A1 (ja) 熱電素子、発電装置、及び熱電素子の製造方法
JP7473222B2 (ja) 発電素子、発電装置、電子機器、及び発電素子の製造方法
WO2023038103A1 (ja) 発電素子、発電素子の製造方法、発電装置、及び電子機器
JP7384401B2 (ja) 発電素子、発電装置、電子機器及び発電素子の製造方法
JP7197857B2 (ja) 熱電素子、発電装置、電子機器、及び熱電素子の製造方法
WO2023038107A1 (ja) 発電素子、発電素子の製造方法、発電装置、及び電子機器
WO2023038102A1 (ja) 発電素子の製造方法、発電素子、発電装置、及び電子機器
WO2023038105A1 (ja) 発電素子の製造方法、発電素子、発電装置、及び電子機器
WO2023038099A1 (ja) 発電素子の製造方法、発電素子、発電装置、及び電子機器
WO2023038104A1 (ja) 発電素子の製造方法、発電素子、発電装置、及び電子機器
WO2023038106A1 (ja) 発電素子の製造方法、発電素子、発電装置、及び電子機器
WO2023038108A1 (ja) 発電素子の製造方法、発電素子、発電装置、及び電子機器
CN117941489A (zh) 发电元件、发电元件的制造方法、发电装置以及电子设备
JP7197855B2 (ja) 熱電素子の製造方法
TW202209715A (zh) 發電元件、發電裝置、電子機器及發電元件的製造方法
WO2023286363A1 (ja) 発電素子、発電装置、電子機器、及び発電素子の製造方法
JP2020145303A (ja) 熱電素子、発電機能付半導体集積回路装置、電子機器、及び熱電素子の製造方法
JP7197856B2 (ja) 熱電素子の製造方法
WO2023038109A1 (ja) 発電機能付二次電池
JP7244043B2 (ja) 熱電素子、発電装置、電子機器、及び熱電素子の製造方法
JP2023157549A (ja) 発電装置
WO2023038110A1 (ja) 発電システム
WO2022097419A1 (ja) 発電素子、制御システム、発電装置、電子機器及び発電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546996

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3231369

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280061449.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247011171

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022867424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867424

Country of ref document: EP

Effective date: 20240410