WO2023037662A1 - 試験装置、試験方法およびプログラム - Google Patents

試験装置、試験方法およびプログラム Download PDF

Info

Publication number
WO2023037662A1
WO2023037662A1 PCT/JP2022/020674 JP2022020674W WO2023037662A1 WO 2023037662 A1 WO2023037662 A1 WO 2023037662A1 JP 2022020674 W JP2022020674 W JP 2022020674W WO 2023037662 A1 WO2023037662 A1 WO 2023037662A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting elements
light emitting
leds
wavelength
Prior art date
Application number
PCT/JP2022/020674
Other languages
English (en)
French (fr)
Inventor
宏太郎 長谷川
康司 宮内
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to CN202280017795.XA priority Critical patent/CN116897290A/zh
Priority to KR1020237030998A priority patent/KR20230145149A/ko
Priority to DE112022002194.2T priority patent/DE112022002194T5/de
Publication of WO2023037662A1 publication Critical patent/WO2023037662A1/ja
Priority to US18/539,320 priority patent/US20240110969A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0228Control of working procedures; Failure detection; Spectral bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0425Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2894Aspects of quality control [QC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
    • G01J2001/4252Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources for testing LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/17Spectrum analysis; Fourier analysis with optical or acoustical auxiliary devices

Definitions

  • the present invention relates to a test device, test method and program.
  • Patent Document 1 A method is known in which one of a pair of LEDs to be inspected emits light and the other receives light, and the optical characteristics of the LED are inspected using the current value of the current output by the photoelectric effect (for example, Patent Document 1 , 2).
  • Patent Document 2 A method is known in which one of a pair of LEDs to be inspected emits light and the other receives light, and the optical characteristics of the LED are inspected using the current value of the current output by the photoelectric effect (for example, Patent Document 1 , 2).
  • Patent Literature [Patent Document 1] JP-A-2019-507953
  • Patent Document 2 JP-A-2010-230568
  • a first aspect of the present invention provides a test device.
  • the test apparatus includes a light emission control section that causes a plurality of light emitting elements to be tested to emit light, a light measurement section that receives light from the plurality of light emitting elements and measures the wavelength of the received light, and the light measurement section.
  • a determination unit that determines whether or not at least one of the plurality of light emitting elements has an abnormality based on the intensity distribution of the wavelengths of light from the plurality of light emitting elements measured by the method.
  • the test device may further include a light source.
  • the test apparatus may further include an optical system for irradiating the plurality of light emitting elements with light from the light source.
  • the test apparatus may further include an electrical measurement unit that measures a photoelectric signal obtained by photoelectrically converting the light emitted from each of the plurality of light emitting elements.
  • the light measurement unit may receive light from the plurality of light emitting elements via the optical system.
  • the determination section determines whether each of the plurality of light emitting elements is defective based on the photoelectric signals from the plurality of light emitting elements measured by the electrical measurement section.
  • the determined light-emitting element may be excluded from targets for light emission by the light emission control unit.
  • the optical system diffuses the light from the light source to collectively irradiate the light from the light source to the plurality of light emitting elements, and emits diffused light from the plurality of light emitting elements. may be guided to the light measuring section by condensing the .
  • the optical system has a branch fiber whose branched end is connected to the light source and the light measurement unit, and a lens unit including one or more lenses.
  • the optical system may collectively irradiate the plurality of light emitting elements with light from the plurality of light sources that emit light in different wavelength bands.
  • the determination unit may determine whether or not there is the abnormality based on a result of comparing the intensity distribution with a reference intensity distribution corresponding to the number of the light emitting elements. good.
  • any one of the above test apparatuses may further include a group dividing unit that divides the plurality of light emitting elements into a plurality of groups in response to the determination that there is an abnormality.
  • the light emission control unit and the light measurement unit cause all light emitting elements to emit light for each of the plurality of groups to measure the wavelength of light
  • the determination unit causes the plurality of groups to emit light. Whether or not at least one light-emitting element included in each of the plurality of groups has an abnormality may be determined based on intensity distributions of wavelengths of light from all light-emitting elements included in each of the groups.
  • a second aspect of the present invention provides a test device.
  • the test apparatus includes a light source, an optical system for irradiating light from the light source onto a plurality of light emitting elements to be tested, and a photoelectric signal obtained by photoelectrically converting the light irradiated by each of the plurality of light emitting elements.
  • an electrical measurement unit a light emission control unit that causes the plurality of light emitting elements to emit light, a light measurement unit that receives light from the plurality of light emitting elements via the optical system and measures the wavelength of the received light, a determination unit that determines whether the plurality of light-emitting elements are good or bad based on a measurement result of at least one of the electrical measurement unit and the light measurement unit.
  • the judging section judges the quality of each of the plurality of light emitting elements based on the photoelectric signals from the plurality of light emitting elements measured by the electrical measurement section, and controls the light emitting elements judged to be defective by the light emission control. It may be excluded from the object to emit light depending on the part.
  • the optical system diffuses the light from the light source to collectively irradiate the light from the light source to the plurality of light emitting elements, and emits diffused light from the plurality of light emitting elements. may be guided to the light measuring section by condensing the .
  • the optical system has a branch fiber whose branched end is connected to the light source and the light measurement unit, and a lens unit including one or more lenses.
  • a test method is provided in a third aspect of the present invention.
  • the test method includes a light emission control step of causing a plurality of light emitting devices to be tested to emit light, a light measuring step of receiving light from the plurality of light emitting devices and measuring the wavelength of the received light, and the light measuring step. determining whether or not at least one of the plurality of light emitting elements has an abnormality based on the intensity distribution of the wavelengths of light emitted from the plurality of light emitting elements measured in .
  • a test method is provided in a fourth aspect of the present invention.
  • the test method includes a light irradiation step of irradiating light from a light source to a plurality of light emitting elements to be tested by an optical system, and measuring a photoelectric signal obtained by photoelectrically converting the light irradiated by each of the plurality of light emitting elements.
  • a program is provided in a fifth aspect of the present invention.
  • the program includes, in a test apparatus for testing light-emitting elements, a light emission control procedure for causing a plurality of light-emitting elements to be tested to emit light; Based on the measurement procedure and the intensity distribution of the wavelengths of light emitted from the plurality of light emitting elements measured in the light measurement procedure, it is determined whether or not at least one of the plurality of light emitting elements has an abnormality. A determination procedure for determination is executed.
  • a program is provided in a sixth aspect of the present invention.
  • the program provides a test apparatus for testing light emitting elements with a light irradiation procedure for irradiating a plurality of light emitting elements to be tested with light from a light source through an optical system, and irradiating the light emitted by each of the plurality of light emitting elements.
  • An electrical measurement procedure for measuring a photoelectric signal obtained by photoelectric conversion, a light emission control procedure for causing the plurality of light emitting elements to emit light, and receiving light from the plurality of light emitting elements via the optical system and receiving the wavelength of the received light. and a judgment procedure for judging whether a plurality of light-emitting elements are good or bad based on at least one measurement result of the electrical measurement procedure and the optical measurement procedure.
  • FIG. 4 is an example of a graph showing an intensity distribution of wavelengths of light from a plurality of LEDs 10 included in a measurement target area.
  • 4 is an example of a graph showing an intensity distribution of wavelengths of light from a plurality of LEDs 10 included in a measurement target area.
  • 4 is an example of a graph showing an intensity distribution of wavelengths of light from a plurality of LEDs 10 included in a measurement target area.
  • 12 illustrates an example computer 1200 in which aspects of the present invention may be implemented in whole or in part;
  • FIG. 12 illustrates an example computer 1200 in which aspects of the present invention may be implemented in whole or in part;
  • FIGS. 1 and 2 are an example of an overall view showing an outline of a test apparatus 100 for testing a plurality of LEDs 10.
  • the test apparatus 100 collectively tests optical characteristics such as wavelengths of the plurality of LEDs 10 based on the intensity distribution of the wavelengths of light from the plurality of LEDs 10 .
  • the test apparatus 100 according to the present embodiment further utilizes the photoelectric effect of the LEDs 10 to collectively test the luminance characteristics or luminous intensity characteristics of a plurality of LEDs 10 based on the photoelectric signals output from the LEDs 10 that emit light.
  • the test apparatus 100 bidirectionally performs wavelength measurement and photoelectric signal measurement of a plurality of LEDs 10 using the same optical system.
  • the test apparatus 100 according to this embodiment does not need to change the apparatus configuration or move the LED 10 to be tested when one of the wavelength measurement and the photoelectric signal measurement is finished and the other is started.
  • the test apparatus 100 is configured such that an LED group in which a plurality of LEDs 10 are formed on a wafer 15, which is an LED wafer, is mounted on a mounting portion 160, and optical characteristics such as wavelengths of the plurality of LEDs 10 are measured. and luminance characteristics or luminous intensity characteristics are tested together.
  • optical characteristics such as the wavelength of the LED 10 may be simply referred to as wavelength characteristics.
  • the LED 10 in this embodiment is a micro LED with a dimension of 100 ⁇ m or less.
  • the LED 10 may be a mini LED with a dimension greater than 100 ⁇ m and 200 ⁇ m or less, an LED with a dimension greater than 200 ⁇ m, or other light emitting elements such as LD. good too.
  • the plurality of LEDs 10 in this embodiment are not electrically connected to each other on the wafer 15 .
  • the LED group is of a back emission type in which the light emitting surfaces of the plurality of LEDs 10 face the wafer 15, and the wafer 15 transmits light.
  • Two terminals 11 are formed on each LED 10 so as to be separated from each other in the Y-axis direction. Each terminal 11 of the plurality of LEDs 10 does not face the wafer 15 .
  • the plurality of LEDs 10 and the wafer 15 on which the plurality of LEDs 10 are mounted may be collectively referred to as a wafer.
  • the LED group may be of a surface-emitting type in which the light-emitting surfaces of the plurality of LEDs 10 do not face the wafer 15.
  • the wafer 15 may not transmit light, and the plurality of LEDs 10
  • Each terminal 11 may or may not face the wafer 15 .
  • the wafer 15 has vias extending in the Z-axis direction at the positions of the terminals 11 in order to bring power supply probes into contact with the terminals 11. may be formed.
  • the plurality of LEDs 10 are formed on a wafer provided with electrical wiring or on a glass-based panel (PLP) having a substantially rectangular outer shape, and are electrically connected to each other to form a unit or cell. good too.
  • PLP glass-based panel
  • the test apparatus 100 includes a light measurement section 110 and a control section 120.
  • the light measurement unit 110 receives light from a plurality of LEDs 10 to be tested by the test device 100 and measures the wavelength of the received light. In other words, the light measurement unit 110 measures the wavelength of the combined light obtained by combining the light from each of the plurality of LEDs 10 .
  • the light measurement unit 110 may measure the wavelength of light emitted by one or a plurality of LEDs 10 in each group, in which all the LEDs 10 to be tested are divided into several groups. In addition, the light measurement unit 110 may individually measure the wavelength of light from each of the plurality of LEDs 10 to be tested.
  • the light measurement unit 110 includes, for example, a wavelength meter, measures the wavelength of the light from the LED 10 and identifies the intensity distribution of the wavelength of the light under the control of the control unit 120 .
  • the light measurement unit 110 may specify the peak wavelength and half width of the light based on the intensity distribution, and measure the dominant wavelength, which is the wavelength corresponding to the color of the light when viewed with the naked eye.
  • the optical measurement unit 110 may be a spectrometer, an optical spectrum analyzer, or the like instead of the wavelength meter.
  • the light measurement unit 110 outputs data indicating the specified intensity distribution to the control unit 120 .
  • the control unit 120 controls each component of the test apparatus 100 . More specifically, the control unit 120 performs sequence control of multiple configurations in the test apparatus 100 by referring to the storage unit 180 that stores sequences, programs, and the like for controlling each configuration in the test apparatus 100 .
  • control unit 120 controls the electrical connection unit 150 and the electrical measurement unit 155 to supply a predetermined current value to the plurality of LEDs 10, thereby causing the plurality of LEDs 10 to emit light. do.
  • the control unit 120 may cause the plurality of LEDs 10 to emit light by controlling the electrical connection unit 150 and the electricity measurement unit 155 to supply a predetermined voltage value to the plurality of LEDs 10 . Description is omitted.
  • control unit 120 receives from the light measurement unit 110 the wavelengths of the light emitted from the plurality of LEDs 10 measured by the light measurement unit 110, and based on the intensity distribution of the wavelengths of light, at least of the plurality of LEDs 10 It functions as a determination unit 123 that determines whether or not one LED 10 has an abnormality. In other words, the control unit 120 determines whether or not the plurality of LEDs 10 as a whole is abnormal based on the intensity distribution of the wavelengths of the combined light measured by turning on all of the plurality of LEDs 10 to which the current is supplied.
  • control unit 120 stores reference data for determining the presence or absence of an abnormality in the plurality of LEDs 10 as a whole, reference data for determining the quality of each of the plurality of LEDs 10, the determination results thereof, Reference data for moving the electrical connector 150 may be referred to.
  • the test apparatus 100 may further include a light source 130, an optical system 140, and an electrical measurement section 155 for photoelectric testing of a plurality of LEDs 10.
  • Light source 130 as shown in FIGS. 1 and 2 , is connected to optical system 140 common to light measuring section 110 and emits light toward optical system 140 .
  • the light source 130 emits light in the reaction wavelength band of the plurality of LEDs 10 under the control of the controller 120 .
  • the control unit 120 controls the irradiation time, wavelength, intensity, etc. of the light emitted from the light source 130 .
  • the light source 130 may be a light source that emits light in a wide wavelength band, such as a xenon light source, or a light source that emits light in a narrow wavelength band, such as a laser light source.
  • the light source 130 may include multiple laser light sources with different wavelengths. Note that if the reaction wavelength and the emission wavelength of the LED 10 are different, even if the LED 10 is irradiated with the light of the emission wavelength of the LED 10, the photoelectric conversion is not properly performed due to the difference.
  • the optical system 140 irradiates the plurality of LEDs 10 with light from the light source 130, as shown in FIG. More specifically, as shown in FIG. 2, the optical system 140 according to the present embodiment diffuses the light from the light source 130 to collectively irradiate the plurality of LEDs 10 with the light from the light source 130 . That is, the projection plane in the XY plane of the light from the light source 130 emitted via the optical system 140 covers at least the plurality of LEDs 10 of the LED group.
  • the optical system 140 also collects the diffused light from the plurality of LEDs 10 and guides the light to the light measuring section 110, as shown in FIG.
  • the light measuring section 110 receives light from the plurality of LEDs 10 via the optical system 140 .
  • the test apparatus 100 can bidirectionally perform wavelength measurement and photoelectric signal measurement of the plurality of LEDs 10 using the common optical system 140. It can be carried out.
  • the optical system 140 guides the light from the plurality of LEDs 10 to both the light measuring unit 110 and the light source 130, as shown in FIG.
  • the light from the plurality of LEDs 10 may be guided only to the light measuring section 110 and not guided to the light source 130 .
  • the optical system 140 has a bifurcated fiber 141 .
  • the bifurcated fiber 141 is a Y-shaped optical fiber.
  • the branched end of the bifurcated fiber 141 is connected to the light source 130 and the light measurement section 110 .
  • the 2-branch fiber 141 is an example of a branch fiber, and instead of the 2-branch fiber 141, a multi-branch fiber such as a 3-branch fiber or a 4-branch fiber may be used.
  • the test apparatus 100 may include two or more light sources 130, and one light source 130 may be connected to each end of the multibranch fiber on the branch side.
  • the optical system 140 may collectively irradiate the plurality of LEDs 10 with light from the plurality of light sources 130 that emit light in different wavelength bands.
  • the light source 130 emits light of a specific wavelength band
  • the wavelength band of the light irradiated to the LED 10 is widened, and the LED 10 can be more reliably emitted. can be photoelectrically converted.
  • the optical system 140 may further have a lens unit 143 including one or more lenses, and the lens unit 143 is arranged on the optical path in the optical system 140 . Further, the lens unit 143 converges the diffused light emitted from the plurality of LEDs 10 to enter the bifurcated fiber 141, as shown in FIG.
  • the electrical measurement unit 155 measures a photoelectric signal obtained by photoelectrically converting the light emitted from each of the plurality of LEDs 10 . More specifically, the electricity measurement unit 155 measures current values of currents output from the plurality of LEDs 10 via the electrical connection unit 150 under the control of the control unit 120 . The electricity measurement section 155 outputs the current value measured for each LED 10 to the control section 120 . Note that the electricity measurement unit 155 may measure voltage values corresponding to the current values instead of the current values of the currents output from the plurality of LEDs 10 . In addition, as described above, the electricity measurement unit 155 according to the present embodiment also supplies current to the plurality of LEDs 10 via the electrical connection unit 150 under the control of the control unit 120 .
  • the test apparatus 100 may further include an electrical connection section 150 , a mounting section 160 , a shielding section 170 and a storage section 180 .
  • the electrical connection unit 150 is, for example, a probe card (probe board), and is electrically connected to the terminals 11 of the plurality of LEDs 10 to be tested.
  • the definition of "electrically connected” means to be electrically connected by contact or to be electrically connected without contact.
  • the electrical connection part 150 is electrically connected by being in contact with the terminals 11 of the plurality of LEDs 10, but may be electrically connected in a non-contact manner by, for example, electromagnetic induction or short-range wireless communication.
  • the electrical connection portion 150 includes a substrate 151 provided with an electrical circuit and a plurality of electrical wirings, and a plurality of probes 153 extending from the substrate 151 toward each of the plurality of LEDs 10 and in contact with the terminals 11 of each of the plurality of LEDs 10 .
  • the electrical connection unit 150 is driven and controlled by the control unit 120 to move two-dimensionally in the XY plane and to move up and down in the Z-axis direction. Electrical connection portion 150 is driven and controlled by control portion 120 so that a plurality of LEDs 10 are positioned between light source 130 and electrical connection portion 150 .
  • the plurality of probes 153 of the electrical connection portion 150 contact the respective terminals 11 of the plurality of LEDs 10 from the Z-axis positive direction side of the wafer 15 .
  • the other end of each probe 153 opposite to the one end that contacts the terminal 11 is electrically connected to the electrical wiring provided on the substrate 151 .
  • a plurality of electrical wirings of the plurality of probes 153 extend from the side surface of the substrate 151 and are electrically connected to the electrical measuring section 155 .
  • the LED group is mounted on the mounting portion 160 on the Z-axis positive direction side.
  • the mounting portion 160 in the illustrated example has a substantially circular outer shape in plan view, it may have another outer shape.
  • the mounting part 160 has a holding function such as a vacuum chuck or an electrostatic chuck, and holds the mounted wafer 15 of the LED group.
  • the mounting part 160 has a through hole 161 in the center of the XY plane so as not to block the light emitted by the plurality of LEDs 10 and transmitted through the wafer 15 , and holds the wafer 15 around the through hole 161 .
  • the shielding part 170 shields light other than the light from the light source 130 .
  • the shielding part 170 in this embodiment has the entire surface painted black to prevent diffuse reflection of light on the surface.
  • the shielding section 170 is provided so as to form a sealed space with the lens unit 143, the mounting section 160 and the wafer 15, and shields light other than the light from the light source 130 with this configuration. do.
  • test apparatus 100 does not have to include the electrical connection section 150 , the mounting section 160 and the shield section 170 . Additionally or alternatively, test apparatus 100 may not include light source 130 , optical system 140 and electrical measurement section 155 .
  • FIG. 3 is an example of a flow chart explaining the flow of the test method by the test device 100.
  • the control unit 120 of the test apparatus 100 performs a photoelectric test of the plurality of LEDs 10 by the electricity measurement unit 155 and a wavelength characteristic test of the plurality of LEDs 10 by the light measurement unit 110. The quality of the plurality of LEDs 10 is determined based on at least one of the measurement results.
  • the flow shown in FIG. 3 is started when, for example, the user inputs to the test apparatus 100 to start testing the LED group while the LED group is placed on the placement section 160 .
  • the test apparatus 100 performs an electrical connection step of testing the electrical characteristics of the plurality of LEDs 10 by supplying current from the electrical measurement section 155 to the plurality of LEDs 10 to be tested through the electrical connection section 150 (step S101). ).
  • the control section 120 of the test apparatus 100 drives and controls the electrical connection section 150 to move the plurality of probes 153 of the electrical connection section 150 to a plurality of test targets in the group of LEDs on the mounting section 160 . are electrically connected to respective terminals 11 of the LEDs 10 of the .
  • the control unit 120 supplies a current or voltage to the plurality of LEDs 10 from the electrical measurement unit 155 via the electrical connection unit 150, performs an electrical characteristic test on the LEDs 10, and detects that the measured voltage or current value is outside the threshold range. A given LED 10 is identified as having poor electrical properties.
  • the threshold is stored in the storage unit 180 .
  • the control unit 120 excludes the LED 10 determined to have poor electrical characteristics from being tested after the electrical characteristics test. In each step after step S101 in the flow, the control unit 120 performs each test while the electrical connection unit 150 is electrically connected to the plurality of LEDs 10 in the LED group. omitted.
  • the test apparatus 100 utilizes the photoelectric effect of the LEDs 10 and collectively tests the luminance characteristics or luminous intensity characteristics of the plurality of LEDs 10 based on photoelectric signals output from the LEDs 10 that have irradiated light. do.
  • the test apparatus 100 identifies an LED 10 with a defective luminance or luminosity from the photoelectric signal measurement result, and excludes the LED 10 from subsequent tests.
  • the test apparatus 100 performs a light irradiation step of irradiating a plurality of LEDs 10 to be tested for photoelectric signal measurement with light from the light source 130 through the optical system 140 (step S103).
  • control unit 120 outputs a command to the light source 130 to cause the multiple LEDs 10 to emit light via the optical system 140 .
  • the optical system 140 diffuses the light from the light source 130 entering from one end of the bifurcated fiber 141 with the lens unit 143 connected to the other end of the bifurcated fiber 141 . irradiate all at once.
  • the test apparatus 100 performs an electrical measurement step of measuring a photoelectric signal obtained by photoelectrically converting the light emitted from each of the plurality of LEDs 10 (step S105).
  • the control unit 120 issues a command to the electricity measurement unit 155 to collectively measure the photoelectric signals output from the plurality of LEDs 10 via the electrical connection unit 150, that is, the current values of the currents. , to output the respective measurement results to the control unit 120 .
  • the control unit 120 determines the quality of each of the plurality of LEDs 10 based on the photoelectric signals from the plurality of LEDs 10 measured by the electrical measurement unit 155, and tests the luminance characteristics or luminous intensity characteristics of the LEDs 10 that have been determined to be defective. Excluded from the subject to emit light in subsequent tests.
  • the control unit 120 refers to the data indicating the normal range of the current value of the photoelectric signal, which is stored in advance in the storage unit 180, and determines that the LED 10 whose measured photoelectric signal is outside the normal range is defective. , the LED 10 may be excluded from subsequent testing.
  • a range based on statistics corresponding to the photoelectric signals output by the plurality of LEDs 10 may be used.
  • the control unit 120 may calculate the average current value and the standard deviation ⁇ based on the current value of the current output from each of the plurality of LEDs 10 stored in the storage unit 180 .
  • the magnitude of the photoelectric signal output by the photoelectric effect of the LED 10 has a correlation with the luminance characteristics and luminous intensity characteristics of the LED 10. Therefore, in addition to or instead of determining the quality of the LED 10 by referring to the data indicating the normal range of the current value of the photoelectric signal, the control unit 120 stores in advance in the storage unit 180 the LED 10 outputs
  • the luminance may be calculated from the measured photoelectric signal by referring to data indicating the correlation between the photoelectric signal and the luminance of the light emitted by the LED 10 .
  • the control unit 120 may calculate the luminous intensity instead of or in addition to the luminance in the same manner as the luminance calculation method.
  • the control unit 120 may further determine the quality of the LED 10 based on the calculated luminance and/or luminosity. For example, the control unit 120 may determine the quality of the LED 10 by referring to data indicating the normal range of luminance and/or luminous intensity, which is stored in advance in the storage unit 180 .
  • the aforementioned correlation may be calculated in advance by the test apparatus 100, or may be calculated by an external device. When the correlation is calculated by an external device, the test apparatus 100 may acquire data indicating the correlation from the external device.
  • the test apparatus 100 collectively tests the wavelength characteristics of the plurality of LEDs 10 based on the intensity distribution of the wavelengths of light from the plurality of LEDs 10 .
  • the test apparatus 100 uses the intensity distribution of the wavelengths of the combined light from the plurality of LEDs 10 that have not been excluded in the above-described photoelectric test to determine whether the plurality of LEDs 10 includes an LED 10 with an abnormal wavelength. judge.
  • the test apparatus 100 performs wavelength measurement of a plurality of LEDs 10 using the optical system 140 common to photoelectric signal measurement. Moreover, the test apparatus 100 does not need to change the device configuration or move the LED 10 to be tested when starting the wavelength measurement after completing the photoelectric signal measurement.
  • the test apparatus 100 executes a light emission control stage for causing the plurality of LEDs 10 to emit light (step S107).
  • the control unit 120 issues a command to the electrical measurement unit 155 to determine in advance via the electrical connection unit 150 some or all of the plurality of LEDs 10 to be tested for wavelength characteristics. By supplying the current of the determined current value, the plurality of LEDs 10 to which the current is supplied are collectively caused to emit light.
  • the control unit 120 controls the remaining LEDs 10 of the plurality of LEDs 10 to be tested for wavelength characteristics. Also, by repeating collectively causing some or all of the LEDs 10 to emit light, all the LEDs 10 to be tested for wavelength characteristics are sequentially caused to emit light in a stepwise manner.
  • the plurality of LEDs 10 that emit light collectively in this way may be referred to as the plurality of LEDs 10 included in the measurement target area of the LED group.
  • the LED group has one or more measurement target areas, each of which includes a plurality of LEDs 10 .
  • the test apparatus 100 receives light from the plurality of LEDs 10 emitted in the light emission control stage and executes a light measurement stage of measuring the wavelength of the received light (step S109).
  • the control unit 120 issues a command to the light measurement unit 110 to receive light from each of the plurality of LEDs 10 included in the measurement target area of the LED group, which is collected by the optical system 140, The wavelength of the combined light of the plurality of LEDs 10 is measured, and the measurement result is output to the control section 120 .
  • the control unit 120 causes the light measurement unit 110 to output the measurement result of each measurement target area to the control unit 120 .
  • the test apparatus 100 determines whether or not at least one of the plurality of LEDs 10 has an abnormality based on the intensity distribution of the wavelengths of light from the plurality of LEDs 10 measured in the light measurement step. is executed (step S111), and the flow ends.
  • the control unit 120 controls the intensity distribution of the wavelengths of light shown in the measurement results for each measurement target area input from the light measurement unit 110, and determines the intensity distribution of the plurality of LEDs 10 included in the measurement target area. It is determined whether or not at least one of the LEDs 10 has an abnormality. More specifically, the control unit 120 compares the intensity distribution of the wavelengths of light from the plurality of LEDs 10 included in the measurement target area with a reference intensity distribution corresponding to the number of the LEDs 10. Based on the results, It is determined whether or not at least one of the plurality of LEDs 10 has an abnormality.
  • the control unit 120 issues a command to the electricity measurement unit 155 and the light measurement unit 110 in response to the determination that there is an abnormality in the plurality of LEDs 10 included in the measurement target area.
  • the wavelength characteristic test may be performed individually by sequentially performing steps S107 to S111 for each of the plurality of LEDs 10 .
  • the control unit 120 determines whether or not there is an abnormality in the LED 10 based on the intensity distribution of the wavelength of light from one LED 10 measured in the light measurement stage. do.
  • the control unit 120 determines whether or not the LED 10 is abnormal based on the result of comparing the intensity distribution with a reference intensity distribution in the case of one LED 10 .
  • control unit 120 divides the plurality of LEDs 10 into a plurality of groups in response to the determination that there is an abnormality in the plurality of LEDs 10 included in the measurement target area as a result of executing the flow of FIG. It may have the function of dividing.
  • control unit 120 and light measurement unit 110 may cause all LEDs 10 to emit light for each of the plurality of groups to measure the wavelength of light.
  • the control unit 120 further determines whether or not at least one LED 10 included in each of the plurality of groups has an abnormality based on the intensity distribution of the wavelengths of light from all the LEDs 10 included in each of the plurality of groups. You may For example, the control unit 120 may gradually narrow down the defective LEDs 10 by a bifurcation method. Note that the control unit 120 in this case is an example of a group dividing unit.
  • the test apparatus 100 may change the order of each step in the flow of FIG. 3, or omit one or more steps.
  • the test apparatus 100 may execute the wavelength characteristic test in steps S107 to S111 after executing the electrical characteristic test in step S101, and then execute the luminance or luminous intensity characteristic test in steps S103 to S105.
  • the test apparatus 100 may execute the wavelength characteristic test in steps S107 to S111 without executing the electrical characteristic test in step S101 and the luminance or luminous intensity characteristic test in steps S103 to S105.
  • the test apparatus 100 may execute the luminance or luminous intensity characteristic test in steps S103 to S105 and the wavelength characteristic test in steps S107 to S111 in random order without executing the electrical characteristic test in step S101. good.
  • FIG. 4 is an example of a graph showing intensity distribution of wavelengths of light from a plurality of LEDs 10 included in the measurement target area.
  • the horizontal axis indicates the wavelength of light
  • the vertical axis indicates the intensity of light.
  • the intensity distribution of the individual wavelengths of light from the plurality of LEDs 10 included in the measurement target area is indicated by (1)
  • the intensity distribution of the composite wavelength is indicated by (2). The same applies to subsequent figures, and redundant description is omitted.
  • the intensity of the light from the LED 10 has a correlation with the luminance and luminous intensity of the light from the LED 10, and also has a correlation with the current value of the photoelectric signal obtained by photoelectrically converting the light emitted by the LED 10.
  • all of the plurality of LEDs 10 included in the measurement target area emit light with the same intensity at the wavelength expected as the wavelength of light emitted from the LEDs 10 . That is, in the example of FIG. 4, the plurality of LEDs 10 have the same wavelength, and the electric current values of the photoelectric signals obtained by photoelectrically converting the light collectively emitted from the same light source 130 are equal to each other.
  • the intensity distribution of the wavelengths of the synthesized light from the plurality of LEDs 10, in which the current values of the photoelectric signals are equal to each other and the wavelengths are normal, is the intensity distribution of the synthesized wavelengths (2) shown in FIG. become.
  • the test apparatus 100 uses, for example, the composite wavelength intensity distribution (2) shown in FIG. 4 as one of the reference intensity distributions described above.
  • the test apparatus 100 may store data indicating the reference intensity distribution in advance in the storage unit 180 for each number of LEDs 10 for which wavelength intensity distributions are combined, and refer to the data in step S111 in the flow of FIG.
  • the test apparatus 100 determines that there is no abnormality in any of the plurality of LEDs 10 included in the measurement target area.
  • FIG. 5 is an example of a graph showing intensity distribution of wavelengths of light from a plurality of LEDs 10 included in the measurement target area.
  • one of the plurality of LEDs 10 has a wavelength that deviates from the wavelength originally expected as the wavelength of light emitted from the LED 10, as shown by the intensity distribution (f). It emits light with a weaker intensity than That is, in the example of FIG. 5, one of the plurality of LEDs 10 has an abnormal wavelength compared to the remaining LEDs 10, and is a photoelectric signal obtained by photoelectrically converting light collectively irradiated from the same light source 130. current value is low.
  • the composite wavelength intensity distribution (2) shown in FIG. 5 is similar to the composite wavelength intensity distribution (2) shown in FIG.
  • the plurality of LEDs 10 includes an LED 10 having an abnormal wavelength
  • the current value of the photoelectric signal from the LED 10 is lower than that of the other LEDs 10
  • the plurality of LEDs 10 In some cases, the intensity distribution of the wavelengths of the synthesized light from the LEDs 10 coincides with the reference intensity distribution corresponding to the number of the plurality of LEDs 10 . In this case, it may be difficult to detect an abnormality in the wavelength of the LED 10 .
  • FIG. 6 is an example of a graph showing intensity distribution of wavelengths of light from a plurality of LEDs 10 included in the measurement target area.
  • one of the plurality of LEDs 10 has a wavelength that deviates from the wavelength originally expected as the wavelength of light emitted from the LED 10, as shown by the intensity distribution (f). It emits light with the same intensity as That is, in the example of FIG. 6, one of the plurality of LEDs 10 has an abnormal wavelength compared to the remaining LEDs 10, and on the other hand, the light collectively irradiated from the same light source 130 is photoelectrically converted. The current value of the photoelectric signal is the same as the rest of the LEDs 10 .
  • the composite wavelength intensity distribution (2) shown in FIG. 6 differs from the composite wavelength intensity distribution (2) shown in FIG.
  • the test apparatus 100 determines the quality of each of the plurality of LEDs 10 to be tested based on the photoelectric signals from the plurality of LEDs 10, and determines the LEDs 10 that are determined to be defective. , may be excluded from the objects to emit light in tests after the test of the luminance characteristics or luminosity characteristics. As an example, the test apparatus 100 applies light from the same light source 130 to the plurality of LEDs 10 to be tested, and the current value of the photoelectric signal photoelectrically converted is relatively low among the plurality of LEDs 10. LED 10 may be omitted.
  • the test apparatus 100 performs the following operations as shown in FIG. An intensity distribution (2) of the wavelengths of the synthesized light that is varied from the reference intensity distribution is generated. Therefore, the test apparatus 100 can avoid a situation in which it becomes difficult to detect an abnormality in the wavelength of the LED 10 as in the example of FIG. That is, by combining the photoelectric test and the wavelength characteristics test, the test apparatus 100 can detect whether the LEDs 10 having defects in brightness or luminosity are included in the plurality of LEDs 10 to be tested, or the LEDs 10 having defects in the wavelength. is included can also be determined correctly. It can also be said that the test apparatus 100 can improve the test accuracy of the wavelength characteristic test compared to the case where the LED 10 having an abnormality in the photoelectric signal or the like is not excluded from the targets of the wavelength characteristic test.
  • the test apparatus 100 generates the intensity distribution of the wavelength of the synthetic light as shown in FIG. 6, and compares the generated intensity distribution with the reference intensity distribution. For example, a technique such as Fourier transform or GMM may be used to calculate the wavelength component for each frequency. As a result, the test apparatus 100 can more reliably confirm whether the wavelength components of the plurality of LEDs 10 included in the measurement target area include wavelength components that should not exist. It is possible to more reliably confirm whether or not the LEDs 10 include a defective LED 10 that emits light of the wavelength component. In other words, the test apparatus 100 determines that the variation in the intensity distribution of the wavelengths of the synthesized light is not caused by measurement errors, disturbances, etc. It can be confirmed that this is due to the presence of the LED 10 that emits .
  • a technique such as Fourier transform or GMM may be used to calculate the wavelength component for each frequency.
  • the test apparatus 100 can more reliably confirm whether the wavelength components of the plurality of LEDs 10 included in the measurement target area include wavelength components that should not exist. It is
  • the plurality of LEDs 10 to be tested are collectively caused to emit light, the wavelengths of the light from the plurality of LEDs 10 are comprehensively measured, and the intensity of the comprehensive wavelengths Based on the distribution, it is determined whether or not at least one of the plurality of LEDs 10 has an abnormality.
  • the test apparatus 100 can shorten the execution time of the test compared to the case where the wavelength characteristics are tested by individually and sequentially causing the plurality of LEDs 10 to be tested to emit light.
  • the wavelength characteristic test and the luminance characteristic test or the luminous characteristic test of the plurality of LEDs 10 are bidirectionally performed using the same optical system. More specifically, the test apparatus 100 comprehensively receives light from the plurality of LEDs 10 via the optical system 140, and collectively irradiates the plurality of LEDs 10 with light from the light source 130. do. The test apparatus 100 comprehensively tests the wavelength characteristics of the plurality of LEDs 10 using the light from the plurality of LEDs 10, and uses a photoelectric signal obtained by photoelectrically converting the light emitted from each of the plurality of LEDs 10. The luminance or luminous intensity characteristics of the LEDs 10 are individually tested.
  • the wavelength characteristics of the plurality of LEDs 10 to be tested are comprehensively tested using the same optical system without changing the device configuration or moving the LEDs 10 to be tested. and the luminance or luminosity characteristics of the plurality of LEDs 10 can be tested individually.
  • the test apparatus 100 can not only shorten the test execution time compared to the case where it is necessary to change the device configuration or move the LED 10 to be tested when switching between these tests, but also It is also possible to prevent measurement errors due to environmental differences when using an optical system.
  • the test apparatus 100 may include another mechanism such as a prism in the optical system 140 instead of the branching fiber such as the bifurcating fiber 141 .
  • the prism or the like has a functional configuration similar to that of the bifurcating fiber 141 described in the above embodiment.
  • the LED group is a glass-based panel (PLP) having a substantially rectangular outer shape with electrical wiring formed thereon and a plurality of LEDs are formed on the panel
  • the electrical connection is provided by the panel
  • the probe may be brought into contact with each wiring in the row direction and the column direction arranged on the two side surfaces of the .
  • Various embodiments of the invention may be described with reference to flowchart illustrations and block diagrams, where blocks refer to (1) steps in a process in which operations are performed or (2) devices responsible for performing the operations. may represent a section of Certain steps and sections may be implemented by dedicated circuitry, programmable circuitry provided with computer readable instructions stored on a computer readable medium, and/or processor provided with computer readable instructions stored on a computer readable medium. you can Dedicated circuitry may include digital and/or analog hardware circuitry, and may include integrated circuits (ICs) and/or discrete circuitry.
  • ICs integrated circuits
  • Programmable circuits include logic AND, logic OR, logic XOR, logic NAND, logic NOR, and other logic operations, memory elements such as flip-flops, registers, field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), etc. and the like.
  • Computer-readable media may include any tangible device capable of storing instructions to be executed by a suitable device, such that computer-readable media having instructions stored thereon may be designated in flowcharts or block diagrams. It will comprise an article of manufacture containing instructions that can be executed to create means for performing the operations described above. Examples of computer-readable media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like.
  • Computer readable media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), Electrically Erasable Programmable Read Only Memory (EEPROM), Static Random Access Memory (SRAM), Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD), Blu-ray (RTM) Disc, Memory Stick, Integration Circuit cards and the like may be included.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • SRAM Static Random Access Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • RTM Blu-ray
  • the computer readable instructions may be assembler instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or instructions such as Smalltalk, JAVA, C++, etc. any source or object code written in any combination of one or more programming languages, including object-oriented programming languages, and conventional procedural programming languages such as the "C" programming language or similar programming languages; may include
  • Computer readable instructions may be transferred to a processor or programmable circuitry of a general purpose computer, special purpose computer, or other programmable data processing apparatus, either locally or over a wide area network (WAN), such as a local area network (LAN), the Internet, or the like. ) and may be executed to create means for performing the operations specified in the flowcharts or block diagrams.
  • processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.
  • FIG. 7 illustrates an example computer 1200 in which aspects of the invention may be embodied in whole or in part.
  • Programs installed on the computer 1200 cause the computer 1200 to function as one or more "parts" of operations or one or more "parts” of an apparatus according to embodiments of the invention, or to and/or cause computer 1200 to perform processes or steps of processes according to embodiments of the present invention.
  • Such programs may be executed by CPU 1212 to cause computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • a computer 1200 includes a CPU 1212 , a RAM 1214 , a graphics controller 1216 and a display device 1218 , which are interconnected by a host controller 1210 .
  • Computer 1200 also includes input/output units such as communication interface 1222 , hard disk drive 1224 , DVD-ROM drive 1226 , and IC card drive, which are connected to host controller 1210 via input/output controller 1220 .
  • the computer also includes legacy input/output units such as ROM 1230 and keyboard 1242 , which are connected to input/output controller 1220 through input/output chip 1240 .
  • the CPU 1212 operates according to programs stored in the ROM 1230 and RAM 1214, thereby controlling each unit.
  • Graphics controller 1216 takes image data generated by CPU 1212 into a frame buffer or the like provided in RAM 1214 or into itself, and causes the image data to be displayed on display device 1218 .
  • a communication interface 1222 communicates with other electronic devices via a network.
  • Hard disk drive 1224 stores programs and data used by CPU 1212 within computer 1200 .
  • DVD-ROM drive 1226 reads programs or data from DVD-ROM 1201 and provides programs or data to hard disk drive 1224 via RAM 1214 .
  • the IC card drive reads programs and data from IC cards and/or writes programs and data to IC cards.
  • the ROM 1230 stores internally programs such as boot programs executed by the computer 1200 upon activation and/or programs dependent on the hardware of the computer 1200 .
  • Input/output chip 1240 may also connect various input/output units to input/output controller 1220 via parallel ports, serial ports, keyboard ports, mouse ports, and the like.
  • a program is provided by a computer-readable storage medium such as a DVD-ROM 1201 or an IC card.
  • the program is read from a computer-readable storage medium, installed in hard disk drive 1224 , RAM 1214 , or ROM 1230 , which are also examples of computer-readable storage medium, and executed by CPU 1212 .
  • the information processing described within these programs is read by computer 1200 to provide coordination between the programs and the various types of hardware resources described above.
  • An apparatus or method may be configured by implementing information operations or processing according to the use of computer 1200 .
  • the CPU 1212 executes a communication program loaded into the RAM 1214 and sends communication processing to the communication interface 1222 based on the processing described in the communication program. you can command.
  • the communication interface 1222 reads transmission data stored in a transmission buffer area provided in a recording medium such as the RAM 1214, the hard disk drive 1224, the DVD-ROM 1201, or an IC card. Data is transmitted to the network, or received data received from the network is written in a receive buffer area or the like provided on the recording medium.
  • the CPU 1212 causes the RAM 1214 to read all or necessary portions of files or databases stored in external recording media such as a hard disk drive 1224, a DVD-ROM drive 1226 (DVD-ROM 1201), an IC card, etc. Various types of processing may be performed on the data in RAM 1214 . CPU 1212 may then write back the processed data to an external recording medium.
  • external recording media such as a hard disk drive 1224, a DVD-ROM drive 1226 (DVD-ROM 1201), an IC card, etc.
  • Various types of processing may be performed on the data in RAM 1214 .
  • CPU 1212 may then write back the processed data to an external recording medium.
  • CPU 1212 performs various types of operations on data read from RAM 1214, information processing, conditional decisions, conditional branching, unconditional branching, and information retrieval, which are described throughout this disclosure and are specified by instruction sequences of programs. Various types of processing may be performed, including /replace, etc., and the results written back to RAM 1214 . In addition, the CPU 1212 may search for information in a file in a recording medium, a database, or the like.
  • the CPU 1212 selects the first attribute from among the plurality of entries. search for an entry that matches a condition in which the attribute value of the attribute is specified, read the attribute value of the second attribute stored in the entry, and thereby determine the first attribute that satisfies the predetermined condition An attribute value of the associated second attribute may be obtained.
  • the programs or software modules described above may be stored on the computer 1200 or in a computer-readable storage medium near the computer 1200 .
  • a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, whereby the program can be transferred to the computer 1200 via a network. offer.
  • LEDs 11 Terminal 15 Wafer 100 Tester 110 Light measurement unit 120 Control unit 130 Light source 140 Optical system 150 Electrical connection unit 151 Substrate 153 Probe 155 Electrical measurement unit 160 Mounting unit 170 Shield unit 180 Storage unit 1200 Computer 1201 DVD-ROM 1210 host controller 1212 CPU 1214 RAM 1216 graphic controller 1218 display device 1220 input/output controller 1222 communication interface 1224 hard disk drive 1226 DVD-ROM drive 1230 ROM 1240 input/output chip 1242 keyboard

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Led Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Head (AREA)

Abstract

試験対象となる複数の発光素子を発光させる発光制御部と、複数の発光素子からの光を受光して、受光した光の波長を測定する光測定部と、光測定部により測定された複数の発光素子からの光の波長の強度分布に基づいて、複数の発光素子のうちの少なくとも1つの発光素子に異常があるか否かを判定する判定部とを備える試験装置を提供する。試験装置は、光源と、光源からの光を複数の発光素子へと照射する光学系と、複数の発光素子のそれぞれが照射された光を光電変換した光電信号を測定する電気測定部とを更に備えてもよく、光測定部は、複数の発光素子からの光を光学系を介して受光してもよい。

Description

試験装置、試験方法およびプログラム
 本発明は、試験装置、試験方法およびプログラムに関する。
 検査対象となる一対のLEDの一方を発光させて他方で受光し、光電効果により出力される電流の電流値を用いてLEDの光学特性を検査する方法が知られている(例えば、特許文献1、2を参照)。
[先行技術文献]
[特許文献]
  [特許文献1] 特表2019-507953号公報
  [特許文献2] 特開2010-230568号公報
一般的開示
 本発明の第1の態様においては、試験装置を提供する。試験装置は、試験対象となる複数の発光素子を発光させる発光制御部と、前記複数の発光素子からの光を受光して、受光した光の波長を測定する光測定部と、前記光測定部により測定された前記複数の発光素子からの光の波長の強度分布に基づいて、前記複数の発光素子のうちの少なくとも1つの発光素子に異常があるか否かを判定する判定部とを備える。
 試験装置は、光源を更に備えてもよい。試験装置は、前記光源からの光を前記複数の発光素子へと照射する光学系を更に備えてもよい。試験装置は、前記複数の発光素子のそれぞれが照射された光を光電変換した光電信号を測定する電気測定部を更に備えてもよい。前記光測定部は、前記複数の発光素子からの光を前記光学系を介して受光してもよい。
 上記何れかの試験装置において、前記判定部は、前記電気測定部により測定された前記複数の発光素子からの前記光電信号に基づいて、前記複数の発光素子のそれぞれの良否を判定し、不良と判定した発光素子を、前記発光制御部によって発光させる対象から除外してもよい。
 上記何れかの試験装置において、前記光学系は、前記光源からの光を拡散させることにより、前記光源からの光を前記複数の発光素子へと一括照射させ、前記複数の発光素子からの拡散光を集光することにより、前記光測定部へと導光してもよい。
 上記何れかの試験装置において、前記光学系は、分岐している側の端部が前記光源および前記光測定部に接続された分岐ファイバと、1又は複数のレンズを含むレンズユニットとを有してもよい。
 上記何れかの試験装置において、前記光学系は、互いに異なる波長帯域の光を放射する複数の前記光源からの光を纏めて前記複数の発光素子へと照射してもよい。
 上記何れかの試験装置において、前記判定部は、前記強度分布を、前記発光素子の数に対応する基準の強度分布と比較した結果に基づいて、前記異常があるか否かを判定してもよい。
 上記何れかの試験装置は、前記異常があると判定されたことに応じて、前記複数の発光素子を複数のグループに分割するグループ分割部を更に備えてもよい。上記何れかの試験装置において、前記発光制御部および前記光測定部は、前記複数のグループのそれぞれについて、全ての発光素子を発光させて光の波長を測定し、前記判定部は、前記複数のグループのそれぞれに含まれる全ての発光素子からの光の波長の強度分布に基づいて、前記複数のグループのそれぞれに含まれる少なくとも1つの発光素子に異常があるか否かを判定してもよい。
 本発明の第2の態様においては、試験装置を提供する。試験装置は、光源と、前記光源からの光を試験対象となる複数の発光素子へと照射する光学系と、前記複数の発光素子のそれぞれが照射された光を光電変換した光電信号を測定する電気測定部と、前記複数の発光素子を発光させる発光制御部と、前記複数の発光素子からの光を前記光学系を介して受光して、受光した光の波長を測定する光測定部と、前記電気測定部および前記光測定部のうちの少なくとも1つの測定結果に基づいて、前記複数の発光素子の良否を判定する判定部とを備える。
 前記判定部は、前記電気測定部により測定された前記複数の発光素子からの光電信号に基づいて、前記複数の発光素子のそれぞれの良否を判定し、不良と判定した発光素子を、前記発光制御部によって発光させる対象から除外してもよい。
 上記何れかの試験装置において、前記光学系は、前記光源からの光を拡散させることにより、前記光源からの光を前記複数の発光素子へと一括照射させ、前記複数の発光素子からの拡散光を集光することにより、前記光測定部へと導光してもよい。
 上記何れかの試験装置において、前記光学系は、分岐している側の端部が前記光源および前記光測定部に接続された分岐ファイバと、1又は複数のレンズを含むレンズユニットとを有してもよい。
 本発明の第3の態様においては、試験方法を提供する。試験方法は、試験対象となる複数の発光素子を発光させる発光制御段階と、前記複数の発光素子からの光を受光して、受光した光の波長を測定する光測定段階と、前記光測定段階で測定された前記複数の発光素子からの光の波長の強度分布に基づいて、前記複数の発光素子のうちの少なくとも1つの発光素子に異常があるか否かを判定する判定段階とを備える。
 本発明の第4の態様においては、試験方法を提供する。試験方法は、光源からの光を光学系によって試験対象となる複数の発光素子へと照射する光照射段階と、前記複数の発光素子のそれぞれが照射された光を光電変換した光電信号を測定する電気測定段階と、前記複数の発光素子を発光させる発光制御段階と、前記複数の発光素子からの光を前記光学系を介して受光して、受光した光の波長を測定する光測定段階と、前記電気測定段階および前記光測定段階のうちの少なくとも1つの測定結果に基づいて、複数の発光素子の良否を判定する判定段階とを備える。
 本発明の第5の態様においては、プログラムを提供する。プログラムは、発光素子を試験する試験装置に、試験対象となる複数の発光素子を発光させる発光制御手順と、前記複数の発光素子からの光を受光して、受光した光の波長を測定する光測定手順と、前記光測定手順で測定された前記複数の発光素子からの光の波長の強度分布に基づいて、前記複数の発光素子のうちの少なくとも1つの発光素子に異常があるか否かを判定する判定手順とを実行させる。
 本発明の第6の態様においては、プログラムを提供する。プログラムは、発光素子を試験する試験装置に、光源からの光を光学系によって試験対象となる複数の発光素子へと照射する光照射手順と、前記複数の発光素子のそれぞれが照射された光を光電変換した光電信号を測定する電気測定手順と、前記複数の発光素子を発光させる発光制御手順と、前記複数の発光素子からの光を前記光学系を介して受光して、受光した光の波長を測定する光測定手順と、前記電気測定手順および前記光測定手順のうちの少なくとも1つの測定結果に基づいて、複数の発光素子の良否を判定する判定手順を実行させる。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
複数のLED10を試験する試験装置100の概略を示す全体図の一例である。 複数のLED10を試験する試験装置100の概略を示す全体図の一例である。 試験装置100による試験方法のフローを説明するフロー図の一例である。 測定対象エリアに含まれる複数のLED10からの光の波長の強度分布を示すグラフの一例である。 測定対象エリアに含まれる複数のLED10からの光の波長の強度分布を示すグラフの一例である。 測定対象エリアに含まれる複数のLED10からの光の波長の強度分布を示すグラフの一例である。 本発明の複数の態様が全体的又は部分的に具現化されうるコンピュータ1200の例を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1および図2は、複数のLED10を試験する試験装置100の概略を示す全体図の一例である。図1および図2では、紙面に向かって右方向が+X方向となるX軸と、紙面に向かって上方向が+Z方向となるZ軸と、紙面に向かって奥行き方向が+Y方向となるY軸とが、互いに直交するように示されている。以降では、これらの3軸を用いて説明する場合がある。
 図1および図2において、制御信号の流れを黒塗りの矢印で示す。また、図1および図2において、電気接続部150の移動方向を白抜きの矢印で示す。また、図1では、複数のLED10からの光を斜線で示し、同様に図2では、光源130からの光を斜線で示す。また、図1および図2において、載置部160の貫通孔161を破線で示す。
 試験装置100は、複数のLED10からの光の波長の強度分布に基づいて、複数のLED10の波長などの光学特性を一括して試験する。本実施形態による試験装置100は更に、LED10の光電効果を利用し、光を照射したLED10から出力される光電信号に基づいて、複数のLED10の輝度特性又は光度特性を一括して試験する。
 本実施形態による試験装置100は、複数のLED10の波長測定と光電信号測定とを、同じ光学系を用いて双方向で行う。本実施形態による試験装置100は、波長測定および光電信号測定の一方を終えて他方を開始する際に、装置構成の変更も、試験対象となるLED10の移動も行う必要が無い。
 本実施形態における試験装置100は、例えばLEDウェハであるウェハ15に複数のLED10が形成されたLED群が載置部160上に載置された状態で、当該複数のLED10の波長などの光学特性と輝度特性又は光度特性とを一括して試験する。なお、以降の説明では、LED10の波長などの光学特性のことを、単に波長特性と呼ぶ場合がある。
 本実施形態におけるLED10は、寸法が100μm以下のマイクロLEDである。なお、LED10は、マイクロLEDに代えて、寸法が100μmよりも大きく200μm以下のミニLEDや、寸法が200μmよりも大きいLEDであってもよく、その他に、LD等の他の発光素子であってもよい。
 また、本実施形態における複数のLED10は、ウェハ15上で、互いに電気的に接続されていない。LED群は、複数のLED10の発光面がウェハ15に面している裏面発光型であり、ウェハ15は光を透過する。各LED10上には、2つの端子11がY軸方向に互いに離間して形成されている。複数のLED10の各端子11は、ウェハ15に面していない。なお、本実施形態のような裏面発光型のLED群については、複数のLED10と、複数のLED10が実装されたウェハ15とを総称して、ウェハと呼ぶ場合がある。なお、LED群は、複数のLED10の発光面がウェハ15に面していない表面発光型であってもよく、この場合、ウェハ15は光を透過しなくてもよく、また、複数のLED10の各端子11は、ウェハ15に面していなくてもよく、ウェハ15に面していてもよい。複数のLED10の各端子11がウェハ15に面している場合、ウェハ15には、各端子11に電力供給用プローブを接触させるべく、各端子11の位置にZ軸方向に延在するビアが形成されていてもよい。
 なお、複数のLED10は、電気配線が設けられたウェハに、または、略方形の外形を有するガラスベースのパネル(PLP)に形成され、互いに電気的に接続されてユニット化またはセル化されていてもよい。
 試験装置100は、光測定部110と、制御部120とを備える。光測定部110は、試験装置100による試験対象となる複数のLED10からの光を受光して、受光した光の波長を測定する。換言すると、光測定部110は、複数のLED10のそれぞれからの光を合成した合成光の波長を測定する。光測定部110は、試験対象となる全てのLED10を幾つかのグループに分けたグループ毎に、グループ内の1または複数のLED10を発光させた光の波長を測定してもよい。また、光測定部110は、試験対象となる当該複数のLED10のそれぞれからの光の波長を個別に測定してもよい。
 本実施形態による光測定部110は、例えば波長計を含み、制御部120による制御に従い、LED10からの光の波長を測定し、当該光の波長の強度分布を特定する。光測定部110は、当該強度分布に基づいて当該光のピーク波長や半値幅を特定してもよく、また、当該光を目で見た際の色に相当する波長である主波長を測定してもよい。光測定部110は、波長計に代えて、スペクトロメータや光スペクトラムアナライザなどであってもよい。光測定部110は、特定した当該強度分布を示すデータを制御部120に出力する。
 制御部120は、試験装置100の各構成を制御する。より具体的には、制御部120は、試験装置100における各構成を制御するためのシーケンスやプログラムなどを格納する格納部180を参照することにより、試験装置100における複数の構成をシーケンス制御する。
 例えば、制御部120は、電気接続部150および電気測定部155を制御して複数のLED10に予め定められた電流値の電流を供給させることにより、複数のLED10を発光させる発光制御部121として機能する。制御部120は、電気接続部150および電気測定部155を制御して複数のLED10に予め定められた電圧値の電圧を供給させることにより、複数のLED10を発光させてもよく、以降では重複する説明を省略する。また、制御部120は、光測定部110により測定された当該複数のLED10からの光の波長を光測定部110から受け取り、光の波長の強度分布に基づいて、当該複数のLED10のうちの少なくとも1つのLED10に異常があるか否かを判定する判定部123として機能する。換言すると、制御部120は、電流を供給した当該複数のLED10を全点灯させて測定される合成光の波長の強度分布に基づいて、当該複数のLED10全体として異常有無を判定する。
 なお、制御部120は、格納部180に格納された、複数のLED10全体の異常有無を判定するための参照データ、複数のLED10のそれぞれの良否を判定するための参照データ、それらの判定結果、電気接続部150を移動させるための参照データ、などを参照してもよい。
 また、試験装置100は更に、複数のLED10の光電試験を行なうために、光源130と、光学系140と、電気測定部155とを備えてもよい。光源130は、図1および図2に示すように、光測定部110と共通の光学系140に接続され、光学系140に向けて光を放射する。光源130は、制御部120による制御に従い、複数のLED10の反応波長帯域の光を放射する。光源130は、制御部120によって、放射する光の照射時間、波長、強度などを制御される。
 光源130は、例えばキセノン光源のように広い波長帯域の光を発する光源であってもよく、レーザー光源のように狭い波長帯域の光を発する光源であってもよい。光源130は、互いに波長が異なる複数のレーザー光源を含んでもよい。なお、LED10の反応波長と発光波長とが相違する場合、LED10に対して当該LED10の発光波長の光を照射しても、当該相違に起因して適切に光電変換されない。
 本実施形態において、光学系140は、図2に示すように、光源130からの光を複数のLED10へと照射する。より具体的には、本実施形態による光学系140は、図2に示すように、光源130からの光を拡散させることにより、光源130からの光を複数のLED10へと一括照射させる。すなわち、光学系140を介して放射される光源130からの光の、XY平面における投影面は、少なくともLED群の複数のLED10を覆う。
 本実施形態による光学系140はまた、図1に示すように、複数のLED10からの拡散光を集光することにより、光測定部110へと導光する。換言すると、本実施形態による光測定部110は、複数のLED10からの光を光学系140を介して受光する。このような、光学系140、光源130および光測定部110の相互の接続構成により、試験装置100は、複数のLED10の波長測定と光電信号測定とを共通の光学系140を用いて双方向で行うことができる。
 なお、本実施形態では、光学系140は、図1に示すように、複数のLED10からの光を光測定部110および光源130の両方に導光するが、これに代えて、光学系140は、複数のLED10からの光を、光測定部110のみへ導光し、光源130へは導光しないように構成されてもよい。
 本実施形態による光学系140は、2分岐ファイバ141を有する。2分岐ファイバ141は、Y字型の光ファイバである。2分岐ファイバ141は、分岐している側の端部が光源130および光測定部110に接続される。
 2分岐ファイバ141は、分岐ファイバの一例であり、2分岐ファイバ141に代えて3分岐ファイバや4分岐ファイバなどの多分岐ファイバを用いてもよい。この場合、試験装置100は、2以上の光源130を備えてもよく、多分岐ファイバの分岐側の各端部に光源130が1つずつ接続されてもよい。この場合、光学系140は、互いに異なる波長帯域の光を放射する複数の光源130からの光を纏めて複数のLED10へと照射してもよい。光源130が特定の波長帯域の光を放射する場合には、このように複数の光源130を光学系140に接続することで、LED10に照射する光の波長帯域幅を広め、より確実に、LED10に光電変換させることができる。
 また、光学系140は更に、1又は複数のレンズを含むレンズユニット143を有してもよく、レンズユニット143は、光学系140における光学経路上に配置される。また、レンズユニット143は、図2に示すように、複数のLED10から放射される拡散光を収束させ、2分岐ファイバ141に進入させる。
 電気測定部155は、複数のLED10のそれぞれが照射された光を光電変換した光電信号を測定する。より具体的には、電気測定部155は、制御部120による制御に従い、複数のLED10から電気接続部150を介して出力される電流の電流値を測定する。電気測定部155は、各LED10について測定した電流値を制御部120に出力する。なお、電気測定部155は、複数のLED10から出力される電流の電流値に代えて、当該電流値に対応する電圧値を測定してもよい。なお、上述の通り、本実施形態による電気測定部155はまた、制御部120による制御に従い、電気接続部150を介して複数のLED10に電流を供給する。
 また、試験装置100は更に、電気接続部150と、載置部160と、遮蔽部170と、格納部180とを備えてよい。電気接続部150は、例えばプローブカード(プローブ基板)であって、試験対象となる複数のLED10のそれぞれの端子11に電気的に接続される。なお、本願明細書において、「電気的に接続される」と定義する場合、接触することで電気的に接続されること、または、非接触で電気的に接続されること、を意図する。電気接続部150は、複数のLED10のそれぞれの端子11に接することで電気的に接続されるが、例えば電磁誘導や近距離無線通信により非接触で電気的に接続されてもよい。
 電気接続部150は、電気回路および複数の電気配線が設けられた基板151と、基板151から複数のLED10のそれぞれに向かって延伸し、複数のLED10のそれぞれの端子11に接触する複数のプローブ153とを有する。
 電気接続部150は、制御部120によって駆動制御されることで、XY平面内を二次元的に移動し、且つ、Z軸方向に昇降する。電気接続部150は、制御部120によって駆動制御されることにより、光源130および電気接続部150の間に複数のLED10が位置するように配置される。この状態において、電気接続部150の複数のプローブ153は、ウェハ15のZ軸正方向側から複数のLED10の各端子11に接触する。各プローブ153における、端子11に接触する一端の反対側の他端は、基板151に設けられた電気配線に電気的に接続される。複数のプローブ153の複数の電気配線は、基板151の側面から延出し、電気測定部155に電気的に接続される。
 載置部160は、Z軸正方向側にLED群が載置される。図示の例における載置部160は、平面視において、略円形の外形を有するが、他の外形であってもよい。載置部160は、真空チャック、静電チャック等の保持機能を有し、載置されたLED群のウェハ15を保持する。載置部160は、複数のLED10が発してウェハ15を透過した光を遮らないよう、XY平面の中央部に貫通孔161を有し、当該貫通孔161の周囲においてウェハ15を保持する。
 遮蔽部170は、光源130からの光以外の光を遮蔽する。本実施形態における遮蔽部170は、表面が全て黒塗りされており、表面での光の乱反射を防ぐ。また、図1に示すように、遮蔽部170は、レンズユニット143、載置部160およびウェハ15によって密閉空間を形成するように設けられ、当該構成によって、光源130からの光以外の光を遮蔽する。
 なお、試験装置100は、電気接続部150、載置部160および遮蔽部170を備えなくてもよい。これに加えて又は代えて、試験装置100は、光源130、光学系140および電気測定部155を備えなくてもよい。
 図3は、試験装置100による試験方法のフローを説明するフロー図の一例である。本実施形態による試験装置100の制御部120は、電気測定部155による複数のLED10の光電試験、および光測定部110による複数のLED10の波長特性試験を行い、電気測定部155または光測定部110のうちの少なくとも1つの測定結果に基づいて、複数のLED10の良否を判定する。
 図3に示すフローは、載置部160上にLED群が載置された状態で、例えば試験装置100に対して当該LED群の試験を開始するための入力をユーザが行うことにより開始する。
 試験装置100は、試験対象となる複数のLED10に電気測定部155から電気接続部150を介して電流を供給することにより、複数のLED10の電気特性を試験する電気接続段階を実行する(ステップS101)。
 具体的な一例として、試験装置100の制御部120は、電気接続部150を駆動制御し、電気接続部150の複数のプローブ153を、載置部160上のLED群における、試験対象となる複数のLED10のそれぞれの端子11に電気的に接続する。制御部120は、当該複数のLED10に電気測定部155から電気接続部150を介して電流もしくは電圧を供給し、LED10に対して電気的特性試験を行い、測定電圧もしくは電流値が閾値範囲外であるLED10を電気特性が不良のものとして特定する。当該閾値は、格納部180に格納されている。制御部120は、電気特性が不良であると判定したLED10を、当該電気特性試験以降の試験の対象から除外する。なお、当該フローにおけるステップS101以降の各ステップでは、制御部120は、電気接続部150がLED群における複数のLED10と電気的に接続された状態で各試験を実行するものとし、重複する説明を省略する。
 当該電気特性試験に続けて、試験装置100は、LED10の光電効果を利用し、光を照射したLED10から出力される光電信号に基づいて、複数のLED10の輝度特性又は光度特性を一括して試験する。試験装置100は、光電信号測定結果から輝度又は光度が不良のLED10を特定し、当該LED10を後続の試験の対象から除外する。
 具体的には先ず、試験装置100は、光源130からの光を、光学系140によって、光電信号測定の試験対象となる複数のLED10へと照射する光照射段階を実行する(ステップS103)。
 具体的な一例として、制御部120は、光源130に命令を出力し、光学系140を介して複数のLED10へと光を放射させる。光学系140は、2分岐ファイバ141の一端から進入する光源130からの光を、2分岐ファイバ141の他端に接続されたレンズユニット143で拡散させることにより、光源130からの光を複数のLED10へと一括照射させる。
 試験装置100は、複数のLED10のそれぞれが照射された光を光電変換した光電信号を測定する電気測定段階を実行する(ステップS105)。具体的な一例として、制御部120は、電気測定部155に命令を出し、複数のLED10のそれぞれから電気接続部150を介して出力される光電信号、すなわち電流の電流値を一括して測定させ、それぞれの測定結果を制御部120に出力させる。
 制御部120は、電気測定部155により測定された複数のLED10からの光電信号に基づいて、複数のLED10のそれぞれの良否を判定し、不良と判定したLED10を、当該輝度特性又は光度特性の試験以降の試験で発光させる対象から除外する。制御部120は、格納部180に予め格納されている、光電信号の電流値の正常範囲を示すデータを参照することにより、測定された光電信号が正常範囲外となったLED10を不良と判定し、当該LED10を後続の試験の対象から除外してもよい。ここで言う正常範囲の一例として、複数のLED10がそれぞれ出力する光電信号に応じた統計量を基準とした範囲を用いてもよい。より具体的には、正常範囲の一例として、複数のLED10のそれぞれから出力された電流の平均電流値±1σ以内の範囲、当該平均電流値±2σ以内の範囲、または当該平均電流値±3σ以内の範囲を用いてもよい。この場合、制御部120は、格納部180に格納されている、複数のLED10のそれぞれから出力された電流の電流値に基づいて、当該平均電流値と標準偏差σを算出してもよい。
 LED10の光電効果によって出力される当該光電信号の大きさは、当該LED10の輝度特性および光度特性と相関を有する。そこで、制御部120は、光電信号の電流値の正常範囲を示すデータを参照してLED10の良否を判定することに加えて又は代えて、格納部180に予め格納されている、LED10が出力する光電信号とLED10が発する光の輝度との相関を示すデータを参照することにより、測定された光電信号から輝度を算出してもよい。制御部120は、輝度の算出方法と同様に、輝度に代えて又は加えて光度を算出してもよい。
 制御部120は更に、算出した輝度及び又は光度に基づいて、LED10の良否を判定してもよい。例えば、制御部120は、格納部180に予め格納されている、輝度及び又は光度の正常範囲を示すデータを参照することにより、LED10の良否を判定してもよい。なお、前述した相関は、試験装置100によって予め算出されたものであってもよく、外部の装置によって算出されたものであってもよい。外部の装置で当該相関が算出される場合には、試験装置100は当該相関を示すデータを外部の装置から取得してもよい。
 以降の複数のステップでは、試験装置100は、複数のLED10からの光の波長の強度分布に基づいて、複数のLED10の波長特性を一括して試験する。試験装置100は、上述の光電試験で除外されずに残った複数のLED10からの合成光の波長の強度分布を用いて、当該複数のLED10の中に波長が異常のLED10が含まれるか否かを判定する。
 上述の通り、試験装置100は、複数のLED10の波長測定を、光電信号測定と共通の光学系140を用いて行う。また、試験装置100は、光電信号測定を終えて波長測定を開始する際に、装置構成の変更も、試験対象となるLED10の移動も行う必要が無い。
 具体的には先ず、試験装置100は、複数のLED10を発光させる発光制御段階を実行する(ステップS107)。具体的な一例として、制御部120は、電気測定部155に命令を出し、波長特性の試験対象となる複数のLED10のうちの一部又は全てに対して、電気接続部150を介して予め定められた電流値の電流を供給させることにより、電流を供給した複数のLED10を一括して発光させる。
 なお、制御部120は、波長特性の試験対象となる複数のLED10のうちの一部のLED10を一括して発光させる場合には、波長特性の試験対象となる複数のLED10のうちの残りのLED10についても、一部又は全てのLED10を一括して発光させることを繰り返すことにより、波長特性の試験対象となる全てのLED10を段階的に順次発光させる。なお、本願明細書では、波長特性の試験において、このように一括して発光させる複数のLED10を、LED群の測定対象エリアに含まれる複数のLED10と称する場合がある。この場合、LED群には、それぞれが複数のLED10を含む、1つ又は複数の測定対象エリアが存在することになる。
 試験装置100は、発光制御段階で発光させた複数のLED10からの光を受光して、受光した光の波長を測定する光測定段階を実行する(ステップS109)。具体的な一例として、制御部120は、光測定部110に命令を出し、光学系140で集光される、LED群の測定対象エリアに含まれる複数のLED10のそれぞれからの光を受光させ、当該複数のLED10の合成光の波長を測定させ、測定結果を制御部120に出力させる。なお、LED群に複数の測定対象エリアが存在する場合、制御部120は、光測定部110に、それぞれの測定対象エリアの当該測定結果を制御部120に出力させる。
 試験装置100は、光測定段階で測定された複数のLED10からの光の波長の強度分布に基づいて、当該複数のLED10のうちの少なくとも1つのLED10に異常があるか否かを判定する判定段階を実行し(ステップS111)、当該フローは終了する。
 具体的な一例として、制御部120は、光測定部110から入力される測定対象エリアごとの測定結果に示される光の波長の強度分布に基づいて、当該測定対象エリアに含まれる複数のLED10のうちの少なくとも1つのLED10に異常があるか否かを判定する。より具体的には、制御部120は、当該測定対象エリアに含まれる複数のLED10からの光の波長の強度分布を、当該LED10の数に対応する基準の強度分布と比較した結果に基づいて、当該複数のLED10のうちの少なくとも1つのLED10に異常があるか否かを判定する。
 制御部120は、図3のフローを実行した結果として、測定対象エリアに含まれる複数のLED10において異常があると判定されたことに応じて、電気測定部155および光測定部110に命令を出し、当該複数のLED10のそれぞれに対して順にステップS107~ステップS111の各段階を実行することで、個別に波長特性試験を実行してもよい。ただし、この場合におけるステップS111の判定段階では、制御部120は、光測定段階で測定された1つのLED10からの光の波長の強度分布に基づいて、当該LED10に異常があるか否かを判定する。例えば、制御部120は、当該強度分布を、LED10が1つの場合における基準の強度分布と比較した結果に基づいて、当該LED10に異常があるか否かを判定する。
 これに代えて、制御部120は、図3のフローを実行した結果として、測定対象エリアに含まれる複数のLED10において異常があると判定されたことに応じて、複数のLED10を複数のグループに分割する機能を有してもよい。この場合、制御部120および光測定部110は、複数のグループのそれぞれについて、全てのLED10を発光させて光の波長を測定してもよい。制御部120は更に、複数のグループのそれぞれに含まれる全てのLED10からの光の波長の強度分布に基づいて、複数のグループのそれぞれに含まれる少なくとも1つのLED10に異常があるか否かを判定してもよい。例えば、制御部120は、2分岐法で不良のLED10を徐々に絞り込んでいってもよい。なお、この場合の制御部120はグループ分割部の一例である。
 なお、試験装置100は、図3のフロー中の各ステップの順序を異ならせてもよく、1つ又は複数のステップを省略してもよい。例えば、試験装置100は、ステップS101の電気特性試験を実行した後に、ステップS107~ステップS111の波長特性試験を実行し、続けてステップS103~ステップS105の輝度又は光度特性試験を実行してもよい。また例えば、試験装置100は、ステップS101の電気特性試験およびステップS103~ステップS105の輝度又は光度特性試験を実行せずに、ステップS107~ステップS111の波長特性試験を実行してもよい。また例えば、試験装置100は、ステップS101の電気特性試験を実行せずに、ステップS103~ステップS105の輝度又は光度特性試験、および、ステップS107~ステップS111の波長特性試験を順不同に実行してもよい。
 図4は、測定対象エリアに含まれる複数のLED10からの光の波長の強度分布を示すグラフの一例である。図4のグラフにおいて、横軸は光の波長を指し、縦軸は光の強度を指す。図4のグラフ上、測定対象エリアに含まれる複数のLED10からの光の、個々の波長の強度分布を(1)で示し、合成の波長の強度分布を(2)で示す。以降の図においても同様とし、重複する説明を省略する。
 LED10からの光の強度は、LED10からの光の輝度や光度との間に相関を有し、また、LED10が照射された光を光電変換した光電信号の電流値との間に相関を有する。図4の例においては、測定対象エリアに含まれる複数のLED10の全てが、本来LED10の発光光の波長として期待されている波長において、互いに同じ強度で発光している。すなわち、図4の例においては、複数のLED10は、波長に異常が無く、且つ、同一の光源130から一括照射された光を光電変換した光電信号の電流値が互いに同等である。
 このように、光電信号の電流値が互いに同等であって且つ波長に異常がない複数のLED10からの合成光の波長の強度分布は、図4に示す合成の波長の強度分布(2)のようになる。試験装置100は、例えば図4に示す合成の波長の強度分布(2)を、前述した基準の強度分布の1つとする。試験装置100は、当該基準の強度分布を示すデータを、波長の強度分布が合成されるLED10の数毎に格納部180に予め格納し、図3のフローにおけるステップS111で参照してもよい。例えば、試験装置100は、測定対象エリアごとに測定された合成光の波長の強度分布が、当該測定対象エリアに含まれる複数のLED10の数に対応する基準の強度分布と一致する場合に、当該測定対象エリアに含まれる複数のLED10の何れにも異常が無いと判定してもよい。
 図5は、測定対象エリアに含まれる複数のLED10からの光の波長の強度分布を示すグラフの一例である。図5の例においては、当該複数のLED10のうちの1つが、強度分布(f)で示したように、本来LED10の発光光の波長として期待されている波長からずれた波長において、他のLED10よりも弱い強度で発光している。すなわち、図5の例においては、複数のLED10のうちの当該1つが、残りのLED10と比べて、波長に異常があり、且つ、同一の光源130から一括照射された光を光電変換した光電信号の電流値が低い。それにも拘らず、図5に示す合成の波長の強度分布(2)は、図4に示す合成の波長の強度分布(2)と似たものとなっている。
 図5の例のように、複数のLED10の中に、波長に異常があるLED10が含まれていたとしても、当該LED10からの光電信号の電流値が他のLED10に比べて低い場合、当該複数のLED10からの合成光の波長の強度分布が、当該複数のLED10の数に対応する基準の強度分布と一致してしまう場合がある。この場合、当該LED10の波長の異常を検知することが困難になり得る。
 図6は、測定対象エリアに含まれる複数のLED10からの光の波長の強度分布を示すグラフの一例である。図6の例においては、当該複数のLED10のうちの1つが、強度分布(f)で示したように、本来LED10の発光光の波長として期待されている波長からずれた波長において、他のLED10と同等の強度で発光している。すなわち、図6の例においては、複数のLED10のうちの当該1つが、残りのLED10と比べて、波長に異常があり、その一方で、同一の光源130から一括照射された光を光電変換した光電信号の電流値が残りのLED10と同等である。その結果として、図6に示す合成の波長の強度分布(2)は、図4に示す合成の波長の強度分布(2)とは異なり、(F)で示した箇所において変異している。
 試験装置100は、図3のフローにおけるステップS105で説明した通り、試験対象となる複数のLED10からの光電信号に基づいて、当該複数のLED10のそれぞれの良否を判定し、不良と判定したLED10を、当該輝度特性又は光度特性の試験以降の試験で発光させる対象から除外してもよい。一例として、試験装置100は、試験対象となる複数のLED10について、同一の光源130から光を一括照射して光電変換された光電信号の電流値が、当該複数のLED10の中で相対的に低いLED10を除外してもよい。
 これにより、試験装置100は、測定対象エリアに含まれる複数のLED10の中に、光の強度は正常且つ光の波長は異常なLED10が含まれている場合には、図6に示すような、基準の強度分布から変異している合成光の波長の強度分布(2)を生成する。よって、試験装置100は、図5の例のようにLED10の波長の異常を検知することが困難になる、という事態を予め回避できる。すなわち、試験装置100は、光電試験と波長特性試験とを組み合わせることにより、試験対象となる複数のLED10の中に、輝度又は光度に不良があるLED10が含まれることも、波長に異常があるLED10が含まれることも、正しく判定することができる。試験装置100は、波長特性試験の対象から光電信号等に異常があるLED10を除外しない場合に比べて、波長特性試験の試験精度を高めることができる、とも言える。
 また、試験装置100は、図6に示すような合成光の波長の強度分布を生成し、生成した強度分布を基準の強度分布と比較した結果として上述の変異の存在を確認した場合には、例えばフーリエ変換、GMMなどの手法を用いて周波数毎の波長成分を算出してもよい。これにより、試験装置100は、測定対象エリアに含まれる複数のLED10のそれぞれの波長成分の中に、本来無いはずの波長成分が含まれるか否かをより確実に確認でき、よって、当該複数のLED10の中に当該波長成分の光を放射する不良なLED10が含まれるか否かをより確実に確認できる。換言すると、試験装置100は、合成光の波長の強度分布における変異が、測定エラーや外乱などに起因するものではなく、本来LED10の発光光の波長として期待されている波長からずれた波長の光を放射するLED10の存在に起因するものであることを確認できる。
 以上、本実施形態による試験装置100によれば、試験対象となる複数のLED10を一括して発光させ、当該複数のLED10からの光の波長を包括的に測定し、当該包括的な波長の強度分布に基づいて、当該複数のLED10のうちの少なくとも1つのLED10に異常があるか否かを判定する。これにより、試験装置100は、試験対象となる複数のLED10を個別に順次発光させて波長特性を試験する場合に比べて、試験の実行時間を短縮することができる。
 また、本実施形態による試験装置100によれば、複数のLED10の波長特性試験と輝度特性試験又は光度特性試験とを、同じ光学系を用いて双方向で行う。より具体的には、試験装置100は、光学系140を介して、当該複数のLED10からの光を包括的に受光し、且つ、光源130からの光を当該複数のLED10へと一括して照射する。試験装置100は、当該複数のLED10からの光によって当該複数のLED10の波長特性を包括的に試験し、且つ、当該複数のLED10のそれぞれが照射された光を光電変換した光電信号によって当該複数のLED10の輝度特性又は光度特性を個別に試験する。
 このように、試験装置100によれば、装置構成の変更も試験対象となるLED10の移動も要することなく、同じ光学系を用いて、試験対象となる複数のLED10の波長特性を包括的に試験し、且つ、当該複数のLED10の輝度特性又は光度特性を個別に試験することができる。これにより、試験装置100は、これらの試験を切り替える際に装置構成の変更や試験対象となるLED10の移動を要する場合に比べて試験の実行時間を短縮することができるだけでなく、各試験で異なる光学系を用いる場合の環境差異による測定誤差を防止することもできる。
 以上の複数の実施形態において、試験装置100は、光学系140において、2分岐ファイバ141などの分岐ファイバの代わりに、プリズム等の別の機構を備えてもよい。この場合、プリズム等は、上記の実施形態で説明した2分岐ファイバ141の機能構成と同様の機能構成を有する。
 以上の複数の実施形態において、LED群が、電気配線が形成された略方形の外形を有するガラスベースのパネル(PLP)に複数のLEDが形成された構成である場合、電気接続部は、パネルの2つの側面に配された、行方向および列方向の各配線にプローブを接触させる構成であってもよい。
 本発明の様々な実施形態は、フローチャートおよびブロック図を参照して記載されてよく、ここにおいてブロックは、(1)操作が実行されるプロセスの段階または(2)操作を実行する役割を持つ装置のセクションを表わしてよい。特定の段階およびセクションが、専用回路、コンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/またはコンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよく、集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、論理AND、論理OR、論理XOR、論理NAND、論理NOR、および他の論理操作、フリップフロップ、レジスタ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックアレイ(PLA)等のようなメモリ要素等を含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読媒体は、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(RTM)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードのいずれかを含んでよい。
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供され、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
 図7は、本発明の複数の態様が全体的又は部分的に具現化されうるコンピュータ1200の例を示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200に、本発明の実施形態に係る装置に関連付けられるオペレーション又は当該装置の1又は複数の「部」として機能させ、又は当該オペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本発明の実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。このようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、グラフィックコントローラ1216、及びディスプレイデバイス1218を含み、これらはホストコントローラ1210によって相互に接続される。コンピュータ1200はまた、通信インターフェース1222、ハードディスクドライブ1224、DVD-ROMドライブ1226、及びICカードドライブのような入出力ユニットを含み、これらは入出力コントローラ1220を介してホストコントローラ1210に接続される。コンピュータはまた、ROM1230及びキーボード1242のようなレガシの入出力ユニットを含み、これらは入出力チップ1240を介して入出力コントローラ1220に接続される。
 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、これにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又は当該グラフィックコントローラ1216自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示させる。
 通信インターフェース1222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブ1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVD-ROMドライブ1226は、プログラム又はデータをDVD-ROM1201から読み取り、ハードディスクドライブ1224にRAM1214を介してプログラム又はデータを提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。
 ROM1230は、内部に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをパラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
 プログラムが、DVD-ROM1201又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもあるハードディスクドライブ1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インターフェース1222に対し、通信処理を命令してよい。通信インターフェース1222は、CPU1212の制御の下、RAM1214、ハードディスクドライブ1224、DVD-ROM1201、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
 また、CPU1212は、ハードディスクドライブ1224、DVD-ROMドライブ1226(DVD-ROM1201)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような、様々なタイプの情報が、情報処理されるべく、記録媒体に格納されてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、これにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
 以上の説明によるプログラム又はソフトウェアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、これにより、プログラムをコンピュータ1200にネットワークを介して提供する。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 LED
11 端子
15 ウェハ
100 試験装置
110 光測定部
120 制御部
130 光源
140 光学系
150 電気接続部
151 基板
153 プローブ
155 電気測定部
160 載置部
170 遮蔽部
180 格納部
1200 コンピュータ
1201 DVD-ROM
1210 ホストコントローラ
1212 CPU
1214 RAM
1216 グラフィックコントローラ
1218 ディスプレイデバイス
1220 入出力コントローラ
1222 通信インターフェース
1224 ハードディスクドライブ
1226 DVD-ROMドライブ
1230 ROM
1240 入出力チップ
1242 キーボード

Claims (16)

  1.  試験対象となる複数の発光素子を発光させる発光制御部と、
     前記複数の発光素子からの光を受光して、受光した光の波長を測定する光測定部と、
     前記光測定部により測定された前記複数の発光素子からの光の波長の強度分布に基づいて、前記複数の発光素子のうちの少なくとも1つの発光素子に異常があるか否かを判定する判定部と
     を備える試験装置。
  2.  光源と、
     前記光源からの光を前記複数の発光素子へと照射する光学系と、
     前記複数の発光素子のそれぞれが照射された光を光電変換した光電信号を測定する電気測定部と
     を更に備え、
     前記光測定部は、前記複数の発光素子からの光を前記光学系を介して受光する、
    請求項1に記載の試験装置。
  3.  前記判定部は、
     前記電気測定部により測定された前記複数の発光素子からの前記光電信号に基づいて、前記複数の発光素子のそれぞれの良否を判定し、
     不良と判定した発光素子を、前記発光制御部によって発光させる対象から除外する、
    請求項2に記載の試験装置。
  4.  前記光学系は、
     前記光源からの光を拡散させることにより、前記光源からの光を前記複数の発光素子へと一括照射させ、
     前記複数の発光素子からの拡散光を集光することにより、前記光測定部へと導光する、
    請求項2または3に記載の試験装置。
  5.  前記光学系は、
     分岐している側の端部が前記光源および前記光測定部に接続された分岐ファイバと、
     1又は複数のレンズを含むレンズユニットと
     を有する、
    請求項4に記載の試験装置。
  6.  前記光学系は、互いに異なる波長帯域の光を放射する複数の前記光源からの光を纏めて前記複数の発光素子へと照射する、
    請求項2から5の何れか一項に記載の試験装置。
  7.  前記判定部は、前記強度分布を、前記発光素子の数に対応する基準の強度分布と比較した結果に基づいて、前記異常があるか否かを判定する、
    請求項1から6の何れか一項に記載の試験装置。
  8.  前記異常があると判定されたことに応じて、前記複数の発光素子を複数のグループに分割するグループ分割部を更に備え、
     前記発光制御部および前記光測定部は、前記複数のグループのそれぞれについて、全ての発光素子を発光させて光の波長を測定し、
     前記判定部は、前記複数のグループのそれぞれに含まれる全ての発光素子からの光の波長の強度分布に基づいて、前記複数のグループのそれぞれに含まれる少なくとも1つの発光素子に異常があるか否かを判定する、
    請求項1から7の何れか一項に記載の試験装置。
  9.  光源と、
     前記光源からの光を試験対象となる複数の発光素子へと照射する光学系と、
     前記複数の発光素子のそれぞれが照射された光を光電変換した光電信号を測定する電気測定部と、
     前記複数の発光素子を発光させる発光制御部と、
     前記複数の発光素子からの光を前記光学系を介して受光して、受光した光の波長を測定する光測定部と、
     前記電気測定部および前記光測定部のうちの少なくとも1つの測定結果に基づいて、複数の発光素子の良否を判定する判定部と
     を備える試験装置。
  10.  前記判定部は、
     前記電気測定部により測定された前記複数の発光素子からの前記光電信号に基づいて、前記複数の発光素子のそれぞれの良否を判定し、
     不良と判定した発光素子を、前記発光制御部によって発光させる対象から除外する、
    請求項9に記載の試験装置。
  11.  前記光学系は、
     前記光源からの光を拡散させることにより、前記光源からの光を前記複数の発光素子へと一括照射させ、
     前記複数の発光素子からの拡散光を集光することにより、前記光測定部へと導光する、
    請求項9または10に記載の試験装置。
  12.  前記光学系は、
     分岐している側の端部が前記光源および前記光測定部に接続された分岐ファイバと、
     1又は複数のレンズを含むレンズユニットと
     を有する、
    請求項11に記載の試験装置。
  13.  試験対象となる複数の発光素子を発光させることと、
     前記複数の発光素子からの光を受光して、受光した光の波長を測定することと、
     前記光の波長を測定することで測定された前記複数の発光素子からの光の波長の強度分布に基づいて、前記複数の発光素子のうちの少なくとも1つの発光素子に異常があるか否かを判定することと
     を備える試験方法。
  14.  光源からの光を光学系によって試験対象となる複数の発光素子へと照射することと、
     前記複数の発光素子のそれぞれが照射された光を光電変換した光電信号を測定することと、
     前記複数の発光素子を発光させることと、
     前記複数の発光素子からの光を前記光学系を介して受光して、受光した光の波長を測定することと、
     前記光電信号を測定することおよび前記光の波長を測定することのうちの少なくとも1つの測定結果に基づいて、複数の発光素子の良否を判定することと
     を備える試験装置。
  15.  発光素子を試験する試験装置に、
     試験対象となる複数の発光素子を発光させる発光制御手順と、
     前記複数の発光素子からの光を受光して、受光した光の波長を測定する光測定手順と、
     前記光測定手順で測定された前記複数の発光素子からの光の波長の強度分布に基づいて、前記複数の発光素子のうちの少なくとも1つの発光素子に異常があるか否かを判定する判定手順と
     を実行させるプログラム。
  16.  発光素子を試験する試験装置に、
     光源からの光を光学系によって試験対象となる複数の発光素子へと照射する光照射手順と、
     前記複数の発光素子のそれぞれが照射された光を光電変換した光電信号を測定する電気測定手順と、
     前記複数の発光素子を発光させる発光制御手順と、
     前記複数の発光素子からの光を前記光学系を介して受光して、受光した光の波長を測定する光測定手順と、
     前記電気測定手順および前記光測定手順のうちの少なくとも1つの測定結果に基づいて、複数の発光素子の良否を判定する判定手順と
     を実行させるプログラム。
PCT/JP2022/020674 2021-09-08 2022-05-18 試験装置、試験方法およびプログラム WO2023037662A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280017795.XA CN116897290A (zh) 2021-09-08 2022-05-18 试验装置、试验方法及程序
KR1020237030998A KR20230145149A (ko) 2021-09-08 2022-05-18 시험 장치, 시험 방법 및 프로그램
DE112022002194.2T DE112022002194T5 (de) 2021-09-08 2022-05-18 Testgerät, Testverfahren und Programm
US18/539,320 US20240110969A1 (en) 2021-09-08 2023-12-14 Testing apparatus, testing method, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-145919 2021-09-08
JP2021145919A JP7355789B2 (ja) 2021-09-08 2021-09-08 試験装置、試験方法およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/539,320 Continuation US20240110969A1 (en) 2021-09-08 2023-12-14 Testing apparatus, testing method, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2023037662A1 true WO2023037662A1 (ja) 2023-03-16

Family

ID=85506312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020674 WO2023037662A1 (ja) 2021-09-08 2022-05-18 試験装置、試験方法およびプログラム

Country Status (7)

Country Link
US (1) US20240110969A1 (ja)
JP (1) JP7355789B2 (ja)
KR (1) KR20230145149A (ja)
CN (1) CN116897290A (ja)
DE (1) DE112022002194T5 (ja)
TW (1) TW202312517A (ja)
WO (1) WO2023037662A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161478A (ja) * 1984-09-01 1986-03-29 Japan Spectroscopic Co 発光半導体検査装置
JP2006098054A (ja) * 2004-09-28 2006-04-13 Casio Comput Co Ltd 発光ダイオードの色度判別装置。
JP2012084883A (ja) * 2010-10-11 2012-04-26 Ind Technol Res Inst ウェーハレベル発光ダイオード(led)チップのための検出方法及び検出装置並びにそれらのプローブカード
WO2015045222A1 (ja) * 2013-09-26 2015-04-02 シャープ株式会社 検査システム、検査方法および可読記録媒体
WO2015107656A1 (ja) * 2014-01-16 2015-07-23 パイオニア株式会社 光学測定装置
JP2017223969A (ja) * 2012-01-31 2017-12-21 シャープ株式会社 液晶表示装置
JP2019040192A (ja) * 2015-09-11 2019-03-14 シャープ株式会社 画像表示装置および画像表示素子の製造方法
JP2020167433A (ja) * 2019-03-28 2020-10-08 浜松ホトニクス株式会社 検査装置及び検査方法
US20200371152A1 (en) * 2018-12-21 2020-11-26 Industrial Technology Research Institute Method for inspecting light-emitting diodes and inspection apparatus
JP2020197430A (ja) * 2019-05-31 2020-12-10 株式会社アドバンテスト 試験装置、試験方法およびプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230568A (ja) 2009-03-27 2010-10-14 Hitachi Omron Terminal Solutions Corp Ledの検査方法及びledユニット
JP2015169524A (ja) * 2014-03-06 2015-09-28 株式会社アドバンテスト 試験装置、キャリブレーションデバイス、キャリブレーション方法、および試験方法
AT518369B1 (de) 2016-02-11 2023-06-15 Zkw Group Gmbh Verfahren und ICT-Einrichtung zum Überprüfen von zumindest zwei LEDs enthaltenden Modulen einer Beleuchtungseinrichtung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161478A (ja) * 1984-09-01 1986-03-29 Japan Spectroscopic Co 発光半導体検査装置
JP2006098054A (ja) * 2004-09-28 2006-04-13 Casio Comput Co Ltd 発光ダイオードの色度判別装置。
JP2012084883A (ja) * 2010-10-11 2012-04-26 Ind Technol Res Inst ウェーハレベル発光ダイオード(led)チップのための検出方法及び検出装置並びにそれらのプローブカード
JP2017223969A (ja) * 2012-01-31 2017-12-21 シャープ株式会社 液晶表示装置
WO2015045222A1 (ja) * 2013-09-26 2015-04-02 シャープ株式会社 検査システム、検査方法および可読記録媒体
WO2015107656A1 (ja) * 2014-01-16 2015-07-23 パイオニア株式会社 光学測定装置
JP2019040192A (ja) * 2015-09-11 2019-03-14 シャープ株式会社 画像表示装置および画像表示素子の製造方法
US20200371152A1 (en) * 2018-12-21 2020-11-26 Industrial Technology Research Institute Method for inspecting light-emitting diodes and inspection apparatus
JP2020167433A (ja) * 2019-03-28 2020-10-08 浜松ホトニクス株式会社 検査装置及び検査方法
JP2020197430A (ja) * 2019-05-31 2020-12-10 株式会社アドバンテスト 試験装置、試験方法およびプログラム

Also Published As

Publication number Publication date
DE112022002194T5 (de) 2024-04-25
KR20230145149A (ko) 2023-10-17
JP7355789B2 (ja) 2023-10-03
TW202312517A (zh) 2023-03-16
US20240110969A1 (en) 2024-04-04
CN116897290A (zh) 2023-10-17
JP2023039003A (ja) 2023-03-20

Similar Documents

Publication Publication Date Title
JP7245721B2 (ja) 試験装置、試験方法およびプログラム
KR900007993B1 (ko) 반도체검사장치 및 반도체검사방법
US11187747B2 (en) Inspection system and malfunction analysis/prediction method for inspection system
US11788885B2 (en) Test apparatus, test method, and computer-readable storage medium
CN110261755B (zh) 一种探针卡、检测装置以及晶圆检测方法
CN110494965B (zh) 检查***、晶圆图显示器、晶圆图显示方法以及存储介质
CN110823902A (zh) 光源模块及光学检测***
WO2023037662A1 (ja) 試験装置、試験方法およびプログラム
JP2024010105A (ja) 試験装置、試験方法およびプログラム
US11800619B2 (en) Test apparatus, test method, and computer-readable storage medium
KR20220142838A (ko) 반도체 칩 테스트용 보드, 이를 포함하는 반도체 칩 테스트 시스템, 및 이를 이용한 반도체 칩 테스트 방법
KR20230121314A (ko) 복수의 가이드 동심원을 갖는 반도체 소자 테스트용 빔 검사 장치, 및 빔 검사 방법
JP5343454B2 (ja) 半導体装置の検査方法
KR20110032885A (ko) 회로기판의 검사장치 및 회로기판의 검사방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017795.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237030998

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030998

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112022002194

Country of ref document: DE