WO2023037931A1 - 収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラム - Google Patents

収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラム Download PDF

Info

Publication number
WO2023037931A1
WO2023037931A1 PCT/JP2022/032611 JP2022032611W WO2023037931A1 WO 2023037931 A1 WO2023037931 A1 WO 2023037931A1 JP 2022032611 W JP2022032611 W JP 2022032611W WO 2023037931 A1 WO2023037931 A1 WO 2023037931A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
yield
amount
correlation
photosynthesis
Prior art date
Application number
PCT/JP2022/032611
Other languages
English (en)
French (fr)
Inventor
祐二 中嶋
豊 宮本
義剛 進藤
郷 藤田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023037931A1 publication Critical patent/WO2023037931A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the present disclosure relates to a yield prediction system, a plant factory management support system, a yield prediction method, and a yield prediction program.
  • Patent Literature 1 describes predicting plant cultivation conditions (harvest start date, number of removed leaves, etc.) based on a cultivation condition prediction formula constructed based on past cultivation performance data.
  • the actual cultivation data includes environmental measurement value data and growth survey value data.
  • the environmental measurement value data is data measured in the growing environment of plants, and includes, for example, the temperature, humidity, amount of solar radiation, and carbon dioxide concentration in the greenhouse.
  • the growth survey value data is data obtained by observing the growth state of plants, and includes, for example, leaf color, flower color, number of fruiting per flower cluster, average number of fruiting and yield.
  • At least one embodiment of the present invention provides a yield prediction system, a plant factory management support system, a yield prediction method, and a yield prediction program capable of predicting the yield of a plant with high accuracy through a simple procedure.
  • a yield prediction system comprises A yield prediction system for predicting the yield in a plant factory for cultivating plants, Photosynthesis configured to calculate the amount of photosynthesis per day of the plant from the amount of insolation data indicating the amount of insolation for each time period of the day, using a first correlation between the amount of insolation and the photosynthetic rate of the plant. a quantity calculator; a yield prediction unit configured to predict the yield of the plant using a second correlation between the amount of photosynthesis and the yield of the plant; Prepare.
  • the plant factory management support system includes: A management support system for a plant factory for cultivating plants, A determination unit configured to determine whether production adjustment of the plant is necessary based on the predicted yield of the plant predicted by the yield prediction system and weather forecast information or market information regarding the plant. .
  • the yield prediction method includes A yield prediction method for predicting the yield in a plant factory for cultivating plants, a step of calculating the amount of photosynthesis per day of the plant from the amount of insolation data indicating the amount of insolation for each time period of the day using the first correlation between the amount of insolation and the photosynthetic rate; predicting the yield of the plant using a second correlation between photosynthesis and yield; Prepare.
  • the yield prediction program includes A yield prediction program for predicting the yield in a plant factory for cultivating plants, to the computer, A step of calculating the amount of photosynthesis per day of the plant from the amount of insolation data indicating the amount of insolation for each time zone of the day using the first correlation between the amount of insolation and the photosynthetic rate; A step of predicting the yield of the plant using the second correlation between the amount of photosynthesis and the yield; is configured to run
  • a yield prediction system capable of predicting the yield of a plant with high accuracy through a simple procedure, a plant factory management support system, a yield prediction method, and a yield prediction program.
  • FIG. 2 is a graph showing an example of measurement results of photosynthetic rate against solar radiation for a plant (strawberry) cultivated in a plant factory.
  • 3 is a graph obtained based on the graph of FIG. 2 and is a graph showing the relationship between the reciprocal of light intensity (horizontal axis) and the photosynthetic rate (vertical axis).
  • Fig. 10 is a graph showing an example of measurement results of the amount of fruit growth with respect to the amount of photosynthesis for a plant (strawberry) cultivated in a plant factory.
  • FIG. 1 is a schematic diagram of a bunch of strawberries; FIG. It is a table
  • FIG. 1 is a schematic configuration diagram of a yield prediction system and a plant factory management support system according to one embodiment. As shown in FIG. 1, in one embodiment, the yield prediction system 12 may function as part of the plant factory management support system 10 .
  • the yield prediction system 12 shown in FIG. 1 is a yield prediction system for predicting the yield in a plant factory that cultivates plants (vegetables, fruits, etc.).
  • a plant factory management support system 10 shown in FIG. 1 is a plant factory management support system for cultivating plants (vegetables, fruits, etc.).
  • the plant factory to which the yield prediction system 12 and the management support system 10 are applied is a plant factory that uses sunlight to grow plants.
  • the yield prediction system 12 and the management support system 10 include a computer equipped with a processor (CPU, etc.), main storage (memory device; RAM, etc.), auxiliary storage, interface, and the like.
  • the management support system 10 receives signals from a sensor 42 (described later) or a storage unit 40 (described later) via an interface.
  • the processor is configured to process the signal thus received.
  • the processor is configured to process the program deployed in the main memory.
  • the yield prediction system 12 and the management support system 10 may be implemented in the same computer or may be implemented in separate computers. may be implemented on separate computers.
  • the processing contents of the yield prediction system 12 and the management support system 10 are implemented as programs executed by a processor.
  • the program may be stored, for example, in an auxiliary storage device. During program execution, these programs are expanded in the main memory.
  • the processor reads the program from the main memory and executes the instructions contained in the program.
  • the storage unit 40 may include a main storage device or an auxiliary storage device of a computer that constitutes the yield prediction system 12 and the management support system 10, or the storage unit 40 is connected to the computer via a network.
  • a remote storage device may also be included.
  • the yield prediction system 12 includes a photosynthesis amount calculation unit 14 and a yield prediction unit 16.
  • the photosynthesis calculation unit 14 uses the correlation (first correlation) between the amount of solar radiation and the photosynthetic rate of the plant to calculate the amount of photosynthesis of the plant from the solar radiation amount data indicating the amount of solar radiation for each time period of the day. is configured to calculate
  • the photosynthesis amount calculation unit 14 acquires from the storage unit 40 the above-described first correlation stored in advance in the storage unit 40 and/or the solar radiation amount data indicating the amount of solar radiation for each time zone of the day. may be configured.
  • the first correlation between the amount of solar radiation and the photosynthetic rate of plants can be obtained in advance by measuring the photosynthetic rate with respect to the amount of solar radiation at a plurality of points.
  • FIG. 2 is a graph showing an example of measurement results of the photosynthetic rate with respect to the amount of solar radiation at a plurality of points for strawberries, which is an example of plants cultivated in a plant factory.
  • the photosynthetic rate of plants (vertical axis) tends to increase as the light intensity (indicator of solar radiation; horizontal axis) increases.
  • the true photosynthetic rate PG is the sum of the respiratory rate B (the photosynthetic rate when the light intensity is zero) and the measured photosynthetic rate at each light intensity (apparent photosynthetic rate PA). .
  • FIG. 3 is a graph obtained based on the graph of FIG. 2, showing the relationship between the reciprocal of light intensity (horizontal axis) and the true photosynthetic rate PG (vertical axis).
  • the first correlation between the amount of insolation and the photosynthetic rate of plants may include an expression of the function representing the approximate straight line L1 described above (the function representing the relationship between the reciprocal of the light intensity and the reciprocal of the true photosynthetic rate PG). .
  • the amount of solar radiation data that indicates the amount of solar radiation for each time period of the day can be obtained from a pre-created database.
  • a pre-created database for example, an annual hourly solar radiation amount database (https://www.nedo.go.jp/library/nissharyou.jp) published by NEDO (New Energy and Industrial Technology Development Organization) is used. html) can be used.
  • the amount of solar radiation data indicating the amount of solar radiation for each time period of the day the amount of solar radiation for each time period (every hour, etc.) of each day of the yield prediction target period may be acquired from the database described above.
  • the photosynthesis amount calculation unit 14 calculates the photosynthesis amount of plants for each time period of the day (for example, every hour) from the above-described solar radiation amount data and the first correlation obtained from the storage unit 40 and the like. By integrating this for one day (for 24 hours), the amount of photosynthesis of the plant per day can be calculated.
  • the yield prediction unit 16 is configured to predict the yield of the plant using the second correlation between the amount of photosynthesis of the plant and the yield.
  • the yield prediction unit 16 may be configured to acquire from the storage unit 40 the second correlation previously stored in the storage unit 40 . Moreover, the yield prediction unit 16 may be configured to receive the amount of photosynthesis of the plant per day calculated by the photosynthesis amount calculation unit 14 .
  • the second correlation between the amount of photosynthesis and the yield of a plant can be obtained by measuring in advance the amount of plant growth (yield) with respect to the amount of photosynthesis at a plurality of points per unit period (typically per day).
  • FIG. 4 is a graph showing an example of measurement results of the amount of fruit growth with respect to the amount of photosynthesis at a plurality of points per day for strawberries, which is an example of plants cultivated in a plant factory.
  • the amount of photosynthesis per day horizontal axis
  • the amount of fruit growth per day that is, yield; vertical axis
  • the amount of fruit growth has a linear correlation as indicated by the approximate straight line L2.
  • the second correlation between the amount of photosynthesis and the yield of plants may include an expression of the function representing the above-described approximate straight line L2 (function indicating the relationship between the amount of photosynthesis at multiple points per day and the amount of fruit growth).
  • the yield prediction unit 16 may be configured to predict the yield of the plant based on the second correlation described above and the amount of photosynthesis of the plant per day calculated by the photosynthesis calculation unit 14. That is, the daily yield of the plant may be calculated (predicted) by applying the daily photosynthesis amount of the plant calculated by the photosynthesis amount calculation unit 14 to the above-described second correlation.
  • the amount of photosynthesis per day is calculated from the amount of insolation data for each time zone of the day, based on the correlation between the amount of insolation and the yield of plants (first correlation). can be calculated. Then, the amount of photosynthesis calculated per day is applied to the correlation between the amount of photosynthesis of the plant and the yield (second correlation) to calculate the yield of the plant per day. can be done. Therefore, according to the yield prediction system 12 according to the above-described embodiment, it is possible to appropriately predict the yield of a plant with high accuracy through a simple procedure.
  • the management support system 10 includes the yield prediction system 12 and the determination unit 18 described above.
  • the management support system 10 may further include a policy determination section 22 and/or a display output section 38 .
  • the determination unit 18 is configured to determine whether plant production adjustment is necessary based on weather forecast information or market information on plants. For example, the determination unit 18 determines whether or not the target sales amount (sales amount per weight, etc.) is obtained when the plant with the yield predicted by the yield prediction system 12 is harvested. It may be configured to determine the necessity of production adjustment.
  • the determination unit 18 may be configured to acquire from the storage unit 40 the weather forecast information previously stored in the storage unit 40 or market information related to plants. Alternatively, the determination unit 18 may be configured to acquire the above-described weather forecast information or plant market information stored in a storage medium on a network such as the Internet.
  • the decision unit 18 decides whether or not production adjustment is necessary based on the predicted yield calculated by the yield prediction system 12 and separately obtained weather forecast information or market information, thereby improving profits in the plant factory. be able to. For example, it is possible to increase the profit in the plant factory by increasing the yield when the shipment amount of outdoor cultivated plants is small.
  • the policy determination unit 22 adjusts the production at least based on the comparison between the predicted yield calculated by the yield prediction system 12 and the target yield of the plant. configured to determine a policy for
  • the policy determination unit 22 may be configured to acquire from the storage unit 40 the target yield of the plant stored in advance in the storage unit 40 .
  • the determination unit 18 may acquire the target yield of the plant that is input to the management support system 10 via an input device (keyboard, mouse, etc.; not shown).
  • the policy determination unit 22 determines a policy for production adjustment based on at least a comparison between the predicted yield of the plant and the target yield. By implementing the policy determined in this way, it is possible to appropriately adjust production and improve the profit in the plant factory.
  • the policy determination unit 22 is configured to determine a policy for production adjustment based on signals from various sensors 42 (eg, temperature sensor, light sensor, CO2 sensor, camera, etc.) provided in the plant factory. may
  • the policy determination unit 22 includes a flower removal target determination unit 24, a light shielding rate determination unit 26, a supplementary light amount determination unit 28, a leaf removal amount determination unit 30, a water supply amount determination unit 32, and a fertilizer supply amount determination unit 34. , or the temperature determination unit 36 may be included.
  • the deflowering target determination unit 24 determines the flower or fruit of the plant to be deflowered or depleted based on the predicted yield of the plant predicted by the yield prediction system 12 and the data on the weight of the fruit of the plant. Configured.
  • the flower removal target determination unit 24 may be configured to acquire from the storage unit 40 data relating to the weight of the fruit of the above-described plant stored in advance in the storage unit 40 .
  • the shading rate determination unit 26 may be configured to determine the shading rate in the plant factory using the predicted plant yield predicted by the yield prediction system 12 and the weather forecast information.
  • the shading rate determination unit 26 may be configured to determine the shading rate in the plant factory using the measured value of the light intensity in the plant factory in addition to the weather information described above.
  • the shading rate determination unit 26 may be configured to acquire the weather forecast information previously stored in the storage unit 40 from the storage unit 40 .
  • the shading rate determination unit 26 may be configured to acquire the weather forecast information described above stored in a storage medium on a network such as the Internet.
  • the light shielding rate determining unit 26 may be configured to receive a signal indicating the light intensity in the plant factory from a light sensor (sensor 42) provided in the plant factory.
  • the supplemental light amount determination unit 28 uses the predicted yield of the plant predicted by the yield prediction system 12, the weather forecast information, and/or the measured value of the light intensity in the plant factory to determine the supplemental light amount in the plant factory. may be configured.
  • the measured value of light intensity may be obtained by an optical sensor (sensor 42) provided in the plant factory.
  • the leaf removal amount determination unit 30 uses the predicted yield of the plant predicted by the yield prediction system 12, the weather forecast information, and/or the image data of the leaves of the plant in the plant factory to determine the amount of leaf removal for the plant.
  • the imaging data of plant leaves may be acquired by a camera (sensor 42) installed in a plant factory.
  • the water supply amount determination unit 32 includes the predicted yield of plants predicted by the yield prediction system 12, weather forecast information, measured soil moisture in the plant factory, measured soil pH, measured soil electrical conductivity, Alternatively, it may be configured to determine the amount of water to be supplied to the plants using imaging data of the plants and soil in the plant factory.
  • a soil moisture meter (sensor 42), a pH meter (sensor 42) and an electric It may be obtained by a conductivity meter (sensor 42).
  • the imaging data of the plants and soil in the plant factory may be acquired by a camera (sensor 42) installed in the plant factory.
  • the fertilizer supply amount determination unit 34 uses the predicted yield of the plant predicted by the yield prediction system 12, the weather forecast information, the measured value of the pH of the soil in the plant factory, or the measured value of the electrical conductivity of the soil. may be configured to determine a fertilizer supply to the The measured value of the soil pH and the measured value of the electrical conductivity of the soil are obtained by a pH meter (sensor 42) and an electrical conductivity meter (sensor 42) provided in the plant factory, respectively.
  • the temperature determination unit 36 uses the predicted yield of plants predicted by the yield prediction system 12, weather forecast information, or measured values of the temperature in the plant factory (the temperature inside or outside the greenhouse, the temperature of the soil, etc.). , may be configured to determine a temperature setpoint in the plant factory.
  • the temperature in the plant factory may be obtained by a temperature sensor (sensor 42) provided in the plant factory.
  • the display output unit 38 is configured to output information including the policy determined by the policy determination unit 22 to the display unit 44 (display).
  • the display unit 44 may be a display of a mobile terminal (smartphone, tablet, etc.).
  • the display output unit 38 displays the measures determined by the measure determination unit 22 on the display unit 44, so that the plant factory workers can easily know the measures. Therefore, it is possible to improve the working efficiency in the plant factory.
  • FIG. 5 is a flowchart of a plant factory management support method according to one embodiment. As shown in FIG. 5, the yield prediction method (steps S2 to S4) according to one embodiment is included in the plant factory management support method (steps S2 to S16) according to one embodiment.
  • step S2 the photosynthesis amount calculation unit 14 reads from the storage unit 40 or the like the above-described first correlation and/or the amount of solar radiation indicating the amount of solar radiation for each time zone of the day. Get data. Then, using the correlation (first correlation) between the amount of solar radiation and the photosynthetic rate of the plant, the amount of photosynthesis of the plant per day is calculated from the amount of solar radiation data indicating the amount of solar radiation for each time zone of the day.
  • the method for calculating the amount of photosynthesis of plants per day has already been described with reference to FIGS. 2 to 4 and the like.
  • step S4 the yield prediction unit 16 acquires the second correlation between the amount of photosynthesis of the plant and the yield from the storage unit 40 or the like, and uses the second correlation between the amount of photosynthesis of the plant and the yield. , to predict plant yield.
  • step S4 the daily yield of the plant can be calculated (predicted) by applying the daily photosynthetic amount of the plant calculated in step S2 to the above-described second correlation.
  • step S8 the determination unit 18 acquires weather forecast information or market information about plants from the storage unit 40 or the like, and determines whether plant production adjustment is necessary based on the acquired information. .
  • step S8 when the yield of plants predicted by the yield prediction system 12 is harvested, the production You may make it determine the necessity of adjustment. In this case, if it is expected that the target sales amount or more will be obtained, it is determined that production adjustment is unnecessary (No in step S8), and this flow is terminated. On the other hand, if it is expected that the target sales amount or more will not be obtained, it is determined that production adjustment is necessary (Yes in step S8), and the process proceeds to the next step S10.
  • the target sales amount (sales amount per weight, etc.) can be set based on market information (for example, wholesale prices) at the time of harvest of the plants cultivated in the plant factory.
  • market information for example, wholesale prices
  • market information predicted from past market information and weather forecast information may be used.
  • step S10 the policy determination unit 22 acquires the target yield of the plant from the storage unit 40 or the like, and at least compares the predicted yield calculated in step S4 with the target yield of the plant. Determine strategies for making adjustments. If the predicted yield is equal to or greater than the target yield (Yes in step S10), the process proceeds to step S12 to determine an appropriate policy. If the predicted yield is less than the target yield (No in step S10), proceed to step S14 to determine an appropriate policy.
  • step S10 If the predicted yield is equal to or higher than the target yield (Yes in step S10), production adjustment is performed so that the actual yield approaches the target yield, that is, the yield is decreased from the predicted yield.
  • Production control strategies include adjusting the amount of shade, adjusting the amount of CO2 , thinning or fruit thinning, leaf thinning, adjusting water supply, adjusting fertilizer supply, and/or adjusting growing temperature. Weather forecast information and the like may also be taken into consideration when determining which measures to implement for production adjustment.
  • the light shielding rate is adjusted so that the temperature in the plant factory does not exceed the temperature suitable for plant cultivation (for example, about 25 ° C. for strawberries) and the target yield is obtained. set.
  • the shading rate is the ratio of the area where the sunlight is blocked by the shading material to the area of the plant factory where the shading material is not installed.
  • the light shielding rate may be set within a range of 10% or more and 90% or less.
  • the plant factory may be cooled by cooling. Cooling may be used within a range in which the electricity bill due to use of cooling does not exceed the increase in sales price of crops due to use of cooling.
  • the CO2 concentration in the plant factory is less than the range suitable for plant cultivation (e.g. about 2000 ppm for strawberries) so as to obtain the target yield of the crop.
  • the CO 2 concentration may be set within a range of 10% or more and 90% or less with respect to the optimum concentration for plant cultivation. Adjustment of the amount of CO 2 may be performed within a range in which the cost of adjusting the amount of CO 2 does not exceed the increase in sales price of the crop due to the adjustment of the amount of CO 2 .
  • a part of the fruit may be thinned to delay the harvesting period.
  • 10% or more and 90% or less of the fruits may be thinned.
  • the fruit grows in about one month after flowering, so the amount of flower/fruit thinning may be determined according to the production target after one month.
  • leaves By removing leaves, it is possible to shift production (delay production for the desired period). 10% or more and 60% or less of all leaves may be applied. In addition, when 30% or more of the leaves are removed, it may be determined including replacement with a new strain (young seedling).
  • the amount of water supply required for plant cultivation can be determined based on the amount of fruit production (yield), the number of leaves, and the amount of roots. Therefore, once the target production amount of the plant is determined, the water supply amount can be set according to the target production amount.
  • the opening degree or opening/closing control of the water supply valve may be controlled based on the set value of the water supply amount.
  • the amount of fertilizer required for plant cultivation can be determined based on the amount of fruit production (yield), the number of leaves, and the amount of roots. Therefore, once the target production amount of the plant is determined, the amount of fertilizer to be supplied can be set according to the target production amount.
  • the degree of opening or opening/closing of the fertilizer supply valve may be controlled based on the set value of the fertilizer supply amount.
  • the fertilization period may be delayed.
  • the growth speed of plants can be controlled. For example, by setting the plant growth temperature to a temperature lower than the optimum temperature, the plant growth rate can be slowed down.
  • the growth temperature of plants may be adjusted so long as the cost of adjusting the temperature does not exceed the increase in the sales price of the crop due to the adjustment of the amount of temperature.
  • Production control strategies include thinning/thinning, adjusting supplemental light, adjusting growing temperature, adjusting fertilizer supply, and/or adjusting water supply. Weather forecast information and the like may also be taken into consideration when determining which measures to implement for production adjustment.
  • fruit thinning is performed for fruits with low selling prices. It may be done. Of the harvestable fruits, 10% or more and 90% or less of the fruits may be thinned.
  • light may be supplemented with LED (light emitting diode) lighting.
  • a supplementary light amount may be set so as to obtain a target yield.
  • the amount of supplemental light may be adjusted so that the cost associated with adjusting the amount of supplemental light does not exceed the increase in profit associated with the increase in yield due to the adjustment of the amount of supplemental light.
  • the growth speed of plants can be controlled. For example, when the temperature is excessively high or low, the plant growth rate can be increased by adjusting the plant growth temperature to a temperature close to the optimum temperature.
  • the growth temperature of plants may be adjusted within a range in which the costs related to temperature adjustment (heating costs in winter, etc.) do not exceed the increase in sales price of crops due to temperature adjustment.
  • the supply amount of fertilizer necessary for plant cultivation can be determined based on the fruit production (yield), the number of leaves, and the amount of roots. You may make it change the kind of fertilizer.
  • the opening degree control or opening/closing control of the fertilizer supply valve may be performed based on the changed (increased) set value of the fertilizer supply amount.
  • the fertilization period may be advanced, or the fertilization type may be changed (potassium sulfate is changed to potassium silicate, etc.).
  • the amount of water supply required for plant cultivation can be determined based on the amount of fruit production (yield), the number of leaves, and the amount of roots. Therefore, once the target production amount of the plant is determined, the water supply amount can be set according to the target production amount.
  • the opening degree or opening/closing control of the water supply valve may be controlled based on the set value of the water supply amount.
  • the thinning target determination unit 24 adds the predicted yield of the plant calculated in steps S2 to S4 and the data on the weight of the fruit of the plant. Based on this, the flower or fruit of the plant to be thinned may be determined.
  • FIG. 6 is a schematic diagram of a bunch 50 of strawberries
  • FIG. 7 is a table for explaining how to determine an object to be thinned.
  • a strawberry bunch 50 consists of a plurality of fruits 52-58.
  • a plurality of fruits are composed of one apical fruit 52 which is the first fruit to be produced, two secondary fruits 54a and 54b formed respectively on the bifurcated stems from the apical fruit 52, and a total of 4 fruits formed on each of the bifurcated stems 51. It includes individual third fruits 56a to 56d, and a total of eight fourth fruits 58a to 58h formed on the bifurcated stem 51, respectively.
  • the average weight (one example) of the corresponding fruit is described in the column of each (Nth fruit) of a plurality of fruits formed in one cluster 50. In the example shown in FIG. 7, it is 20 g per apical fruit, 10 g per second fruit, 8 g per third fruit, and 5 g per fourth fruit. These weights are obtained as statistical values (average values, etc.) from past harvest results.
  • Targets for thinning flowers/fruits are determined, for example, as follows. That is, first, the weight of the fruit is accumulated in order from the top (from the left side of the table), and the fruit that falls within the range of the predicted yield is not subject to flower removal, and the fruit that does not fall within the predicted yield is determined to be subject to flower removal. do.
  • the sum of the weight of each fruit is 72 g, including 1 apex (20 g), 2 secondary fruits (10 g), and 4 tertiary fruits (8 g). .
  • the weight of the first and subsequent fourth fruits is included in this total weight, the predicted yield of 72 g is exceeded. Therefore, the fourth and subsequent fruits are determined to be thinned.
  • the shade rate determination unit 26 uses the predicted yield of the plant calculated in steps S2 to S4 and the weather forecast information, You may make it determine the shading rate in a plant factory.
  • the plant factory For example, in the case of a plant factory where light shielding materials are installed so that the light shielding rate is 5% to 50% in the summer in a normal year, if weather forecast information predicts a lack of sunlight in the summer, the plant factory The yield can be increased by removing part or all of the light shielding material and improving the light shielding rate. On the other hand, if weather forecast information predicts excessive sunshine in the summer, the cooling cost can be reduced by increasing the shading rate in the plant factory (that is, increasing the number of shading materials to be installed). .
  • a yield prediction system for predicting the yield in a plant factory for cultivating plants, Photosynthesis configured to calculate the amount of photosynthesis per day of the plant from the amount of insolation data indicating the amount of insolation for each time period of the day, using a first correlation between the amount of insolation and the photosynthetic rate of the plant. a quantity calculator; a yield prediction unit configured to predict the yield of the plant using a second correlation between the amount of photosynthesis and the yield of the plant; Prepare.
  • the reciprocal of the amount of solar radiation and the reciprocal of the photosynthetic rate have a linear correlation.
  • the reciprocal of the amount of solar radiation and the reciprocal of the photosynthetic rate of plants have a linear correlation.
  • the reciprocal of the amount of solar radiation and the reciprocal of the photosynthetic rate have a linear correlation, so the plant yield can be appropriately predicted with a simple procedure and with good accuracy. can do.
  • a plant factory management support system configured as follows.
  • the management support system includes: When the determining unit determines that the production adjustment of the plant is necessary, a policy for adjusting the production is determined based on at least a comparison between the predicted yield and the target yield of the plant. A policy determination unit is provided.
  • the management support system includes: A display output unit configured to output information including the policy determined by the policy determination unit to a display unit.
  • the measures determined by the measure determination unit are displayed on the display unit, so that the plant factory workers can easily know the measures. Therefore, it is possible to improve the working efficiency in the plant factory.
  • a plant factory management support system A management support system for a plant factory for cultivating plants, Based on the predicted yield of the plant predicted by the yield prediction system according to (1) or (2) above, and the data on the weight of the fruit of the plant, the flower of the plant to be thinned or fruit thinned A deflowering target determination unit configured to determine a fruit is provided.
  • the flowers or fruits to be thinned or thinned are determined based on the predicted yield of the plant and the data on the weight of the fruit, so that the production is adjusted appropriately. It is possible to improve the profit in the plant factory.
  • a plant factory management support system configured to determine a shading rate in the plant factory using the predicted yield of the plant predicted by the yield prediction system according to (1) or (2) above and weather forecast information. have a department.
  • the predicted yield of the plant and the weather forecast information are used to determine the shading rate in the plant factory. Profitability can be improved.
  • a yield prediction method comprises: A yield prediction method for predicting the yield in a plant factory for cultivating plants, a step of calculating the amount of photosynthesis per day of the plant from the amount of insolation data indicating the amount of insolation for each time period of the day using the first correlation between the amount of insolation and the photosynthetic rate; predicting the yield of the plant using a second correlation between photosynthesis and yield; Prepare.
  • the method (8) above it is possible to calculate the amount of photosynthesis per day from the amount of insolation data for each hour of the day based on the correlation between the amount of insolation and the yield of the plant (first correlation). can. Then, the amount of photosynthesis calculated per day is applied to the correlation between the amount of photosynthesis of the plant and the yield (second correlation) to calculate the yield of the plant per day. can be done. Therefore, according to the above method (8), it is possible to appropriately predict the yield of a plant with good accuracy using a simple procedure.
  • a yield prediction program according to at least one embodiment of the present invention, A yield prediction program for predicting the yield in a plant factory for cultivating plants, to the computer, A step of calculating the amount of photosynthesis per day of the plant from the amount of insolation data indicating the amount of insolation for each time zone of the day using the first correlation between the amount of insolation and the photosynthetic rate; A step of predicting the yield of the plant using the second correlation between the amount of photosynthesis and the yield; is configured to run
  • the amount of photosynthesis per day can be calculated from the amount of insolation data for each hour of the day based on the correlation between the amount of insolation and the yield of plants (first correlation). can. Then, the amount of photosynthesis calculated per day is applied to the correlation between the amount of photosynthesis of the plant and the yield (second correlation) to calculate the yield of the plant per day. can be done. Therefore, according to the program of (9) above, it is possible to appropriately predict the yield of a plant with good accuracy through a simple procedure.
  • expressions such as “in a certain direction”, “along a certain direction”, “parallel”, “perpendicular”, “center”, “concentric” or “coaxial”, etc. express relative or absolute arrangements. represents not only such arrangement strictly, but also the state of being relatively displaced with a tolerance or an angle or distance to the extent that the same function can be obtained.
  • expressions such as “identical”, “equal”, and “homogeneous”, which express that things are in the same state not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • expressions representing shapes such as a quadrilateral shape and a cylindrical shape not only represent shapes such as a quadrilateral shape and a cylindrical shape in a geometrically strict sense, but also within the range in which the same effect can be obtained. , a shape including an uneven portion, a chamfered portion, and the like.
  • the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • Management support system 12 Yield prediction system 14 Photosynthesis amount calculation unit 16 Yield prediction unit 18 Judgment unit 22 Policy determination unit 24 Flower removal target determination unit 26 Shading rate determination unit 28 Supplementary light amount determination unit 30 Leaf removal amount determination unit 32 Water supply amount determination unit 34 fertilizer supply amount determination unit 36 temperature determination unit 38 display output unit 40 storage unit 42 sensor 44 display unit 50 bunch 51 stem 52 top fruit 54, 54a to 54b second fruit 56, 56a to 56d third fruit 58, 58a to 58h Fourth fruit B Respiration rate PA Photosynthetic rate PG Photosynthetic rate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Economics (AREA)
  • Forests & Forestry (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

収量予測システムは、植物を栽培する植物工場における収量を予測するための収量予測システムであって、日射量と前記植物の光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出するように構成された光合成量算出部と、前記植物の光合成量と収量との第2相関関係を用いて、前記植物の収量を予測するように構成された収量予測部と、を備える。

Description

収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラム
 本開示は、収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラムに関する。
 本願は、2021年9月9日に日本国特許庁に出願された特願2021-146551号に基づき優先権を主張し、その内容をここに援用する。
 植物工場等における植物の栽培にあたり、栽培計画を適切に立てる等の目的で、収穫時期や収量等を計算機を用いて予測することがある。
 例えば特許文献1には、過去の栽培実績データに基づき構築された栽培状況予測式に基づき、植物の栽培状況(収穫開始日や摘葉数等)を予測することが記載されている。ここで、栽培実績データには、環境測定値データ及び生育調査値データが含まれる。環境測定値データは、植物の生育環境において計測されるデータであり、例えば、温室内の温度、湿度、日射量及び二酸化炭素濃度等である。生育調査値データは、植物の生育状況の観察により得られるデータであり、例えば、葉色、花色、花房ごとの着果数、平均着果数及び収量等である。
特開2019-30253号公報
 ところで、植物工場における収益向上を図るため、植物の収量を、簡素な手順で精度良好に予測することが望ましい。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、簡素な手順で精度良好に植物の収量を予測可能な収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラムを提供することを目的とする。
 本発明の少なくとも一実施形態に係る収量予測システムは、
 植物を栽培する植物工場における収量を予測するための収量予測システムであって、
 日射量と前記植物の光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出するように構成された光合成量算出部と、
 前記植物の光合成量と収量との第2相関関係を用いて、前記植物の収量を予測するように構成された収量予測部と、
を備える。
 また、本発明の少なくとも一実施形態に係る植物工場の管理支援システムは、
 植物を栽培する植物工場の管理支援システムであって、
 上述の収量予測システムにより予測された前記植物の予測収量、及び、気象予測情報又は前記植物に関する市場情報に基づいて、前記植物の生産調整の要否を判定するように構成された判定部を備える。
 また、本発明の幾つかの実施形態に係る収量予測方法は、
 植物を栽培する植物工場における収量を予測するための収量予測方法であって、
 日射量と光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出するステップと、
 光合成量と収量との第2相関関係を用いて、前記植物の収量を予測するステップと、
を備える。
 また、本発明の少なくとも一実施形態に係る収量予測プログラムは、
 植物を栽培する植物工場における収量を予測するための収量予測プログラムであって、
 コンピュータに、
  日射量と光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出する手順と、
  光合成量と収量との第2相関関係を用いて、前記植物の収量を予測する手順と、
を実行させるように構成される。
 本発明の少なくとも一実施形態によれば、簡素な手順で精度良好に植物の収量を予測可能な収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラムが提供される。
一実施形態に係る収量予測システム及び植物工場の管理支援システムの概略構成図である。 植物工場で栽培される植物(イチゴ)についての日射量に対する光合成速度の測定結果の一例を示すグラフである。 図2のグラフに基づき得られるグラフであり、光強度の逆数(横軸)と、光合成速度(縦軸)との関係を示すグラフである。 植物工場で栽培される植物(イチゴ)についての光合成量に対する果実成長量の測定結果の一例を示すグラフである。 一実施形態に係る植物工場の管理支援方法のフローチャートである。 イチゴの房の模式図である。 摘花/摘果対象の決定の仕方を説明するための表である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
(収量予測システム・管理支援システムの構成)
 図1は、一実施形態に係る収量予測システム及び植物工場の管理支援システムの概略構成図である。図1に示すように、一実施形態では、収量予測システム12は、植物工場の管理支援システム10の一部として機能するものであってもよい。
 図1に示す収量予測システム12は、植物(野菜や果物等)を栽培する植物工場における収量を予測するための収量予測システムである。また、図1に示す植物工場の管理支援システム10は、植物(野菜や果物等)を栽培する植物工場の管理支援システムである。
 幾つかの実施形態では、収量予測システム12及び管理支援システム10の適用対象となる植物工場は、太陽光を利用して植物を栽培する植物工場である。
 収量予測システム12及び管理支援システム10は、プロセッサ(CPU等)、主記憶装置(メモリデバイス;RAM等)、補助記憶装置及びインターフェース等を備えた計算機を含む。管理支援システム10は、インターフェースを介して、センサ42(後述)又は記憶部40(後述)から信号を受け取るようになっている。プロセッサは、このようにして受け取った信号を処理するように構成される。また、プロセッサは、主記憶装置に展開されるプログラムを処理するように構成される。これにより、収量予測システム12及び管理支援システム10を構成する後述の各部の機能が実現される。
 なお、収量予測システム12及び管理支援システム10は、同一の計算機に実装されてもよく、別々の計算機に実装されてもよく、あるいは、収量予測システム12及び管理支援システム10を構成する後述の各部が別々の計算機に実装されてもよい。
 収量予測システム12及び管理支援システム10での処理内容は、プロセッサにより実行されるプログラムとして実装される。プログラムは、例えば補助記憶装置に記憶されていてもよい。プログラム実行時には、これらのプログラムは主記憶装置に展開される。プロセッサは、主記憶装置からプログラムを読み出し、プログラムに含まれる命令を実行するようになっている。
 なお、記憶部40は、収量予測システム12及び管理支援システム10を構成する計算機の主記憶装置又は補助記憶装置を含んでもよく、あるいは、記憶部40は、該計算機とネットワークを介して接続される遠隔記憶装置を含んでもよい。
 図1に示すように、収量予測システム12は、光合成量算出部14と、収量予測部16と、を備える。
 光合成量算出部14は、日射量と植物の光合成速度との相関関係(第1相関関係)を用いて、1日の時間帯ごとの日射量を示す日射量データから植物の1日当たりの光合成量を算出するように構成される。
 光合成量算出部14は、記憶部40に予め記憶された上述の第1相関関係、及び/又は、1日の時間帯ごとの日射量を示す日射量データを、記憶部40から取得するように構成されてもよい。
 日射量と植物の光合成速度との第1相関関係は、予め、複数点の日射量に対する光合成速度を計測することにより求めることができる。ここで、図2は、植物工場で栽培される植物の一例であるイチゴについての、複数点の日射量に対する光合成速度の測定結果の一例を示すグラフである。図2に示すように、光強度(日射量の指標;横軸)が増すほど、植物の光合成速度(縦軸)は増大する傾向がある。図2のグラフにおいて、呼吸速度B(光強度がゼロであるときの光合成速度)と、各光強度における光合成速度の計測値(見かけの光合成速度PA)との和が真の光合成速度PGである。
 図3は、図2のグラフに基づき得られるグラフであり、光強度の逆数(横軸)と、真の光合成速度PG(縦軸)との関係を示すグラフである。本発明者らの鋭意検討の結果、図3のグラフからわかるように、光強度の逆数と、真の光合成速度PGの逆数とは、近似直線L1(決定係数R=0.9943)で示されるように、線形の相関関係を有することが分かった。すなわち、日射量と植物の光合成速度との第1相関関係において、日射量の逆数(光強度の逆数)と、光合成速度(真の光合成速度)の逆数とが線形の相関関係を有することがわかった。
 日射量と植物の光合成速度との第1相関関係は、上述の近似直線L1を示す関数(光強度の逆数と、真の光合成速度PGの逆数との関係を示す関数)の式を含んでもよい。
 1日の時間帯ごとの日射量を示す日射量データは、予め作成されたデータベースから取得することができる。上述のデータベースとして、例えば、NEDO(国立研究開発法人 新エネルギー・産業技術総合開発機構)が公開している年間時別日射量データベース(https://www.nedo.go.jp/library/nissharyou.html)等を利用することができる。1日の時間帯ごとの日射量を示す日射量データとして、収量予測対象期間の各日の各時間帯(1時間毎等)の日射量を上述のデータベースから取得してもよい。
 光合成量算出部14は、記憶部40等から取得した上述の日射量データ及び第1相関関係から、1日の時間帯ごと(例えば1時間毎)の植物の光合成量を算出する。これを1日分(24時間分)積算することで、植物の1日当たりの光合成量を算出することができる。
 収量予測部16は、植物の光合成量と収量との第2相関関係を用いて、植物の収量を予測するように構成される。
 収量予測部16は、記憶部40に予め記憶された上述の第2相関関係を、記憶部40から取得するように構成されてもよい。また、収量予測部16は、光合成量算出部14で算出された植物の1日当たりの光合成量を受け取るように構成されてもよい。
 植物の光合成量と収量との第2相関関係は、予め、単位期間あたり(典型的には1日あたり)における複数点の光合成量に対する植物の成長量(収量)を計測することにより求めることができる。ここで、図4は、植物工場で栽培される植物の一例であるイチゴについての、1日当たりの複数点の光合成量に対する果実成長量の測定結果の一例を示すグラフである。図4に示すように、1日当たりの光合成量(横軸)が増すほど、1日当たりの果実成長量(即ち収量;縦軸)は増大する傾向があり、1日当たりの光合成量と、1日当たりの果実成長量とは、近似直線L2で示されるような線形の相関関係を有することがわかる。
 植物の光合成量と収量との第2相関関係は、上述の近似直線L2を示す関数(1日当たりの複数点の光合成量に対する果実成長量との関係を示す関数)の式を含んでもよい。
 収量予測部16は、上述の第2相関関係、及び、光合成量算出部14で算出された植物の1日当たりの光合成量に基づいて、植物の収量を予測するように構成されてもよい。すなわち、光合成量算出部14で算出された植物の1日当たりの光合成量を上述の第2相関関係に当てはめることで、植物の1日あたりの収量を算出(予測)するようにしてもよい。
 上述の実施形態に係る収量予測システム12によれば、日射量と植物の収量との相関関係(第1相関関係)に基づき、1日の時間帯ごとの日射量データから1日当たりの光合成量を算出することができる。そして、このようにして算出された1日あたりの光合成量を、植物の光合成量と収量との相関関係(第2相関関係)に適用することで、1日あたりの植物の収量を算出することができる。したがって、上述の実施形態に係る収量予測システム12によれば、簡素な手順で精度良好に植物の収量を適切に予測することができる。
 図1に示すように、管理支援システム10は、上述の収量予測システム12と、判定部18と、を備える。管理支援システム10は、さらに、方策決定部22、及び/又は、表示出力部38を備えてもよい。
 判定部18は、気象予測情報、又は、植物に関する市場情報に基づいて、植物の生産調整の要否を判定するように構成される。例えば、判定部18は、収量予測システム12で予測されたとおりの収量の植物が収穫された場合に、目標通りの販売額(重量あたりの販売額等)が得られるか否かに基づいて、生産調整の要否を判定するように構成されてもよい。
 判定部18は、記憶部40に予め記憶された上述の気象予測情報、又は、植物に関する市場情報を、記憶部40から取得するように構成されてもよい。あるいは、判定部18は、インターネット等のネットワーク上の記憶媒体に格納されている上述の気象予測情報、又は、植物に関する市場情報を取得するように構成されてもよい。
 判定部18により、収量予測システム12で算出される予測収量、及び、別途取得される気象予測情報又は市場情報に基づいて生産調整の要否を判定することにより、植物工場における収益の向上を図ることができる。例えば、屋外栽培の植物の出荷量が少ない時期に、収量を多くすることにより、植物工場における収益を向上することができる。
 方策決定部22は、判定部18により植物の生産調整が必要と判定されたとき、少なくとも、収量予測システム12で算出された予測収量と、植物の目標収量との比較に基づいて、生産調整をするための方策を決定するように構成される。
 方策決定部22は、記憶部40に予め記憶された植物の目標収量を、記憶部40から取得するように構成されてもよい。あるいは、判定部18は、入力デバイス(キーボード又はマウス等;不図示)を介して管理支援システム10に入力される植物の目標収量を取得するようにしてもよい。
 判定部18で植物の生産調整が必要と判定されたとき、方策決定部22により、少なくとも、植物の予測収量と目標収量との比較に基づいて、生産調整をするための方策を決定する。このように決定される方策を実施することにより、適切に生産調整を行うことができ、植物工場における収益の向上を図ることができる。
 方策決定部22は、植物工場に設けられる各種センサ42(例えば、温度センサ、光センサ、CO2センサ、カメラ等)からの信号に基づいて、生産調整をするための方策を決定するように構成されてもよい。
 図1に示すように、方策決定部22は、摘花対象決定部24、遮光率決定部26、補光量決定部28、摘葉量決定部30、水供給量決定部32、肥料供給量決定部34、又は、温度決定部36を含んでもよい。
 摘花対象決定部24は、収量予測システム12により予測された植物の予測収量、及び、植物の果実の重量に関するデータに基づいて、摘花又は摘果の対象となる植物の花又は果実を決定するように構成される。
 摘花対象決定部24は、記憶部40に予め記憶された上述の植物の果実の重量に関するデータを、記憶部40から取得するように構成されてもよい。
 遮光率決定部26は、収量予測システム12により予測された植物の予測収量、及び、気象予測情報を用いて、植物工場における遮光率を決定するように構成されてもよい。遮光率決定部26は、上述の気象情報に加えて、植物工場における光強度の計測値を用いて、植物工場における遮光率を決定するように構成されてもよい。
 遮光率決定部26は、記憶部40に予め記憶された上述の気象予測情報を、記憶部40から取得するように構成されてもよい。あるいは、遮光率決定部26は、インターネット等のネットワーク上の記憶媒体に格納されている上述の気象予測情報を取得するように構成されてもよい。遮光率決定部26は、植物工場に設けられた光センサ(センサ42)から、植物工場における光強度を示す信号を受け取るように構成されてもよい。
 補光量決定部28は、収量予測システム12により予測された植物の予測収量、気象予測情報、及び/又は、植物工場における光強度の計測値を用いて、植物工場における補光量を決定するように構成されてもよい。光強度の計測値は、植物工場に設けられた光センサ(センサ42)により取得されるものであってもよい。
 摘葉量決定部30は、収量予測システム12により予測された植物の予測収量、気象予測情報、及び/又は、植物工場における植物の葉の撮像データを用いて、植物に対する摘葉量を決定するように構成されてもよい。植物の葉の撮像データは、植物工場に設置されたカメラ(センサ42)で取得されるものであってもよい。
 水供給量決定部32は、収量予測システム12により予測された植物の予測収量、気象予測情報、植物工場における土壌水分の計測値、土壌のpHの計測値、土壌の電気伝導率の計測値、又は、植物工場における植物や土壌の撮像データ等を用いて、植物への水供給量を決定するように構成されてもよい。土壌水分の計測値、土壌のpHの計測値、及び、土壌の電気伝導率の計測値は、それぞれ、植物工場に設けられた土壌水分計(センサ42)、pH計(センサ42)、及び電気伝導率計(センサ42)により取得されるものであってもよい。植物工場における植物や土壌の撮像データは、植物工場に設置されたカメラ(センサ42)で取得されるものであってもよい。
 肥料供給量決定部34は、収量予測システム12により予測された植物の予測収量、気象予測情報、植物工場における土壌のpHの計測値、又は、土壌の電気伝導率の計測値を用いて、植物への肥料供給量を決定するように構成されてもよい。土壌のpHの計測値、及び、土壌の電気伝導率の計測値は、それぞれ、植物工場に設けられたpH計(センサ42)、及び電気伝導率計(センサ42)により取得されるものであってもよい。
 温度決定部36は、収量予測システム12により予測された植物の予測収量、気象予測情報、又は、植物工場における温度(ハウス内又はハウス外の気温、又は土壌の温度等)の計測値を用いて、植物工場における温度の設定値を決定するように構成されてもよい。植物工場における温度は、植物工場に設けられた温度センサ(センサ42)により取得されるものであってもよい。
 表示出力部38は、方策決定部22により決定された方策を含む情報を表示部44(ディスプレイ)に出力するように構成される。表示部44は、携帯端末(スマートフォンやタブレット等)のディスプレイであってもよい。
 表示出力部38により、方策決定部22で決定された方策が表示部44に表示されるので、植物工場の作業者等がその方策を容易に知ることができる。よって、植物工場における作業効率の向上を図ることができる。
(植物工場の管理支援のフロー)
 以下、図5を参照して、上述の収量予測システム12及び管理支援システム10を用いた植物の収量予測のフロー及び植物工場の管理支援のフローを説明する。図5は、一実施形態に係る植物工場の管理支援方法のフローチャートである。なお、図5に示すように、一実施形態に係る収量予測方法(ステップS2~S4)は、一実施形態に係る植物工場の管理支援方法(ステップS2~S16)に含まれる。
 まず、ステップS2では、光合成量算出部14は、光合成量算出部14は、記憶部40等から、上述の第1相関関係、及び/又は、1日の時間帯ごとの日射量を示す日射量データを取得する。そして、日射量と植物の光合成速度との相関関係(第1相関関係)を用いて、1日の時間帯ごとの日射量を示す日射量データから植物の1日当たりの光合成量を算出する。なお、植物の1日当たりの光合成量の算出方法は、図2~図4等を参照しながら既に述べた通りである。
 次に、ステップS4では、収量予測部16は、記憶部40等から、植物の光合成量と収量との第2相関関係を取得し、植物の光合成量と収量との第2相関関係を用いて、植物の収量を予測する。ステップS4では、ステップS2で算出された植物の1日当たりの光合成量を上述の第2相関関係に当てはめることで、植物の1日あたりの収量を算出(予測)することができる。
 次に、ステップS8では、判定部18は、気象予測情報、又は、植物に関する市場情報を記憶部40等から取得し、取得したこれらの情報に基づいて、植物の生産調整の要否を判定する。
 例えば、ステップS8では、収量予測システム12で予測されたとおりの収量の植物が収穫された場合に、目標通りの販売額(重量あたりの販売額等)が得られるか否かに基づいて、生産調整の要否を判定するようにしてもよい。この場合、目標通りの販売額以上が得られる見込みである場合には、生産調整は不要であると判断される(ステップS8のNo)、このフローを終了する。一方、目標通りの販売額以上が得られない見込みである場合には、生産調整が必要であると判断され(ステップS8のYes)、次のステップS10に進む。
 なお、目標の販売額(重量あたりの販売額等)は、植物工場で栽培される植物の収穫時期における市場情報(例えば、卸売り価格)に基づいて設定することができる。卸売り価格等の市場情報としては、過去の市場情報及び気象予測情報から予測される市場情報を用いてもよい。
 次に、ステップS10では、方策決定部22は、植物の目標収量を記憶部40等から取得し、少なくとも、ステップS4で算出された予測収量と、植物の目標収量との比較に基づいて、生産調整をするための方策を決定する。予測収量が目標収量以上である場合(ステップS10でYes)、ステップS12に進み、適切な方策を決定する。予測収量が目標収量未満である場合(ステップS10でNo)、ステップS14に進み、適切な方策を決定する。
 予測収量が目標収量以上である場合(ステップS10でYes)には、実際の収量が目標収量に近づくように、すなわち、予測収量よりも収量が減少するように生産調整を行う。生産調整の方策としては、遮光量の調節、CO量の調節、摘果又は摘果、摘葉、水供給量の調節、肥料供給量の調節、及び/又は生育温度の調節が挙げられる。生産調整のためにいずれの方策を実施するかは、気象予測情報等も考慮して決定してもよい。
 遮光率の調節については、植物工場における温度が植物の栽培に適した温度(例えば、イチゴの場合は約25℃)を超えないように、かつ、目標の収量が得られるように、遮光率を設定する。遮光率とは、遮光材を設置しないときの植物工場における日光の照射面積に対する、遮光材により日光の照射が遮られる面積の比である。遮光率は、10%以上90%以下の範囲内で設定してもよい。遮光材による遮光のみでは植物工場における温度調節が十分ではないときには、冷房による植物工場の冷却を併用してもよい。冷房については、冷房使用による電気料金が、冷房使用による作物の販売代金の増加分を超えない範囲で使用することとしてもよい。
 CO量の調節については、作物の目標収量が得られるように、植物工場内におけるCO濃度が植物の栽培に適した範囲(例えば、イチゴの場合は約2000ppm)よりも少ない量のCO量となるように設定する。CO濃度は、植物の栽培における最適濃度に対して10%以上90%以下の範囲内で設定してもよい。CO量の調節ついては、CO量の調節に係るコストが、CO量の調節による作物の販売代金の増加分を超えない範囲で行うこととしてもよい。
 摘果又は摘果を行うことで、収穫時期を遅らせるべく、果実の一部について摘花又は摘果を行うこととしてもよい。収穫可能な果実のうち、10%以上90%以下の果実を摘花または摘果するようにしてもよい。なお、イチゴの場合、着花から約1か月かけて果実が成長するので、1か月後の生産目標に合わせて摘花/摘果の量を決定してもよい。
 摘葉を行うことで、生産シフト(生産を所望の期間だけ遅らせる)を行うことができる。全葉のうち、10%以上60%以下の葉を適用するようにしてもよい。なお、30%以上摘葉する場合は,新株(幼苗)との入れ替えを含めて判断してもよい。
 植物の栽培に必要な水の供給量は、果実生産量(収量)、葉枚数、及び、根量に基づき決定することができる。したがって、植物の目標生産量が決定したら、当該目標生産量に応じた水供給量を設定することができる。水供給量の設定値に基づき、水供給弁の開度制御又は開閉制御をするようにしてもよい。
 植物の栽培に必要な肥料の供給量は、果実生産量(収量)、葉枚数、及び、根量に基づき決定することができる。したがって、植物の目標生産量が決定したら、当該目標生産量に応じた肥料供給量を設定することができる。液体肥料の場合、肥料供給量の設定値に基づき、肥料供給弁の開度制御又は開閉制御をするようにしてもよい。固体肥料の場合、施肥時期を遅らせてもよい。
 植物の生育温度の調節により、植物の生育速度を制御することができる。例えば、植物の生育温度を最適温度よりも低い温度に設定することで、植物の生育速度を遅くすることができる。植物の生育温度の調節ついては、温度調節に係るコストが、温度量の調節による作物の販売代金の増加分を超えない範囲で行うこととしてもよい。
 予測収量が目標収量未満である場合(ステップS10でNo)には、収量及び/又は収益性が高くなるように、生産調整を行う。生産調整の方策としては、摘果/摘果、補光量の調節、生育温度の調節、肥料供給量の調節、及び/又は水供給量の調節が挙げられる。生産調整のためにいずれの方策を実施するかは、気象予測情報等も考慮して決定してもよい。
 摘果又は摘果を行うことで、販売単価の大きい果実(イチゴの場合、頂果や二番果等)に養分を集中させて収益性を向上すべく、販売単価の小さい果実については摘花又は摘果を行うこととしてもよい。収穫可能な果実のうち、10%以上90%以下の果実を摘花または摘果するようにしてもよい。
 気象予測情報等により、日照量不足が予想される場合には、LED(light emitting diode)照明等により補光をするようにしてもよい。目標収量が得られるように、補光量を設定してもよい。又は、補光量は、補光量の調節に係るコストが、補光量の調節による収量の増加に伴う収益の増加分を超えない範囲で行うこととしてもよい。
 植物の生育温度の調節により、植物の生育速度を制御することができる。例えば、温度が過剰に高い又は低い場合には、植物の生育温度を最適温度に近い温度に調節することで、植物の生育速度を速くすることができる。植物の生育温度の調節ついては、温度調節に係るコスト(冬場の暖房代等)が、温度調節による作物の販売代金の増加分を超えない範囲で行うこととしてもよい。
 植物の栽培に必要な肥料の供給量は、果実生産量(収量)、葉枚数、及び、根量に基づき決定することができるが、収量をより増加すべく、肥料を追加投入する、あるいは、肥料の種類を変更するようにしてもよい。液体肥料の場合、変更(増加)後の肥料供給量の設定値に基づき、肥料供給弁の開度制御又は開閉制御をするようにしてもよい。固体肥料の場合、施肥時期を早めてもよく、あるいは、施肥肥料タイプを変更してもよい(硫酸カリウムからケイ酸カリウムに変更する等)。
 植物の栽培に必要な水の供給量は、果実生産量(収量)、葉枚数、及び、根量に基づき決定することができる。したがって、植物の目標生産量が決定したら、当該目標生産量に応じた水供給量を設定することができる。水供給量の設定値に基づき、水供給弁の開度制御又は開閉制御をするようにしてもよい。
 ステップS12又はS14にて摘花又は摘果を行うことが決定された場合には、摘花対象決定部24は、ステップS2~S4で算出された植物の予測収量、及び、植物の果実の重量に関するデータに基づいて、摘花又は摘果の対象となる植物の花又は果実を決定するようにしてもよい。
 摘花/摘果対象の決定の仕方について、植物工場で栽培される植物がイチゴである場合について、図6及び図7を参照して説明する。図6は、イチゴの房50の模式図であり、図7は、摘花/摘果対象の決定の仕方を説明するための表である。
 図6に示すように、イチゴの房50には、複数の果実52~58が成る。複数の果実は、最初にできる果実である1個の頂果52、頂果52から二股に分かれる茎にそれぞれできる2個の二番果54a,54b、さらに二股に分かれる茎51にそれぞれできる合計4個の三番果56a~56d、さらに二股に分かれる茎51にそれぞれできる合計8個の四番果58a~58h、…を含む。1つの房あたりにできる果実の個数には、実際的には上限が存在するものの、その上限を度外視すれば、理論的には2(N-1)個のN番果ができることになる。
 図7に示す表には、1つの房50にできる複数の果実の各々(N番果)の欄に、該当する果実の平均的な重量(一例)が記載されている。図7に示す例では、頂果1つあたり20g、二番果1つ当たり10g、三番果1つあたり8g、四番果1つあたり5gとなっている。なお、これらの重量は、過去の収穫実績から統計値(平均値等)として得られる。
 図7の表においては、イチゴ1株当たり1月あたりの予測収量が99g及び72gと算出された2通りの場合について、摘花/摘果対象として決定された果実の欄に「摘果」と表示されている。
 摘花/摘果対象は、例えば以下のように決定する。すなわち、まず、頂果から順番に(表の左側から順に)、果実の重量を積算し、予測収量の範囲に収まる果実については、摘花対象とせず、予測収量に収まらない果実について摘花対象として決定する。
 上段の例(予測収量が99gの例)では、頂果(20g)1個、二番果(10g)2個、三番果(8g)4個、四番果(5g)5個までの各果実の重量の総和は97gである。この合計重量に、6個目以降の四番果の重量を算入すると、予測収量99gを超えてしまう。そこで、6番目以降の四番果、及び、五番果以降は摘果対象として決定する。
 下段の例(予測収量が72gの例)では、頂果(20g)1個、二番果(10g)2個、三番果(8g)4個までの各果実の重量の総和は72gである。この合計重量に、1個目以降の四番果の重量を算入すると、予測収量72gを超えてしまう。そこで、四番果以降は摘果対象として決定する。
 このように、植物の予測収量、及び、果実の重量に関するデータに基づいて、摘花又は摘果の対象となる花又は果実を決定することができる。これにより、適切に生産調整を行うことができ、植物工場における収益の向上を図ることができる。
 ステップS12又はS14にて遮光又は補光を行うことが決定された場合には、遮光率決定部26は、ステップS2~S4で算出された植物の予測収量、及び、気象予測情報を用いて、植物工場における遮光率を決定するようにしてもよい。
 例えば、平年であれば、夏場には遮光率5%~50%となるように、遮光材を設ける植物工場の場合、気象予測情報により、夏場の日照不足が見込まれる場合には、植物工場での遮光材の一部または全部を撤去して、遮光率を向上させることにより、収量増加を図ることができる。一方、気象予測情報により、夏場の日照過多が見込まれる場合には、植物工場における遮光率を通常よりも高める(即ち、設置する遮光材を増やす)ことにより、冷房コストの低減を図ることができる。
 このように、植物の予測収量、及び、気象予測情報を用いて、植物工場における遮光率を決定することができる。これにより、適切に生産調整を行うことができ、植物工場における収益の向上を図ることができる。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本発明の少なくとも一実施形態に係る収量予測システムは、
 植物を栽培する植物工場における収量を予測するための収量予測システムであって、
 日射量と前記植物の光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出するように構成された光合成量算出部と、
 前記植物の光合成量と収量との第2相関関係を用いて、前記植物の収量を予測するように構成された収量予測部と、
を備える。
 本発明者らの鋭意検討の結果、日射量と植物の光合成速度との間に所定の相関関係があることが見出された。上記(1)の構成によれば、日射量と植物の収量との相関関係(第1相関関係)に基づき、1日の時間帯ごとの日射量データから1日当たりの光合成量を算出することができる。そして、このようにして算出された1日あたりの光合成量を、植物の光合成量と収量との相関関係(第2相関関係)に適用することで、1日あたりの植物の収量を算出することができる。したがって、上記(1)の構成によれば、簡素な手順で精度良好に植物の収量を適切に予測することができる。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記第1相関関係において、前記日射量の逆数と、前記光合成速度の逆数とが線形の相関関係を有する。
 本発明者らの鋭意検討の結果、日射量の逆数と、植物の光合成速度の逆数とが線形の相関を有することがわかった。上記(2)の構成によれば、第1相関関係において、日射量の逆数と、光合成速度の逆数とが線形の相関関係を有するので、簡素な手順で精度良好に植物の収量を適切に予測することができる。
(3)本発明の少なくとも一実施形態に係る植物工場の管理支援システムは、
 植物を栽培する植物工場の管理支援システムであって、
 上記(1)又は(2)に記載の収量予測システムにより予測された前記植物の予測収量、及び、気象予測情報又は前記植物に関する市場情報に基づいて、前記植物の生産調整の要否を判定するように構成された判定部を備える。
 上記(3)の構成によれば、上記(1)の構成で得られる予測収量、及び、別途取得される気象予測情報又は市場情報に基づいて生産調整の要否を判定することにより、植物工場における収益の向上を図ることができる。
(4)幾つかの実施形態では、上記(3)の構成において、
 前記管理支援システムは、
 前記判定部により前記植物の生産調整が必要と判定されたとき、少なくとも前記予測収量と前記植物の目標収量との比較に基づいて、前記生産調整をするための方策を決定するように構成された方策決定部を備える。
 上記(4)の構成によれば、植物の生産調整が必要と判定されたとき、少なくとも、植物の予測収量と目標収量との比較に基づいて、生産調整をするための方策を決定する。このように決定される方策を実施することにより、適切に生産調整を行うことができ、植物工場における収益の向上を図ることができる。
(5)幾つかの実施形態では、上記(4)の構成において、
 前記管理支援システムは、
 前記方策決定部により決定された方策を含む情報を表示部に出力するように構成された表示出力部を備える。
 上記(5)の構成によれば、方策決定部により決定された方策が表示部に表示されるので、植物工場の作業者等がその方策を容易に知ることができる。よって、植物工場における作業効率の向上を図ることができる。
(6)本発明の少なくとも一実施形態に係る植物工場の管理支援システムは、
 植物を栽培する植物工場の管理支援システムであって、
 上記(1)又は(2)に記載の収量予測システムにより予測された前記植物の予測収量、及び、前記植物の果実の重量に関するデータに基づいて、摘花又は摘果の対象となる前記植物の花又は果実を決定するように構成された摘花対象決定部を備える。
 上記(6)の構成によれば、植物の予測収量、及び、果実の重量に関するデータに基づいて、摘花又は摘果の対象となる花又は果実を決定するようにしたので、適切に生産調整を行うことができ、植物工場における収益の向上を図ることができる。
(7)本発明の少なくとも一実施形態に係る植物工場の管理支援システムは、
 植物を栽培する植物工場の管理支援システムであって、
 上記(1)又は(2)に記載の収量予測システムにより予測された前記植物の予測収量、及び、気象予測情報を用いて、前記植物工場における遮光率を決定するように構成された遮光率決定部を備える。
 上記(7)の構成によれば、植物の予測収量、及び、気象予測情報を用いて、植物工場における遮光率を決定するようにしたので、適切に生産調整を行うことができ、植物工場における収益の向上を図ることができる。
(8)本発明の幾つかの実施形態に係る収量予測方法は、
 植物を栽培する植物工場における収量を予測するための収量予測方法であって、
 日射量と光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出するステップと、
 光合成量と収量との第2相関関係を用いて、前記植物の収量を予測するステップと、
を備える。
 上記(8)の方法によれば、日射量と植物の収量との相関関係(第1相関関係)に基づき、1日の時間帯ごとの日射量データから1日当たりの光合成量を算出することができる。そして、このようにして算出された1日あたりの光合成量を、植物の光合成量と収量との相関関係(第2相関関係)に適用することで、1日あたりの植物の収量を算出することができる。したがって、上記(8)の方法によれば、簡素な手順で精度良好に植物の収量を適切に予測することができる。
(9)本発明の少なくとも一実施形態に係る収量予測プログラムは、
 植物を栽培する植物工場における収量を予測するための収量予測プログラムであって、
 コンピュータに、
  日射量と光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出する手順と、
  光合成量と収量との第2相関関係を用いて、前記植物の収量を予測する手順と、
を実行させるように構成される。
 上記(9)のプログラムによれば、日射量と植物の収量との相関関係(第1相関関係)に基づき、1日の時間帯ごとの日射量データから1日当たりの光合成量を算出することができる。そして、このようにして算出された1日あたりの光合成量を、植物の光合成量と収量との相関関係(第2相関関係)に適用することで、1日あたりの植物の収量を算出することができる。したがって、上記(9)のプログラムによれば、簡素な手順で精度良好に植物の収量を適切に予測することができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
10  管理支援システム
12  収量予測システム
14  光合成量算出部
16  収量予測部
18  判定部
22  方策決定部
24  摘花対象決定部
26  遮光率決定部
28  補光量決定部
30  摘葉量決定部
32  水供給量決定部
34  肥料供給量決定部
36  温度決定部
38  表示出力部
40  記憶部
42  センサ
44  表示部
50  房
51  茎
52  頂果
54,54a~54b 二番果
56,56a~56d 三番果
58,58a~58h 四番果
B   呼吸速度
PA  光合成速度
PG  光合成速度

Claims (9)

  1.  植物を栽培する植物工場における収量を予測するための収量予測システムであって、
     日射量と前記植物の光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出するように構成された光合成量算出部と、
     前記植物の光合成量と収量との第2相関関係を用いて、前記植物の収量を予測するように構成された収量予測部と、
    を備える収量予測システム。
  2.  前記第1相関関係において、前記日射量の逆数と、前記光合成速度の逆数とが線形の相関関係を有する
    請求項1に記載の収量予測システム。
  3.  植物を栽培する植物工場の管理支援システムであって、
     請求項1又は2に記載の収量予測システムにより予測された前記植物の予測収量、及び、気象予測情報又は前記植物に関する市場情報に基づいて、前記植物の生産調整の要否を判定するように構成された判定部を備える
    植物工場の管理支援システム。
  4.  前記判定部により前記植物の生産調整が必要と判定されたとき、少なくとも前記予測収量と前記植物の目標収量との比較に基づいて、前記生産調整をするための方策を決定するように構成された方策決定部を備える
    請求項3に記載の植物工場の管理支援システム。
  5.  前記方策決定部により決定された方策を含む情報を表示部に出力するように構成された表示出力部を備える
    請求項4に記載の植物工場の管理支援システム。
  6.  植物を栽培する植物工場の管理支援システムであって、
     請求項1又は2に記載の収量予測システムにより予測された前記植物の予測収量、及び、前記植物の果実の重量に関するデータに基づいて、摘花又は摘果の対象となる前記植物の花又は果実を決定するように構成された摘花対象決定部を備える
    植物工場の管理支援システム。
  7.  植物を栽培する植物工場の管理支援システムであって、
     請求項1又は2に記載の収量予測システムにより予測された前記植物の予測収量、及び、気象予測情報を用いて、前記植物工場における遮光率を決定するように構成された遮光率決定部を備える
    植物工場の管理支援システム。
  8.  植物を栽培する植物工場における収量を予測するための収量予測方法であって、
     日射量と前記植物の光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出するステップと、
     前記植物の光合成量と収量との第2相関関係を用いて、前記植物の収量を予測するステップと、
    を備える収量予測方法。
  9.  植物を栽培する植物工場における収量を予測するための収量予測プログラムであって、
     コンピュータに、
      日射量と前記植物の光合成速度との第1相関関係を用いて、1日の時間帯ごとの日射量を示す日射量データから前記植物の1日当たりの光合成量を算出する手順と、
      前記植物の光合成量と収量との第2相関関係を用いて、前記植物の収量を予測する手順と、
    を実行させるための収量予測プログラム。
PCT/JP2022/032611 2021-09-09 2022-08-30 収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラム WO2023037931A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-146551 2021-09-09
JP2021146551A JP2023039465A (ja) 2021-09-09 2021-09-09 収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラム

Publications (1)

Publication Number Publication Date
WO2023037931A1 true WO2023037931A1 (ja) 2023-03-16

Family

ID=85506678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032611 WO2023037931A1 (ja) 2021-09-09 2022-08-30 収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラム

Country Status (2)

Country Link
JP (1) JP2023039465A (ja)
WO (1) WO2023037931A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783228A (en) * 1980-11-08 1982-05-25 Yamatake Honeywell Co Ltd Temperature control system of recirculation stream in greenhouse
JPS6054621A (ja) * 1984-03-07 1985-03-29 株式会社日立製作所 環境制御装置
JP2019193592A (ja) * 2018-05-01 2019-11-07 株式会社クボタ 農業支援システム
JP2019219704A (ja) * 2018-06-15 2019-12-26 株式会社オーガニックnico 農業経営支援システム
JP2020024702A (ja) * 2018-08-03 2020-02-13 三菱ケミカル株式会社 生産流通管理システム、管理方法、及びプログラム
CN111837797A (zh) * 2020-02-23 2020-10-30 安徽省农业科学院园艺研究所 一种葡萄栽培方法
CN112293126A (zh) * 2020-10-14 2021-02-02 嘉兴市水月湾农业科技有限公司 一种猕猴桃种植方法
JP2021012483A (ja) * 2019-07-04 2021-02-04 オムロン株式会社 植物の栽培管理システム及び、植物の栽培管理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783228A (en) * 1980-11-08 1982-05-25 Yamatake Honeywell Co Ltd Temperature control system of recirculation stream in greenhouse
JPS6054621A (ja) * 1984-03-07 1985-03-29 株式会社日立製作所 環境制御装置
JP2019193592A (ja) * 2018-05-01 2019-11-07 株式会社クボタ 農業支援システム
JP2019219704A (ja) * 2018-06-15 2019-12-26 株式会社オーガニックnico 農業経営支援システム
JP2020024702A (ja) * 2018-08-03 2020-02-13 三菱ケミカル株式会社 生産流通管理システム、管理方法、及びプログラム
JP2021012483A (ja) * 2019-07-04 2021-02-04 オムロン株式会社 植物の栽培管理システム及び、植物の栽培管理装置
CN111837797A (zh) * 2020-02-23 2020-10-30 安徽省农业科学院园艺研究所 一种葡萄栽培方法
CN112293126A (zh) * 2020-10-14 2021-02-02 嘉兴市水月湾农业科技有限公司 一种猕猴桃种植方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANEKO, DAIJIRO: "Estimation of Rice Situation Index in Japan Using Remotely Sensed and Meteorological Data", JOURNAL OF THE REMOTE SENSING SOCIETY OF JAPAN, vol. 26, no. 3, 1 January 2006 (2006-01-01), pages 202 - 212, XP009544338, ISSN: 0289-7911, DOI: 10.11440/rssj1981.26.202 *

Also Published As

Publication number Publication date
JP2023039465A (ja) 2023-03-22

Similar Documents

Publication Publication Date Title
EP3534689B1 (en) Controlling agricultural production areas
Casadesús et al. A general algorithm for automated scheduling of drip irrigation in tree crops
Ehret et al. Neural network modeling of greenhouse tomato yield, growth and water use from automated crop monitoring data
KR20110073010A (ko) 태양광 파장 제어를 이용한 온실 식물 성장 조절 장치 및 그것의 제어 방법
JP6609800B2 (ja) 生育診断方法、生育診断装置、データ測定装置、生育診断プログラム、生育補助方法、生育補助装置及び生育補助プログラム
US12029174B2 (en) Method for managing crop irrigation, and system using same
JPWO2020170939A1 (ja) 人工光型植物工場コホートフェノタイピングシステム
AU2023203307A1 (en) Controlling Agricultural Production Areas
JP2021128756A (ja) 先物取引情報表示プログラム
CN105993720B (zh) 一种日光温室基质袋培作物灌水量的模拟计算方法
Marsh et al. Economically optimum day temperatures for greenhouse hydroponic lettuce production part I: a computer model
WO2023037931A1 (ja) 収量予測システム、植物工場の管理支援システム、収量予測方法及び収量予測プログラム
KR102134397B1 (ko) 작물활성지수 기반 시설원예 복합환경 제어시스템 및 방법
Cohen et al. Applications of sensing to precision irrigation
Jing et al. Prediction of crop phenology—A component of parallel agriculture management
CN110610436A (zh) 农业经营支援***
JP2019219704A5 (ja)
Sun et al. Study of tomato growth weight-distribution model based on real-time plant weight in a solar greenhouse
KR20180054352A (ko) 농업 기상 정보를 이용한 노지 농가 재배 경영 관리 방법
Yao et al. Integrating microweather forecasts and crop physiological indicators for greenhouse environmental control
Park et al. Analysis and monitoring of environmental parameters in a single-span greenhouse during strawberry cultivation
JP2022120830A (ja) 果房収穫量予測方法及び果房収穫量予測システム
EP4316236A1 (en) Greenhouse environment optimisation
Al-Rawi et al. ESTIMATION OF THE OPTIMUM QUANTITIES OF YIELD AND RESOURCES USED IN WHEAT CULTIVATION UNDER SUPPLEMENTARY IRRIGATION SYSTEM
JP2022120539A (ja) 果房収穫量予測方法及び果房収穫量予測システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867253

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401000450

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE