WO2023035497A1 - 一种电传飞行备份控制***和方法 - Google Patents

一种电传飞行备份控制***和方法 Download PDF

Info

Publication number
WO2023035497A1
WO2023035497A1 PCT/CN2021/141882 CN2021141882W WO2023035497A1 WO 2023035497 A1 WO2023035497 A1 WO 2023035497A1 CN 2021141882 W CN2021141882 W CN 2021141882W WO 2023035497 A1 WO2023035497 A1 WO 2023035497A1
Authority
WO
WIPO (PCT)
Prior art keywords
backup
control
module
channel
main control
Prior art date
Application number
PCT/CN2021/141882
Other languages
English (en)
French (fr)
Inventor
魏强
郭建伟
唐志帅
高上
柳剑锋
王晨琳
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院 filed Critical 中国商用飞机有限责任公司
Publication of WO2023035497A1 publication Critical patent/WO2023035497A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • G05B9/03Safety arrangements electric with multiple-channel loop, i.e. redundant control systems

Definitions

  • the invention relates to the field of aircraft, in particular to a fly-by-wire flight backup control system and method.
  • the flight control system is the key flight system of the aircraft and is crucial to the safety of the aircraft. According to the airworthiness clause 25.1309, a single failure, regardless of probability, cannot lead to catastrophic consequences.
  • a single failure regardless of probability, cannot lead to catastrophic consequences.
  • For the fly-by-wire flight control system using hardware redundancy if there is a fault that causes both the main control system and the redundant system to fail to work normally, it may cause the failure of the entire flight control system, that is, a common mode problem occurs.
  • the common mode problem will destroy the independence of the redundant architecture. Therefore, attention must be paid to the potential safety hazard that the flight control system may fail due to the common mode problem.
  • backing up the common-mode object is an effective measure to solve the common-mode problem.
  • the horizontal stabilizer trim actuator can be used to control the horizontal stabilizer
  • the EMA can be used to control the electrical backup of the two pairs of spoilers.
  • aileron electric backup can be used
  • elevator and rudder hydraulic actuators can adopt analog line backup scheme
  • dual architecture (2H/2E) can be used optionally, so as to have independent backup power supply and control module.
  • the first backup solution is essentially an ultimate backup, which is more concise, but the backup capability is weaker, and it only has a short-term control capability to wait for the flight control system to recover.
  • the second backup scheme has the ability to continue safe flight and landing, but uses complex redundancy configuration and fault reconstruction logic.
  • the invention proposes a new fly-by-wire backup control system, which adopts a backup system architecture independent of the main control channel to ensure the safety of the backup control system. Under normal circumstances, the backup control system does not interfere with the work of the main control system. When the backup object (such as the main control computer) fails in common mode, the backup control system can quickly take over the control of the aircraft, providing the ability for the aircraft to continue to fly safely and land as soon as possible.
  • the backup object such as the main control computer
  • a fly-by-wire flight backup control system which includes: a backup sensor module; a backup control computer, the backup control computer is coupled to the backup sensor module, and the backup control computer receiving status signals of a master control channel, wherein the master control channel generates control commands based on sensor signals from a master control sensor module to control a master control servo-actuation module; and a backup servo-actuation module associated with the backup control computer , wherein when the state signal of the main control channel received by the backup control computer indicates that the main control channel fails, the backup control computer supplies power to the backup sensor module and the backup servo actuation module, and based on the Sensor signals received by the backup sensor module generate control commands to control the backup servo actuation module.
  • the master control channel generates control commands based on sensor signals from the master sensor module to control the backup servo actuation module when the master control channel is active.
  • the backup sensor module includes a cockpit manipulation sensor and an aircraft sensor, wherein the cockpit manipulation sensor is used to detect the operation of the cockpit and provides operational input, and the aircraft sensor is used to sense the state and movement of the aircraft and Provide feedback.
  • the backup servo actuation module includes remote control electronic equipment and corresponding rudder surface actuators, and the remote control electronic equipment receives control commands from the main control channel and/or the backup control computer, And based on the received control command, the rudder surface actuator drives the corresponding rudder surface to move.
  • the remote control electronic device includes: a main control channel command interface, used to receive control commands from the main control channel; and a backup channel command interface, used to receive control commands from the backup control computer, Wherein when the remote control electronic device receives the control command from the main control channel and the control command from the backup control computer, the remote control electronic device makes the The rudder surface actuator drives the corresponding rudder surface to move.
  • the remote control electronic device includes: a main control channel power supply module, configured to receive power from the main control channel; and a backup channel power supply module, configured to receive power from the backup control computer.
  • the backup control computer includes: an instruction branch that generates first control commands based on sensor signals received from the backup sensor module; and a monitoring branch that generates first control commands based on the received sensor signals from the backup sensor module.
  • the sensor signal generates a second control command and compares the first control command with the second control command, wherein when the difference between the first control command and the second control command is within a threshold range, the instruction branch Send the first control command to the backup servo actuation module.
  • the backup control computer includes: a power supply module; and a state control module, which receives the state signal of the main control channel, wherein when the state signal of the main control channel indicates that the main control channel fails, the state A control module enables the power supply module to supply power to the backup sensor module and the backup servo actuation module; and wherein when the status signal of the master control channel indicates that the master control channel is valid, the status control module enables the power supply A module does not power the backup sensor module and the backup servo actuation module.
  • a flight control system which includes: a main control channel, the main control channel includes a main control sensor module, a main control computer and a main control servo actuation module, wherein the main control channel A control computer generates control commands based on sensor signals from the main control sensor module to control the main control servo actuation module; and a fly-by-wire backup control system as described in any one of the above.
  • a fly-by-wire backup control method which includes: receiving a status signal of a master channel at a backup control computer, wherein the master channel is based on a sensor from a master sensor module The signal generates a control command to control the main control servo actuation module; when the state signal of the main control channel indicates that the main control channel fails, power is supplied from the backup control computer to the backup sensor module and the backup servo actuation module; and Sensor signals received by the backup sensor module generate control commands to control the backup servo actuation module.
  • the master control channel generates control commands based on sensor signals from the master sensor module to control the backup servo actuation module when the master control channel is active.
  • the sensor signals received from the backup sensor module include cockpit manipulation inputs received from cockpit manipulation sensors and aircraft state and motion feedback information received from aircraft sensors.
  • the fly-by-wire backup control method further includes: the backup servo actuation module receives a control command from the main control channel via the command interface of the main control channel;
  • the command interface receives the control command from the backup control computer, wherein when the backup servo actuation module receives the control command from the main control channel and the control command from the backup control computer, the backup servo actuation module
  • the module drives the corresponding rudder surface to move based on the control command from the main control channel.
  • the fly-by-wire flight backup control method further includes: when the status signal of the main control channel indicates that the main control channel is valid, the backup control computer does not act on the backup sensor module and the backup servo Module power supply.
  • the backup control system of the present invention can be completely independent from the main control system, and is equipped with an independent backup control sensor module, a backup control computer and a dual input/output interface EREU.
  • FIG. 1 is a schematic diagram of a flight control system architecture according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a control surface configuration of a flight control system according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of BCM power supply logic according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of EREU work according to an embodiment of the present invention.
  • Fig. 5 is a flowchart of a fly-by-wire backup control method according to an embodiment of the present invention.
  • the invention provides a backup control system (BCS) independent of the main control channel, which effectively improves the safety margin of the flight control system.
  • BCS backup control system
  • FIG. 1 is a schematic diagram of a flight control system architecture 100 according to one embodiment of the present invention.
  • the flight control system architecture 100 may include a main control channel 101 and a backup channel 102 .
  • the main control channel 101 may include a main control sensor module 112 (such as cockpit manipulation sensors and aircraft sensors), a main control computer 113 and corresponding various main control servo actuation modules 114 .
  • the main control computer 113 can generate control commands based on the sensor signals from the main control sensor module 112 to control the main control servo actuation module 114 .
  • Each servo actuation module 114 can include remote control electronic equipment (REU) and corresponding steering surface actuator (EHSV), and REU can receive the control order from main control channel 101 (for example, main control computer 113), and based on The received control command causes the actuator to drive the corresponding rudder surface to move.
  • REU remote control electronic equipment
  • EHSV steering surface actuator
  • Both the main control computer 113 and the backup control computer 130 can communicate with other systems 150 , such as communication with an on-board avionics system, a satellite system, and the like.
  • the backup channel 102 may include a backup sensor module 120 , a backup control computer 130 (BCM) and corresponding various backup servo actuation modules 140 .
  • the backup sensor module 120 may include cockpit manipulation sensors and aircraft sensors, wherein the cockpit manipulation sensors are used to detect the operation of the cockpit and provide operation input, and the aircraft sensors are used to sense the state and movement of the aircraft and provide feedback information.
  • the backup sensor module 120 may be a different or separate sensor module from the master sensor module 112 .
  • the backup control computer 130 may generate control commands based on sensor signals from the backup sensor module 120 .
  • the backup servo actuation module 140 can be connected to the main control computer 113 and the backup control computer 130 respectively.
  • backup servo actuation module 140 may include enhanced remote control electronics (EREU) 142 and corresponding steering surface actuators (EHSV) 144 .
  • EREU 142 (also can be referred to as remote control electronic equipment REU for short) can receive the control command from main control channel 101 (for example, main control computer 113) and/or the control command of backup control computer 130, and make based on the received control command
  • the actuator 144 drives the corresponding rudder surface to move.
  • the backup servo actuation module 140 may independently drive the associated control surface, or may cooperate with the master servo actuation module 114 to drive the same control surface.
  • the sensor module 120 of the backup channel 102 (or referred to as the backup control system) is independent from the main control channel, and includes cockpit manipulation sensors and aircraft sensors (such as slat position sensors, etc.). That is, the backup channel uses a separate sensor so that the backup control computer 130 can receive an independent sensor signal without being affected by the main control channel 101 .
  • a single backup sensor module 120 is shown in FIG. 1 , it should be understood that the individual sensors in the backup sensor module 120 may be distributed at suitable locations on the aircraft.
  • the cockpit manipulation sensor in the backup sensor module 120 collects the pilot's manipulation action, converts the pilot's mechanical manipulation action into an electrical signal (manipulation command) and sends it to the backup control computer (BCM) 130 .
  • the aircraft sensor in the backup sensor module 120 collects aircraft information and sends it to the BCM 130.
  • the BCM 130 can use the control commands provided by the cockpit control sensors and the aircraft information provided by the aircraft sensors to perform control law calculations, thereby generating control commands, which can be provided to the backup servo actuation module 140 to control corresponding rudder surface operations.
  • the sensor redundancy configuration of the backup sensor module 120 needs to meet the availability requirements of the backup control system. Since the backup control system is only a beneficial supplement to the main control system and does not contribute to the satisfaction of the availability of the flight control system, the sensor module 120 can adopt a single redundancy configuration or a redundancy configuration.
  • BCM 130 is the control core of the backup control system, which can realize power supply control, control law calculation, IO control, architecture monitoring (such as monitoring power supply, clock, etc.), sensor demodulation and other functions.
  • the BCM 130 can be realized by computers, processors, integrated circuits, programmable logic devices, microprocessors, controllers, microcontrollers, or state machines.
  • the BCM 130 may adopt a dissimilar command-monitoring branch architecture design, wherein the command branch (COM) generates control commands based on received maneuvering commands and aircraft information, and the monitoring branch (MON) uses the same
  • the command branch has a dissimilar hardware and/or software structure and also generates control commands based on the received maneuvering commands and aircraft information.
  • the monitoring branch compares the control commands calculated by the COM branch and the MON branch to ensure the accuracy of the BCM output commands. integrity. For example, when the control commands calculated by the COM branch and the MON branch are inconsistent (for example, the difference exceeds a threshold), the monitoring branch may provide error information. On the contrary, if the control commands calculated by the COM branch and the MON branch are consistent (for example, the difference is within a threshold range), it means that the control command is correct, and the control command generated by the command branch (COM) can be provided to
  • the backup servo actuation module 140 is used to control corresponding rudder surface operations.
  • the BCM 130 can be configured with an independent power supply module, and the power supply module is powered by an on-board electrical device or a power conditioning module (PCM).
  • PCM power conditioning module
  • the BCM 130 can use the power module to supply power to other DC power devices of the backup control system, such as the backup sensor module 120, the backup servo actuation module 140 and other equipment.
  • the main control computer 113 can generate a control command based on the sensor signal from the main control sensor module 112 to control the main control servo actuation module 114, and the main control computer 113 can also optionally generate a control command based on the sensor signal from the main control sensor module 112.
  • the sensor signals of module 112 generate control commands to control backup servo actuation module 140 .
  • the BCM 130 can receive the status signal of the main control channel 101.
  • the BCM 130 is in a cold backup state, and does not supply power to other electrical equipment in the backup control system, nor does it provide control commands to the servo actuation module 140 .
  • modules eg, hardware and/or software modules
  • modules in the BCM 130 associated with flight controls may be selectively put to sleep or powered down.
  • interface modules and processing modules, control law modules, etc. associated with sensor signals may be inactive.
  • the BCM 130 can also selectively power down other components.
  • the BCM 130 can trigger the re-power supply of the backup servo actuation module 140 affected by the main control channel 101, and the sensor module 120 and servo The relevant rudder surface position sensor of the actuation module is excited.
  • the BCM 130 takes over the failed main control channel 101 to send control commands to the relevant backup servo actuation module 140, and can receive the backup servo actuation module. command and status data fed back by the actuation module 140 to monitor the working status of the backup servo actuation module 140.
  • the data transmission between the BCM 130 and the backup servo actuation module 140 is independent of the master control channel 101, and optionally uses a data bus dissimilar to the master control channel 101.
  • body speed damping can be introduced into the backup control for gain adjustment, for example, the backup mode speed sensor (BMRS) is integrated into the BCM 130, and the BMRS The collected aircraft attitude signal is introduced into the control law calculation, which simplifies the interface of the backup control system and reduces the installation space of the BMRS.
  • BMRS backup mode speed sensor
  • the backup control system adopts a backup system architecture (comprising independent sensor module 120 and backup control computer 130 and power supply) independent of the main control channel 101, when the common mode fault occurs in the backup object and the main control channel 101 fails, the backup system architecture can be Quickly take over the control of the aircraft and perform independent flight control, thereby providing the ability for the aircraft to continue to fly safely and make alternate landings as soon as possible.
  • the backup system architecture may employ a dissimilar design (eg, dissimilar hardware or software or a combination thereof) compared to the master control channel so that failures in the master control channel do not occur in the backup system architecture.
  • Fig. 2 is a schematic diagram of a control surface configuration of a flight control system according to an embodiment of the present invention.
  • the flight control system may include a main control system (or called a main control channel, represented by P) and an independent backup control system (or called a backup channel, represented by B).
  • the REU associated with the main control channel controls the actuators associated with it to drive the movement of the rudder surface to realize the control of the aircraft attitude.
  • the spoiler actuators L1-L5 and R1-R5 can be respectively Controlled by REU (not shown) in master channel.
  • REU not shown
  • the left and right inner aileron actuators Ail IB, the left and right inner elevator actuators Ele IB and the middle rudder actuator Rud MID can be controlled by corresponding enhanced remote control electronics respectively.
  • Equipment (EREU) control The EREU can receive the control command of the main control channel (indicated by P) and the control command of the backup channel (indicated by B).
  • the rudder surface configuration of the backup channel needs to meet the control requirements of the minimum acceptable control (MAC).
  • MAC minimum acceptable control
  • the backup channel can perform independent flight control, so as to provide continuous safe flight of the aircraft and as soon as possible Alternate landing capability.
  • the EREU may be of a dissimilar design compared to the REU.
  • Figure 2 only shows a typical rudder surface configuration, the number of main control channels and the rudder surface configuration of backup channels can be adjusted according to the aircraft architecture.
  • Fig. 3 is a schematic diagram of BCM power supply logic according to an embodiment of the present invention.
  • the modules shown in FIG. 3 may be an example of backup channel 102 of flight control system architecture 100 in FIG. 1 .
  • a BCM (eg, BCM 130 in FIG. 1 ) may be configured with a stand-alone power module 310, which may be powered by an on-board power supply or a power conditioning module (PCM).
  • PCM power conditioning module
  • the backup control system adjusts the on-board power supply through the power regulation module (PCM) or directly supplies power to the BCM from the on-board power supply, and the power supply can be controlled by the switch S4 (for example, manual control or automatic control).
  • the BCM may further include a BCM state control module 320, which may receive the state of the main control channel and send the state of the BCM to other systems, such as the main control system and the avionics system.
  • the BCM state control module 320 can control the power supply module 310 to supply the servo actuation module (eg, EREU power supply module 330 ), the sensor 340 associated with the BCM, the BCM's Other modules 350 and the like are powered.
  • the servo actuation module eg, EREU power supply module 330
  • the BCM power supply module 310 when the main control channel works normally and the BCM is in the cold standby state, the BCM power supply module 310 is in the power-on state and supplies power to the BCM state control module 320, but does not supply power to the EREU power supply module 330, the sensor 340, other modules 350 of the BCM, etc. powered by.
  • the BCM state control module 320 can receive the state of the main control channel, receive operation commands, and can send the state of the BCM to other systems.
  • the BCM state control module 320 When the BCM state control module 320 receives the state signal of the main control channel and judges that the failure of the main control channel causes the aircraft to be lower than the MAC, the BCM power supply module 310 is controlled by the control signal sent by the BCM state control module 320, thereby supplying the EREU power supply module 330, The sensors 340, other modules 350 of the BCM, etc. are powered.
  • FIG. 4 is a schematic diagram of a remote control electronic equipment (EREU) 400 according to one embodiment of the present invention.
  • EREU 400 may be an example of EREU 142 in FIG. 1 .
  • the EREU 400 may include an actuator drive and control module 410 to drive or control the corresponding rudder surface actuator EHSV, and the actuator drive and control module 410 may also receive feedback signals from the rudder surface position sensor LVDT.
  • the number and configuration of rudder actuators and corresponding EREUs must meet the MAC requirements.
  • the EREU 400 has dual input/output (IO) interfaces, namely the main control channel command interface 402 and the backup channel command interface 404, which receive the control commands of the main control system and the control commands of the backup system respectively.
  • the main control instruction can have control priority.
  • the EREU will execute the main control instruction and suppress the backup instruction.
  • the EREU main control channel command interface 402 will enable or disable the EREU backup channel command interface 404 through signal enablement or jumper, so as to ensure that the EREU executes the main control command when it receives the main control command.
  • the main control channel command interface 402 receives the control command of the main control system, so that the actuator drive and control module 410 drives or controls the corresponding rudder surface actuator EHSV based on the control command of the main control system.
  • the command interface 402 of the main control channel of EREU feeds back the command and status data of the servo actuator module to the main control channel.
  • the backup channel command interface 404 receives the control command of the backup channel BCM, and the backup channel command interface 404 of EREU feeds back the command and status data of the servo actuation module to the BCM, so that the BCM can grasp the status of the servo actuation module.
  • the power module 420 of EREU 400 can be powered by two power sources (for example, main control channel, BCM), adopts anti-backfeed design, can be powered by the main control channel and BCM at the same time or by one of them, without affecting normal work.
  • BCM main control channel
  • FIG. 5 is a flowchart of a fly-by-wire backup control method 500 according to an embodiment of the present invention.
  • step 501 the master control channel controls the EREU of the backup servo actuation module.
  • the backup control computer receives the status signal of the master channel.
  • the backup control computer provides data interfaces to realize data interaction with the internal equipment of the backup control system and external systems (such as avionics systems, onboard maintenance systems, etc.).
  • the backup control system may use a data bus that is dissimilar to the master control channel.
  • step 503 if the status signal of the main control channel indicates that the failure of the main control channel causes the aircraft to be below the MAC, then in step 504, the backup channel is activated, and the necessary self-check of the backup channel can be completed in a short time.
  • the backup control computer is designed with an instruction-monitoring architecture. In addition to the necessary clock synchronization and power monitoring, it can also compare and monitor the steering surface instructions calculated by the two branches. When the comparison monitoring triggers an error report, it will shut down The corresponding command branch output interface ensures the integrity of the rudder surface control command.
  • step 505 the EREU of the backup servo actuation module is controlled by the backup channel.
  • the method may return to step 501, and switch from the backup channel to control the EREU by the main control channel. Thereafter, the backup channel can return to a cold backup state.
  • the backup control system of the present invention can be completely independent from the main control system, and is equipped with an independent backup control sensor module, a backup control computer and a dual input/output interface EREU.
  • the present invention can realize one or more of the following advantages:
  • a backup system architecture independent of the main control channel is proposed, which can adopt a non-similar design compared with the main control system to ensure the security of the backup control system;
  • Each step and module of the method and apparatus described above may be implemented by hardware, software, or a combination thereof. If implemented in hardware, the various illustrative steps, modules, and circuits described in connection with this disclosure may be implemented with a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic components, hardware components, or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a processor, microprocessor, controller, microcontroller, or state machine, among others. If implemented in software, the various illustrative steps, modules described in connection with the present disclosure may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Software modules implementing various operations of the present disclosure may reside in storage media such as RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, removable disk, CD-ROM, cloud storage, and the like.
  • the storage medium can be coupled to the processor so that the processor can read and write information from/to the storage medium, and execute corresponding program modules to realize various steps of the present disclosure.
  • software-based embodiments may be uploaded, downloaded or accessed remotely through appropriate communication means.
  • suitable means of communication include, for example, the Internet, the World Wide Web, an intranet, software applications, cables (including fiber optic cables), magnetic communications, electromagnetic communications (including RF, microwave, and infrared communications), electronic communications, or other such means of communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

一种电传飞行备份控制***和方法。该电传飞行备份控制***可包括备份传感器模块(120)和耦合至备份传感器模块(120)的备份控制计算机(130),备份控制计算机(130)接收主控通道(101)的状态信号,其中主控通道(101)基于来自主控传感器模块(112)的传感器信号生成控制命令以控制主控伺服作动模块(114),其中当备份控制计算机(130)接收到的主控通道(101)的状态信号指示主控通道(101)失效时,备份控制计算机(130)向备份传感器模块(120)和备份伺服作动模块(140)供电,并基于从备份传感器模块(120)接收到的传感器信号生成控制命令以控制备份伺服作动模块(140)。

Description

一种电传飞行备份控制***和方法
本申请要求于2021年9月7日提交的、申请号为202111040981.9的中国专利申请的优先权,该申请的全部内容通过援引纳入于此。
技术领域
本发明涉及飞行器领域,尤其涉及一种电传飞行备份控制***和方法。
背景技术
飞控***是飞行器的飞行关键***,对于飞行器安全至关重要。根据适航条款25.1309要求,单个失效无论概率大小不能导致灾难性后果。对于采用硬件冗余的电传飞控***,如果存在同时导致主控***和冗余***无法正常工作的故障,可能导致整个飞控***失效,即发生共模问题。共模问题会破坏冗余架构的独立性,因此,必须关注由于共模问题可能导致飞控***失效的安全隐患。对于当前主流的飞机电传飞控***,对共模对象进行备份是解决共模问题的一种有效措施。
在第一种备份方案中,可采用水平安定面配平作动器控制水平安定面、EMA控制两对扰流板的电备份方式。在第二种备份方案中,可采用副翼电备份,升降舵和方向舵液压作动器采用模拟线的备份方案,并且可选地采用双体系结构(2H/2E),从而具备独立的备份电源和控制模块。
第一种备份方案本质上是一种终极备份,更为简洁,然而备份能力较弱,仅具备短暂控制能力以等待飞控***恢复。第二种备份方案具备持续安全飞行和着陆的能力,然而采用了复杂的余度配置和故障重构逻辑。
因此,本领域需要一种改进的电传飞行备份控制***和方法。
发明内容
本发明提出了一种新的电传飞控备份控制***,采用独立于主控通道的备份***架构,保证备份控制***的安全性。正常情况下,备份控制***不干扰主控***工作,当备份对象(例如主控计算机)共模故障时,备份控制***能快速接管飞机控制,提供飞机持续安全飞行及尽快备降着陆的能力。
在本发明的一个实施例中,提供了一种电传飞行备份控制***,其包括:备份传感器模块;备份控制计算机,所述备份控制计算机耦合至所述备份传感器模块,并且所述备份控制计算机接收主控通道的状态信号,其中所述主控通道基于来自主控传感器模块的传感器信号生成控制命令以控制主控伺服作动模块;以及与所述备份控制计算机相关联的备份伺服作动模块,其中当所述备份控制计算机接收到的主控通道的状态信号指示主控通道失效时,所述备份控制计算机向所述备份传感器模块和所述备份伺服作动模块供电,并基于从所述备份传感器模块接收到的传感器信号生成控制命令以控制所述备份伺服作动模块。
在一方面,在所述主控通道有效时,所述主控通道基于来自所述主控传感器模块的传感器信号生成控制命令以控制所述备份伺服作动模块。
在一方面,所述备份传感器模块包括驾驶舱操纵传感器和飞机传感器,其中所述驾驶舱操纵传感器用于检测驾驶舱的操作并提供操作输入,所述飞机传感器用于感测飞机状态和运动并提供反馈信息。
在一方面,所述备份伺服作动模块包括远程控制电子设备和相应的舵面作动器,所述远程控制电子设备接收来自所述主控通道和/或所述备份控制计算机的控制命令,并基于所接收到的控制命令使得所述舵面作动器驱动相应的舵面发生运动。
在一方面,所述远程控制电子设备包括:主控通道指令接口,用于接收来自所述主控通道的控制命令;以及备份通道指令接口,用于接收来自所述备份控制计算机的控制命令,其中当所述远程控制电子设备接收到来自所述主控通道的控制命令和所述备份控制计算机的控制命令时,所述远程控制电子设备基于来自所述主控通道的控制命令来使得所述舵面作动器驱动相应的舵面发生运动。
在一方面,所述远程控制电子设备包括:主控通道供电模块,用于接收来自所述主控通道的供电;以及备份通道供电模块,用于接收来自所述备份控制计算机的供电。
在一方面,所述备份控制计算机包括:指令支路,其基于从所述备份传感器模块接收到的传感器信号生成第一控制命令;以及监控支路,其基于从所述备份传感器模块接收到的传感器信号生成第二控制命令并比较所述第一控制命令与所述第二控制命令,其中在所述第一控制命令与所述第二控制命令相差在阈值范围内时,所述指令支路将所述第一控制命令发送至所述备份伺服作动模块。
在一方面,所述备份控制计算机包括:电源模块;以及状态控制模块,其接收所述主控通道的状态信号,其中当所述主控通道的状态信号指示主控通道失效时,所述状态控制模块使所述电源模块向所述备份传感器模块和所述备份伺服作动模块供电;以及其中当所述主控通道的状态信号指示主控通道有效时,所述状态控制模块使所述电源模块不向所述备份传感器模块和所述备份伺服作动模块供电。
在本发明的一个实施例中,提供了一种飞行控制***,其包括:主控通道,所述主控通道包括主控传感器模块、主控计算机和主控伺服作动模块,其中所述主控计算机基于来自所述主控传感器模块的传感器信号生成控制命令以控制主控伺服作动模块;以及如上任一项所述的电传飞行备份控制***。
在本发明的一个实施例中,提供了一种电传飞行备份控制方法,其包括:在备份控制计算机处接收主控通道的状态信号,其中所述主控通道基于来自主控传感器模块的传感器信号生成控制命令以控制主控伺服作动模块;当所述主控通道的状态信号指示主控通道失效时,从所述备份控制计算机向备份传感器模块和备份伺服作动模块供电;以及基于从所述备份传感器模块接收到的传感器信号生成控制命令以控制所述备份伺服作动模块。
在一方面,在所述主控通道有效时,所述主控通道基于来自所述主控传感器模块的传感器信号生成控制命令以控制所述备份伺服作动模块。
在一方面,从所述备份传感器模块接收到的传感器信号包括从驾驶舱操纵 传感器接收到的驾驶舱操作输入以及从飞机传感器接收到的飞机状态和运动反馈信息。
在一方面,所述电传飞行备份控制方法还包括:所述备份伺服作动模块经由主控通道指令接口接收来自所述主控通道的控制命令;以及所述备份伺服作动模块经由备份通道指令接口接收来自所述备份控制计算机的控制命令,其中当所述备份伺服作动模块接收到来自所述主控通道的控制命令和所述备份控制计算机的控制命令时,所述备份伺服作动模块基于来自所述主控通道的控制命令来驱动相应的舵面发生运动。
在一方面,所述电传飞行备份控制方法还包括:当所述主控通道的状态信号指示主控通道有效时,所述备份控制计算机不向所述备份传感器模块和所述备份伺服作动模块供电。
本发明的备份控制***可完全独立于主控***,配备了独立的备份控制传感器模块、备份控制计算机以及双输入/输出接口EREU。在主控通道失效且备份通道启动时,仍然满足飞机最小可接受控制要求,能够保证飞机安全飞行和着陆。
附图说明
图1是根据本发明一个实施例的飞行控制***架构的示意图。
图2是根据本发明一个实施例的飞行控制***舵面配置示意图。
图3是根据本发明一个实施例的BCM供电逻辑示意图。
图4是根据本发明一个实施例的EREU工作示意图。
图5是根据本发明一个实施例的电传飞行备份控制方法的流程图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
本发明提供了一种独立于主控通道的备份控制***(BCS),有效提高了 飞控***的安全裕度。
图1是根据本发明一个实施例的飞行控制***架构100的示意图。飞行控制***架构100可包括主控通道101和备份通道102。主控通道101可包括主控传感器模块112(例如驾驶舱操纵传感器和飞机传感器)、主控计算机113和相应的各种主控伺服作动模块114。主控计算机113可基于来自主控传感器模块112的传感器信号生成控制命令以控制主控伺服作动模块114。每个伺服作动模块114可包括远程控制电子设备(REU)和相应的舵面作动器(EHSV),REU可接收来自主控通道101(例如,主控计算机113)的控制命令,并基于接收到的控制命令使得作动器驱动相应的舵面发生运动。主控计算机113和备份控制计算机130均可与其他***150通信,例如与机载航电***、卫星***等通信。
备份通道102可包括备份传感器模块120、备份控制计算机130(BCM)和相应的各种备份伺服作动模块140。备份传感器模块120可包括驾驶舱操纵传感器和飞机传感器,其中驾驶舱操纵传感器用于检测驾驶舱的操作并提供操作输入,飞机传感器用于感测飞机状态和运动并提供反馈信息。备份传感器模块120可以是与主控传感器模块112不同或分离的传感器模块。备份控制计算机130可基于来自备份传感器模块120的传感器信号生成控制命令。
在本发明的一个实施例中,备份伺服作动模块140可分别连接至主控计算机113和备份控制计算机130。例如,备份伺服作动模块140可包括增强型远程控制电子设备(EREU)142和相应的舵面作动器(EHSV)144。EREU 142(也可简称为远程控制电子设备REU)可接收来自主控通道101(例如,主控计算机113)的控制命令和/或备份控制计算机130的控制命令,并基于接收到的控制命令使得作动器144驱动相应的舵面发生运动。在一个实施例中,备份伺服作动模块140可单独驱动相关联的舵面,或者可与主控伺服作动模块114协同地驱动同一个舵面。
根据本发明的一个实施例,备份通道102(或称为备份控制***)的传感器模块120独立于主控通道,包含驾驶舱操纵传感器以及飞机传感器(例如缝翼位置传感器等)。即,备份通道使用单独的传感器,使得备份控制计算机130 能够接收独立的传感器信号,而不受主控通道101的影响。虽然图1中示出了单个备份传感器模块120,但是应理解,备份传感器模块120中的各个传感器可分布在飞机上的合适位置。
备份传感器模块120中的驾驶舱操纵传感器采集飞行员操纵动作,将飞行员的机械操纵动作转化为电信号(操纵指令)发送给备份控制计算机(BCM)130。另外,备份传感器模块120中的飞机传感器采集飞机信息发送给BCM 130。BCM 130可以使用驾驶舱操纵传感器提供的操纵指令和飞机传感器提供的飞机信息进行控制律计算,从而生成控制命令,该控制命令可被提供给备份伺服作动模块140以控制相应的舵面操作。备份传感器模块120的传感器余度配置需满足备份控制***可用性要求。由于备份控制***仅作为主控***的有益补充,不贡献于飞控***可用性的满足,因此,传感器模块120可采用单余度配置也可采用多余度配置。
BCM 130是备份控制***的控制核心,其可实现供电控制、控制律计算、IO控制、架构监控(例如监控电源、时钟等)、传感器解调等功能。BCM 130可采用计算机、处理器、集成电路、可编程逻辑器件、微处理器、控制器、微控制器、或状态机等来实现。在一个实施例中,BCM 130可采用非相似的指令-监控支路架构设计,其中指令支路(COM)基于所接收的操纵指令和飞机信息来生成控制命令,监控支路(MON)采用与指令支路不相似的硬件和/或软件结构并且也基于所接收的操纵指令和飞机信息来生成控制命令,监控支路比较COM支路和MON支路计算出的控制命令,保证BCM输出指令的完整性。例如,在COM支路和MON支路计算出的控制命令不一致(例如,相差超过阈值)时,监控支路可以提供报错信息。相反,如果COM支路和MON支路计算出的控制命令一致(例如,相差在阈值范围内),则表示该控制命令是正确的,并且指令支路(COM)生成的控制命令可被提供给备份伺服作动模块140以控制相应的舵面操作。
根据本发明的一个实施例,BCM 130可配置独立的电源模块,该电源模块由机上用电设备或者电源调节模块(PCM)供电。BCM 130可使用该电源模块向备份控制***的其他直流用电设备供电,例如向备份传感器模块120、 备份伺服作动模块140等设备供电。
当主控通道101正常工作时,主控计算机113可基于来自主控传感器模块112的传感器信号生成控制命令以控制主控伺服作动模块114,主控计算机113还可选地基于来自主控传感器模块112的传感器信号生成控制命令以控制备份伺服作动模块140。
BCM 130可接收主控通道101的状态信号,当主控通道101正常工作时,BCM 130处于冷备份状态,不对备份控制***的其他用电设备供电,也不向伺服作动模块140提供控制命令。例如,在冷备份状态中,BCM 130中与飞行控制相关联的模块(例如,硬件和/或软件模块)可选择性地处于休眠或断电状态。作为示例而非限定,与传感器信号相关联的接口模块和处理模块、控制律模块等可处于不工作状态。BCM 130还可选择性地对其他组件进行断电。
而当主控通道101失效导致飞机低于最小可接受控制(MAC)时,BCM 130可触发对受主控通道101影响而下电的备份伺服作动模块140重新供电,对传感器模块120以及伺服作动模块相关舵面位置传感器进行激励。
当主控通道101失效导致飞机低于MAC且伺服作动模块140能够正常工作时,BCM 130接替故障的主控通道101对相关的备份伺服作动模块140发送控制命令,并且可接收备份伺服作动模块140反馈的指令和状态数据,以监控备份伺服作动模块140的工作状态。在本发明的一个实施例中,BCM 130与备份伺服作动模块140之间的数据传输独立于主控通道101,并且可选地采用与主控通道101非相似的数据总线。
在另一实施例中,为进一步提高备份控制***的稳定性,可在备份控制中引入机体速率阻尼进行增益调节,例如将备份模式速率传感器(BMRS)集成到BCM 130中,采用数据总线将BMRS采集的飞机姿态信号引入控制律计算,简化了备份控制***的接口,并且可减少BMRS的安装空间。
由于备份控制***采用独立于主控通道101的备份***架构(包括独立的传感器模块120和备份控制计算机130及供电),当备份对象发生共模故障使得主控通道101失效时,备份***架构可以快速接管飞机控制并进行独立的飞行控制,从而提供飞机持续安全飞行及尽快备降着陆的能力。在一个示例中, 备份***架构与主控通道相比可采用非相似设计(例如,非相似的硬件或软件或其组合),从而使得主控通道中的故障不会发生在备份***架构中。
图2是根据本发明一个实施例的飞行控制***舵面配置示意图。该飞行控制***可包括主控***(或称为主控通道,用P表示)和独立的备份控制***(或称为备份通道,用B表示)。与主控通道相关联的REU作为飞行控制***的重要组成部分,控制与其相关联的作动器驱动舵面运动,实现对飞机姿态的控制。例如,在主控通道中,扰流板作动器L1-L5和R1-R5、外侧副翼作动器Ail OB、外侧升降舵作动器Ele OB、方向舵作动器Rud UPPER和Rud LOWER可分别由主控通道中的REU(未示出)控制。
在一个实施例中,在备份通道中,左、右内侧副翼作动器Ail IB,左、右内侧升降舵作动器Ele IB以及中间方向舵作动器Rud MID可分别由相应的增强远程控制电子设备(EREU)控制。EREU可接收主控通道的控制指令(用P表示)以及备份通道的控制指令(用B表示)。备份通道的舵面配置需满足最小可接受控制(MAC)的控制要求,当备份对象发生共模故障使得主控通道失效时,备份通道可以进行独立的飞行控制,从而提供飞机持续安全飞行及尽快备降着陆的能力。在一个实施例中,EREU与REU相比可采用非相似设计。
图2仅示出了一种典型的舵面配置,主控通道的数量以及备份通道的舵面配置可根据飞机的架构进行调整。
图3是根据本发明一个实施例的BCM供电逻辑示意图。图3所示的模块可以是图1中的飞行控制***架构100的备份通道102的一个示例。
BCM(例如,图1中的BCM 130)可配置独立的电源模块310,其可由机上电源或者电源调节模块(PCM)供电。由此,备份控制***通过电源调节模块(PCM)调节机上电源或者直接由机上电源为BCM供电,该供电可受开关S4控制(例如,人工控制或自动控制)。
BCM还可包括BCM状态控制模块320,其可以接收主控通道的状态并且可以将BCM的状态发送给其他***,例如主控***、航电***等。此外,BCM 状态控制模块320可以根据主控通道的状态和/或接收到的命令来控制电源模块310向伺服作动模块(例如,EREU电源模块330)、与BCM相关联的传感器340、BCM的其他模块350等供电。
例如,当主控通道正常工作并且BCM处于冷备份状态时,BCM电源模块310处于加电状态并且向BCM状态控制模块320供电,但不向EREU电源模块330、传感器340、BCM的其他模块350等供电。BCM状态控制模块320可以接收主控通道的状态、接收操作命令,以及可以将BCM的状态发送给其他***。
当BCM状态控制模块320接收到主控通道的状态信号,判断主控通道失效导致飞机低于MAC时,BCM电源模块310受BCM状态控制模块320发出的控制信号控制,从而向EREU电源模块330、传感器340、BCM的其他模块350等供电。
图4是根据本发明一个实施例的远程控制电子设备(EREU)400的示意图。EREU 400可以是图1中的EREU 142的一个示例。EREU 400可包括作动器驱动与控制模块410以驱动或控制对应的舵面作动器EHSV,作动器驱动与控制模块410还可接收舵面位置传感器LVDT的反馈信号。舵面作动器以及对应EREU的数量和配置需满足MAC要求。
在一个实施例中,EREU 400具有双输入/输出(IO)接口,即主控通道指令接口402和备份通道指令接口404,分别接收主控***的控制指令以及备份***的控制指令。主控指令可具有控制优先权,当主控指令与备份指令同时到达EREU时,EREU将执行主控指令并抑制备份指令。例如,EREU主控通道指令接口402将通过信号使能抑制或跳线抑制EREU备份通道指令接口404,保证EREU接收到主控指令时,执行主控指令。
主控通道正常的情况下,主控通道指令接口402接收主控***的控制指令,使得作动器驱动与控制模块410基于主控***的控制指令来驱动或控制对应的舵面作动器EHSV,并且EREU的主控通道指令接口402向主控通道反馈伺服作动器模块的指令和状态数据。备份通道启动后,备份通道指令接口404 接收备份通道BCM的控制指令,并且EREU的备份通道指令接口404向BCM反馈伺服作动模块的指令和状态数据,以便BCM掌握伺服作动模块的状态。
EREU 400的电源模块420可由两路电源(例如,主控通道、BCM)供电,采用防反灌设计,可由主控通道和BCM同时供电或者由其中一者供电,不影响正常工作。
图5是根据本发明一个实施例的电传飞行备份控制方法500的流程图。
该方法500开始后,在步骤501,由主控通道控制备份伺服作动模块的EREU。
在步骤502,备份控制计算机(BCM)接收主控通道的状态信号。备份控制计算机提供数据接口,以实现与备份控制***内部设备以及外部***(例如航电***、机载维护***等)的数据交互。在一个实施例中,备份控制***可采用与主控通道非相似的数据总线。
在步骤503,如果主控通道的状态信号指示主控通道失效导致飞机低于MAC,则在步骤504,启动备份通道,并且可在短时间内完成备份通道的必要自检。在一个实施例中,备份控制计算机采用指令-监控架构设计,除必要的时钟同步与电源监控外,还可对两支路计算的舵面指令进行比较监控,当比较监控触发报错时,关断相应的指令支路输出接口,保证舵面控制指令的完整性。
在步骤505,由备份通道控制备份伺服作动模块的EREU。
可选地,当主控通道恢复正常时,该方法可返回到步骤501,从备份通道切换成由主控通道控制EREU。此后,备份通道可返回冷备份状态。
本发明的备份控制***可完全独立于主控***,配备了独立的备份控制传感器模块、备份控制计算机以及双输入/输出接口EREU。在主控通道失效且备份通道启动时,仍然满足飞机最小可接受控制要求,能够保证飞机安全飞行和着陆。
相比于已有的电传飞控备份控制***,本发明可实现以下优点中的一个或多个优点:
a)提出了一种独立于主控通道的备份***架构,其与主控***相比可采用非相似设计,保证备份控制***的安全性;
b)提出了一种集成了BMRS的BCM,简化了备份控制***的接口;
c)提出了一种满足高安全性要求的EREU备份指令抑制方法;
d)提出了一种新的BCS电源配置方案。
以上描述的方法和装置的各个步骤和模块可以用硬件、软件、或其组合来实现。如果在硬件中实现,结合本公开描述的各种说明性步骤、模块、以及电路可用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑组件、硬件组件、或其任何组合来实现或执行。通用处理器可以是处理器、微处理器、控制器、微控制器、或状态机等。如果在软件中实现,则结合本公开描述的各种说明性步骤、模块可以作为一条或多条指令或代码存储在计算机可读介质上或进行传送。实现本公开的各种操作的软件模块可驻留在存储介质中,如RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、可移动盘、CD-ROM、云存储等。存储介质可耦合到处理器以使得该处理器能从/向该存储介质读写信息,并执行相应的程序模块以实现本公开的各个步骤。而且,基于软件的实施例可以通过适当的通信手段被上载、下载或远程地访问。这种适当的通信手段包括例如互联网、万维网、内联网、软件应用、电缆(包括光纤电缆)、磁通信、电磁通信(包括RF、微波和红外通信)、电子通信或者其他这样的通信手段。
在各实施例中给出的数值仅作为示例,而不作为对本发明范围的限制。此外,作为一个整体技术方案,还存在其他没有被本发明权利要求或说明书所列举的元器件或者步骤。而且,一个元器件的单个名称不排除该元器件的其他名称。
还应注意,这些实施例可能是作为被描绘为流程图、流图、结构图、或框图的过程来描述的。尽管流程图可能会把诸操作描述为顺序过程,但是这些操作中有许多操作能够并行或并发地执行。另外,这些操作的次序可被重新安排。
所公开的方法、装置和***不应以任何方式被限制。相反,本公开涵盖各 种所公开的实施例(单独和彼此的各种组合和子组合)的所有新颖和非显而易见的特征和方面。所公开的方法、装置和***不限于任何具体方面或特征或它们的组合,所公开的任何实施例也不要求存在任一个或多个具体优点或者解决特定或所有技术问题。
本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。

Claims (14)

  1. 一种电传飞行备份控制***,其特征在于,包括:
    备份传感器模块;
    备份控制计算机,所述备份控制计算机耦合至所述备份传感器模块,并且所述备份控制计算机接收主控通道的状态信号,其中所述主控通道基于来自主控传感器模块的传感器信号生成控制命令以控制主控伺服作动模块;以及
    与所述备份控制计算机相关联的备份伺服作动模块,其中当所述备份控制计算机接收到的主控通道的状态信号指示主控通道失效时,所述备份控制计算机向所述备份传感器模块和所述备份伺服作动模块供电,并基于从所述备份传感器模块接收到的传感器信号生成控制命令以控制所述备份伺服作动模块。
  2. 如权利要求1所述的电传飞行备份控制***,其特征在于,
    在所述主控通道有效时,所述主控通道基于来自所述主控传感器模块的传感器信号生成控制命令以控制所述备份伺服作动模块。
  3. 如权利要求1所述的电传飞行备份控制***,其特征在于,
    所述备份传感器模块包括驾驶舱操纵传感器和飞机传感器,其中所述驾驶舱操纵传感器用于检测驾驶舱的操作并提供操作输入,所述飞机传感器用于感测飞机状态和运动并提供反馈信息。
  4. 如权利要求1所述的电传飞行备份控制***,其特征在于,
    所述备份伺服作动模块包括远程控制电子设备和相应的舵面作动器,所述远程控制电子设备接收来自所述主控通道和/或所述备份控制计算机的控制命令,并基于所接收到的控制命令使得所述舵面作动器驱动相应的舵面发生运动。
  5. 如权利要求4所述的电传飞行备份控制***,其特征在于,所述远 程控制电子设备包括:
    主控通道指令接口,用于接收来自所述主控通道的控制命令;以及
    备份通道指令接口,用于接收来自所述备份控制计算机的控制命令,
    其中当所述远程控制电子设备接收到来自所述主控通道的控制命令和所述备份控制计算机的控制命令时,所述远程控制电子设备基于来自所述主控通道的控制命令来使得所述舵面作动器驱动相应的舵面发生运动。
  6. 如权利要求4所述的电传飞行备份控制***,其特征在于,所述远程控制电子设备包括:
    主控通道供电模块,用于接收来自所述主控通道的供电;以及
    备份通道供电模块,用于接收来自所述备份控制计算机的供电。
  7. 如权利要求1所述的电传飞行备份控制***,其特征在于,所述备份控制计算机包括:
    指令支路,其基于从所述备份传感器模块接收到的传感器信号生成第一控制命令;以及
    监控支路,其基于从所述备份传感器模块接收到的传感器信号生成第二控制命令并比较所述第一控制命令与所述第二控制命令,
    其中在所述第一控制命令与所述第二控制命令相差在阈值范围内时,所述指令支路将所述第一控制命令发送至所述备份伺服作动模块。
  8. 如权利要求1所述的电传飞行备份控制***,其特征在于,所述备份控制计算机包括:
    电源模块;以及
    状态控制模块,其接收所述主控通道的状态信号,
    其中当所述主控通道的状态信号指示主控通道失效时,所述状态控制模块使所述电源模块向所述备份传感器模块和所述备份伺服作动模块供电;以及
    其中当所述主控通道的状态信号指示主控通道有效时,所述状态控制模块 使所述电源模块不向所述备份传感器模块和所述备份伺服作动模块供电。
  9. 一种飞行控制***,其特征在于,包括:
    主控通道,所述主控通道包括主控传感器模块、主控计算机和主控伺服作动模块,其中所述主控计算机基于来自所述主控传感器模块的传感器信号生成控制命令以控制主控伺服作动模块;以及
    如权利要求1-8中任一项所述的电传飞行备份控制***。
  10. 一种电传飞行备份控制方法,其特征在于,包括:
    在备份控制计算机处接收主控通道的状态信号,其中所述主控通道基于来自主控传感器模块的传感器信号生成控制命令以控制主控伺服作动模块;
    当所述主控通道的状态信号指示主控通道失效时,从所述备份控制计算机向备份传感器模块和备份伺服作动模块供电;以及
    基于从所述备份传感器模块接收到的传感器信号生成控制命令以控制所述备份伺服作动模块。
  11. 如权利要求10所述的电传飞行备份控制方法,其特征在于,
    在所述主控通道有效时,所述主控通道基于来自所述主控传感器模块的传感器信号生成控制命令以控制所述备份伺服作动模块。
  12. 如权利要求10所述的电传飞行备份控制方法,其特征在于,
    从所述备份传感器模块接收到的传感器信号包括从驾驶舱操纵传感器接收到的驾驶舱操作输入以及从飞机传感器接收到的飞机状态和运动反馈信息。
  13. 如权利要求10所述的电传飞行备份控制方法,其特征在于,还包括:
    所述备份伺服作动模块经由主控通道指令接口接收来自所述主控通道的控制命令;以及
    所述备份伺服作动模块经由备份通道指令接口接收来自所述备份控制计 算机的控制命令,
    其中当所述备份伺服作动模块接收到来自所述主控通道的控制命令和所述备份控制计算机的控制命令时,所述备份伺服作动模块基于来自所述主控通道的控制命令来驱动相应的舵面发生运动。
  14. 如权利要求10所述的电传飞行备份控制方法,其特征在于,还包括:
    当所述主控通道的状态信号指示主控通道有效时,所述备份控制计算机不向所述备份传感器模块和所述备份伺服作动模块供电。
PCT/CN2021/141882 2021-09-07 2021-12-28 一种电传飞行备份控制***和方法 WO2023035497A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111040981.9A CN113534656B (zh) 2021-09-07 2021-09-07 一种电传飞行备份控制***和方法
CN202111040981.9 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023035497A1 true WO2023035497A1 (zh) 2023-03-16

Family

ID=78123036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141882 WO2023035497A1 (zh) 2021-09-07 2021-12-28 一种电传飞行备份控制***和方法

Country Status (2)

Country Link
CN (1) CN113534656B (zh)
WO (1) WO2023035497A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116243594A (zh) * 2023-05-11 2023-06-09 广州汽车集团股份有限公司 一种飞行器控制***、飞行控制方法、存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534656B (zh) * 2021-09-07 2022-01-21 中国商用飞机有限责任公司 一种电传飞行备份控制***和方法
CN114114894B (zh) * 2021-11-24 2024-05-14 中国商用飞机有限责任公司 一种电传飞行备份控制***和方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090216391A1 (en) * 2007-07-03 2009-08-27 Honeywell International Inc. Inertial signals for flight control backup mode
CN102331786A (zh) * 2011-07-18 2012-01-25 北京航空航天大学 一种姿轨控计算机双机冷备份***
CN104192300A (zh) * 2014-04-22 2014-12-10 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种飞行控制***及方法
CN204965053U (zh) * 2015-08-11 2016-01-13 中国航空工业集团公司西安飞机设计研究所 电传飞控***
CN105366036A (zh) * 2014-08-14 2016-03-02 湾流航空航天公司 用于在电传操纵飞行器***中进行操纵器控制的***
CN105523178A (zh) * 2014-09-28 2016-04-27 中国航空工业集团公司西安飞机设计研究所 一种飞机双余度防滑控制***
CN105550077A (zh) * 2015-12-10 2016-05-04 中国航空工业集团公司西安飞机设计研究所 一种备份控制***
CN106628123A (zh) * 2016-12-28 2017-05-10 中国航空工业集团公司西安飞机设计研究所 一种分布式飞机襟翼控制***
CN106774264A (zh) * 2016-12-28 2017-05-31 中国航空工业集团公司西安飞机设计研究所 一种电传飞行控制***在线检测设备及方法
CN109582033A (zh) * 2018-11-28 2019-04-05 中国航空工业集团公司西安飞行自动控制研究所 一种民机电传飞控计算机控制模式转换方法
CN111443593A (zh) * 2020-04-08 2020-07-24 中国人民解放军国防科技大学 一种网络化多余度的飞行器控制***
CN111585856A (zh) * 2019-02-19 2020-08-25 霍尼韦尔国际公司 电传操纵***及相关操作方法
CN112124568A (zh) * 2020-09-28 2020-12-25 中国商用飞机有限责任公司 一种电传飞行控制***以及控制方法
CN112498664A (zh) * 2020-11-18 2021-03-16 中国商用飞机有限责任公司 飞行控制***以及飞行控制方法
CN113311765A (zh) * 2021-06-01 2021-08-27 中国商用飞机有限责任公司 备份飞行控制***以及备份飞行控制方法
CN113534656A (zh) * 2021-09-07 2021-10-22 中国商用飞机有限责任公司 一种电传飞行备份控制***和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615119A (en) * 1995-06-07 1997-03-25 Aurora Flight Sciences Corporation Fault tolerant automatic control system utilizing analytic redundancy
DE102004020995C5 (de) * 2004-04-19 2016-12-08 Pilz Gmbh & Co. Kg Meldegerät für eine Sicherheitsschaltung
CN102865147B (zh) * 2011-07-06 2014-10-08 中国航空工业集团公司沈阳发动机设计研究所 一种采用双余度控制规律处理控制传感器信号故障的方法
CN102915038B (zh) * 2012-11-16 2014-10-22 北京航空航天大学 一种微小型无人直升机双余度自主飞行控制***
CN106933094B (zh) * 2017-03-01 2020-08-18 北京天恒长鹰科技股份有限公司 一种双余度机载飞控计算机
CN107608381A (zh) * 2017-09-30 2018-01-19 江西洪都航空工业集团有限责任公司 一种混合余度配置的电传飞控***控制架构
CN109991841B (zh) * 2019-03-27 2022-04-05 西安联飞智能装备研究院有限责任公司 飞行控制计算***及控制信号输出方法、装置和存储介质

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090216391A1 (en) * 2007-07-03 2009-08-27 Honeywell International Inc. Inertial signals for flight control backup mode
CN102331786A (zh) * 2011-07-18 2012-01-25 北京航空航天大学 一种姿轨控计算机双机冷备份***
CN104192300A (zh) * 2014-04-22 2014-12-10 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种飞行控制***及方法
CN105366036A (zh) * 2014-08-14 2016-03-02 湾流航空航天公司 用于在电传操纵飞行器***中进行操纵器控制的***
CN105523178A (zh) * 2014-09-28 2016-04-27 中国航空工业集团公司西安飞机设计研究所 一种飞机双余度防滑控制***
CN204965053U (zh) * 2015-08-11 2016-01-13 中国航空工业集团公司西安飞机设计研究所 电传飞控***
CN105550077A (zh) * 2015-12-10 2016-05-04 中国航空工业集团公司西安飞机设计研究所 一种备份控制***
CN106774264A (zh) * 2016-12-28 2017-05-31 中国航空工业集团公司西安飞机设计研究所 一种电传飞行控制***在线检测设备及方法
CN106628123A (zh) * 2016-12-28 2017-05-10 中国航空工业集团公司西安飞机设计研究所 一种分布式飞机襟翼控制***
CN109582033A (zh) * 2018-11-28 2019-04-05 中国航空工业集团公司西安飞行自动控制研究所 一种民机电传飞控计算机控制模式转换方法
CN111585856A (zh) * 2019-02-19 2020-08-25 霍尼韦尔国际公司 电传操纵***及相关操作方法
CN111443593A (zh) * 2020-04-08 2020-07-24 中国人民解放军国防科技大学 一种网络化多余度的飞行器控制***
CN112124568A (zh) * 2020-09-28 2020-12-25 中国商用飞机有限责任公司 一种电传飞行控制***以及控制方法
CN112498664A (zh) * 2020-11-18 2021-03-16 中国商用飞机有限责任公司 飞行控制***以及飞行控制方法
CN113311765A (zh) * 2021-06-01 2021-08-27 中国商用飞机有限责任公司 备份飞行控制***以及备份飞行控制方法
CN113534656A (zh) * 2021-09-07 2021-10-22 中国商用飞机有限责任公司 一种电传飞行备份控制***和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116243594A (zh) * 2023-05-11 2023-06-09 广州汽车集团股份有限公司 一种飞行器控制***、飞行控制方法、存储介质
CN116243594B (zh) * 2023-05-11 2023-08-04 广州汽车集团股份有限公司 一种飞行器控制***、飞行控制方法、存储介质

Also Published As

Publication number Publication date
CN113534656A (zh) 2021-10-22
CN113534656B (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2023035497A1 (zh) 一种电传飞行备份控制***和方法
US9540096B2 (en) Fly-by-wire flight control system and method
US7421320B2 (en) Methods and apparatus for implementing mid-value selection functions for dual dissimlar processing modules
JP6837146B2 (ja) 分散型飛行制御システム
CN102458983B (zh) 用于飞行器的增升***、飞行器***以及具有增升***的螺旋桨飞行器
CN112498664B (zh) 飞行控制***以及飞行控制方法
CN113311765B (zh) 备份飞行控制***以及备份飞行控制方法
CN112124568B (zh) 一种电传飞行控制***以及控制方法
US6446911B1 (en) Method for controlling actuators on a vehicle
US11247768B2 (en) Flight control system for an aircraft
RU2769359C2 (ru) Система управления полетом (варианты) и способ её использования
CN113534655A (zh) 一种电传飞行备份控制***及其启动方法
RU2485568C2 (ru) Модульная электронная система управления полетом
CN113504720A (zh) 一种基于分布式电传飞控架构的备份控制***及工作方法
CN115556924A (zh) 飞行控制***和作动器控制电子装置及方法
CN114114894B (zh) 一种电传飞行备份控制***和方法
CN116767484A (zh) 电传飞行控制***和方法
Lin et al. Multi-axis serially redundant, single channel, multi-path FBW flight control system
CN115951573A (zh) 一种飞控作动***的远程电子单元及其控制方法
CN117550066A (zh) 电传飞控***和方法
EP4306431A1 (en) An electronic unit for a tactile cueing apparatus
EP3527495B1 (en) Drag control configuration for a powered aircraft
Eşer et al. Redundancy in Automatic Flight Control System Design for A General Purpose Helicopter
CN117585150A (zh) 一种电传飞控***舵面保护方法和装置
WO2024013482A1 (en) An electronic unit for a tactile cueing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE