WO2023037618A1 - 半導体製造用液体供給装置 - Google Patents

半導体製造用液体供給装置 Download PDF

Info

Publication number
WO2023037618A1
WO2023037618A1 PCT/JP2022/012177 JP2022012177W WO2023037618A1 WO 2023037618 A1 WO2023037618 A1 WO 2023037618A1 JP 2022012177 W JP2022012177 W JP 2022012177W WO 2023037618 A1 WO2023037618 A1 WO 2023037618A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
semiconductor manufacturing
pipe
chemical solution
concentration
Prior art date
Application number
PCT/JP2022/012177
Other languages
English (en)
French (fr)
Inventor
秀章 飯野
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN202280060622.6A priority Critical patent/CN117916860A/zh
Priority to EP22866952.9A priority patent/EP4401114A1/en
Priority to KR1020247002071A priority patent/KR20240060785A/ko
Publication of WO2023037618A1 publication Critical patent/WO2023037618A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/54Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • the present invention suppresses corrosion and dissolution of wiring materials exposed in fine trenches and pores formed by dry etching or the like, or deliquescent compounds used in gates, in the cleaning and rinsing process of semiconductor wafers.
  • the present invention relates to a liquid supply apparatus for semiconductor manufacturing capable of efficiently and stably supplying a solution containing an acid, an alkali, an organic solvent, or the like for manufacturing semiconductors.
  • semiconductor manufacturing liquid liquids (hereinafter referred to as semiconductor manufacturing liquid) is required. Furthermore, a material such as MgO or La 2 O 3 that exhibits deliquescence in water itself may be used as the gate material. cannot be avoided.
  • semiconductor manufacturing liquids are mainly used as cleaning and rinsing liquids in single-wafer cleaning apparatuses.
  • This liquid for semiconductor manufacturing uses ultrapure water as a basic material, and contains necessary amounts of acid/alkali, oxidizing agent/reducing agent, etc. in order to give liquid properties such as pH and oxidation-reduction potential that match the purpose of cleaning and rinsing processes. It is prepared by adding agents.
  • ultrapure water is used as a diluent for the chemical solution.
  • reducing, alkaline, and acidic gases such as H 2 , NH 3 , and O 3 may be dissolved in ultrapure water, and are used differently depending on the application.
  • Methods for supplying such a semiconductor manufacturing liquid include a method using a pump and a method using a closed container and pressurization with an inert gas such as N2 , each of which has been put to practical use.
  • the performance of the equipment that supplies semiconductor manufacturing liquid adjusted to a low concentration to a point of use consisting of multiple single-wafer cleaning equipment cannot follow up on flow rate fluctuations due to changes in the number of equipment in operation. This is most important from the viewpoint of yield improvement.
  • the single-wafer cleaning equipment which is a point of use, is using a cleaning solution that has already been adjusted to a low concentration at a constant flow rate. Frequent changes in the flow rate of the cleaning solution are dealt with by a feedback control system using a flow meter and a water quality meter, or by a proportional control system using a flow meter.
  • a feedback control system using a flow meter and a water quality meter
  • a proportional control system using a flow meter.
  • the concentration control in the middle of the water flow channel with any control method.
  • the concentration followability to flow rate fluctuations is not high, and there is a limit to how stringent concentration control required by the semiconductor industry can be handled with only a flow meter and its feedback control or proportional control.
  • tank storage type cleaning solution supply device in which the cleaning solution diluted to a low concentration is temporarily stored in a tank and then sent by gas pressurization or a pump. Since the liquid cannot be sent, there are restrictions on the use in wafer cleaning equipment. On the other hand, if the tank capacity is too large, it takes time to store the liquid for manufacturing semiconductors, and it is necessary to secure an installation space, which is inconvenient. Furthermore, in the tank storage type, the cleaning solution in the tank must be once discarded each time the wafer cleaning apparatus side requests a change in concentration, which is not a good idea from the viewpoint of the environmental load.
  • the solute concentration is controlled by various methods such as PID control in response to the concentration monitor signal and proportional control to the ultrapure water flow rate so that the solute concentration falls within the desired range.
  • PID control in response to the concentration monitor signal and proportional control to the ultrapure water flow rate so that the solute concentration falls within the desired range.
  • a flow rate using a magnet mechanism for the purpose of precisely controlling the amount of dissolution or mixing of a functional fluid in ultrapure water to generate functional water with an accurate functional fluid concentration
  • Patent Document 2 discloses a flow meter that measures the flow rate of the main fluid and outputs a signal of the measured value as a flow rate control method, and a cleaning device that controls the supply amount of another fluid based on the input signal.
  • a flow rate control mechanism for a gas-dissolved water supply device has been proposed. Further, in Patent Document 3, there is a liquid processing supply device for substrates that controls the concentration by applying feedback control to a flow control valve based on the flow rate value described in the recipe of wafer cleaning water used in a single-wafer cleaning apparatus. Proposed.
  • the flow rate adjusting means using the magnet mechanism described in Patent Document 1 is capable of accurate mixing, but has the problem of insufficient followability when the flow rate fluctuates.
  • the flow rate control method of the cleaning gas-dissolved water supply device described in Patent Document 2 when applied to the single-wafer cleaning device, the amount used in the single-wafer cleaning device changes during liquid feeding. There is a problem that the flow followability is not sufficient when Furthermore, the supply device for liquid treatment to the substrate of Patent Document 3 has a problem that it is difficult to control the minute concentration when the flow rate of the single-wafer cleaning apparatus fluctuates.
  • the present invention has been made in view of the above problems. It is an object of the present invention to provide a semiconductor manufacturing liquid supply apparatus capable of supplying a liquid for semiconductor manufacturing.
  • the present invention provides a supply pipe for supplying a solvent, a preparation section for preparing a semiconductor manufacturing liquid having a predetermined concentration by adding a predetermined amount of chemical solution to the solvent, a concentration control unit that manages the preparation unit so that the semiconductor manufacturing liquid has a predetermined chemical solution concentration, and the supply pipe is a drain pipe connected to the supply pipe after the concentration control unit.
  • a main pipe that communicates with the use point is branched from the connecting portion of this drain pipe, and the main pipe is provided with a flow rate measuring means, and the drain pipe corresponds to the measurement value of the flow rate measuring means.
  • a liquid supply apparatus for semiconductor manufacturing which is provided with a flow rate adjustment mechanism capable of controlling the flow rate (Invention 1).
  • the total flow rate of the main pipe and the drain pipe is set to approximately the maximum use amount of the point of use, and the flow rate of the drain pipe is varied by the flow rate adjustment mechanism, so that the main pipe It is preferable that the flow rate of is controllable (Invention 2).
  • the total flow rate of the main pipe and the drain pipe is set as the maximum flow rate required in the wafer cleaning apparatus, and the flow rate of the two flow paths of the main pipe and the drain pipe is set to the flow rate of the drain pipe.
  • the opening of the flow control valve By adjusting the opening of the flow control valve, the flow rate of the drain pipe can be changed according to the fluctuation of the usage amount at the point of use, so that the liquid for semiconductor manufacturing can be supplied to the point of use without any concentration fluctuation.
  • the flow rate adjustment mechanism is a valve, and the flow rate is adjusted by adjusting the opening of the valve (Invention 3). Further, in the above inventions (inventions 1 and 2), it is preferable that the flow rate adjustment mechanism is a flow rate adjustment valve or a constant pressure valve (invention 4).
  • the flow rate of the drain pipe is adjusted by a valve, a flow control valve, a constant pressure valve, etc., so that an amount of the semiconductor manufacturing liquid corresponding to the usage amount of the point of use is supplied to the main pipe. can be supplied.
  • invention 5 by controlling the addition amount of the chemical liquid with respect to the flow rate of the solvent such as ultrapure water by these injection means, it is possible to supply the semiconductor manufacturing liquid with the desired concentration. can do.
  • the chemical solution is a conductive solute
  • the concentration control unit has a conductivity meter or an absorptiometer, and the measured value of the conductivity meter or absorptiometer Based on this, it is preferable that the addition amount of the chemical solution can be controlled (invention 6).
  • the concentration of the chemical solution which is the conductive solute of the liquid for semiconductor manufacturing, is calculated based on the measured value of the conductivity meter or the absorption photometer, and the injection amount of the chemical solution is determined based on this calculated value.
  • the concentration of the chemical solution is calculated based on the measured value of the conductivity meter or the absorption photometer, and the injection amount of the chemical solution is determined based on this calculated value.
  • the chemical solution is a non-conductive solute
  • the concentration control unit has a TOC meter or an absorptiometer, and based on the measured value of the TOC meter or absorptiometer, It is preferable that the amount of the chemical solution to be added can be controlled (invention 7).
  • the concentration of the chemical, which is a non-conductive solute, in the liquid for semiconductor manufacturing is calculated based on the measurement value of the TOC meter or the absorption photometer, and the injection amount of the chemical is determined based on this calculated value.
  • the total flow rate of the main pipe and the drain pipe is set as the maximum flow rate necessary for the wafer cleaning apparatus, and the flow rate of the two flow paths of the main pipe and the drain pipe is set to the drain pipe. Since it is adjusted by the opening of the flow rate adjustment valve, by varying the flow rate of the drain pipe according to the variation in the amount used at the point of use, the liquid for semiconductor manufacturing can be constantly supplied without concentration fluctuations. As a result, the solute concentration of the semiconductor manufacturing liquid can be precisely adjusted to a desired value for the surface of a wafer embedded with, for example, a material exhibiting corrosiveness or deliquescence, and the flow rate used in the wafer cleaning apparatus can be varied. It is possible to provide a liquid supply apparatus for semiconductor manufacturing that can stably supply the liquid for semiconductor manufacturing even if the
  • FIG. 1 is a flow chart showing a semiconductor manufacturing liquid supply apparatus according to an embodiment of the present invention
  • FIG. FIG. 4 is a flow diagram showing an example of a chemical liquid injection means of the semiconductor manufacturing liquid supply apparatus of the same embodiment.
  • FIG. 7 is a flowchart showing another example of the chemical liquid injection means of the semiconductor manufacturing liquid supply apparatus of the same embodiment.
  • FIG. 10 is a flow chart showing a one-time semiconductor manufacturing liquid supply apparatus of Comparative Example 1; 4 is a graph showing changes in the required amount of water at the point of use and the conductivity of the semiconductor manufacturing liquid in Example 1.
  • FIG. 5 is a graph showing changes in the amount of water required at the point of use and the conductivity of the semiconductor manufacturing liquid in Comparative Example 1.
  • FIG. 1 shows a semiconductor manufacturing liquid supply apparatus according to an embodiment of the present invention.
  • a semiconductor manufacturing liquid supply apparatus 1 includes a supply pipe 2 communicating with a supply source of ultrapure water W as a solvent, and a conductivity adjusting agent supply as a preparation unit provided in the middle of the supply pipe 2. It has a mechanism 3 and an oxidation-reduction potential adjusting agent supply mechanism 4, a membrane degassing device 5 as degassing means having a vacuum pump 5A, and a fine particle removal filter 6 such as an ultrafiltration membrane.
  • the supply pipe 2 is branched into a main pipe 7 and a drain pipe 8 by connecting a drain pipe 8 after the particulate removal filter 6 .
  • a first instantaneous flowmeter 10 is provided in the main pipe 7, and further communicates with a single-wafer type wafer cleaning device 9 as a point of use.
  • This single-wafer type wafer cleaning apparatus 9 has a plurality of cleaning machine chambers 9A, 9B, 9C, . . .
  • the drain pipe 8 is provided with a second instantaneous flow meter 11, and attached to the second instantaneous flow meter 11, a flow rate adjusting valve 12 is provided as a flow rate adjusting mechanism.
  • the flow control valve 12 it is preferable to use an air-driven valve, an electromagnetic valve, or the like, which is easy to control and has a short response.
  • a sensor section 13 as a concentration control section is provided between the membrane degassing device 5 and the particulate removal filter 6 .
  • the sensor unit 13 may be appropriately selected from those capable of suitably detecting the concentration of the conductivity adjusting agent and the oxidation-reduction potential adjusting agent, and may be composed of one or more such as a conductivity meter and an ORP meter. good.
  • a sensor such as a concentration measuring device using a flow meter and a UV absorbance method may be used for chemicals such as ozone that are difficult to detect with a conductivity meter.
  • a TOC meter or the like may be provided as required.
  • Reference numeral 14 denotes a flow control valve as a flow control mechanism for controlling the flow rate of the supply pipe 2.
  • the first instantaneous flow meter 10, the second instantaneous flow meter 11 and the sensor unit 13 are capable of transmitting measured values to a control means 15 such as a PLC (programmable logic controller), and the control means 15 Based on these transmission results, the conductivity adjusting agent supply mechanism 3, the oxidation-reduction potential adjusting agent supply mechanism 4, the flow rate adjustment valve 12, and the flow rate adjustment valve 14 can be controlled.
  • a control means 15 such as a PLC (programmable logic controller)
  • the preparing section has a conductivity adjusting agent supply mechanism 3 and an oxidation-reduction potential adjusting agent supply mechanism 4 provided in the middle of the supply pipe 2 .
  • the conductivity adjusting agent supply mechanism 3 and the oxidation-reduction potential adjusting agent supply mechanism 4 are, as shown in FIG.
  • a tank 4A for an oxidation-reduction potential adjusting agent and a plunger pump 4B for adding a chemical solution are provided.
  • the conductivity adjuster supply mechanism 3 may also function as a pH adjuster supply mechanism. Alternatively, only one of the conductivity adjusting agent supply mechanism 3 and the oxidation-reduction potential adjusting agent supply mechanism 4 may be used.
  • the ultrapure water W to be raw water is, for example, resistivity: 18.1 M ⁇ cm or more, fine particles: 1000 particles / L or less with a particle size of 50 nm or more, viable bacteria: 1 particle / L or less, TOC (Total Organic Carbon): 1 ⁇ g/L or less Total silicon: 0.1 ⁇ g/L or less Metals: 1 ng/L or less Ions: 10 ng/L or less Hydrogen peroxide: 30 ⁇ g/L or less Water temperature: 25 ⁇ 2° C. is preferred.
  • the conductivity adjuster is not particularly limited, but when adjusting the pH to less than 7, an acidic solution such as hydrochloric acid, nitric acid, sulfuric acid, or acetic acid can be used. Moreover, when adjusting to pH 7 or more, alkaline solutions, such as ammonia, sodium hydroxide, potassium hydroxide, or TMAH, can be used. In some cases, a gas body such as CO 2 may be used.
  • an acidic solution such as hydrochloric acid, nitric acid, sulfuric acid, or acetic acid
  • alkaline solutions such as ammonia, sodium hydroxide, potassium hydroxide, or TMAH
  • a gas body such as CO 2 may be used.
  • oxidation-reduction potential adjusting agent hydrogen peroxide solution or the like can be used in the case of adjusting the oxidation-reduction potential to be high. Further, when adjusting the oxidation-reduction potential to be low, a solution of oxalic acid, hydrogen sulfide, potassium iodide, or the like can be used. In some cases, gas bodies such as ozone (O 3 ) and hydrogen (H 2 ) may be used.
  • Ultrapure water W is supplied from a supply source of ultrapure water (DIW) W, and a conductivity modifier and a redox potential modifier are supplied from a conductivity modifier supply mechanism 3 and a redox potential modifier supply mechanism 4, respectively. supply.
  • the flow rate of the ultrapure water W is set to the maximum amount when all the cleaning chambers 9A, 9B, 9C, . . . 15 is controlled by the flow control valve 14 .
  • the controller 15 controls the conductivity adjuster supply mechanism 3 and the oxidation-reduction potential adjuster supply mechanism so that the conductivity adjuster and the oxidation-reduction potential adjuster have predetermined concentrations. 4 is controlled to adjust the addition amounts of the conductivity modifier and the oxidation-reduction potential modifier. Either one of the conductivity modifier and the oxidation-reduction potential modifier may be added.
  • the chemical solution thus prepared is sent to the membrane degassing device 5, and the dissolved gas component is removed, thereby preparing the semiconductor manufacturing liquid W1.
  • the semiconductor manufacturing liquid W1 is effectively an alkaline solution for semiconductor materials using, for example, copper, cobalt, La 2 O 3 and MgO. It is desirable to effectively suppress dissolution of the material. Further, when the semiconductor material contains copper or cobalt, passivation occurs by adjusting the pH of the semiconductor manufacturing liquid W1 in the range of 9 to 11 and the redox potential in the range of 0.1 to 1.7 V. , further dissolution suppression can be expected. However, it is not limited to this oxidation-reduction potential because the dissolution inhibitory effect is observed even under alkaline conditions alone.
  • ammonia is desirable in terms of preventing contamination during rinsing, but other alkaline solutions such as TMAH and sodium hydroxide can be used without causing any problem in inhibiting dissolution and permeation.
  • TMAH TMAH
  • sodium hydroxide sodium hydroxide
  • the semiconductor material contains tungsten or molybdenum
  • it is effective to use an acidic solution as the semiconductor manufacturing liquid W1 and it is particularly desirable to have a pH of 2 to 5 from the viewpoint of reducing the consumption of the chemical solution.
  • Further dissolution suppression can be expected by lowering the concentration of the oxidizing agent and dissolved oxygen. Dilution of hydrochloric acid or dissolution of carbon dioxide is widely known as the adjustment of the acidic solution, and these are desirable from the viewpoint of contamination suppression.
  • the semiconductor manufacturing liquid W ⁇ b>1 prepared in this manner measures conductivity, oxidation-reduction potential (ORP), etc. by the sensor section 13 as a concentration control section, and transmits the measured values to the control means 15 .
  • the control means 15 adjusts the addition amount of the conductivity modifier by controlling the plunger pump 3B of the conductivity modifier supply mechanism 3 as necessary based on the conductivity value.
  • the addition amount of the oxidation-reduction potential control agent is adjusted by controlling the plunger pump 4B of the oxidation-reduction potential control agent supply mechanism 4 as necessary.
  • the electrical conductivity and oxidation-reduction potential of the semiconductor manufacturing liquid W1 can always be adjusted to desired values. Moreover, even when the electrical conductivity and the oxidation-reduction potential of the semiconductor manufacturing liquid W1 are varied, the liquid W1 can be rapidly prepared in the same manner.
  • concentration control process it is desirable to control the concentration of each solution to an error of ⁇ 5 or less by, for example, providing an in-line monitor for control that displays the measured value of the sensor unit 13 in the control means 15.
  • concentration fluctuations are likely to occur when the amount of use of the single-wafer cleaning apparatus 9 fluctuates, the second instantaneous flow meter 11 and the flow rate adjustment valve 12 installed in the drain pipe 8 and the second flow rate adjustment valve 12 installed in the main pipe 7
  • concentration fluctuations are suppressed to a minimum range.
  • the semiconductor manufacturing liquid W1 for stable cleaning can be sent to the single-wafer cleaning apparatus 9. As shown in FIG.
  • Step of supplying semiconductor manufacturing liquid W1 Subsequently, the semiconductor manufacturing liquid W1 passes through the fine particle removal filter 6 and is then supplied from the main pipe 7 to the single-wafer cleaning apparatus 9 .
  • the flow rate of the main pipe 7 is the sum of the usage amounts of the working chambers 9A, 9B, 9C, .
  • the flow rate of the main pipe 7 is measured and the measured value is transmitted to the control means 15 .
  • the flow rate of the ultrapure water W supplied to the supply pipe 2 is the maximum amount when all of the plurality of cleaning chambers 9A, 9B, 9C, . . .
  • the control means 15 quickly adjusts the opening degree of the flow control valve 12 so that the difference between the maximum amount and the usage amount becomes the flow rate of the drain pipe 8 to drain It is discharged as drain water D from the pipe 8 .
  • the flow rate of the supply pipe 2 that is, the prepared amount of the semiconductor manufacturing liquid W1 can always be kept constant, so that the number of operating cleaning chambers fluctuates, and the amount of the semiconductor manufacturing liquid W1 used fluctuates.
  • the semiconductor manufacturing liquid W1 can be supplied with a minimum concentration fluctuation within a predetermined concentration range.
  • the drain water D may be discharged as it is, or may be returned to the supply source of the ultrapure water W after removing the conductivity adjusting agent and the oxidation-reduction potential adjusting agent by various treatments.
  • the semiconductor manufacturing liquid supply apparatus of the present invention has been described based on the above-described embodiments, but the present invention is not limited to the above-described embodiments and various modifications can be made.
  • the conductivity adjuster supply mechanism 3 and the oxidation-reduction potential adjuster supply mechanism 4 of the preparation unit are not limited to those shown in FIG.
  • the agent tank 4A is a closed tank, and an N2 gas supply source 16 as an inert gas supply source is connected to the tanks 3A and 4A.
  • N 2 gas as an inert gas may be supplied by a flow control mechanism, and the conductivity modifier and the oxidation-reduction potential modifier may be pressure-fed and added so as to obtain a desired solute concentration.
  • the present invention is applicable not only to ultrapure water W but also to organic solvents such as IPA as the solvent.
  • the configuration of the sensor section 13 may be changed as appropriate depending on whether the solute is conductive or non-conductive.
  • a conductivity meter and an absorption photometer may be provided in the case of a conductive solute
  • a TOC meter and an absorption photometer may be provided in the case of a non-conductive solute.
  • a gas-dissolving film may be provided to dissolve a desired gas component in the semiconductor manufacturing liquid W1.
  • a buffer pipe or a reservoir may be provided in the middle of the supply pipe 2, or a solution heater or the like may be provided. Further, as a point of use, it is applicable not only to the single-wafer cleaning apparatus 9, but also to apparatuses using various semiconductor manufacturing liquids.
  • Example 1 In the semiconductor manufacturing liquid supply apparatus 1 shown in FIG. 1, the main pipe 7 was connected to the single-wafer type wafer cleaning apparatus 9 to clean the cobalt-laminated wafer. At this time, ammonia water was supplied from the conductivity adjusting agent supply mechanism 3 and diluted to 10 ppm, and the ammonia water was used as the cleaning solution (semiconductor manufacturing liquid W1). The oxidation-reduction potential adjusting agent supply mechanism 4 was set so as not to supply anything. The cleaning solution was targeted to have a conductivity of 25 ⁇ S/cm ⁇ 10%. This single-wafer cleaning apparatus 9 has five processing chambers, each of which requires a cleaning solution of 2 L/min. The amount of cleaning solution sent to the device 9 was changed.
  • the flow rate of the supply pipe 2 was set to 10 L/min, which is the maximum flow rate required by the wafer cleaning apparatus.
  • the electrical conductivity of the cleaning solution was measured according to the variation in the required amount of the cleaning solution to the single-wafer cleaning apparatus 9 . The results are shown in FIG.
  • FIG. 4 A transient-type semiconductor manufacturing liquid supply apparatus shown in FIG. 4 was prepared.
  • the same components as those in FIG. 1 described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the liquid supply apparatus 1A for semiconductor manufacturing shown in FIG. A flow control valve 14 is provided. Then, a controller (not shown) follows the required flow rate of the single-wafer cleaning apparatus 9 and adjusts the flow rate by adjusting the opening degree of the flow rate adjustment valve 14 of the supply pipe 2 each time.
  • the amount of ammonia water supplied from the supply mechanism 3 was adjusted, and the ammonia water diluted to 10 ppm was supplied to the single-wafer wafer cleaning apparatus 9 by setting it so as to prepare a cleaning solution (semiconductor manufacturing liquid W1).
  • Comparative Example 1 which is a transient type liquid supply apparatus for manufacturing semiconductors
  • Comparative Example 1 an attempt was made to adjust the concentration as the flow rate fluctuated, but the response could not keep up, resulting in a large fluctuation in the concentration. . Therefore, even if the supply pipe 2 is provided with a buffer pipe 21 for alleviating concentration fluctuations in the transient type, it is not possible to follow the fluctuations in the flow rate, and the cleaning solution having a predetermined conductivity is supplied for short-time fluctuations. It turns out to be difficult to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本発明の半導体製造用液体供給装置1は、超純水Wの供給源に連通した供給管2と、この供給管2の途中に設けられた導電率調整剤供給機構3及び酸化還元電位調整剤供給機構4と、膜式脱気装置5と、微粒子除去フィルタ6とを有する。供給管2は主配管7とドレン配管8とに分岐している。主配管7には第一の瞬時流量計10が設けられていて、さらに枚葉式ウェハ洗浄装置9に連通している。ドレン配管8には第二の瞬時流量計11が設けられていて、さらに流量調整バルブ12が設けられている。また、膜式脱気装置5と微粒子除去フィルタ6との間には、センサ部13が設けられている。そして、制御手段15は、流量調整バルブ12を制御可能となっている。本発明によれば、ウェハ洗浄装置で使用される流量が変動しても半導体製造用液体の溶質濃度を所望の値に精度よく安定して供給することができる。

Description

半導体製造用液体供給装置
 本発明は、半導体用ウェハの洗浄・リンス工程において、ドライエッチングなどによって形成された微細なトレンチや細孔に露出した配線材料、あるいはゲートに用いられる潮解性化合物に対して、腐食および溶解を抑制するための酸、アルカリ、あるいは有機溶媒等を含む溶液を効率よくかつ安定供給できる半導体製造用液体供給装置に関する。
 近年、半導体デバイス構造の微細化や立体化、高集積化に伴い、配線抵抗低減の観点から銅やタングステン、コバルト、モリブデンなど低抵抗材料が採用されている。これら金属は腐食しやすいため、腐食防止のためシリコンウェハなどの洗浄・リンス工程で、pHや酸化還元電位の制御に有効な溶質をごく低濃度ないし数十%未満で溶解した液体(以下、半導体製造用液体と呼ぶ)が必要となる。さらにゲート材にはMgOやLaのように水そのものに潮解性を示す材料が使用されることもあり、このような場合にはpHや酸化還元電位の厳密な濃度管理あるいは有機溶媒との併用が避けられない。これらの半導体製造用液体は、主に枚葉式ウェハ洗浄装置において洗浄・リンス液として使用される。
 この半導体製造用液体は、超純水を基本材料として、洗浄やリンス工程の目的に合致したpHや酸化還元電位などの液性を持たせるために、必要量の酸・アルカリ、酸化剤・還元剤を添加することで調製される。あるいは薬液に対し、超純水が希釈液といて用いられる。さらに、H、NH、Oといった還元性、アルカリ性、酸性のガスを超純水に溶解させることもあり、用途によって使い分けられている。このような半導体製造用液体の供給方法としては、ポンプを用いる方法、密閉容器とNなどの不活性ガスによる加圧を用いる方法があり、それぞれ実用化されている。
 特に低濃度に調整された半導体製造用液体を複数の枚葉式ウェハ洗浄装置で構成されるユースポイントに供給する装置の性能としては、装置の稼働台数の変更に伴う流量変動への追随性は歩留まり向上の観点から何よりも重要である。枚葉式ウェハ洗浄装置へ半導体製造用液体を送液する場合の流量変動には大きく2種類あり、一つは洗浄装置自体の立ち上げ時に半導体製造用液体としての所望の洗浄溶液を全く使っていない状態から使い始める際に生じる流量変動である。これについては、洗浄溶液が所望の水質となるまでの立ち上がりに要す期間を、ウェハ洗浄機側のタイミングチャートに予めプログラムしておくことで回避することができる。すなわち、立ち上がり初期で濃度が規定値で安定するまでの間は、ドレン配管に送液して排出することでウェハ洗浄に用いなければよい。
 一方、ユースポイントである枚葉式ウェハ洗浄装置ですでに低濃度に調整された洗浄溶液を、一定の流量で使用している状態から、枚葉式ウェハ洗浄装置の稼働台数の変更などにより、洗浄溶液の使用流量の変更が頻繁に生じた場合には、流量計と水質計を用いたフィードバック制御方式や、流量計による比例制御方式で対応することが行われている。しかしながら、ユースポイントでの使用量に応じた洗浄溶液を調製して供給する一過式の半導体製造用液体供給装置では、いずれの制御方法も通水流路の途中で濃度コントロールするには限界があり、流量変動への濃度追随性は高くはなく、半導体業界が求める厳しい濃度管理に対して、流量計とそれによるフィードバック制御や比例制御のみでの対応には限界がある。
 また低濃度へ希釈した洗浄溶液を一旦タンク貯留し、ガス加圧あるいはポンプによって送液するタンク貯留式による洗浄溶液の供給装置もあるが、このタンク貯留式の場合、タンク容量以上の洗浄溶液を送液できないため、ウェハ洗浄装置での使用に制限が生じる。また、タンク容量を大きくし過ぎると、半導体製造用液体の貯留に時間を要し、かつ設置スペースを確保する必要があり不便である。さらにはタンク貯留式では、ウェハ洗浄装置側の濃度変更要求のたびにタンク内の洗浄溶液を一旦廃棄しなければならず、環境負荷の観点からも得策でない。
 そこで、洗浄溶液などの半導体製造用液体の供給において、溶質濃度が所望の範囲に収まるよう、濃度モニタの信号を受けてPID制御、超純水流量に対する比例制御など、様々な手法による溶質濃度のコントロールが行われている。例えば、特許文献1には、機能的流体の超純水への溶解量又は混合量を精密に制御して正確な機能的流体濃度の機能水を生成することを目的としてマグネット機構を用いた流量調整手段が開示されている。また、特許文献2には、流量制御方法として主流体の流量を計測して計測値の信号を出力する流量計と、入力される該信号とに基づいて他の流体の供給量を制御する洗浄用気体溶解水供給装置の流量制御機構が提案されている。さらに特許文献3には、枚葉式ウェハ洗浄装置で用いられるウェハ洗浄水のレシピに記載の流量値から流量コントロールバルブにフィードバック制御をかけて濃度の制御を行う基板への液処理の供給装置が提案されている。
特許第4786955号公報 特開2003-334433号公報 特開2018-206876号公報
 しかしながら、特許文献1に記載のマグネット機構を用いた流量調整手段では、正確な混合が可能であるが、流量変動時の追随性が十分でない、という問題点がある。また、特許文献2に記載された洗浄用気体溶解水供給装置の流量制御方法では、枚葉式ウェハ洗浄装置に適用した場合に、送液中に枚葉式ウェハ洗浄装置での使用量が変化したときの流量追随性が十分でない、という問題点がある。さらに、特許文献3の基板への液処理の供給装置では、枚葉式ウェハ洗浄装置の流量変動時の微量な濃度コントロールが困難である、という問題点がある。
 本発明は上記課題に鑑みてなされたものであり、半導体製造用液体の溶質濃度を所望の値に精度よく調整でき、かつウェハ洗浄装置で使用される流量が変動しても安定して半導体製造用液体を供給可能な半導体製造用液体供給装置を提供することを目的とする。
 上述した目的を達成するために、本発明は、溶媒を供給する供給管と、前記溶媒に対して所定量の薬液を添加することで所定の濃度の半導体製造用液体を調製する調製部と、前記半導体製造用液体が所定の薬液濃度となるように前記調製部を管理する濃度制御部と、を備え、 前記供給管は、前記濃度制御部の後段で該供給管に接続されたドレン配管と、このドレン配管の接続部からユースポイントに連通する主配管とに分岐していて、 前記主配管には流量計測手段が設けられているとともに前記ドレン配管には前記流量計測手段の計測値に対応可能な流量調整機構が設けられている、半導体製造用液体供給装置を提供する(発明1)。特に上記発明(発明1)においては、前記主配管およびドレン配管の流量の合計をほぼユースポイントの最大使用量に設定し、前記ドレン配管の流量を前記流量調整機構により変動させることで前記主配管の流量を制御可能となっていることが好ましい(発明2)。
 かかる発明(発明1,2)によれば、主配管とドレン配管の流量の合計をウェハ洗浄装置で必要な最大流量として設定し、主配管およびドレン配管の2の流路の流量をドレン配管の流量調整バルブの開度により調整することで、ユースポイントの使用量の変動に応じてドレン配管の流量を変動させることで、常に濃度変動なく半導体製造用液体をユースポイントに供給することができる。
 上記発明(発明1,2)においては、前記流量調整機構が、バルブであり、該バルブの開度を調整することで流量を調整することが好ましい(発明3)。また、上記発明(発明1,2)においては、前記流量調整機構が、流量調整バルブあるいは定圧弁であることが好ましい(発明4)。
 かかる発明(発明3,4)によれば、バルブ、流量調整バルブ、定圧弁などにより、ドレン配管の流量を調整することで、主配管にユースポイントの使用量に応じた量の半導体製造用液体を供給することができる。
 上記発明(発明1~4)においては、前記薬液の注入手段として、ポンプあるいは薬液を充填した密閉タンクを不活性ガスで加圧して薬液を押し出す輸送手段を用いることが好ましい(発明5)。
 かかる発明(発明5)によれば、超純水などの溶媒の流量に対する薬液の添加量をこれらの注入手段で制御することにより、所望の濃度の半導体製造用液体を供給することができる。
することができる。
 上記発明(発明1~5)においては、前記薬液が導電性の溶質であり、前記濃度制御部は、導電率計あるいは吸光光度計を有し、この導電率計あるいは吸光光度計の測定値に基づき前記薬液の添加量を制御可能となっていることが好ましい(発明6)。
 かかる発明(発明6)によれば、半導体製造用液体の導電性の溶質である薬液濃度を導電率計や吸光光度計の測定値に基づいて算定し、この算定値に基づいて薬液の注入量を制御することで、設定された薬液濃度に対して所定の濃度範囲の半導体製造用液体を供給することができる。
 上記発明(発明1~5)においては、前記薬液が非導電性の溶質であり、前記濃度制御部は、TOC計あるいは吸光光度計を有し、このTOC計あるいは吸光光度計の測定値に基づき前記薬液の添加量を制御可能となっていることが好ましい(発明7)。
 かかる発明(発明7)によれば、半導体製造用液体の非導電性の溶質である薬液濃度をTOC計あるいは吸光光度計の測定値に基づいて算定し、この算定値に基づいて薬液の注入量を制御することで、設定された薬液濃度に対して所定の濃度範囲の半導体製造用液体を供給することができる。
 本発明の半導体製造用液体供給装置によれば、主配管とドレン配管の流量の合計をウェハ洗浄装置で必要な最大流量として設定し、主配管およびドレン配管の2の流路の流量をドレン配管の流量調整バルブの開度で調整しているので、ユースポイントの使用量の変動に応じてドレン配管の流量を変動させることで、常に濃度変動なく半導体製造用液体を供給することができる。これにより、例えば腐食性あるいは潮解性を示す材料が埋め込まれたウェハ表面に対して、半導体製造用液体の溶質濃度を所望の値に精度よく調整でき、かつウェハ洗浄装置で使用される流量が変動しても安定して半導体製造用液体を供給可能な半導体製造用液体供給装置とすることができる。
本発明の一実施形態による半導体製造用液体供給装置を示すフロー図である。 同実施形態の半導体製造用液体供給装置の薬液の注入手段の一例を示すフロー図である。 同実施形態の半導体製造用液体供給装置の薬液の注入手段の他例を示すフロー図である。 比較例1の一過式の半導体製造用液体供給装置を示すフロー図である。 実施例1のユースポイントの要求水量の変動と半導体製造用液体の導電率を示すグラフである。 比較例1のユースポイントの要求水量の変動と半導体製造用液体の導電率を示すグラフである。
 以下、本発明の半導体製造用液体供給装置について、添付図面を参照して詳細に説明する。
[半導体製造用液体供給装置]
 図1は、本発明の一実施形態による半導体製造用液体供給装置を示している。図1において、半導体製造用液体供給装置1は、溶媒としての超純水Wの供給源に連通した供給管2と、この供給管2の途中に設けられた調製部としての導電率調整剤供給機構3及び酸化還元電位調整剤供給機構4と、真空ポンプ5Aを備えた脱ガス手段としての膜式脱気装置5と、限外ろ過膜などの微粒子除去フィルタ6とを有する。供給管2には、微粒子除去フィルタ6の後段でドレン配管8が接続されることにより、主配管7とドレン配管8とに分岐している。主配管7には第一の瞬時流量計10が設けられていて、さらにユースポイントとしての枚葉式ウェハ洗浄装置9に連通している。この枚葉式ウェハ洗浄装置9は複数の洗浄機チャンバ9A,9B,9C・・・を有する。また、ドレン配管8には第二の瞬時流量計11が設けられていて、この第二の瞬時流量計11に付設して流量調整機構としての流量調整バルブ12が設けられている。この流量調整バルブ12としては、エア駆動式、電磁式などの制御が容易でレスポンスが短いものを用いるのが好ましい。
 また、膜式脱気装置5と微粒子除去フィルタ6との間には、濃度制御部としてのセンサ部13が設けられている。このセンサ部13は、導電率調整剤や酸化還元電位調整剤の濃度を好適に検出可能なものを適宜選択して用いればよく、導電率計、ORP計などの1または2以上から構成すればよい。あるいはオゾンなどの導電率計では検出しにくい薬液に対しては、流量計とUV吸光度法を用いた濃度計測装置などのセンサを用いてもよい。さらに、要に応じてTOC計などを設けてもよい。なお、14は供給管2の流量を制御する流量調整機構としての流量調整バルブである。
 そして、第一の瞬時流量計10、第二の瞬時流量計11及びセンサ部13は、PLC(プログラマブルロジックコントローラ)などの制御手段15に計測値を送信可能となっており、制御手段15は、これらの送信結果に基づいて、導電率調整剤供給機構3、酸化還元電位調整剤供給機構4、流量調整バルブ12および流量調整バルブ14を制御可能となっている。
(調製部)
 調製部は、供給管2の途中に設けられた導電率調整剤供給機構3と、酸化還元電位調整剤供給機構4とを有する。そして、これら導電率調整剤供給機構3及び酸化還元電位調整剤供給機構4は、本実施形態においては、図2に示すように導電率調整剤のタンク3A及び薬液を添加するプランジャポンプ3Bと、酸化還元電位調整剤のタンク4A及び薬液を添加するプランジャポンプ4Bとからそれぞれ構成され、これらプランジャポンプ3B,4Bを制御手段15により制御することでそれぞれの薬液注入量を調整可能となっている。なお、導電率調整剤供給機構3は、pH調整剤供給機構として作用させてもよい。また、導電率調整剤供給機構3及び酸化還元電位調整剤供給機構4は、いずれか一方のみとしてもよい。
 この濃度調整部には、薬液の添加後にスタティックミキサーのようなライン混合装置設置することで薬液の均質化を図ることが望ましいが、レイノルズ数が4000以上になるよう配管系と移送混合時の流量を調整することで、それぞれの液体の粘性や密度が±20%程度と近似している場合には、特にスタティックミキサーを設置する必要はなくなり、配管にエルボやオリフィスがあれば十分に混合して薬液を均質化することができる。
(超純水)
 本実施形態において、原水となる超純水Wとは、例えば、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。
(薬液)
 本実施形態において、導電率調整剤としては特に制限はないが、pH7未満に調整する場合には、塩酸、硝酸、硫酸、酢酸などの酸性溶液を用いることができる。また、pH7以上に調整する場合には、アンモニア、水酸化ナトリウム、水酸化カリウム又はTMAH等のアルカリ性溶液を用いることができる。また、場合によってはCOなどのガス体を用いてもよい。
 また、酸化還元電位調整剤としては、酸化還元電位を高く調整する場合には、過酸化水素水などを用いることができる。また、酸化還元電位を低く調整する場合にはシュウ酸、硫化水素、ヨウ化カリウムなどの溶液を用いることができる。また、場合によってはオゾン(O)、水素(H)などのガス体を用いてもよい。
[希薄薬液の供給方法]
 次に上述したような半導体製造用液体供給装置を用いた半導体製造用液体の供給方法について、以下説明する。
(半導体製造用液体調製工程)
 超純水(DIW)Wの供給源から超純水Wを供給するとともに、導電率調整剤供給機構3と酸化還元電位調整剤供給機構4とから、それぞれ導電率調整剤と酸化還元電位調整剤を供給する。このとき、超純水Wの流量は、ユースポイントとしての枚葉式ウェハ洗浄装置9の洗浄機チャンバ9A,9B,9C・・・の全台が稼働した際の最大量となるように制御手段15により流量調整バルブ14により制御する。そして、この超純水Wの流量に基づいて、導電率調整剤と酸化還元電位調整剤が所定の濃度となるように制御装置15により導電率調整剤供給機構3と酸化還元電位調整剤供給機構4を制御して、導電率調整剤及び酸化還元電位調整剤の添加量を調整する。なお、導電率調整剤及び酸化還元電位調整剤はいずれか一方のみを加えてもよい。このようにして調製された薬液は、膜式脱気装置5に送られ、溶存ガス成分を除去することで、半導体製造用液体W1として調製される。
 ここで、半導体製造用液体W1は、例えば銅、コバルト、La、MgOなどを用いた半導体材料に対してはアルカリ性溶液とするのが効果的で、特にpH9~11の範囲でこれらの材料の溶解を効果的に抑制することが望ましい。また、半導体材料が銅、コバルトを含む場合には、半導体製造用液体W1をpH9~11の範囲でかつ酸化還元電位を0.1~1.7Vの範囲に調整することで不働態化が生じ、さらに溶解抑制を期待できる。ただし、アルカリ条件のみでも溶解抑制効果は認められるので、この酸化還元電位に限定されない。アルカリの種類は、リンス時の汚染防止の点でアンモニアが望ましいが、TMAHや水酸化ナトリウムなど他のアルカリ性溶液を用いても、溶解抑制と浸透に対して何ら問題ない。一方、半導体材料がタングステン、モリブデンを含む場合には、半導体製造用液体W1は酸性溶液とするのが効果的で、特に薬液消費量削減の観点から、pH2~5とするのが望ましい。そして、酸化剤や溶存酸素濃度を低くすることでさらなる溶解抑制が期待できる。酸性溶液の調整は、塩酸の希釈あるいは炭酸ガスの溶解が広く知られており、コンタミ抑制の点でもこれらが望ましい。
(濃度制御工程)
 このようにして調製された半導体製造用液体W1は、濃度制御部としてのセンサ部13で導電率・酸化還元電位(ORP)などを計測し、この計測値を制御手段15に送信する。制御手段15は、導電率の値に基づき、必要に応じて導電率調整剤供給機構3のプランジャポンプ3Bを制御することにより導電率調整剤の添加量を調整する。一方、酸化還元電位の値に基づき、必要に応じて酸化還元電位調整剤供給機構4のプランジャポンプ4Bを制御することにより酸化還元電位調整剤の添加量を調整する。このようにして半導体製造用液体W1の導電率及び酸化還元電位を常に所望の値に調整することができる。また、半導体製造用液体W1の導電率及び酸化還元電位を変動させる場合にも同様にして迅速に調製することができる。
 このような濃度制御工程において、制御手段15には、センサ部13の計測値を表示するコントロール用インラインモニターを配備するなどして、誤差±5以下に各溶液濃度をコントロールすることが望ましい。また、枚葉式ウェハ洗浄装置9の使用量の変動に際しては濃度変動が生じやすいが、ドレン配管8に設置した第二の瞬時流量計11及び流量調整バルブ12と、主配管7に設置した第一の瞬時流量計10の出力によって薬液注入量やガス供給量などをコントロールすることで、枚葉式ウェハ洗浄装置9で使用する流量が変動しても、濃度変動を最小限の範囲に抑制し、安定した洗浄の半導体製造用液体W1を枚葉式ウェハ洗浄装置9へ送液することが可能となる。
(半導体製造用液体W1の供給工程)
 続いて半導体製造用液体W1は、微粒子除去フィルタ6を通過した後、主配管7から枚葉式ウェハ洗浄装置9に供給される。このとき主配管7の流量は、浄機チャンバ9A,9B,9C・・・のうち稼働しているものの使用量の合計となるので、各洗浄機チャンバの稼働台数により変動する。そして、本実施形態においては、主配管7には第一の瞬時流量計10が設けられているので、主配管7の流量を測定し、この計測値を制御手段15に送信する。供給管2に供給される超純水Wの流量は、ユースポイントとしての枚葉式ウェハ洗浄装置9の複数の洗浄機チャンバ9A,9B,9C・・・の全台が稼働した際の最大量となるように設定されているので、制御手段15は、この最大量と使用量との差量が、ドレン配管8の流量となるように流量調整バルブ12の開度を迅速に調節してドレン配管8からドレン水Dとして排出する。これにより、供給管2の流量、すなわち半導体製造用液体W1の調製量を常に一定に保つことができるので、各洗浄機チャンバの稼働台数が変動して、半導体製造用液体W1の使用量が変動しても、所定の濃度範囲内の最小限の濃度変動で半導体製造用液体W1を供給することができる。なお、ドレン水Dは、そのまま排水としてもよいが、各種処理により導電率調整剤及び酸化還元電位調整剤を除去した後、超純水Wの供給源に還流してもよい。
 以上、本発明の半導体製造用液体供給装置について、前記実施形態に基づいて説明してきたが、本発明は前記実施形態に限定されず種々の変形実施が可能である。例えば、調製部の導電率調整剤供給機構3と酸化還元電位調整剤供給機構4は、図2に示すものに限らず、図3に示すように導電率調整剤のタンク3A及び酸化還元電位調整剤のタンク4Aを密閉タンクとし、このタンク3A及びタンク4Aに不活性ガス供給源としてのNガス供給源16を接続し、このNガス供給源16から供給管17を介して、図示しない流量調節機構により不活性ガスとしてのNガスをそれぞれ供給して、導電率調整剤及び酸化還元電位調整剤を圧送して、所望の溶質濃度となるように添加するようにしてもよい。また、本発明は、溶媒としては超純水Wに限らず、IPAなどの有機溶剤などにも適用可能である。
 さらに、センサ部13の構成は、溶質が導電性であるか、非導電性であるかにより適宜変更すればよい。例えば導電性の溶質の場合には導電率計、吸光光度計を設け、非導電性の溶質の場合には、TOC計、吸光光度計を設けるなどすればよい。
 さらにまた記実施形態においては、ガス溶解膜を設けて所望のガス成分を半導体製造用液体W1に溶解してもよい。なお、供給管2の途中には、バッファ管や貯留槽を設けてもよいし、溶液の加熱器などを設けてもよい。また、ユースポイントとしては、枚葉式ウェハ洗浄装置9に限らず、種々の半導体製造用液体を使用する装置に適用可能である。
 以下の具体的実施例により本発明をさらに詳細に説明する。
[実施例1]
 図1に示す半導体製造用液体供給装置1において、主配管7を枚葉式ウェハ洗浄装置9に接続し、コバルトを積層したウェハの洗浄を行った。このとき導電率調整剤供給機構3からアンモニア水を供給して10ppmまで希釈されたアンモニア水を洗浄溶液(半導体製造用液体W1)とした。なお、酸化還元電位調整剤供給機構4は何も供給しないように設定した。この洗浄溶液は導電率が25μS/cm±10%に収まることを目標とした。この枚葉式ウェハ洗浄装置9は5つの処理用チャンバを有し、各チャンバは2L/分の洗浄溶液を必要とし、各チャンバの稼働・停止を模擬的に制御して、枚葉式ウェハ洗浄装置9への洗浄溶液送液量を変更した。この際、供給管2の流量はウェハ洗浄装置が要求する最大流量である10L/分に設定した。このような処理において、枚葉式ウェハ洗浄装置9への洗浄溶液の要求量の変動に応じた洗浄溶液の導電率を測定した。結果を図5に示す。
[比較例1]
 図4に示す一過式の半導体製造用液体供給装置を準備した。図4の半導体製造用液体供給装置1Aにおいては、前述した図1と同じ構成要素については同一の符号を付し、その詳細な説明を省略する。図4に示す半導体製造用液体供給装置1Aは、ドレン配管8を有しない代わりに、膜式脱気装置5の後段にバッファ管21が設けられており、供給管2には、瞬時流量計14Aが付設された流量調整バルブ14が設けられている。そして、図示しない制御装置により、枚葉式ウェハ洗浄装置9の要求流量に追従して、その都度供給管2の流量調整バルブ14の開度を調整して流量を調整するとともに、導電率調整剤供給機構3からのアンモニア水の供給量を調整して10ppmに希釈されたアンモニア水を洗浄溶液(半導体製造用液体W1)を調製するように設定して枚葉式ウェハ洗浄装置9に供給した。
 この枚葉式ウェハ洗浄装置の5つの処理用チャンバの稼働・停止を模擬的に制御して、枚葉式ウェハ洗浄装置9への洗浄溶液送液量を実施例1と同じく変更した。この枚葉式ウェハ洗浄装置9への洗浄溶液の要求量の変動に応じた洗浄溶液の導電率を測定した。結果を図6に示す。また、これらの結果から実施例1及び比較例1でウェハ洗浄装置に対して対応可能なチャンバ数を算定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図5、図6及び表1から明らかなように、実施例1の半導体製造用液体供給装置では、流量変動しても±10%の濃度範囲に収まることがわかった。そして、供給管2に常時ウェハ洗浄装置の最大要求流量である10L/分の希薄アンモニア水を通水することで、途中でウェハ洗浄装置の要求流量が変動してもこれに追従し、安定した濃度の希薄アンモニア水を必要流量に応じて供給できることがわかる。これに対し、一過式の半導体製造用液体供給装置である比較例1では、流量が変動するに伴って濃度調整を試みているが対応が追い付かず、濃度が大幅に変動する結果となった。これより、一過式では供給管2に濃度の変動を緩和するためのバッファ管21を備えていたとしても、流量変動に追随できず、短時間の変動では所定の導電率の洗浄溶液を供給することが困難となることがわかる。
1 半導体製造用液体供給装置
2 供給管
3 導電率調整剤供給機構(調製部)
 3A タンク
 3B プランジャポンプ
4 酸化還元電位調整剤供給機構(調製部)
 4A タンク
 4B プランジャポンプ
5 膜式脱気装置
5A 真空ポンプ
6 微粒子除去フィルタ
7 主配管
8 ドレン配管
9 枚葉式ウェハ洗浄装置
9A,9B,9C・・・ 洗浄機チャンバ
10 第一の瞬時流量計
11 第二の瞬時流量計
12 流量調整バルブ(流量調整機構)
13 センサ部(濃度制御部)
14 流量調整バルブ
15 制御手段
16 Nガス供給源(不活性ガス供給源)
17 供給管
W 超純水
W1 半導体製造用液体
D ドレン水

Claims (7)

  1.  溶媒を供給する供給管と、
     前記溶媒に対して所定量の薬液を添加することで所定の濃度の半導体製造用液体を調製する調製部と、
     前記半導体製造用液体が所定の薬液濃度となるように前記調製部を管理する濃度制御部と、を備え、
     前記供給管は、前記濃度制御部の後段で該供給管に接続されたドレン配管と、このドレン配管の接続部からユースポイントに連通する主配管とに分岐していて、
     前記主配管には流量計測手段が設けられているとともに前記ドレン配管には前記流量計測手段の計測値に対応可能な流量調整機構が設けられている、半導体製造用液体供給装置。
  2.  前記主配管およびドレン配管の流量の合計をほぼユースポイントの最大使用量に設定し、前記ドレン配管の流量を前記流量調整機構により変動させることで前記主配管の流量を制御可能となっている、請求項1に記載の半導体製造用液体供給装置。
  3.  前記流量調整機構が、バルブであり、該バルブの開度を調整することで流量を調整する、請求項1又は2に記載の半導体製造用液体供給装置。
  4.  前記流量調整機構が、流量調整バルブあるいは定圧弁である、請求項1又は2に記載の半導体製造用液体供給装置。
  5.  前記薬液の注入手段として、ポンプあるいは薬液を充填した密閉タンクを不活性ガスで加圧して薬液を押し出す輸送手段を用いる、請求項1~4のいずれか1項に記載の半導体製造用液体供給装置。
  6.  前記薬液が導電性の溶質であり、前記濃度制御部は、導電率計あるいは吸光光度計を有し、この導電率計あるいは吸光光度計の測定値に基づき前記薬液の添加量を制御可能となっている、請求項1~5のいずれか1項に記載の半導体製造用液体供給装置。
    する制御手段
  7.  前記薬液が非導電性の溶質であり、前記濃度制御部は、TOC計あるいは吸光光度計を有し、このTOC計あるいは吸光光度計の測定値に基づき前記薬液の添加量を制御可能となっている、請求項1~5のいずれか1項に記載の半導体製造用液体供給装置。
PCT/JP2022/012177 2021-09-07 2022-03-17 半導体製造用液体供給装置 WO2023037618A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280060622.6A CN117916860A (zh) 2021-09-07 2022-03-17 半导体制造用液体供给装置
EP22866952.9A EP4401114A1 (en) 2021-09-07 2022-03-17 Device for supplying liquid for semiconductor manufacturing
KR1020247002071A KR20240060785A (ko) 2021-09-07 2022-03-17 반도체 제조용 액체 공급 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021145469A JP7099603B1 (ja) 2021-09-07 2021-09-07 半導体製造用液体供給装置
JP2021-145469 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023037618A1 true WO2023037618A1 (ja) 2023-03-16

Family

ID=82384783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012177 WO2023037618A1 (ja) 2021-09-07 2022-03-17 半導体製造用液体供給装置

Country Status (6)

Country Link
EP (1) EP4401114A1 (ja)
JP (1) JP7099603B1 (ja)
KR (1) KR20240060785A (ja)
CN (1) CN117916860A (ja)
TW (1) TW202311177A (ja)
WO (1) WO2023037618A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334433A (ja) 2002-05-16 2003-11-25 Kurita Water Ind Ltd 連続溶解装置、連続溶解方法及び気体溶解水供給装置
JP4786955B2 (ja) 2005-07-21 2011-10-05 日本碍子株式会社 機能水生成装置及びそれを用いた機能水生成方法
WO2017122771A1 (ja) * 2016-01-15 2017-07-20 株式会社荏原製作所 供給液体製造装置および供給液体製造方法
JP2018206876A (ja) 2017-05-31 2018-12-27 東京エレクトロン株式会社 基板液処理装置、処理液供給方法及び記憶媒体
JP2019155221A (ja) * 2018-03-07 2019-09-19 株式会社荏原製作所 循環式ガス溶解液供給装置および循環式ガス溶解液供給方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334433A (ja) 2002-05-16 2003-11-25 Kurita Water Ind Ltd 連続溶解装置、連続溶解方法及び気体溶解水供給装置
JP4786955B2 (ja) 2005-07-21 2011-10-05 日本碍子株式会社 機能水生成装置及びそれを用いた機能水生成方法
WO2017122771A1 (ja) * 2016-01-15 2017-07-20 株式会社荏原製作所 供給液体製造装置および供給液体製造方法
JP2018206876A (ja) 2017-05-31 2018-12-27 東京エレクトロン株式会社 基板液処理装置、処理液供給方法及び記憶媒体
JP2019155221A (ja) * 2018-03-07 2019-09-19 株式会社荏原製作所 循環式ガス溶解液供給装置および循環式ガス溶解液供給方法

Also Published As

Publication number Publication date
CN117916860A (zh) 2024-04-19
JP7099603B1 (ja) 2022-07-12
EP4401114A1 (en) 2024-07-17
TW202311177A (zh) 2023-03-16
JP2023038642A (ja) 2023-03-17
KR20240060785A (ko) 2024-05-08

Similar Documents

Publication Publication Date Title
TWI736672B (zh) pH-氧化還原電位調整水的製造裝置
KR20190137869A (ko) 기판 처리 방법 및 기판 처리 장치
KR20190128161A (ko) pH 및 산화 환원 전위를 제어 가능한 희석 약액의 제조 장치
KR102503070B1 (ko) pH·산화 환원 전위 조정수의 제조 장치
US11319226B2 (en) Cleaning water supply device
WO2023037618A1 (ja) 半導体製造用液体供給装置
WO2018179503A1 (ja) 規定濃度水の供給方法及び装置
KR20190103947A (ko) 기판 처리 장치, 처리액 배출 방법, 처리액 교환 방법, 및 기판 처리 방법
WO2020250495A1 (ja) pH調整水製造装置
KR20060095640A (ko) 약액 혼합 공급 장치 및 방법
US8491726B2 (en) Liquid processing apparatus and process liquid supplying method
US12030024B2 (en) Dilute chemical supply device
WO2022102252A1 (ja) pH・酸化還元電位調整水の製造装置
US20230335417A1 (en) Wafer cleaning water supply system and wafer cleaning water supply method
JP2024032251A (ja) ウェハ洗浄水供給装置
KR100737752B1 (ko) 처리액 공급장치 및 이를 이용한 처리액 공급방법
JP2022187362A (ja) ウェハ洗浄水供給装置
KR20230043838A (ko) 웨이퍼 세정수 공급 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280060622.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022866952

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022866952

Country of ref document: EP

Effective date: 20240408