WO2023037412A1 - Transmission - Google Patents

Transmission Download PDF

Info

Publication number
WO2023037412A1
WO2023037412A1 PCT/JP2021/032861 JP2021032861W WO2023037412A1 WO 2023037412 A1 WO2023037412 A1 WO 2023037412A1 JP 2021032861 W JP2021032861 W JP 2021032861W WO 2023037412 A1 WO2023037412 A1 WO 2023037412A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
peripheral surface
central axis
carrier
sun
Prior art date
Application number
PCT/JP2021/032861
Other languages
French (fr)
Japanese (ja)
Inventor
忠彦 加藤
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Priority to JP2023507515A priority Critical patent/JP7422939B2/en
Priority to PCT/JP2021/032861 priority patent/WO2023037412A1/en
Publication of WO2023037412A1 publication Critical patent/WO2023037412A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • F16H13/08Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion with balls or with rollers acting in a similar manner

Definitions

  • the present invention relates to a friction roller type transmission.
  • a sun roller having a central axis, a ring roller arranged radially outside the sun roller, a plurality of intermediate rollers in contact with the sun roller and the ring roller, and a carrier supporting the rotation axis of the intermediate roller.
  • Friction roller transmissions are known.
  • the carrier includes a bearing portion that supports the rotation shaft and a support portion that rotatably supports the bearing portion, and the bearing portion is positioned eccentrically from the center of the rotation shaft. is provided with the center of oscillation.
  • the swing center is arranged on the line of action of the torque reaction force acting on the intermediate roller.
  • the prior art has the problem that the structure of the carrier that supports the rotation shaft of the intermediate roller is complicated.
  • the present invention has been made to solve this problem, and an object thereof is to provide a transmission capable of simplifying the structure of the carrier.
  • the transmission of the present invention comprises a sun roller having a central axis, a ring roller spaced radially outwardly of the sun roller and coaxial with the central axis, and a sun roller.
  • a plurality of intermediate rollers in contact with the outer peripheral surface of the roller and the inner peripheral surface of the ring roller, a carrier that supports the rotation axis of each of the plurality of intermediate rollers at a variable angle with respect to the central axis, the sun roller, the ring roller, and the intermediate and a converting device for changing the angle of the rotation axis with respect to the central axis according to the torque acting between the rollers.
  • the carrier variably supports the rotation axis of each of the intermediate rollers with respect to the central axis of the sun roller.
  • a conversion device changes the angle of the rotation axis with respect to the central axis according to the torque acting between the sun roller, ring roller, and intermediate roller. Therefore, the structure of the carrier can be simplified.
  • the angle formed by the central axis and the rotation axis decreases.
  • the gap between the outer peripheral surface of the sun roller and the intermediate roller and the gap between the inner peripheral surface of the ring roller and the intermediate roller become smaller. It is possible to secure the surface pressure between each roller according to the torque and to secure the power transmission efficiency.
  • the contact surface of the intermediate roller in contact with the outer peripheral surface of the sun roller and the inner peripheral surface of the ring roller is a spherical zone having a plane of symmetry perpendicular to the rotation axis.
  • the outer peripheral surface of the sun roller and the inner peripheral surface of the ring roller are curved surfaces appearing as circular arcs in a cross section including the central axis.
  • the second parts, where the distance of is the shortest, are located on both sides of the plane of symmetry.
  • the distance between the first part and the second part is greater than the diameter of the intermediate roller, so that when assembling the transmission, the sun roller and the ring roller are separated from the first part of the sun roller and the second part of the ring roller.
  • Intermediate rollers can be inserted between , with their rotation axes tilted. Therefore, it is possible to easily assemble the transmission.
  • the carriers are arranged on both sides of the intermediate roller.
  • the edge of the carrier is provided with a radially extending recess.
  • the rotation axes of the intermediate rollers are respectively arranged in the recesses. Therefore, the structure in which the carrier supports the rotation shaft can be simplified.
  • the torque transmission path includes the carrier and the conversion device.
  • the sun roller or ring roller is fixed in rotation, and the conversion device applies a torque converted thrust force to the intermediate roller via the carrier. This thrust force reduces the angle between the central axis and the axis of rotation, allowing torque to be transmitted between the sun roller or ring roller and the intermediate roller.
  • the torque transmission path includes a sun roller, a ring roller, a carrier and a conversion device.
  • the carrier is attached to the sun roller or ring roller.
  • the conversion device applies a torque converted thrust force to the intermediate roller via the sun roller and the ring roller. This simplifies the mechanism by which the conversion device applies a thrust force to the intermediate rollers.
  • any one of the first to sixth aspects from the contact portion where the contact surface of the intermediate roller is in contact with the inner peripheral surface of the ring roller in the cross section containing the central axis and the rotation axis to the rotation axis
  • the angle between the vertical line and the straight line perpendicular to the center axis is greater than or equal to the tangent of the dynamic friction coefficient between the contact surface of the intermediate roller and the inner peripheral surface of the ring roller.
  • FIG. 1 is a skeleton diagram of a transmission in a first embodiment
  • FIG. (a) is a front view of the carrier seen from the axial direction
  • (b) is a rear view of the carrier seen from the axial direction.
  • (a) and (b) are cross-sectional views of the transmission in which the vicinity of the contact portion where the ring roller and the intermediate roller are in contact is enlarged.
  • FIG. 7 is a skeleton diagram of a transmission in a second embodiment
  • FIG. 11 is a skeleton diagram of a transmission in a third embodiment;
  • FIG. 1 is a skeleton diagram of a transmission 10 according to the first embodiment.
  • the friction roller type transmission 10 includes a sun roller 12 having a central axis O, a ring roller 15 radially outside the sun roller 12 and spaced apart from the sun roller 12, and the ring roller 15 and the sun roller. 12, a plurality of intermediate rollers 18, carriers 24 and 25 that support the rotation shafts 19 of the intermediate rollers 18, conversion devices 26 and 29 that convert torque acting between the rollers into thrust force, Prepare.
  • a sun roller 12 is coupled to the first shaft 11 .
  • the sun roller 12 has an outer peripheral surface 13 that appears as a concave arc in a cross section including the central axis O.
  • the outer peripheral surface 13 is an asymmetrical curved surface with respect to a plane perpendicular to the central axis O.
  • a first portion 14 having the longest distance between the central axis O and the outer peripheral surface 13 of the outer peripheral surface 13 is located at one axial end (right in FIG. 1) of the outer peripheral surface 13 .
  • the ring roller 15 is arranged coaxially with the central axis O of the sun roller 12 .
  • the ring roller 15 has an inner peripheral surface 16 appearing as a concave circular arc in a cross section including the central axis O.
  • the inner peripheral surface 16 is an asymmetrical curved surface with respect to a plane perpendicular to the central axis O.
  • a second portion 17 of the inner peripheral surface 16, in which the distance between the central axis O and the inner peripheral surface 16 is the shortest, is located at the other (left in FIG. 1) end of the inner peripheral surface 16 in the axial direction.
  • the rotation of the ring roller 15 is fixed.
  • a plurality of intermediate rollers 18 are arranged in the annular space between the outer peripheral surface 13 of the sun roller 12 and the inner peripheral surface 16 of the ring roller 15 .
  • the intermediate roller 18 rotates around its rotation axis 19 .
  • Side portions 22 are arranged on both sides of the intermediate roller 18 in the axial direction.
  • a bearing 20 is arranged between the rotation shaft 19 and the intermediate roller 18
  • a thrust bearing is arranged between the intermediate roller 18 and the side portion 22 .
  • the intermediate roller 18 rotates with respect to the rotation shaft 19 and the side portion 22 .
  • the intermediate roller 18 having a diameter larger than the diameter of the side portion 22 contacts the sun roller 12 and the ring roller 15 .
  • a radially outer surface of the intermediate roller 18 is a contact surface 21 that contacts the outer peripheral surface 13 of the sun roller 12 and the inner peripheral surface 16 of the ring roller 15 .
  • the contact surface 21 is a spherical zone with a plane of symmetry 23 perpendicular to the axis of rotation 19 .
  • the rotation axis 19 of the intermediate roller 18 is tilted with respect to the central axis O while the contact surface 21 is in contact with the outer peripheral surface 13 of the sun roller 12 and the inner peripheral surface 16 of the ring roller 15 .
  • the first portion 14 of the outer peripheral surface 13 and the second portion 17 of the inner peripheral surface 16 are located on both sides of the symmetry plane 23 in the axial direction. At least a portion of the axially outer surface of the side surface portion 22 is spherical.
  • the carriers 24, 25 are arranged on both sides in the axial direction with the intermediate roller 18 interposed therebetween. Carriers 24 , 25 support the rotation axis 19 of the intermediate roller 18 . Carriers 24 and 25 are rotating elements that take out the orbital motion of multiple rotating shafts 19 .
  • the carrier 24 is arranged near the second portion 17 of the inner peripheral surface 16 of the ring roller 15 .
  • the carrier 25 is positioned near the first portion 14 of the outer peripheral surface 13 of the sun roller 12 .
  • the axially inward facing surfaces of the carriers 24 , 25 are in contact with the spherical surfaces of the side portions 22 arranged on the intermediate roller 18 .
  • the carrier 24 is in contact with the portion of the spherical surface of the side portion 22 that is radially outside the portion where the rotation shaft 19 protrudes.
  • the carrier 25 is in contact with a portion of the spherical surface of the side portion 22 that is radially inside the portion where the rotation shaft 19 protrudes. Since the side piece 22 does not rotate, friction between the carriers 24, 25 and the side piece 22 can be reduced.
  • FIG. 2(a) is a front view of the carrier 24 viewed from the axial direction.
  • An outer edge 25a of the carrier 24 is provided with a plurality of recesses 24b extending radially inward.
  • the rotation shafts 19 of the intermediate rollers 18 are respectively arranged in the recesses 24b.
  • the carrier 24 is provided with cams 24c between recesses 24b adjacent in the circumferential direction.
  • the cam 24c is provided with slopes that gradually become deeper from both ends in the circumferential direction toward the center.
  • FIG. 2(b) is a rear view of the carrier 25 viewed from the axial direction.
  • An outer edge 25a of the carrier 25 is provided with a plurality of recesses 25b extending radially inward.
  • the radial length of the recess 25b is less than the radial length of the recess 24b of the carrier 24.
  • the rotation shafts 19 of the intermediate rollers 18 are respectively arranged in the recesses 25b.
  • the carrier 25 is provided with cams 25c between recesses 25b adjacent in the circumferential direction.
  • the cam 25c is provided with slopes that gradually become deeper from both ends in the circumferential direction toward the center.
  • the carriers 24 and 25 allow the rotation shaft 19 to oscillate in a plane containing the rotation shaft 19, and the rotation shaft moves through the recesses 24b and 25b. 19 moves. Since the carriers 24 and 25 restrict the circumferential movement of the rotation shaft 19 by the recesses 24b and 25b, the orbital motion of the rotation shaft 19 can be extracted from the carriers 24 and 25.
  • the conversion devices 26 and 29 control the pressing force between the outer peripheral surface 13 of the sun roller 12 and the contact surface 21 of the intermediate roller 18 and the pressure between the inner peripheral surface 16 of the ring roller 15 and the contact surface 21 of the intermediate roller 18. increases or decreases the pressing force in proportion to the transmission torque.
  • the conversion device 26 comprises an input element 27 provided with a cam (not shown) and a rolling element 28 sandwiched between the cam 24 c of the carrier 24 and the cam of the input element 27 .
  • Rolling bodies 28 are exemplified by balls and rollers. The two cams face each other in the axial direction of the first shaft 11 . Due to the relative rotation between the carrier 24 and the input element 27, the rolling element 28 rolls along the slope of the cam 24c.
  • the conversion device 29 comprises an input element 30 provided with a cam (not shown) and a rolling element 31 sandwiched between the cam 25c of the carrier 25 and the cam of the input element 30.
  • a ball or a roller is exemplified as the rolling element 31 .
  • the two cams face each other in the axial direction of the first shaft 11 . Due to the relative rotation between the carrier 25 and the input element 30, the rolling element 31 rolls along the slope of the cam 25c.
  • the two input elements 27, 30 are connected to each other such that the axial distance between the input elements 27, 30 does not change.
  • a second shaft 32 arranged coaxially with the first shaft 11 is coupled to the input element 27 .
  • the rolling elements 28, 31 are positioned at the deepest portions of the cams 24c, 25c.
  • the outer peripheral surface 13 of the sun roller 12 is such that the distance between the opposite end 13a of the first portion 14 and the central axis O is shorter than the distance between the first portion 14 and the central axis O, and the ring roller 15 In the inner peripheral surface 16 of the second portion 17, the distance between the opposite end 16a of the second portion 17 and the central axis O is longer than the distance between the second portion 17 and the central axis O.
  • the distance between the first part 14 of the sun roller 12 and the second part 17 of the ring roller 15 (the distance between the first part 14 and the second part 17 in the cross section including the central axis O) (the maximum diameter of the intermediate roller 18 when the intermediate roller 18 is cut by a plane perpendicular to the rotation axis 19).
  • an intermediate portion is inserted from the first portion 14 of the sun roller 12 and the second portion 17 of the ring roller 15 into the space between the sun roller 12 and the ring roller 15 with the rotation axis 19 inclined.
  • Rollers 18 can be included. Therefore, the work of arranging the intermediate rollers 18 when assembling the transmission 10 can be simplified.
  • the intermediate roller 18 arranged between the sun roller 12 and the ring roller 15 has its axis of rotation 19 arranged in a recess 24b, 25b extending radially from the edges 24a, 25a of the carriers 24, 25, respectively.
  • the structure of the carriers 24, 25 supporting the rotating shaft 19 can be simplified. Furthermore, when assembling the transmission 10, the work of arranging the rotation shafts 19 of the intermediate rollers 18 on the carriers 24, 25 can be simplified.
  • the sun roller 12 rotates, and the friction between the sun roller 12 and the intermediate roller 18 causes the intermediate roller 18 to revolve.
  • the carriers 24 and 25 rotate, and the relative rotation between the carrier 24 and the input element 27 and the relative rotation between the carrier 25 and the input element 30 cause the rolling elements 28 and 31 to move toward the cams 24c and 25c. each move to the shallow part of the As a result, the conversion devices 26 and 29 generate a thrust force that pushes the carriers 24 and 25 axially inward.
  • FIG. 3(a) is a cross-sectional view including the central axis O and the rotation axis 19 of the transmission 10, magnifying the vicinity of the contact portion 34 where the ring roller 15 and the intermediate roller 18 are in contact.
  • FIG. 3(b) is a cross-sectional view of the transmission 10 enlarging the vicinity of the contact portion 34 where the ring roller 15 and the intermediate roller 18 contact each other when the torque is greater than in the state of FIG. 3(a).
  • the angle ⁇ is equal to or greater than the tangent (tan ⁇ ) of the dynamic friction coefficient between the contact surface 21 of the intermediate roller 18 and the inner peripheral surface 16 of the ring roller 15 . Therefore, when the rotation shaft 19 swings and the angle .theta. decreases, the frictional force at the contact portion 34 prevents the intermediate roller 18 from self-locking and swinging in the direction in which the angle .theta. increases.
  • the transmission 10 has the first shaft 11 as an input shaft and the second shaft 32 as an output shaft. can slow down the rotation of On the other hand, by using the second shaft 32 as an input shaft and the first shaft 11 as an output shaft, the rotation speed of the second shaft 32 can be increased.
  • the carriers 24 and 25 variably support the rotation shafts 19 of the intermediate rollers 18 at different angles with respect to the central axis O. Since the angle of the rotation axis 19 with respect to O is changed, the structure of the carriers 24, 25 can be simplified.
  • FIG. 4 is a skeleton diagram of transmission 40 in the second embodiment.
  • the transmission 40 includes a sun roller 12, a ring roller 15, a plurality of intermediate rollers 41 arranged between the ring roller 15 and the sun roller 12, and carriers 24, 46 that support the rotation shafts 42 of the intermediate rollers 41. and a conversion device 26 for converting the torque acting between the rollers into a thrust force.
  • the rotation of the ring roller 15 is fixed.
  • the intermediate roller 41 rotates around the rotation axis 42.
  • a bearing 43 is arranged between the intermediate roller 41 and the rotation shaft 42 .
  • a contact surface 44 of the intermediate roller 41 contacts the outer peripheral surface 13 of the sun roller 12 and the inner peripheral surface 16 of the ring roller 15 .
  • the contact surface 44 is a spherical zone with a plane of symmetry perpendicular to the axis of rotation 42 .
  • the side portions 45 are arranged integrally with the rotation shaft 42 on both axial sides of the intermediate roller 41 .
  • the intermediate roller 41 rotates with respect to the rotation shaft 42 and the side surface portion 45 . At least a portion of the axially outer surface of the side portion 45 is spherical.
  • the rotation axis 42 is tilted with respect to the central axis O.
  • the carrier 46 is the same as the carrier 25 except that the cam 25c (see FIG. 2(b)) is omitted.
  • the carrier 46 has a fixed axial position.
  • the axially inwardly facing surfaces of the carriers 24 , 46 are in contact with the spherical surfaces of the side sections 45 .
  • the carrier 24 is in contact with the portion of the spherical surface of the side surface portion 45 that is radially outside the rotation axis 42 .
  • the carrier 46 is in contact with the portion of the spherical surface of the side surface portion 45 that is radially inside the rotation axis 42 .
  • the transmission 40 transmits torque between the first shaft 11 and the second shaft 32
  • the sun roller 12 rotates, and the friction between the sun roller 12 and the intermediate roller 41 causes the intermediate roller 48 to rotate.
  • the carriers 24 and 46 rotate, and the relative rotation between the carrier 24 and the input element 27 causes the rolling element 28 to move to the shallow portion of the cam 24c.
  • the conversion device 26 generates a thrust force that presses the carrier 24 axially inward.
  • the carrier 24 pushes the side surface 45 axially inward
  • the carrier 46 applies a reaction force to the side surface 45
  • a couple of forces act on the intermediate roller 41
  • the moment causes the intermediate roller 41 to move with respect to the central axis O.
  • the angle of the rotation axis 42 changes.
  • the angle formed by the central axis O and the rotation axis 42 gradually decreases, and the ring roller 15 is pushed by the intermediate roller 41 to elastically deform radially outward, increasing the surface pressure between the rollers. . Therefore, it is possible to secure the surface pressure corresponding to the torque and to secure the power transmission efficiency.
  • the transmission 40 slows down the rotation of the first shaft 11 using the sun roller 12, the carrier 24, and the conversion device 26 as torque transmission paths. can.
  • the second shaft 32 as an input shaft and the first shaft 11 as an output shaft
  • the rotation speed of the second shaft 32 can be increased.
  • the carriers 24 and 46 variably support the rotation shafts 42 of the intermediate rollers 41 with respect to the central axis O, and the rotation shafts 42 of the intermediate rollers 41 are rotated with respect to the central axis O according to the torque acting between the rollers by the conversion device 26. Since the angle of the rotation axis 42 is changed, the structure of the carriers 24, 46 can be simplified.
  • the ring roller 15 is fixed in rotation and the torque is transmitted between the sun roller 12 (first shaft 11) and the carrier 24 (second shaft 32). It is not something that can be done. It is of course possible to fix the rotation of the sun roller 12 and transmit torque between the ring roller 15 and the carrier 24 .
  • FIG. 5 is a skeleton diagram of transmission 50 in the third embodiment.
  • the transmission 50 converts the torque acting between the sun roller 12, the ring roller 15, the plurality of intermediate rollers 41, the carriers 24 and 46 supporting the rotation shafts 42 of the intermediate rollers 41, and the rollers into thrust force.
  • Carrier 24 is connected to ring roller 15 .
  • the ring roller 15 is axially movable.
  • the ring roller 15 When the carrier 24 is pushed axially inward, the ring roller 15 is axially pushed integrally with the carrier 24 .
  • the contact surface 44 of the intermediate roller 41 is pressed axially inward against the inner peripheral surface 16 of the ring roller 15 , and the reaction force of the outer peripheral surface 13 of the sun roller 12 acts on the contact surface 44 of the intermediate roller 41 .
  • a couple of forces act on the intermediate roller 41 by the sun roller 12 and the ring roller 15, and the angle of the rotation axis 42 of the intermediate roller 41 with respect to the central axis O changes due to the moment.
  • the transmission 50 has the first shaft 11 as an input shaft and the second shaft 32 as an output shaft. can slow down the rotation of On the other hand, by using the second shaft 32 as an input shaft and the first shaft 11 as an output shaft, the rotation speed of the second shaft 32 can be increased.
  • the carriers 24 and 46 variably support the rotation shafts 42 of the intermediate rollers 41 with respect to the central axis O. Since the angle of the rotation axis 42 is changed, the structure of the carriers 24, 46 can be simplified.
  • the carrier 24 is coupled to the ring roller 15 to transmit torque between the sun roller 12 (first shaft 11) and the ring roller 15 (second shaft 32). is not limited to It is of course possible to couple the carrier 24 to the sun roller 12 to transmit torque between the sun roller 12 and the ring roller 15 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)

Abstract

Provided is a transmission (10) with which the structure of a carrier can be simplified. This transmission is provided with: a sun roller (12) having a center axis (O); a ring roller (15) that is arranged coaxially with the center axis on the outside in the radial direction of the sun roller so as to have a space from the sun roller; a plurality of intermediate rollers (18) that are in contact with the sun roller and the ring roller; carriers (24, 25) that support a rotational axis (19) of each of the plurality of intermediate rollers so as to form a variable angle with the center axis; and a conversion device (26) that changes the angle of the rotational axis with respect to the center axis depending on the torque acting between the sun roller, the ring roller, and the intermediate rollers.

Description

変速機transmission
 本発明は摩擦ローラー式の変速機に関する。 The present invention relates to a friction roller type transmission.
 中心軸を有するサンローラーと、サンローラーの径方向の外側に配置されるリングローラーと、サンローラーとリングローラーとに接する複数の中間ローラーと、中間ローラーの自転軸を支持するキャリヤと、を備える摩擦ローラー式の変速機は知られている。特許文献1に開示された先行技術では、キャリヤは、自転軸を支持する軸受部と、軸受部を回転自在に支持する支持部と、を備え、軸受部は、自転軸の中心から偏心した位置に揺動中心が設けられている。先行技術は、中心軸および自転軸を含む平面内で中間ローラーが傾斜しないようにするため、中間ローラーに作用するトルク反力の作用線上に揺動中心が配置されている。 A sun roller having a central axis, a ring roller arranged radially outside the sun roller, a plurality of intermediate rollers in contact with the sun roller and the ring roller, and a carrier supporting the rotation axis of the intermediate roller. Friction roller transmissions are known. In the prior art disclosed in Patent Document 1, the carrier includes a bearing portion that supports the rotation shaft and a support portion that rotatably supports the bearing portion, and the bearing portion is positioned eccentrically from the center of the rotation shaft. is provided with the center of oscillation. In the prior art, in order to prevent the intermediate roller from tilting within the plane containing the center axis and the rotation axis, the swing center is arranged on the line of action of the torque reaction force acting on the intermediate roller.
特許第6669166号公報Japanese Patent No. 6669166
 先行技術では、中間ローラーの自転軸を支持するキャリヤの構造が複雑化するという問題点がある。 The prior art has the problem that the structure of the carrier that supports the rotation shaft of the intermediate roller is complicated.
 本発明はこの問題点を解決するためになされたものであり、キャリヤの構造を簡易にできる変速機を提供することを目的とする。 The present invention has been made to solve this problem, and an object thereof is to provide a transmission capable of simplifying the structure of the carrier.
 この目的を達成するために本発明の変速機は、中心軸を有するサンローラーと、サンローラーの径方向の外側にサンローラーと間隔をあけて中心軸と同軸に配置されるリングローラーと、サンローラーの外周面とリングローラーの内周面とに接する複数の中間ローラーと、複数の中間ローラーの各々の自転軸の、中心軸に対する角度を可変に支持するキャリヤと、サンローラー、リングローラー、中間ローラーの各ローラー間に作用するトルクに応じ、中心軸に対する自転軸の角度を変える変換装置と、を備える。 To achieve this object, the transmission of the present invention comprises a sun roller having a central axis, a ring roller spaced radially outwardly of the sun roller and coaxial with the central axis, and a sun roller. A plurality of intermediate rollers in contact with the outer peripheral surface of the roller and the inner peripheral surface of the ring roller, a carrier that supports the rotation axis of each of the plurality of intermediate rollers at a variable angle with respect to the central axis, the sun roller, the ring roller, and the intermediate and a converting device for changing the angle of the rotation axis with respect to the central axis according to the torque acting between the rollers.
 第1の態様によれば、キャリヤは、中間ローラーの各々の自転軸の、サンローラーの中心軸に対する角度を可変に支持する。変換装置によりサンローラー、リングローラー、中間ローラーの各ローラー間に作用するトルクに応じ、中心軸に対する自転軸の角度が変わる。よってキャリヤの構造を簡易にできる。 According to the first aspect, the carrier variably supports the rotation axis of each of the intermediate rollers with respect to the central axis of the sun roller. A conversion device changes the angle of the rotation axis with respect to the central axis according to the torque acting between the sun roller, ring roller, and intermediate roller. Therefore, the structure of the carrier can be simplified.
 第2の態様によれば、第1の態様において、トルクが大きくなるにつれて中心軸と自転軸とのなす角は小さくなる。中心軸と自転軸とのなす角が小さくなるにつれて、サンローラーの外周面と中間ローラーとの隙間、及び、リングローラーの内周面と中間ローラーとの隙間は小さくなる。トルクに応じた各ローラー間の面圧を確保し、動力伝達効率を確保できる。 According to the second aspect, in the first aspect, as the torque increases, the angle formed by the central axis and the rotation axis decreases. As the angle between the central axis and the rotation axis becomes smaller, the gap between the outer peripheral surface of the sun roller and the intermediate roller and the gap between the inner peripheral surface of the ring roller and the intermediate roller become smaller. It is possible to secure the surface pressure between each roller according to the torque and to secure the power transmission efficiency.
 第3の態様によれば、第1又は第2の態様において、サンローラーの外周面およびリングローラーの内周面に接する中間ローラーの接触面は、自転軸に垂直な対称面をもつ球帯である。サンローラーの外周面およびリングローラーの内周面は、中心軸を含む断面に円弧として現出する曲面である。サンローラーの外周面のうち中心軸とサンローラーの外周面との間の距離が最も長くなる第1部、及び、リングローラーの内周面のうち中心軸とリングローラーの内周面との間の距離が最も短くなる第2部は、対称面をはさんで両側に位置する。第1部と第2部との間の距離は、中間ローラーの直径よりも大きいので、変速機を組み立てるときに、サンローラーの第1部およびリングローラーの第2部からサンローラーとリングローラーとの間へ、自転軸を傾けた状態で中間ローラーを入れることができる。よって変速機の組み立てを容易にできる。 According to a third aspect, in the first or second aspect, the contact surface of the intermediate roller in contact with the outer peripheral surface of the sun roller and the inner peripheral surface of the ring roller is a spherical zone having a plane of symmetry perpendicular to the rotation axis. be. The outer peripheral surface of the sun roller and the inner peripheral surface of the ring roller are curved surfaces appearing as circular arcs in a cross section including the central axis. The first part where the distance between the central axis of the sun roller and the outer peripheral surface of the sun roller is the longest, and the distance between the central axis of the inner peripheral surface of the ring roller and the inner peripheral surface of the ring roller The second parts, where the distance of is the shortest, are located on both sides of the plane of symmetry. The distance between the first part and the second part is greater than the diameter of the intermediate roller, so that when assembling the transmission, the sun roller and the ring roller are separated from the first part of the sun roller and the second part of the ring roller. Intermediate rollers can be inserted between , with their rotation axes tilted. Therefore, it is possible to easily assemble the transmission.
 第4の態様によれば、第1から第3の態様のいずれかにおいて、キャリヤは中間ローラーをはさんで両側に配置される。キャリヤの縁に、径方向へ延びる凹みが設けられている。中間ローラーの自転軸は凹みの中にそれぞれ配置されている。よって自転軸をキャリヤが支持する構造を簡易にできる。 According to a fourth aspect, in any one of the first to third aspects, the carriers are arranged on both sides of the intermediate roller. The edge of the carrier is provided with a radially extending recess. The rotation axes of the intermediate rollers are respectively arranged in the recesses. Therefore, the structure in which the carrier supports the rotation shaft can be simplified.
 第5の態様によれば、第1から第4のいずれかの態様において、トルク伝達経路はキャリヤ及び変換装置を含む。サンローラー又はリングローラーは回転が固定され、変換装置は、トルクを変換したスラスト力を、キャリヤを介して中間ローラーに加える。このスラスト力により中心軸と自転軸とのなす角が小さくなり、これによりサンローラー又はリングローラーと中間ローラーとの間でトルクを伝達できる。 According to a fifth aspect, in any one of the first to fourth aspects, the torque transmission path includes the carrier and the conversion device. The sun roller or ring roller is fixed in rotation, and the conversion device applies a torque converted thrust force to the intermediate roller via the carrier. This thrust force reduces the angle between the central axis and the axis of rotation, allowing torque to be transmitted between the sun roller or ring roller and the intermediate roller.
 第6の態様によれば、第1から第4のいずれかの態様において、トルク伝達経路はサンローラー、リングローラー、キャリヤ及び変換装置を含む。キャリヤはサンローラー又はリングローラーに結合する。変換装置は、トルクを変換したスラスト力を、サンローラー及びリングローラーを介して中間ローラーに加える。これにより変換装置が中間ローラーにスラスト力を加える機構を簡易にできる。 According to a sixth aspect, in any one of the first to fourth aspects, the torque transmission path includes a sun roller, a ring roller, a carrier and a conversion device. The carrier is attached to the sun roller or ring roller. The conversion device applies a torque converted thrust force to the intermediate roller via the sun roller and the ring roller. This simplifies the mechanism by which the conversion device applies a thrust force to the intermediate rollers.
 第7の態様によれば、第1から第6のいずれかの態様において、中心軸および自転軸を含む断面において、リングローラーの内周面に中間ローラーの接触面が接する接触部から自転軸へ下した垂線と中心軸に垂直な直線とのなす角は、中間ローラーの接触面とリングローラーの内周面との間の動摩擦係数の正接以上である。これにより中心軸に対して自転軸の角度が変わる中間ローラーが摩擦力によってセルフロックしないようにできる。 According to a seventh aspect, in any one of the first to sixth aspects, from the contact portion where the contact surface of the intermediate roller is in contact with the inner peripheral surface of the ring roller in the cross section containing the central axis and the rotation axis to the rotation axis The angle between the vertical line and the straight line perpendicular to the center axis is greater than or equal to the tangent of the dynamic friction coefficient between the contact surface of the intermediate roller and the inner peripheral surface of the ring roller. Thereby, the intermediate roller whose rotation axis angle changes with respect to the central axis can be prevented from self-locking due to frictional force.
第1実施の形態における変速機のスケルトン図である。1 is a skeleton diagram of a transmission in a first embodiment; FIG. (a)は軸方向から見たキャリヤの正面図であり、(b)は軸方向から見たキャリヤの背面図である。(a) is a front view of the carrier seen from the axial direction, and (b) is a rear view of the carrier seen from the axial direction. (a)(b)はリングローラーと中間ローラーとが接する接触部の付近を拡大した変速機の断面図である。(a) and (b) are cross-sectional views of the transmission in which the vicinity of the contact portion where the ring roller and the intermediate roller are in contact is enlarged. 第2実施の形態における変速機のスケルトン図である。FIG. 7 is a skeleton diagram of a transmission in a second embodiment; 第3実施の形態における変速機のスケルトン図である。FIG. 11 is a skeleton diagram of a transmission in a third embodiment;
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1から図3を参照して第1実施の形態の変速機10を説明する。図1は第1実施の形態における変速機10のスケルトン図である。 Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. A transmission 10 according to a first embodiment will be described with reference to FIGS. 1 to 3. FIG. FIG. 1 is a skeleton diagram of a transmission 10 according to the first embodiment.
 摩擦ローラー式の変速機10は、中心軸Oを有するサンローラー12と、サンローラー12の径方向の外側にサンローラー12と間隔をあけて配置されたリングローラー15と、リングローラー15とサンローラー12との間に配置された複数の中間ローラー18と、中間ローラー18の自転軸19を支持するキャリヤ24,25と、ローラー間に作用するトルクをスラスト力に変換する変換装置26,29と、を備える。サンローラー12は第1軸11に結合している。 The friction roller type transmission 10 includes a sun roller 12 having a central axis O, a ring roller 15 radially outside the sun roller 12 and spaced apart from the sun roller 12, and the ring roller 15 and the sun roller. 12, a plurality of intermediate rollers 18, carriers 24 and 25 that support the rotation shafts 19 of the intermediate rollers 18, conversion devices 26 and 29 that convert torque acting between the rollers into thrust force, Prepare. A sun roller 12 is coupled to the first shaft 11 .
 サンローラー12は、中心軸Oを含む断面に凹の円弧として現出する外周面13をもつ。外周面13は、中心軸Oに垂直な平面に関して非対称な曲面である。外周面13のうち中心軸Oと外周面13との間の距離が最も長くなる第1部14が、外周面13の軸方向の一方(図1右)の端に位置する。 The sun roller 12 has an outer peripheral surface 13 that appears as a concave arc in a cross section including the central axis O. The outer peripheral surface 13 is an asymmetrical curved surface with respect to a plane perpendicular to the central axis O. A first portion 14 having the longest distance between the central axis O and the outer peripheral surface 13 of the outer peripheral surface 13 is located at one axial end (right in FIG. 1) of the outer peripheral surface 13 .
 リングローラー15は、サンローラー12の中心軸Oと同軸に配置されている。リングローラー15は、中心軸Oを含む断面に凹の円弧として現出する内周面16をもつ。内周面16は、中心軸Oに垂直な平面に関して非対称な曲面である。内周面16のうち中心軸Oと内周面16との間の距離が最も短くなる第2部17が、内周面16の軸方向の他方(図1左)の端に位置する。リングローラー15は回転が固定されている。 The ring roller 15 is arranged coaxially with the central axis O of the sun roller 12 . The ring roller 15 has an inner peripheral surface 16 appearing as a concave circular arc in a cross section including the central axis O. The inner peripheral surface 16 is an asymmetrical curved surface with respect to a plane perpendicular to the central axis O. As shown in FIG. A second portion 17 of the inner peripheral surface 16, in which the distance between the central axis O and the inner peripheral surface 16 is the shortest, is located at the other (left in FIG. 1) end of the inner peripheral surface 16 in the axial direction. The rotation of the ring roller 15 is fixed.
 中間ローラー18は、サンローラー12の外周面13とリングローラー15の内周面16との間の環状の空間に複数(本実施形態では3つ)配置されている。中間ローラー18は自転軸19を中心に回転する。中間ローラー18の軸方向の両側に側面部22が配置されている。自転軸19と中間ローラー18との間に軸受20が配置されており、中間ローラー18と側面部22との間にスラスト軸受が配置されている。中間ローラー18は自転軸19及び側面部22に対して回転する。 A plurality of intermediate rollers 18 (three in this embodiment) are arranged in the annular space between the outer peripheral surface 13 of the sun roller 12 and the inner peripheral surface 16 of the ring roller 15 . The intermediate roller 18 rotates around its rotation axis 19 . Side portions 22 are arranged on both sides of the intermediate roller 18 in the axial direction. A bearing 20 is arranged between the rotation shaft 19 and the intermediate roller 18 , and a thrust bearing is arranged between the intermediate roller 18 and the side portion 22 . The intermediate roller 18 rotates with respect to the rotation shaft 19 and the side portion 22 .
 側面部22の直径よりも直径が大きい中間ローラー18は、サンローラー12及びリングローラー15に接する。中間ローラー18の径方向の外側の面は、サンローラー12の外周面13とリングローラー15の内周面16とに接する接触面21である。接触面21は、自転軸19に垂直な対称面23をもつ球帯である。サンローラー12の外周面13とリングローラー15の内周面16とに接触面21が接触した状態で、中間ローラー18の自転軸19は中心軸Oに対して傾いている。外周面13の第1部14及び内周面16の第2部17は、対称面23をはさんで軸方向の両側に位置する。側面部22は、軸方向の外側の面の少なくとも一部が球面である。 The intermediate roller 18 having a diameter larger than the diameter of the side portion 22 contacts the sun roller 12 and the ring roller 15 . A radially outer surface of the intermediate roller 18 is a contact surface 21 that contacts the outer peripheral surface 13 of the sun roller 12 and the inner peripheral surface 16 of the ring roller 15 . The contact surface 21 is a spherical zone with a plane of symmetry 23 perpendicular to the axis of rotation 19 . The rotation axis 19 of the intermediate roller 18 is tilted with respect to the central axis O while the contact surface 21 is in contact with the outer peripheral surface 13 of the sun roller 12 and the inner peripheral surface 16 of the ring roller 15 . The first portion 14 of the outer peripheral surface 13 and the second portion 17 of the inner peripheral surface 16 are located on both sides of the symmetry plane 23 in the axial direction. At least a portion of the axially outer surface of the side surface portion 22 is spherical.
 キャリヤ24,25は、中間ローラー18をはさんで軸方向の両側に配置されている。キャリヤ24,25は中間ローラー18の自転軸19を支持する。キャリヤ24,25は、複数の自転軸19の公転運動を取り出す回転要素である。キャリヤ24は、リングローラー15の内周面16の第2部17の近くに配置されている。キャリヤ25は、サンローラー12の外周面13の第1部14の近くに配置されている。 The carriers 24, 25 are arranged on both sides in the axial direction with the intermediate roller 18 interposed therebetween. Carriers 24 , 25 support the rotation axis 19 of the intermediate roller 18 . Carriers 24 and 25 are rotating elements that take out the orbital motion of multiple rotating shafts 19 . The carrier 24 is arranged near the second portion 17 of the inner peripheral surface 16 of the ring roller 15 . The carrier 25 is positioned near the first portion 14 of the outer peripheral surface 13 of the sun roller 12 .
 キャリヤ24,25の軸方向の内側を向く面は、中間ローラー18に配置された側面部22の球面にそれぞれ接している。キャリヤ24は、側面部22の球面のうち自転軸19が突き出た部分より径方向の外側の部分に接している。キャリヤ25は、側面部22の球面のうち自転軸19が突き出た部分より径方向の内側の部分に接している。側面部22は回転しないので、キャリヤ24,25と側面部22との間の摩擦を低減できる。 The axially inward facing surfaces of the carriers 24 , 25 are in contact with the spherical surfaces of the side portions 22 arranged on the intermediate roller 18 . The carrier 24 is in contact with the portion of the spherical surface of the side portion 22 that is radially outside the portion where the rotation shaft 19 protrudes. The carrier 25 is in contact with a portion of the spherical surface of the side portion 22 that is radially inside the portion where the rotation shaft 19 protrudes. Since the side piece 22 does not rotate, friction between the carriers 24, 25 and the side piece 22 can be reduced.
 図2(a)は軸方向から見たキャリヤ24の正面図である。キャリヤ24の外側の縁25aには、径方向の内側へ向かって延びる凹み24bが複数設けられている。中間ローラー18の自転軸19は、凹み24bの中にそれぞれ配置されている。キャリヤ24は、周方向に隣り合う凹み24bの間にカム24cが設けられている。カム24cには、周方向の両端から中央へ向かうにつれて次第に深くなる斜面が設けられている。 FIG. 2(a) is a front view of the carrier 24 viewed from the axial direction. An outer edge 25a of the carrier 24 is provided with a plurality of recesses 24b extending radially inward. The rotation shafts 19 of the intermediate rollers 18 are respectively arranged in the recesses 24b. The carrier 24 is provided with cams 24c between recesses 24b adjacent in the circumferential direction. The cam 24c is provided with slopes that gradually become deeper from both ends in the circumferential direction toward the center.
 図2(b)は軸方向から見たキャリヤ25の背面図である。キャリヤ25の外側の縁25aには、径方向の内側へ向かって延びる凹み25bが複数設けられている。凹み25bの径方向の長さは、キャリヤ24の凹み24bの径方向の長さよりも短い。中間ローラー18の自転軸19は、凹み25bの中にそれぞれ配置されている。キャリヤ25は、周方向に隣り合う凹み25bの間にカム25cが設けられている。カム25cには、周方向の両端から中央へ向かうにつれて次第に深くなる斜面が設けられている。 FIG. 2(b) is a rear view of the carrier 25 viewed from the axial direction. An outer edge 25a of the carrier 25 is provided with a plurality of recesses 25b extending radially inward. The radial length of the recess 25b is less than the radial length of the recess 24b of the carrier 24. As shown in FIG. The rotation shafts 19 of the intermediate rollers 18 are respectively arranged in the recesses 25b. The carrier 25 is provided with cams 25c between recesses 25b adjacent in the circumferential direction. The cam 25c is provided with slopes that gradually become deeper from both ends in the circumferential direction toward the center.
 凹み24b,25bはキャリヤ24,25の径方向に延びているので、自転軸19を含む平面内の自転軸19の揺動をキャリヤ24,25は許容し、凹み24b,25bの中を自転軸19が移動する。キャリヤ24,25は凹み24b,25bによって自転軸19の周方向の移動を制限するので、自転軸19の公転運動をキャリヤ24,25から取り出すことができる。 Since the recesses 24b and 25b extend in the radial direction of the carriers 24 and 25, the carriers 24 and 25 allow the rotation shaft 19 to oscillate in a plane containing the rotation shaft 19, and the rotation shaft moves through the recesses 24b and 25b. 19 moves. Since the carriers 24 and 25 restrict the circumferential movement of the rotation shaft 19 by the recesses 24b and 25b, the orbital motion of the rotation shaft 19 can be extracted from the carriers 24 and 25. FIG.
 図1に戻って説明する。変換装置26,29は、サンローラー12の外周面13と中間ローラー18の接触面21との間の押圧力、及び、リングローラー15の内周面16と中間ローラー18の接触面21との間の押圧力を伝達トルクに比例して増減する。変換装置26は、カム(図示せず)が設けられた入力要素27と、キャリヤ24のカム24cと入力要素27のカムとの間にはさまれた転動体28と、を備えている。転動体28はボールやローラーが例示される。2つのカムは第1軸11の軸方向に対向している。転動体28はキャリヤ24と入力要素27との間の相対回転によって、カム24cの斜面に沿って転がる。 Return to Figure 1 for explanation. The conversion devices 26 and 29 control the pressing force between the outer peripheral surface 13 of the sun roller 12 and the contact surface 21 of the intermediate roller 18 and the pressure between the inner peripheral surface 16 of the ring roller 15 and the contact surface 21 of the intermediate roller 18. increases or decreases the pressing force in proportion to the transmission torque. The conversion device 26 comprises an input element 27 provided with a cam (not shown) and a rolling element 28 sandwiched between the cam 24 c of the carrier 24 and the cam of the input element 27 . Rolling bodies 28 are exemplified by balls and rollers. The two cams face each other in the axial direction of the first shaft 11 . Due to the relative rotation between the carrier 24 and the input element 27, the rolling element 28 rolls along the slope of the cam 24c.
 変換装置29は、カム(図示せず)が設けられた入力要素30と、キャリヤ25のカム25cと入力要素30のカムとの間にはさまれた転動体31と、を備えている。転動体31はボールやローラーが例示される。2つのカムは第1軸11の軸方向に対向している。転動体31はキャリヤ25と入力要素30との間の相対回転によって、カム25cの斜面に沿って転がる。 The conversion device 29 comprises an input element 30 provided with a cam (not shown) and a rolling element 31 sandwiched between the cam 25c of the carrier 25 and the cam of the input element 30. A ball or a roller is exemplified as the rolling element 31 . The two cams face each other in the axial direction of the first shaft 11 . Due to the relative rotation between the carrier 25 and the input element 30, the rolling element 31 rolls along the slope of the cam 25c.
 2つの入力要素27,30は、入力要素27,30間の軸方向の距離が変わらないように互いに結合されている。入力要素27には、第1軸11と同軸上に配置された第2軸32が結合している。第1軸11と第2軸32との間にトルクが伝達されていない状態では、転動体28,31はカム24c,25cの最も深い部分に位置する。 The two input elements 27, 30 are connected to each other such that the axial distance between the input elements 27, 30 does not change. A second shaft 32 arranged coaxially with the first shaft 11 is coupled to the input element 27 . When no torque is transmitted between the first shaft 11 and the second shaft 32, the rolling elements 28, 31 are positioned at the deepest portions of the cams 24c, 25c.
 サンローラー12の外周面13は、第1部14の反対側の端13aと中心軸Oとの間の距離が、第1部14と中心軸Oとの間の距離よりも短く、リングローラー15の内周面16は、第2部17の反対側の端16aと中心軸Oとの間の距離が、第2部17と中心軸Oとの間の距離よりも長い。サンローラー12の第1部14とリングローラー15の第2部17との間の距離(中心軸Oを含む断面における第1部14と第2部17との間の距離)は、中間ローラー18の直径(自転軸19に垂直な平面で中間ローラー18を切断したときの中間ローラー18の最大径)より大きい。変速機10を組み立てるときに、サンローラー12の第1部14及びリングローラー15の第2部17から、サンローラー12とリングローラー15との間の空間に、自転軸19を傾けた状態で中間ローラー18を入れることができる。よって変速機10を組み立てるときの、中間ローラー18を配置する作業を簡易にできる。 The outer peripheral surface 13 of the sun roller 12 is such that the distance between the opposite end 13a of the first portion 14 and the central axis O is shorter than the distance between the first portion 14 and the central axis O, and the ring roller 15 In the inner peripheral surface 16 of the second portion 17, the distance between the opposite end 16a of the second portion 17 and the central axis O is longer than the distance between the second portion 17 and the central axis O. The distance between the first part 14 of the sun roller 12 and the second part 17 of the ring roller 15 (the distance between the first part 14 and the second part 17 in the cross section including the central axis O) (the maximum diameter of the intermediate roller 18 when the intermediate roller 18 is cut by a plane perpendicular to the rotation axis 19). When assembling the transmission 10, an intermediate portion is inserted from the first portion 14 of the sun roller 12 and the second portion 17 of the ring roller 15 into the space between the sun roller 12 and the ring roller 15 with the rotation axis 19 inclined. Rollers 18 can be included. Therefore, the work of arranging the intermediate rollers 18 when assembling the transmission 10 can be simplified.
 サンローラー12とリングローラー15との間に配置された中間ローラー18は、キャリヤ24,25の縁24a,25aから径方向へ延びる凹み24b,25bの中に自転軸19がそれぞれ配置されるので、自転軸19を支持するキャリヤ24,25の構造を簡易にできる。さらに変速機10を組み立てるときの、キャリヤ24,25に中間ローラー18の自転軸19を配置する作業を簡易にできる。 The intermediate roller 18 arranged between the sun roller 12 and the ring roller 15 has its axis of rotation 19 arranged in a recess 24b, 25b extending radially from the edges 24a, 25a of the carriers 24, 25, respectively. The structure of the carriers 24, 25 supporting the rotating shaft 19 can be simplified. Furthermore, when assembling the transmission 10, the work of arranging the rotation shafts 19 of the intermediate rollers 18 on the carriers 24, 25 can be simplified.
 変速機10は第1軸11と第2軸32との間にトルクを伝達するときに、サンローラー12が回転し、サンローラー12と中間ローラー18との間の摩擦によって中間ローラー18が公転する。これに伴いキャリヤ24,25が回転し、キャリヤ24と入力要素27との間の相対回転、及び、キャリヤ25と入力要素30との間の相対回転によって、転動体28,31はカム24c,25cの浅い部分にそれぞれ移動する。これにより変換装置26,29は、キャリヤ24,25をそれぞれ軸方向の内側へ向けて押圧するスラスト力を発生する。 When the transmission 10 transmits torque between the first shaft 11 and the second shaft 32, the sun roller 12 rotates, and the friction between the sun roller 12 and the intermediate roller 18 causes the intermediate roller 18 to revolve. . Accordingly, the carriers 24 and 25 rotate, and the relative rotation between the carrier 24 and the input element 27 and the relative rotation between the carrier 25 and the input element 30 cause the rolling elements 28 and 31 to move toward the cams 24c and 25c. each move to the shallow part of the As a result, the conversion devices 26 and 29 generate a thrust force that pushes the carriers 24 and 25 axially inward.
 キャリヤ24,25によって側面部22が軸方向の内側へ向けて押されると、中間ローラー18に偶力が働き、モーメントによって中心軸Oに対する中間ローラー18の自転軸19の角度が変わる。トルクが大きくなるにつれて、中心軸Oと自転軸19とのなす角は次第に小さくなる。これに伴い、サンローラー12の外周面13に中間ローラー18の接触面21が接する接触部33は、外周面13の第1部14から離れる方向に移動し、リングローラー15の内周面16に中間ローラー18の接触面21が接する接触部34は、内周面16の第2部17から離れる方向に移動する。 When the side surface 22 is pushed inward in the axial direction by the carriers 24 and 25, a force couple acts on the intermediate roller 18, and the angle of the rotation axis 19 of the intermediate roller 18 with respect to the central axis O changes due to the moment. As the torque increases, the angle formed by the central axis O and the rotation axis 19 gradually decreases. Accordingly, the contact portion 33 where the contact surface 21 of the intermediate roller 18 is in contact with the outer peripheral surface 13 of the sun roller 12 moves away from the first portion 14 of the outer peripheral surface 13 and contacts the inner peripheral surface 16 of the ring roller 15 . The contact portion 34 with which the contact surface 21 of the intermediate roller 18 contacts moves away from the second portion 17 of the inner peripheral surface 16 .
 図3(a)はリングローラー15と中間ローラー18とが接する接触部34の付近を拡大した変速機10の中心軸O及び自転軸19を含む断面図である。図3(b)は、図3(a)の状態よりもトルクが大きいときの、リングローラー15と中間ローラー18とが接する接触部34の付近を拡大した変速機10の断面図である。 FIG. 3(a) is a cross-sectional view including the central axis O and the rotation axis 19 of the transmission 10, magnifying the vicinity of the contact portion 34 where the ring roller 15 and the intermediate roller 18 are in contact. FIG. 3(b) is a cross-sectional view of the transmission 10 enlarging the vicinity of the contact portion 34 where the ring roller 15 and the intermediate roller 18 contact each other when the torque is greater than in the state of FIG. 3(a).
 図3(a)及び図3(b)に示すように、トルクが大きくなるにつれて、リングローラー15の内周面16と中間ローラー18の接触面21とが接する接触部34から自転軸19(図1参照)へ下した垂線35と、中心軸O(図1参照)に垂直な直線36と、のなす角θは小さくなる。角θが小さくなるにつれて、中間ローラー18に押されてリングローラー15はΔRだけ径方向の外側へ弾性変形し、内周面16と接触面21との間の隙間37は小さくなり、接触部34における面圧が上昇する。すなわち変速機10は、第1軸11と第2軸32との間に伝達されるトルクが大きくなるほど、角θが小さくなり、接触部33,34における面圧が上昇する。よってトルクに応じた面圧を確保し、動力伝達効率を確保できる。 As shown in FIGS. 3(a) and 3(b), as the torque increases, the contact portion 34 where the inner peripheral surface 16 of the ring roller 15 and the contact surface 21 of the intermediate roller 18 are in contact with each other moves away from the rotation axis 19 (see FIG. 3(b)). 1) and a straight line 36 perpendicular to the central axis O (see FIG. 1), the angle .theta. As the angle θ decreases, the ring roller 15 is pushed by the intermediate roller 18 and is elastically deformed radially outward by ΔR. The surface pressure in increases. That is, in the transmission 10, the greater the torque transmitted between the first shaft 11 and the second shaft 32, the smaller the angle θ and the higher the surface pressure at the contact portions 33 and 34. Therefore, it is possible to secure the surface pressure corresponding to the torque and to secure the power transmission efficiency.
 角θは、中間ローラー18の接触面21とリングローラー15の内周面16との間の動摩擦係数の正接(tanμ)以上である。従って自転軸19が揺動して角θが小さくなったときに、接触部34における摩擦力によって、中間ローラー18がセルフロックして角θが大きくなる方向へ揺動できなくならないようにできる。 The angle θ is equal to or greater than the tangent (tan μ) of the dynamic friction coefficient between the contact surface 21 of the intermediate roller 18 and the inner peripheral surface 16 of the ring roller 15 . Therefore, when the rotation shaft 19 swings and the angle .theta. decreases, the frictional force at the contact portion 34 prevents the intermediate roller 18 from self-locking and swinging in the direction in which the angle .theta. increases.
 変速機10は、第1軸11を入力軸とし、第2軸32を出力軸とすることで、サンローラー12、キャリヤ24,25及び変換装置26,29をトルク伝達経路として、第1軸11の回転を減速できる。一方、第2軸32を入力軸とし、第1軸11を出力軸とすることで第2軸32の回転を増速できる。変速機10は、キャリヤ24,25が、中間ローラー18の各々の自転軸19の中心軸Oに対する角度を可変に支持し、変換装置26,29により各ローラー間に作用するトルクに応じ、中心軸Oに対する自転軸19の角度を変えるので、キャリヤ24,25の構造を簡易にできる。 The transmission 10 has the first shaft 11 as an input shaft and the second shaft 32 as an output shaft. can slow down the rotation of On the other hand, by using the second shaft 32 as an input shaft and the first shaft 11 as an output shaft, the rotation speed of the second shaft 32 can be increased. In the transmission 10, the carriers 24 and 25 variably support the rotation shafts 19 of the intermediate rollers 18 at different angles with respect to the central axis O. Since the angle of the rotation axis 19 with respect to O is changed, the structure of the carriers 24, 25 can be simplified.
 本実施形態では、リングローラー15の回転を固定して、サンローラー12(第1軸11)とキャリヤ24,25(第2軸32)との間にトルクを伝達する場合について説明したが、これに限られるものではない。サンローラー12の回転を固定して、リングローラー15とキャリヤ24,25との間にトルクを伝達することは当然可能である。 In this embodiment, the case where the rotation of the ring roller 15 is fixed and torque is transmitted between the sun roller 12 (first shaft 11) and the carriers 24 and 25 (second shaft 32) has been described. is not limited to It is of course possible to fix the rotation of the sun roller 12 and transmit torque between the ring roller 15 and the carriers 24,25.
 図4を参照して第2実施の形態について説明する。第1実施形態では、変換装置26,29が、中間ローラー18の軸方向の両側に配置される場合について説明した。これに対し第2実施形態では、中間ローラー18の軸方向の片側に変換装置26が配置される変速機40について説明する。第1実施形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図4は第2実施の形態における変速機40のスケルトン図である。 A second embodiment will be described with reference to FIG. 1st Embodiment demonstrated the case where the converters 26 and 29 were arrange|positioned at the both sides of the axial direction of the intermediate roller 18. FIG. In contrast, in the second embodiment, a transmission 40 in which a conversion device 26 is arranged on one side of the intermediate roller 18 in the axial direction will be described. Parts that are the same as those described in the first embodiment are denoted by the same reference numerals, and the following description is omitted. FIG. 4 is a skeleton diagram of transmission 40 in the second embodiment.
 変速機40は、サンローラー12と、リングローラー15と、リングローラー15とサンローラー12との間に配置された複数の中間ローラー41と、中間ローラー41の自転軸42を支持するキャリヤ24,46と、ローラー間に作用するトルクをスラスト力に変換する変換装置26と、を備える。リングローラー15は回転が固定されている。 The transmission 40 includes a sun roller 12, a ring roller 15, a plurality of intermediate rollers 41 arranged between the ring roller 15 and the sun roller 12, and carriers 24, 46 that support the rotation shafts 42 of the intermediate rollers 41. and a conversion device 26 for converting the torque acting between the rollers into a thrust force. The rotation of the ring roller 15 is fixed.
 中間ローラー41は自転軸42を中心に回転する。中間ローラー41と自転軸42との間に軸受43が配置されている。中間ローラー41の接触面44は、サンローラー12の外周面13とリングローラー15の内周面16とに接する。接触面44は、自転軸42に垂直な対称面をもつ球帯である。側面部45は、中間ローラー41の軸方向の両側に自転軸42と一体に配置されている。中間ローラー41は自転軸42及び側面部45に対して回転する。側面部45の軸方向の外側の面の少なくとも一部は球面である。自転軸42は、中心軸Oに対して傾いている。 The intermediate roller 41 rotates around the rotation axis 42. A bearing 43 is arranged between the intermediate roller 41 and the rotation shaft 42 . A contact surface 44 of the intermediate roller 41 contacts the outer peripheral surface 13 of the sun roller 12 and the inner peripheral surface 16 of the ring roller 15 . The contact surface 44 is a spherical zone with a plane of symmetry perpendicular to the axis of rotation 42 . The side portions 45 are arranged integrally with the rotation shaft 42 on both axial sides of the intermediate roller 41 . The intermediate roller 41 rotates with respect to the rotation shaft 42 and the side surface portion 45 . At least a portion of the axially outer surface of the side portion 45 is spherical. The rotation axis 42 is tilted with respect to the central axis O.
 キャリヤ46は、カム25c(図2(b)参照)が省略されている以外、キャリヤ25と同一である。キャリヤ46は、軸方向の位置が固定されている。キャリヤ24,46の軸方向の内側を向く面は、側面部45の球面に接している。キャリヤ24は、側面部45の球面のうち自転軸42より径方向の外側の部分に接している。キャリヤ46は、側面部45の球面のうち自転軸42より径方向の内側の部分に接している。 The carrier 46 is the same as the carrier 25 except that the cam 25c (see FIG. 2(b)) is omitted. The carrier 46 has a fixed axial position. The axially inwardly facing surfaces of the carriers 24 , 46 are in contact with the spherical surfaces of the side sections 45 . The carrier 24 is in contact with the portion of the spherical surface of the side surface portion 45 that is radially outside the rotation axis 42 . The carrier 46 is in contact with the portion of the spherical surface of the side surface portion 45 that is radially inside the rotation axis 42 .
 変速機40は第1軸11と第2軸32との間にトルクを伝達すると、サンローラー12が回転し、サンローラー12と中間ローラー41との間の摩擦によって中間ローラー48が自転する。これに伴いキャリヤ24,46が回転し、キャリヤ24と入力要素27との間の相対回転によって、転動体28はカム24cの浅い部分に移動する。これにより変換装置26は、キャリヤ24を軸方向の内側へ向けて押圧するスラスト力を発生する。 When the transmission 40 transmits torque between the first shaft 11 and the second shaft 32, the sun roller 12 rotates, and the friction between the sun roller 12 and the intermediate roller 41 causes the intermediate roller 48 to rotate. Accordingly, the carriers 24 and 46 rotate, and the relative rotation between the carrier 24 and the input element 27 causes the rolling element 28 to move to the shallow portion of the cam 24c. As a result, the conversion device 26 generates a thrust force that presses the carrier 24 axially inward.
 キャリヤ24によって軸方向の内側へ向けて側面部45が押されると、キャリヤ46によって側面部45に反力が作用し、中間ローラー41に偶力が働き、モーメントによって中心軸Oに対する中間ローラー41の自転軸42の角度が変わる。トルクが大きくなるにつれて、中心軸Oと自転軸42とのなす角は次第に小さくなり、中間ローラー41に押されてリングローラー15は径方向の外側へ弾性変形し、ローラー間の面圧が上昇する。よってトルクに応じた面圧を確保し、動力伝達効率を確保できる。 When the carrier 24 pushes the side surface 45 axially inward, the carrier 46 applies a reaction force to the side surface 45, a couple of forces act on the intermediate roller 41, and the moment causes the intermediate roller 41 to move with respect to the central axis O. The angle of the rotation axis 42 changes. As the torque increases, the angle formed by the central axis O and the rotation axis 42 gradually decreases, and the ring roller 15 is pushed by the intermediate roller 41 to elastically deform radially outward, increasing the surface pressure between the rollers. . Therefore, it is possible to secure the surface pressure corresponding to the torque and to secure the power transmission efficiency.
 変速機40は、第1軸11を入力軸とし、第2軸32を出力軸とすることで、サンローラー12、キャリヤ24及び変換装置26をトルク伝達経路として、第1軸11の回転を減速できる。一方、第2軸32を入力軸とし、第1軸11を出力軸とすることで第2軸32の回転を増速できる。変速機40は、キャリヤ24,46が、中間ローラー41の各々の自転軸42の中心軸Oに対する角度を可変に支持し、変換装置26により各ローラー間に作用するトルクに応じ、中心軸Oに対する自転軸42の角度を変えるので、キャリヤ24,46の構造を簡易にできる。 By using the first shaft 11 as an input shaft and the second shaft 32 as an output shaft, the transmission 40 slows down the rotation of the first shaft 11 using the sun roller 12, the carrier 24, and the conversion device 26 as torque transmission paths. can. On the other hand, by using the second shaft 32 as an input shaft and the first shaft 11 as an output shaft, the rotation speed of the second shaft 32 can be increased. In the transmission 40, the carriers 24 and 46 variably support the rotation shafts 42 of the intermediate rollers 41 with respect to the central axis O, and the rotation shafts 42 of the intermediate rollers 41 are rotated with respect to the central axis O according to the torque acting between the rollers by the conversion device 26. Since the angle of the rotation axis 42 is changed, the structure of the carriers 24, 46 can be simplified.
 本実施形態では、リングローラー15の回転を固定して、サンローラー12(第1軸11)とキャリヤ24(第2軸32)との間にトルクを伝達する場合について説明したが、これに限られるものではない。サンローラー12の回転を固定して、リングローラー15とキャリヤ24との間にトルクを伝達することは当然可能である。 In the present embodiment, the ring roller 15 is fixed in rotation and the torque is transmitted between the sun roller 12 (first shaft 11) and the carrier 24 (second shaft 32). It is not something that can be done. It is of course possible to fix the rotation of the sun roller 12 and transmit torque between the ring roller 15 and the carrier 24 .
 図5を参照して第3実施の形態について説明する。第1実施形態および第2実施形態では、リングローラー15に対してキャリヤ24が回転する場合について説明した。これに対し第3実施形態では、リングローラー15にキャリヤ24が結合している変速機50を説明する。第1実施形態または第2実施形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図5は第3実施の形態における変速機50のスケルトン図である。 A third embodiment will be described with reference to FIG. 1st Embodiment and 2nd Embodiment demonstrated the case where the carrier 24 rotates with respect to the ring roller 15. FIG. In contrast, in the third embodiment, a transmission 50 in which the carrier 24 is coupled to the ring roller 15 will be described. Parts that are the same as those described in the first embodiment or the second embodiment are denoted by the same reference numerals, and the following description is omitted. FIG. 5 is a skeleton diagram of transmission 50 in the third embodiment.
 変速機50は、サンローラー12と、リングローラー15と、複数の中間ローラー41と、中間ローラー41の自転軸42を支持するキャリヤ24,46と、ローラー間に作用するトルクをスラスト力に変換する変換装置26と、を備える。キャリヤ24はリングローラー15に結合している。リングローラー15は軸方向に移動できる。 The transmission 50 converts the torque acting between the sun roller 12, the ring roller 15, the plurality of intermediate rollers 41, the carriers 24 and 46 supporting the rotation shafts 42 of the intermediate rollers 41, and the rollers into thrust force. a conversion device 26; Carrier 24 is connected to ring roller 15 . The ring roller 15 is axially movable.
 変速機50は第1軸11と第2軸32との間にトルクを伝達すると、サンローラー12が回転し、サンローラー12と中間ローラー41との間の摩擦によってキャリヤ24,46とリングローラー15とが一体に回転する。キャリヤ24と入力要素27との間の相対回転によって、転動体28はカム24cの浅い部分に移動する。これにより変換装置26は、キャリヤ24を軸方向の内側へ向けて押圧するスラスト力を発生する。 When transmission 50 transmits torque between first shaft 11 and second shaft 32 , sun roller 12 rotates, and friction between sun roller 12 and intermediate roller 41 causes carrier 24 , 46 and ring roller 15 to rotate. and rotate together. Relative rotation between carrier 24 and input element 27 causes rolling element 28 to move into the shallow portion of cam 24c. As a result, the conversion device 26 generates a thrust force that presses the carrier 24 axially inward.
 キャリヤ24が軸方向の内側へ向けて押されると、キャリヤ24と一体にリングローラー15が軸方向に押される。中間ローラー41の接触面44はリングローラー15の内周面16に軸方向の内側へ向かって押され、中間ローラー41の接触面44にサンローラー12の外周面13の反力が働く。サンローラー12及びリングローラー15によって中間ローラー41に偶力が働き、モーメントによって中心軸Oに対する中間ローラー41の自転軸42の角度が変わる。トルクが大きくなるにつれて、中心軸Oと自転軸42とのなす角は次第に小さくなり、中間ローラー41に押されてリングローラー15は径方向の外側へ弾性変形し、ローラー間の面圧が上昇する。よってトルクに応じた面圧を確保し、動力伝達効率を確保できる。 When the carrier 24 is pushed axially inward, the ring roller 15 is axially pushed integrally with the carrier 24 . The contact surface 44 of the intermediate roller 41 is pressed axially inward against the inner peripheral surface 16 of the ring roller 15 , and the reaction force of the outer peripheral surface 13 of the sun roller 12 acts on the contact surface 44 of the intermediate roller 41 . A couple of forces act on the intermediate roller 41 by the sun roller 12 and the ring roller 15, and the angle of the rotation axis 42 of the intermediate roller 41 with respect to the central axis O changes due to the moment. As the torque increases, the angle formed by the central axis O and the rotation axis 42 gradually decreases, and the ring roller 15 is pushed by the intermediate roller 41 to elastically deform radially outward, increasing the surface pressure between the rollers. . Therefore, it is possible to secure the surface pressure corresponding to the torque and to secure the power transmission efficiency.
 変速機50は、第1軸11を入力軸とし、第2軸32を出力軸とすることで、サンローラー12、リングローラー15、キャリヤ24及び変換装置26をトルク伝達経路として、第1軸11の回転を減速できる。一方、第2軸32を入力軸とし、第1軸11を出力軸とすることで第2軸32の回転を増速できる。変速機50は、キャリヤ24,46が、中間ローラー41の各々の自転軸42の中心軸Oに対する角度を可変に支持し、変換装置26により各ローラー間に作用するトルクに応じ、中心軸Oに対する自転軸42の角度を変えるので、キャリヤ24,46の構造を簡易にできる。 The transmission 50 has the first shaft 11 as an input shaft and the second shaft 32 as an output shaft. can slow down the rotation of On the other hand, by using the second shaft 32 as an input shaft and the first shaft 11 as an output shaft, the rotation speed of the second shaft 32 can be increased. In the transmission 50, the carriers 24 and 46 variably support the rotation shafts 42 of the intermediate rollers 41 with respect to the central axis O. Since the angle of the rotation axis 42 is changed, the structure of the carriers 24, 46 can be simplified.
 本実施形態では、キャリヤ24をリングローラー15に結合して、サンローラー12(第1軸11)とリングローラー15(第2軸32)との間にトルクを伝達する場合について説明したが、これに限られるものではない。キャリヤ24をサンローラー12に結合して、サンローラー12とリングローラー15との間にトルクを伝達することは当然可能である。 In this embodiment, the carrier 24 is coupled to the ring roller 15 to transmit torque between the sun roller 12 (first shaft 11) and the ring roller 15 (second shaft 32). is not limited to It is of course possible to couple the carrier 24 to the sun roller 12 to transmit torque between the sun roller 12 and the ring roller 15 .
 以上、実施形態に基づき本発明を説明したが、本発明はこの実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、中間ローラー18,41の数は適宜設定できる。 Although the present invention has been described above based on the embodiments, the present invention is by no means limited to these embodiments, and it is easily understood that various improvements and modifications are possible without departing from the gist of the present invention. It can be inferred. For example, the number of intermediate rollers 18 and 41 can be set appropriately.
 実施形態では、中間ローラー18,41の自転軸19,42と中間ローラー18,41との間に軸受20,43を配置し、自転軸19,42に対して中間ローラー18,41が回転する場合について説明したが、必ずしもこれに限られるものではない。例えば、中間ローラー18,41と自転軸19,42とをそれぞれ結合し、自転軸19,42とキャリヤ24,25,46との間に軸受を配置することは当然可能である。 In the embodiment, when the bearings 20, 43 are arranged between the rotation shafts 19, 42 of the intermediate rollers 18, 41 and the intermediate rollers 18, 41, and the intermediate rollers 18, 41 rotate with respect to the rotation shafts 19, 42 has been described, but it is not necessarily limited to this. For example, it is of course possible to connect the intermediate rollers 18, 41 and the rotation shafts 19, 42 respectively and arrange bearings between the rotation shafts 19, 42 and the carriers 24, 25, 46.
 実施形態では、キャリヤ24,25の外側の縁24a,25aに凹み24b,25bを設ける場合について説明したが、必ずしもこれに限られるものではない。例えばキャリヤ24,25の内側の縁に凹みを設け、凹みの中に中間ローラー18,41の自転軸19,42を配置することは当然可能である。 In the embodiment, the case where the recesses 24b, 25b are provided in the outer edges 24a, 25a of the carriers 24, 25 has been described, but it is not necessarily limited to this. It is of course possible, for example, to provide the inner edges of the carriers 24, 25 with recesses in which the axes of rotation 19, 42 of the intermediate rollers 18, 41 are arranged.
 10,40,50 変速機
 12       サンローラー
 13       外周面
 14       第1部
 15       リングローラー
 16       内周面
 17       第2部
 18,41    中間ローラー
 19,42    自転軸
 21,44    接触面
 23       対称面
 24,25,46 キャリヤ
 24a,25a  縁
 24b,25b  凹み
 26,29    変換装置
 34       接触部
 35       垂線
 36       直線
 37       隙間
 O        中心軸
10, 40, 50 transmission 12 sun roller 13 outer peripheral surface 14 first part 15 ring roller 16 inner peripheral surface 17 second part 18, 41 intermediate roller 19, 42 rotation shaft 21, 44 contact surface 23 symmetry surface 24, 25, 46 carrier 24a, 25a edge 24b, 25b recess 26, 29 conversion device 34 contact part 35 perpendicular line 36 straight line 37 gap O central axis

Claims (7)

  1.  中心軸を有するサンローラーと、
     前記サンローラーの径方向の外側に前記サンローラーと間隔をあけて前記中心軸と同軸に配置されるリングローラーと、
     前記サンローラーの外周面と前記リングローラーの内周面とに接する複数の中間ローラーと、
     前記複数の中間ローラーの各々の自転軸の、前記中心軸に対する角度を可変に支持するキャリヤと、
     前記サンローラー、前記リングローラー、前記中間ローラーの各ローラー間に作用するトルクに応じ、前記中心軸に対する前記自転軸の角度を変える変換装置と、を備える変速機。
    a sun roller having a central axis;
    a ring roller disposed radially outwardly of the sun roller and spaced from the sun roller coaxially with the central axis;
    a plurality of intermediate rollers in contact with the outer peripheral surface of the sun roller and the inner peripheral surface of the ring roller;
    a carrier that variably supports the rotation axis of each of the plurality of intermediate rollers with respect to the central axis;
    and a conversion device that changes the angle of the rotation axis with respect to the central axis according to the torque acting between the sun roller, the ring roller, and the intermediate roller.
  2.  前記トルクが大きくなるにつれて、前記中心軸と前記自転軸とのなす角は小さくなり、
     前記中心軸と前記自転軸とのなす角が小さくなるにつれて、前記外周面と前記中間ローラーとの隙間、及び、前記内周面と前記中間ローラーとの隙間は小さくなる請求項1記載の変速機。
    As the torque increases, the angle formed by the central axis and the rotation axis decreases,
    2. The transmission according to claim 1, wherein the smaller the angle formed between the central axis and the rotation axis, the smaller the gap between the outer peripheral surface and the intermediate roller and the gap between the inner peripheral surface and the intermediate roller. .
  3.  前記外周面および前記内周面に接する前記中間ローラーの接触面は、前記自転軸に垂直な対称面をもつ球帯であり、
     前記外周面および前記内周面は、前記中心軸を含む断面に円弧として現出する曲面であり、
     前記外周面のうち前記中心軸と前記外周面との間の距離が最も長くなる第1部、及び、前記内周面のうち前記中心軸と前記内周面との間の距離が最も短くなる第2部は、前記対称面をはさんで両側に位置し、
     前記第1部と前記第2部との間の距離は、前記中間ローラーの直径よりも大きい請求項1又は2に記載の変速機。
    the contact surface of the intermediate roller contacting the outer peripheral surface and the inner peripheral surface is a spherical zone having a plane of symmetry perpendicular to the rotation axis;
    The outer peripheral surface and the inner peripheral surface are curved surfaces appearing as arcs in a cross section containing the central axis,
    A first portion in which the distance between the central axis and the outer peripheral surface is the longest in the outer peripheral surface, and a distance between the central axis and the inner peripheral surface in the inner peripheral surface is the shortest. The second part is located on both sides of the plane of symmetry,
    3. Transmission according to claim 1 or 2, wherein the distance between said first part and said second part is greater than the diameter of said intermediate roller.
  4.  前記キャリヤは、前記中間ローラーをはさんで両側に配置され、前記キャリヤの縁に設けられた径方向へ延びる凹みを含み、
     前記自転軸は、前記凹みの中にそれぞれ配置されている請求項1から3のいずれかに記載の変速機。
    the carrier includes radially extending recesses provided on the edges of the carrier disposed on opposite sides of the intermediate roller;
    4. A transmission according to any one of claims 1 to 3, wherein said rotating shafts are respectively arranged in said recesses.
  5.  トルク伝達経路は前記キャリヤ及び前記変換装置を含み、
     前記サンローラー又は前記リングローラーは回転が固定され、
     前記変換装置は、前記キャリヤを介して前記中間ローラーに、前記トルクを変換したスラスト力を加える請求項1から4のいずれかに記載の変速機。
    a torque transmission path includes the carrier and the conversion device;
    the sun roller or the ring roller is fixed in rotation;
    5. The transmission according to any one of claims 1 to 4, wherein the converting device applies a thrust force converted from the torque to the intermediate roller via the carrier.
  6.  トルク伝達経路は前記サンローラー、前記リングローラー、前記キャリヤ及び前記変換装置を含み、
     前記キャリヤは前記サンローラー又は前記リングローラーに結合し、
     前記変換装置は、前記サンローラー及び前記リングローラーを介して前記中間ローラーに、前記トルクを変換したスラスト力を加える請求項1から4のいずれかに記載の変速機。
    a torque transmission path includes the sun roller, the ring roller, the carrier and the conversion device;
    said carrier is coupled to said sun roller or said ring roller;
    5. The transmission according to any one of claims 1 to 4, wherein the converting device applies a thrust force converted from the torque to the intermediate roller via the sun roller and the ring roller.
  7.  前記中心軸および前記自転軸を含む断面において、
     前記内周面に前記中間ローラーの接触面が接する接触部から前記自転軸へ下した垂線と前記中心軸に垂直な直線とのなす角は、前記接触面と前記内周面との間の動摩擦係数の正接以上である請求項1から6のいずれかに記載の変速機。
    In a cross section containing the central axis and the rotation axis,
    The angle formed by a line perpendicular to the central axis and a vertical line extending from the contact portion where the contact surface of the intermediate roller contacts the inner peripheral surface to the rotation axis is the dynamic friction between the contact surface and the inner peripheral surface. A transmission as claimed in any one of claims 1 to 6 which is equal to or greater than the tangent of the coefficient.
PCT/JP2021/032861 2021-09-07 2021-09-07 Transmission WO2023037412A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023507515A JP7422939B2 (en) 2021-09-07 2021-09-07 transmission
PCT/JP2021/032861 WO2023037412A1 (en) 2021-09-07 2021-09-07 Transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032861 WO2023037412A1 (en) 2021-09-07 2021-09-07 Transmission

Publications (1)

Publication Number Publication Date
WO2023037412A1 true WO2023037412A1 (en) 2023-03-16

Family

ID=85507287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032861 WO2023037412A1 (en) 2021-09-07 2021-09-07 Transmission

Country Status (2)

Country Link
JP (1) JP7422939B2 (en)
WO (1) WO2023037412A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167261A1 (en) * 2015-04-13 2016-10-20 日本精工株式会社 Friction-roller-type reduction gear
JP2018063026A (en) * 2016-10-14 2018-04-19 日本電産シンポ株式会社 Continuously variable transmission and bicycle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167261A1 (en) * 2015-04-13 2016-10-20 日本精工株式会社 Friction-roller-type reduction gear
JP2018063026A (en) * 2016-10-14 2018-04-19 日本電産シンポ株式会社 Continuously variable transmission and bicycle

Also Published As

Publication number Publication date
JPWO2023037412A1 (en) 2023-03-16
JP7422939B2 (en) 2024-01-26

Similar Documents

Publication Publication Date Title
JP5131353B2 (en) Continuously variable transmission
US8382636B2 (en) Continuously variable transmission
WO2012111562A1 (en) Toroidal type continuously variable transmission
JP5500118B2 (en) Continuously variable transmission
JP2012107725A (en) Continuously variable transmission
JP2012122568A (en) Continuously variable transmission
WO2023037412A1 (en) Transmission
JP5601420B2 (en) Continuously variable transmission
JP2011190882A (en) Continuously variable transmission
JP5120666B2 (en) Toroidal continuously variable transmission
JP2003207005A (en) Toroidal type continuously variable transmission
JP6180993B2 (en) Continuously variable transmission
JP2012122567A (en) Continuously variable transmission
JP5488492B2 (en) Continuously variable transmission
JP2011112106A (en) Toroidal continuously variable transmission and continuously variable transmission
JP2012127457A (en) Continuously variable transmission
JP2024066857A (en) Ball screw device
JP2022161698A (en) Crown gear deceleration mechanism and power unit
WO2018012574A1 (en) Transmission
JP6163119B2 (en) Driving force transmission device for vehicle
JPH11336864A (en) Friction roller type speed change gear
JP4433377B2 (en) Toroidal continuously variable transmission
JP2007146873A (en) Toroidal type continuously variable transmission
JP2001065653A (en) Friction roller type transmission
WO2013136451A1 (en) Continuously variable transmission

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023507515

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE