WO2023033351A1 - 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물 - Google Patents

헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물 Download PDF

Info

Publication number
WO2023033351A1
WO2023033351A1 PCT/KR2022/010212 KR2022010212W WO2023033351A1 WO 2023033351 A1 WO2023033351 A1 WO 2023033351A1 KR 2022010212 W KR2022010212 W KR 2022010212W WO 2023033351 A1 WO2023033351 A1 WO 2023033351A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
heterocyclic compound
Prior art date
Application number
PCT/KR2022/010212
Other languages
English (en)
French (fr)
Inventor
박건유
노영석
김동준
Original Assignee
엘티소재주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티소재주식회사 filed Critical 엘티소재주식회사
Publication of WO2023033351A1 publication Critical patent/WO2023033351A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a heterocyclic compound, an organic light emitting device including the same, and a composition for an organic material layer of an organic light emitting device.
  • An organic light emitting device is a type of self-luminous display device, and has advantages such as a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes are combined in the organic thin film to form a pair, and then emit light while disappearing.
  • the organic thin film may be composed of a single layer or multiple layers as needed.
  • the material of the organic thin film may have a light emitting function as needed.
  • a compound capable of constituting the light emitting layer by itself may be used, or a compound capable of serving as a host or dopant of the host-dopant type light emitting layer may be used.
  • a compound capable of performing functions such as hole injection, hole transport, electron blocking, hole blocking, electron transport, and electron injection may be used.
  • Patent Document 1 US Patent No. 4,356,429
  • the present invention is to provide a heterocyclic compound, an organic light emitting device including the same, and a composition for an organic material layer of the organic light emitting device.
  • the present invention provides a heterocyclic compound represented by Formula 1 below:
  • R1 to R12 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; And a substituted or unsubstituted C2 to C60 heteroaryl group; selected from the group consisting of, wherein at least one of R1 to R12 is deuterium,
  • X1, X2 and X3 are the same as or different from each other, each independently represent NAr1, O, S or CR13R14, at least two or more of X1, X2 and X3 are NAr1, the plurality of Ar1s are different from each other, any of these One is a group represented by Formula 1-1 below,
  • Ar1 is each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; A substituted or unsubstituted C2 to C60 heteroaryl group; And it is selected from the group consisting of a group represented by Formula 1-1 below,
  • L1 and L2 are the same as or different from each other, and each independently a single bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • Ar2 and Ar3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; And a substituted or unsubstituted C2 to C60 heteroaryl group; selected from the group consisting of
  • a and b are the same as or different from each other, and each independently represents an integer from 0 to 3;
  • R13 and R14 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; And a substituted or unsubstituted C2 to C60 heteroaryl group; is selected from the group consisting of.
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the heterocyclic compound represented by Chemical Formula 1. do.
  • the present invention provides an organic light emitting device wherein the organic material layer further includes a heterocyclic compound represented by Chemical Formula 2:
  • R101 to R114 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; And a substituted or unsubstituted C2 to C60 heteroaryl group; selected from the group consisting of
  • L3 and L4 are the same as or different from each other, and each independently a single bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • n and n are the same as or different from each other, and are each independently an integer of 0 to 3.
  • the present invention provides a composition for an organic material layer of an organic light emitting device including the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2.
  • the heterocyclic compound according to an embodiment may be used as a material for an organic material layer of an organic light emitting device.
  • the compound may serve as a hole injection layer material, an electron blocking layer material, a hole transport layer material, an emission layer material, an electron transport layer material, a hole blocking layer material, and an electron injection layer material in an organic light emitting device.
  • the compound may be used as a material for a light emitting layer of an organic light emitting device.
  • the heterocyclic compound may be used as a light emitting material alone or in combination with a P-type host, and may be used as a host material or a dopant material of a light emitting layer.
  • the compound represented by Chemical Formula 1 is used in the organic material layer, the driving voltage of the organic light emitting device can be lowered, the light emitting efficiency can be improved, and the lifetime characteristics can be improved.
  • heterocyclic compound according to one embodiment when used as a light emitting layer, hole transport and electron transport characteristics are enhanced, and the band gap and triplet energy level (T1 level) value, improve hole transfer ability, increase molecular stability, lower driving voltage of organic light emitting device, improve light efficiency, and improve lifetime characteristics of organic light emitting device by improved thermal stability of compound can make it
  • FIGS. 1 to 3 are diagrams schematically illustrating a stacked structure of an organic light emitting device according to an exemplary embodiment of the present invention.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is changed to another substituent, and the position to be substituted is not limited as long as the hydrogen atom is substituted, that is, the position where the substituent is substituted , When two or more substituents are substituted, two or more substituents may be the same as or different from each other.
  • the halogen may be fluorine, chlorine, bromine or iodine.
  • the alkyl group includes a straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkyl group may be 1 to 60, specifically 1 to 40, and more specifically, 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, n-octyl group,
  • the alkenyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the alkenyl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically, 2 to 20.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1 -butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(naphthyl-1-yl)vinyl-1-yl group, 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, stilbenyl group, styrenyl group, etc., but is not limited thereto.
  • the alkynyl group includes a straight chain or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkynyl group may be 2 to 60, specifically 2 to 40, and more specifically, 2 to 20.
  • the alkoxy group may be straight chain, branched chain or cyclic chain.
  • the number of carbon atoms in the alkoxy group is not particularly limited, but is preferably 1 to 20 carbon atoms.
  • the cycloalkyl group includes a monocyclic or polycyclic group having 3 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a cycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a cycloalkyl group, but may also be another type of ring group, such as a heterocycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the number of carbon atoms in the cycloalkyl group may be 3 to 60, specifically 3 to 40, and more specifically 5 to 20.
  • the heterocycloalkyl group includes O, S, Se, N or Si as a hetero atom, includes a monocyclic or polycyclic ring having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may also be another type of ring group, such as a cycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the heterocycloalkyl group may have 2 to 60, specifically 2 to 40, and more specifically 3 to 20 carbon atoms.
  • the aryl group includes a monocyclic or polycyclic ring having 6 to 60 carbon atoms, and may be further substituted with other substituents.
  • the polycyclic means a group in which an aryl group is directly connected or condensed with another cyclic group.
  • the other ring group may be an aryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, and the like.
  • the aryl group includes a spiro group.
  • the number of carbon atoms of the aryl group may be 6 to 60, specifically 6 to 40, and more specifically 6 to 25.
  • aryl group examples include a phenyl group, a biphenyl group, a triphenyl group, a naphthyl group, anthryl group, a chrysenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, a phenalenyl group, and a pyrene group.
  • Nyl group tetracenyl group, pentacenyl group, fluorenyl group, indenyl group, acenaphthylenyl group, benzofluorenyl group, spirobifluorenyl group, 2,3-dihydro-1H-indenyl group, condensed ring groups thereof and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and adjacent substituents may bond to each other to form a ring.
  • the heteroaryl group includes S, O, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic group having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, an aryl group, and the like.
  • the heteroaryl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically 3 to 25 carbon atoms.
  • heteroaryl group examples include a pyridyl group, a pyrrolyl group, a pyrimidyl group, a pyridazinyl group, a furanyl group, a thiophene group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, and a thiazolyl group.
  • the amine group is a monoalkylamine group; monoarylamine group; Monoheteroarylamine group; -NH 2 ; Dialkylamine group; Diaryl amine group; Diheteroarylamine group; an alkyl arylamine group; Alkylheteroarylamine group; And it may be selected from the group consisting of an arylheteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, a dibiphenylamine group, an anthracenylamine group, a 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluorene
  • Examples include a ylamine group, a phenyltriphenylenylamine group, a biphenyltriphenylenylamine group, and the like, but are not limited thereto.
  • the arylene group means that the aryl group has two bonding sites, that is, a divalent group.
  • the description of the aryl group described above can be applied except that each is a divalent group.
  • the heteroarylene group means a heteroaryl group having two bonding sites, that is, a divalent group. The above description of the heteroaryl group may be applied except that each is a divalent group.
  • adjacent refers to a substituent substituted on an atom directly connected to the atom on which the substituent is substituted, a substituent located sterically closest to the substituent, or another substituent substituted on the atom on which the substituent is substituted.
  • two substituents substituted at ortho positions in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as “adjacent” to each other.
  • "when no substituent is shown in the chemical formula or compound structure” may mean that all positions at which the substituent can occur are hydrogen or deuterium. That is, deuterium is an isotope of hydrogen, and some hydrogen atoms may be an isotope of deuterium, and in this case, the content of deuterium may be 0% to 100%.
  • deuterium is one of the isotopes of hydrogen and is an element having a deuteron composed of one proton and one neutron as an atomic nucleus, hydrogen- It can be expressed as 2, and the element symbol can also be written as D or 2H.
  • isotopes which mean atoms having the same atomic number (Z) but different mass numbers (A), have the same number of protons, but have neutrons. It can also be interpreted as an element with a different number of neutrons.
  • the meaning of the content T% of a specific substituent is when the total number of substituents that a base compound can have is defined as T1, and the number of specific substituents among them is defined as T2.
  • the phenyl group represented by 20% of the deuterium content may mean that the total number of substituents that the phenyl group may have is 5 (T1 in the formula), and the number of deuterium is 1 (T2 in the formula) . That is, it can be represented by the following structural formula that the content of deuterium in the phenyl group is 20%.
  • a phenyl group having a deuterium content of 0% it may mean a phenyl group that does not contain deuterium atoms, that is, has 5 hydrogen atoms.
  • the C6 to C60 aromatic hydrocarbon ring means a compound containing an aromatic ring composed of C6 to C60 carbons and hydrogen, for example, phenyl, biphenyl, terphenyl, triphenylene, naphthalene, Anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene, etc. may be mentioned, but is not limited thereto, and an aromatic hydrocarbon ring compound known in the art as having the above number of carbon atoms may be used. All inclusive.
  • the present invention provides a heterocyclic compound represented by Formula 1 below:
  • R1 to R12 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; And a substituted or unsubstituted C2 to C60 heteroaryl group; selected from the group consisting of, wherein at least one of R1 to R12 is deuterium,
  • X1, X2 and X3 are the same as or different from each other, each independently represent NAr1, O, S or CR13R14, at least two or more of X1, X2 and X3 are NAr1, the plurality of Ar1s are different from each other, any of these One is a group represented by Formula 1-1 below,
  • Ar1 is each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; A substituted or unsubstituted C2 to C60 heteroaryl group; And it is selected from the group consisting of a group represented by Formula 1-1 below,
  • L1 and L2 are the same as or different from each other, and each independently a single bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • Ar2 and Ar3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; And a substituted or unsubstituted C2 to C60 heteroaryl group; selected from the group consisting of
  • a and b are the same as or different from each other, and each independently represents an integer from 0 to 3;
  • R13 and R14 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; And a substituted or unsubstituted C2 to C60 heteroaryl group; is selected from the group consisting of.
  • X1 and X2 are NAr1, and X3 can be O, S or CR13R14.
  • X1 and X3 are NAr1 and X2 can be O, S or CR13R14.
  • the heterocyclic compound represented by Formula 1 may be any one of Formula 1-a and Formula 1-b, but is not limited to these examples:
  • X3 is O, S or CR13R14;
  • R1 to R14 and Ar1 are as defined in Formula 1 above,
  • Ar1' is the same as the definition of Ar1,
  • Ar1 and Ar1' are different from each other, and one of them is a group represented by Formula 1-1;
  • X2 is O, S or CR13R14;
  • R1 to R14 and Ar1 are as defined in Formula 1 above,
  • Ar1' is the same as the definition of Ar1,
  • Ar1 and Ar1' are different from each other, and either one of them is a group represented by Formula 1-1.
  • Ar1 is a group represented by Formula 1-1, and Ar1' is a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar1 is a group represented by Formula 1-1, and Ar1' is a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar1' is a group represented by Formula 1-1, and Ar1 is a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar1' is a group represented by Formula 1-1, and Ar1 is a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar1 is a group represented by Formula 1-1, and Ar1' is a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar1 is a group represented by Formula 1-1, and Ar1' is a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar1' is a group represented by Formula 1-1, and Ar1 is a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar1' is a group represented by Formula 1-1, and Ar1 is a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar1 and Ar1' are each independently a group represented by Formula 1-1 and Formula 1-2-a to 1-2- It may be a heterocyclic compound which is any one of the groups represented by g:
  • Ar2 and Ar3 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C30 aryl group; Or a substituted or unsubstituted C2 to C30 heteroaryl group,
  • L1, L2, a and b are as defined in Formula 1 above,
  • R21 to R60 are hydrogen or deuterium
  • X4 is O, S or CR61R62;
  • R61 and R62 are methyl groups
  • p, q and r are the same as or different from each other, and are each independently an integer of 3 to 5.
  • Ar2 and Ar3 may be a C6 to C30 aryl group substituted with deuterium or a C2 to C30 heteroaryl group substituted with deuterium.
  • R21 to R60 in Chemical Formulas 1-2-a to 1-2-g may be deuterium.
  • R1 to R12 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C30 alkyl group; A substituted or unsubstituted C2 to C30 alkenyl group; A substituted or unsubstituted C2 to C30 alkynyl group; A substituted or unsubstituted C1 to C30 alkoxy group; A substituted or unsubstituted C3 to C30 cycloalkyl group; A substituted or unsubstituted C2 to C30 heterocycloalkyl group; A substituted or unsubstituted C6 to C30 aryl group; and a substituted or unsubstituted C2 to C30 heteroaryl group; wherein at least one of R1 to R12 may be deuterium.
  • R1 to R12 are hydrogen or deuterium, and at least one of R1 to R12 may be deuterium.
  • R1 to R12 may be deuterium.
  • L1 and L2 are the same as or different from each other, and each independently a single bond; A substituted or unsubstituted C6 to C30 arylene group; Or it may be a substituted or unsubstituted C2 to C30 heteroarylene group, a and b may be the same as or different from each other, and each independently may be an integer of 0 to 3.
  • L1 and L2 are the same as or different from each other, and each independently a single bond; A substituted or unsubstituted C6 to C20 arylene group; Or it may be a substituted or unsubstituted C2 to C20 heteroarylene group, a and b may be the same as or different from each other, and each independently may be an integer of 0 to 3.
  • L1 and L2 may be the same as or different from each other, and may each independently have the following structures, but are not limited to these examples:
  • Ar2 and Ar3 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • Ar2 and Ar3 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar2 and Ar3 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar2 and Ar3 are the same as or different from each other, and each independently may have the following structure, but is not limited to these examples:
  • R13 and R14 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C2 to C20 alkenyl group; A substituted or unsubstituted C2 to C20 alkynyl group; A substituted or unsubstituted C1 to C20 alkoxy group; A substituted or unsubstituted C3 to C20 cycloalkyl group; A substituted or unsubstituted C2 to C20 heterocycloalkyl group; A substituted or unsubstituted C6 to C20 aryl group; It may be selected from the group consisting of; and a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R13 and R14 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C10 alkyl group; A substituted or unsubstituted C2 to C10 alkenyl group; A substituted or unsubstituted C2 to C10 alkynyl group; and a substituted or unsubstituted C1 to C10 alkoxy group.
  • R13 and R14 are the same as or different from each other, and each independently may be a methyl group, an ethyl group, a propyl group, and the like.
  • the heterocyclic compound represented by Formula 1 may not contain deuterium as a substituent, or may have a deuterium content of 1% to 100% based on the total number of hydrogen atoms and deuterium atoms.
  • the heterocyclic compound represented by Formula 1 may not contain deuterium as a substituent, or the content of deuterium may be 10% to 100% based on the total number of hydrogen atoms and deuterium atoms.
  • the heterocyclic compound represented by Formula 1 may not contain deuterium as a substituent, or the content of deuterium based on the total number of hydrogen atoms and deuterium atoms may be 20% to 90%.
  • the heterocyclic compound represented by Formula 1 may not contain deuterium as a substituent, or the content of deuterium may be 30% to 80% based on the total number of hydrogen atoms and deuterium atoms.
  • the content of deuterium in R1 to R12 may be 1% to 100% based on the total number of hydrogen atoms and deuterium atoms.
  • the content of deuterium in R1 to R12 may be 5% to 95% based on the total number of hydrogen atoms and deuterium atoms.
  • the content of deuterium in R1 to R12 may be 10% to 90% based on the total number of hydrogen atoms and deuterium atoms.
  • the heterocyclic compound represented by Formula 1 does not contain deuterium as a substituent, or the content of deuterium in R1 to R12 is greater than 0%, 5% or more, or 10% based on the total number of hydrogen atoms and deuterium atoms. Can be greater than, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50%, 100% or less, 95% or less, 90% or less, 85 % or less, 80% or less, 75% or less, 70% or less, 65% or less or 60% or less.
  • Ar2 and Ar3 may be an aryl group or a heteroaryl group substituted with deuterium, and in this case, the content of deuterium based on the total number of hydrogen atoms and deuterium atoms is 1 % to 100%.
  • Ar2 and Ar3 may be an aryl group or a heteroaryl group substituted with deuterium, and in this case, the content of deuterium based on the total number of hydrogen atoms and deuterium atoms is 5 % to 95%.
  • Ar2 and Ar3 may be an aryl group or a heteroaryl group substituted with deuterium, and in this case, the content of deuterium based on the total number of hydrogen atoms and deuterium atoms is 10 % to 90%.
  • the substituents do not contain deuterium, or the content of deuterium in the substituent is based on the total number of hydrogen atoms and deuterium atoms can be greater than 0%, greater than 1%, greater than 5%, greater than 10%, greater than 15%, greater than 20%, greater than 25%, greater than 30%, greater than 35%, greater than 40%, greater than 45%, or greater than 50% 100% or less, 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, or 60% or less.
  • R21 to R60 do not contain deuterium, or the content of deuterium in R21 to R60 is based on the total number of hydrogen atoms and deuterium atoms. It may be 1% to 100%.
  • R21 to R60 do not contain deuterium, or the content of deuterium in R21 to R60 is based on the total number of hydrogen atoms and deuterium atoms. It may be 5% to 95%.
  • R21 to R60 do not contain deuterium, or the content of deuterium in R21 to R60 is based on the total number of hydrogen atoms and deuterium atoms. It may be 10% to 90%.
  • R21 to R60 do not contain deuterium, or the content of deuterium in R21 to R60 exceeds 0% based on the total number of hydrogen atoms and deuterium atoms; 1% or more, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more, and 100% or less , 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, or 60% or less.
  • the heterocyclic compound represented by Formula 1 may be any one selected from the group consisting of the following compounds:
  • substituents in the structure of Chemical Formula 1, compounds having unique characteristics of the introduced substituents can be synthesized.
  • a substituent mainly used in hole injection layer materials, hole transport layer materials, electron blocking layer materials, light emitting layer materials, electron transport layer materials, hole blocking layer materials, and electron injection layer materials used in the manufacture of organic light emitting devices is introduced into the core structure. By doing so, it is possible to synthesize a material that satisfies the conditions required by each organic layer.
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a heterocyclic compound represented by Chemical Formula 1.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a cathode
  • the second electrode may be an anode
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the blue organic light emitting device.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for an emission layer of the red organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for a light emitting layer of the green organic light emitting device.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for a light emitting layer of the blue organic light emitting device.
  • the organic light emitting diode of the present invention may be manufactured by conventional organic light emitting diode manufacturing methods and materials, except for forming one or more organic material layers using the aforementioned heterocyclic compound.
  • the heterocyclic compound may form an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron injection layer, an electron transport layer, a battery blocking layer, a hole blocking layer, and the like as organic material layers.
  • the structure of the organic light emitting diode is not limited thereto and may include a smaller number of organic material layers.
  • the organic light emitting device includes one layer or two or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a battery blocking layer, and a hole blocking layer. It may further include, and the one or more layers may include the heterocyclic compound.
  • the organic light emitting device may include one or more organic material layers, the organic material layer may include a light emitting layer, and the light emitting layer may include a heterocyclic compound represented by Chemical Formula 1. there is.
  • the organic material layer may include a light emitting layer, the light emitting layer may include a host material, and the host material may include the heterocyclic compound.
  • the organic light emitting device may include a heterocyclic compound represented by Formula 1, and may further include a heterocyclic compound represented by Formula 2 below:
  • R101 to R114 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; And a substituted or unsubstituted C2 to C60 heteroaryl group; selected from the group consisting of
  • L3 and L4 are the same as or different from each other, and each independently a single bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • n and n are the same as or different from each other, and are each independently an integer of 0 to 3.
  • R21 to R34 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C30 alkyl group; A substituted or unsubstituted C2 to C30 alkenyl group; A substituted or unsubstituted C2 to C30 alkynyl group; It may be selected from the group consisting of; and a substituted or unsubstituted C1 to C30 alkoxy group.
  • R101 to R114 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C10 alkyl group; A substituted or unsubstituted C2 to C10 alkenyl group; A substituted or unsubstituted C2 to C10 alkynyl group; It may be selected from the group consisting of; and a substituted or unsubstituted C1 to C30 alkoxy group.
  • R101 to R114 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; It may be selected from the group consisting of a halogen and a cyano group.
  • R101 to R114 are the same as or different from each other, and each independently may be hydrogen or deuterium.
  • L3 and L4 are the same as or different from each other, and each independently a single bond; A substituted or unsubstituted C6 to C30 arylene group; Or it may be a substituted or unsubstituted C2 to C30 heteroarylene group, m and n are the same as or different from each other, and each independently may be an integer of 0 to 3.
  • L3 and L4 are the same as or different from each other, and each independently a single bond; A substituted or unsubstituted C6 to C20 arylene group; Or it may be a substituted or unsubstituted C2 to C20 heteroarylene group, m and n are the same as or different from each other, and each independently may be an integer of 0 to 3.
  • the heterocyclic compound represented by Formula 2 may not contain deuterium as a substituent, or may have a deuterium content of 1% to 100% based on the total number of hydrogen atoms and deuterium atoms.
  • the heterocyclic compound represented by Formula 2 may not contain deuterium as a substituent, or the content of deuterium may be 10% to 100% based on the total number of hydrogen atoms and deuterium atoms.
  • the heterocyclic compound represented by Formula 2 may not contain deuterium as a substituent, or the content of deuterium may be 20% to 90% based on the total number of hydrogen atoms and deuterium atoms.
  • the heterocyclic compound represented by Formula 2 may not contain deuterium as a substituent, or the content of deuterium may be 30% to 80% based on the total number of hydrogen atoms and deuterium atoms.
  • the heterocyclic compound represented by Formula 2 does not contain deuterium as a substituent, or the content of deuterium is greater than 0%, 10% or more, 20% or more, or 30% based on the total number of hydrogen atoms and deuterium atoms. It may be more than, 40% or more, or 50% or more, and may be 100% or less, 90% or less, 80% or less, 70% or less, or 60% or less.
  • the heterocyclic compound represented by Formula 2 may be any one selected from the group consisting of the following compounds:
  • the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 may be included.
  • the organic light emitting device of the present invention when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 2 are mixed and included, excellent driving voltage, luminous efficiency and lifetime of the organic light emitting device are obtained. can be improved This can be expected to occur when the two heterocyclic compounds are mixed and included at the same time.
  • the exciplex phenomenon is a phenomenon in which an energy difference between a HOMO energy level of a donor (p-host) and a LUMO energy level of an acceptor (n-host) is released by electron exchange between two molecules.
  • RISC reverse intersystem crossing
  • the internal quantum efficiency of fluorescence can be increased to 100%.
  • a donor (p-host) with good hole transport ability and an acceptor (n-host) with good electron transport ability are used as the host of the light emitting layer, holes are injected into the p-host and electrons are injected into the n-host. Since it is injected, the driving voltage can be lowered, thereby helping to improve the lifespan. That is, when the compound represented by Chemical Formula 1 is used as the acceptor and the compound represented by Chemical Formula 2 is used as the donor, excellent characteristics of the organic light emitting device are exhibited.
  • the organic light emitting device when the organic light emitting device includes a mixture of the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2, the heterocyclic compounds contain deuterium as a substituent. Alternatively, at least one of the heterocyclic compounds may have a deuterium content greater than 0% and less than or equal to 100%.
  • the organic light emitting device when the organic light emitting device includes a mixture of the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2, the heterocyclic compounds contain deuterium as a substituent. It may not contain, or at least one of the heterocyclic compounds may have a deuterium content of 10% to 100%.
  • the organic light emitting device when the organic light emitting device includes a mixture of the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2, the heterocyclic compounds contain deuterium as a substituent. It may not contain, or at least one of the heterocyclic compounds may have a deuterium content of 15% to 95%.
  • the organic light emitting device when the organic light emitting device includes a mixture of the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2, the heterocyclic compounds contain deuterium as a substituent. It may not contain, or at least one of the heterocyclic compounds may have a deuterium content of 20% to 80%.
  • the organic light-emitting device includes a mixture of the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2, the heterocyclic compounds do not contain deuterium as a substituent, or At least one of the heterocyclic compounds has a deuterium content of more than 0%, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more , or 50% or more, 100% or less, 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, or 60% or less.
  • one embodiment of the present invention provides a composition for an organic material layer of an organic light emitting device including the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 below.
  • the weight ratio of the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 2 in the composition for the organic layer of the organic light emitting device is 1:10 to 10:1, 1:8 to 8:1, 1:6 to 6:1, 1:4 to 4:1, 1:3 to 3:1, or 1:2 to 2:1, but not limited thereto it is not going to be
  • composition for the organic material layer of the organic light emitting device can be used when forming the organic material layer of the organic light emitting device, and can be more preferably used when forming the host of the light emitting layer.
  • the organic material layer includes a heterocyclic compound represented by Chemical Formula 1 and a heterocyclic compound represented by Chemical Formula 2, and may be used together with a phosphorescent dopant.
  • phosphorescent dopant material those known in the art may be used.
  • phosphorescent dopant materials represented by LL'MX', LL'L"M, LMX'X", L2MX', and L3M may be used, but the scope of the present invention is not limited by these examples.
  • the M may be iridium, platinum, osmium, or the like.
  • L is an anionic bidentate ligand coordinated to M by sp 2 carbon and a hetero atom
  • X may function to trap electrons or holes.
  • Non-limiting examples of L, L' and L" include 2-(1-naphthyl)benzoxazole, 2-phenylbenzoxazole, 2-phenylbenzothiazole, 7,8-benzoquinoline, phenylpyridine, benzo thiophenylpyridine, 3-methoxy-2-phenylpyridine, thiophenylpyridine, tolylpyridine, etc.
  • Non-limiting examples of X' and X" include acetylacetonate (acac), hexafluoroacetylacetonate, salicylate Silidene, picolinate, 8-hydroxyquinolinate and the like.
  • the organic material layer includes the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2, and may be used together with an iridium-based dopant.
  • Ir(ppy) 3 may be used as a green phosphorescent dopant as the iridium-based dopant.
  • the content of the dopant may have a content of 1% to 15%, preferably 2% to 10%, more preferably 3% to 7% based on the total weight of the light emitting layer. .
  • the organic material layer may include an electron injection layer or an electron transport layer, and the electron injection layer or electron transport layer may include a heterocyclic compound represented by Chemical Formula 1.
  • the organic material layer may include an electron blocking layer or a hole blocking layer, and the electron blocking layer or hole blocking layer may include a heterocyclic compound represented by Chemical Formula 1. .
  • the organic material layer may include an electron transport layer, a light emitting layer, or a hole blocking layer, and the electron transport layer, the light emitting layer, or the hole blocking layer may include a heterocyclic compound represented by Chemical Formula 1.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include a heterocyclic compound represented by Chemical Formula 1.
  • the organic material layer includes a light emitting layer
  • the light emitting layer includes a host material
  • the host material may include a heterocyclic compound represented by Chemical Formula 1 above.
  • the organic light emitting device may further include one layer or two or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron blocking layer, and a hole blocking layer. .
  • FIG. 1 to 3 illustrate the stacking order of the electrode and the organic material layer of the organic light emitting device according to an embodiment of the present invention.
  • the scope of the present application be limited by these drawings, and structures of organic light emitting devices known in the art may be applied to the present application as well.
  • an organic light emitting device in which an anode 200, an organic material layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is shown.
  • an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting device according to FIG. 3 includes a hole injection layer 301, a hole transport layer 302, an emission layer 303, a hole blocking layer 304, an electron transport layer 305, and an electron injection layer 306.
  • a hole injection layer 301 a hole transport layer 302
  • an emission layer 303 a hole transport layer 302
  • a hole blocking layer 304 a hole blocking layer 304
  • an electron transport layer 305 a hole blocking layer 306.
  • the scope of the present application is not limited by such a laminated structure, and layers other than the light emitting layer may be omitted as necessary, and other necessary functional layers may be further added.
  • the forming of the organic material layer is performed by pre-mixing the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2, and performing a thermal vacuum deposition method. It may be formed using.
  • the pre-mixing means that the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 are first mixed and mixed in one source before depositing the heterocyclic compound represented by Chemical Formula 2 on the organic layer.
  • the premixed material may be referred to as a composition for an organic layer according to an exemplary embodiment of the present application.
  • the organic material layer including the heterocyclic compound represented by Chemical Formula 1 may further include other materials as needed.
  • the organic material layer including both the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 may further include other materials as needed.
  • materials other than the heterocyclic compound represented by Formula 1 or the heterocyclic compound represented by Formula 2 are exemplified below, but these are for illustrative purposes only. It is not intended to limit the scope of, and may be replaced with materials known in the art.
  • anode material Materials having a relatively high work function may be used as the anode material, and transparent conductive oxides, metals, or conductive polymers may be used.
  • the anode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO2:Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material Materials having a relatively low work function may be used as the cathode material, and metals, metal oxides, or conductive polymers may be used.
  • Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO/Al, but are not limited thereto.
  • a known hole injection layer material may be used.
  • a phthalocyanine compound such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429, or a phthalocyanine compound disclosed in Advanced Material, 6, p.677 (1994).
  • Starburst amine derivatives described such as tris(4-carbazoyl-9-ylphenyl)amine (TCTA), 4,4',4′′-tri[phenyl(m-tolyl)amino]triphenylamine ( m-MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), polyaniline/dodecylbenzenesulfonic acid, a soluble conductive polymer, or Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), polyaniline/camphor sulfonic acid, or Polyaniline/Poly(4-styrenesulfonate) or the like can be used.
  • TCTA tris(4-carbazoyl-9-
  • pyrazoline derivatives As the material for the hole transport layer, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, and the like may be used, and low-molecular or high-molecular materials may also be used.
  • Materials for the electron transport layer include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone.
  • Derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, etc. may be used, and high molecular materials as well as low molecular materials may be used.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • a red, green or blue light emitting material may be used as a material for the light emitting layer, and if necessary, two or more light emitting materials may be mixed and used. At this time, two or more light emitting materials may be deposited and used as separate sources or may be pre-mixed and deposited as one source.
  • a fluorescent material may be used as a material for the light emitting layer, but it may also be used as a phosphorescent material.
  • As the material for the light emitting layer a single material that emits light by combining holes and electrons injected from the anode and the cathode may be used, but materials in which a host material and a dopant material are involved in light emission may also be used.
  • hosts of the same series may be mixed and used, or hosts of different series may be mixed and used.
  • two or more materials selected from among n-type host materials and p-type host materials may be selected and used as host materials for the light emitting layer.
  • An organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type depending on the material used.
  • the heterocyclic compound according to an embodiment of the present invention may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoreceptor, and an organic transistor.
  • Dibenzo[b,d]furan-4-amine (9.5g, 51.9mM), 2-bromo-1-chloro-3-fluorobenzene (2- bromo-1-chloro-3-fluorobenzene) (13.0g, 62.3mM), Palladium (II) acetate (Pd(OAc) 2 ) (0.58g, 2.6mM), XantPhos (3g, 5.2 mM) and sodium tert-butoxide ( t -BuONa) (10.0g, 103.8mM) were dissolved in 1,4-dioxane (200mL) and refluxed for 12 hours.
  • the target compound was synthesized in the same manner as in the preparation of compounds 1-461-2, 1-461-1 and 1-461 in Preparation Example 3.
  • the target compound can be directly synthesized by adding 2 equivalents of Compound A in Preparation Example 12. That is, when compound A and compound A' are the same, preparation of compound 3-2-1 may be omitted.
  • the target compound can be directly synthesized by adding 2 equivalents of Compound B in Preparation Example 13. That is, when Compound B and Compound B' are the same, the preparation of Compound 3-26-1 may be omitted.
  • a glass substrate coated with a thin film of indium tin oxide (ITO) having a thickness of 1,500 ⁇ was washed with ultrasonic waves in distilled water. After washing with distilled water, ultrasonic cleaning was performed with solvents such as acetone, methanol, and isopropyl alcohol, and after drying, UVO (Ultraviolet ozone) treatment was performed for 5 minutes using UV in a UV (Ultraviolet) cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to increase the work function of ITO and remove residual films in a vacuum state, and then transferred to a thermal evaporation equipment for organic deposition.
  • ITO indium tin oxide
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • the light emitting layer was deposited with a thickness of 400 ⁇ of the compounds listed in Table 10 as a host, and using Ir(ppy) 3 as a green phosphorescent dopant, Ir(ppy) 3 was added to the host in an amount of 7 wt% of the deposition thickness of the light emitting layer. Deposited by doping.
  • bathocuproine BCP
  • BCP bathocuproine
  • an aluminum (Al) cathode was deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode.
  • An organic light emitting device was manufactured by forming.
  • the electroluminescence (EL) characteristics of the organic light emitting device manufactured as described above were measured with McSyers' M7000, and the standard luminance was 6,000 cd through the lifetime equipment measuring equipment (M6000) manufactured by McScience with the measurement result. / m 2 , the lifetime T 90 , which is the time to reach 90% of the initial luminance, was measured.
  • the results of measuring the driving voltage, luminous efficiency, color (EL color) and lifetime of the organic light emitting device manufactured according to the present invention are shown in Table 10.
  • the organic light emitting device using the heterocyclic compound of the present invention as a material for the light emitting layer had a lower driving voltage and significantly improved light emitting efficiency and lifetime compared to the organic light emitting devices of Comparative Examples 1 to 13.
  • the heterocyclic compound according to the present invention is a deuterium-substituted compound, and the compounds of Comparative Examples 1 to 13 are hydrogen-substituted or partially deuterium-substituted compounds.
  • Compounds substituted with deuterium, whose atomic mass is twice as large as hydrogen, have lower zero-point energy and lower vibrational energy than compounds substituted with hydrogen, resulting in lower energy in the ground state and reduced collisions due to intermolecular vibrations, turning the thin film into an amorphous state. Therefore, the lifetime of the organic light emitting device can be improved.
  • the compound substituted with deuterium has low ground state energy, thereby improving the stability of the compound, and high dissociation energy of the C-D bond, improving molecular stability, thereby improving the lifetime of the organic light emitting device.
  • the deuterium-substituted heterocyclic compound 1-184 according to the present invention is a comparative example compound substituted with hydrogen due to molecular stability and non-crystallinity Ref. It can be seen that the driving voltage and lifetime are improved compared to 1, 2, 3, 4, 6, 8, 9, 10, 11, 12 and 13, and the loss of energy due to the low vibration energy of the deuterium-substituted heterocyclic compound By minimizing and facilitating energy transfer to the dopant, it was possible to improve the luminous efficiency of the organic light emitting device.
  • the deuterium-substituted heterocyclic compound 1-549 according to the present invention is a comparative example compound Ref. 5, the compound 1-549 is different in that it is a compound in which R1 to R12 are substituted with deuterium in the compound of Formula 1 (hereinafter, referred to as a compound in which condensed carbazole is substituted with deuterium), and the present invention Heterocyclic compound 1-181 substituted with deuterium according to Comparative Example Compound Ref.
  • compounds 1-181 are compounds in which R1 to R12 are substituted with deuterium in the compound of Formula 1 (hereinafter, referred to as a compound in which condensed carbazole is substituted with deuterium) and Ar1 to R12 in the compound of Formula 1 It differs in that Ar3 is a compound substituted with deuterium (hereinafter, referred to as a compound having an aryl group substituted with deuterium).
  • the deuterium stabilizes the radical cation to improve the lifespan of the organic light emitting device.
  • the deuterium-substituted heterocyclic compounds 1-181 and 1-549 according to the present invention effectively stabilized the radical cation due to the deuterium substituted in the condensed carbazole, thereby effectively improving the lifespan of the organic light emitting device.
  • Comparative example compound Ref. 5 and 7 confirmed that the deuterium substituted only for the aryl group among the substituents did not contribute to the stabilization of the radical cation of the condensed carbazole. Therefore, it was confirmed that the lifespan of the organic light emitting device using compounds 1-181 and 1-549 in which condensed carbazole was substituted with deuterium was used as a material for the light emitting layer was improved.
  • heterocyclic compound 1-349 substituted with deuterium according to the present invention was able to improve the luminous efficiency of the organic light emitting device by reducing energy loss due to the low vibrational energy of the compound, and lowered the ground state energy of the organic light emitting device. lifespan could be improved.
  • compound 1-184 in which only condensed carbazole is substituted with deuterium, has an increased intermolecular interaction than compound 1-349, resulting in a smaller intermolecular distance and improved mobility, thereby improving the driving voltage of the organic light emitting device.
  • a glass substrate coated with a thin film of indium tin oxide (ITO) to a thickness of 1,500 ⁇ was washed with ultrasonic waves in distilled water. After washing with distilled water, ultrasonic cleaning was performed with solvents such as acetone, methanol, and isopropyl alcohol, and after drying, UVO (Ultraviolet ozone) treatment was performed for 5 minutes using UV in a UV (Ultraviolet) cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to increase the work function of ITO and remove residual films in a vacuum state, and then transferred to a thermal evaporation equipment for organic deposition.
  • ITO indium tin oxide
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • the light emitting layer was pre-mixed with one (N-type) compound listed in Table 11 below and one (P-type) compound represented by Formula 2 as a host, and then 400 ⁇ from one source.
  • the host was doped with Ir(ppy) 3 in an amount of 7 wt% of the deposition thickness of the light emitting layer using Ir(ppy) 3 as a green phosphorescent dopant.
  • bathocuproine BCP
  • BCP bathocuproine
  • an aluminum (Al) cathode was deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode.
  • An organic light emitting device was manufactured by forming.
  • the electroluminescence (EL) characteristics of the organic light emitting device manufactured as described above were measured with McSyers' M7000, and the standard luminance was 6,000 cd through the lifetime equipment measuring equipment (M6000) manufactured by McScience with the measurement result. / m 2 , the lifetime T 90 , which is the time to reach 90% of the initial luminance, was measured.
  • the results of measuring the driving voltage, luminous efficiency, color (EL color) and lifetime of the organic light emitting device manufactured according to the present invention are shown in Table 11.
  • the exciplex phenomenon is a phenomenon in which energy of the size of the HOMO energy level of a donor (p-host) and the LUMO energy level of an acceptor (n-host) is released by electron exchange between two molecules.
  • RISC reverse intersystem crossing
  • the internal quantum efficiency of fluorescence can be increased to 100%.
  • a donor (p-host) with good hole transport ability and an acceptor (n-host) with good electron transport ability are used as the host of the light emitting layer, holes are injected into the p-host and electrons are injected into the n-host. Since it is injected into the organic light emitting diode, the driving voltage of the organic light emitting diode can be lowered, thereby helping to improve the lifetime of the organic light emitting diode.
  • the compound represented by Formula 2 it is a compound substituted with hydrogen or partially substituted with deuterium or total deuterium.
  • Compounds substituted with deuterium whose atomic mass is twice as large as hydrogen, have lower zero-point energy and lower vibrational energy than compounds substituted with hydrogen, resulting in lower energy in the ground state and reduced collisions due to intermolecular vibrations, resulting in thin films in an amorphous state. It can be made to improve the lifespan of the organic light emitting device.
  • the deuterium-substituted compound has low ground state energy, thereby improving the stability of the compound, and high dissociation energy of the C-D bond, improving molecular stability, thereby improving the lifetime of the organic light emitting device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물에 관한 것이다.

Description

헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
본 출원은 2021년 8월 31일자 한국 특허출원 제10-2021-0115492호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물에 관한 것이다.
유기 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고, 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다.
유기 발광 소자는 2개의 전극 사이에 유기 박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기 박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기 박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기 박막의 재료로서, 정공 주입, 정공 수송, 전자 저지, 정공 저지, 전자 수송, 전자 주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 미국 등록특허 제4,356,429호
본 발명은 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물을 제공하고자 한다.
본 발명은 하기 화학식 1로 표시되는 헤테로 고리 화합물을 제공한다:
[화학식 1]
Figure PCTKR2022010212-appb-img-000001
상기 화학식 1에서,
R1 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고, 상기 R1 내지 R12 중 적어도 하나는 중수소이고,
X1, X2 및 X3은 서로 같거나 상이하고, 각각 독립적으로 NAr1, O, S 또는 CR13R14이고, 상기 X1, X2 및 X3 중 적어도 둘 이상이 NAr1이고, 상기 복수의 Ar1은 서로 상이하고, 이들 중 어느 하나는 하기 화학식 1-1로 표시되는 기이고,
Ar1은 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; 및 하기 화학식 1-1로 표시되는 기로 이루어진 군으로부터 선택되고,
[화학식 1-1]
Figure PCTKR2022010212-appb-img-000002
상기 화학식 1-1에서,
L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
Ar2 및 Ar3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고,
a 및 b는 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수이고,
R13 및 R14는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택된다.
또한, 본 발명은 제1 전극; 상기 제1전극과 대향하여 구비된 제2전극; 및 상기 제1전극과 제2전극 사이에 구비된 1층 이상의 유기물층;을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 유기 발광 소자를 제공한다.
또한, 본 발명은 상기 유기물층이 하기 화학식 2로 표시되는 헤테로 고리 화합물을 추가로 포함하는 유기 발광 소자를 제공한다:
[화학식 2]
Figure PCTKR2022010212-appb-img-000003
상기 화학식 2에서,
R101 내지 R114는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고,
L3 및 L4는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
Ar11 및 Ar12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R201R202; 및 -SiR201R202R203;로 이루어진 군으로부터 선택되고, 상기 R201, R202, 및 R203은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
m 및 n은 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수이다.
또한, 본 발명은 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 포함하는 유기 발광 소자의 유기물층용 조성물을 제공한다.
일 실시예에 따른 헤테로 고리 화합물은 유기 발광 소자의 유기물층 재료로서 사용할 수 있다. 상기 화합물은 유기 발광 소자에서 정공 주입층 재료, 전자 저지층 재료, 정공 수송층 재료, 발광층 재료, 전자 수송층 재료, 정공 저지층 재료, 전자 주입층 재료 등의 역할을 수행할 수 있다. 특히, 상기 화합물이 유기 발광 소자의 발광층 재료로 사용될 수 있다.
구체적으로, 상기 헤테로 고리 화합물은 단독으로 또는 P타입 호스트와 혼합하여 발광 재료로 사용될 수도 있고, 발광층의 호스트 재료 또는 도펀트 재료로서 사용될 수 있다. 상기 화학식 1로 표시되는 화합물을 유기물층에 사용하는 경우, 유기 발광 소자의 구동전압을 낮추고, 발광 효율을 향상시키며, 수명 특성을 향상시킬 수 있다.
보다 구체적으로, 일 실시예에 따른 헤테로 고리 화합물이 발광층으로 사용되었을 경우, 정공 수송 (Hole Transport) 및 전자 수송 (Electron Transport) 특성을 강화하고, 밴드갭 (band gap) 및 삼중항 에너지 레벨 (T1 level)값의 조절을 통하여, 정공 전달 능력을 향상시키고, 분자의 안정성을 높여, 유기 발광 소자의 구동전압을 낮추고, 광효율을 향상시키며, 화합물의 향상된 열적 안정성에 의하여 유기 발광 소자의 수명 특성을 향상시킬 수 있다.
도 1 내지 3은 각각 본 발명의 일 실시형태에 따른 유기 발광 소자의 적층구조를 개략적으로 나타낸 도면이다.
이하, 본 발명을 보다 자세히 설명한다.
본 명세서에 있어서, 상기 "치환”이라는 용어는, 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, "치환 또는 비치환"이란, 중수소; 할로겐; 시아노; C1 내지 C60의 직쇄 또는 분지쇄의 알킬; C2 내지 C60의 직쇄 또는 분지쇄의 알케닐; C2 내지 C60의 직쇄 또는 분지쇄의 알키닐; C3 내지 C60의 단환 또는 다환의 시클로알킬; C2 내지 C60의 단환 또는 다환의 헤테로시클로알킬; C6 내지 C60의 단환 또는 다환의 아릴; C2 내지 C60의 단환 또는 다환의 헤테로아릴; -SiRR'R"; -P(=O)RR'; C1 내지 C20의 알킬아민; C6 내지 C60의 단환 또는 다환의 아릴아민; 및 C2 내지 C60의 단환 또는 다환의 헤테로아릴아민으로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다.
본 명세서에 있어서, 상기 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
본 명세서에 있어서, 상기 알킬기는 탄소수 1 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알킬기의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸 헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알케닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다. 구체적인 예로는 비닐기, 1-프로페닐기, 이소프로페닐기, 1-부테닐기, 2-부테닐기, 3-부테닐기, 1-펜테닐기, 2-펜테닐기, 3-펜테닐기, 3-메틸-1-부테닐기, 1,3-부타디에닐기, 알릴기, 1-페닐비닐-1-일기, 2-페닐비닐-1-일기, 2,2-디페닐비닐-1-일기, 2-페닐-2-(나프틸-1-일)비닐-1-일기, 2,2-비스(디페닐-1-일)비닐-1-일기, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알키닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알키닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 시클로알킬기는 탄소수 3 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 시클로알킬기의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다. 구체적으로, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 헤테로시클로알킬기는 헤테로 원자로서 O, S, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 헤테로시클로알킬기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 상기 아릴기는 탄소수 6 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함한다. 상기 아릴기의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 트리페닐기, 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2022010212-appb-img-000004
등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 헤테로아릴기는 헤테로 원자로서 S, O, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 상기 다환이란 헤테로아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 아릴기 등일 수도 있다. 상기 헤테로아릴기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 피리딜기, 피롤릴기, 피리미딜기, 피리다지닐기, 푸라닐기, 티오펜기, 이미다졸릴기, 피라졸릴기, 옥사졸릴기, 이속사졸릴기, 티아졸릴기, 이소티아졸릴기, 트리아졸릴기, 푸라자닐기, 옥사디아졸릴기, 티아디아졸릴기, 디티아졸릴기, 테트라졸릴기, 파이라닐기, 티오파이라닐기, 디아지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀릴기, 이소퀴놀릴기, 퀴나졸리닐기, 이소퀴나졸리닐기, 퀴노졸리릴기, 나프티리딜기, 아크리디닐기, 페난트리디닐기, 이미다조피리디닐기, 디아자나프탈레닐기, 트리아자인덴기, 인돌릴기, 인돌리지닐기, 벤조티아졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티오펜기, 벤조푸란기, 디벤조티오펜기, 디벤조푸란기, 카바졸릴기, 벤조카바졸릴기, 디벤조카바졸릴기, 페나지닐기, 디벤조실롤기, 스피로비(디벤조실롤), 디히드로페나지닐기, 페녹사지닐기, 페난트리딜기, 이미다조피리디닐기, 티에닐기, 인돌로[2,3-a]카바졸릴기, 인돌로[2,3-b]카바졸릴기, 인돌리닐기, 10,11-디히드로-디벤조[b,f]아제핀기, 9,10-디히드로아크리디닐기, 페난트라지닐기, 페노티아티아지닐기, 프탈라지닐기, 나프틸리디닐기, 페난트롤리닐기, 벤조[c][1,2,5]티아디아졸릴기, 5,10-디히드로디벤조[b,e][1,4]아자실리닐, 피라졸로[1,5-c]퀴나졸리닐기, 피리도[1,2-b]인다졸릴기, 피리도[1,2-a]이미다조[1,2-e]인돌리닐기, 5,11-디히드로인데노[1,2-b]카바졸릴기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 아민기는 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; -NH2; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다. 또한, 헤테로아릴렌기는 헤테로아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 헤테로아릴기의 설명이 적용될 수 있다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한"기로 해석될 수 있다.
본 발명에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 탄소 원자에 수소 원자가 결합된 것을 의미한다. 다만, 중수소(2H, Deuterium)는 수소의 동위원소이므로, 일부 수소 원자는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 치환기로 올 수 있는 위치가 모두 수소 또는 중수소인 것을 의미할 수 있다. 즉, 중수소의 경우 수소의 동위원소로, 일부의 수소 원자는 동위원소인 중수소일 수 있으며, 이 때 중수소의 함량은 0% 내지 100%일 수 있다.
본 발명의 일 실시형태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"에 있어서, "중수소의 함량이 0%", "수소의 함량이 100%", "치환기는 모두 수소" 등 중수소를 명시적으로 배제하지 않는 경우에는 수소와 중수소는 화합물에 있어 혼재되어 사용될 수 있다.
본 발명의 일 실시형태에 있어서, 중수소는 수소의 동위원소(isotope) 중 하나로 양성자(proton) 1개와 중성자(neutron) 1개로 이루어진 중양성자(deuteron)를 원자핵(nucleus)으로 가지는 원소로서, 수소-2로 표현될 수 있으며, 원소기호는 D 또는 2H로 쓸 수도 있다.
본 발명의 일 실시형태에 있어서, 동위원소는 원자 번호(atomic number, Z)는 같지만, 질량수(mass number, A)가 다른 원자를 의미하는 동위원소는 같은 수의 양성자(proton)를 갖지만, 중성자(neutron)의 수가 다른 원소로도 해석할 수 있다.
본 발명의 일 실시형태에 있어서, 특정 치환기의 함량 T%의 의미는 기본이 되는 화합물이 가질 수 있는 치환기의 총 개수를 T1으로 정의하고, 그 중 특정의 치환기의 개수를 T2로 정의하는 경우 T2/T1×100 = T%로 정의할 수 있다.
즉, 일 예시에 있어서,
Figure PCTKR2022010212-appb-img-000005
로 표시되는 페닐기에 있어서 중수소의 함량 20%라는 것은 페닐기가 가질 수 있는 치환기의 총 개수는 5(식 중 T1)개이고, 그 중 중수소의 개수가 1(식 중 T2)인 경우를 의미할 수 있다. 즉, 페닐기에 있어서 중수소의 함량 20%라는 것인 하기 구조식으로 표시될 수 있다.
Figure PCTKR2022010212-appb-img-000006
또한, 본 발명의 일 실시형태에 있어서, "중수소의 함량이 0%인 페닐기"의 경우 중수소 원자가 포함되지 않은, 즉 수소 원자 5개를 갖는 페닐기를 의미할 수 있다.
본 발명에 있어서, C6 내지 C60의 방향족 탄화수소 고리는 C6 내지 C60개의 탄소와 수소로 이루어진 방향족 고리를 포함하는 화합물을 의미하며, 예를 들어, 페닐, 비페닐, 터페닐, 트리페닐렌, 나프탈렌, 안트라센, 페날렌, 페난트렌, 플루오렌, 피렌, 크리센, 페릴렌, 아줄렌 등을 들 수 있으나, 이들로 한정되는 것은 아니며, 상기 탄소수를 충족하는 것으로서 이 분야에 공지된 방향족 탄화수소 고리 화합물을 모두 포함한다.
본 발명은 하기 화학식 1로 표시되는 헤테로 고리 화합물을 제공한다:
[화학식 1]
Figure PCTKR2022010212-appb-img-000007
상기 화학식 1에서,
R1 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고, 상기 R1 내지 R12 중 적어도 하나는 중수소이고,
X1, X2 및 X3은 서로 같거나 상이하고, 각각 독립적으로 NAr1, O, S 또는 CR13R14이고, 상기 X1, X2 및 X3 중 적어도 둘 이상이 NAr1이고, 상기 복수의 Ar1은 서로 상이하고, 이들 중 어느 하나는 하기 화학식 1-1로 표시되는 기이고,
Ar1은 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; 및 하기 화학식 1-1로 표시되는 기로 이루어진 군으로부터 선택되고,
[화학식 1-1]
Figure PCTKR2022010212-appb-img-000008
상기 화학식 1-1에서,
L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
Ar2 및 Ar3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고,
a 및 b는 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수이고,
R13 및 R14는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택된다.
본 발명의 일 실시형태에 있어서, X1 및 X2는 NAr1이고, X3은 O, S 또는 CR13R14일 수 있다.
본 발명의 다른 실시형태에 있어서, X1 및 X3은 NAr1이고, X2는 O, S 또는 CR13R14일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 하기 화학식 1-a 및 화학식 1-b 중 어느 하나일 수 있으나, 이들 예로만 한정되는 것은 아니다:
[화학식 1-a]
Figure PCTKR2022010212-appb-img-000009
상기 화학식 1-a에서,
X3은 O, S 또는 CR13R14이고,
R1 내지 R14 및 Ar1은 상기 화학식 1에서 정의된 바와 같고,
Ar1'은 Ar1의 정의와 같고,
Ar1 및 Ar1'은 서로 상이하고, 이들 중 어느 하나는 화학식 1-1로 표시되는 기이고,
[화학식 1-b]
Figure PCTKR2022010212-appb-img-000010
상기 화학식 1-b에서,
X2는 O, S 또는 CR13R14이고,
R1 내지 R14 및 Ar1은 상기 화학식 1에서 정의된 바와 같고,
Ar1'은 Ar1의 정의와 같고,
Ar1 및 Ar1'은 서로 상이하고, 이들 중 어느 하나는 화학식 1-1로 표시되는 기이다.
본 발명의 다른 실시형태에 있어서, 화학식 1-a에서, Ar1이 화학식 1-1로 표시되는 기이고, Ar1'이 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-a에서, Ar1이 화학식 1-1로 표시되는 기이고, Ar1'이 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-a에서, Ar1'이 화학식 1-1로 표시되는 기이고, Ar1이 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-a에서, Ar1'이 화학식 1-1로 표시되는 기이고, Ar1이 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-b에서, Ar1이 화학식 1-1로 표시되는 기이고, Ar1'이 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-b에서, Ar1이 화학식 1-1로 표시되는 기이고, Ar1'이 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-b에서, Ar1'이 화학식 1-1로 표시되는 기이고, Ar1이 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-b에서, Ar1'이 화학식 1-1로 표시되는 기이고, Ar1이 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 일 실시형태에 있어서, 화학식 1-a 및 화학식 1-b에서, Ar1 및 Ar1’은 각각 독립적으로 하기 화학식 1-1로 표시되는 기 및 하기 화학식 1-2-a 내지 1-2-g로 표시되는 기 중 어느 하나인 것인 헤테로 고리 화합물일 수 있다:
[화학식 1-1]
Figure PCTKR2022010212-appb-img-000011
[화학식 1-2-a]
Figure PCTKR2022010212-appb-img-000012
[화학식 1-2-b]
Figure PCTKR2022010212-appb-img-000013
[화학식 1-2-c]
Figure PCTKR2022010212-appb-img-000014
[화학식 1-2-d]
Figure PCTKR2022010212-appb-img-000015
[화학식 1-2-e]
Figure PCTKR2022010212-appb-img-000016
[화학식 1-2-f]
Figure PCTKR2022010212-appb-img-000017
[화학식 1-2-g]
Figure PCTKR2022010212-appb-img-000018
상기 화학식 1-1에서,
Ar2 및 Ar3은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기이고,
L1, L2, a 및 b는 상기 화학식 1에서 정의된 바와 같고,
상기 화학식 1-2-a 내지 화학식 1-2-g에서,
R21 내지 R60은 수소 또는 중수소이고,
X4는 O, S 또는 CR61R62이고,
R61 및 R62는 메틸기이고,
p, q 및 r은 서로 같거나 상이하고, 각각 독립적으로 3 내지 5의 정수이다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1-1에서, Ar2 및 Ar3은 중수소로 치환된 C6 내지 C30의 아릴기 또는 중수소로 치환된 C2 내지 C30헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1-2-a 내지 1-2-g에서 R21 내지 R60은 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, R1 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 치환 또는 비치환된 C1 내지 C30의 알콕시기; 치환 또는 비치환된 C3 내지 C30의 시클로알킬기; 치환 또는 비치환된 C2 내지 C30의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 및 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기;로 이루어진 군으로부터 선택되고, 상기 R1 내지 R12 중 적어도 하나는 중수소일 수 있다.
본 발명의 다른 실시형태에 있어서, R1 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 및 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기;로 이루어진 군으로부터 선택되고, 상기 R1 내지 R12 중 적어도 하나는 중수소일 수 있다.
본 발명의 다른 실시형태에 있어서, R1 내지 R12는 수소 또는 중수소이고, 상기 R1 내지 R12 중 적어도 하나는 중수소일 수 있다.
본 발명의 다른 실시형태에 있어서, R1 내지 R12는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, 화학식 1-1에서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C30의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴렌기일 수 있고, a 및 b는 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-1에서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C20의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴렌기일 수 있고, a 및 b는 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-1에서, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 하기 구조일 수 있으나, 이들 예로만 한정되는 것은 아니다:
Figure PCTKR2022010212-appb-img-000019
,
Figure PCTKR2022010212-appb-img-000020
,
Figure PCTKR2022010212-appb-img-000021
.
본 발명의 일 실시형태에 있어서, 화학식 1-1에서, Ar2 및 Ar3은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-1에서, Ar2 및 Ar3은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-1에서, Ar2 및 Ar3은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-1에서, Ar2 및 Ar3은 서로 같거나 상이하고, 각각 독립적으로 하기 구조일 수 있으나, 이들 예로만 한정되는 것은 아니다:
Figure PCTKR2022010212-appb-img-000022
본 발명의 일 실시형태에 있어서, R13 및 R14는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 및 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기;로 이루어진 군으로부터 선택될 수 있다.
본 발명의 다른 실시형태에 있어서, R13 및 R14는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C10의 알킬기; 치환 또는 비치환된 C2 내지 C10의 알케닐기; 치환 또는 비치환된 C2 내지 C10의 알키닐기; 및 치환 또는 비치환된 C1 내지 C10의 알콕시기로 이루어진 군으로부터 선택될 수 있다.
본 발명의 다른 실시형태에 있어서, R13 및 R14는 서로 같거나 상이하고, 각각 독립적으로 메틸기, 에틸기, 프로필기 등일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 치환기로 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 10% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 치환기로 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 20% 내지 90%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 치환기로 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 30% 내지 80%일 수 있다.
예를 들면, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 치환기로 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 0% 초과, 5% 이상, 10% 이상, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 또는 50% 이상일 수 있고, 100% 이하, 95% 이하, 90% 이하, 85% 이하, 80% 이하, 75% 이하, 70% 이하, 65% 이하 또는 60% 이하일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 중, R1 내지 R12의 중수소의 함량은 수소 원자 및 중수소 원자의 총수를 기준으로 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 중, R1 내지 R12의 중수소의 함량은 수소 원자 및 중수소 원자의 총수를 기준으로 5% 내지 95%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 중, R1 내지 R12의 중수소의 함량은 수소 원자 및 중수소 원자의 총수를 기준으로 10% 내지 90%일 수 있다.
예를 들면, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 치환기로 중수소를 포함하지 않거나, R1 내지 R12의 중수소의 함량은 수소 원자와 중수소 원자의 총수를 기준으로 0% 초과, 5% 이상, 10% 이상, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 또는 50% 이상일 수 있고, 100% 이하, 95% 이하, 90% 이하, 85% 이하, 80% 이하, 75% 이하, 70% 이하, 65% 이하 또는 60% 이하일 수 있다.
본 발명의 일 실시형태에 있어서, 화학식 1-1에서, Ar2 및 Ar3은 중수소로 치환된 아릴기 또는 헤테로아릴기일 수 있고, 이 경우, 수소 원자 및 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-1에서, Ar2 및 Ar3은 중수소로 치환된 아릴기 또는 헤테로아릴기일 수 있고, 이 경우, 수소 원자 및 중수소 원자의 총수를 기준으로 중수소의 함량이 5% 내지 95%일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-1에서, Ar2 및 Ar3은 중수소로 치환된 아릴기 또는 헤테로아릴기일 수 있고, 이 경우, 수소 원자 및 중수소 원자의 총수를 기준으로 중수소의 함량이 10% 내지 90%일 수 있다.
예를 들면, 화학식 1-1에서, Ar2 및 Ar3은 중수소로 치환된 아릴기 또는 헤테로아릴기인 경우, 치환기로 중수소를 포함하지 않거나, 상기 치환기의 중수소의 함량은 수소 원자와 중수소 원자의 총수를 기준으로 0% 초과, 1% 이상, 5% 이상, 10% 이상, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 또는 50% 이상일 수 있고, 100% 이하, 95% 이하, 90% 이하, 85% 이하, 80% 이하, 75% 이하, 70% 이하, 65% 이하 또는 60% 이하일 수 있다.
본 발명의 일 실시형태에 있어서, 화학식 1-2-a 내지 1-2-g에서, R21 내지 R60이 중수소를 포함하지 않거나, R21 내지 R60의 중수소의 함량이 수소 원자 및 중수소 원자의 총수를 기준으로 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-2-a 내지 1-2-g에서, R21 내지 R60이 중수소를 포함하지 않거나, R21 내지 R60의 중수소의 함량이 수소 원자 및 중수소 원자의 총수를 기준으로 5% 내지 95%일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 1-2-a 내지 1-2-g에서, R21 내지 R60이 중수소를 포함하지 않거나, R21 내지 R60의 중수소의 함량이 수소 원자 및 중수소 원자의 총수를 기준으로 10% 내지 90%일 수 있다.
예를 들면, 화학식 1-2-a 내지 1-2-g에서, R21 내지 R60이 중수소를 포함하지 않거나, R21 내지 R60의 중수소의 함량이 수소 원자 및 중수소 원자의 총수를 기준으로 0% 초과, 1% 이상, 5% 이상, 10% 이상, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 또는 50% 이상일 수 있고, 100% 이하, 95% 이하, 90% 이하, 85% 이하, 80% 이하, 75% 이하, 70% 이하, 65% 이하 또는 60% 이하일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 하기 화합물들로 구성된 군으로부터 선택되는 어느 하나인 것일 수 있다:
Figure PCTKR2022010212-appb-img-000023
Figure PCTKR2022010212-appb-img-000024
Figure PCTKR2022010212-appb-img-000025
Figure PCTKR2022010212-appb-img-000026
Figure PCTKR2022010212-appb-img-000027
Figure PCTKR2022010212-appb-img-000028
Figure PCTKR2022010212-appb-img-000029
Figure PCTKR2022010212-appb-img-000030
Figure PCTKR2022010212-appb-img-000031
Figure PCTKR2022010212-appb-img-000032
Figure PCTKR2022010212-appb-img-000033
Figure PCTKR2022010212-appb-img-000034
Figure PCTKR2022010212-appb-img-000035
Figure PCTKR2022010212-appb-img-000036
Figure PCTKR2022010212-appb-img-000037
Figure PCTKR2022010212-appb-img-000038
Figure PCTKR2022010212-appb-img-000039
Figure PCTKR2022010212-appb-img-000040
Figure PCTKR2022010212-appb-img-000041
Figure PCTKR2022010212-appb-img-000042
Figure PCTKR2022010212-appb-img-000043
Figure PCTKR2022010212-appb-img-000044
Figure PCTKR2022010212-appb-img-000045
Figure PCTKR2022010212-appb-img-000046
Figure PCTKR2022010212-appb-img-000047
Figure PCTKR2022010212-appb-img-000048
Figure PCTKR2022010212-appb-img-000049
Figure PCTKR2022010212-appb-img-000050
Figure PCTKR2022010212-appb-img-000051
.
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송층 물질, 전자 저지층 물질, 발광층 물질, 전자 수송층 물질, 정공 저지층 물질 및 전자 주입층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 에너지 밴드갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
또한, 본 발명은 제1 전극; 상기 제1전극과 대향하여 구비된 제2전극; 및 상기 제1전극과 제2전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 유기 발광 소자를 제공한다.
본 발명의 일 실시형태에 있어서, 상기 제1 전극은 양극일 수 있고, 상기 제2 전극은 음극일 수 있다.
본 발명의 다른 일 실시형태에 있어서, 상기 제1 전극은 음극일 수 있고, 상기 제2 전극은 양극일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 적색 유기 발광 소자의 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 녹색 유기 발광 소자의 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 청색 유기 발광 소자의 재료로 사용될 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 적색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 녹색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 청색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명의 유기 발광 소자는 전술한 헤테로 고리 화합물을 이용하여 1 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 헤테로 고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층을 형성할 수 있다. 여기서, 용액 도포법은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수도 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로 정공주입층, 정공수송층, 발광층, 전자주입층, 전자수송층, 전지저지층, 정공저지층 등을 포함하는 구조를 가질 수 있다. 그러나, 상기 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자는 발광층, 정공주입층, 정공수송층, 전자주입층, 전자수송층, 전지저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있고, 상기 1층 이상은 상기 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자는 1층 이상의 유기물층을 포함할 수 있고, 상기 유기물층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기물층은 발광층을 포함할 수 있고, 상기 발광층은 호스트 물질을 포함할 수 있으며, 상기 호스트 물질은 상기 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자는 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있고, 하기 화학식 2로 표시되는 헤테로 고리 화합물을 추가로 포함할 수 있다:
[화학식 2]
Figure PCTKR2022010212-appb-img-000052
상기 화학식 2에서,
R101 내지 R114는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고,
L3 및 L4는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
Ar11 및 Ar12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R201R202; 및 -SiR201R202R203;으로 이루어진 군으로부터 선택되고, 상기 R201, R202, 및 R203은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
m 및 n은 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수이다.
본 발명의 다른 실시형태에 있어서, 화학식 2에서, R21 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 및 치환 또는 비치환된 C1 내지 C30의 알콕시기;로 이루어진 군으로부터 선택될 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 2에서, R101 내지 R114는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C10의 알킬기; 치환 또는 비치환된 C2 내지 C10의 알케닐기; 치환 또는 비치환된 C2 내지 C10의 알키닐기; 및 치환 또는 비치환된 C1 내지 C30의 알콕시기;로 이루어진 군으로부터 선택될 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 2에서, R101 내지 R114는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐 및 시아노기;로 이루어진 군으로부터 선택될 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 2에서, R101 내지 R114는 서로 같거나 상이하고, 각각 독립적으로 수소 또는 중수소일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 2에서, L3 및 L4는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C30의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴렌기일 수 있고, m 및 n은 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 2에서, L3 및 L4는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C20의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴렌기일 수 있고, m 및 n은 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 2에서, Ar11 및 Ar12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 치환 또는 비치환된 C1 내지 C30의 알콕시기; 치환 또는 비치환된 C3 내지 C30의 시클로알킬기; 치환 또는 비치환된 C2 내지 C30의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기; -P(=O)R201R202; 및 -SiR201R202R203;으로 이루어진 군으로부터 선택되고, 상기 R201, R202, 및 R203은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 화학식 2에서, Ar11 및 Ar12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; -P(=O)R201R202; 및 -SiR201R202R203;으로 이루어진 군으로부터 선택되고, 상기 R201, R202, 및 R203은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C10의 아릴기; 또는 치환 또는 비치환된 C2 내지 C10의 헤테로아릴기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 2로 표시되는 헤테로 고리 화합물은 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 2로 표시되는 헤테로 고리 화합물은 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 10% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 2로 표시되는 헤테로 고리 화합물은 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 20% 내지 90%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 2로 표시되는 헤테로 고리 화합물은 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 30% 내지 80%일 수 있다.
예를 들면, 상기 화학식 2로 표시되는 헤테로 고리 화합물은 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 0% 초과, 10% 이상, 20% 이상, 30% 이상, 40% 이상 또는 50% 이상일 수 있고, 100% 이하, 90% 이하, 80% 이하, 70% 이하 또는 60% 이하일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 2로 표시되는 헤테로 고리 화합물은 하기 화합물들로 구성된 군으로부터 선택되는 어느 하나인 것일 수 있다:
Figure PCTKR2022010212-appb-img-000053
Figure PCTKR2022010212-appb-img-000054
Figure PCTKR2022010212-appb-img-000055
Figure PCTKR2022010212-appb-img-000056
Figure PCTKR2022010212-appb-img-000057
Figure PCTKR2022010212-appb-img-000058
Figure PCTKR2022010212-appb-img-000059
Figure PCTKR2022010212-appb-img-000060
.
본 발명의 유기 발광 소자를 제조함에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 유기 발광 소자를 제조함에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 혼합하여 포함하는 경우, 유기 발광 소자의 우수한 구동 전압, 발광 효율 및 수명이 개선될 수 있다. 이는 상기 두 헤테로 고리 화합물을 동시에 혼합하여 포함하는 경우, 엑시플렉스(exciplex) 현상이 일어남을 예상할 수 있다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 도너 (donor, p-host)의 HOMO 에너지 레벨과 억셉터 (acceptor, n-host)의 LUMO 에너지 레벨간의 차이나는 에너지를 방출하는 현상이다. 두 분자간 엑시플렉스(exciplex) 현상이 일어나면 역항간 교차(Reverse Intersystem Crossing, RISC)가 일어나게 되고, 이로 인하여 형광의 내부양자 효율이 100%까지 증가할 수 있다. 정공 수송 능력이 좋은 도너 (donor, p-host)와 전자 수송 능력이 좋은 억셉터 (acceptor, n-host)가 발광층의 호스트로 사용될 경우, 정공은 p-host로 주입되고, 전자는 n-host로 주입되기 때문에 구동 전압을 낮출 수 있고, 그로 인해 수명 향상에 도움을 줄 수 있다. 즉, 상기 억셉터(acceptor)로서 상기 화학식 1로 표시되는 화합물을 사용하고, 상기 도너(donor)로서 상기 화학식 2로 표시되는 화합물을 사용하는 경우, 우수한 유기 발광 소자의 특성을 나타낸다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자가 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 혼합하여 포함하는 경우, 상기 헤테로 고리 화합물들은 치환기로서 중수소를 포함하지 않거나, 상기 헤테로 고리 화합물 중 적어도 하나는 중수소의 함량이 0% 초과 100%이하일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자가 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 혼합하여 포함하는 경우, 상기 헤테로 고리 화합물들은 치환기로서 중수소를 포함하지 않거나, 상기 헤테로 고리 화합물 중 적어도 하나는 중수소의 함량이 10% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자가 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 혼합하여 포함하는 경우, 상기 헤테로 고리 화합물들은 치환기로서 중수소를 포함하지 않거나, 상기 헤테로 고리 화합물 중 적어도 하나는 중수소의 함량이 15% 내지 95%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자가 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 혼합하여 포함하는 경우, 상기 헤테로 고리 화합물들은 치환기로서 중수소를 포함하지 않거나, 상기 헤테로 고리 화합물 중 적어도 하나는 중수소의 함량이 20% 내지 80%일 수 있다.
예를 들면, 상기 유기 발광 소자가 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 혼합하여 포함하는 경우, 상기 헤테로 고리 화합물들은 치환기로서 중수소를 포함하지 않거나, 상기 헤테로 고리 화합물 중 적어도 하나는 중수소의 함량이 0% 초과, 5% 이상, 10% 이상, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 또는 50% 이상일 수 있고, 100% 이하, 95% 이하, 90% 이하, 85% 이하, 80% 이하, 75% 이하, 70% 이하, 65% 이하 또는 60% 이하일 수 있다.
또한, 본 발명의 일 실시형태는 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 하기 화학식 2로 표시되는 헤테로 고리 화합물을 포함하는 유기 발광 소자의 유기물층용 조성물을 제공한다.
상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 하기 화학식 2로 표시되는 헤테로 고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자의 유기물층용 조성물 내 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물의 중량비는 1:10 내지 10:1이거나, 1:8 내지 8:1이거나, 1:6 내지 6:1이거나, 1:4 내지 4:1이거나, 1:3 내지 3:1이거나, 1:2 내지 2:1일 수 있으나, 이에만 한정되는 것은 아니다.
상기 유기 발광 소자의 유기물층용 조성물은 유기 발광 소자의 유기물층 형성시 이용할 수 있고, 특히, 발광층의 호스트 형성시 보다 바람직하게 이용할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기물층은 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 포함하고, 인광 도펀트와 함께 사용할 수 있다.
상기 인광 도펀트 재료로는 당 기술분야에 알려져 있는 것들을 사용할 수 있다. 예컨대, LL'MX', LL'L"M, LMX'X", L2MX' 및 L3M로 표시되는 인광 도펀트 재료를 사용할 수 있으나, 이들 예에 의하여 본 발명의 범위가 한정되는 것은 아니다.
상기 M은 이리듐, 백금, 오스뮴 등이 될 수 있다.
상기 L은 sp2 탄소 및 헤테로 원자에 의하여 상기 M에 배위되는 음이온성 2좌 배위자이고, X는 전자 또는 정공을 트랩하는 기능을 수행할 수 있다. L, L' 및 L"의 비한정적인 예로는 2-(1-나프틸)벤조옥사졸, 2-페닐벤조옥사졸, 2-페닐벤조티아졸, 7,8-벤조퀴놀린, 페닐피리딘, 벤조티오페닐피리딘, 3-메톡시-2-페닐피리딘, 티오페닐피리딘, 톨릴피리딘 등이 있다. X' 및 X"의 비한정적인 예로는 아세틸아세토네이트(acac), 헥사플루오로아세틸아세토네이트, 살리실리덴, 피콜리네이트, 8-히드록시퀴놀리네이트 등이 있다.
상기 인광 도펀트의 구체적인 예를 하기에 표시하나, 이들 예로만 한정되는 것은 아니다:
Figure PCTKR2022010212-appb-img-000061
본 발명의 일 실시형태에 있어서, 상기 유기물층은 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 포함하고, 이리듐계 도펀트와 함께 사용할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 이리듐계 도펀트로는 녹색 인광 도펀트로 Ir(ppy)3이 사용될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 도펀트의 함량은 발광층 전체 중량을 기준으로 1% 내지 15%, 바람직하게는 2% 내지 10%, 보다 바람직하게는 3% 내지 7%의 함량을 가질 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 전자 주입층 또는 전자 수송층을 포함하고, 상기 전자 주입층 또는 전자 수송층은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 전자 저지층 또는 정공 저지층을 포함하고, 상기 전자 저지층 또는 정공 저지층은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 전자 수송층, 발광층 또는 정공 저지층을 포함하고, 상기 전자 수송층, 발광층 또는 정공 저지층은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자는 발광층, 정공 주입층, 정공 수송층, 전자 주입층, 전자 저지층 및 정공 저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다.
도 1 내지 도 3에 본 발명의 일 실시형태에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 발광 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공 주입층(301), 정공 수송층(302), 발광층(303), 정공 저지층(304), 전자 수송층(305) 및 전자 주입층(306)을 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
본 발명의 일 실시형태에 있어서, 기판을 준비하는 단계; 상기 기판 상에 제1 전극을 형성하는 단계; 상기 제1 전극 상에 1층 이상의 유기물층을 형성하는 단계; 및 상기 유기물층 상에 제2 전극을 형성하는 단계를 포함하는 유기 발광 소자의 제조 방법으로서, 상기 유기물층을 형성하는 단계가 본 발명의 일 실시형태에 따른 유기물층용 조성물을 이용하여 1층 이상의 유기물층을 형성하는 단계를 포함하는 것인 유기 발광 소자의 제조 방법을 제공한다.
본 발명의 일 실시형태에 있어서, 상기 유기물층을 형성하는 단계는 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 예비 혼합(pre-mixed)하고, 열 진공 증착 방법을 이용하여 형성하는 것일 수 있다.
상기 예비 혼합(pre-mixed)은, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 유기물층에 증착하기 전 먼저 재료를 섞어서 하나의 공급원에 담아 혼합하는 것을 의미한다.
예비 혼합된 재료는 본 출원의 일 실시상태에 따른 유기물층용 조성물로 언급될 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 유기물층은, 필요에 따라 다른 물질을 추가로 포함할 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 2로 표시되는 헤테로 고리 화합물을 동시에 포함하는 유기물층은, 필요에 따라 다른 물질을 추가로 포함할 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 또는 상기 화학식 2로 표시되는 헤테로 고리 화합물 이외의 재료를 하기에 예시하지만, 이들은 예시를 위한 것일 뿐 본 출원의 범위를 한정하기 위한 것은 아니며, 당 기술분야에 공지된 재료들로 대체될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다. 상기 양극 재료의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다. 상기 음극 재료의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 주입층 재료로는 공지된 정공 주입층 재료를 이용할 수도 있는데, 예를들면, 미국 특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 트리스(4-카바조일-9-일페닐)아민(TCTA), 4,4',4"-트리[페닐(m-톨릴)아미노]트리페닐아민(m-MTDATA), 1,3,5-트리스[4-(3-메틸페닐페닐아미노)페닐]벤젠(m-MTDAPB), 용해성이 있는 전도성 고분자인 폴리아닐린/도데실벤젠술폰산(Polyaniline/Dodecylbenzenesulfonic acid) 또는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 폴리아닐린/캠퍼술폰산(Polyaniline/Camphor sulfonic acid) 또는 폴리아닐린/폴리(4-스티렌술포네이트)(Polyaniline/Poly(4-styrenesulfonate)) 등을 사용할 수 있다.
정공 수송층 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송층 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입층 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광층 재료로는 적색, 녹색 또는 청색 발광재료가 사용될 수 있으며, 필요한 경우, 2 이상의 발광 재료를 혼합하여 사용할 수 있다. 이 때, 2 이상의 발광 재료를 개별적인 공급원으로 증착하여 사용하거나, 예비혼합하여 하나의 공급원으로 증착하여 사용할 수 있다. 또한, 발광층 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료로서 사용할 수도 있다. 발광층 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
발광층 재료의 호스트를 혼합하여 사용하는 경우에는, 동일 계열의 호스트를 혼합하여 사용할 수도 있고, 다른 계열의 호스트를 혼합하여 사용할 수도 있다. 예를 들어, n 타입 호스트 재료 또는 p 타입 호스트 재료 중 어느 두 종류 이상의 재료를 선택하여 발광층의 호스트 재료로 사용할 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 발명의 일 실시형태에 따른 헤테로 고리 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
<제조예>
제조예 1: 화합물 1-1의 제조
Figure PCTKR2022010212-appb-img-000062
1) 화합물 1-1-6의 제조
디벤조[b,d]퓨란-4-아민 (dibenzo[b,d]furan-4-amine) (9.5g, 51.9mM), 2-브로모-1-클로로-3-플루오로벤젠 (2-bromo-1-chloro-3-fluorobenzene) (13.0g, 62.3mM), 초산 팔라듐 (Palladium (II) acetate, Pd(OAc)2) (0.58g, 2.6mM), 잔트포스 (XantPhos) (3g, 5.2mM) 및 소듐 터트-부톡사이드 (sodium tert-butoxide, t-BuONa) (10.0g, 103.8mM)를 1,4-디옥세인 (1,4-dioxane) (200mL)에 넣고 녹인 후 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄 (dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-1-6을 12.9g 얻었다 (수율 80%).
2) 화합물 1-1-5의 제조
화합물 1-1-6 (12.9g, 41.5mM), 초산 팔라듐 (Palladium (II) acetate, Pd(OAc)2) (0.47g, 2.1mM), 50% 트리-터트-뷰틸포스핀 (tri-tert-butylphosphine, P(t-Bu)3) (2mL, 4.2mM) 및 1,8-디아자바이사이클로[5,4,0]언덱-7-엔 (1,8-diazabicyclo[5.4.0]undec-7-ene, DBU) (9.3mL, 62.3mM)을 자일렌 (Xylene) (200mL)에 넣고 녹인 후 4시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄 (dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-1-5를 10.4g 얻었다 (수율 91%).
3) 화합물 1-1-4의 제조
화합물 1-1-5 (4.4g, 15.8mM), 브로모벤젠 (bromobenzene) (3.0g, 19.0mM), 트리스(디벤질리덴아세톤)디팔라듐 (Pd2(dba)3) (0.72g, 0.8mM), 엑스포스 (XPhos) (0.74g, 1.6mM) 및 소듐 터트-부톡사이드 (sodium tert-butoxide, t-BuONa) (3.0g, 31.6mM)를 자일렌 (Xylene) (100mL)에 넣고 녹인 후 24시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄 (dichloromethane, DCM)을 넣어 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 1-1-4를 4.9g 얻었다 (수율 89%).
4) 화합물 1-1-3의 제조
화합물 1-1-4 (4.9g, 14.1mM), 2-클로로아닐린 (2-chloroaniline) (2.2g, 16.9mM) 및 칼륨 터트-부톡사이드 (potassium tert-butoxide, t-BuOK) (3.2g, 28.2mM)를 다이메틸 설폭사이드 (dimethyl sulfoxide, DMSO) (100mL)에 넣고 녹인 후 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄 (dichloromethane, DCM)을 넣어 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-1-3을 4.6g 얻었다 (수율 71%).
5) 화합물 1-1-2의 제조
화합물 1-1-3 (19.0g, 41.5mM), 초산 팔라듐 (Palladium (II) acetate, Pd(OAc)2) (0.47g, 2.1mM), 50% 트리-터트-뷰틸포스핀 (tri-tert-butylphosphine, P(t-Bu)3) (2mL, 4.2mM) 및 1,8-디아자바이사이클로[5,4,0]언덱-7-엔 (1,8-diazabicyclo[5.4.0]undec-7-ene, DBU) (9.3mL, 62.3mM)을 자일렌 (Xylene) (400mL)에 넣고 녹인 후 4시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-1-2를 15.3g 얻었다 (수율 87%).
6) 화합물 1-1-1의 제조
화합물 1-1-2 (15.3g, 36.2mM) 및 트리플산 (triflic acid) (80.1mL, 905.0mM)을 벤젠-d6 (benzene-d6) (150mL)에 넣고 녹인 후, 40℃에서 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-1-1을 12.4g 얻었다 (수율 78%).
7) 화합물 1-1의 제조
화합물 1-1-1 (12.4g, 28.2mM), 2-클로로-4,6-디페닐-1,3,5-트리아진 (2-chloro-4,6-diphenyl-1,3,5-triazine) (9.1g, 33.9mM), 트리스(디벤질리덴아세톤)디팔라듐 (Pd2(dba)3) (1.3g, 1.4mM), 엑스포스 (XPhos) (1.3g, 2.8mM) 및 소듐 터트-부톡사이드 (sodium tert-butoxide, t-BuONa) (5.4g, 56.4mM)를 자일렌 (Xylene) (200mL)에 넣고 녹인 후 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-1을 13.8g 얻었다 (수율 73%).
상기 제조예 1에서 디벤조[b,d]퓨란-4-아민 (dibenzo[b,d]furan-4-amine) 대신, 하기 표 1의 중간체 A를 사용하고, 브로모벤젠 (bromobenzene) 대신, 하기 표 1의 중간체 B를 사용하고, 2-클로로-4,6-디페닐-1,3,5-트리아진 (2-chloro-4,6-diphenyl-1,3,5-triazine) 대신, 하기 표 1의 중간체 C를 사용하여, 상기 제조예 1과 동일한 방법으로 하기 표 1의 목적 화합물을 합성하였다.
[표 1]
Figure PCTKR2022010212-appb-img-000063
Figure PCTKR2022010212-appb-img-000064
제조예 2: 화합물 1-361의 제조
Figure PCTKR2022010212-appb-img-000065
1) 화합물 1-361-4의 제조
화합물 1-1-5 (10.0g, 36.2mM) 및 트리플산 (triflic acid) (80.1mL, 905.0mM)을 벤젠-d6 (benzene-d6) (100mL)에 넣고 녹인 후, 40℃에서 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-361-4을 8.8g 얻었다 (수율 85%).
2) 화합물 1-361-3의 제조
화합물 1-361-4 (8.0g, 28.2mM), 2-클로로-4,6-디페닐-1,3,5-트리아진 (2-chloro-4,6-diphenyl-1,3,5-triazine) (9.1g, 33.9mM), 트리스(디벤질리덴아세톤)디팔라듐 (Pd2(dba)3) (1.3g, 1.4mM), 엑스포스 (XPhos) (1.3g, 2.8mM) 및 소듐 터트-부톡사이드 (sodium tert-butoxide, t-BuONa) (5.4g, 56.4mM)를 자일렌 (Xylene) (200mL)에 넣고 녹인 후 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-361-3을 11.2g 얻었다 (수율 77%).
3) 화합물 1-361-2의 제조
화합물 1-361-3 (7.3g, 14.1mM), 2-클로로아닐린 (2-chloroaniline) (2.2g, 16.9mM) 및 칼륨 터트-부톡사이드 (potassium tert-butoxide, t-BuOK) (3.2g, 28.2mM)를 다이메틸 설폭사이드 (dimethyl sulfoxide, DMSO) (100mL)에 넣고 녹인 후, 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-361-2를 6.1g 얻었다 (수율 69%).
4) 화합물 1-361-1의 제조
화합물 1-361-2 (26.0g, 41.5mM), 초산 팔라듐 (Palladium (II) acetate, Pd(OAc)2) (0.47g, 2.1mM), 50% 트리-터트-뷰틸포스핀 (tri-tert-butylphosphine, P(t-Bu)3) (2mL, 4.2mM) 및 1,8-디아자바이사이클로[5,4,0]언덱-7-엔 (1,8-diazabicyclo[5.4.0]undec-7-ene, DBU) (9.3mL, 62.3mM)을 자일렌 (Xylene) (400mL)에 넣고 녹인 후 4시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-361-1을 13.5g 얻었다 (수율 88%).
4) 화합물 1-361의 제조
화합물 1-361-1 (9.3g, 15.8mM), 1-브로모벤젠-2,3,4,5,6-d5 (1-bromobenzene-2,3,4,5,6-d5) (3.1g, 19.0mM), 트리스(디벤질리덴아세톤)디팔라듐 (Pd2(dba)3) (0.72g, 0.8mM), 엑스포스 (XPhos) (0.74g, 1.6mM) 및 소듐 터트-부톡사이드 (sodium tert-butoxide, t-BuONa) (3.0g, 31.6mM)를 자일렌 (Xylene) (100mL)에 넣고 녹인 후 24시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 1-361을 5.3g 얻었다 (수율 85%).
상기 제조예 2에서 화합물 1-1-5 대신, 하기 표 2의 중간체 A를 사용하고, 2-클로로-4,6-디페닐-1,3,5-트리아진 (2-chloro-4,6-diphenyl-1,3,5-triazine) 대신, 하기 표 2의 중간체 B를 사용하여, 상기 제조예 2와 동일한 방법으로 하기 표 2의 목적 화합물을 합성하였다.
[표 2]
Figure PCTKR2022010212-appb-img-000066
제조예 3: 화합물 1-461의 제조
Figure PCTKR2022010212-appb-img-000067
1) 화합물 1-461-4의 제조
12-페닐-12H-벤조퓨로[2,3-a]카바졸 (12-phenyl-12H-benzofuro[2,3-a]carbazole) (13.8g, 41.5mM)을 테트라하이드로퓨란 (tetrahydrofuran, THF) (260mL)에 넣고 녹인 후, -78℃에서 질소 치환하였고, 2.5M n-부틸리튬 (n-Butyllithium, n-BuLi) (20.0mL, 49.8mM)을 천천히 넣고 실온까지 교반하고, 아이오딘 (iodine) (15.8g, 62.3mM)을 넣고 1시간 동안 교반하였다. 반응이 완결된 후 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-461-4를 13.2g 얻었다 (수율 69%).
2) 화합물 1-461-3의 제조
화합물 1-461-4 (23.8g, 51.9mM), 2-클로로아닐린 (2-chloroaniline) (7.9g, 62.3mM), 초산 팔라듐 (Palladium (II) acetate, Pd(OAc)2) (0.58g, 2.6mM), 잔트포스 (XantPhos) (3g, 5.2mM) 및 소듐 터트-부톡사이드 (sodium tert-butoxide, t-BuONa) (10.0g, 103.8mM)를 1,4-디옥세인 (1,4-dioxane) (200mL)에 넣고 녹인 후 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-461-3을 19.3g 얻었다 (수율 81%).
3) 화합물 1-461-2의 제조
화합물 1-461-3 (19.0g, 41.5mM), 초산 팔라듐 (Palladium (II) acetate, Pd(OAc)2) (0.47g, 2.1mM), 50% 트리-터트-뷰틸포스핀 (tri-tert-butylphosphine, P(t-Bu)3) (2mL, 4.2mM) 및 1,8-디아자바이사이클로[5,4,0]언덱-7-엔 (1,8-diazabicyclo[5.4.0]undec-7-ene, DBU) (9.3mL, 62.3mM)을 자일렌 (Xylene) (400mL)에 넣고 녹인 후 4시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-461-2를 13.9g 얻었다 (수율 79%).
4) 화합물 1-461-1의 제조
화합물 1-461-2 (15.3g, 36.2mM) 및 트리플산 (triflic acid) (80.1mL, 905.0mM)을 벤젠-d6 (benzene-d6) (100mL)에 넣고 녹인 후 40℃에서 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-461-1을 13.5g 얻었다 (수율 85%).
5) 화합물 1-461의 제조
화합물 1-461-1 (12.4g, 28.2mM), 2-클로로-4,6-디페닐-1,3,5-트리아진 (2-chloro-4,6-diphenyl-1,3,5-triazine) (9.1g, 33.9mM), 트리스(디벤질리덴아세톤)디팔라듐 (Pd2(dba)3) (1.3g, 1.4mM), 엑스포스 (XPhos) (1.3g, 2.8mM) 및 소듐 터트-부톡사이드 (sodium tert-butoxide, t-BuONa) (5.4g, 56.4mM)를 자일렌 (Xylene) (200mL)에 넣고 녹인 후 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-461을 14.6g 얻었다 (수율 77%).
상기 제조예 3에서 12-페닐-12H-벤조퓨로[2,3-a]카바졸 (12-phenyl-12H-benzofuro[2,3-a]carbazole) 대신, 하기 표 3의 중간체 A를 사용하고, 2-클로로-4,6-디페닐-1,3,5-트리아진 (2-chloro-4,6-diphenyl-1,3,5-triazine) 대신, 하기 표 3의 중간체 B를 사용하여, 상기 제조예 3의 제조와 동일한 방법으로 하기 표 3의 목적 화합물을 합성하였다.
[표 3]
Figure PCTKR2022010212-appb-img-000068
제조예 4: 화합물 1-541의 제조
상기 제조예 1에서 디벤조[b,d]퓨란-4-아민 (dibenzo[b,d]furan-4-amine) 대신, 2-클로로-6-플루오로아닐린 (2-chloro-6-fluoroaniline)을 사용하고, 2-브로모-1-클로로-3-플루오로벤젠 (2-bromo-1-chloro-3-fluorobenzene) 대신, 1-브로모-9,9-디메틸-9H-플루오렌 (1-bromo-9,9-dimethyl-9H-fluorene)을 사용하여, 상기 제조예 1과 동일한 방법으로 목적 화합물을 합성하였다.
제조예 5: 화합물 1-545의 제조
상기 제조예 2에서 화합물 1-1-5 대신, 10-플루오로-12,12-디메틸-11,12-디히드로인데노[2,1-a]카바졸 (10-fluoro-12,12-dimethyl-11,12-dihydroindeno[2,1-a]carbazole)을 사용하여, 상기 제조예 2와 동일한 방법으로 목적 화합물을 합성하였다.
제조예 6: 화합물 1-549의 제조
Figure PCTKR2022010212-appb-img-000069
1) 화합물 1-549-5의 제조
(9-페닐-9H-카바졸-2-일)붕산 ((9-phenyl-9H-carbazol-2-yl)boronic acid) (8.1g, 28.2mM), 메틸 2-브로모-6-플루오로벤조에이트 (methyl 2-bromo-6-fluorobenzoate) (7.9g, 33.9mM), 테트라키스(트리페닐포스핀)팔라듐 (Pd(PPh3)4) (1.6g, 1.4mM) 및 탄산칼륨 (potassium carbonate, K2CO3) (7.8g, 56.2mM)을 1,4-디옥세인 (1,4-dioxane) (200mL) 및 물 (H2O) (40mL)에 넣고 녹인 후, 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-549-5를 9.6g 얻었다 (수율 86%).
2) 화합물 1-549-4의 제조
화합물 1-549-5 (5.0g, 12.6mM)를 테트라하이드로퓨란 (tetrahydrofuran, THF) (100mL)에 넣고 녹인 후 0 ℃에서 질소 치환하였고, 3.0M 메틸마그네슘브로마이드 (methylmagnesium bromide, MeMgBr)를 천천히 넣고 실온에서 3시간 동안 교반하였다. 상기 반응물을 메틸렌클로라이드 (MC) (100mL)에 넣고 녹인 후, 삼불화붕소 디에틸 에테레이트 (boron trifluoride diethyl etherate, BF3OEt2) (4.7mL, 37.9mM)를 넣고 1시간 교반하였다. 반응이 완결된 후 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-549-4를 2.2g 얻었다 (수율 46%).
3) 화합물 1-549-3의 제조
화합물 1-549-4 (5.3g, 14.1mM), 2-클로로아닐린 (2-chloroaniline) (2.2g, 16.9mM) 및 칼륨 터트-부톡사이드 (potassium tert-butoxide, t-BuOK) (3.2g, 28.2mM)를 다이메틸 설폭사이드 (dimethyl sulfoxide, DMSO) (100mL)에 넣고 녹인 후 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-549-3을 5.0g 얻었다 (수율 73%).
4) 화합물 1-549-2, 1-549-1, 1-549의 제조
상기 제조예 3에서 화합물 1-461-2, 1-461-1 및 1-461의 제조와 동일한 방법으로 목적 화합물을 합성하였다.
제조예 7: 화합물 1-553의 제조
상기 제조예 4에서 2-클로로-4,6-디페닐-1,3,5-트리아진 (2-chloro-4,6-diphenyl-1,3,5-triazine) 대신, 2-([1,1'-비페닐]-4-일-d9)-4-클로로-6-(페닐-d5)-1,3,5-트리아진 (2-([1,1'-biphenyl]-4-yl-d9)-4-chloro-6-(phenyl-d5)-1,3,5-triazine)을 사용하여, 제조예 4 와 동일한 방법으로 제조하여 목적 화합물을 합성하였다.
제조예 8: 화합물 1-557의 제조
상기 제조예 5에서 2-클로로-4,6-디페닐-1,3,5-트리아진 (2-chloro-4,6-diphenyl-1,3,5-triazine) 대신, 2-([1,1'-비페닐]-4-일-d9)-4-클로로-6-(페닐-d5)-1,3,5-트리아진 (2-([1,1'-biphenyl]-4-yl-d9)-4-chloro-6-(phenyl-d5)-1,3,5-triazine)을 사용하여, 제조예 5 와 동일한 방법으로 제조하여 목적 화합물을 합성하였다.
제조예 9: 화합물 1-559의 제조
상기 제조예 6에서 2-클로로-4,6-디페닐-1,3,5-트리아진 (2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 2-([1,1'-비페닐]-4-일-d9)-4-클로로-6-(페닐-d5)-1,3,5-트리아진 (2-([1,1'-biphenyl]-4-yl-d9)-4-chloro-6-(phenyl-d5)-1,3,5-triazine)을 사용하여, 제조예 6과 동일한 방법으로 제조하여 목적 화합물을 합성하였다.
제조예 10: 화합물 2-3의 제조
Figure PCTKR2022010212-appb-img-000070
1) 화합물 2-3의 제조
3-브로모-1,1'-비페닐 (3-bromo-1,1'-biphenyl) (3.7g, 15.8mM), 9-페닐-9H,9'H-3,3'-비카바졸 (9-phenyl-9H,9'H-3,3'-bicarbazole) (6.5g, 15.8mM), 요오드화 구리 (Copper(I) iodide, CuI) (3.0g, 15.8mM), 트랜스-1,2-디아미노시클로헥산 (trans-1,2-diaminocyclohexane) (1.9mL, 15.8mM) 및 제삼인산칼륨 (tri-potassium phosphate, K3PO4) (3.3g, 31.6mM)을 1,4-디옥세인 (1,4-dioxane) (100mL)에 넣고 녹인 후, 24시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 2-3을 7.5g 얻었다 (수율 85%).
상기 제조예 10에서 3-브로모-1,1'-비페닐 (3-bromo-1,1'-biphenyl) 대신, 하기 표 4의 중간체 A를 사용하고, 9-페닐-9H,9'H-3,3'-비카바졸 (9-phenyl-9H,9'H-3,3'-bicarbazole) 대신, 하기 표 4의 중간체 B를 사용하여, 상기 제조예 10과 동일한 방법으로 하기 표 4의 목적 화합물들을 합성하였다.
[표 4]
Figure PCTKR2022010212-appb-img-000071
제조예 11: 화합물 2-73의 제조
Figure PCTKR2022010212-appb-img-000072
1) 화합물 2-73-2의 제조
2-브로모디벤조[b,d]티오펜 (2-Bromodibenzo[b,d]thiophene) (4.2g, 15.8mM), 9-페닐-9H,9'H-3,3'-비카바졸 (9-phenyl-9H,9'H-3,3'-bicarbazole) (6.5g, 15.8mM), 요오드화 구리 (Copper(I) iodide, CuI) (3.0g, 15.8mM), 트랜스-1,2-디아미노시클로헥산 (trans-1,2-diaminocyclohexane) (1.9mL, 15.8mM) 및 제삼인산칼륨 (tri-potassium phosphate, K3PO4) (3.3g, 31.6mM)을 1,4-디옥세인 (1,4-dioxane) (100mL)에 넣고 녹인 후 24시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 2-73-2를 7.9g 얻었다 (수율 85%).
2) 화합물 2-73-1의 제조
화합물 2-73-2 (8.4g, 14.3mmol)를 테트라하이드로퓨란 (tetrahydrofuran, THF) (100mL)에 넣고 녹인 후, -78℃에서 질소 치환하였고, 2.5M n-부틸리튬 (n-Butyllithium, n-BuLi) (7.4mL, 18.6mmol)을 천천히 넣고, 실온에서 1시간 동안 교반하였다. 상기 반응 혼합물에 트리메틸 붕산염 (trimethyl borate, B(OMe)3) (4.8mL, 42.9mmol)을 천천히 넣고, 실온에서 2시간 동안 교반하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:MeOH=100:3)로 정제하고, DCM으로 재결정하여 목적 화합물 2-73-1을 3.9g 얻었다 (수율 70%).
3) 화합물 2-73의 제조
화합물 2-73-1 (6.7g, 10.5mM), 아이오도벤젠 (iodobenzene) (2.1g, 10.5mM), 테트라키스(트리페닐포스핀)팔라듐 (Pd(PPh3)4) (606mg, 0.52mM) 및 탄산칼륨 (potassium carbonate, K2CO3) (2.9g, 21.0mM)을 톨루엔 (toluene) (100 mL), 에탄올 (EtOH) (20 mL) 및 물 (H2O) (20 mL)에 넣고 녹인 후 12시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexand=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 2-73을 4.9g 얻었다 (수율 70%).
제조예 12: 화합물 3-2의 제조
Figure PCTKR2022010212-appb-img-000073
1) 화합물 3-2-1의 제조
9H,9'H-3,3'-비카바졸 (9H,9'H-3,3'-bicarbazole) (10g, 30.0mM), 4-브로모-1,1'-비페닐-2,2',3,3',4', 5,5',6,6'-D9 (4-bromo-1,1'-biphenyl-2,2',3,3',4',5,5',6,6'-D9) (A) (7.26g, 30mM), 요오드화 구리 (Copper(I) iodide, CuI) (0.57g, 3.0mM), 트랜스-1,2-디아미노시클로헥산 (trans-1,2-diaminocyclohexane) (0.34g, 3.0mM) 및 제삼인산칼륨 (tri-potassium phosphate, K3PO4) (12.7g, 60.0mM)을 1,4-디옥세인 (1,4-dioxane) (100mL)에 넣고 녹인 후, 125℃에서 8시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 3-2-1을 13.9g 얻었다 (수율 94%).
2) 화합물 3-2의 제조
화합물 3-2-1 (13.9g, 28.0mM), 4-브로모-1,1'-비페닐-2,2',3,3',4', 5,5',6,6'-D9 (4-bromo-1,1'-biphenyl-2,2',3,3',4',5,5',6,6'-D9) (A') (6.8g, 28.0mM), 요오드화 구리 (Copper(I) iodide, CuI) (0.53g, 2.8mM), 트랜스-1,2-디아미노시클로헥산 (trans-1,2-diaminocyclohexane) (0.32g, 2.8mM) 및 제삼인산칼륨 (tri-potassium phosphate, K3PO4) (11.9g, 56.0mM)을 1,4-디옥세인 (1,4-dioxane) (140mL)에 넣고 녹인 후, 125℃에서 8시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 3-2를 16.1g 얻었다 (수율 88%).
화합물 A와 화합물 A’가 동일한 경우 상기 제조예 12에서 화합물 A를 2당량 넣어 목적 화합물을 바로 합성할 수 있다. 즉, 화합물 A와 화합물 A’가 동일한 경우 화합물 3-2-1의 제조를 생략할 수 있다.
상기 제조예 12에 있어서, 4-브로모-1,1'-비페닐-2,2',3,3',4', 5,5',6,6'-D9 (4-bromo-1,1'-biphenyl-2,2',3,3',4',5,5',6,6'-D9) (A) 대신, 하기 표 5의 중간체 A를 사용하고, 4-브로모-1,1'-비페닐-2,2',3,3',4', 5,5',6,6'-D9 (4-bromo-1,1'-biphenyl-2,2',3,3',4',5,5',6,6'-D9) (A') 대신, 하기 표 5의 중간체 A'을 사용하여, 상기 제조예 12와 동일한 방법으로 하기 표 5의 목적 화합물들을 합성하였다.
[표 5]
Figure PCTKR2022010212-appb-img-000074
Figure PCTKR2022010212-appb-img-000075
제조예 13: 화합물 3-26의 제조
Figure PCTKR2022010212-appb-img-000076
1) 화합물 3-26-2의 제조
9H,9'H-3,3'-비카바졸 (9H,9'H-3,3'-bicarbazole) (12.0g, 36.2mM) 및 트리플산 (triflic acid) (80.1mL, 905.0mM)을 벤젠-d6 (benzene-d6) (100mL)에 넣고 녹인 후, 40℃에서 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 3-26-2를 8.9g 얻었다 (수율 71%).
2) 화합물 3-26-1의 제조
화합물 3-26-2 (5.5g, 15.8mM), 4-브로모-1,1'-비페닐 (4-bromo-1,1'-biphenyl) (B) (3.7g, 15.8mM), 요오드화 구리 (Copper(I) iodide, CuI) (3.0g, 15.8mM), 트랜스-1,2-디아미노시클로헥산 (trans-1,2-diaminocyclohexane) (1.9mL, 15.8mM) 및 제삼인산칼륨 (tri-potassium phosphate, K3PO4) (3.3g, 31.6mM)을 1,4-디옥세인 (1,4-dioxane) (100mL)에 넣고 녹인 후, 24시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 3-26-1을 6.5g 얻었다 (수율 83%).
2) 화합물 3-26의 제조
화합물 3-26-1 (14.0g, 28.0mM), 4-브로모-1,1'-비페닐 (4-bromo-1,1'-biphenyl) (B') (6.8g, 28.0mM), 요오드화 구리 (Copper(I) iodide, CuI) (0.53g, 2.8mM), 트랜스-1,2-디아미노시클로헥산 (trans-1,2-diaminocyclohexane) (0.32g, 2.8mM) 및 제삼인산칼륨 (tri-potassium phosphate, K3PO4) (11.9g, 56.0mM)을 1,4-디옥세인 (1,4-dioxane) (140mL)에 넣고 녹인 후, 125℃에서 8시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 3-26을 15.8g 얻었다 (수율 87%).
화합물 B와 화합물 B’가 동일한 경우 상기 제조예 13에서 화합물 B를 2당량 넣어 목적 화합물을 바로 합성할 수 있다. 즉, 화합물 B와 화합물 B’가 동일한 경우 상기 화합물 3-26-1의 제조를 생략할 수 있다.
상기 제조예 13에 있어서, 4-브로모-1,1'-비페닐 (4-bromo-1,1'-biphenyl) (B) 대신, 하기 표 6의 중간체 B를 사용하고, 4-브로모-1,1'-비페닐 (4-bromo-1,1'-biphenyl) (B') 대신, 하기 표 6의 중간체 B'을 사용하여, 상기 제조예 13과 동일한 방법으로 하기 표 6의 목적 화합물들을 합성하였다.
[표 6]
Figure PCTKR2022010212-appb-img-000077
Figure PCTKR2022010212-appb-img-000078
제조예 14: 화합물 3-50의 제조
Figure PCTKR2022010212-appb-img-000079
1) 화합물 3-50-1의 제조
9-([1,1'-비페닐]-4-일)-9H,9'H-3,3'-비카바졸 (9-([1,1'-biphenyl]-4-yl)-9H,9'H-3,3'-bicarbazole) (13.6g, 28.0mM), 4-브로모-1,1'-비페닐 (4-bromo-1,1'-biphenyl) (6.8g, 28.0mM), 요오드화 구리 (Copper(I) iodide, CuI) (0.53g, 2.8mM), 트랜스-1,2-디아미노시클로헥산 (trans-1,2-diaminocyclohexane) (0.32g, 2.8mM) 및 제삼인산칼륨 (tri-potassium phosphate, K3PO4) (11.9g, 56.0mM)을 1,4-디옥세인 (1,4-dioxane) (140mL)에 넣고 녹인 후, 125℃에서 8시간 동안 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:Hexane=1:3)로 정제하고 메탄올로 재결정하여 목적 화합물 3-50-1을 15.9g 얻었다 (수율 89%).
2) 화합물 3-50의 제조
화합물 3-50-1 (23.0g, 36.2mM) 및 트리플산 (triflic acid) (80.1mL, 905.0mM)을 벤젠-d6 (benzene-d6) (100mL)에 넣고 녹인 후 40℃에서 환류 하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였다. 그 후 유기층을 황산 마그네슘 (MgSO4)으로 수분을 제거한 다음, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 3-50을 16.9g 얻었다 (수율 70%).
상기 제조예 14에 있어서, 9-([1,1'-비페닐]-4-일)-9H,9'H-3,3'-비카바졸 (9-([1,1'-biphenyl]-4-yl)-9H,9'H-3,3'-bicarbazole) 대신, 하기 표 7의 중간체 C를 사용하고, 4-브로모-1,1'-비페닐 (4-bromo-1,1'-biphenyl) 대신, 하기 표 7의 중간체 C'를 사용하여, 상기 제조예 14 와 동일한 방법으로 하기 표 7의 목적 화합물들을 합성하였다.
[표 7]
Figure PCTKR2022010212-appb-img-000080
Figure PCTKR2022010212-appb-img-000081
상기 제조예 1 내지 14 및 표 1 내지 7에 기재된 화합물 이외의 나머지 화합물도 전술한 제조예에 기재된 방법과 동일한 방법으로 제조하였고, 하기 표 8에 합성결과를 나타내었다. 하기 표 8은 1H NMR(CDCl3, 200Mz)의 측정값이고, 하기 표 9는 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이다.
[표 8]
Figure PCTKR2022010212-appb-img-000082
[표 9]
Figure PCTKR2022010212-appb-img-000083
Figure PCTKR2022010212-appb-img-000084
<실험예>
실험예 1
(1) 유기 발광 소자의 제조
1,500Å의 두께의 인듐틴옥사이드 (Indium tin oxide, ITO)가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 실시하고, 건조시킨 후, UV(Ultraviolet) 세정기에서 UV를 이용하여 5분간 UVO(Ultraviolet ozone)처리를 하였다. 이후, 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO의 일함수 증대 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층으로 4,4',4"-트리스[2-나프틸(페닐)아미노] 트리페닐아민 (4,4',4"-Tris[2-naphthyl(phenyl)amino]triphenylamine: 2-TNATA)을 증착하였고, 정공 수송층으로 N,N'-비스(α-나프틸)-N,N'-디페닐-4,4'-디아민 (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine: NPB)을 증착하였다.
Figure PCTKR2022010212-appb-img-000085
Figure PCTKR2022010212-appb-img-000086
이와 같이 정공 주입층 및 정공 수송층을 형성시킨 후, 그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 하기 표 10에 기재된 화합물을 400Å의 두께로 증착하였고, 녹색 인광 도펀트로 Ir(ppy)3을 사용하여 상기 호스트에 Ir(ppy)3을 발광층의 증착 두께의 7 wt%의 양으로 도핑하여 증착하였다.
이후, 정공 저지층으로 바토큐프로인 (bathocuproine, BCP)을 60Å의 두께로 증착하였고, 그 위에 전자 수송층으로 트리스(8-하이드록시퀴놀리나토)알루미늄 (tris(8-hydroxyquinolinato)aluminium, Alq3)을 200Å의 두께로 증착하였다.
Figure PCTKR2022010212-appb-img-000087
Figure PCTKR2022010212-appb-img-000088
마지막으로, 상기 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å의 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 발광 소자를 제조하였다.
한편, 유기 발광 소자의 제조에 필요한 모든 유기 화합물은 재료 별로 각각 10-8~10-6torr 하에서 진공 승화 정제하여 유기 발광 소자의 제조에 사용하였다.
(2) 유기 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제조된 유기 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, 초기 휘도 대비 90%가 되는 시간인 수명 T90을 측정하였다. 본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색 (EL color) 및 수명을 측정한 결과는 표 10과 같았다.
[표 10]
Figure PCTKR2022010212-appb-img-000089
Figure PCTKR2022010212-appb-img-000090
[비교 화합물 Ref. 1 내지 Ref.13]
Figure PCTKR2022010212-appb-img-000091
상기 표 10의 결과에서, 본 발명의 헤테로 고리 화합물을 발광층 재료로 이용한 유기 발광 소자는 비교예 1 내지 13의 유기 발광 소자에 비해 구동 전압이 낮고, 발광효율 및 수명이 현저히 개선되었음을 확인할 수 있었다.
본 발명에 따른 헤테로 고리 화합물은 중수소로 치환된 화합물이고, 비교예 1 내지 13의 화합물은 수소로 치환되거나 일부 중수소로 치환된 화합물이다. 원자 질량이 수소 보다 2배 큰 중수소로 치환된 화합물은 수소로 치환된 화합물보다 더 낮은 영점 에너지 및 진동 에너지로 인해 기저 상태의 에너지가 낮아지고, 분자간 진동에 의한 충돌이 감소하여 박막을 비결정질 상태로 만들 수 있어 유기 발광 소자의 수명을 향상시킬 수 있다.
상기 중수소로 치환 화합물은 낮은 기저 상태의 에너지를 갖게 되어 화합물의 안정성이 향상되고, C-D 결합의 해리에너지가 높아 분자의 안정성이 향상되어, 유기 발광 소자의 수명을 개선할 수 있다.
구체적으로, 본 발명에 따른 중수소로 치환된 헤테로 고리 화합물 1-184는 분자의 안정성 및 비결정성에 의해 수소로 치환된 비교예 화합물 Ref. 1, 2, 3, 4, 6, 8, 9, 10, 11, 12 및 13보다 구동전압 및 수명이 향상됨을 확인할 수 있고, 중수소로 치환된 헤테로 고리 화합물의 낮은 진동에너지로 인해 에너지의 손실을 최소화하고 도펀트로 에너지 전달을 용이하게 하여, 유기 발광 소자의 발광효율을 향상시킬 수 있었다.
또한, 본 발명에 따른 중수소로 치환된 헤테로 고리 화합물 1-549는 비교예 화합물 Ref. 5와 비교하였을 때, 화합물 1-549가 상기 화학식 1의 화합물에서 R1 내지 R12가 중수소로 치환된 화합물 (이하, 축합카바졸이 중수소로 치환된 화합물이라 함)이라는 점에서 차이가 있고, 본 발명에 따른 중수소로 치환된 헤테로 고리 화합물 1-181은 비교예 화합물 Ref. 7과 비교하였을 때, 화합물 1-181이 상기 화학식 1의 화합물에서 R1 내지 R12가 중수소로 치환된 화합물 (이하, 축합카바졸이 중수소로 치환된 화합물이라 함) 및 상기 화학식 1의 화합물에서 Ar1 내지 Ar3가 중수소로 치환된 화합물 (이하, 중수소로 치환된 아릴기를 갖는 화합물이라 함)이라는 점에서 차이가 있다.
일반적으로, 카바졸은 라디칼 양이온(radical cation)이 생성되었을 경우, 카바졸의 3번 위치가 활성화되어 이합체(dimer)를 형성하여 소자의 효율 및 수명을 저해한다.
반면, 중수소가 치환된 축합카바졸은 라디칼 양이온 (radical cation)이 생성되었을 경우, 상기 중수소가 상기 라디칼 양이온을 안정화시켜 유기 발광 소자의 수명을 향상시킨다.
구체적으로, 본 발명에 따른 중수소로 치환된 헤테로 고리 화합물 1-181 및 1-549는 축합카바졸에 치환된 중수소로 인해 라디칼 양이온(radical cation)을 효과적으로 안정화시켜 유기 발광 소자의 수명을 효과적으로 향상시켰고, 비교예 화합물 Ref. 5 및 7은 치환기 중 아릴기에만 치환된 중수소로 인해 축합카바졸의 라디칼 양이온(radical cation) 안정화에 기여하지 못함을 확인하였다. 따라서, 축합카바졸이 중수소로 치환된 화합물 1-181 및 1-549를 발광층의 재료로 이용한 유기 발광 소자는 유기 발광 소자의 수명이 향상됨을 확인할 수 있었다.
또한, 본 발명에 따른 중수소로 치환된 헤테로 고리 화합물 1-349은 화합물의 낮은 진동에너지로 에너지의 손실을 줄여 유기 발광 소자의 발광 효율을 향상시킬 수 있었고, 기저 상태의 에너지를 낮추어 유기 발광 소자의 수명을 향상시킬 수 있었다.
또한, 축합카바졸만 중수소 치환된 화합물 1-184는 화합물 1-349보다 분자간 상호작용이 증가하여 분자간 거리가 작아지고, 이동도가 개선되어 유기 발광 소자의 구동전압을 향상시킬 수 있었다.
<실험예 2>
(1) 유기 발광 소자의 제조
1,500Å의 두께로 인듐틴옥사이드 (Indium tin oxide, ITO)가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 실시하고, 건조시킨 후, UV(Ultraviolet) 세정기에서 UV를 이용하여 5분간 UVO(Ultraviolet ozone)처리를 하였다. 이후, 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO의 일함수 증대 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층으로 4,4',4"-트리스[2-나프틸(페닐)아미노] 트리페닐아민 (4,4',4"-Tris[2-naphthyl(phenyl)amino]triphenylamine: 2-TNATA)을 증착하였고, 정공 수송층으로 N,N'-비스(α-나프틸)-N,N'-디페닐-4,4'-디아민 (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine: NPB)을 증착하였다.
Figure PCTKR2022010212-appb-img-000092
Figure PCTKR2022010212-appb-img-000093
이와 같이 정공 주입층 및 정공 수송층을 형성시킨 후, 그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 하기 표 11에 기재된 화합물 1종 (N-type) 및 상기 화학식 2로 표시되는 화합물 중 1종 (P-type)을 예비 혼합 (pre-mixed)한 후, 하나의 공급원에서 400Å의 두께로 증착하였고, 녹색 인광 도펀트로 Ir(ppy)3을 사용하여 상기 호스트에 Ir(ppy)3을 발광층의 증착 두께의 7 wt%의 양으로 도핑하여 증착하였다.
이후, 정공 저지층으로 바토큐프로인 (bathocuproine, BCP)을 60Å의 두께로 증착하였고, 그 위에 전자 수송층으로 트리스(8-하이드록시퀴놀리나토)알루미늄 (tris(8-hydroxyquinolinato)aluminium, Alq3)을 200Å의 두께로 증착하였다.
Figure PCTKR2022010212-appb-img-000094
Figure PCTKR2022010212-appb-img-000095
마지막으로, 상기 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å의 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 발광 소자를 제조하였다.
한편, 유기 발광 소자의 제조에 필요한 모든 유기 화합물은 재료 별로 각각 10-8~10-6torr 하에서 진공 승화 정제하여 유기 발광 소자의 제조에 사용하였다.
(2) 유기 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제조된 유기 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, 초기 휘도 대비 90%가 되는 시간인 수명 T90을 측정하였다. 본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색 (EL color) 및 수명을 측정한 결과는 표 11과 같았다.
[표 11]
Figure PCTKR2022010212-appb-img-000096
상기 표 11의 결과에서, 본 발명의 헤테로 고리 화합물인 상기 화학식 1로 표시되는 화합물을 N 타입 host로 사용하고, 본 발명의 상기 화학식 2로 표시되는 화합물을 P 타입 host로 사용하여 상기 두 화합물을 혼합하여 증착하는 경우, 유기 발광 소자의 발광 효율 및 수명이 개선됨을 확인할 수 있었다. 이로부터 상기 두 화합물을 혼합하여 증착하는 경우, 엑시플렉스(exciplex) 현상이 일어남을 예상할 수 있다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 도너(donor, p-host)의 HOMO 에너지 레벨, 억셉터(acceptor, n-host) LUMO 에너지 레벨 크기의 에너지를 방출하는 현상이다. 두 분자간 엑시플렉스(exciplex) 현상이 일어나면 역항간 교차(Reverse Intersystem Crossing, RISC)가 일어나게 되고, 이로 인하여 형광의 내부양자 효율이 100%까지 증가할 수 있다. 정공 수송 능력이 좋은 도너(donor, p-host)와 전자 수송 능력이 좋은 억셉터(acceptor, n-host)가 발광층의 호스트로 사용될 경우, 정공은 p-host로 주입되고, 전자는 n-host로 주입되기 때문에 유기 발광 소자의 구동 전압을 낮출 수 있고, 그로 인해 유기 발광 소자의 수명 향상에 도움을 줄 수 있다.
화학식 2로 표시되는 화합물의 경우, 수소로 치환되거나 부분적으로 중수소 또는 전체 중수소로 치환된 화합물이다. 원자 질량이 수소보다 2배 큰 중수소로 치환된 화합물은 수소와 치환된 화합물보다 더 낮은 영점 에너지와 진동 에너지로 인해 기저 상태의 에너지가 낮아지고, 분자간 진동에 의한 충돌이 감소하여, 박막을 비결정질 상태로 만들 수 있어 유기 발광 소자의 수명을 향상시킬 수 있다.
상기 중수소 치환 화합물은 낮은 기저 상태의 에너지를 갖게 되어 화합물의 안정성이 향상되고, C-D 결합의 해리에너지가 높아 분자의 안정성이 향상되어, 유기 발광 소자의 수명을 개선할 수 있다.
본 발명에서 상기 화학식 2로 표시되는 화합물이 도너(donor) 역할을 하고, 상기 화학식 1로 표시되는 화합물이 억셉터(acceptor) 역할을 하여, 상기 화합물들이 발광층의 호스트로 사용되었을 경우, 우수한 유기 발광 소자의 특성을 나타냄을 확인할 수 있었다.

Claims (20)

  1. 하기 화학식 1로 표시되는 헤테로 고리 화합물:
    [화학식 1]
    Figure PCTKR2022010212-appb-img-000097
    상기 화학식 1에서,
    R1 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고, 상기 R1 내지 R12 중 적어도 하나는 중수소이고,
    X1, X2 및 X3은 서로 같거나 상이하고, 각각 독립적으로 NAr1, O, S 또는 CR13R14이고, 상기 X1, X2 및 X3 중 적어도 둘 이상이 NAr1이고, 상기 복수의 Ar1은 서로 상이하고, 이들 중 어느 하나는 하기 화학식 1-1로 표시되는 기이고,
    Ar1은 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; 및 하기 화학식 1-1로 표시되는 기로 이루어진 군으로부터 선택되고,
    [화학식 1-1]
    Figure PCTKR2022010212-appb-img-000098
    상기 화학식 1-1에서,
    L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
    Ar2 및 Ar3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고,
    a 및 b는 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수이고,
    R13 및 R14는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택된다.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물은 하기 화학식 1-a 및 화학식 1-b 중 어느 하나인 것인, 헤테로 고리 화합물:
    [화학식 1-a]
    Figure PCTKR2022010212-appb-img-000099
    상기 화학식 1-a에서,
    X3은 O, S 또는 CR13R14이고,
    R1 내지 R14 및 Ar1은 상기 화학식 1에서 정의된 바와 같고,
    Ar1'은 Ar1의 정의와 같고,
    Ar1 및 Ar1'은 서로 상이하고, 이들 중 어느 하나는 화학식 1-1로 표시되는 기이고,
    [화학식 1-b]
    Figure PCTKR2022010212-appb-img-000100
    상기 화학식 1-b에서,
    X2는 O, S 또는 CR13R14이고,
    R1 내지 R14 및 Ar1은 상기 화학식 1에서 정의된 바와 같고,
    Ar1'은 Ar1의 정의와 같고,
    Ar1 및 Ar1'은 서로 상이하고, 이들 중 어느 하나는 화학식 1-1로 표시되는 기이다.
  3. 제1항에 있어서,
    R1 내지 R12가 중수소인 것인, 헤테로 고리 화합물.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물 중, R1 내지 R12의 중수소의 함량이 수소 원자 및 중수소 원자의 총수를 기준으로 1% 내지 100%인 것인, 헤테로 고리 화합물.
  5. 제2항에 있어서,
    Ar1 및 Ar1'은 각각 독립적으로 하기 화학식 1-1로 표시되는 기 및 하기 화학식 1-2-a 내지 1-2-g로 표시되는 기 중 어느 하나인 것인, 헤테로 고리 화합물:
    [화학식 1-1]
    Figure PCTKR2022010212-appb-img-000101
    [화학식 1-2-a]
    Figure PCTKR2022010212-appb-img-000102
    [화학식 1-2-b]
    Figure PCTKR2022010212-appb-img-000103
    [화학식 1-2-c]
    Figure PCTKR2022010212-appb-img-000104
    [화학식 1-2-d]
    Figure PCTKR2022010212-appb-img-000105
    [화학식 1-2-e]
    Figure PCTKR2022010212-appb-img-000106
    [화학식 1-2-f]
    Figure PCTKR2022010212-appb-img-000107
    [화학식 1-2-g]
    Figure PCTKR2022010212-appb-img-000108
    상기 화학식 1-1에서,
    Ar2 및 Ar3은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기이고,
    L1, L2, a 및 b는 상기 청구항 1에서 정의된 바와 같고,
    상기 화학식 1-2-a 내지 화학식 1-2-g에서,
    R21 내지 R60은 수소 또는 중수소이고,
    X4는 O, S 또는 CR61R62이고,
    R61 및 R62는 메틸기이고,
    p, q 및 r은 서로 같거나 상이하고, 각각 독립적으로 3 내지 5의 정수이다.
  6. 제5항에 있어서,
    상기 화학식 1-1에서, Ar2 및 Ar3은 중수소로 치환된 C6 내지 C30의 아릴기 또는 중수소로 치환된 C2 내지 C30의 헤테로아릴기일 수 있고, 이 경우, 수소 원자 및 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%인 것인, 헤테로 고리 화합물.
  7. 제5항에 있어서,
    상기 화학식 1-2-a 내지 1-2-g에서, R21 내지 R60의 중수소의 함량이 수소 원자 및 중수소 원자의 총수를 기준으로 1% 내지 100%인 것인, 헤테로 고리 화합물.
  8. 제1항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물 중 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%인 것인, 헤테로 고리 화합물.
  9. 제8항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물 중 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 30% 내지 100%인 것인, 헤테로 고리 화합물.
  10. 제1항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물은 하기 화합물들로 구성된 군으로부터 선택되는 어느 하나인 것인, 헤테로 고리 화합물:
    Figure PCTKR2022010212-appb-img-000109
    Figure PCTKR2022010212-appb-img-000110
    Figure PCTKR2022010212-appb-img-000111
    Figure PCTKR2022010212-appb-img-000112
    Figure PCTKR2022010212-appb-img-000113
    Figure PCTKR2022010212-appb-img-000114
    Figure PCTKR2022010212-appb-img-000115
    Figure PCTKR2022010212-appb-img-000116
    Figure PCTKR2022010212-appb-img-000117
    Figure PCTKR2022010212-appb-img-000118
    Figure PCTKR2022010212-appb-img-000119
    Figure PCTKR2022010212-appb-img-000120
    Figure PCTKR2022010212-appb-img-000121
    Figure PCTKR2022010212-appb-img-000122
    Figure PCTKR2022010212-appb-img-000123
    Figure PCTKR2022010212-appb-img-000124
    Figure PCTKR2022010212-appb-img-000125
    Figure PCTKR2022010212-appb-img-000126
    Figure PCTKR2022010212-appb-img-000127
    Figure PCTKR2022010212-appb-img-000128
    Figure PCTKR2022010212-appb-img-000129
    Figure PCTKR2022010212-appb-img-000130
    Figure PCTKR2022010212-appb-img-000131
    Figure PCTKR2022010212-appb-img-000132
    Figure PCTKR2022010212-appb-img-000133
    Figure PCTKR2022010212-appb-img-000134
    Figure PCTKR2022010212-appb-img-000135
    Figure PCTKR2022010212-appb-img-000136
    Figure PCTKR2022010212-appb-img-000137
    .
  11. 제1 전극;
    상기 제1 전극과 대향하여 구비된 제2 전극; 및
    상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층;을 포함하는 유기 발광 소자로서,
    상기 유기물층은 제1항 내지 제10항 중 어느 한 항에 따른 헤테로 고리 화합물을 포함하는 것인, 유기 발광 소자.
  12. 제11항에 있어서,
    상기 유기 발광 소자는 발광층, 정공주입층, 정공수송층, 전자주입층, 전자수송층, 전지저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 이상을 포함하며,
    상기 1층 이상은 상기 헤테로 고리 화합물을 포함하는 것인, 유기 발광 소자.
  13. 제11항에 있어서,
    상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 헤테로 고리 화합물을 포함하는 것인, 유기 발광 소자.
  14. 제11항에 있어서,
    상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 헤테로 고리 화합물을 포함하는 것인, 유기 발광 소자.
  15. 제11항에 있어서,
    상기 유기물층은 하기 화학식 2로 표시되는 헤테로 고리 화합물을 추가로 포함하는 것인, 유기 발광 소자:
    [화학식 2]
    Figure PCTKR2022010212-appb-img-000138
    상기 화학식 2에서,
    R101 내지 R114는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고,
    L3 및 L4는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
    Ar11 및 Ar12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R201R202; 및 -SiR201R202R203;로 이루어진 군으로부터 선택되고, 상기 R201, R202, 및 R203은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    m 및 n은 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수이다.
  16. 제15항에 있어서,
    상기 화학식 2로 표시되는 헤테로 고리 화합물 중 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 30% 내지 100%이거나, 중수소를 포함하지 않는 것인, 유기 발광 소자.
  17. 제15항에 있어서,
    상기 화학식 2로 표시되는 헤테로 고리 화합물은 하기 화합물들로 구성된 군으로부터 선택되는 어느 하나인 것인, 유기 발광 소자:
    Figure PCTKR2022010212-appb-img-000139
    Figure PCTKR2022010212-appb-img-000140
    Figure PCTKR2022010212-appb-img-000141
    Figure PCTKR2022010212-appb-img-000142
    Figure PCTKR2022010212-appb-img-000143
    Figure PCTKR2022010212-appb-img-000144
    Figure PCTKR2022010212-appb-img-000145
    Figure PCTKR2022010212-appb-img-000146
    .
  18. 제15항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물 중 적어도 하나는 중수소의 함량이 0% 초과 100%이하인 것인, 유기 발광 소자.
  19. 제1항 내지 제10항 중 어느 한 항에 따른 화학식 1로 표시되는 헤테로 고리 화합물, 및 하기 화학식 2로 표시되는 헤테로 고리 화합물을 포함하는, 유기 발광 소자의 유기물층용 조성물:
    [화학식 2]
    Figure PCTKR2022010212-appb-img-000147
    상기 화학식 2에서,
    R101 내지 R114는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되고,
    L3 및 L4는 서로 같거나 상이하고, 각각 독립적으로 단일결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
    Ar11 및 Ar12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R201R202; 및 -SiR201R202R203;로 이루어진 군으로부터 선택되고, 상기 R201, R202, 및 R203은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    m 및 n은 서로 같거나 상이하고, 각각 독립적으로 0 내지 3의 정수이다.
  20. 제19항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 2로 표시되는 헤테로 고리 화합물의 중량비가 1:10 내지 10:1인 것인, 유기 발광 소자의 유기물층용 조성물.
PCT/KR2022/010212 2021-08-31 2022-07-13 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물 WO2023033351A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0115492 2021-08-31
KR1020210115492A KR20230032537A (ko) 2021-08-31 2021-08-31 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물

Publications (1)

Publication Number Publication Date
WO2023033351A1 true WO2023033351A1 (ko) 2023-03-09

Family

ID=85411315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010212 WO2023033351A1 (ko) 2021-08-31 2022-07-13 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물

Country Status (3)

Country Link
KR (1) KR20230032537A (ko)
TW (1) TW202319510A (ko)
WO (1) WO2023033351A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140009838A (ko) * 2012-07-13 2014-01-23 덕산하이메탈(주) 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20160028737A (ko) * 2014-09-04 2016-03-14 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20180042146A (ko) * 2015-08-28 2018-04-25 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기
KR20210058691A (ko) * 2019-11-14 2021-05-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20210062771A (ko) * 2019-11-21 2021-06-01 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US20220020933A1 (en) * 2020-07-17 2022-01-20 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140009838A (ko) * 2012-07-13 2014-01-23 덕산하이메탈(주) 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20160028737A (ko) * 2014-09-04 2016-03-14 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20180042146A (ko) * 2015-08-28 2018-04-25 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기
KR20210058691A (ko) * 2019-11-14 2021-05-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20210062771A (ko) * 2019-11-21 2021-06-01 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US20220020933A1 (en) * 2020-07-17 2022-01-20 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display device

Also Published As

Publication number Publication date
KR20230032537A (ko) 2023-03-07
TW202319510A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2022065761A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2022025515A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2022035097A1 (ko) 유기 발광 소자 및 유기물층 형성용 조성물
WO2017018795A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2022092625A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조방법
WO2021133016A2 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2021101220A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2021071247A1 (ko) 유기 발광 소자, 이의 제조 방법 및 유기 발광 소자의 유기물층용 조성물
WO2021132984A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021034039A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022270741A1 (ko) 헤테로고리 화합물, 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물
WO2022131547A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2021215742A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2021132982A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021020941A1 (ko) 유기 발광 소자
WO2023277446A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2022119116A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2022250244A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021241882A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021020943A1 (ko) 유기 발광 소자
WO2023033351A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023043300A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2022211314A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2022139167A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2023106625A1 (ko) 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE