WO2023033416A1 - Hydrogen production device - Google Patents

Hydrogen production device Download PDF

Info

Publication number
WO2023033416A1
WO2023033416A1 PCT/KR2022/012347 KR2022012347W WO2023033416A1 WO 2023033416 A1 WO2023033416 A1 WO 2023033416A1 KR 2022012347 W KR2022012347 W KR 2022012347W WO 2023033416 A1 WO2023033416 A1 WO 2023033416A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
reaction
unit
reaction space
hydrocarbon gas
Prior art date
Application number
PCT/KR2022/012347
Other languages
French (fr)
Korean (ko)
Inventor
노용규
서배승
Original Assignee
주식회사 제로시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제로시스 filed Critical 주식회사 제로시스
Publication of WO2023033416A1 publication Critical patent/WO2023033416A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen production device, and more particularly, to a hydrogen production device capable of improving the performance of a thermal catalytic reaction and effectively recovering hydrogen and carbon while simplifying processes and devices and reducing maintenance costs. will be.
  • Hydrogen is widely used as a raw material for chemical products and as a process gas for chemical processes. Recently, hydrogen fuel cell vehicles, fuel cells for buildings, and power to gas have begun to be widely used for heating and electricity production. . In addition, it is evaluated as an alternative to solve the recent environmental problems and the problem of price increase or depletion of fossil fuels. It's going on.
  • Hydrogen is preferably produced from a renewable energy source in terms of basically not generating carbon dioxide. However, at present, it is economical to manufacture from coal or natural gas and contributes to the purification of fossil fuels because it removes a large part of carbon dioxide.
  • the problem of the present invention for solving the above problems is to improve the performance of the pyrolysis reaction and effectively recover hydrogen and carbon while reducing the simplification and maintenance cost of the pyrolysis reaction process and apparatus that does not use air or oxygen. It is to provide a hydrogen production device.
  • an object of the present invention is to provide a hydrogen production device capable of effectively cooling and separating high-temperature fine carbon generated during a pyrolysis reaction.
  • a reaction unit for generating reaction products including hydrogen gas and carbon particles by thermal decomposition of hydrocarbon gas introduced into the reaction space a gas supply unit for supplying hydrocarbon gas into the reaction space; a carbon recovery unit disposed downstream of the gas supply unit, recovering carbon particles generated in the reaction space, and discharging them together with the hydrocarbon gas transported from the gas supply unit; and connected to the front end of the reaction unit downstream of the carbon recovery unit, to separate carbon particles from hydrocarbon gas containing carbon particles transported from the carbon recovery unit, and to supply the hydrocarbon gas from which the carbon particles are separated to the reaction space.
  • It is characterized in that it comprises a; carbon separation unit to.
  • the carbon recovery unit changes the transfer pressure of the hydrocarbon gas supplied from the gas supply unit so that the carbon particles present in the reaction space are sucked, so that the internal pressure is lower than the internal pressure of the reaction space. It may include a flow control unit that forms a pressure.
  • the carbon separation unit may include a cyclone chamber for separating carbon particles included in the hydrocarbon gas by inducing a cyclone flow of the hydrocarbon gas transferred from the carbon recovery unit.
  • the reaction unit is disposed to surround a reaction chamber forming the reaction space, a catalyst part filled in a part of the reaction space, and the reaction chamber, and the reaction space It may include a furnace unit having a heater for heating.
  • the catalyst unit may include a liquid metal catalyst that is filled to a certain height in a lower region of the reaction space and maintains a liquid state in a set temperature region.
  • reaction unit may further include a gas transfer pipe disposed extending to a lower region of the reaction space to supply the hydrocarbon gas transported from the carbon separation unit to the catalyst unit.
  • the catalyst unit may include a solid catalyst filled to a certain height in the middle region of the reaction space.
  • reaction unit may further include an inlet for guiding the exhaust from the carbon separation unit to the inside of the reaction space, and carbon among the exhausts flowing into the reaction space through the inlet is removed from the reaction space. can activate the catalytic reaction of
  • the recovery rate of carbon particles and hydrogen can be greatly increased through the step-by-step carbon recovery process through the carbon recovery unit and the carbon separation unit.
  • the suction power for recovering the carbon particles generated in the reaction unit is formed using the transfer pressure of the hydrocarbon gas supplied from the gas supply unit, the process and equipment can be simplified and the maintenance cost can be greatly reduced. .
  • the recovery rate of carbon particles and hydrogen can be further increased, and the thermal decomposition reaction performance can be greatly improved. can be raised
  • contamination between the carbon particles and the reaction catalyst can be minimized in the process of recovering the carbon particles generated in the reaction unit, and the carbon particles can be effectively recovered without loss of the reaction catalyst.
  • an additional purification process for the recovered carbon particles can be simplified, and a continuous reaction process can be performed without a catalyst regeneration process.
  • FIG. 1 is an exemplary view showing a hydrogen production device according to a first embodiment of the present invention.
  • FIG. 2 is an exemplary diagram for explaining the carbon recovery unit of FIG. 1 .
  • FIG. 3 is an exemplary view for explaining the carbon separator of FIG. 1 .
  • FIG 4 is an exemplary view showing a reaction unit of a hydrogen production device according to a second embodiment of the present invention.
  • FIG 5 is an exemplary diagram showing a reaction unit of a hydrogen production device according to a third embodiment of the present invention.
  • FIG. 1 is an exemplary view showing a hydrogen production device according to a first embodiment of the present invention.
  • the hydrogen production device may include a reaction unit 100, a gas supply unit 200, a carbon recovery unit 300, and a carbon separation unit 400.
  • the reaction unit 100 may generate reaction products including hydrogen gas and carbon particles by thermally decomposing hydrocarbon gas supplied from the outside.
  • hydrocarbon gas natural gas (NG), liquefied natural gas (LNG), and naphtha containing hydrocarbons may be used. Hydrogen and carbon may be separated from the hydrocarbon gas through a pyrolysis process in the reaction unit 100.
  • a catalytic pyrolysis reactor may be used as the reaction unit 100, and the reaction unit 100 according to the embodiment may include a reaction chamber 110, a catalyst unit 120, and a furnace unit 130.
  • the reaction chamber 110 may have a reaction space extending in a vertical direction therein.
  • the catalyst unit 120 may fill a portion of the reaction space, and may fill a lower region of the reaction space to a certain height.
  • the catalyst unit 120 may include a liquid metal catalyst 121 maintaining a liquid state in a set temperature range.
  • liquid metal catalyst 121 a metal having a relatively low melting point (eg, Bi, Sn, In, Ga, Pb) is melted with a metal having catalytic properties (eg, Pt, Ni, Fe, Co, Cu).
  • a metal having catalytic properties eg, Pt, Ni, Fe, Co, Cu.
  • the liquid metal catalyst 121 may maintain a liquid state while being melted as it is heated to a preset temperature by the furnace unit 130 .
  • the catalyst unit 120 may further include a porous carrier such as a porous ceramic membrane.
  • a porous carrier such as a porous ceramic membrane.
  • the size of the pores of the porous carrier may be such that it does not leak to the bottom when the metal catalyst in powder form is filled.
  • the liquid metal catalyst 121 can be melted into
  • the furnace unit 130 may have an insulator 131 disposed to surround the reaction chamber 110 and a heater 132 installed in the insulator 131 to heat the reaction space. Accordingly, the heater 132 receiving power from the power supply may heat the liquid metal catalyst 121 filled in the reaction space.
  • the heater 132 uses various types of heating, such as directly heating the liquid metal catalyst 121 through the reaction chamber 110 or induction heating the liquid metal catalyst 121 in the reaction chamber 110 by generating electromagnetic induction electromotive force. method can be used.
  • the reaction unit 100 may further include a gas delivery pipe 150 .
  • One end of the gas transfer pipe 150 is coupled to the upper end of the reaction unit 100 and connected to the hydrocarbon gas supply line S1, and the other end extends to the lower area of the reaction space and can be inserted into the catalyst unit 120. there is. Accordingly, the hydrocarbon gas transferred from the carbon separation unit 400 may be directly supplied to the lower region of the catalyst unit 120 through the gas transfer pipe 150 .
  • the hydrocarbon gas supplied to the lower region of the catalyst unit 120 in this way generates reaction products including hydrogen gas and carbon particles by a thermal decomposition reaction. As a result, it is accumulated on the upper surface of the catalyst unit 120.
  • Carbon particles accumulated on the upper surface of the catalyst unit 120 may be transferred to the carbon recovery unit 300 through the first carbon particle recovery line S2.
  • the hydrogen gas present in the upper region of the reaction space may be supplied to a post-treatment process or directly supplied to a place of use through the hydrogen gas recovery line S4.
  • carbon particles having a low density during the thermal decomposition reaction do not exist in the liquid metal catalyst 121, but accumulate on top of the liquid metal catalyst 121 due to buoyancy. (121) and adhesion between carbon particles can be minimized. Accordingly, it is possible to easily recover the carbon particles accumulated on the liquid metal catalyst 121, and to prevent a problem in which the reaction catalyst is lost together in the process of recovering the carbon particles. In addition, since the catalyst regeneration process is unnecessary or can be minimized, continuous operation of the process is possible.
  • the gas supply unit 200 may supply hydrocarbon gas to the reaction space of the reaction unit 100, and the hydrocarbon gas may be transferred at a set transfer pressure along the hydrocarbon gas supply line S1 by the gas supply unit 200.
  • the hydrocarbon gas supply line (S1) connected to the gas supply unit 200 may be connected to the upper end of the reaction unit 100, and the hydrocarbon gas supplied from the gas supply unit 200 is supplied to the carbon recovery unit 300 and It may be supplied to the upper region of the reaction space of the reaction unit 100 via the carbon separation unit 400 .
  • first carbon particle recovery line S2 connected to the carbon recovery unit 300 may be connected to an upper region of the catalyst unit 120 where carbon particles accumulate, and the carbon particles accumulated on the upper portion of the catalyst unit 120 Carbon can be discharged from the reaction space to the outside by the suction force of the recovery unit 300 .
  • a hydrogen gas recovery line (S4) may be connected to the upper end of the reaction unit 100, and the hydrogen gas moved to the upper region of the reaction space during the thermal decomposition reaction is transferred to the post-treatment process through the hydrogen gas recovery line (S4). It can be supplied or supplied directly to the point of use.
  • the reaction unit 100 may further include a filter (not shown).
  • a filter may be disposed in an upper region of the reaction space where carbon particles are accumulated.
  • the filter may be disposed upwardly apart from the upper surface of the catalyst unit 120 where carbon particles accumulate, and may be disposed adjacent to the hydrogen gas recovery line S4. Accordingly, the hydrogen gas present in the upper region of the reaction space can be discharged to the outside through the hydrogen gas recovery line (S4) after passing through the filter, and the carbon particles are transported together with the hydrogen gas through the hydrogen gas recovery line (S4). Emissions can be blocked.
  • FIG. 2 is an exemplary diagram for explaining the carbon recovery unit of FIG. 1 .
  • the carbon recovery unit 300 is disposed downstream of the gas supply unit 200 on the hydrocarbon gas supply line S1, and the carbon recovery unit 300 includes the first carbon particle recovery line S2. Through this, it can be connected to the reaction space of the reaction unit 100.
  • the carbon recovery unit 300 may recover carbon particles generated in the reaction space and discharge them to the carbon separation unit 400 together with the hydrocarbon gas transported from the gas supply unit 200 .
  • the carbon recovery unit 300 may include a flow control unit 310 that changes the transfer pressure of the hydrocarbon gas transported along the hydrocarbon gas supply line S1 to form an internal pressure lower than the internal pressure of the reaction space.
  • the carbon particles existing in the reaction space are transferred to the carbon recovery unit 300 through the carbon particle recovery line S2. ) can be inhaled.
  • the flow control unit 310 may have a pipe structure installed in the hydrocarbon gas supply line (S1).
  • a first gas inlet 311 into which hydrocarbon gas supplied from the gas supply unit 200 flows may be formed at one end of the flow control unit 310 .
  • the first gas inlet 311 may have a nozzle structure in which the cross-sectional area decreases with respect to the flow direction, and accordingly, the hydrocarbon gas may increase in speed while passing through the first gas inlet 311 of the nozzle structure.
  • a first gas outlet 312 for supplying hydrocarbon gas to the carbon separator 400 may be formed at the other end of the flow control unit 310 .
  • the flow control unit 310 may have a carbon inlet 313 connected to the first carbon particle recovery line S2 to introduce carbon particles existing in the reaction space of the reaction unit 100 into the inside.
  • the carbon inlet 313 has a branch pipe structure with respect to the flow direction of the flow control unit 310 . That is, the carbon inlet 313 may be disposed downstream of the first gas inlet 311 and may be formed in a direction crossing the flow direction passing through the first gas inlet 311 .
  • the flow control unit 310 includes a cross-section reducing portion 314, a cross-section maintaining portion 315, and a cross-sectional enlargement portion extending in the flow direction so as to connect the first gas inlet 311 and the first gas outlet 312. (316).
  • the cross-section reducing portion 314 may be formed such that its cross-sectional area gradually decreases with respect to the flow direction.
  • the cross-section maintaining portion 315 extends from the cross-section reducing portion 314 in the flow direction and can maintain a constant cross-sectional area.
  • the cross-section enlargement portion 316 extends from the cross-section maintaining portion 315 in the flow direction, and may have a cross-sectional area gradually enlarged in the flow direction.
  • the pressure energy is changed into kinetic energy, and the speed increases and the pressure decreases.
  • the speed may decrease and the pressure may increase while the kinetic energy is changed back to pressure energy.
  • the first gas inlet 311 and A negative pressure region 310a may be formed between the cross-sectional reduction portions 314 . That is, since a pressure lower than the internal pressure of the reaction space is generated in the negative pressure region 310a by the flow control unit 310, a suction force for sucking carbon particles present in the reaction space of the reaction unit 100 can be generated. .
  • hydrocarbon gas and carbon particles may be discharged together through the first gas outlet 312 after passing through the flow control unit 310, and then the hydrocarbon gas containing the carbon particles is sent to the carbon separator 400. can be supplied.
  • the carbon particles recovered in the carbon recovery unit 300 have relatively high temperature energy due to an endothermic reaction in the thermal decomposition process in the reaction unit 100. Accordingly, heat transfer between the hydrocarbon gas and the carbon particles may be achieved while the hydrocarbon gas and the carbon particles are discharged together while passing through the carbon recovery unit 300 . That is, the carbon particles can be pre-cooled by the hydrocarbon gas having a relatively low temperature energy supplied from the gas supply unit 200, and the carbon particles having a relatively high temperature energy discharged from the reaction unit 100 Hydrocarbon gas can be preheated.
  • the inlet temperature of the reaction unit 100 disposed downstream is increased, so that the reaction performance of the reaction unit 100 can be further improved.
  • a separate heat exchanger for preheating the hydrocarbon gas can be excluded, thereby improving the process and equipment. It can be simplified and the maintenance cost can be reduced.
  • FIG. 3 is an exemplary view for explaining the carbon separator of FIG. 1 .
  • the carbon separation unit 400 may be disposed downstream of the carbon recovery unit 300 on the hydrocarbon gas supply line S1 and may be connected to the front end of the reaction unit 100 .
  • the carbon particles are separated from the hydrocarbon gas containing the carbon particles transported from the carbon recovery unit 300, and the hydrocarbon gas from which the carbon particles are separated may be supplied to the reaction space of the reaction unit 100.
  • the carbon separation unit 400 may include a cyclone chamber 410 that separates carbon particles included in the hydrocarbon gas by inducing a cyclone flow of the hydrocarbon gas transferred from the carbon recovery unit 300 .
  • the cyclone chamber 410 may have a second gas inlet 411 through which hydrocarbon gas containing carbon particles supplied from the carbon recovery unit 300 flows, and the second gas inlet 411 is It may be disposed on one side eccentric from the center of the cyclone chamber 410.
  • the cyclone chamber 410 may have a second gas outlet 412 through which hydrocarbon gas is discharged at the upper end, and the hydrocarbon gas discharged through the second gas outlet 412 is directed to the reaction space of the reaction unit 100. can be supplied.
  • the cyclone chamber 410 may be formed with a carbon outlet 413 through which carbon particles are discharged at the lower end. Carbon particles discharged from the carbon outlet 413 may be recovered through the second carbon particle recovery line S3. The carbon particles recovered through the second carbon particle recovery line S3 may be transferred to a post-processing process such as filtering, and then used for various purposes.
  • the hydrocarbon gas introduced into the cyclone chamber 410 through the second gas inlet 411 may generate a cyclone flow that gradually descends while turning around the central axis of the inner space of the cyclone chamber 410 .
  • the relatively light hydrocarbon gas flows upward in the inner space of the cyclone chamber 410 and can be discharged through the second gas outlet 412, and the relatively heavy carbon particles of the cyclone chamber 410 It may flow downward in the inner space and be discharged through the carbon outlet 413.
  • FIG 4 is an exemplary view showing a reaction unit of a hydrogen production device according to a second embodiment of the present invention.
  • the reaction unit 100 may also use a catalytic pyrolysis reactor, and may include a reaction chamber 110, a catalyst unit 120, and a furnace unit 130.
  • the configuration of the reaction chamber 110 and the furnace unit 130 of the reaction unit 110 according to the present embodiment may be identical to those of the reaction chamber 110 and the furnace unit 130 according to the first embodiment. However, the configuration of the catalyst unit 120 according to the present embodiment is different from that of the catalyst unit 120 according to the first embodiment.
  • the catalyst unit 120 may further include a molten salt layer 122 filled with a certain height on top of the liquid metal catalyst 121 and maintaining a liquid state in a set temperature range.
  • the molten salt layer 122 may have a lower density than the liquid metal catalyst 121, a higher density than the carbon particles, and a physical property in which the carbon particles do not easily adhere. NaBr may be used as a molten salt for this purpose.
  • NaBr has high solubility, even if it is recovered together with carbon particles, the carbon particles can be easily purified through a simple purification process.
  • the carbon particles generated during the thermal decomposition reaction by the molten salt layer 122 which has a lower density than the liquid metal catalyst 121 and a higher density than the carbon particles, are completely separated from the liquid metal catalyst 121 and are located on top of the molten salt layer 122. can accumulate Accordingly, the influence of adhesion between the liquid metal catalyst 121 and the carbon particles, which may occur during the thermal decomposition reaction, can be further greatly reduced, and contamination of the liquid metal catalyst 121 by the carbon particles can be greatly reduced. In addition, since the catalyst regeneration process is unnecessary or minimized, continuous operation of the process is possible, and the recovery rate of carbon particles can be further increased without loss of the reaction catalyst in the process of recovering carbon particles.
  • the catalyst unit 120 may further include a bead layer maintaining a certain height between the liquid metal catalyst 121 and the molten salt layer 122.
  • the bead layer may have a lower density than the liquid metal catalyst 121 and a higher density than the molten salt layer 122. Accordingly, the bead layer may be disposed on the liquid metal catalyst 121 and the molten salt layer 122. there is. Ceramics such as zirconia may be used as the bead layer.
  • FIG 5 is an exemplary diagram showing a reaction unit of a hydrogen production device according to a third embodiment of the present invention.
  • the reaction unit 100 may also use a catalytic pyrolysis reactor, and may include a reaction chamber 110, a catalyst unit 120, and a furnace unit 130.
  • the configuration of the reaction chamber 110 and the furnace unit 130 of the reaction unit 100 according to the present embodiment is similar to the configuration of the reaction chamber 110 and the furnace unit 130 according to the first and second embodiments. It may be configured almost the same, and has a difference from the catalyst unit 120 according to the first and second embodiments described above in the configuration of the catalyst unit 120 according to the present embodiment.
  • the catalyst unit 120 may be filled in a portion of the reaction space, and may include a solid catalyst 123 filled to a certain height in the middle region of the reaction space.
  • the solid catalyst 123 includes a metal (eg, Pt, Fe, Ni, Co, Cu, Cu-Ni alloy), a metal catalyst and an oxide carrier (eg, Fe/Al2O3, Ni/Al2O3, Fe/MgO , Ni/SiO2), carbon and the like can be used.
  • a metal eg, Pt, Fe, Ni, Co, Cu, Cu-Ni alloy
  • a metal catalyst and an oxide carrier eg, Fe/Al2O3, Ni/Al2O3, Fe/MgO , Ni/SiO2
  • carbon and the like can be used.
  • the reaction unit 100 is an inlet unit for guiding the emission from the carbon separation unit 400 into the reaction space of the reaction unit 100. (151) may be further included.
  • the inlet 151 is coupled to the upper end of the reaction unit 100 and may be connected to the hydrocarbon gas supply line S1. Accordingly, the hydrocarbon gas transported from the carbon separation unit 400 passes through the inlet 151. It may be supplied to the upper region of the reaction space of the reaction unit 100, which is the upper region of the catalyst unit 120.
  • the solid catalyst 123 may have a porous structure, and the hydrocarbon gas supplied to the upper region of the reaction space may be separated into hydrogen gas and carbon particles by a thermal decomposition reaction while passing through the porous solid catalyst 123. .
  • the hydrogen gas and carbon particles thus generated may fall and accumulate on the bottom of the reaction space due to flow and gravity.
  • the carbon included in the exhaust from the carbon separation unit 400 may activate the thermal decomposition catalyst reaction while passing through the solid catalyst 123 in the reaction space.
  • the carbon particles accumulated in the lower region of the reaction space may be transported to the carbon recovery unit 300 through the second carbon particle recovery line S2, and the hydrogen gas present in the lower region of the reaction space may be transferred to the hydrogen gas recovery line S4. ), it can be supplied to the post-processing process or directly supplied to the place of use.
  • the reaction unit 100 may further include a filter (not shown).
  • the filter may be installed at the bottom of the reaction unit 100 where carbon particles are accumulated, and when the hydrogen gas is discharged to the hydrogen gas recovery line (S4), the carbon particles are transferred together with the hydrogen gas to the hydrogen gas recovery line (S4). Emissions can be blocked.
  • the hydrogen production device can greatly increase the recovery rate of carbon particles and hydrogen through the step-by-step carbon recovery process through the carbon recovery unit 300 and the carbon separation unit 400.
  • the hydrogen production device can form a suction force for recovering the carbon particles generated in the reaction unit 100 using the transfer pressure of the hydrocarbon gas transferred from the gas supply unit 200, the recovery process And the device can be simplified, and the maintenance cost can be greatly reduced.
  • the hydrogen production device promotes heat transfer between the hydrocarbon gas supplied to the reaction unit 100 through the carbon recovery unit 300 and the carbon separation unit 400 and the carbon particles recovered in the reaction unit 100. By doing so, the recovery rate of carbon particles and hydrogen can be further increased, and the reaction performance can be greatly improved.
  • the hydrogen production device can minimize contamination between the carbon particles and the reaction catalyst in the process of recovering the carbon particles generated in the reaction unit 100, and can greatly increase the recovery rate of carbon particles without loss of the reaction catalyst. there is.
  • an additional purification process for the recovered carbon particles can be simplified, and since a catalyst regeneration process is unnecessary and a continuous reaction process can be performed, the yield of hydrogen and carbon can be greatly increased.
  • the present invention can be industrially used in the technical field of a hydrogen production device capable of improving the performance of a pyrolysis reaction and effectively recovering hydrogen and carbon while simplifying and reducing maintenance costs of the pyrolysis reaction process and device.

Abstract

The purpose of the present invention is to provide a hydrogen production device that can simplify the process and equipment used for pyrolysis without air and oxygen, lower maintenance costs, and improve pyrolysis performance, and can effectively recover hydrogen and carbon. The present invention is characterized by comprising: a reaction unit for pyrolyzing hydrocarbon gas introduced into a reaction space and thereby producing reaction products including hydrogen gas and carbon particles; a gas supply unit for supplying hydrocarbon gas into the reaction space; a carbon recovery unit which is disposed downstream of the gas supply unit, and which recovers carbon particles generated in the reaction space and discharges the carbon particles together with the hydrocarbon gas transported from the gas supply unit; and a carbon separation unit which is disposed downstream of the carbon recovery unit, and which removes carbon particles from the carbon particle-containing hydrocarbon gas transported from the carbon recovery unit and supplies the reaction space with hydrocarbon gas removed of the carbon particles.

Description

수소 생산 장치hydrogen production device
본 발명은 수소 생산 장치에 관한 것으로, 상세하게는 공정 및 장치의 간소화와 유지 비용을 절감할 수 있으면서 열촉매 반응의 성능을 높일 수 있고, 수소 및 탄소를 효과적으로 회수할 수 있는 수소 생산 장치에 관한 것이다.The present invention relates to a hydrogen production device, and more particularly, to a hydrogen production device capable of improving the performance of a thermal catalytic reaction and effectively recovering hydrogen and carbon while simplifying processes and devices and reducing maintenance costs. will be.
수소는 화학제품의 원료 및 화학공정의 공정가스로 널리 사용되고 있으며, 최근에는 수소 연료전지차, 건물용 연료전지, 파워투가스(Power to Gas) 등의 활용으로 난방 및 전력 생산에도 널리 사용되기 시작하였다. 뿐만 아니라, 최근의 환경문제 및 화석연료의 가격상승이나 고갈의 문제점을 해결할 수 있는 대안으로 평가되고 있으며, 특히 지구온난화와 대기오염의 대비 차원에서 수소의 제조, 저장 및 이용에 관한 연구가 활발하게 진행되고 있다.Hydrogen is widely used as a raw material for chemical products and as a process gas for chemical processes. Recently, hydrogen fuel cell vehicles, fuel cells for buildings, and power to gas have begun to be widely used for heating and electricity production. . In addition, it is evaluated as an alternative to solve the recent environmental problems and the problem of price increase or depletion of fossil fuels. It's going on.
수소는 기본적으로 이산화탄소를 발생시키지 않는 측면에서는 재생 가능한 에너지원으로부터 제조되는 것이 바람직하다. 그러나, 현재로서는 석탄이나 천연가스로부터 제조되는 것이 경제적이며 이산화탄소를 상당 부분 제거하므로 화석연료의 청정화에도 기여하고 있다.Hydrogen is preferably produced from a renewable energy source in terms of basically not generating carbon dioxide. However, at present, it is economical to manufacture from coal or natural gas and contributes to the purification of fossil fuels because it removes a large part of carbon dioxide.
탄화수소로부터 수소를 생산하는 방법으로는, 수증기 개질법, 부분 산화법 등이 공지되어 있으나, 이러한 기존 방법들은 많은 양의 이산화탄소가 동시에 생성되기 때문에 지구온난화와 같은 환경 문제를 유발하는 문제점이 있다.As methods for producing hydrogen from hydrocarbons, steam reforming, partial oxidation, and the like are known, but these existing methods have a problem of causing environmental problems such as global warming because a large amount of carbon dioxide is simultaneously produced.
탄화수소로부터 수소를 생산하는 다른 방법으로는, 천연가스나 중질유 등을 고온 환경에서 열분해하여 탄소와 수소를 동시에 생산하여 이산화탄소 배출을 크게 줄일 수 있는 공정이 있다. 그러나, 이 방법은 1200도 이상의 매우 높은 반응온도가 요구되며, 생성되는 탄소의 침적으로 인하여 연속적인 공정이 수행될 수 없는 문제점이 있다.As another method for producing hydrogen from hydrocarbons, there is a process that can significantly reduce carbon dioxide emissions by simultaneously producing carbon and hydrogen by pyrolyzing natural gas or heavy oil in a high-temperature environment. However, this method requires a very high reaction temperature of 1200 degrees or more, and there is a problem in that a continuous process cannot be performed due to the deposition of carbon produced.
이를 위해 탄화수소의 열분해 시 요구되는 높은 반응온도를 낮추기 위한 방법으로 촉매 분해법이 있다. 그러나, 촉매 분해 반응에서 생성되는 탄소가 촉매의 활성을 저하시키기 때문에, 촉매를 재생하기 위하여 고온에서 공기나 수증기를 이용하여 촉매를 재생하는 공정이 추가로 요구되는 문제점이 있으며, 이러한 재생 과정에서 이산화탄소의 발생이 더욱 증대되는 문제점이 있다.To this end, there is a catalytic decomposition method as a method for lowering the high reaction temperature required for thermal decomposition of hydrocarbons. However, since the carbon generated in the catalyst decomposition reaction reduces the activity of the catalyst, there is a problem in that a process of regenerating the catalyst using air or steam at a high temperature is additionally required to regenerate the catalyst, and in this regeneration process, carbon dioxide There is a problem that the occurrence of is further increased.
또한, 촉매 열분해 과정에서 생성된 탄소입자가 서로 엉겨붙어 반응 촉매나 열교환기의 튜브 등에 달라붙어 스케일을 형성하여 반응 성능을 떨어뜨리는 문제가 있고, 탄소 회수 과정에서 탄소와 함께 반응 촉매가 함께 배출되어 유실되는 문제가 있다. 이에 따라, 촉매 재생을 위해 반응을 일시적으로 멈춰야 하므로 연속된 반응이 불가하여 수소 및 탄소의 수율을 떨어뜨리는 문제가 있다.In addition, there is a problem in that the carbon particles generated in the catalytic pyrolysis process are entangled with each other and stick to the reaction catalyst or the tube of the heat exchanger to form scale to reduce the reaction performance, and the reaction catalyst is discharged together with carbon in the carbon recovery process. There is a problem with being lost. Accordingly, since the reaction must be temporarily stopped to regenerate the catalyst, a continuous reaction is not possible, thereby reducing the yield of hydrogen and carbon.
따라서, 공정 및 장치를 간소화하면서 반응 성능을 높이고, 수소 및 탄소의 회수율을 높일 수 있는 새로운 구조의 장치가 요구된다.Therefore, there is a need for a device having a new structure capable of increasing reaction performance and increasing the recovery rate of hydrogen and carbon while simplifying processes and devices.
대한민국 등록특허공보 제1353719호(2014.02.11.공고)에는 산소와 탄화수소의 반응을 촉진시키는 촉매를 포함한 반응부를 가진 촉매 반응기가 개시되어 있다.Republic of Korea Patent Registration No. 1353719 (2014.02.11. notice) discloses a catalytic reactor having a reaction unit including a catalyst that promotes the reaction of oxygen and hydrocarbons.
상술한 문제점을 해결하기 위한 본 발명의 과제는 공기나 산소를 사용하지 않는 열분해 반응 공정 및 장치의 간소화와 유지 비용을 절감할 수 있으면서 열분해 반응의 성능을 높이고, 수소 및 탄소를 효과적으로 회수할 수 있는 수소 생산 장치를 제공함에 있다.The problem of the present invention for solving the above problems is to improve the performance of the pyrolysis reaction and effectively recover hydrogen and carbon while reducing the simplification and maintenance cost of the pyrolysis reaction process and apparatus that does not use air or oxygen. It is to provide a hydrogen production device.
또한, 본 발명의 과제는 열분해 반응 시 생성되는 고온의 미세 탄소를 효과적으로 냉각 및 분리할 수 있는 수소 생산 장치를 제공함에 있다.In addition, an object of the present invention is to provide a hydrogen production device capable of effectively cooling and separating high-temperature fine carbon generated during a pyrolysis reaction.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below. .
상술한 과제를 해결하기 위한 본 발명의 실시예에 따른 수소 생산 장치는, 반응공간으로 유입된 탄화수소가스를 열분해하여 수소가스 및 탄소입자를 포함한 반응생성물을 생성하는 반응부; 상기 반응공간으로 탄화수소가스를 공급하기 위한 가스공급부; 상기 가스공급부의 하류에 배치되며, 상기 반응공간에서 생성된 탄소입자를 회수하여 상기 가스공급부로부터 이송되는 탄화수소가스와 함께 배출하는 탄소회수부; 및 상기 탄소회수부의 하류에서 상기 반응부의 전단에 연결되며, 상기 탄소회수부로부터 이송되는 탄소입자가 포함된 탄화수소가스로부터 탄소입자를 분리하고, 탄소입자가 분리된 탄화수소가스가 상기 반응공간으로 공급되도록 하는 탄소분리부;를 포함하는 것을 특징으로 한다.Hydrogen production apparatus according to an embodiment of the present invention for solving the above problems, a reaction unit for generating reaction products including hydrogen gas and carbon particles by thermal decomposition of hydrocarbon gas introduced into the reaction space; a gas supply unit for supplying hydrocarbon gas into the reaction space; a carbon recovery unit disposed downstream of the gas supply unit, recovering carbon particles generated in the reaction space, and discharging them together with the hydrocarbon gas transported from the gas supply unit; and connected to the front end of the reaction unit downstream of the carbon recovery unit, to separate carbon particles from hydrocarbon gas containing carbon particles transported from the carbon recovery unit, and to supply the hydrocarbon gas from which the carbon particles are separated to the reaction space. It is characterized in that it comprises a; carbon separation unit to.
본 실시예에 따른 수소 생산 장치에 있어서, 상기 탄소회수부는, 상기 반응공간에 존재하는 탄소입자가 흡입되도록 상기 가스공급부로부터 공급되는 탄화수소가스의 이송압력을 변화시켜 상기 반응공간의 내부압력보다 낮은 내부압력을 형성하는 유동조절부를 포함할 수 있다.In the hydrogen production device according to the present embodiment, the carbon recovery unit changes the transfer pressure of the hydrocarbon gas supplied from the gas supply unit so that the carbon particles present in the reaction space are sucked, so that the internal pressure is lower than the internal pressure of the reaction space. It may include a flow control unit that forms a pressure.
본 실시예에 따른 수소 생산 장치에 있어서, 상기 탄소분리부는, 상기 탄소회수부로부터 이송되는 탄화수소가스의 사이클론 유동을 유도하여 탄화수소가스에 포함된 탄소입자를 분리하는 사이클론 챔버를 포함할 수 있다.In the hydrogen production device according to the present embodiment, the carbon separation unit may include a cyclone chamber for separating carbon particles included in the hydrocarbon gas by inducing a cyclone flow of the hydrocarbon gas transferred from the carbon recovery unit.
본 실시예에 따른 수소 생산 장치에 있어서, 상기 반응부는, 상기 반응공간을 형성하는 반응챔버와, 상기 반응공간의 일부분에 채워지는 촉매부와, 상기 반응챔버를 감싸도록 배치되며, 상기 반응공간을 가열하기 위한 히터를 가지는 퍼니스부를 포함할 수 있다.In the hydrogen production device according to the present embodiment, the reaction unit is disposed to surround a reaction chamber forming the reaction space, a catalyst part filled in a part of the reaction space, and the reaction chamber, and the reaction space It may include a furnace unit having a heater for heating.
본 실시예에 따른 수소 생산 장치에 있어서, 상기 촉매부는, 상기 반응공간의 하부영역에 일정 높이로 채워지며, 설정된 온도영역에서 액체 상태를 유지하는 액체금속촉매를 포함할 수 있다.In the hydrogen production device according to the present embodiment, the catalyst unit may include a liquid metal catalyst that is filled to a certain height in a lower region of the reaction space and maintains a liquid state in a set temperature region.
이때, 상기 반응부는, 상기 탄소분리부로부터 이송되는 탄화수소가스를 상기 촉매부에 공급하기 위하여, 상기 반응공간의 하부영역으로 연장하여 배치되는 가스이송관을 더 포함할 수 있다.In this case, the reaction unit may further include a gas transfer pipe disposed extending to a lower region of the reaction space to supply the hydrocarbon gas transported from the carbon separation unit to the catalyst unit.
본 실시예에 따른 수소 생산 장치에 있어서, 상기 촉매부는, 상기 반응공간의 중간영역에 일정 높이로 채워지는 고체촉매를 포함할 수도 있다.In the hydrogen production device according to the present embodiment, the catalyst unit may include a solid catalyst filled to a certain height in the middle region of the reaction space.
이때, 상기 반응부는, 상기 탄소분리부에서 배출되는 배출물을 상기 반응공간의 내부로 안내하는 유입부를 더 포함할 수 있고, 상기 유입부를 통하여 상기 반응공간으로 유입되는 상기 배출물 중 탄소는 상기 반응공간에서의 촉매 반응을 활성화할 수 있다.In this case, the reaction unit may further include an inlet for guiding the exhaust from the carbon separation unit to the inside of the reaction space, and carbon among the exhausts flowing into the reaction space through the inlet is removed from the reaction space. can activate the catalytic reaction of
본 발명에 따르면, 탄소회수부 및 탄소분리부를 거치는 단계적인 탄소 회수 공정을 통하여, 탄소입자 및 수소의 회수율을 크게 높일 수 있다.According to the present invention, the recovery rate of carbon particles and hydrogen can be greatly increased through the step-by-step carbon recovery process through the carbon recovery unit and the carbon separation unit.
본 발명에 따르면, 가스공급부에서 공급되는 탄화수소가스의 이송압력을 이용하여 반응부에서 생성된 탄소입자의 회수를 위한 흡입력을 형성하므로, 공정 및 장치를 간소화할 수 있고, 유지비용을 크게 줄일 수 있다.According to the present invention, since the suction power for recovering the carbon particles generated in the reaction unit is formed using the transfer pressure of the hydrocarbon gas supplied from the gas supply unit, the process and equipment can be simplified and the maintenance cost can be greatly reduced. .
본 발명에 따르면, 탄소회수부 및 탄소분리부를 통하여 반응부로 공급되는 탄화수소가스 및 반응부에서 회수되는 탄소입자 간의 열전달을 도모함으로써, 탄소입자 및 수소의 회수율을 더욱 높일 수 있고, 열분해 반응 성능을 크게 높일 수 있다.According to the present invention, by promoting heat transfer between the hydrocarbon gas supplied to the reaction unit and the carbon particles recovered from the reaction unit through the carbon recovery unit and the carbon separation unit, the recovery rate of carbon particles and hydrogen can be further increased, and the thermal decomposition reaction performance can be greatly improved. can be raised
본 발명에 따르면, 반응부에서 생성된 탄소입자의 회수 과정에서 탄소입자와 반응 촉매 간의 오염을 최소화하고, 반응 촉매의 유실 없이 탄소입자를 효과적으로 회수할 수 있다. 이로 인하여 회수된 탄소입자에 대한 추가 정제 공정을 간소화할 수 있고, 촉매 재생 공정이 불필요하여 연속적인 반응 공정이 수행될 수 있다.According to the present invention, contamination between the carbon particles and the reaction catalyst can be minimized in the process of recovering the carbon particles generated in the reaction unit, and the carbon particles can be effectively recovered without loss of the reaction catalyst. As a result, an additional purification process for the recovered carbon particles can be simplified, and a continuous reaction process can be performed without a catalyst regeneration process.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the detailed description of the present invention or the configuration of the invention described in the claims.
도 1은 본 발명의 제1실시예에 따른 수소 생산 장치를 나타낸 예시도이다.1 is an exemplary view showing a hydrogen production device according to a first embodiment of the present invention.
도 2는 도 1의 탄소회수부를 설명하기 위한 예시도이다.FIG. 2 is an exemplary diagram for explaining the carbon recovery unit of FIG. 1 .
도 3은 도 1의 탄소분리부를 설명하기 위한 예시도이다.3 is an exemplary view for explaining the carbon separator of FIG. 1 .
도 4는 본 발명의 제2실시예에 따른 수소 생산 장치의 반응부를 나타낸 예시도이다.4 is an exemplary view showing a reaction unit of a hydrogen production device according to a second embodiment of the present invention.
도 5는 본 발명의 제3실시예에 따른 수소 생산 장치의 반응부를 나타낸 예시도이다.5 is an exemplary diagram showing a reaction unit of a hydrogen production device according to a third embodiment of the present invention.
이하 상술한 해결하고자 하는 과제가 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예들이 첨부된 도면을 참조하여 설명된다. 본 실시예들을 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용될 수 있으며 이에 따른 부가적인 설명은 생략될 수 있다.Hereinafter, preferred embodiments of the present invention in which the above-described problem to be solved can be realized in detail will be described with reference to the accompanying drawings. In describing the present embodiments, the same name and the same reference numeral may be used for the same configuration, and additional description accordingly may be omitted.
도 1은 본 발명의 제1실시예에 따른 수소 생산 장치를 나타낸 예시도이다.1 is an exemplary view showing a hydrogen production device according to a first embodiment of the present invention.
도 1을 참조하면, 본 실시예에 따른 수소 생산 장치는 반응부(100), 가스공급부(200), 탄소회수부(300), 탄소분리부(400)를 포함할 수 있다.Referring to FIG. 1 , the hydrogen production device according to the present embodiment may include a reaction unit 100, a gas supply unit 200, a carbon recovery unit 300, and a carbon separation unit 400.
반응부(100)는 외부에서 공급되는 탄화수소가스를 열분해하여 수소가스 및 탄소입자를 포함하는 반응생성물을 생성할 수 있다.The reaction unit 100 may generate reaction products including hydrogen gas and carbon particles by thermally decomposing hydrocarbon gas supplied from the outside.
탄화수소가스로는 탄화수소를 포함하는 천연가스(NG), 액화천연가스(LNG), 나프타(Naphtha) 등이 사용될 수 있다. 이러한 탄화수소가스는 반응부(100)에서의 열분해 과정을 통하여 수소 및 탄소가 분리될 수 있다.As the hydrocarbon gas, natural gas (NG), liquefied natural gas (LNG), and naphtha containing hydrocarbons may be used. Hydrogen and carbon may be separated from the hydrocarbon gas through a pyrolysis process in the reaction unit 100.
반응부(100)로는 촉매 열분해 반응기가 사용될 수 있으며, 실시예에 따른 반응부(100)는 반응챔버(110), 촉매부(120), 퍼니스(Furnace)부(130)를 포함할 수 있다.A catalytic pyrolysis reactor may be used as the reaction unit 100, and the reaction unit 100 according to the embodiment may include a reaction chamber 110, a catalyst unit 120, and a furnace unit 130.
반응챔버(110)는 내부에 수직방향으로 연장 형성되는 반응공간을 가질 수 있다.The reaction chamber 110 may have a reaction space extending in a vertical direction therein.
촉매부(120)는 반응공간의 일부분에 채워질 수 있으며, 반응공간의 하부영역에 일정 높이로 채워질 수 있다.The catalyst unit 120 may fill a portion of the reaction space, and may fill a lower region of the reaction space to a certain height.
촉매부(120)는 설정된 온도영역에서 액체 상태를 유지하는 액체금속(Molten metal)촉매(121)를 포함할 수 있다.The catalyst unit 120 may include a liquid metal catalyst 121 maintaining a liquid state in a set temperature range.
액체금속촉매(121)로는 비교적 녹는점이 낮은 금속(예를 들면, Bi, Sn, In, Ga, Pb)에 촉매 특성을 갖는 금속(예를 들면, Pt, Ni, Fe, Co, Cu)을 녹여 응용한 합금촉매가 사용될 수 있다.As the liquid metal catalyst 121, a metal having a relatively low melting point (eg, Bi, Sn, In, Ga, Pb) is melted with a metal having catalytic properties (eg, Pt, Ni, Fe, Co, Cu). An applied alloy catalyst may be used.
액체금속촉매(121)는 퍼니스부(130)에 의하여 미리 설정된 온도로 가열됨에 따라 용융되면서 액체 상태를 유지할 수 있다.The liquid metal catalyst 121 may maintain a liquid state while being melted as it is heated to a preset temperature by the furnace unit 130 .
촉매부(120)는 다공성 세라믹 멤브레인과 같은 다공성 담지체를 더 포함할 수 있다. 다공성 담지체가 가지는 기공의 크기는 파우더 형태의 금속촉매를 채웠을 때 하부로 새지 않을 정도의 크기를 가질 수 있다.The catalyst unit 120 may further include a porous carrier such as a porous ceramic membrane. The size of the pores of the porous carrier may be such that it does not leak to the bottom when the metal catalyst in powder form is filled.
예컨대, 반응부(100)의 셋업 과정에서 반응공간에 다공성 담지체를 설치하고, 이후 파우더 형태의 금속촉매를 채운 상태에서 퍼니스부(130)를 이용하여 반응공간을 가열하면 액체금속촉매(121)로 용융될 수 있다.For example, in the process of setting up the reaction unit 100, if a porous support is installed in the reaction space, and then the reaction space is heated using the furnace unit 130 in a state in which the metal catalyst in powder form is filled, the liquid metal catalyst 121 can be melted into
퍼니스부(130)는 반응챔버(110)를 감싸도록 배치되는 단열부(131)와, 단열부(131)에 설치되어 반응공간을 가열하는 히터(132)를 가질 수 있다. 이에 따라, 전력공급기로부터 전력을 공급받은 히터(132)는 반응공간 내에 채워진 액체금속촉매(121)를 가열할 수 있다. 히터(132)로는 반응챔버(110)를 거쳐 액체금속촉매(121)를 직접 가열하거나, 전자기 유도 기전력을 발생하여 반응챔버(110) 내의 액체금속촉매(121)를 유도 가열하는 등 다양한 종류의 가열 방식이 사용될 수 있다.The furnace unit 130 may have an insulator 131 disposed to surround the reaction chamber 110 and a heater 132 installed in the insulator 131 to heat the reaction space. Accordingly, the heater 132 receiving power from the power supply may heat the liquid metal catalyst 121 filled in the reaction space. The heater 132 uses various types of heating, such as directly heating the liquid metal catalyst 121 through the reaction chamber 110 or induction heating the liquid metal catalyst 121 in the reaction chamber 110 by generating electromagnetic induction electromotive force. method can be used.
실시예에 따른 반응부(100)는 가스이송관(150)을 더 포함할 수 있다.The reaction unit 100 according to the embodiment may further include a gas delivery pipe 150 .
가스이송관(150)은 일단부가 반응부(100)의 상단부에 결합되어 탄화수소가스 공급라인(S1)과 연결되고, 타단부는 반응공간의 하부영역으로 연장 배치되어 촉매부(120)에 삽입될 수 있다. 이에 따라, 탄소분리부(400)로부터 이송되는 탄화수소가스는 가스이송관(150)을 통하여 촉매부(120)의 하부영역에 직접 공급될 수 있다.One end of the gas transfer pipe 150 is coupled to the upper end of the reaction unit 100 and connected to the hydrocarbon gas supply line S1, and the other end extends to the lower area of the reaction space and can be inserted into the catalyst unit 120. there is. Accordingly, the hydrocarbon gas transferred from the carbon separation unit 400 may be directly supplied to the lower region of the catalyst unit 120 through the gas transfer pipe 150 .
이렇게 촉매부(120)의 하부영역에 공급된 탄화수소가스는 열분해 반응에 의해 수소가스 및 탄소입자를 포함하는 반응생성물이 생성되며, 이러한 열분해 반응 과정에서 수소가스뿐만 아니라 밀도가 낮은 탄소입자는 부력에 의하여 촉매부(120)의 상부면에 쌓이게 된다.The hydrocarbon gas supplied to the lower region of the catalyst unit 120 in this way generates reaction products including hydrogen gas and carbon particles by a thermal decomposition reaction. As a result, it is accumulated on the upper surface of the catalyst unit 120.
촉매부(120)의 상부면에 쌓인 탄소입자는 제1탄소입자 회수라인(S2)을 통하여 탄소회수부(300)로 이송될 수 있다. 또한, 반응공간의 상부영역에 존재하는 수소가스는 수소가스 회수라인(S4)을 통하여 후처리 공정으로 공급되거나 사용처로 직접 공급될 수 있다.Carbon particles accumulated on the upper surface of the catalyst unit 120 may be transferred to the carbon recovery unit 300 through the first carbon particle recovery line S2. In addition, the hydrogen gas present in the upper region of the reaction space may be supplied to a post-treatment process or directly supplied to a place of use through the hydrogen gas recovery line S4.
상기와 같이 열분해 반응 과정에서 밀도가 낮은 탄소입자는 액체금속촉매(121) 내에 존재하는 것이 아니라 부력에 의하여 액체금속촉매(121)의 상부에 쌓이게 되므로, 열분해 반응 과정에서 발생될 수 있는 액체금속촉매(121) 및 탄소입자 간의 점착 등의 영향을 최소화할 수 있다. 이에 따라, 액체금속촉매(121)의 상부에 쌓인 탄소입자의 회수를 용이하게 수행할 수 있고, 탄소입자의 회수 과정에서 반응 촉매가 함께 유실되는 문제를 예방할 수 있다. 또한, 촉매 재생 공정이 불필요하거나 최소화할 수 있어 공정의 연속 운전이 가능하다. As described above, carbon particles having a low density during the thermal decomposition reaction do not exist in the liquid metal catalyst 121, but accumulate on top of the liquid metal catalyst 121 due to buoyancy. (121) and adhesion between carbon particles can be minimized. Accordingly, it is possible to easily recover the carbon particles accumulated on the liquid metal catalyst 121, and to prevent a problem in which the reaction catalyst is lost together in the process of recovering the carbon particles. In addition, since the catalyst regeneration process is unnecessary or can be minimized, continuous operation of the process is possible.
가스공급부(200)는 반응부(100)의 반응공간으로 탄화수소가스를 공급할 수 있으며, 가스공급부(200)에 의하여 탄화수소가스는 탄화수소가스 공급라인(S1)을 따라 설정된 이송압력으로 이송될 수 있다.The gas supply unit 200 may supply hydrocarbon gas to the reaction space of the reaction unit 100, and the hydrocarbon gas may be transferred at a set transfer pressure along the hydrocarbon gas supply line S1 by the gas supply unit 200.
이때, 가스공급부(200)에 연결되는 탄화수소가스 공급라인(S1)은 반응부(100)의 상단부에 연결될 수 있고, 가스공급부(200)에서 공급되는 탄화수소가스는 후술되는 탄소회수부(300) 및 탄소분리부(400)를 경유하여 반응부(100)의 반응공간의 상부영역으로 공급될 수 있다.At this time, the hydrocarbon gas supply line (S1) connected to the gas supply unit 200 may be connected to the upper end of the reaction unit 100, and the hydrocarbon gas supplied from the gas supply unit 200 is supplied to the carbon recovery unit 300 and It may be supplied to the upper region of the reaction space of the reaction unit 100 via the carbon separation unit 400 .
또한, 탄소회수부(300)에 연결되는 제1탄소입자 회수라인(S2)은 탄소입자가 쌓이는 촉매부(120)의 상부 영역에 연결될 수 있고, 촉매부(120)의 상부에 쌓인 탄소입자는 탄소회수부(300)의 흡입력에 의하여 반응공간에서 외부로 배출될 수 있다.In addition, the first carbon particle recovery line S2 connected to the carbon recovery unit 300 may be connected to an upper region of the catalyst unit 120 where carbon particles accumulate, and the carbon particles accumulated on the upper portion of the catalyst unit 120 Carbon can be discharged from the reaction space to the outside by the suction force of the recovery unit 300 .
또한, 반응부(100)의 상단부에는 수소가스 회수라인(S4)이 연결될 수 있고, 열분해 반응 과정에서 반응공간의 상부영역으로 이동된 수소가스는 수소가스 회수라인(S4)을 통하여 후처리 공정으로 공급되거나 사용처로 직접 공급될 수 있다.In addition, a hydrogen gas recovery line (S4) may be connected to the upper end of the reaction unit 100, and the hydrogen gas moved to the upper region of the reaction space during the thermal decomposition reaction is transferred to the post-treatment process through the hydrogen gas recovery line (S4). It can be supplied or supplied directly to the point of use.
한편, 도시되진 않았지만, 반응부(100)는 필터(미도시)를 더 포함할 수 있다. 필터는 탄소입자가 쌓이는 반응공간의 상부영역에 배치될 수 있다. 구체적으로, 필터는 탄소입자가 쌓이는 촉매부(120)의 상부면에서 상측으로 이격하여 배치될 수 있고, 수소가스 회수라인(S4)에 인접하게 배치될 수 있다. 이에 따라, 반응공간의 상부영역에 존재하는 수소가스는 필터를 통과한 다음 수소가스 회수라인(S4)을 통하여 외부로 배출될 수 있고, 탄소입자가 수소가스와 함께 수소가스 회수라인(S4)으로 배출되는 것을 차단할 수 있다.Meanwhile, although not shown, the reaction unit 100 may further include a filter (not shown). A filter may be disposed in an upper region of the reaction space where carbon particles are accumulated. Specifically, the filter may be disposed upwardly apart from the upper surface of the catalyst unit 120 where carbon particles accumulate, and may be disposed adjacent to the hydrogen gas recovery line S4. Accordingly, the hydrogen gas present in the upper region of the reaction space can be discharged to the outside through the hydrogen gas recovery line (S4) after passing through the filter, and the carbon particles are transported together with the hydrogen gas through the hydrogen gas recovery line (S4). Emissions can be blocked.
도 2는 도 1의 탄소회수부를 설명하기 위한 예시도이다.FIG. 2 is an exemplary diagram for explaining the carbon recovery unit of FIG. 1 .
도 2를 추가 참조하면, 탄소회수부(300)는 탄화수소가스 공급라인(S1) 상에서 가스공급부(200)의 하류에 배치되며, 탄소회수부(300)는 제1탄소입자 회수라인(S2)을 통하여 반응부(100)의 반응공간과 연결될 수 있다.Referring to FIG. 2, the carbon recovery unit 300 is disposed downstream of the gas supply unit 200 on the hydrocarbon gas supply line S1, and the carbon recovery unit 300 includes the first carbon particle recovery line S2. Through this, it can be connected to the reaction space of the reaction unit 100.
탄소회수부(300)는 반응공간에서 생성된 탄소입자를 회수하여 가스공급부(200)로부터 이송되는 탄화수소가스와 함께 탄소분리부(400)로 배출할 수 있다.The carbon recovery unit 300 may recover carbon particles generated in the reaction space and discharge them to the carbon separation unit 400 together with the hydrocarbon gas transported from the gas supply unit 200 .
탄소회수부(300)는 탄화수소가스 공급라인(S1)을 따라 이송되는 탄화수소가스의 이송압력을 변화시켜 반응공간의 내부압력보다 낮은 내부압력을 형성하는 유동조절부(310)를 포함할 수 있다.The carbon recovery unit 300 may include a flow control unit 310 that changes the transfer pressure of the hydrocarbon gas transported along the hydrocarbon gas supply line S1 to form an internal pressure lower than the internal pressure of the reaction space.
탄소회수부(300)는 유동조절부(310)에 의하여 내부압력이 반응공간의 내부압력보다 낮게 형성되므로, 반응공간에 존재하는 탄소입자는 탄소입자 회수라인(S2)을 통하여 탄소회수부(300)로 흡입될 수 있다.Since the internal pressure of the carbon recovery unit 300 is formed lower than the internal pressure of the reaction space by the flow control unit 310, the carbon particles existing in the reaction space are transferred to the carbon recovery unit 300 through the carbon particle recovery line S2. ) can be inhaled.
구체적으로, 유동조절부(310)는 탄화수소가스 공급라인(S1)에 설치되는 파이프 구조를 가질 수 있다.Specifically, the flow control unit 310 may have a pipe structure installed in the hydrocarbon gas supply line (S1).
유동조절부(310)는 일단부에 가스공급부(200)에서 공급되는 탄화수소가스가 유입되는 제1가스유입구(311)가 형성될 수 있다. 이때, 제1가스유입구(311)는 유동방향에 대해 단면적이 감소하는 노즐 구조를 가질 수 있고, 이에 따라, 탄화수소가스는 노즐 구조의 제1가스유입구(311)를 통과하는 과정에서 속도가 증가될 수 있다.A first gas inlet 311 into which hydrocarbon gas supplied from the gas supply unit 200 flows may be formed at one end of the flow control unit 310 . At this time, the first gas inlet 311 may have a nozzle structure in which the cross-sectional area decreases with respect to the flow direction, and accordingly, the hydrocarbon gas may increase in speed while passing through the first gas inlet 311 of the nozzle structure. can
또한, 유동조절부(310)는 타단부에 탄소분리부(400) 측으로 탄화수소가스를 공급하기 위한 제1가스배출구(312)가 형성될 수 있다.In addition, a first gas outlet 312 for supplying hydrocarbon gas to the carbon separator 400 may be formed at the other end of the flow control unit 310 .
또한, 유동조절부(310)는 반응부(100)의 반응공간에 존재하는 탄소입자를 내부로 유입하기 위해 제1탄소입자 회수라인(S2)과 연결되는 탄소흡입구(313)가 형성될 수 있다. 이때, 탄소흡입구(313)는 유동조절부(310)의 유동방향에 대해 분기관 구조를 가진다. 즉, 탄소흡입구(313)는 제1가스유입구(311)의 하류에 배치될 수 있고, 제1가스유입구(311)를 통과하는 유동방향에 교차하는 방향으로 형성될 수 있다.In addition, the flow control unit 310 may have a carbon inlet 313 connected to the first carbon particle recovery line S2 to introduce carbon particles existing in the reaction space of the reaction unit 100 into the inside. . At this time, the carbon inlet 313 has a branch pipe structure with respect to the flow direction of the flow control unit 310 . That is, the carbon inlet 313 may be disposed downstream of the first gas inlet 311 and may be formed in a direction crossing the flow direction passing through the first gas inlet 311 .
또한, 유동조절부(310)는 제1가스유입구(311) 및 제1가스배출구(312)를 연결하도록 유동방향으로 연장 형성되는 단면축소부(314), 단면유지부(315) 및 단면확대부(316)를 가질 수 있다.In addition, the flow control unit 310 includes a cross-section reducing portion 314, a cross-section maintaining portion 315, and a cross-sectional enlargement portion extending in the flow direction so as to connect the first gas inlet 311 and the first gas outlet 312. (316).
단면축소부(314)는 유동방향에 대해 단면적이 점차 감소되게 형성될 수 있다.The cross-section reducing portion 314 may be formed such that its cross-sectional area gradually decreases with respect to the flow direction.
단면유지부(315)는 유동방향에 대해 단면축소부(314)에서 연장 형성되며, 일정한 단면적을 유지할 수 있다.The cross-section maintaining portion 315 extends from the cross-section reducing portion 314 in the flow direction and can maintain a constant cross-sectional area.
단면확대부(316)는 유동방향에 대해 단면유지부(315)에서 연장 형성되며, 유동방향에 대해 단면적이 점차 확대되게 형성될 수 있다.The cross-section enlargement portion 316 extends from the cross-section maintaining portion 315 in the flow direction, and may have a cross-sectional area gradually enlarged in the flow direction.
탄화수소가스는 노즐 구조의 제1가스유입구(311), 단면축소부(314) 및 단면유지부(315)를 순차적으로 통과하는 과정에서 압력에너지가 운동에너지로 변화되면서 속도가 증가되고 압력이 감소될 수 있다. 그리고, 단면유지부(315)를 지나 단면확대부(316)를 통과하는 과정에서는 운동에너지가 압력에너지로 다시 변화되면서 속도는 감소하고 압력이 증가될 수 있다.As the hydrocarbon gas sequentially passes through the first gas inlet 311 of the nozzle structure, the cross-sectional reduction part 314, and the cross-section maintaining part 315, the pressure energy is changed into kinetic energy, and the speed increases and the pressure decreases. can And, in the process of passing through the cross-section maintaining portion 315 and passing through the cross-sectional enlargement portion 316, the speed may decrease and the pressure may increase while the kinetic energy is changed back to pressure energy.
이와 같이, 유동조절부(310)의 제1가스유입구(311), 단면축소부(314) 및 단면유지부(315)를 통과하는 탄화수소가스의 압력이 감소되므로, 제1가스유입구(311)와 단면축소부(314)의 사이에는 부압영역(310a)이 형성될 수 있다. 즉, 유동조절부(310)에 의하여 부압영역(310a)에는 반응공간의 내부압력보다 낮은 압력이 발생되므로, 반응부(100)의 반응공간에 존재하는 탄소입자를 흡입하는 흡입력이 생성될 수 있다.As such, since the pressure of the hydrocarbon gas passing through the first gas inlet 311, the cross-section reduction unit 314, and the cross-section maintaining unit 315 of the flow control unit 310 is reduced, the first gas inlet 311 and A negative pressure region 310a may be formed between the cross-sectional reduction portions 314 . That is, since a pressure lower than the internal pressure of the reaction space is generated in the negative pressure region 310a by the flow control unit 310, a suction force for sucking carbon particles present in the reaction space of the reaction unit 100 can be generated. .
또한, 유동조절부(310)를 통과한 후 제1가스배출구(312)를 통해서는 탄화수소가스 및 탄소입자가 함께 배출될 수 있고, 이후 탄소입자가 포함된 탄화수소가스는 탄소분리부(400)로 공급될 수 있다.In addition, hydrocarbon gas and carbon particles may be discharged together through the first gas outlet 312 after passing through the flow control unit 310, and then the hydrocarbon gas containing the carbon particles is sent to the carbon separator 400. can be supplied.
한편, 탄소회수부(300)에서 회수되는 탄소입자는 반응부(100)에서의 열분해 과정에서 이루어지는 흡열 반응에 의하여 상대적으로 높은 온도의 에너지를 가진다. 이에 따라, 탄소회수부(300)를 통과하는 중 탄화수소가스 및 탄소입자가 함께 배출되는 과정에서 탄화수소가스 및 탄소입자 간의 열전달이 이루어질 수 있다. 즉, 가스공급부(200)에서 공급되는 상대적으로 낮은 온도의 에너지를 가지는 탄화수소가스에 의하여 탄소입자는 예냉될 수 있고, 반응부(100)에서 배출되는 상대적으로 높은 온도의 에너지를 가지는 탄소입자에 의하여 탄화수소가스는 예열될 수 있다.On the other hand, the carbon particles recovered in the carbon recovery unit 300 have relatively high temperature energy due to an endothermic reaction in the thermal decomposition process in the reaction unit 100. Accordingly, heat transfer between the hydrocarbon gas and the carbon particles may be achieved while the hydrocarbon gas and the carbon particles are discharged together while passing through the carbon recovery unit 300 . That is, the carbon particles can be pre-cooled by the hydrocarbon gas having a relatively low temperature energy supplied from the gas supply unit 200, and the carbon particles having a relatively high temperature energy discharged from the reaction unit 100 Hydrocarbon gas can be preheated.
탄소회수부(300)에서 배출되는 탄소입자가 예냉되면, 하류에 배치된 탄소분리부(400)를 통과하는 과정에서 미립화된 탄소들이 서로 뭉쳐지면서 입자화가 가속화되므로, 탄소입자의 회수율을 더욱 높일 수 있게 된다. 또한, 반응부(100)에서 생성된 탄소를 냉각하기 위한 별도의 열교환기가 배제될 수 있어 공정 및 장치가 간소화될 수 있고, 유지 비용이 절감될 수 있다.When the carbon particles discharged from the carbon recovery unit 300 are pre-cooled, the finely divided carbons are aggregated in the process of passing through the carbon separation unit 400 disposed downstream and particleization is accelerated, so that the recovery rate of carbon particles can be further increased. there will be In addition, since a separate heat exchanger for cooling the carbon generated in the reaction unit 100 can be excluded, processes and equipment can be simplified and maintenance costs can be reduced.
탄소회수부(300)에서 배출되는 탄화수소가스가 예열되면, 하류에 배치된 반응부(100)의 입구온도가 상승되어 반응부(100)의 반응 성능을 더욱 높일 수 있게 된다. 또한, 탄소회수부(300)에 의하여 탄소입자의 회수와 동시에 반응부(100)로 공급되는 탄화수소가스를 예열할 수 있으므로, 탄화수소가스를 예열하기 위한 별도의 열교환기가 배제될 수 있어 공정 및 장치가 간소화될 수 있고, 유지 비용이 절감될 수 있다.When the hydrocarbon gas discharged from the carbon recovery unit 300 is preheated, the inlet temperature of the reaction unit 100 disposed downstream is increased, so that the reaction performance of the reaction unit 100 can be further improved. In addition, since the hydrocarbon gas supplied to the reaction unit 100 can be preheated simultaneously with the recovery of carbon particles by the carbon recovery unit 300, a separate heat exchanger for preheating the hydrocarbon gas can be excluded, thereby improving the process and equipment. It can be simplified and the maintenance cost can be reduced.
도 3은 도 1의 탄소분리부를 설명하기 위한 예시도이다.3 is an exemplary view for explaining the carbon separator of FIG. 1 .
도 3을 추가 참조하며, 탄소분리부(400)는 탄화수소가스 공급라인(S1) 상에서 탄소회수부(300)의 하류에 배치될 수 있으며, 반응부(100)의 전단에 연결될 수 있다. 탄소회수부(300)로부터 이송되는 탄소입자가 포함된 탄화수소가스로부터 탄소입자를 분리하고, 탄소입자가 분리된 탄화수소가스는 반응부(100)의 반응공간으로 공급할 수 있다.Referring to FIG. 3 , the carbon separation unit 400 may be disposed downstream of the carbon recovery unit 300 on the hydrocarbon gas supply line S1 and may be connected to the front end of the reaction unit 100 . The carbon particles are separated from the hydrocarbon gas containing the carbon particles transported from the carbon recovery unit 300, and the hydrocarbon gas from which the carbon particles are separated may be supplied to the reaction space of the reaction unit 100.
탄소분리부(400)는 탄소회수부(300)로부터 이송되는 탄화수소가스의 사이클론 유동을 유도하여 탄화수소가스에 포함된 탄소입자를 분리하는 사이클론 챔버(410)를 포함할 수 있다.The carbon separation unit 400 may include a cyclone chamber 410 that separates carbon particles included in the hydrocarbon gas by inducing a cyclone flow of the hydrocarbon gas transferred from the carbon recovery unit 300 .
실시예에 따른 사이클론 챔버(410)는 탄소회수부(300)에서 공급되는 탄소입자가 포함된 탄화수소가스가 유입되는 제2가스유입구(411)가 형성될 수 있고, 제2가스유입구(411)는 사이클론 챔버(410)의 중심에서 편심된 일측에 배치될 수 있다.The cyclone chamber 410 according to the embodiment may have a second gas inlet 411 through which hydrocarbon gas containing carbon particles supplied from the carbon recovery unit 300 flows, and the second gas inlet 411 is It may be disposed on one side eccentric from the center of the cyclone chamber 410.
또한, 사이클론 챔버(410)는 상단부에 탄화수소가스가 배출되는 제2가스배출구(412)가 형성될 수 있고, 제2가스배출구(412)로 배출되는 탄화수소가스는 반응부(100)의 반응공간으로 공급될 수 있다.In addition, the cyclone chamber 410 may have a second gas outlet 412 through which hydrocarbon gas is discharged at the upper end, and the hydrocarbon gas discharged through the second gas outlet 412 is directed to the reaction space of the reaction unit 100. can be supplied.
또한, 사이클론 챔버(410)는 하단부에 탄소입자가 배출되는 탄소배출구(413)이 형성될 수 있다. 탄소배출구(413)에서 배출되는 탄소입자는 제2탄소입자 회수라인(S3)를 통하여 회수될 수 있다. 제2탄소입자 회수라인(S3)를 통하여 회수되는 탄소입자는 필터링 등 후처리 공정으로 이송될 수 있고, 이후 다양한 사용처에 사용될 수 있다.In addition, the cyclone chamber 410 may be formed with a carbon outlet 413 through which carbon particles are discharged at the lower end. Carbon particles discharged from the carbon outlet 413 may be recovered through the second carbon particle recovery line S3. The carbon particles recovered through the second carbon particle recovery line S3 may be transferred to a post-processing process such as filtering, and then used for various purposes.
제2가스유입구(411)를 통하여 사이클론 챔버(410)의 내부로 유입되는 탄화수소가스는 사이클론 챔버(410)의 내부공간의 중심축을 기준으로 선회하면서 서서히 하강하는 사이클론 유동이 발생될 수 있다. 이러한 사이클론 유동에 의하여 상대적으로 가벼운 탄화수소가스는 사이클론 챔버(410)의 내부공간에서 상측으로 유동하여 제2가스배출구(412)를 통하여 배출될 수 있고, 상대적으로 무거운 탄소입자는 사이클론 챔버(410)의 내부공간에서 하측으로 유동하여 탄소배출구(413)를 통하여 배출될 수 있다.The hydrocarbon gas introduced into the cyclone chamber 410 through the second gas inlet 411 may generate a cyclone flow that gradually descends while turning around the central axis of the inner space of the cyclone chamber 410 . By this cyclone flow, the relatively light hydrocarbon gas flows upward in the inner space of the cyclone chamber 410 and can be discharged through the second gas outlet 412, and the relatively heavy carbon particles of the cyclone chamber 410 It may flow downward in the inner space and be discharged through the carbon outlet 413.
도 4는 본 발명의 제2실시예에 따른 수소 생산 장치의 반응부를 나타낸 예시도이다.4 is an exemplary view showing a reaction unit of a hydrogen production device according to a second embodiment of the present invention.
도 4를 참조하면, 본 실시예에 따른 반응부(100) 역시 촉매 열분해 반응기가 사용될 수 있으며, 반응챔버(110), 촉매부(120), 퍼니스부(130)를 포함할 수 있다.Referring to FIG. 4 , the reaction unit 100 according to the present embodiment may also use a catalytic pyrolysis reactor, and may include a reaction chamber 110, a catalyst unit 120, and a furnace unit 130.
본 실시예에 따른 반응부(110)의 반응챔버(110) 및 퍼니스부(130)의 구성은 제1실시예에 따른 반응챔버(110) 및 퍼니스부(130)의 구성과 동일하게 구성될 수 있고, 다만, 본 실시예에 따른 촉매부(120)의 구성에서 제1실시예에 따른 촉매부(120)와 차이점을 가진다.The configuration of the reaction chamber 110 and the furnace unit 130 of the reaction unit 110 according to the present embodiment may be identical to those of the reaction chamber 110 and the furnace unit 130 according to the first embodiment. However, the configuration of the catalyst unit 120 according to the present embodiment is different from that of the catalyst unit 120 according to the first embodiment.
본 실시예에 따른 촉매부(120)는 액체금속촉매(121)의 상부에 일정 높이로 채워지며, 설정된 온도영역에서 액체 상태를 유지하는 용융염층(122)을 더 포함할 수 있다.The catalyst unit 120 according to this embodiment may further include a molten salt layer 122 filled with a certain height on top of the liquid metal catalyst 121 and maintaining a liquid state in a set temperature range.
용융염층(122)은 액체금속촉매(121)보다는 밀도가 낮고, 탄소입자보다는 밀도가 높으며, 탄소입자가 쉽게 점착되지 않는 물성을 가지면 좋다. 이를 위한 용융염으로는 NaBr이 사용될 수 있다.The molten salt layer 122 may have a lower density than the liquid metal catalyst 121, a higher density than the carbon particles, and a physical property in which the carbon particles do not easily adhere. NaBr may be used as a molten salt for this purpose.
NaBr는 용해도가 높기 때문에, 만일 탄소입자와 함께 회수되더라도 간단한 정제 공정을 거쳐 탄소입자를 쉽게 정제할 수 있다.Since NaBr has high solubility, even if it is recovered together with carbon particles, the carbon particles can be easily purified through a simple purification process.
액체금속촉매(121)보다는 밀도가 낮고 탄소입자보다는 밀도가 높은 용융염층(122)에 의하여 열분해 반응 과정에서 생성되는 탄소입자는 액체금속촉매(121)로부터 완전히 이격되어 용융염층(122)의 상부에 쌓일 수 있다. 이에 따라, 열분해 반응 과정에서 발생될 수 있는 액체금속촉매(121) 및 탄소입자 간의 점착 등의 영향을 더욱 크게 줄일 수 있고, 탄소입자에 의한 액체금속촉매(121)의 오염을 크게 줄일 수 있다. 또한, 촉매 재생 공정이 불필요하거나 최소화할 수 있어 공정의 연속 운전이 가능하고, 탄소입자의 회수 과정에서 반응 촉매의 유실 없이 탄소입자의 회수율을 더욱 높일 수 있다.The carbon particles generated during the thermal decomposition reaction by the molten salt layer 122, which has a lower density than the liquid metal catalyst 121 and a higher density than the carbon particles, are completely separated from the liquid metal catalyst 121 and are located on top of the molten salt layer 122. can accumulate Accordingly, the influence of adhesion between the liquid metal catalyst 121 and the carbon particles, which may occur during the thermal decomposition reaction, can be further greatly reduced, and contamination of the liquid metal catalyst 121 by the carbon particles can be greatly reduced. In addition, since the catalyst regeneration process is unnecessary or minimized, continuous operation of the process is possible, and the recovery rate of carbon particles can be further increased without loss of the reaction catalyst in the process of recovering carbon particles.
한편, 본 실시예에 따른 촉매부(120)는 액체금속촉매(121)와 용융염층(122) 사이에서 일정 높이를 유지하는 비드층을 더 포함할 수도 있다.On the other hand, the catalyst unit 120 according to this embodiment may further include a bead layer maintaining a certain height between the liquid metal catalyst 121 and the molten salt layer 122.
비드층은 액체금속촉매(121)보다는 밀도가 낮고 용용염층(122)보다는 밀도가 높은 물성을 가질 수 있고, 이에 따라, 비드층은 액체금속촉매(121)와 용융염층(122) 이에 배치될 수 있다. 이러한 비드층으로는 지르코니아 등의 세라믹이 사용될 수 있다.The bead layer may have a lower density than the liquid metal catalyst 121 and a higher density than the molten salt layer 122. Accordingly, the bead layer may be disposed on the liquid metal catalyst 121 and the molten salt layer 122. there is. Ceramics such as zirconia may be used as the bead layer.
도 5는 본 발명의 제3실시예에 따른 수소 생산 장치의 반응부를 나타낸 예시도이다.5 is an exemplary diagram showing a reaction unit of a hydrogen production device according to a third embodiment of the present invention.
도 5를 참조하면, 본 실시예에 따른 반응부(100) 역시 촉매 열분해 반응기가 사용될 수 있으며, 반응챔버(110), 촉매부(120), 퍼니스부(130)를 포함할 수 있다.Referring to FIG. 5 , the reaction unit 100 according to the present embodiment may also use a catalytic pyrolysis reactor, and may include a reaction chamber 110, a catalyst unit 120, and a furnace unit 130.
본 실시예에 따른 반응부(100)의 반응챔버(110) 및 퍼니스부(130)의 구성은 제1실시예 및 제2실시예에 따른 반응챔버(110) 및 퍼니스부(130)의 구성과 거의 동일하게 구성될 수 있고, 본 실시예에 따른 촉매부(120)의 구성에서 전술한 제1실시예 및 제2실시예에 따른 촉매부(120)와 차이점을 가진다.The configuration of the reaction chamber 110 and the furnace unit 130 of the reaction unit 100 according to the present embodiment is similar to the configuration of the reaction chamber 110 and the furnace unit 130 according to the first and second embodiments. It may be configured almost the same, and has a difference from the catalyst unit 120 according to the first and second embodiments described above in the configuration of the catalyst unit 120 according to the present embodiment.
본 실시예에 따른 촉매부(120)는 반응공간의 일부분에 채워질 수 있으며, 반응공간의 중간영역에 일정 높이로 채워지는 고체촉매(123)를 포함할 수 있다.The catalyst unit 120 according to this embodiment may be filled in a portion of the reaction space, and may include a solid catalyst 123 filled to a certain height in the middle region of the reaction space.
고체촉매(123)로는 금속(예를 들면, Pt, Fe, Ni, Co, Cu, Cu-Ni alloy), 금속촉매와 산화물 담지체(예를 들면, Fe/Al2O3, Ni/Al2O3, Fe/MgO, Ni/SiO2), 카본 등이 사용될 수 있다.The solid catalyst 123 includes a metal (eg, Pt, Fe, Ni, Co, Cu, Cu-Ni alloy), a metal catalyst and an oxide carrier (eg, Fe/Al2O3, Ni/Al2O3, Fe/MgO , Ni/SiO2), carbon and the like can be used.
고체촉매(123)를 포함하는 촉매부(120)를 사용할 경우, 반응부(100)는 탄소분리부(400)에서 배출되는 배출물을 반응부(100)의 반응공간의 내부로 안내하기 위한 유입부(151)를 더 포함할 수 있다.In the case of using the catalyst unit 120 including the solid catalyst 123, the reaction unit 100 is an inlet unit for guiding the emission from the carbon separation unit 400 into the reaction space of the reaction unit 100. (151) may be further included.
유입부(151)는 반응부(100)의 상단부에 결합되어 탄화수소가스 공급라인(S1)과 연결될 수 있고, 이에 따라, 탄소분리부(400)로부터 이송되는 탄화수소가스는 유입부(151)를 통하여 촉매부(120)의 상부영역인 반응부(100)의 반응공간의 상부영역에 공급될 수 있다.The inlet 151 is coupled to the upper end of the reaction unit 100 and may be connected to the hydrocarbon gas supply line S1. Accordingly, the hydrocarbon gas transported from the carbon separation unit 400 passes through the inlet 151. It may be supplied to the upper region of the reaction space of the reaction unit 100, which is the upper region of the catalyst unit 120.
또한, 고체촉매(123)는 다공성 구조를 가질 수 있고, 반응공간의 상부영역으로 공급된 탄화수소가스는 다공성의 고체촉매(123)를 통과하면서 열분해 반응에 의해 수소가스 및 탄소입자로 분리될 수 있다. 이렇게 생성된 수소가스 및 탄소입자는 유동 및 중력에 의해 반응공간의 바닥에 떨어져 쌓일 수 있다.In addition, the solid catalyst 123 may have a porous structure, and the hydrocarbon gas supplied to the upper region of the reaction space may be separated into hydrogen gas and carbon particles by a thermal decomposition reaction while passing through the porous solid catalyst 123. . The hydrogen gas and carbon particles thus generated may fall and accumulate on the bottom of the reaction space due to flow and gravity.
이때, 탄소분리부(400)에서 배출되는 배출물에 포함된 탄소는 반응공간의 고체촉매(123)를 통과하는 과정에서 열분해 촉매 반응을 활성화시킬 수도 있다.At this time, the carbon included in the exhaust from the carbon separation unit 400 may activate the thermal decomposition catalyst reaction while passing through the solid catalyst 123 in the reaction space.
반응공간의 하부영역에 쌓인 탄소입자는 제2탄소입자 회수라인(S2)을 통하여 탄소회수부(300)로 이송될 수 있고, 반응공간의 하부영역에 존재하는 수소가스는 수소가스 회수라인(S4)을 통하여 후처리 공정으로 공급되거나 사용처로 직접 공급될 수 있다.The carbon particles accumulated in the lower region of the reaction space may be transported to the carbon recovery unit 300 through the second carbon particle recovery line S2, and the hydrogen gas present in the lower region of the reaction space may be transferred to the hydrogen gas recovery line S4. ), it can be supplied to the post-processing process or directly supplied to the place of use.
한편, 고체촉매(123)를 포함하는 촉매부(120)를 사용할 경우, 반응부(100)는 필터(미도시)를 더 포함할 수 있다. 필터는 탄소입자가 쌓이는 반응부(100)의 바닥에 설치될 수 있으며, 필터는 수소가스 회수라인(S4)으로 수소가스가 배출될 시 탄소입자가 수소가스와 함께 수소가스 회수라인(S4)으로 배출되는 것을 차단할 수 있다.Meanwhile, when using the catalyst unit 120 including the solid catalyst 123, the reaction unit 100 may further include a filter (not shown). The filter may be installed at the bottom of the reaction unit 100 where carbon particles are accumulated, and when the hydrogen gas is discharged to the hydrogen gas recovery line (S4), the carbon particles are transferred together with the hydrogen gas to the hydrogen gas recovery line (S4). Emissions can be blocked.
이상에서와 같이, 본 발명에 따른 수소 생산 장치는 탄소회수부(300) 및 탄소분리부(400)를 거치는 단계적인 탄소 회수 공정을 통하여, 탄소입자 및 수소의 회수율을 크게 높일 수 있다.As described above, the hydrogen production device according to the present invention can greatly increase the recovery rate of carbon particles and hydrogen through the step-by-step carbon recovery process through the carbon recovery unit 300 and the carbon separation unit 400.
또한, 본 발명에 따른 수소 생산 장치는 가스공급부(200)에서 이송되는 탄화수소가스의 이송압력을 이용하여 반응부(100)에서 생성된 탄소입자의 회수를 위한 흡입력을 형성할 수 있음으로, 회수 공정 및 장치를 간소화할 수 있고, 유지비용을 크게 줄일 수 있다.In addition, since the hydrogen production device according to the present invention can form a suction force for recovering the carbon particles generated in the reaction unit 100 using the transfer pressure of the hydrocarbon gas transferred from the gas supply unit 200, the recovery process And the device can be simplified, and the maintenance cost can be greatly reduced.
또한, 본 발명에 따른 수소 생산 장치는 탄소회수부(300) 및 탄소분리부(400)를 통하여 반응부(100)로 공급되는 탄화수소가스 및 반응부(100)에서 회수되는 탄소입자 간의 열전달을 도모함으로써, 탄소입자 및 수소의 회수율을 더욱 높일 수 있고, 반응 성능을 크게 높일 수 있다.In addition, the hydrogen production device according to the present invention promotes heat transfer between the hydrocarbon gas supplied to the reaction unit 100 through the carbon recovery unit 300 and the carbon separation unit 400 and the carbon particles recovered in the reaction unit 100. By doing so, the recovery rate of carbon particles and hydrogen can be further increased, and the reaction performance can be greatly improved.
또한, 본 발명에 따른 수소 생산 장치는 반응부(100)에서 생성된 탄소입자의 회수 과정에서 탄소입자와 반응 촉매 간의 오염을 최소화할 수 있고, 반응 촉매의 유실 없이 탄소입자의 회수율을 크게 높일 수 있다. 또한, 이로 인하여 회수된 탄소입자에 대한 추가 정제 공정을 간소화할 수 있고, 촉매 재생 공정이 불필요하여 연속적인 반응 공정이 수행될 수 있으므로, 수소 및 탄소의 수율을 크게 높일 수 있다.In addition, the hydrogen production device according to the present invention can minimize contamination between the carbon particles and the reaction catalyst in the process of recovering the carbon particles generated in the reaction unit 100, and can greatly increase the recovery rate of carbon particles without loss of the reaction catalyst. there is. In addition, as a result, an additional purification process for the recovered carbon particles can be simplified, and since a catalyst regeneration process is unnecessary and a continuous reaction process can be performed, the yield of hydrogen and carbon can be greatly increased.
상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술 분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but those skilled in the art can make various modifications to the present invention within the scope not departing from the spirit and scope of the present invention described in the claims below. may be modified or changed.
본 발명은 열분해 반응 공정 및 장치의 간소화와 유지 비용을 절감할 수 있으면서 열분해 반응의 성능을 높이고 수소 및 탄소를 효과적으로 회수할 수 있는 수소 생산 장치 기술 분야에 산업상 이용가능하다.The present invention can be industrially used in the technical field of a hydrogen production device capable of improving the performance of a pyrolysis reaction and effectively recovering hydrogen and carbon while simplifying and reducing maintenance costs of the pyrolysis reaction process and device.

Claims (8)

  1. 반응공간으로 유입된 탄화수소가스를 열분해하여 수소가스 및 탄소입자를 포함한 반응생성물을 생성하는 반응부;a reaction unit for generating reaction products including hydrogen gas and carbon particles by thermally decomposing the hydrocarbon gas introduced into the reaction space;
    상기 반응공간으로 탄화수소가스를 공급하기 위한 가스공급부;a gas supply unit for supplying hydrocarbon gas into the reaction space;
    상기 가스공급부의 하류에 배치되며, 상기 반응공간에서 생성된 탄소입자를 회수하여 상기 가스공급부로부터 이송되는 탄화수소가스와 함께 배출하는 탄소회수부; 및a carbon recovery unit disposed downstream of the gas supply unit, recovering carbon particles generated in the reaction space, and discharging them together with the hydrocarbon gas transported from the gas supply unit; and
    상기 탄소회수부의 하류에서 상기 반응부의 전단에 연결되며, 상기 탄소회수부로부터 이송되는 탄소입자가 포함된 탄화수소가스로부터 탄소입자를 분리하고, 탄소입자가 분리된 탄화수소가스가 상기 반응공간으로 공급되도록 하는 탄소분리부;를 포함하는 것을 특징으로 하는 수소 생산 장치.Connected to the front end of the reaction unit at the downstream of the carbon recovery unit, separating carbon particles from hydrocarbon gas containing carbon particles transferred from the carbon recovery unit, and supplying the hydrocarbon gas from which the carbon particles are separated to the reaction space Hydrogen production device comprising a; carbon separation unit.
  2. 제1항에 있어서,According to claim 1,
    상기 탄소회수부는,The carbon recovery unit,
    상기 반응공간에 존재하는 탄소입자가 흡입되도록 상기 가스공급부로부터 공급되는 탄화수소가스의 이송압력을 변화시켜 상기 반응공간의 내부압력보다 낮은 내부압력을 형성하는 유동조절부를 포함하는 것을 특징으로 하는 수소 생산 장치.Hydrogen production apparatus comprising a flow control unit for forming an internal pressure lower than the internal pressure of the reaction space by changing the transfer pressure of the hydrocarbon gas supplied from the gas supply unit so that the carbon particles present in the reaction space are sucked .
  3. 제1항에 있어서,According to claim 1,
    상기 탄소분리부는,The carbon separation unit,
    상기 탄소회수부로부터 이송되는 탄화수소가스의 사이클론 유동을 유도하여 탄화수소가스에 포함된 탄소입자를 분리하는 사이클론 챔버를 포함하는 것을 특징으로 하는 수소 생산 장치.Hydrogen production apparatus comprising a cyclone chamber for separating carbon particles contained in the hydrocarbon gas by inducing a cyclone flow of the hydrocarbon gas transferred from the carbon recovery unit.
  4. 제1항에 있어서,According to claim 1,
    상기 반응부는,The reaction part,
    상기 반응공간을 형성하는 반응챔버와,a reaction chamber forming the reaction space;
    상기 반응공간의 일부분에 채워지는 촉매부와,A catalyst part filled in a part of the reaction space;
    상기 반응챔버를 감싸도록 배치되며, 상기 반응공간을 가열하기 위한 히터를 가지는 퍼니스부를 포함하는 것을 특징으로 하는 수소 생산 장치.and a furnace unit disposed to surround the reaction chamber and having a heater for heating the reaction space.
  5. 제4항에 있어서,According to claim 4,
    상기 촉매부는,The catalyst part,
    상기 반응공간의 하부영역에 일정 높이로 채워지며, 설정된 온도영역에서 액체 상태를 유지하는 액체금속촉매를 포함하는 것을 특징으로 하는 수소 생산 장치.Hydrogen production device comprising a liquid metal catalyst filled to a certain height in the lower region of the reaction space and maintaining a liquid state in a set temperature region.
  6. 제5항에 있어서,According to claim 5,
    상기 반응부는,The reaction part,
    상기 탄소분리부로부터 이송되는 탄화수소가스를 상기 촉매부에 공급하기 위하여, 상기 반응공간의 하부영역으로 연장하여 배치되는 가스이송관을 더 포함하는 것을 특징으로 하는 수소 생산 장치.The hydrogen production device further comprises a gas transfer pipe disposed extending to a lower region of the reaction space to supply the hydrocarbon gas transferred from the carbon separator to the catalyst unit.
  7. 제4항에 있어서,According to claim 4,
    상기 촉매부는,The catalyst part,
    상기 반응공간의 중간영역에 일정 높이로 채워지는 고체촉매를 포함하는 것을 특징으로 하는 수소 생산 장치.Hydrogen production apparatus comprising a solid catalyst filled to a certain height in the middle region of the reaction space.
  8. 제7항에 있어서,According to claim 7,
    상기 반응부는,The reaction part,
    상기 탄소분리부에서 배출되는 배출물을 상기 반응공간의 내부로 안내하는 유입부를 더 포함하고,Further comprising an inlet for guiding the exhaust discharged from the carbon separation unit to the inside of the reaction space,
    상기 유입부를 통하여 상기 반응공간으로 유입되는 상기 배출물 중 탄소는 상기 반응공간에서의 촉매 반응을 활성화하는 것을 특징으로 하는 수소 생산 장치.Hydrogen production apparatus, characterized in that the carbon of the exhaust introduced into the reaction space through the inlet activates a catalytic reaction in the reaction space.
PCT/KR2022/012347 2021-09-03 2022-08-18 Hydrogen production device WO2023033416A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210117548A KR102419495B1 (en) 2021-09-03 2021-09-03 Hydrogen production apparatus
KR10-2021-0117548 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023033416A1 true WO2023033416A1 (en) 2023-03-09

Family

ID=82396340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012347 WO2023033416A1 (en) 2021-09-03 2022-08-18 Hydrogen production device

Country Status (2)

Country Link
KR (1) KR102419495B1 (en)
WO (1) WO2023033416A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639053B1 (en) * 2023-01-27 2024-02-21 화이버텍 (주) Thermal cracking reactor of hydrocarbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253886A1 (en) * 2004-04-06 2007-11-01 Universite De Sherbrooke Carbon sequestration and dry reforming process and catalysts to produce same
WO2008029927A1 (en) * 2006-09-08 2008-03-13 Nano Process Institute Co., Ltd. Method for production of carbon nanotube
US20120219490A1 (en) * 2009-09-10 2012-08-30 Suguru Noda Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
JP2021503430A (en) * 2017-11-16 2021-02-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Simultaneous reaction and separation of chemical substances
JP2021031382A (en) * 2019-08-14 2021-03-01 ゼネラル・エレクトリック・カンパニイ Production system and method for generating hydrogen gas and carbon products

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547422B2 (en) 2006-03-13 2009-06-16 Praxair Technology, Inc. Catalytic reactor
KR101430138B1 (en) * 2012-12-03 2014-08-13 성균관대학교산학협력단 Method and apparatus for continuous catalytic decomposition of hydrocarbon
RU2650171C2 (en) * 2012-12-21 2018-04-09 Басф Се Parallel preparation of hydrogen, carbon monoxide and carbon-comprising product
KR101419857B1 (en) * 2014-03-31 2014-07-17 성균관대학교산학협력단 Method and apparatus for continuous catalytic decomposition of hydrocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253886A1 (en) * 2004-04-06 2007-11-01 Universite De Sherbrooke Carbon sequestration and dry reforming process and catalysts to produce same
WO2008029927A1 (en) * 2006-09-08 2008-03-13 Nano Process Institute Co., Ltd. Method for production of carbon nanotube
US20120219490A1 (en) * 2009-09-10 2012-08-30 Suguru Noda Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
JP2021503430A (en) * 2017-11-16 2021-02-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Simultaneous reaction and separation of chemical substances
JP2021031382A (en) * 2019-08-14 2021-03-01 ゼネラル・エレクトリック・カンパニイ Production system and method for generating hydrogen gas and carbon products

Also Published As

Publication number Publication date
KR102419495B1 (en) 2022-07-11

Similar Documents

Publication Publication Date Title
WO2023033416A1 (en) Hydrogen production device
WO2017202279A1 (en) Dust-cleaning device, dust-cleaning system consisting of dust-cleaning device, and dust-cleaning method therefor
WO2014104596A1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method
WO2011087199A1 (en) Molten iron manufacturing apparatus for reducing emissions of carbon dioxide
WO2015096177A1 (en) Method, apparatus and special phosphorus recovery device for recovering yellow phosphorus from electric furnace phosphorus-producing furnace gas
WO2011081276A1 (en) Apparatus for manufacturing molten iron
IT8320752A1 (en) METHOD TO RECOVER OXYGEN FROM CARBON DIOXIDE CONVERSION SYSTEMS
WO2017003066A1 (en) Hydrogen generator and hydrogen production method, using steam plasma
WO2019190244A1 (en) System for producing carbon monoxide and hydrogen from carbon dioxide and water by using reversible oxidation-reduction converter and method therefor
CN111068917B (en) Dry-type medium-high temperature grading electro-filtration dust removal method and device for flue gas of carbothermic reduction furnace
TW201020020A (en) Method for scrubbing a flue gas of a metallurgical plant and flue gas scrubbing apparatus
WO2019200922A1 (en) Electrostatic dust removal device for high-temperature coal gas
WO2017057942A1 (en) Apparatus and method for manufacturing carbon monoxide using steam plasma
CN105861077A (en) Dust removing and tar removing device and method for high-tar and high-dust high-temperature gas
WO2016117736A1 (en) System for treating non-biodegradable harmful gases
JP2009001602A (en) Cleaning method and apparatus for gassified gas
WO2020141642A1 (en) Hazardous gas treatment system based on plasma and dielectric heating catalyst
WO2012064027A2 (en) Method and device for removing dust particles from reducing gas
WO2012091407A2 (en) Apparatus for manufacturing molten steel, and method for manufacturing molten steel using same
WO2012138191A2 (en) Apparatus and method for treating coke oven gas
CN214829020U (en) Natural gas hydrogen production system
JP3861075B2 (en) Fullerene production method and equipment
WO2024029806A1 (en) Molten iron production facility and molten iron production method
WO2024029807A1 (en) Molten iron manufacturing equipment and molten iron manufacturing method
JP2009256143A (en) Process for production of silicon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864920

Country of ref document: EP

Kind code of ref document: A1