WO2023037440A1 - Filter material for air filters - Google Patents

Filter material for air filters Download PDF

Info

Publication number
WO2023037440A1
WO2023037440A1 PCT/JP2021/032989 JP2021032989W WO2023037440A1 WO 2023037440 A1 WO2023037440 A1 WO 2023037440A1 JP 2021032989 W JP2021032989 W JP 2021032989W WO 2023037440 A1 WO2023037440 A1 WO 2023037440A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
beaten
fiber
filter medium
filter
Prior art date
Application number
PCT/JP2021/032989
Other languages
French (fr)
Japanese (ja)
Inventor
栄子 目黒
正 佐藤
Original Assignee
北越コーポレーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北越コーポレーション株式会社 filed Critical 北越コーポレーション株式会社
Priority to KR1020247006152A priority Critical patent/KR20240038046A/en
Priority to JP2023546620A priority patent/JPWO2023037440A1/ja
Priority to PCT/JP2021/032989 priority patent/WO2023037440A1/en
Publication of WO2023037440A1 publication Critical patent/WO2023037440A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
    • D04H1/26Wood pulp
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4266Natural fibres not provided for in group D04H1/425
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/064The fibres being mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1225Fibre length
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the present disclosure relates to filter media for air filters used in various fields such as air conditioning in factories and buildings, automobile cabins, air conditioners, air purifiers, personal protective equipment, etc. In particular, it has a small environmental load and is used for filtering. It relates to an air filter medium with little decrease in performance.
  • Glass fiber filter media and meltblown non-woven fabric filter media are mainly used as medium- and high-performance filter media for air filters used in building air conditioning. Since glass fiber filter media are nonflammable, they are landfilled as industrial waste after use. For this reason, the environmental load at the time of disposal is large.
  • the meltblown nonwoven fabric filter medium uses non-renewable and limited fossil resources (PP, etc.) as raw materials, and emits a large amount of carbon dioxide throughout its life cycle when incinerated. Also, if it is released into the environment after use, it will remain in the environment without being decomposed. For the reasons described above, there is a demand for a biodegradable filter medium that is mainly composed of renewable raw materials and has a low environmental load.
  • filter media containing fibrillated lyocell fibers, biodegradable fibers, and regenerated or semi-synthetic fibers have been proposed (see Patent Document 1 or Patent Document 2).
  • cellulosic fibers such as lyocell fibers are highly hygroscopic and water-absorbing, so when used in a high-humidity environment or when air currents containing moisture or dust pass through, the fibers swell and the structure of the filter media changes.
  • the filtration performance of the filter material for air filters is lowered, for example, the PF value is lowered.
  • the PF value is defined by Equation 1, and the higher the PF value, the higher the efficiency of collecting dust particles, the lower the pressure loss, and the higher the filtration performance of the filter medium.
  • transmittance [%] 100 - collection efficiency [%]
  • a method of imparting water repellency to the filter medium is effective, and as a method of imparting water repellency to the filter medium for air filters, a method using a fluorine-based water repellent agent is widely used.
  • a fluorine-based water repellent agent is widely used.
  • perfluoroalkyl compounds constituting fluorine-based water repellents are difficult to decompose and highly bioaccumulative, and there is a worldwide movement to restrict their use, and they are not suitable for the purpose of the present invention.
  • JP 2006-167659 A Japanese Patent Application Laid-Open No. 2006-326470 JP-A-2001-79318 JP 2014-98082 A
  • an object of the present disclosure is to provide an air filter filter medium that is mainly composed of renewable raw materials, is biodegradable, and has sufficient water repellency.
  • fibers constituting the filter medium include beaten fibers and non-beaten fibers, the beaten fibers are fibrillated lyocell fibers, and the unbeaten fibers are biodegradable fibers,
  • the mass ratio of the beaten fibers to the non-beaten fibers (beaten fibers/non-beaten fibers) is in the range of 3/97 to 20/80
  • the filter medium comprises a hydrocarbon-based polymer containing no fluorine in its molecule. It is characterized by containing a water-repellent agent as a main component. According to such a configuration, it is possible to obtain a filter medium that has a small environmental load and a small drop in filtration performance during use.
  • the biodegradable fiber that is the non-beaten fiber is preferably at least one selected from the group consisting of regenerated cellulose fiber, natural cellulose fiber and polylactic acid fiber.
  • the hydrocarbon-based polymer which is the main component of the water repellent agent, is an acrylic polymer.
  • the filter medium for an air filter according to the present invention includes a form in which the filter medium contains a surfactant. Thereby, high filtration performance can be obtained.
  • the surfactant is preferably a quaternary ammonium salt.
  • the water repellency specified by MIL-STD-282 is 100 mm or higher in the water column. As a result, deterioration in filtration performance during use can be suppressed.
  • the fibrillated lyocell fibers which are the beaten fibers, have an average fiber diameter of 0.3 ⁇ m or more, a maximum fiber diameter of 8 ⁇ m or less, and a length-weighted average fiber length of 1 mm or more. is preferred. Reduction in collection efficiency and tensile strength of the filter material is unlikely to occur.
  • the biodegradable fibers which are the non-beaten fibers, have a fiber diameter of 5 ⁇ m or more.
  • the average fiber diameter is 5 ⁇ m or more, the voids necessary for uniformly distributing the beaten fibers can be maintained, and the increase in pressure loss is less likely to occur, and the collection efficiency of the filter medium is less likely to decrease.
  • a filter medium that has a small environmental load and a small drop in filtration performance during use. That is, it is possible to obtain an air filter filter medium that is mainly composed of a renewable raw material, has biodegradability, and has sufficient water repellency to prevent moisture absorption of cellulosic fibers including fibrillated lyocell fibers. .
  • the lyocell fiber in this embodiment is a regenerated cellulose fiber spun by an organic solvent spinning method using N-methylmorpholine-N-oxide as a solvent.
  • organic solvent spinning method cellulose is dissolved as it is in an organic solvent and spun, so there is less molecular breakage, the average degree of polymerization is higher than that of other regenerated cellulose fibers, and the rigidity of the fiber is high. It has characteristics close to a circular shape. This rigidity and cross-sectional shape help maintain voids in the filter medium.
  • the fibrillated lyocell fiber after beating also maintains the aforementioned characteristics of rigidity and cross-sectional shape. Furthermore, fibrillation by beating increases the surface area of the fibers that contribute to the collection of particles, thereby increasing the collection efficiency and increasing the entanglement of the fibers, thereby increasing the tensile strength of the filter medium.
  • the beaten fiber in the present embodiment is a fibrillated lyocell fiber, and the blending amount of the beaten fiber is 3 to 20 parts, preferably 5 to 15 parts, based on 100 parts of the total fiber mass constituting the filter medium. , more preferably 5 to 13 parts. If the blending amount is less than 3 parts, it is difficult to obtain sufficient collection efficiency, and sufficient tensile strength cannot be obtained due to less entanglement between fibers. On the other hand, if the blending amount is more than 20 parts, the fibers are entangled with each other too much to clog the voids, resulting in a large increase in pressure loss and a decrease in the PF value compared to the increase in collection efficiency.
  • a beater such as a Niagara beater, PFI mill, single disc refiner or double disc refiner can be used. In the beating, it is preferable to beat without applying an excessively strong load so as not to shorten the fiber length of the lyocell too much.
  • the fibrillated lyocell fibers used in the present invention preferably have a length-weighted average fiber length of 1 mm or more, more preferably 1 to 3 mm, even more preferably 1 to 2 mm.
  • the length-weighted average fiber length of fibrillated lyocell fibers was measured according to ISO 16065-2:2007 "Determination of fiber length by automated optical analysis-Part 2".
  • Lyocell fibers are fibrillated by beating and the fiber diameter becomes smaller.
  • the average fiber diameter of the fibril lyocell fibers used in the present embodiment is preferably 0.3 ⁇ m or more, more preferably 0.3 to 1.0 ⁇ m, and further preferably 0.3 to 0.8 ⁇ m. preferable.
  • the maximum fiber diameter of the fibrillated lyocell fibers is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less, and even more preferably 4 ⁇ m or less. If the average fiber diameter is less than 0.3 ⁇ m, the fibers may be cut as the fibrillation progresses, lowering the tensile strength of the filter medium and making it impossible to maintain the voids, thereby lowering the collection efficiency. be. On the other hand, if the average fiber diameter exceeds 1.0 ⁇ m and the maximum fiber diameter exceeds 8 ⁇ m, the surface area of the fibers that contributes to particle trapping is reduced, and the trapping efficiency may be lowered.
  • the fiber diameter in the present embodiment is obtained by taking a photograph of the surface of the filter medium using an electron microscope, drawing a straight line in the horizontal direction on the obtained electron microscope photograph, and measuring the fiber diameter at the intersection of the straight line and the fiber. was measured.
  • the average fiber diameter was the arithmetic mean value of 200 measurements.
  • the non-beaten fibers in this embodiment are biodegradable fibers that have not been beaten, and are preferably at least one selected from the group consisting of regenerated cellulose fibers, natural cellulose fibers and polylactic acid fibers. Fibers of the same type and having different fiber diameters may be blended.
  • the blending amount of the non-beaten fibers in the present embodiment is 80 to 97 parts out of 100 parts of the total fiber mass constituting the filter medium. If the blending ratio is out of this range, it will be out of the range of the blending amount of the beaten fiber.
  • Regenerated cellulose fibers are viscose rayon fibers spun from cellulose by the viscose method, and lyocell fibers spun by the organic solvent spinning method. These are renewable materials made from wood pulp, and have biodegradability in soil burial and biodegradability in the sea.
  • Natural cellulose fibers are fibers mainly composed of cellulose extracted from plants, and include wood pulp, cotton linter pulp, hemp pulp, kenaf pulp, and mercerized pulp obtained by alkali-treating wood pulp. These are renewable raw materials made from plants, and are biodegradable when buried in the soil.
  • Polylactic acid fiber is a fiber spun mainly from a polymer that chemically polymerizes lactic acid obtained by saccharification and fermentation of biomass-derived starch as a raw material. This is a renewable material made from corn or the like, and is biodegradable when buried in the ground.
  • polylactic acid fibers have thermoplasticity unlike cellulosic fibers, they can impart tensile strength to the filter medium or impart thermoformability to the filter medium by heat fusion. Since polylactic acid fiber competes with food as a raw material, it is preferable to keep the blending amount low within a range in which the physical properties of the filter medium are acceptable.
  • the blending amount of the polylactic acid fiber is preferably 0 to 30 parts, more preferably 0 to 20 parts, based on the total fibers in the filter medium. That is, the blending amount of the non-beaten fiber is 80 to 97 parts out of 100 parts of the total fiber mass constituting the filter medium. (80-n) to (97-n) parts of the total amount of fibers (including the case where only one side is used) are blended. However, n is preferably 30 parts or less.
  • the non-beaten fibers in the present embodiment preferably have an average fiber diameter of 5 ⁇ m or more, more preferably 5 to 40 ⁇ m, still more preferably 7 to 35 ⁇ m. If the average fiber diameter is smaller than 5 ⁇ m, it becomes difficult to maintain the voids necessary for uniformly distributing the beaten fibers, which may cause an increase in pressure loss. On the other hand, if the average fiber diameter exceeds 40 ⁇ m, the difference in fiber diameter from that of the beaten fibers is large, so the pore diameter of the filter medium varies greatly, which may lead to a decrease in collection efficiency.
  • the water repellent agent in the present embodiment is a repellent agent mainly composed of a hydrocarbon-based polymer containing no fluorine in the molecule, which is used to impart sufficient water repellency to prevent deterioration of filtration performance during use. It is a liquid agent, and preferably has an acrylic polymer as a main component.
  • a hydrocarbon-based polymer containing no fluorine in the molecule as a main component means that the polymer component of the water repellent agent accounts for 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more.
  • it is composed of a polymer composed of an organic compound having a hydrocarbon skeleton and containing oxygen, nitrogen, and the like.
  • a water repellent agent containing an acrylic polymer as a main component can increase the water repellency by increasing the number of carbon atoms in the ester portion of the raw material monomer acrylic acid ester or methacrylic acid ester.
  • the acrylic polymer as the main component means that 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more of the polymer component of the water repellent is acrylic acid ester and / or methacrylic It consists of a polymer polymerized using an acid ester as a main raw material monomer.
  • the number of carbon atoms in the ester portion is preferably 9 or more, more preferably 12 or more.
  • the water repellency of the filter medium in this embodiment is preferably 100 mm or higher, more preferably 150 mm or higher, and even more preferably 200 mm or higher.
  • the content of the water repellent agent in the filter medium should be within a range that provides the required water repellency and does not impede the biodegradability of the filter medium.
  • the content of the water repellent agent in the entire filter medium is preferably 0.3 to 2.0% by mass, preferably 0.3 to 1.0% by mass, and more preferably 0.3 to 0.5% by mass in terms of solid content. is.
  • the surfactant in this embodiment is used to prevent the fibers in the filter medium from sticking too closely to each other to improve filtration performance.
  • Surfactants having various compositions and ionic properties can be selected within a range that does not interfere with the effects of the present invention.
  • quaternary ammonium salts are preferred because they are highly effective in improving filtration performance.
  • the quaternary ammonium salt has antibacterial properties, it is possible to impart antibacterial properties to the filter medium.
  • the surfactant content in the filter medium should be within a range that does not impede the biodegradability of the filter medium.
  • the content of the surfactant in the entire filtering medium is preferably 0 to 1.0% by mass, preferably 0 to 0.5% by mass, more preferably 0.1 to 0.5% by mass in terms of solid content.
  • the basis weight of the filter medium in this embodiment is not particularly limited, it is preferably 25 to 350 g/m 2 , more preferably 50 to 250 g/m 2 , still more preferably 70 to 150 g/m 2 .
  • the PF value of the filter medium in this embodiment is not particularly limited, it is preferably 5 or more, more preferably 7 or more.
  • the tensile strength of the filter medium in this embodiment differs depending on the application and post-processing method, and is not particularly limited. 6 kN/m or more.
  • the filter medium of this embodiment is manufactured using a wet papermaking method. That is, the fibers constituting the filter medium are dispersed in water using a dispersing machine such as a pulper, and the obtained fiber slurry is deposited on a wire and dehydrated to form a sheet, and the obtained wet sheet is dried using a hot air dryer. It is dried using a dryer such as a cylinder dryer to obtain a filter medium as a dry sheet.
  • a dryer such as a cylinder dryer to obtain a filter medium as a dry sheet.
  • the water repellent agent and surfactant are applied, they are applied to the wet sheet before drying in the form of an aqueous dispersion by an impregnation treatment such as spraying or immersion, followed by drying.
  • an impregnation treatment such as spraying or immersion
  • it may be applied to the dry sheet after drying.
  • Lyocell fiber fineness 1.7 dtex (fiber diameter 12 ⁇ m), fiber length 4 mm, manufacturer: Lenzing AG) is beaten using a Niagara beater, and the average fiber diameter is 0.7 ⁇ m and the maximum fiber diameter is 3.5 ⁇ m. , resulting in fibrillated lyocell fibers with a length-weighted average fiber length of 1.1 mm.
  • Lyocell fiber fineness 1.7 dtex (fiber diameter 12 ⁇ m), fiber length 4 mm, manufacturer: Lenzing AG
  • Rayon fiber (1) fineness 0.6 dtex (fiber diameter 7 ⁇ m), fiber length 4 mm
  • product name rayon corona SD
  • Rayon fiber (2) fineness 2.2 dtex (fiber diameter 14 ⁇ m), fiber length 5 mm
  • product name: rayon corona SB manufacturer: Daiwabo Rayon Co., Ltd.
  • Rayon fiber (3) fineness 9.0 dtex (fiber diameter 28 ⁇ m), fiber length 8 mm
  • product name: rayon corona CD manufacturer: Daiwabo Rayon Co., Ltd.
  • Mercerized pulp fiber average fiber diameter 34 ⁇ m, average fiber length 2.8 mm
  • product name Porocenia
  • Cotton linter fiber (average fiber diameter 18 ⁇ m, average fiber length 2 mm, product name: PS711, manufacturer: Shandong Silver Hawk Chemical Fiber Co.), Polylactic acid single fiber (fineness 1.7 dtex (fiber diameter 13 ⁇ m), fiber length 5 mm, melting point 170° C., product name: Terramac PL01, manufacturer: Unitika Ltd.), Or polylactic acid core-sheath fiber (fineness 2.2 dtx (fiber diameter 15 ⁇ m), fiber length 5 mm, core melting point 170 ° C., sheath melting point 130 ° C., product name: Terramac PL80, manufacturer: Unitika Ltd.), any of They were mixed at the part ratios shown in Tables 1 to 3, tap water was added so that the slurry concentration was 0.5% by mass, and the fibers were defiberized using a pulper to obtain a fiber slurry.
  • Example 17 the resulting wet sheet was coated with a water repellent agent (product name: Unidyne XF-5005, manufacturer: Daikin Industries, Ltd.) and a quaternary ammonium salt surfactant (product Name: Cathiogen TMP, Manufacturer: Daiichi Kogyo Seiyaku Co., Ltd.), the water repellent content in the filter medium is 0.3 mass% in solid content, and the surfactant content is 0 in solid content. 0.2% by mass was imparted by impregnation treatment and dried in a rotary dryer at 130° C. to obtain a filter medium for an air filter.
  • a water repellent agent product name: Unidyne XF-5005, manufacturer: Daikin Industries, Ltd.
  • a quaternary ammonium salt surfactant product Name: Cathiogen TMP, Manufacturer: Daiichi Kogyo Seiyaku Co., Ltd.
  • Thickness [mm] It was measured according to JIS P 8118;1998. In addition, the measurement pressure was set to 50 kPa.
  • thermoformability A thermoforming mold having 3 mm deep irregularities on the top and bottom is heated to 200°C, a filter medium is sandwiched between them, and a pressure of 1 kgf/cm 2 is applied for 5 seconds to perform thermoforming. The molded depth and breakage of the filtered media were evaluated. When the molding depth was 2 mm or more and there was no breakage, it was rated as ⁇ . The thermoformability was evaluated only in Examples 2 and 14-16.
  • Tables 1 and 2 show the effects of the blending amount of the beaten fiber and the type of the non-beaten fiber at a constant basis weight, and also the results when the water repellent is not contained and when the surfactant is contained. is shown. From these results, the PF values were as low as less than 5 in Comparative Examples 1 and 4, in which the blending amount of the beaten fiber was more than 20 parts. Comparative Examples 2, 3 and 5, in which the blending amount of the beaten fiber was less than 3 parts, had a low tensile strength of less than 0.4 kN/m. In Examples 14 to 16, in which polylactic acid fibers were blended as non-beaten fibers, the tensile strength was high and thermoformability was imparted. In Comparative Example 6 containing no water repellent, water repellency was not exhibited. Example 17 containing a surfactant had a higher PF value than Example 2 containing no surfactant.
  • Table 3 shows the effect of basis weight when the ratio of the number of fibers is adjusted so that the maximum value of pressure loss is 40 Pa.
  • Examples 18 to 28 are examples in which the basis weight was adjusted in the range of 25 to 350 g/m 2 , but all of them are biodegradable, and have good PF value and water repellency. became.
  • the filter medium for air filters of the present invention can be used for filter mediums for air filters used in various fields such as factory and building air conditioning, automobile cabins, air conditioners, air purifiers, and personal protective equipment.

Abstract

The present disclosure addresses the problem of providing a filter material, for air filters, containing a renewable material as a main component, having biodegradability, and having sufficient water repellency. The filter material for air filters according to the present disclosure is characterized in that fibers forming the filtering material include beaten fibers and un-beaten fibers, the beaten fibers are fibrillated lyocell fibers, the un-beaten fibers are biodegradable fibers, the mass ratio (beaten fibers/un-beaten fibers) of the beaten fibers with respect to the un-beaten fibers is in a range of 3/97 to 20/80, and the filtering material contains a water repellent containing, as a main component, a hydrocarbon-based polymer not including fluorine in the molecule thereof.

Description

エアフィルタ用濾材Air filter media
 本開示は、工場及びビルの空調、自動車客室、エアコン、空気清浄機、個人用保護具等の種々の分野で使用されるエアフィルタ用濾材に関し、特に、環境負荷が小さく、かつ使用時の濾過性能の低下が小さいエアフィルタ濾材に関する。 The present disclosure relates to filter media for air filters used in various fields such as air conditioning in factories and buildings, automobile cabins, air conditioners, air purifiers, personal protective equipment, etc. In particular, it has a small environmental load and is used for filtering. It relates to an air filter medium with little decrease in performance.
 ビル空調等に使用されるエアフィルタ用の中・高性能濾材としては、ガラス繊維濾材及びメルトブローン不織布濾材が主に使用される。ガラス繊維濾材は、不燃性であるため使用後は産業廃棄物として埋め立て処分される。このため、廃棄時の環境負荷が大きい。また、メルトブローン不織布濾材は、原料として再生不可能で有限な化石資源(PP等)を使用しており、焼却処分された場合のライフサイクル全体での二酸化炭素排出量が大きい。また使用後に環境に流出した場合、分解されず環境中に留まり続ける。以上の理由により、環境負荷が小さい、再生可能原料が主成分であり、かつ生分解性を有する濾材が望まれている。 Glass fiber filter media and meltblown non-woven fabric filter media are mainly used as medium- and high-performance filter media for air filters used in building air conditioning. Since glass fiber filter media are nonflammable, they are landfilled as industrial waste after use. For this reason, the environmental load at the time of disposal is large. In addition, the meltblown nonwoven fabric filter medium uses non-renewable and limited fossil resources (PP, etc.) as raw materials, and emits a large amount of carbon dioxide throughout its life cycle when incinerated. Also, if it is released into the environment after use, it will remain in the environment without being decomposed. For the reasons described above, there is a demand for a biodegradable filter medium that is mainly composed of renewable raw materials and has a low environmental load.
 これら問題を解決するために、フィブリル化リヨセル繊維、生分解性繊維、及び再生繊維または半合成繊維を含有する濾材が提案されている(特許文献1又は特許文献2を参照。)。しかしながら、リヨセル繊維等のセルロース系繊維は吸湿性及び吸水性が高いため、高湿度の環境での使用や、水分を含む気流やダストが通過した場合に、繊維の膨潤や濾材構造の変化を引き起こし、エアフィルタ用濾材の濾過性能の低下、例えば、PF値の低下を引き起こす問題がある。なお、PF値は数1の式により定義され、このPF値が高いほど、ダスト粒子の捕集効率が高く、かつ圧力損失が低い、濾過性能が高い濾材であることを意味する。 In order to solve these problems, filter media containing fibrillated lyocell fibers, biodegradable fibers, and regenerated or semi-synthetic fibers have been proposed (see Patent Document 1 or Patent Document 2). However, cellulosic fibers such as lyocell fibers are highly hygroscopic and water-absorbing, so when used in a high-humidity environment or when air currents containing moisture or dust pass through, the fibers swell and the structure of the filter media changes. , there is a problem that the filtration performance of the filter material for air filters is lowered, for example, the PF value is lowered. The PF value is defined by Equation 1, and the higher the PF value, the higher the efficiency of collecting dust particles, the lower the pressure loss, and the higher the filtration performance of the filter medium.
Figure JPOXMLDOC01-appb-M000001
ここで、透過率[%]=100-捕集効率[%]
Figure JPOXMLDOC01-appb-M000001
Here, transmittance [%] = 100 - collection efficiency [%]
 上記の問題を解決するためには、濾材に撥水性を付与する方法が有効であり、エアフィルタ用濾材に撥水性を付与する方法としては、フッ素系撥水剤を用いる方法が広く用いられている(例えば、特許文献3又は特許文献4を参照。)。しかしながら、フッ素系撥水剤を構成するパーフルオロアルキル化合物は、難分解性でかつ生物蓄積性が高いため、世界的にその使用を規制する動きがあり、本発明の目的には適さない。 In order to solve the above problems, a method of imparting water repellency to the filter medium is effective, and as a method of imparting water repellency to the filter medium for air filters, a method using a fluorine-based water repellent agent is widely used. (See, for example, Patent Document 3 or Patent Document 4.). However, perfluoroalkyl compounds constituting fluorine-based water repellents are difficult to decompose and highly bioaccumulative, and there is a worldwide movement to restrict their use, and they are not suitable for the purpose of the present invention.
特開2006-167659号公報JP 2006-167659 A 特開2006-326470号公報Japanese Patent Application Laid-Open No. 2006-326470 特開2001-79318号公報JP-A-2001-79318 特開2014-98082号公報JP 2014-98082 A
 前記の通り、環境負荷が小さく、かつ使用時の濾過性能の低下が小さい濾材が求められているが、従来の技術では、これらの特性を兼ね備えた濾材を得ることが難しかった。したがって、本開示の課題は、再生可能原料が主成分であり、かつ生分解性を有し、さらには十分な撥水性を有するエアフィルタ用濾材を提供することである。 As mentioned above, there is a demand for a filter medium that has a low environmental impact and a small drop in filtration performance during use, but it has been difficult to obtain a filter medium that combines these characteristics with conventional technology. Accordingly, an object of the present disclosure is to provide an air filter filter medium that is mainly composed of renewable raw materials, is biodegradable, and has sufficient water repellency.
 本発明に係るエアフィルタ用濾材は、濾材を構成する繊維が、叩解繊維と非叩解繊維とを含み、前記叩解繊維がフィブリル化リヨセル繊維であり、前記非叩解繊維が生分解性繊維であり、前記叩解繊維と前記非叩解繊維の質量比率(叩解繊維/非叩解繊維)が3/97~20/80の範囲であり、かつ、前記濾材が、分子中にフッ素を含まない炭化水素系ポリマーを主成分とする撥水剤を含むことを特徴とする。このような構成によれば、環境負荷が小さく、かつ使用時の濾過性能の低下が小さい濾材を得ることができる。 In the filter medium for an air filter according to the present invention, fibers constituting the filter medium include beaten fibers and non-beaten fibers, the beaten fibers are fibrillated lyocell fibers, and the unbeaten fibers are biodegradable fibers, The mass ratio of the beaten fibers to the non-beaten fibers (beaten fibers/non-beaten fibers) is in the range of 3/97 to 20/80, and the filter medium comprises a hydrocarbon-based polymer containing no fluorine in its molecule. It is characterized by containing a water-repellent agent as a main component. According to such a configuration, it is possible to obtain a filter medium that has a small environmental load and a small drop in filtration performance during use.
 本発明に係るエアフィルタ用濾材では、前記非叩解繊維である前記生分解性繊維が、再生セルロース繊維、天然セルロース繊維及びポリ乳酸繊維からなる群より選ばれる少なくとも1種であることが好ましい。これにより、高い濾過性能と生分解性を有する濾材を得ることができる。 In the filter material for an air filter according to the present invention, the biodegradable fiber that is the non-beaten fiber is preferably at least one selected from the group consisting of regenerated cellulose fiber, natural cellulose fiber and polylactic acid fiber. As a result, a filter medium having high filtering performance and biodegradability can be obtained.
 本発明に係るエアフィルタ用濾材では、前記撥水剤の主成分である前記炭化水素系ポリマーが、アクリルポリマーであることが好ましい。これにより、高い撥水性を得られ、使用時の濾過性能の低下を抑えることができる。 In the air filter material according to the present invention, it is preferable that the hydrocarbon-based polymer, which is the main component of the water repellent agent, is an acrylic polymer. As a result, high water repellency can be obtained, and deterioration of filtration performance during use can be suppressed.
 本発明に係るエアフィルタ用濾材では、前記濾材が、界面活性剤を含む形態を包含する。これにより、高い濾過性能を得ることができる。 The filter medium for an air filter according to the present invention includes a form in which the filter medium contains a surfactant. Thereby, high filtration performance can be obtained.
 本発明に係るエアフィルタ用濾材では、前記界面活性剤が、第四級アンモニウム塩であることが好ましい。これにより、さらに高い濾過性能を得ることができる。 In the air filter material according to the present invention, the surfactant is preferably a quaternary ammonium salt. Thereby, even higher filtration performance can be obtained.
 本発明に係るエアフィルタ用濾材では、MIL-STD-282に規定された撥水性が、100mm水柱高以上であることが好ましい。これにより、使用時の濾過性能の低下を抑えることができる。 In the filter material for an air filter according to the present invention, it is preferable that the water repellency specified by MIL-STD-282 is 100 mm or higher in the water column. As a result, deterioration in filtration performance during use can be suppressed.
 本発明に係るエアフィルタ用濾材では、前記叩解繊維である前記フィブリル化リヨセル繊維は、平均繊維径が0.3μm以上、最大繊維径が8μm以下、長さ加重平均繊維長が1mm以上であることが好ましい。捕集効率及び濾材の引張強度の低下が生じにくい。 In the filter material for an air filter according to the present invention, the fibrillated lyocell fibers, which are the beaten fibers, have an average fiber diameter of 0.3 μm or more, a maximum fiber diameter of 8 μm or less, and a length-weighted average fiber length of 1 mm or more. is preferred. Reduction in collection efficiency and tensile strength of the filter material is unlikely to occur.
 本発明に係るエアフィルタ用濾材では、前記非叩解繊維である前記生分解性繊維は、繊維径が5μm以上であることが好ましい。平均繊維径が5μm以上であると、叩解繊維を均一に分布させるために必要な空隙を維持することでき、圧力損失の上昇を引き起こしにくく、濾材の捕集効率の低下も引き起こしにくい。 In the filter material for an air filter according to the present invention, it is preferable that the biodegradable fibers, which are the non-beaten fibers, have a fiber diameter of 5 μm or more. When the average fiber diameter is 5 μm or more, the voids necessary for uniformly distributing the beaten fibers can be maintained, and the increase in pressure loss is less likely to occur, and the collection efficiency of the filter medium is less likely to decrease.
 本開示により、環境負荷が小さく、かつ使用時の濾過性能の低下が小さい濾材を得ることができる。すなわち、再生可能原料が主成分であり、かつ生分解性を有し、さらにはフィブリル化リヨセル繊維を含むセルロース系繊維の吸湿を防ぐために十分な撥水性を有するエアフィルタ用濾材を得ることができる。 According to the present disclosure, it is possible to obtain a filter medium that has a small environmental load and a small drop in filtration performance during use. That is, it is possible to obtain an air filter filter medium that is mainly composed of a renewable raw material, has biodegradability, and has sufficient water repellency to prevent moisture absorption of cellulosic fibers including fibrillated lyocell fibers. .
 次に、本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Next, the present invention will be described in detail by showing embodiments, but the present invention should not be construed as being limited to these descriptions. Various modifications may be made to the embodiments as long as the effects of the present invention are achieved.
 本実施形態におけるリヨセル繊維とは、溶剤としてN-メチルモルホリン-N-オキシドを用いた有機溶剤紡糸法によって紡糸された再生セルロース繊維である。有機溶剤紡糸法は、セルロースをそのまま有機溶剤に溶解させて紡糸するため、分子の切断が少なく、平均重合度が他の再生セルロース繊維に比べて高く、繊維の剛直性が高いとともに、繊維の断面形状が円形に近い特徴を有する。この剛直性と断面形状により、濾材中の空隙を維持し易くなる。また、叩解後のフィブリル化リヨセル繊維も、前記の剛直性と断面形状の特徴を維持する。さらに、叩解によりフィブリル化されると、粒子捕集に寄与する繊維の表面積が大きくなるため、捕集効率が上昇するとともに、繊維同士の絡み合いが多くなるため、濾材の引張強度が上昇する。 The lyocell fiber in this embodiment is a regenerated cellulose fiber spun by an organic solvent spinning method using N-methylmorpholine-N-oxide as a solvent. In the organic solvent spinning method, cellulose is dissolved as it is in an organic solvent and spun, so there is less molecular breakage, the average degree of polymerization is higher than that of other regenerated cellulose fibers, and the rigidity of the fiber is high. It has characteristics close to a circular shape. This rigidity and cross-sectional shape help maintain voids in the filter medium. The fibrillated lyocell fiber after beating also maintains the aforementioned characteristics of rigidity and cross-sectional shape. Furthermore, fibrillation by beating increases the surface area of the fibers that contribute to the collection of particles, thereby increasing the collection efficiency and increasing the entanglement of the fibers, thereby increasing the tensile strength of the filter medium.
 本実施形態における叩解繊維は、フィブリル化リヨセル繊維であり、叩解繊維の配合量は、濾材を構成する全繊維質量を100部とすると、そのうち、3~20部であり、好ましくは5~15部、さらに好ましくは5~13部である。配合量が3部よりも少ないと、十分な捕集効率が得られにくく、また繊維同士の絡まりが少ないために十分な引張強度が得られない。一方で、配合量が20部よりも多いと、繊維同士の絡まりが多すぎるために空隙を塞いで、捕集効率の上昇に比して圧力損失が大きく上昇し、PF値が低下する。 The beaten fiber in the present embodiment is a fibrillated lyocell fiber, and the blending amount of the beaten fiber is 3 to 20 parts, preferably 5 to 15 parts, based on 100 parts of the total fiber mass constituting the filter medium. , more preferably 5 to 13 parts. If the blending amount is less than 3 parts, it is difficult to obtain sufficient collection efficiency, and sufficient tensile strength cannot be obtained due to less entanglement between fibers. On the other hand, if the blending amount is more than 20 parts, the fibers are entangled with each other too much to clog the voids, resulting in a large increase in pressure loss and a decrease in the PF value compared to the increase in collection efficiency.
 リヨセル繊維をフィブリル化するための叩解方法としては、ナイヤガラビーター、PFIミル、シングルディスクリファイナー、ダブルディスクリファイナー等の叩解機を使用できる。叩解においては、リヨセルの繊維長を短くしすぎないように、強すぎる負荷をかけずに叩解することが好ましい。 As a beating method for fibrillating the lyocell fibers, a beater such as a Niagara beater, PFI mill, single disc refiner or double disc refiner can be used. In the beating, it is preferable to beat without applying an excessively strong load so as not to shorten the fiber length of the lyocell too much.
 リヨセル繊維の叩解を進めると、繊維が切断されて繊維長が短くなる。繊維長が短くなりすぎると、シート形成後の空隙を埋めてしまうため、圧力損失が高くなる恐れがある。本発明で使用するフィブリル化リヨセル繊維は、長さ加重平均繊維長が1mm以上であることが好ましく、1~3mmであることがより好ましく、1~2mmであることがさらに好ましい。 As the beating of lyocell fibers progresses, the fibers are cut and the fiber length becomes shorter. If the fiber length is too short, the voids after sheet formation will be filled, which may increase the pressure loss. The fibrillated lyocell fibers used in the present invention preferably have a length-weighted average fiber length of 1 mm or more, more preferably 1 to 3 mm, even more preferably 1 to 2 mm.
 なお、フィブリル化リヨセル繊維の長さ加重平均繊維長は、ISO 16065-2:2007「Determination of fibre length by automated optical analysis-Part2」にしたがって測定した。 The length-weighted average fiber length of fibrillated lyocell fibers was measured according to ISO 16065-2:2007 "Determination of fiber length by automated optical analysis-Part 2".
 リヨセル繊維は、叩解によりフィブリル化が進行して繊維径が細くなる。本実施形態で使用するフィブリルリヨセル繊維の平均繊維径は0.3μm以上であることが好ましく、0.3~1.0μmであることがより好ましく、0.3~0.8μmであることがさらに好ましい。フィブリル化リヨセル繊維の最大繊維径は8μm以下であることが好ましく、6μm以下であることがより好ましく、4μm以下であることがさらに好ましい。平均繊維径が0.3μm未満であると、フィブリル化の進行にともなって繊維が切断され、濾材の引張強度が低くなるとともに、空隙を維持することができなくなり、捕集効率が低下するおそれがある。また、平均繊維径が1.0μmを超える、及び最大繊維径が8μmを超えると、粒子捕集に寄与する繊維の表面積が小さくなり、捕集効率が低下するおそれがある。  Lyocell fibers are fibrillated by beating and the fiber diameter becomes smaller. The average fiber diameter of the fibril lyocell fibers used in the present embodiment is preferably 0.3 μm or more, more preferably 0.3 to 1.0 μm, and further preferably 0.3 to 0.8 μm. preferable. The maximum fiber diameter of the fibrillated lyocell fibers is preferably 8 µm or less, more preferably 6 µm or less, and even more preferably 4 µm or less. If the average fiber diameter is less than 0.3 μm, the fibers may be cut as the fibrillation progresses, lowering the tensile strength of the filter medium and making it impossible to maintain the voids, thereby lowering the collection efficiency. be. On the other hand, if the average fiber diameter exceeds 1.0 μm and the maximum fiber diameter exceeds 8 μm, the surface area of the fibers that contributes to particle trapping is reduced, and the trapping efficiency may be lowered.
 なお、本実施形態における繊維径は、電子顕微鏡を用いて濾材の表面の写真撮影を行い、得られた電子顕微鏡写真に横方向に直線を1本引き、その直線と繊維との交点における繊維径を計測した。平均繊維径は、測定200点の算術平均値とした。 In addition, the fiber diameter in the present embodiment is obtained by taking a photograph of the surface of the filter medium using an electron microscope, drawing a straight line in the horizontal direction on the obtained electron microscope photograph, and measuring the fiber diameter at the intersection of the straight line and the fiber. was measured. The average fiber diameter was the arithmetic mean value of 200 measurements.
 本実施形態における非叩解繊維は、叩解されていない生分解性繊維であり、再生セルロース繊維、天然セルロース繊維及びポリ乳酸繊維からなる群より選ばれる少なくとも1種であることが好ましい。同じ種類の繊維について繊維径の異なる繊維を配合してもよい。 The non-beaten fibers in this embodiment are biodegradable fibers that have not been beaten, and are preferably at least one selected from the group consisting of regenerated cellulose fibers, natural cellulose fibers and polylactic acid fibers. Fibers of the same type and having different fiber diameters may be blended.
 本実施形態における非叩解繊維の配合量は、濾材を構成する全繊維質量を100部とすると、そのうち、80~97部である。配合率がこの範囲を外れると、前記の叩解繊維の配合量の範囲を外れることとなる。 The blending amount of the non-beaten fibers in the present embodiment is 80 to 97 parts out of 100 parts of the total fiber mass constituting the filter medium. If the blending ratio is out of this range, it will be out of the range of the blending amount of the beaten fiber.
 再生セルロース繊維とは、セルロースを原料として、ビスコース法により紡糸されたビスコースレーヨン繊維や、有機溶媒紡糸法により紡糸されたリヨセル繊維等である。これらは、木材パルプを原料とした再生可能材料であり、土中埋没生分解性及び海洋生分解性を有している。 Regenerated cellulose fibers are viscose rayon fibers spun from cellulose by the viscose method, and lyocell fibers spun by the organic solvent spinning method. These are renewable materials made from wood pulp, and have biodegradability in soil burial and biodegradability in the sea.
 天然セルロース繊維とは、植物から取り出されたセルロースを主体とした繊維であり、木材パルプ、コットンリンターパルプ、麻パルプ、ケナフパルプ、木材パルプをアルカリ処理して得られるマーセル化パルプ等がある。これらは、植物を原材料とした再生可能原料であり、土中埋没生分解性を有している。  Natural cellulose fibers are fibers mainly composed of cellulose extracted from plants, and include wood pulp, cotton linter pulp, hemp pulp, kenaf pulp, and mercerized pulp obtained by alkali-treating wood pulp. These are renewable raw materials made from plants, and are biodegradable when buried in the soil.
 ポリ乳酸繊維とは、バイオマス由来の澱粉を原料として糖化及び発酵により得られた乳酸を化学的に重合したポリマーを主体として紡糸した繊維である。これは、トウモロコシ等を原料とした再生可能材料であり、土中埋没生分解性を有している。またポリ乳酸繊維は、セルロース系繊維とは異なり熱可塑性を有しているため、熱融着により濾材に引張強度を付与し、または濾材に熱成形性を付与することができる。ポリ乳酸繊維は、原料が食料と競合するため、濾材物性が許容できる範囲で、配合量を低く抑えることが好ましい。ポリ乳酸繊維の配合量は、濾材中の繊維全体のうち、好ましくは0~30部であり、より好ましくは0~20部である。すなわち、非叩解繊維の配合量は、濾材を構成する全繊維質量を100部とすると、そのうち、80~97部であり、ポリ乳酸繊維をn部配合する場合には、再生セルロース繊維及び天然セルロース繊維の合計量(片方のみである場合を含む)を(80-n)~(97‐n)部配合する。但し、nは30部以下であることが好ましい。 Polylactic acid fiber is a fiber spun mainly from a polymer that chemically polymerizes lactic acid obtained by saccharification and fermentation of biomass-derived starch as a raw material. This is a renewable material made from corn or the like, and is biodegradable when buried in the ground. In addition, since polylactic acid fibers have thermoplasticity unlike cellulosic fibers, they can impart tensile strength to the filter medium or impart thermoformability to the filter medium by heat fusion. Since polylactic acid fiber competes with food as a raw material, it is preferable to keep the blending amount low within a range in which the physical properties of the filter medium are acceptable. The blending amount of the polylactic acid fiber is preferably 0 to 30 parts, more preferably 0 to 20 parts, based on the total fibers in the filter medium. That is, the blending amount of the non-beaten fiber is 80 to 97 parts out of 100 parts of the total fiber mass constituting the filter medium. (80-n) to (97-n) parts of the total amount of fibers (including the case where only one side is used) are blended. However, n is preferably 30 parts or less.
 本実施形態における非叩解繊維は、平均繊維径が5μm以上であることが好ましく、より好ましくは5~40μmであり、さらに好ましくは7~35μmである。平均繊維径が5μmよりも細いと、叩解繊維を均一に分布させるために必要な空隙を維持することが難しくなり、圧力損失の上昇を引き起こす恐れがある。一方で、平均繊維径が40μmを超えると、叩解繊維との繊維径の差異が大きいために、濾材の孔径のばらつきが大きくなり、捕集効率の低下を引き起こす恐れがある。 The non-beaten fibers in the present embodiment preferably have an average fiber diameter of 5 μm or more, more preferably 5 to 40 μm, still more preferably 7 to 35 μm. If the average fiber diameter is smaller than 5 μm, it becomes difficult to maintain the voids necessary for uniformly distributing the beaten fibers, which may cause an increase in pressure loss. On the other hand, if the average fiber diameter exceeds 40 μm, the difference in fiber diameter from that of the beaten fibers is large, so the pore diameter of the filter medium varies greatly, which may lead to a decrease in collection efficiency.
 本実施形態における撥水剤は、使用中の濾過性能の低下を防止するのに十分な撥水性を付与するために用いられる、分子中にフッ素を含まない炭化水素系ポリマーを主成分とする撥水剤であり、アクリルポリマーを主成分とすることが好ましい。ここで、分子中にフッ素を含まない炭化水素系ポリマーを主成分とするとは、撥水剤のポリマー成分のうち50質量%以上が、好ましくは80質量%以上が、さらに好ましくは90質量%以上が、炭化水素を骨格とし、酸素や窒素等を含む有機化合物からなるポリマーからなることである。アクリルポリマーを主成分とする撥水剤は、原料モノマーであるアクリル酸エステルまたはメタクリル酸エステルのエステル部分の炭素数を多くすることにより、撥水性を高くすることができる。ここで、アクリルポリマーを主成分とするとは、撥水剤のポリマー成分のうち50質量%以上が、好ましくは80質量%以上が、さらに好ましくは90質量%以上が、アクリル酸エステル及び/またはメタクリル酸エステルを主な原料モノマーとして重合されたポリマーからなることである。また、前記エステル部分の炭素数は、9個以上が好ましく、12個以上がより好ましい。 The water repellent agent in the present embodiment is a repellent agent mainly composed of a hydrocarbon-based polymer containing no fluorine in the molecule, which is used to impart sufficient water repellency to prevent deterioration of filtration performance during use. It is a liquid agent, and preferably has an acrylic polymer as a main component. Here, a hydrocarbon-based polymer containing no fluorine in the molecule as a main component means that the polymer component of the water repellent agent accounts for 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more. However, it is composed of a polymer composed of an organic compound having a hydrocarbon skeleton and containing oxygen, nitrogen, and the like. A water repellent agent containing an acrylic polymer as a main component can increase the water repellency by increasing the number of carbon atoms in the ester portion of the raw material monomer acrylic acid ester or methacrylic acid ester. Here, the acrylic polymer as the main component means that 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more of the polymer component of the water repellent is acrylic acid ester and / or methacrylic It consists of a polymer polymerized using an acid ester as a main raw material monomer. The number of carbon atoms in the ester portion is preferably 9 or more, more preferably 12 or more.
 本実施形態における濾材の撥水性は、好ましくは100mm水柱高以上であり、より好ましくは150mm水柱高以上、さらに好ましくは200mm水柱高以上である。濾材中の撥水剤含有量は、必要とする撥水性が得られ、かつ濾材の生分解性を阻害しない範囲とする必要がある。濾材全体における撥水剤含有量は固形分で0.3~2.0質量%がよく、好ましくは0.3~1.0質量%であり、さらに好ましくは0.3~0.5質量%である。 The water repellency of the filter medium in this embodiment is preferably 100 mm or higher, more preferably 150 mm or higher, and even more preferably 200 mm or higher. The content of the water repellent agent in the filter medium should be within a range that provides the required water repellency and does not impede the biodegradability of the filter medium. The content of the water repellent agent in the entire filter medium is preferably 0.3 to 2.0% by mass, preferably 0.3 to 1.0% by mass, and more preferably 0.3 to 0.5% by mass in terms of solid content. is.
 本実施形態における界面活性剤は、濾材中の繊維同士が密着しすぎることを防止して濾過性能を向上させるために用いられる。種々の組成及びイオン性を有する界面活性剤の中から、本発明の効果を妨げない範囲で選択できる。特に、濾過性能を向上させる効果が高い、第四級アンモニウム塩が好ましい。さらに、第四級アンモニウム塩は抗菌性を有することから、濾材への抗菌性の付与が可能である。濾材中の界面活性剤含有量は、濾材の生分解性を阻害しない範囲とする必要がある。濾材全体における界面活性剤含有量は固形分で0~1.0質量%がよく、好ましくは0~0.5質量%であり、さらに好ましくは0.1~0.5質量%である。 The surfactant in this embodiment is used to prevent the fibers in the filter medium from sticking too closely to each other to improve filtration performance. Surfactants having various compositions and ionic properties can be selected within a range that does not interfere with the effects of the present invention. In particular, quaternary ammonium salts are preferred because they are highly effective in improving filtration performance. Furthermore, since the quaternary ammonium salt has antibacterial properties, it is possible to impart antibacterial properties to the filter medium. The surfactant content in the filter medium should be within a range that does not impede the biodegradability of the filter medium. The content of the surfactant in the entire filtering medium is preferably 0 to 1.0% by mass, preferably 0 to 0.5% by mass, more preferably 0.1 to 0.5% by mass in terms of solid content.
 本実施形態における濾材の坪量は、特に限定するものではないが、好ましくは25~350g/m、より好ましくは50~250g/m、さらに好ましくは70~150g/mである。 Although the basis weight of the filter medium in this embodiment is not particularly limited, it is preferably 25 to 350 g/m 2 , more preferably 50 to 250 g/m 2 , still more preferably 70 to 150 g/m 2 .
 本実施形態における濾材のPF値は、特に限定するものではないが、好ましくは5以上であり、より好ましくは7以上である。 Although the PF value of the filter medium in this embodiment is not particularly limited, it is preferably 5 or more, more preferably 7 or more.
 本実施形態における濾材の引張強度は、用途や後加工の方法に応じて必要とされる引張強度が異なり、特に限定するものではないが、好ましくは0.4kN/m以上、より好ましくは0.6kN/m以上である。 The tensile strength of the filter medium in this embodiment differs depending on the application and post-processing method, and is not particularly limited. 6 kN/m or more.
 本実施形態の濾材は、湿式抄紙法を用いて製造される。すなわち、濾材を構成する繊維をパルパー等の分散機を用いて水中に分散させて、得られた繊維スラリーをワイヤー上に堆積及び脱水してシートを形成し、得られた湿潤シートを熱風ドライヤーやシリンダードライヤー等の乾燥機を用いて乾燥させて、乾燥シートとしての濾材を得る。撥水剤及び界面活性剤を付与する場合は、乾燥前の湿潤シートに対して、水分散液の状態でスプレーまたは浸漬等の含浸処理により付与されて、乾燥される。また、撥水剤のみを付与する場合には、乾燥後の乾燥シートに付与してもよい。 The filter medium of this embodiment is manufactured using a wet papermaking method. That is, the fibers constituting the filter medium are dispersed in water using a dispersing machine such as a pulper, and the obtained fiber slurry is deposited on a wire and dehydrated to form a sheet, and the obtained wet sheet is dried using a hot air dryer. It is dried using a dryer such as a cylinder dryer to obtain a filter medium as a dry sheet. When the water repellent agent and surfactant are applied, they are applied to the wet sheet before drying in the form of an aqueous dispersion by an impregnation treatment such as spraying or immersion, followed by drying. Moreover, when applying only the water repellent agent, it may be applied to the dry sheet after drying.
 以下に、本発明に係る実施例及び比較例を挙げて本発明を具体的に説明する。しかし、本発明はこれらに限定されるものではない。 The present invention will be specifically described below with reference to examples and comparative examples according to the present invention. However, the present invention is not limited to these.
 リヨセル繊維(繊度1.7dtex(繊維径12μm)、繊維長4mm、製造元:Lenzing AG)に対して、ナイヤガラビーターを用いて叩解処理を行い、平均繊維径が0.7μm、最大繊維径3.5μm、長さ加重平均繊維長が1.1mmであるフィブリル化リヨセル繊維を得た。
叩解繊維として得られたフィブリル化リヨセル繊維、及び
非叩解繊維として、次に列挙する、
リヨセル繊維(繊度1.7dtex(繊維径12μm)、繊維長4mm、製造元:Lenzing AG)、
レーヨン繊維(1)(繊度0.6dtex(繊維径7μm)、繊維長4mm、製品名:レーヨンコロナSD、製造元:ダイワボウレーヨン(株)、
レーヨン繊維(2)(繊度2.2dtex(繊維径14μm)、繊維長5mm、製品名:レーヨンコロナSB、製造元:ダイワボウレーヨン(株))、
レーヨン繊維(3)(繊度9.0dtex(繊維径28μm)、繊維長8mm、製品名:レーヨンコロナCD、製造元:ダイワボウレーヨン(株))、
マーセル化パルプ繊維(平均繊維径34μm、平均繊維長2.8mm)、製品名:Porocenia、製造元:Rayonier Inc.)、
コットンリンター繊維(平均繊維径18μm、平均繊維長2mm、製品名:PS711、製造元:Shandong Silver Hawk Chemical Fiber Co.)、
ポリ乳酸単一繊維(繊度1.7dtex(繊維径13μm)、繊維長5mm、融点170℃、製品名:テラマックPL01、製造元:ユニチカ(株))、
またはポリ乳酸芯鞘繊維(繊度2.2dtx(繊維径15μm)、繊維長5mm、芯部融点170℃、鞘部融点130℃、製品名:テラマックPL80、製造元:ユニチカ(株))、
の何れかを、
表1~表3に示した部数比率で混合して、スラリー濃度が0.5質量%となるように水道水を加えてパルパーを用いて離解して繊維スラリーを得た。次に、表1~表3に示した坪量となるように計量した繊維スラリーを、手抄装置を用いて抄紙して湿潤シートを得た。ただし、比較例3はフィブリル化リヨセル繊維を用いずに湿潤シートを作製した。
Lyocell fiber (fineness 1.7 dtex (fiber diameter 12 μm), fiber length 4 mm, manufacturer: Lenzing AG) is beaten using a Niagara beater, and the average fiber diameter is 0.7 μm and the maximum fiber diameter is 3.5 μm. , resulting in fibrillated lyocell fibers with a length-weighted average fiber length of 1.1 mm.
The fibrillated lyocell fibers obtained as beaten fibers and non-beaten fibers are listed below,
Lyocell fiber (fineness 1.7 dtex (fiber diameter 12 μm), fiber length 4 mm, manufacturer: Lenzing AG),
Rayon fiber (1) (fineness 0.6 dtex (fiber diameter 7 μm), fiber length 4 mm, product name: rayon corona SD, manufacturer: Daiwabo Rayon Co., Ltd.,
Rayon fiber (2) (fineness 2.2 dtex (fiber diameter 14 μm), fiber length 5 mm, product name: rayon corona SB, manufacturer: Daiwabo Rayon Co., Ltd.),
Rayon fiber (3) (fineness 9.0 dtex (fiber diameter 28 μm), fiber length 8 mm, product name: rayon corona CD, manufacturer: Daiwabo Rayon Co., Ltd.),
Mercerized pulp fiber (average fiber diameter 34 μm, average fiber length 2.8 mm), product name: Porocenia, manufacturer: Rayonier Inc. ),
Cotton linter fiber (average fiber diameter 18 μm, average fiber length 2 mm, product name: PS711, manufacturer: Shandong Silver Hawk Chemical Fiber Co.),
Polylactic acid single fiber (fineness 1.7 dtex (fiber diameter 13 μm), fiber length 5 mm, melting point 170° C., product name: Terramac PL01, manufacturer: Unitika Ltd.),
Or polylactic acid core-sheath fiber (fineness 2.2 dtx (fiber diameter 15 μm), fiber length 5 mm, core melting point 170 ° C., sheath melting point 130 ° C., product name: Terramac PL80, manufacturer: Unitika Ltd.),
any of
They were mixed at the part ratios shown in Tables 1 to 3, tap water was added so that the slurry concentration was 0.5% by mass, and the fibers were defiberized using a pulper to obtain a fiber slurry. Next, the fiber slurries weighed so as to have the basis weights shown in Tables 1 to 3 were made into paper using a hand-making machine to obtain wet sheets. However, in Comparative Example 3, a wet sheet was produced without using fibrillated lyocell fibers.
 次に、得られた湿潤シートに、アクリルポリマーを主成分とする撥水剤(製品名:ユニダインXF-5005、製造元:ダイキン工業(株))の水希釈液を、濾材中の撥水剤含有量が固形分で0.3質量%となるように含浸処理により付与して、130℃のロータリードライヤーにおいて乾燥して、実施例及び比較例のエアフィルタ用濾材を得た。ただし、比較例6は撥水剤の含浸処理を行わなかった。また、実施例17の含浸処理は下記の方法にて行った。 Next, a water-diluted solution of a water-repellent agent (product name: Unidyne XF-5005, manufacturer: Daikin Industries, Ltd.) containing an acrylic polymer as a main component is added to the obtained wet sheet, It was applied by impregnation treatment so that the solid content was 0.3% by mass, and dried in a rotary dryer at 130° C. to obtain filter media for air filters of Examples and Comparative Examples. However, in Comparative Example 6, impregnation treatment with a water repellent agent was not performed. Moreover, the impregnation treatment of Example 17 was performed by the following method.
 実施例17は、得られた湿潤シートに、アクリルポリマーを主成分とする撥水剤(製品名:ユニダインXF-5005、製造元:ダイキン工業(株))と第四級アンモニウム塩界面活性剤(製品名:カチオーゲンTMP、製造元:第一工業製薬(株))の混合水希釈液を、濾材中の撥水剤含有量が固形分で0.3質量%、界面活性剤含有量が固形分で0.2質量%となるように含浸処理により付与して、130℃のロータリードライヤーにおいて乾燥して、エアフィルタ用濾材を得た。 In Example 17, the resulting wet sheet was coated with a water repellent agent (product name: Unidyne XF-5005, manufacturer: Daikin Industries, Ltd.) and a quaternary ammonium salt surfactant (product Name: Cathiogen TMP, Manufacturer: Daiichi Kogyo Seiyaku Co., Ltd.), the water repellent content in the filter medium is 0.3 mass% in solid content, and the surfactant content is 0 in solid content. 0.2% by mass was imparted by impregnation treatment and dried in a rotary dryer at 130° C. to obtain a filter medium for an air filter.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例及び比較例において得られたエアフィルタ用濾材の評価は、以下に示す方法を用いて行った。 The air filter media obtained in Examples and Comparative Examples were evaluated using the methods shown below.
 (1)坪量[g/m
 JIS P 8124:2011にしたがって測定した。
(1) Basis weight [g/m 2 ]
Measured according to JIS P 8124:2011.
 (2)厚さ[mm]
 JIS P 8118;1998にしたがって測定した。なお、測定圧力は50kPaとした。
(2) Thickness [mm]
It was measured according to JIS P 8118;1998. In addition, the measurement pressure was set to 50 kPa.
 (3)密度[g/cm
 JIS P 8118;1998にしたがって測定した。
(3) Density [g/cm 3 ]
It was measured according to JIS P 8118;1998.
 (4)圧力損失[Pa]
 有効面積0.01mのエアフィルタ用濾材に、面風速5.3cm/秒で通風した時の差圧を微差圧計で測定した。
(4) Pressure loss [Pa]
The differential pressure was measured with a differential pressure gauge when air was passed through the filter medium for an air filter with an effective area of 0.01 m 2 at a surface wind speed of 5.3 cm/sec.
 (5)透過率及び捕集効率[%]
 ラスキンノズルで発生させた多分散ポリアルファオレフィン(以下、PAOと略す。)粒子を含む空気を、有効面積0.01mのエアフィルタ用濾材に、面風速5.3cm/秒で通風した時の濾材の上流及び下流におけるPAO粒子の個数を、レーザーパーティクルカウンターKC-22B(リオン社製)を使用して測定し、透過率を下流個数/上流個数×100の式より計算した。また、捕集効率を100-透過率の式より計算した。なお、対象粒子径は0.3μmとした。
(5) Transmittance and collection efficiency [%]
When air containing polydisperse polyalphaolefin (hereinafter abbreviated as PAO) particles generated by a Ruskin nozzle is passed through an air filter medium with an effective area of 0.01 m 2 at a surface wind speed of 5.3 cm / sec. The number of PAO particles upstream and downstream of the filter medium was measured using a laser particle counter KC-22B (manufactured by Rion), and the transmittance was calculated from the formula downstream number/upstream number×100. Also, the collection efficiency was calculated from the formula of 100-transmittance. In addition, the target particle diameter was set to 0.3 μm.
 (6)PF値
 PF値は、圧力損失と透過率の測定値より、(数1)の式より求めた。PF値が高いほど、低い圧力損失で高い捕集効率(すなわち低い透過率)を有する濾材であることを意味する。
Figure JPOXMLDOC01-appb-M000005
ここで、透過率[%]=100-捕集効率[%]
(6) PF value The PF value was obtained from the equation (1) from the measured values of pressure loss and transmittance. The higher the PF value, the lower the pressure loss and the higher the collection efficiency (that is, the lower the permeability) of the filter medium.
Figure JPOXMLDOC01-appb-M000005
Here, transmittance [%] = 100 - collection efficiency [%]
 (7)撥水性
 MIL-STD-282にしたがって測定した。
(7) Water repellency Measured according to MIL-STD-282.
 (8)引張強度
 JIS P 8113-2006「紙及び板紙-引張特性の試験方法―第2部:定速伸張法」にしたがって測定した。
(8) Tensile strength Measured according to JIS P 8113-2006 "Paper and paperboard-Testing methods for tensile properties-Part 2: Constant rate stretching method".
 (9)ガーレー剛度
 JAPAN TAPPI紙パルプ試験方法No.40:2000にしたがって測定した。
(9) Gurley Stiffness JAPAN TAPPI Paper Pulp Test Method No. 40:2000.
 (10)生分解性
 濾材サンプルを土壌中に6か月間埋設し、その後、濾材形状を確認する。6か月後に濾材形状を保っていないものを○、ほぼ形状に変化がないものを×とした。
(10) Biodegradability A filter medium sample is buried in soil for 6 months, and then the shape of the filter medium is confirmed. The case where the shape of the filter medium was not maintained after 6 months was indicated by ◯, and the case where the shape was substantially unchanged was indicated by x.
 (11)熱成形性
 深さ3mmの凹凸を上下に有する熱成形金型を200℃に加熱し、その間に濾材を挟み、1kgf/cmの圧力で5秒間加圧して熱成形を行い、成形された濾材の成形深さと破れを評価した。成形深さが2mm以上であり、破れがないものを○、エンボス深さが2mm未満、または破れがあるものを×とした。
 なお、熱成形性の評価は、実施例2、14~16のみにおいて行った。
(11) Thermoformability A thermoforming mold having 3 mm deep irregularities on the top and bottom is heated to 200°C, a filter medium is sandwiched between them, and a pressure of 1 kgf/cm 2 is applied for 5 seconds to perform thermoforming. The molded depth and breakage of the filtered media were evaluated. When the molding depth was 2 mm or more and there was no breakage, it was rated as ◯.
The thermoformability was evaluated only in Examples 2 and 14-16.
 表1及び表2は、坪量を一定として、叩解繊維の配合量及び非叩解繊維の種類の影響を示した結果、さらに、撥水剤を含有しない場合及び界面活性剤を含有する場合の結果を示している。これらの結果より、叩解繊維の配合量が20部より多い比較例1及び4では、PF値が5未満と低かった。叩解繊維の配合量が3部未満の比較例2、3及び5では、引張強度が0.4kN/m未満と低かった。非叩解繊維としてポリ乳酸繊維を配合した実施例14~16では、引張強度が高く、熱成形性が付与された。撥水剤を含有しない比較例6では、撥水性が発現しなかった。界面活性剤を含有した実施例17では、界面活性剤を含有しない実施例2よりもPF値が高かった。 Tables 1 and 2 show the effects of the blending amount of the beaten fiber and the type of the non-beaten fiber at a constant basis weight, and also the results when the water repellent is not contained and when the surfactant is contained. is shown. From these results, the PF values were as low as less than 5 in Comparative Examples 1 and 4, in which the blending amount of the beaten fiber was more than 20 parts. Comparative Examples 2, 3 and 5, in which the blending amount of the beaten fiber was less than 3 parts, had a low tensile strength of less than 0.4 kN/m. In Examples 14 to 16, in which polylactic acid fibers were blended as non-beaten fibers, the tensile strength was high and thermoformability was imparted. In Comparative Example 6 containing no water repellent, water repellency was not exhibited. Example 17 containing a surfactant had a higher PF value than Example 2 containing no surfactant.
 表3は、圧力損失の最大値が40Paとなるように繊維の部数比率を調整した場合の、坪量の影響を示した結果である。実施例18~28は、坪量を25~350g/mの範囲で調整された例であるが、いずれも生分解性を有しつつ、PF値及び撥水性が良好なエアフィルタ用濾材となった。 Table 3 shows the effect of basis weight when the ratio of the number of fibers is adjusted so that the maximum value of pressure loss is 40 Pa. Examples 18 to 28 are examples in which the basis weight was adjusted in the range of 25 to 350 g/m 2 , but all of them are biodegradable, and have good PF value and water repellency. became.
 本発明のエアフィルタ用濾材は、工場及びビルの空調、自動車客室、エアコン、空気清浄機、個人用保護具等の種々の分野で使用されるエアフィルタ用濾材に用いることができる。 The filter medium for air filters of the present invention can be used for filter mediums for air filters used in various fields such as factory and building air conditioning, automobile cabins, air conditioners, air purifiers, and personal protective equipment.

Claims (8)

  1.  濾材を構成する繊維が、叩解繊維と非叩解繊維とを含み、
     前記叩解繊維がフィブリル化リヨセル繊維であり、
     前記非叩解繊維が生分解性繊維であり、
     前記叩解繊維と前記非叩解繊維の質量比率(叩解繊維/非叩解繊維)が3/97~20/80の範囲であり、かつ、
     前記濾材が、分子中にフッ素を含まない炭化水素系ポリマーを主成分とする撥水剤を含むことを特徴とするエアフィルタ用濾材。
    The fibers constituting the filter medium include beaten fibers and non-beaten fibers,
    The beaten fibers are fibrillated lyocell fibers,
    The non-beaten fibers are biodegradable fibers,
    The mass ratio of the beaten fibers and the non-beaten fibers (beaten fibers/non-beaten fibers) is in the range of 3/97 to 20/80, and
    A filter material for an air filter, wherein the filter material contains a water-repellent agent whose main component is a hydrocarbon-based polymer containing no fluorine in its molecule.
  2.  前記非叩解繊維である前記生分解性繊維が、再生セルロース繊維、天然セルロース繊維及びポリ乳酸繊維からなる群より選ばれる少なくとも1種であることを特徴とする請求項1に記載のエアフィルタ用濾材。 2. The filter medium for an air filter according to claim 1, wherein said biodegradable fiber which is said non-beaten fiber is at least one selected from the group consisting of regenerated cellulose fiber, natural cellulose fiber and polylactic acid fiber. .
  3.  前記撥水剤の主成分である前記炭化水素系ポリマーが、アクリルポリマーであることを特徴とする請求項1又は2に記載のエアフィルタ用濾材。 The filter medium for an air filter according to claim 1 or 2, wherein the hydrocarbon-based polymer, which is the main component of the water repellent agent, is an acrylic polymer.
  4.  前記濾材が、界面活性剤を含むことを特徴とする請求項1~4のいずれか一つに記載のエアフィルタ用濾材。 The filter medium for an air filter according to any one of claims 1 to 4, characterized in that the filter medium contains a surfactant.
  5.  前記界面活性剤が、第四級アンモニウム塩であることを特徴とする請求項4に記載のエアフィルタ用濾材。 The filter material for an air filter according to claim 4, wherein the surfactant is a quaternary ammonium salt.
  6.  MIL-STD-282に規定された撥水性が、100mm水柱高以上であることを特徴とする請求項1~5のいずれか一つに記載のエアフィルタ用濾材。 The filter medium for an air filter according to any one of claims 1 to 5, characterized in that the water repellency specified by MIL-STD-282 is 100 mm or more in the water column.
  7.  前記叩解繊維である前記フィブリル化リヨセル繊維は、平均繊維径が0.3μm以上、最大繊維径が8μm以下、長さ加重平均繊維長が1mm以上であることを特徴とする請求項1~6のいずれか一つに記載のエアフィルタ用濾材。 The fibrillated lyocell fiber, which is the beaten fiber, has an average fiber diameter of 0.3 μm or more, a maximum fiber diameter of 8 μm or less, and a length-weighted average fiber length of 1 mm or more. The filter medium for air filters according to any one of the above.
  8.  前記非叩解繊維である前記生分解性繊維は、繊維径が5μm以上であることを特徴とする請求項1~7のいずれか一つに記載のエアフィルタ用濾材。 The filter medium for an air filter according to any one of claims 1 to 7, characterized in that said biodegradable fibers that are non-beaten fibers have a fiber diameter of 5 μm or more.
PCT/JP2021/032989 2021-09-08 2021-09-08 Filter material for air filters WO2023037440A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247006152A KR20240038046A (en) 2021-09-08 2021-09-08 Filter material for air filter
JP2023546620A JPWO2023037440A1 (en) 2021-09-08 2021-09-08
PCT/JP2021/032989 WO2023037440A1 (en) 2021-09-08 2021-09-08 Filter material for air filters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032989 WO2023037440A1 (en) 2021-09-08 2021-09-08 Filter material for air filters

Publications (1)

Publication Number Publication Date
WO2023037440A1 true WO2023037440A1 (en) 2023-03-16

Family

ID=85507351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032989 WO2023037440A1 (en) 2021-09-08 2021-09-08 Filter material for air filters

Country Status (3)

Country Link
JP (1) JPWO2023037440A1 (en)
KR (1) KR20240038046A (en)
WO (1) WO2023037440A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153116A (en) * 1998-11-24 2000-06-06 Wako Sangyo Kk Filter material, lubricant filter and fuel filter using the same
JP2005515879A (en) * 2002-01-31 2005-06-02 コズロウ・テクノロジーズ・コーポレイション Pre-coated filter media, its production method and use
JP2006167659A (en) * 2004-12-17 2006-06-29 Mitsubishi Paper Mills Ltd Filter material
JP2006326470A (en) * 2005-05-25 2006-12-07 Mitsubishi Paper Mills Ltd Filtering material
JP2008000652A (en) * 2006-06-20 2008-01-10 Mitsubishi Paper Mills Ltd Filter medium
JP2014073432A (en) * 2012-10-03 2014-04-24 Mitsubishi Paper Mills Ltd Filter medium
WO2015008868A1 (en) * 2013-07-19 2015-01-22 旭化成せんい株式会社 Fine cellulose fiber sheet
US20150107208A1 (en) * 2012-06-20 2015-04-23 Hollingsworth & Vose Company Fiber webs including synthetic fibers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079318A (en) 1999-09-17 2001-03-27 Toyobo Co Ltd Felt fabric for bag filter
JP2014098082A (en) 2012-11-14 2014-05-29 Asahi Glass Co Ltd Water-repellent oil-repellent agent composition for air filter, method for producing the same and air filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153116A (en) * 1998-11-24 2000-06-06 Wako Sangyo Kk Filter material, lubricant filter and fuel filter using the same
JP2005515879A (en) * 2002-01-31 2005-06-02 コズロウ・テクノロジーズ・コーポレイション Pre-coated filter media, its production method and use
JP2006167659A (en) * 2004-12-17 2006-06-29 Mitsubishi Paper Mills Ltd Filter material
JP2006326470A (en) * 2005-05-25 2006-12-07 Mitsubishi Paper Mills Ltd Filtering material
JP2008000652A (en) * 2006-06-20 2008-01-10 Mitsubishi Paper Mills Ltd Filter medium
US20150107208A1 (en) * 2012-06-20 2015-04-23 Hollingsworth & Vose Company Fiber webs including synthetic fibers
JP2014073432A (en) * 2012-10-03 2014-04-24 Mitsubishi Paper Mills Ltd Filter medium
WO2015008868A1 (en) * 2013-07-19 2015-01-22 旭化成せんい株式会社 Fine cellulose fiber sheet

Also Published As

Publication number Publication date
JPWO2023037440A1 (en) 2023-03-16
KR20240038046A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
US11414798B2 (en) Fibrous structures
CN107847834B (en) Method for producing filter material for air filter
KR101634024B1 (en) Porous body and process for manufacturing same
US10905990B2 (en) Nonwoven filtration media including microfibrillated cellulose fibers
JP5855337B2 (en) Porous material and method for producing the same
US20160194832A1 (en) Multilayered structure comprising fine fiber cellulose layer
JP5319380B2 (en) Low basis weight air filter media
JP6721919B2 (en) Filter material for air filter
JP5993411B2 (en) Porous material and method for producing the same
JP6436096B2 (en) Manufacturing method of total heat exchange element
JP6951482B2 (en) Filter media for air filters, their manufacturing methods, and air filters
JP2008000652A (en) Filter medium
JP4086729B2 (en) Filter media and filter media for liquid filtration
JP6691497B2 (en) Method for manufacturing filter material for air filter and method for manufacturing air filter
JP2011036763A (en) Air filter medium and method for manufacturing the same
WO2023037440A1 (en) Filter material for air filters
JP5993408B2 (en) Porous material and method for producing the same
JP5883478B2 (en) Porous material and method for producing the same
JP2022554071A (en) Wet-laid web containing viscose fibers
JP2014148781A (en) Method of producing porous material
JP2021021173A (en) Sheet for heat exchange element and manufacturing method thereof
WO2023049527A1 (en) Filter media with biodegradable fibers
CN117241869A (en) Filter material for air filter and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546620

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247006152

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247006152

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE