WO2023036116A1 - 一种机器人自适应调速方法及多关节机器人 - Google Patents

一种机器人自适应调速方法及多关节机器人 Download PDF

Info

Publication number
WO2023036116A1
WO2023036116A1 PCT/CN2022/117210 CN2022117210W WO2023036116A1 WO 2023036116 A1 WO2023036116 A1 WO 2023036116A1 CN 2022117210 W CN2022117210 W CN 2022117210W WO 2023036116 A1 WO2023036116 A1 WO 2023036116A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
speed regulation
speed
parameter
safety
Prior art date
Application number
PCT/CN2022/117210
Other languages
English (en)
French (fr)
Inventor
陈世超
张小川
Original Assignee
苏州艾利特机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州艾利特机器人有限公司 filed Critical 苏州艾利特机器人有限公司
Publication of WO2023036116A1 publication Critical patent/WO2023036116A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the invention belongs to the field of industrial robots, in particular to a method for adaptive speed regulation of a robot and a multi-joint robot.
  • the field of industrial robots includes traditional industrial robots and collaborative robots.
  • Traditional industrial robots are used in industrial environments to replace manual operations.
  • New collaborative robots are mainly used to optimize the layout of existing production lines to facilitate the collaborative work of humans and machines.
  • the working scene of collaborative robots puts forward higher requirements on safety, portability and other performance.
  • collaborative robots In order to ensure the safety of collaborative robot operation, collaborative robots usually have more safety parameters to limit the operating conditions. If the operating conditions of the robot do not meet the safety parameters, an emergency stop will be triggered. The robot will teach before performing the work, expecting the robot to run along the predetermined trajectory, but even if the parameters of the robot meet the requirements during the teaching, the robot may cause an overspeed alarm due to some special points during the actual movement. The sudden stop of the robot will cause a large movement impact on the body.
  • the corresponding motion planning is carried out according to the motion parameters at the trigger moment, and the motion planning is re-executed during the motion of the robot, which will cause the original moving path of the robot to deviate, and cannot accurately follow the original design.
  • the predetermined trajectory may affect the maneuvering accuracy.
  • the purpose of the present invention is to provide a method for adaptive speed regulation of a robot and a multi-joint robot to solve the problems in the prior art that the robot suddenly stops in an abnormal situation and affects the working stability of the robot, and that the speed of the robot is changed through motion planning during the movement of the robot.
  • a robot adaptive speed regulation method the robot can run according to the predetermined trajectory set in the teaching process to perform work tasks, and the process of the robot executing the predetermined trajectory includes multiple operating cycles , the method includes: setting the safety parameters of the robot, the safety parameters limit the maximum operating value of the specific parameter during the operation of the robot; detecting the operating value of the specific parameter during the operation, comparing the operating value and the safety parameter, when the specified When the operating value exceeds the safety parameter, the real-time speed regulation of the robot is triggered to decelerate; the real-time speed regulation of the robot includes: determining the target value of a specific parameter, the target value is less than or equal to the safety parameter, according to the target value and the running The ratio of the value determines the speed regulation output percentage; according to the speed regulation output percentage, the position command increment of each operation cycle of the planning robot is adjusted to adjust the operation value of the specific parameter, and the total of the position commands sent by the robot before and after the speed regulation is
  • the operating value is less than the safety parameter, it is detected whether the safety parameter of the robot changes, and if it is detected that the safety parameter increases, the robot is triggered to adjust the speed in real time to increase the speed.
  • the robot has a normal operation mode and a reduced mode
  • the safety parameter in the normal operation mode is greater than the safety parameter in the reduced mode
  • the method includes: when the operation value is smaller than the current safety parameter, detecting Whether the working mode switching occurs, when it is detected that the robot switches from the reduced mode to the normal operation mode, the real-time speed regulation of the robot is triggered to increase the speed; when the robot is detected to switch from the normal operation mode to the reduced mode, the real-time speed regulation of the robot is triggered to decelerate.
  • the robot includes a base, a connecting rod and a plurality of joints, wherein the joint connecting the two longer connecting rods is an elbow joint, and the end of the robot is used to connect working tools.
  • the specific parameters include elbow joint speed, other At least part of each joint speed and end tool speed
  • the safety parameters include the maximum elbow joint speed of the robot, the maximum joint speeds of other joints, and at least part of the maximum end tool speed.
  • planning the position command increment of each operation cycle to adjust the operation value of a specific parameter includes:
  • the length of the speed regulation cycle is planned, and the position command increment of each operation cycle is split according to the length of the speed regulation cycle and the total amount of position commands planned before the speed regulation.
  • the robot detects at least two specific parameters, and when the operating values of at least two specific parameters exceed the safety parameters, the smaller value is selected according to the ratio of the target value of each specific parameter to the operating value and determined as the speed regulation output percentage .
  • the planning of the position command increment of each operation cycle includes: planning the speed change trend of the robot as an "S" curve by calling the S-shaped acceleration and deceleration function or the seventh-degree polynomial speed regulation function, and planning according to the speed change trend Position command increment for each operating cycle.
  • the present invention can also adopt the following technical solutions: a multi-joint robot, including a base, a connecting rod and a plurality of joints.
  • the robot includes: a setting module, which is used to set the safety parameters of the robot, and the safety parameters limit the maximum operating value of a specific parameter during the operation of the robot; a speed regulation module, which detects the specific parameter during operation.
  • the real-time speed regulation of the robot includes: determining the target value of the specific parameter, the The target value is less than or equal to the safety parameter, and the speed regulation output percentage is determined according to the ratio of the target value to the operation value; according to the speed regulation output percentage, the position command increment of each operation cycle of the robot is planned to adjust the operation value of a specific parameter , the total amount of position commands sent by the robot before and after the speed adjustment is the same.
  • the speed regulation module is used to detect whether the safety parameters of the robot have changed when the operating value is less than the safety parameters, and trigger real-time speed regulation of the robot to increase the speed if an increase in the safety parameters is detected.
  • the robot has a normal operation mode and a reduced mode
  • the safety parameter in the normal operation mode is greater than the safety parameter in the reduced mode
  • the speed regulation module is used for when the operation value is smaller than the current safety parameter , to detect whether the current working mode switching occurs, and when the robot is detected to switch from the reduced mode to the normal operation mode, trigger the real-time speed regulation of the robot to increase the speed.
  • the speed regulation module is used to plan the length of the speed regulation cycle according to the speed regulation output percentage, and split the position command increment of each operation cycle according to the speed regulation cycle length and the total amount of position commands planned before speed regulation.
  • the planning of the position command increment of each operation cycle includes: planning the speed change trend of the robot as an "S" curve by calling the S-shaped acceleration and deceleration function or the seventh-degree polynomial speed regulation function, and planning according to the speed change trend Position command increment for each operating cycle.
  • this solution monitors the operating value of a specific parameter in real time during the operation of the robot, and when the safety parameter is exceeded or other preset conditions are met, the robot is triggered to adjust the speed in real time, Ensure the safety of the robot during operation.
  • the method of planning position command increments is used to split the joint increments of each motion cycle of the robot according to the robot's pre-path planning, without changing the planning of the robot in the initial state, ensuring that the robot can follow the predetermined trajectory before and after speed adjustment.
  • Fig. 1 is the schematic diagram of the speed regulation method of an embodiment of the present invention
  • Fig. 2 is the schematic diagram of the robot of an embodiment of the present invention.
  • Fig. 3 is the schematic diagram of the speed regulation method of another embodiment of the present invention.
  • Fig. 4 is the schematic diagram of the speed regulation method of another embodiment of the present invention.
  • Fig. 5 is a block diagram of an articulated robot according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a method for adaptive speed regulation of a robot in a specific embodiment of the present invention.
  • the teaching program is set, and the robot can run according to the predetermined trajectory set in the teaching process to perform work tasks.
  • the process of the robot executing the predetermined trajectory includes multiple operating cycles.
  • the method includes: S1. Setting the safety parameters of the robot, the The safety parameter limits the maximum operating value of a specific parameter during the operation of the robot; S2, detects the operating value of a specific parameter during operation, compares the operating value and the safety parameter, and triggers the robot when the operating value exceeds the safety parameter Real-time speed adjustment to slow down.
  • Fig. 2 is the schematic diagram of the robot of a specific embodiment of the present invention
  • robot 100 comprises base 30, connecting rod 40 and a plurality of joints 20, and joint 20 connects each adjacent parts of robot 100 as connector, wherein connects two longer connecting rods 40 is the elbow joint 21, that is, the elbow joint 21 connects the first and second longest connecting rods of the robot, so the movement range of the elbow joint 21 is relatively large, and the end of the robot is used to connect the working tool 300, for example, the end of the robot A tool flange 50 is included to connect with a specific working tool 300 to realize work such as grabbing.
  • the specific parameters include at least some of the elbow joint speed, other joint speeds, and end tool speeds.
  • the safety parameters include the maximum elbow joint speed of the robot, the maximum joint speeds of other joints, At least a portion of the maximum tip tool speed.
  • the elbow joint velocity indicates the translation velocity of the elbow joint
  • the joint velocity indicates the joint rotation velocity.
  • the real-time speed regulation of the robot includes: determining the target value of a specific parameter, the target value is less than or equal to the safety parameter, and determining the speed regulation output percentage according to the ratio of the target value to the operating value; according to the speed regulation output Percentage, plan the position command increment of each operating cycle of the robot to adjust the operating value of a specific parameter, and the total amount of position commands sent by the robot before and after the speed adjustment is the same.
  • the operating value of the specific parameter after the speed regulation of the robot is less than or equal to the safety parameter.
  • the target value of the specific parameter and the safety parameter are in a preset proportional relationship and/or a preset reduction relationship, for example, the target value of the specific parameter is 90%-99% of the safety parameter, Alternatively, the target value of the specific parameter decreases the preset value of the corresponding security parameter.
  • the planning data of the robot includes planning path, planning speed, planning cycle and planning position command increment.
  • the robot includes the planning level in The above-mentioned parameters are planned before the robot performs work, and the planned position command increment is the position command increment corresponding to each planning cycle when the robot completes the planned path at the planned speed.
  • a set of path motion parameters (including acceleration a, velocity v, transfer radius r, etc.) combined with the taught motion points can correspond to a set of robot motion paths. This motion path is the planned path, and the speed in the motion parameters is the planned path.
  • the speed and planning period can be the motion period of the robot; if the robot calculates the running pose once in 1ms, the planning period is 1ms, and the increment of the planned position command is the increment of the position command output every 1ms when the robot completes the planned path at the planned speed. quantity.
  • the motion planning is carried out with different motion parameters according to the known path points, which may lead to deviations in the motion path.
  • the real-time motion planning process of the robot will also make the motion planning itself
  • the complexity is high, and it is easy to interfere with the execution of other algorithms of the robot.
  • a robot when the robot performs speed regulation, it uses the known motion planning to change the position command increment of the motion cycle, and the calculation amount is small without changing the original motion planning of the robot.
  • a robot includes a planning level and a sending level.
  • the planning level plans the parameters of the robot before the robot runs, and the sending level receives the parameters planned at the planning level.
  • the position command increment of each operation cycle of the operation cycle, the position command increment of each operation cycle of the robot corresponds to the angle of joint rotation of each operation cycle, and then the operation speed is adjusted. This adjustment process does not affect the execution of the robot at the planning level.
  • Other software or algorithm functions are used to change the position command increment of the motion cycle, and the calculation amount is small without changing the original motion planning of the robot.
  • the method includes: S3.
  • the operating value is less than the safety parameter, detect whether the safety parameter of the robot changes, and if it is detected that the safety parameter increases, trigger the robot to adjust the speed in real time to increase the speed. speed.
  • the robot has not yet triggered real-time speed regulation. At this time, if an increase in the safety parameter is detected, it means that the safety parameter condition has changed. At this time, the operating value of the robot can be appropriately increased to improve the operating efficiency of the robot. Therefore, when an increase in the safety parameter is detected, the robot is triggered to adjust the speed in real time to increase the speed.
  • the robot has a normal operation mode and a reduced mode, and the safety parameters in the normal mode are greater than those in the reduced mode, and the reduced mode has stricter safety requirements for the robot.
  • the method includes: S4.
  • the operating value is less than the current safety parameter, detect whether a working mode switch occurs currently, and when it is detected that the robot switches from the reduced mode to the normal operating mode, trigger the real-time speed regulation of the robot to increase the speed of the robot. speed.
  • the robot can automatically update the safety parameters in time, so that the specific parameters
  • the operating value can be compared with the latest safety parameters to ensure the accuracy of safety judgments.
  • the robot includes a teaching pendant to display a user interaction interface
  • the user interaction interface includes a security parameter modification tab and/or a working mode modification tab, through which specific parameters of the robot can be adjusted
  • the safety parameters of the robot can be set to normal mode or reduced mode through the work mode modification tab.
  • planning the position command increment of each operation cycle to adjust the operation value of a specific parameter includes: planning the speed regulation cycle length according to the speed regulation output percentage, according to the speed regulation cycle length and The total amount of position commands before speed regulation is divided into the position command increments of each running cycle. Further, by calling the S-type acceleration and deceleration function or the seventh-order polynomial speed regulation function, the speed change trend of the robot can be planned as an "S"-shaped change curve, and the position command increment of each operation cycle can be planned according to the speed change trend.
  • the position command includes multiple forms.
  • the position command is formed as a pulse signal.
  • T is the total planning time for executing a predetermined trajectory
  • Period is the length of one running cycle
  • the speed regulation percentage and the position command increment have a corresponding relationship.
  • the position command increment of each motion cycle is split and scaled, and the scaling ratio is split It is the speed regulation output percentage.
  • the planning period is T Period , where T Period ranges from 0 to 1 interpolation period, the ratio of T Period to interpolation period is ⁇ , and the pulse increment is q 1 , q 2 , q 3 , q 4 , q 5 , q 6 .
  • the speed regulation output percentage is P%, and the pulse of the current motion cycle is divided into:
  • the planning time is 1 interpolation period.
  • the planning time is 1 interpolation cycle. ...
  • the planning time is 1 interpolation period.
  • the total planning time is an interpolation cycle.
  • n is such that The largest positive integer of ; if n is a value of 0,
  • the speed of the robot can finally meet the speed regulation requirements of the speed regulation output percentage by continuously splitting the planned pulse increment of each cycle according to the law.
  • the robot may detect the operating values of multiple specific parameters at the same time.
  • a smaller value is selected according to the ratio of the target value of each specific parameter to the operating value.
  • the value is determined as a percentage of the governor output.
  • the beneficial effect of the above preferred embodiment is that: the operating value of the specific parameter detected by the robot is compared with the safety parameter, so that the operating value does not exceed the safety parameter to ensure the working safety of the robot.
  • the present invention also protects a multi-joint robot.
  • the multi-joint robot 100 includes a base 30, a connecting rod 40 and a plurality of joints 20.
  • the robot 100 can run according to a predetermined trajectory set during the teaching process to perform work tasks.
  • the process of the robot executing the predetermined trajectory is composed of multiple operating cycles. For example, it takes 2 minutes for the robot to execute the predetermined trajectory, and each operating cycle is 1 ms.
  • the robot 100 includes a setting module 1 and a speed regulation module 2 , the setting module 1 is used to set the safety parameters of the robot, the safety parameters limit the maximum operating value of a specific parameter during the operation of the robot, and the speed regulation module 2 detects the value of a specific parameter in each operation cycle during operation The operating value is compared with the operating value and the safety parameter, and when the operating parameter exceeds the safety parameter, the robot is triggered to adjust the speed in real time to decelerate.
  • the real-time speed regulation of the robot includes: determining the target value of a specific parameter, the target value being less than or equal to the safety parameter, determining the speed regulation output percentage according to the ratio of the target value and the operating value; according to the speed regulation output percentage , planning the position command increment of each operating cycle of the robot to adjust the operating value of a specific parameter, and the total amount of position commands sent by the robot before and after the speed control is the same. Accordingly, the robot can ensure that the operating value of the specific parameter is within the range limited by the safety parameter, thereby ensuring the safety of the robot operation.
  • the speed regulation module 2 is used for: when the operating value is less than the safety parameter, detect whether the safety parameter of the robot has changed; speed up.
  • the robot has a normal operation mode and a reduced mode, the safety parameters in the normal operation mode are greater than the safety parameters in the reduced mode, and the speed regulation module 2 is used for When the value is less than the current safety parameter, it detects whether the current working mode switching occurs, and when it detects that the robot switches from the reduced mode to the normal operation mode, it triggers the real-time speed regulation of the robot to increase the speed. Accordingly, when the safety parameters of the robot change or the safety parameters of the robot increase, the robot can appropriately increase the running speed of the robot, thereby ensuring the running efficiency of the robot.
  • the joint connecting the two longer connecting rods of the robot is the elbow joint, and the end of the robot is used to connect the working tool.
  • the specific parameters include elbow joint speed, other joint speeds, end tool speed at least Part, the safety parameters include at least part of the maximum elbow joint speed of the robot, the maximum joint speed of other joints, and the maximum end tool speed.
  • the robot detects the operating values of multiple specific parameters at the same time, when there are at least two operating values of specific parameters exceeding the safety parameters, the smaller value is selected according to the ratio of the target value of each specific parameter to the operating value and determined as the adjustment value.
  • Speed output percentage so that when the speed regulation is completed, the operating values of all specific parameters meet the requirements of safety parameters.
  • the speed regulation module 2 is used to plan the length of the speed regulation cycle according to the speed regulation output percentage, and split the position command increment of each operation cycle according to the length of the speed regulation cycle and the total amount of position commands planned before speed regulation .
  • the planning of the position command increment of each operation cycle includes: planning the speed change trend of the robot as an "S" curve by calling the S-type acceleration and deceleration function or the seventh-degree polynomial speed regulation function, and planning each position according to the speed change trend. Position command increment for a run cycle.
  • the present application also provides a computer-readable storage medium storing a computer program, such as a memory storing a computer program, and the computer program can be executed by a processor to implement a method for adaptive speed regulation of a robot.
  • the storage medium may be a non-transitory computer readable storage medium such as ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage medium. equipment etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种机器人自适应调速方法,包括:设定机器人的安全参数;运行过程中检测特定参数的运行值,比较运行值和安全参数,当运行值超过安全参数时,触发机器人实时调速;机器人实时调速包括:确定特定参数的目标值,目标值小于或等于安全参数,根据目标值和运行值的比值确定调速输出百分比;根据调速输出百分比,规划机器人在各运行周期的位置命令增量以调整特定参数的运行值。当机器人触发调速时,根据规划位置命令增量的方式进行调速,机器人调速前后的运行轨迹保持不变。还涉及一种多关节机器人。

Description

一种机器人自适应调速方法及多关节机器人 技术领域
本发明属于工业机器人领域,特别是涉及一种机器人自适应调速方法及多关节机器人。
背景技术
中国是制造业大国,随着人口红利衰退,传统劳动密集型生产模式难以持续,机器替代人工势在必行,企业向自动化生产升级改造成发展主要方向。工业机器人领域包括传统的工业机器人和协作机器人,传统的工业机器人应用于工业环境中替代人工操作,新型的协作机器人主要用于在已有的产线布局上进行优化,便于人和机器协同工作,协作机器人的工作场景使得其对安全性、轻便性等性能提出较高的要求。
为保证协作机器人运行的安全性,协作机器人通常有较多的安全参数限制运行条件,机器人运行条件如果不满足安全参数将会触发急停。机器人在执行工作前会进行示教,期望机器人跟随预定轨迹运行,但是即便是在进行示教时机器人的各项参数均满足要求,在实际运动中机器人很可能因为一些特殊点位导致超速报警,机器人骤然停止运动会对机体造成较大的运动冲击。
传统的方式中,当触发机器人调速时,按照触发时刻的运动参数进行相应的运动规划,机器人运动过程中重新进行运动规划,会使得机器人原有的移动路径发生偏移,不能准确跟随最初设定的预定轨迹,可能影响操纵精度。
发明内容
本发明的目的在于提供一种机器人自适应调速方法及多关节机器人,以解决现有技术中的机器人发生异常状况骤然停机影响机器人工作稳定性,以及机器人运动过程中通过运动规划改变机器人速度影响机器人跟随预定轨迹的问题。
为实现上述目标,本发明可采用如下技术方案:一种机器人自适应调速方法,机器人能够根据示教过程设定的预定轨迹运行以执行工作任务,机器人执行预定轨迹的过程包括多个运行周期,所述方法包括:设定机器人的安全参数,所述安全参数限制机器人运行过程中特定参数的最大运行值;运行过程中检测特定参数的运行值,比较所述运行值和安全参数,当所述运行值超过所述安全参数时,触发机器人实时调速以减速;所述机器人实时调速包括:确定特定参数的目标值,所述目标值小于或等于安全参数,根据所述目标值和运行值的比值确定调速输出百分比;根据所述调速输出百分比,规划机器人各运行周期的位置命令增量以调整特定参数的运行值,所述机器人调速前和调速后发送的位置命令总量 一致。
进一步的,当所述运行值小于安全参数时,检测机器人的安全参数是否发生变化,若检测到安全参数增大,触发机器人实时调速以增速。
进一步的,所述机器人具有常规运行模式和缩减模式,所述常规运行模式下的安全参数大于所述缩减模式下的安全参数,所述方法包括:当所述运行值小于当前安全参数时,检测是否发生工作模式切换,检测到机器人从缩减模式切换至常规运行模式时,触发机器人实时调速以增速;检测到机器人从常规运行模式切换至缩减模式时,触发机器人实时调速以减速。
进一步的,所述机器人包括底座、连杆和多个关节,其中连接俩较长的连杆的关节为肘部关节,机器人末端用于连接工作工具,所述特定参数包括肘部关节速度、其他各关节速度、末端工具速度中至少部分,所述安全参数包括机器人最大肘部关节速度,其他各关节的最大关节速度,最大末端工具速度中至少部分。
进一步的,根据所述调速输出百分比,规划各运行周期的位置命令增量以调整特定参数的运行值包括:
根据所述调速输出百分比,规划调速周期长度,根据调速周期长度和调速前规划的位置命令总量拆分各运行周期的位置命令增量。
进一步的,所述机器人检测至少两个特定参数,当至少存在两个特定参数的运行值超过安全参数时,根据各特定参数的目标值和运行值的比值选取较小值确定为调速输出百分比。
进一步的,所述规划各运行周期的位置命令增量包括:通过调用S型加减速函数或七次多项式调速函数,将机器人的速度变化趋势规划为“S”型曲线,根据速度变化趋势规划各运行周期的位置命令增量。
本发明还可采用如下技术方案:一种多关节机器人,包括底座、连杆和多个关节,机器人能够根据示教过程设定的预定轨迹运行以执行工作任务,机器人执行预定轨迹的过程由多个运行周期组成,所述机器人包括:设定模块,用于设定机器人的安全参数,所述安全参数限制机器人运行过程中特定参数的最大运行值;调速模块,运行过程中检测特定参数的运行值,比较所述运行值和安全参数,当所述运行参数超过所述安全参数时,触发机器人实时调速以减速;其中,所述机器人实时调速包括:确定特定参数的目标值,所述目标值小于或等于安全参数,根据所述目标值和运行值的比值确定调速输出百分比;根据所述调速输出百分比,规划机器人各运行周期的位置命令增量以调整特定参数的运行值,所 述机器人调速前和调速后发送位置命令的总量一致。
进一步的,所述调速模块用于,当所述运行值小于安全参数时,检测机器人的安全参数是否发生变化,若检测到安全参数增大,触发机器人实时调速以增速。
进一步的,所述机器人具有常规运行模式和缩减模式,所述常规运行模式下的安全参数大于所述缩减模式下的安全参数,所述调速模块用于当所述运行值小于当前安全参数时,检测当前是否发生工作模式切换,检测到机器人从缩减模式切换至常规运行模式时,触发机器人实时调速以增速。
进一步的,所述调速模块用于根据所述调速输出百分比,规划调速周期长度,根据调速周期长度和调速前规划的位置命令总量拆分各运行周期的位置命令增量。
进一步的,所述规划各运行周期的位置命令增量包括:通过调用S型加减速函数或七次多项式调速函数,将机器人的速度变化趋势规划为“S”型曲线,根据速度变化趋势规划各运行周期的位置命令增量。
与现有技术相比,本发明具体实施方式的有益效果为:本方案在机器人运行过程中实时监测特定参数的运行值,当超过安全参数或满足其他预设条件时,触发机器人实时调速,保证机器人运行过程中的安全性。同时,采用规划位置命令增量的方法,根据机器人预先的路径规划拆分机器人每一运动周期的关节增量,不改变初始状态下机器人的规划,保证机器人调速前后均能够跟随预定轨迹运行。
附图说明
图1是本发明一个实施例的调速方法的示意图;
图2是本发明一个实施例的机器人的示意图;
图3是本发明另一实施例的调速方法的示意图;
图4是本发明又一实施例的调速方法的示意图;
图5是本发明一实施例的多关节机器人的模块图。
具体实施方式
为使本发明的技术方案更加清楚明了,下面将结合附图来描述本发明的实施例。应当理解的是,对实施方式的具体说明仅用于示教本领域技术人员如何实施本发明,而不是用于穷举本发明的所有可行方式,更不是用于限制本发明的具体实施范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明保护一种机器人自适应调速方法,参图1,图1是本发明一个具体实施例的机器人自适应调速方法的示意图,机器人使用前,用于通过示教器、平板电脑等设备设定示 教程序,机器人能够根据示教过程设定的预定轨迹运行以执行工作任务,机器人执行预定轨迹的过程包括多个运行周期,所述方法包括:S1、设定机器人的安全参数,所述安全参数限制机器人运行过程中特定参数的最大运行值;S2、运行过程中检测特定参数的运行值,比较所述运行值和安全参数,当所述运行值超过所述安全参数时,触发机器人实时调速以减速。
图2是本发明一个具体实施例的机器人的示意图,机器人100包括底座30、连杆40和多个关节20,关节20作为连接件连接机器人100的各相邻部件,其中连接较长俩连杆40的是肘部关节21,即肘部关节21连接机器人第一长和第二长的连杆,因此肘部关节21的运动范围较大,机器人末端用于连接工作工具300,例如,机器人末端包括工具法兰50连接具体工作工具300以实现抓取等工作。具体的,所述特定参数包括肘部关节速度、其他各关节速度、末端工具速度中的至少部分,相对应的,所述安全参数包括机器人最大肘部关节速度、其他各关节的最大关节速度、最大末端工具速度中的至少部分。其中,所述肘部关节速度表示肘部关节的平动速度,关节速度表示关节转动速度。
具体的,所述机器人实时调速包括:确定特定参数的目标值,所述目标值小于或等于安全参数,根据所述目标值和运行值的比值确定调速输出百分比;根据所述调速输出百分比,规划机器人各运行周期的位置命令增量以调整特定参数的运行值,所述机器人调速前和调速后发送位置命令的总量一致。通过选取小于或等于安全参数的目标值,机器人调速后特定参数的运行值小于或等于安全参数。根据规划位置命令数量的方式调整机器人速度,未改变机器人的原始运动规划,机器人调速前后调速后相比,发送的位置命令总量相同,机器人始终跟随预定轨迹移动。
具体的,当机器人的安全参数发生变化时,此时特定参数的运行值范围对应的发生变化,根据变化胡的安全参数重新确定特定参数的目标值,从而使得机器人的特定参数的运行值始终满足安全参数的要求。示例性的,所述特定参数的目标值和所述安全参数呈预设比例关系和/或预设缩减关系,例如,所述特定参数的目标值为所述安全参数的90%-99%,或者,所述特定参数的目标值为对应的安全参数减少预设值。可选的,在执行实时调速前,还需要获取机器人的规划数据,所述机器人的规划数据包括规划路径、规划速度、规划周期和规划位置命令增量,可选的,机器人包括规划层面在机器人执行工作前规划上述各项参数,所述规划位置指令增量为所述机器人以所述规划速速完成规划路径的过程中每个规划周期对应的位置指令增量。一套路径运动参数(包含加速度a、速度v、转接半径r等)配合示教的运动点位能够对应一组机器人运动路径,此运动路径即为规划路径,运动参数 中的速度即为规划速度,规划周期可以是机器人的运动周期;如果机器人1ms计算一次运行的位姿,则规划周期是1ms,规划位置指令增量即为机器人以规划速度完成规划路径过程中每1ms输出的位置指令增量。通常,对机器人进行调速时,根据已知的路径点位,搭配不同的运动参数进行运动规划,由此可能导致运动路径发生偏差,同时,对机器人的实时运动规划过程也会使得运动规划本身复杂性高,容易对机器人的其他算法执行产生干扰。
本方案中,机器人在进行调速时,通过已知的运动规划,去改变运动周期的位置命令增量,运算量较小不改变机器人原有的运动规划。例如,机器人包括规划层面和发送层面,规划层面在机器人运行前规划机器人的各项参数,发送层面接收到规划层面规划的各项参数,机器人运行过程中,速度需要调整时,发送层面调整规划的运行周期的各运行周期的位置命令增量,机器人每个运行周期的位置命令增量与每个运行周期的关节转动的角度相对应,进而调整运行速度,该调整过程不影响规划层面执行机器人的其他软件或算法功能。
进一步的,参图3,所述方法包括:S3、当所述运行值小于所述安全参数时,检测机器人的安全参数是否发生变化,若检测到安全参数增大,触发机器人实时调速以增速。在检测到运行值小于安全参数时,机器人尚未触发实时调速,此时,若检测到安全参数增大,说明安全参数条件变化,此时机器人的运行值可以适当增加以提升机器人的运行效率,因此检测到安全参数增大时,触发机器人实时调速以增速。
或者,在另一个具体实施例中,机器人具有常规运行模式和缩减模式,所述常规模式下的安全参数大于所述缩减模式下的安全参数,所述缩减模式即对机器人安全性要求更严苛的环境,例如,当机器人工作环境中同时出现人工操作时,机器人从常规运行模式切换至缩减模式,反之,则从缩减模式切换至常规运行模式。参图4,所述方法包括:S4、当所述运行值小于当前安全参数时,检测当前是否发生工作模式切换,检测到机器人从缩减模式切换至常规运行模式时,触发机器人实时调速以增速。可理解的,无论是机器人的安全参数主动发生变化,又或者机器人的运行模式发生变化导致安全参数变化的情况,当机器人的安全参数变化时,机器人能够及时自动更新安全参数,以使得特定参数的运行值能够和最新的安全参数进行比较,保证安全性判断的准确性。
示例性的,所述机器人包括示教器以展示用户交互界面,所述用户交互界面包括安全参数修改选项卡和/或工作模式修改选项卡,通过所述安全参数修改选项卡可调整机器人特定参数的安全参数,通过所述工作模式修改选项卡可设置机器人为常规模式或缩减模式。
其中,本实施例中根据调速输出百分比,规划各运行周期的位置命令增量以调整特定 参数的运行值包括:根据所述调速输出百分比,规划调速周期长度,根据调速周期长度和调速前的位置命令总量拆分各运行周期的位置命令增量。进一步的,可以通过调用S型加减速函数或者七次多项式调速函数,将机器人的速度变化趋势规划为“S”型的变化曲线,根据速度变化趋势规划各运行周期的位置命令增量。
位置命令包括多种形式,在一个具体的实施例中,位置命令形成为脉冲信号,根据一种具体的实现方式,在一次确定的运动规划中,假设T为执行预定轨迹的总规划时长,Period为一个运行周期的长度,则机器人将会运行的总运动周期数量为
Figure PCTCN2022117210-appb-000001
设定机器人为六轴机器人,在机器人运行前进行运动规划后,其每一运动周期的脉冲数量是确定的,假设分别为q 1i、q 2i、q 3i、q 4i、q 5i、q 6i(i=0,1,2,......,N)。基于确定的运动周期数量N,以及每个运动周期的脉冲增量q 1i、q 2i、q 3i、q 4i、q 5i、q 6i(i=0,1,2,......,N),根据调速输出百分比P%,缩放运动周期至N′,按比例调整每周期的脉冲增量为q′ 1i、q′ 2i、q′ 3i、q′ 4i、q′ 5i、q′ 6i(i=0,1,2,......,N′),实现调速的目的,调速前后脉冲总量相同,即关节运动总量相同。
Figure PCTCN2022117210-appb-000002
Figure PCTCN2022117210-appb-000003
Figure PCTCN2022117210-appb-000004
Figure PCTCN2022117210-appb-000005
Figure PCTCN2022117210-appb-000006
Figure PCTCN2022117210-appb-000007
其中,调速百分比和位置命令增量具有对应关系,对于确定运动规划的状况下而言,根据已知的调速输出百分比,拆分缩放各运动周期的位置命令增量,拆分缩放的比例为调速输出百分比。在本实施例中,对于确认的运动规划,其每一周期的脉冲增量为q 1i、q 2i、q 3i、q 4i、q 5i、q 6i(i=0,1,2,......,N),在某一发送周期,规划周期时长为T Period,其 中T Period取值为0到1个插补周期,T Period与插补周期的比值为Δ,脉冲增量为q 1、q 2、q 3、q 4、q 5、q 6。已知调速输出百分比为P%,当前运动周期的脉冲被拆分为:
第1个:
Figure PCTCN2022117210-appb-000008
Figure PCTCN2022117210-appb-000009
其中,规划时长为1个插补周期。
第2个:
Figure PCTCN2022117210-appb-000010
Figure PCTCN2022117210-appb-000011
其中,规划时长为1个插补周期。……
第n个:
Figure PCTCN2022117210-appb-000012
Figure PCTCN2022117210-appb-000013
其中,规划时长为1个插补周期。
第n+1个:
Figure PCTCN2022117210-appb-000014
Figure PCTCN2022117210-appb-000015
总规划时长为
Figure PCTCN2022117210-appb-000016
个插补周期。其中n为,使
Figure PCTCN2022117210-appb-000017
的最大正整数;若
Figure PCTCN2022117210-appb-000018
n为取值为0,
Figure PCTCN2022117210-appb-000019
对于N个运动周期而言,只需按规律连续拆分规划的每一个周期的脉冲增量,即可使得机器人的速度最终满足调速输出百分比的调速要求。
在一个具体的实施例中,机器人可能同时检测多个特定参数的运行值,当至少存在两个特定参数的运行值超过安全参数时,根据各特定参数的目标值和运行值的比值选取较小值确定为调速输出百分比。以确保完成调速时,各特定参数的运行值均能符合对应的安全参数的要求。以上优选实施例的有益效果是:机器人检测特定参数的运行值与安全参数比较,使得运行值不超过安全参数以保证机器人的工作安全性。在达到触发调速的条件时,基于机器人原本的运动规划,确定各运行周期的位置命令增量并重新拆分各运行周期的位置命令增量,使得机器人调速过程前后机器人运动轨迹不变。
本发明还保护一种多关节机器人,参图2,所述多关节机器人100包括底座30、连杆40和多个关节20,机器人100能够根据示教过程设定的预定轨迹运行以执行工作任务,机器人执行预定轨迹的过程由多个运行周期组成,例如,机器人执行预定轨迹需要2分钟,其中每个运行周期为1ms,参图5,所述机器人100包括设定模块1和调速模块2,所述设定模块1用于设定机器人的安全参数,所述安全参数限制机器人运行过程中特定参数的最大运行值,所述调速模块2运行过程中在每个运行周期检测特定参数的运行值,比较所述 运行值和安全参数,当所述运行参数超过安全参数时,触发机器人实时调速以减速。其中,所述机器人实时调速包括:确定特定参数的目标值,所述目标值小于或等于安全参数,根据所述目标值和运行值的比值确定调速输出百分比;根据所述调速输出百分比,规划机器人各运行周期的位置命令增量以调整特定参数的运行值,所述机器人调速前和调速后发送位置命令的总量一致。据此,机器人得以保证特定参数的运行值在安全参数限定的范围内,从而保证机器人运行的安全性。
在一个具体的实施例中,所述调速模块2用于:当所述运行值小于安全参数时,检测机器人的安全参数是否发生变化,若检测到安全参数增大,触发机器人实时调速以增速。在一个其他的实施例中,所述机器人具有常规运行模式和缩减模式,所述常规运行模式下的安全参数大于所述缩减模式下的安全参数,所述调速模块2用于当所述运行值小于当前安全参数时,检测当前是否发生工作模式切换,检测到机器人从缩减模式切换至常规运行模式时,触发机器人实时调速以增速。据此,机器人能够在安全参数发生变化时,机器人的安全参数增大时,适当的增大机器人运行速度,进而保证机器人运行的效率。
与前文一致的,所述机器人连接俩较长的连杆的关节为肘部关节,机器人末端用于连接工作工具,所述特定参数包括肘部关节速度、其他各关节速度、末端工具速度中至少部分,所述安全参数包括机器人最大肘部关节速度、其他各关节的最大关节速度、最大末端工具速度中至少部分。
具体的,当机器人同时检测多个特定参数的运行值时,当至少存在两个特定参数的运行值超过安全参数时,根据各特定参数的目标值和运行值的比值选取较小值确定为调速输出百分比,从而使得在完成调速时,所有特定参数的运行值均满足安全参数的要求。
具体的,所述调速模块2用于根据所述调速输出百分比,规划调速周期长度,根据调速周期长度和调速前规划的位置命令总量拆分各运行周期的位置命令增量。其中,所述规划各运行周期的位置命令增量包括:通过调用S型加减速函数或七次多项式调速函数,将机器人的速度变化趋势规划为“S”型曲线,根据速度变化趋势规划各运行周期的位置命令增量。关于上述实施例中的多关节机器人,其中各模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
在示例性实施例中,本申请还提供了一种存储有计算机程序的计算机可读存储介质,例如存储有计算机程序的存储器,所述计算机程序可由处理器执行以完成机器人自适应调速方法。可选地,存储介质可以是非临时性计算机可读存储介质,例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存 储设备等。
最后还需要指出,由于文字表达的有限性,上述说明仅是示例性的,并非穷尽性的,本发明并不限于所披露的各实施方式,在不偏离上述示例的范围和精神的情况下,对于本领域的技术人员来说还可以作若干改进和修饰,这些改进和修饰也应视为本发明的保护范围。因此本发明的保护范围应以权利要求为准。

Claims (11)

  1. 一种机器人自适应调速方法,机器人能够根据示教过程规划的预定轨迹运行以执行工作任务,其特征在于,机器人执行预定轨迹的过程包括多个运行周期,所述方法包括:
    设定机器人的安全参数,所述安全参数限制机器人运行过程中特定参数的最大运行值;
    运行过程中检测特定参数的运行值,比较所述运行值和安全参数,当所述运行值超过所述安全参数时,触发机器人实时调速以减速;
    所述机器人实时调速包括:确定特定参数的目标值,所述目标值小于或等于安全参数,根据所述目标值和运行值的比值确定调速输出百分比;
    根据所述调速输出百分比,规划机器人各运行周期的位置命令增量以调整特定参数的运行值。
  2. 根据权利要求1所述的调速方法,其特征在于,当所述运行值小于安全参数时,检测机器人的安全参数是否发生变化,若检测到安全参数增大,触发机器人实时调速以增速。
  3. 根据权利要求2所述的调速方法,其特征在于,当机器人的安全参数发生变化时,根据变化后的安全参数重新确定特定参数的目标值,所述特定参数的目标值和安全参数呈预设比例关系和/或预设缩减关系。
  4. 根据权利要求1所述的调速方法,其特征在于,所述机器人具有常规运行模式和缩减模式,所述常规运行模式下的安全参数大于所述缩减模式下的安全参数,所述方法包括:
    检测机器人是否发生工作模式切换,检测到机器人从缩减模式切换至常规运行模式时,触发机器人实时调速以增速;检测到机器人从常规模式切换至缩减模式时,触发机器人实时调速以减速。
  5. 根据权利要求1所述的调速方法,其特征在于,所述方法应用于机器人,所述机器人包括底座、连杆和多个关节,其中连接俩较长的连杆的关节为肘部关节,机器人末端用于连接工作工具,所述特定参数包括肘部关节速度、其他各关节速度、末端工具速度中至少部分,所述安全参数包括机器人最大肘部关节速度,其他各关节的最大关节速度,最大末端工具速度中至少部分。
  6. 根据权利要求1所述的调速方法,其特征在于,根据所述调速输出百分比,规划各运行周期的位置命令增量以调整特定参数的运行值包括:
    根据所述调速输出百分比,规划调速周期长度,根据调速周期长度和调速前规划的位置命令总量拆分各运行周期的位置命令增量,其中,所述机器人调速前和调速后发送的位置命令总量一致。
  7. 根据权利要求1所述的调速方法,其特征在于,所述机器人检测至少两个特定参数, 当至少存在两个特定参数的运行值超过安全参数时,根据各特定参数的目标值和运行值的比值选取较小值确定为调速输出百分比。
  8. 根据权利要求1所述的调速方法,其特征在于,所述规划各运行周期的位置命令增量包括:通过调用S型加减速函数或七次多项式调速函数,将机器人的速度变化趋势规划为“S”型曲线,根据速度变化趋势规划各运行周期的位置命令增量。
  9. 一种多关节机器人,包括底座、连杆和多个关节,机器人能够根据示教过程规划的预定轨迹运行以执行工作任务,其特征在于,机器人执行预定轨迹的过程由多个运行周期组成,所述机器人包括:
    设定模块,用于设定机器人的安全参数,所述安全参数限制机器人运行过程中特定参数的最大运行值;
    调速模块,用于在机器人运行过程中检测特定参数的运行值,比较所述运行值和安全参数,当所述运行参数超过所述安全参数时,触发机器人实时调速以减速;
    其中,所述机器人实时调速包括:确定特定参数的目标值,所述目标值小于或等于安全参数,根据所述目标值和运行值的比值确定调速输出百分比;
    根据所述调速输出百分比,规划机器人各运行周期的位置命令增量以调整特定参数的运行值。
  10. 根据权利要求9所述的多关节机器人,其特征在于,所述调速模块用于,当所述运行值小于安全参数时,检测机器人的安全参数是否发生变化,若检测到安全参数增大,触发机器人实时调速以增速。
  11. 根据权利要求9所述的多关节机器人,其特征在于,所述机器人具有常规运行模式和缩减模式,所述常规运行模式下的安全参数大于所述缩减模式下的安全参数,所述调速模块用于当所述运行值小于当前安全参数时,检测当前是否发生工作模式切换,检测到机器人从缩减模式切换至常规运行模式时,触发机器人实时调速以增速。
PCT/CN2022/117210 2021-09-07 2022-09-06 一种机器人自适应调速方法及多关节机器人 WO2023036116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111041037.5A CN113771031B (zh) 2021-09-07 2021-09-07 一种机器人自适应调速方法及多关节机器人
CN202111041037.5 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023036116A1 true WO2023036116A1 (zh) 2023-03-16

Family

ID=78841384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117210 WO2023036116A1 (zh) 2021-09-07 2022-09-06 一种机器人自适应调速方法及多关节机器人

Country Status (2)

Country Link
CN (1) CN113771031B (zh)
WO (1) WO2023036116A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771031B (zh) * 2021-09-07 2023-11-28 苏州艾利特机器人有限公司 一种机器人自适应调速方法及多关节机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105437235A (zh) * 2016-01-25 2016-03-30 珠海格力电器股份有限公司 一种奇异点区域减速保护方法、***和工业机器人
CN107598921A (zh) * 2017-08-25 2018-01-19 深圳星河智能科技有限公司 一种应用于六轴机械手臂的空间平滑停止控制方法
CN109015596A (zh) * 2017-06-12 2018-12-18 库卡德国有限公司 对机器人的监视
US20190105775A1 (en) * 2017-10-05 2019-04-11 Fanuc Corporation Controller for limiting speed of robot component
CN110000794A (zh) * 2019-05-06 2019-07-12 江苏集萃智能制造技术研究所有限公司 一种基于协作机器人的截断式非对称速度规划方法
CN213259495U (zh) * 2020-08-14 2021-05-25 苏州艾利特机器人有限公司 一种确保速度和动量边界限制的工业机器人
CN113771031A (zh) * 2021-09-07 2021-12-10 苏州艾利特机器人有限公司 一种机器人自适应调速方法及多关节机器人

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106584462B (zh) * 2016-12-22 2019-01-15 南京埃斯顿自动化股份有限公司 一种机器人运行速度实时调节方法
JP6904759B2 (ja) * 2017-04-11 2021-07-21 日本電産サンキョー株式会社 ロボットの移動速度制御装置及び方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105437235A (zh) * 2016-01-25 2016-03-30 珠海格力电器股份有限公司 一种奇异点区域减速保护方法、***和工业机器人
CN109015596A (zh) * 2017-06-12 2018-12-18 库卡德国有限公司 对机器人的监视
CN107598921A (zh) * 2017-08-25 2018-01-19 深圳星河智能科技有限公司 一种应用于六轴机械手臂的空间平滑停止控制方法
US20190105775A1 (en) * 2017-10-05 2019-04-11 Fanuc Corporation Controller for limiting speed of robot component
CN110000794A (zh) * 2019-05-06 2019-07-12 江苏集萃智能制造技术研究所有限公司 一种基于协作机器人的截断式非对称速度规划方法
CN213259495U (zh) * 2020-08-14 2021-05-25 苏州艾利特机器人有限公司 一种确保速度和动量边界限制的工业机器人
CN113771031A (zh) * 2021-09-07 2021-12-10 苏州艾利特机器人有限公司 一种机器人自适应调速方法及多关节机器人

Also Published As

Publication number Publication date
CN113771031A (zh) 2021-12-10
CN113771031B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2023036116A1 (zh) 一种机器人自适应调速方法及多关节机器人
WO2021139373A1 (zh) 一种机械臂混杂控制方法、装置及***
CN105598968B (zh) 一种并联机械臂的运动规划与控制方法
US11433537B2 (en) Automatic path generation device
WO2023116129A1 (zh) 一种协作机器人的柔顺力控制方法及***
JP7156397B2 (ja) 制御装置
CN114952821A (zh) 机器人运动控制方法、机器人及***
CN115502966A (zh) 用于机器人的可变导纳控制方法
CN112720472B (zh) 一种机器人轨迹规划方法、装置、存储介质及机器人
CN114310914A (zh) 多自由度机械臂模糊自适应迭代轨迹跟踪控制方法及***
JP2007066001A (ja) ロボットの制御装置
CN115922684A (zh) 用于六轴机器人的奇异点处理方法、装置、设备及介质
CN115366115B (zh) 一种机械臂控制方法及其控制***和计算机可读存储介质
JPH0916241A (ja) ロボットの加減速動作の設定方法
CN111360835A (zh) 一种焊接机械臂的焊接自动控制方法
WO2022247615A1 (zh) 降低机器人对安装平台作用力的方法、装置及存储介质
WO2020093254A1 (zh) 机器人的运动控制方法、控制***和存储装置
US11872704B2 (en) Dynamic motion planning system
CN117083157A (zh) 用于控制机器人的位移的方法
WO2020186405A1 (zh) 一种越界返回方法、***及装置
CN112077841B (zh) 一种提升机器人手臂操纵精度的多关节联动方法及***
WO2021042389A1 (zh) 用于工业机器人的轨迹简化方法及设备、计算机存储介质以及工业机器人操作平台
CN113459103B (zh) 一种机械手自动运行时的转角轨迹控制方法及装置
CN205685337U (zh) 一种多奇异点处理***
WO2023026589A1 (ja) 制御装置、制御方法および制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE