WO2023032765A1 - Photosensitive composition, dry film, cured product, and electronic component - Google Patents

Photosensitive composition, dry film, cured product, and electronic component Download PDF

Info

Publication number
WO2023032765A1
WO2023032765A1 PCT/JP2022/031769 JP2022031769W WO2023032765A1 WO 2023032765 A1 WO2023032765 A1 WO 2023032765A1 JP 2022031769 W JP2022031769 W JP 2022031769W WO 2023032765 A1 WO2023032765 A1 WO 2023032765A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenylene ether
phenols
condition
raw material
photosensitive composition
Prior art date
Application number
PCT/JP2022/031769
Other languages
French (fr)
Japanese (ja)
Inventor
康太 大城
信広 石川
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2023032765A1 publication Critical patent/WO2023032765A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to photosensitive compositions, dry films, cured products, and electronic parts containing polyphenylene ether.
  • the photolithography method is often used for patterning insulating layers, protective films, and conductor layers.
  • a layer made of a photosensitive composition is formed on a substrate such as a silicon wafer or a copper clad laminate, and after light irradiation (exposure) in a predetermined pattern, unexposed areas or exposed areas are removed with a developer. is dissolved and removed to form a pattern.
  • a photolithography There are two types of photolithography: a method in which the exposed area is dissolved in the developer, the so-called positive type; There is a type.
  • the photosensitive composition to be used must be resistant to dissolution in the developer in the exposed area and in the unexposed area. It is required to have both excellent solubility in a developer, in other words, to have a large difference in development speed (development contrast) between an exposed portion and an unexposed portion.
  • Patent Literatures 1 and 2 disclose negative photosensitive resin compositions that are useful for solder resists and the like that are permanent protective films for printed wiring boards and that have a reduced dielectric loss tangent.
  • An object of the present invention is to provide a photosensitive composition with low dielectric properties and excellent development contrast.
  • the present inventors focused on the fact that polyphenylene ether having a branched structure is soluble in organic solvents and the photolithography method using such organic solvents as a developer.
  • the present inventors have found a photosensitive composition prepared by combining two types of polyphenylene ether obtained from specific raw material phenols and a compound that undergoes radical polymerization with the unsaturated carbon bond introduced into the polyphenylene ether. According to the product, it was found that the above problems could be advantageously solved, and the present invention was completed. That is, the present invention is as follows.
  • the present invention Polyphenylene ether A; a polyphenylene ether B; a compound having an unsaturated carbon bond and a radically polymerizable functional group; and a photoradical generator,
  • the polyphenylene ether A and the polyphenylene ether B are obtained from raw material phenols containing at least phenols satisfying at least the following condition 1 and at least phenols satisfying at least the following condition 2,
  • the polyphenylene ether A has a weight average molecular weight of more than 40,000 and not more than 200,000, and the content of phenols satisfying condition 2 with respect to the total raw material phenols during synthesis is less than 20 mol%
  • the polyphenylene ether B is a photosensitive composition in which the content of phenols satisfying Condition 2 is 20 mol % or more with respect to the total raw material phenols at the time of synthesis.
  • Condition 1 Having hydrogen atoms at the ortho and para positions
  • Condition 2 Having a hydrogen atom at the para position and having
  • the polyphenylene ether B preferably has a weight average molecular weight of 5,000 or more and 40,000 or less.
  • the content ratio of the polyphenylene ether A and the polyphenylene ether B is preferably 25:75 to 75:25 by weight.
  • the unsaturated carbon bond and the functional group capable of radical polymerization are preferably a thiol group and/or an allyl group.
  • the present invention may be a dry film having a resin layer made of the photosensitive composition.
  • the present invention may be a cured product of the photosensitive composition or the resin layer.
  • the present invention may be an electronic component having the cured product.
  • the curable composition according to this embodiment is a photosensitive composition used in photolithography.
  • the photosensitive composition may be simply referred to as "curable composition”.
  • the term “resin composition” may be used in the sense of a “curable composition.”
  • an "unsaturated carbon bond” indicates an ethylenic or acetylenic multiple bond (double bond or triple bond) between carbon atoms.
  • the functional group having an unsaturated carbon bond is not particularly limited.
  • a vinyl group, an allyl group, or a (meth)acryloyl group can be selected from the viewpoint of excellent curability, and among them, an allyl group is preferable from the viewpoint of excellent low dielectric properties.
  • These functional groups having unsaturated carbon bonds can have, for example, 15 or less, 10 or less, 8 or less, 5 or less, or 3 or less carbon atoms.
  • phenols that are used as raw materials for polyphenylene ether (PPE) and can be constituent units of polyphenylene ether are collectively referred to as "raw material phenols.”
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of polyphenylene ether are determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Shodex K-805L is used as a column
  • the column temperature is 40° C.
  • the flow rate is 1 mL/min
  • the eluent is chloroform
  • the standard substance is polystyrene.
  • monohydric phenols are mainly disclosed as raw material phenols in this specification, polyhydric phenols may be used as raw material phenols within a range that does not impair the effects of the present invention.
  • the curable composition contains polyphenylene ether A, polyphenylene ether B, a compound having an unsaturated carbon bond and a radically polymerizable functional group, and a photoradical generator. Moreover, the curable composition may contain other components as needed. Each component will be described below.
  • the polyphenylene ethers A and B contained in the curable composition of the present invention are obtained from raw material phenols containing phenols satisfying at least condition 1 below and phenols satisfying at least condition 2 below, respectively.
  • phenols that satisfy at least the following condition 1 include phenols that satisfy the condition 1 and do not satisfy the condition 2 or phenols that satisfy the conditions 1 and 2.
  • Phenols that satisfy at least the following condition 2 include includes phenols satisfying condition 2 and not satisfying condition 1, or phenols satisfying condition 1 and condition 2. (Condition 1) Having hydrogen atoms at the ortho and para positions (Condition 2) Having a hydrogen atom at the para position and having a functional group containing an unsaturated carbon bond
  • polyphenylene ethers obtained from phenols that satisfy Condition 1 are partly branched by benzene rings ether-bonded at at least three positions, ipso-position, ortho-position, and para-position. Become.
  • a polyphenylene ether having a branched structure in its skeleton in this way is referred to as a branched polyphenylene ether.
  • Such a branched polyphenylene ether provides excellent solubility in organic solvents.
  • Phenols satisfying condition 1 include phenol, o-cresol, m-cresol, o-ethylphenol, m-ethylphenol, 2,3-xylenol, 2,5-xylenol, 3,5-xylenol, o-tert -Butylphenol, m-tert-butylphenol, o-phenylphenol, m-phenylphenol, 2-dodecylphenol and the like can be mentioned, and only one kind may be used, or two or more kinds may be used.
  • polyphenylene ethers obtained from phenols that satisfy condition 2 have a functional group containing an unsaturated carbon bond at least at either of the two meta-positions or ortho-positions of the benzene ring, part of the structure of which is will have
  • a polyphenylene ether having a functional group containing an unsaturated carbon bond in its skeleton is called a photosensitive polyphenylene ether.
  • a photosensitive polyphenylene ether radical polymerizability by active species such as radicals can be obtained.
  • Phenols satisfying condition 2 are 2-allyl-6-methylphenol, 2-allyl-6-ethylphenol, 2-allyl-6-phenylphenol, 2-allyl-6-styrylphenol, 2,6-divinylphenol , 2,6-diallylphenol, 2,6-diisopropenylphenol, 2,6-dibutenylphenol, 2,6-diisobutenylphenol, 2,6-diisopentenylphenol, 2-methyl-6-styrylphenol , 2-vinyl-6-methylphenol, 2-vinyl-6-ethylphenol, etc., and may be used alone or in combination of two or more.
  • Phenols satisfying conditions 1 and 2 are phenols having hydrogen atoms at the ortho- and para-positions and functional groups containing unsaturated carbon bonds.
  • a polyphenylene ether obtained by using such phenols as a raw material phenol has a part of its structure branched by a benzene ring in which at least three positions of the ipso-position, the ortho-position, and the para-position are ether-bonded, and at least one It has a hydrocarbon group containing one unsaturated carbon bond as a functional group.
  • phenols satisfying conditions 1 and 2 include o-vinylphenol, m-vinylphenol, o-allylphenol, m-allylphenol, 3-vinyl-6-methylphenol, 3-vinyl-6-ethylphenol, 3-vinyl-5-methylphenol, 3-vinyl-5-ethylphenol, 3-allyl-6-methylphenol, 3-allyl-6-ethylphenol, 3-allyl-5-methylphenol, 3-allyl-5 -ethylphenol and the like can be mentioned, and only one kind may be used, or two or more kinds may be used.
  • the raw material phenols used in the synthesis of the polyphenylene ether of the present invention may contain phenols that do not satisfy both conditions 1 and 2 from the viewpoint of adjusting the solubility and radical polymerizability due to the branched structure.
  • raw material phenols include, for example, phenols having a hydrogen atom at the para position, no hydrogen atom at the ortho position, and no functional group containing an unsaturated carbon bond, such as 2,6-dimethyl phenol, 2,3,6-trimethylphenol, 2-methyl-6-ethylphenol, 2-ethyl-6-n-propylphenol, 2-methyl-6-n-butylphenol, 2-methyl-6-phenylphenol, 2,6-diphenylphenol, 2,6-ditolylphenol, and the like.
  • phenols ether bonds are formed at the ipso- and para-positions of the benzene ring, resulting in a branched structure due to linear polymerization. decreases and the solubility decreases.
  • radical polymerizability is reduced.
  • Phenols that do not satisfy both conditions 1 and 2 include phenols that do not have hydrogen atoms at the para- and ortho-positions and do not have a functional group containing an unsaturated carbon bond. Such phenols can suppress the polymerization reaction of polyphenylene ether. As for the phenols that satisfy neither condition 1 nor condition 2, only one kind may be used, or two or more kinds may be used.
  • Polyphenylene ether A in the present invention is obtained from raw material phenols containing phenols satisfying at least condition 1 and phenols satisfying at least condition 2, and the content of phenols satisfying condition 2 with respect to the entire raw material phenols at the time of synthesis is Polyphenylene ether containing less than 20 mol% and having a weight average molecular weight of more than 40,000 and not more than 200,000.
  • Polyphenylene ether A is a polyphenylene ether having a functional group containing a branched structure and an unsaturated carbon bond, but the content ratio of phenols satisfying condition 2 to the total raw material phenols during synthesis is lower than that of polyphenylene ether B. Therefore, the deterioration of the dielectric properties due to the functional group containing the unsaturated carbon bond is suppressed, the polymerization reaction in the synthesis proceeds easily, and the weight average molecular weight is relatively large, so that the development resistance is excellent.
  • Polyphenylene ether A preferably has a weight average molecular weight of more than 40,000 and not more than 200,000, from the viewpoint of the balance between the developability of the unexposed area and the development resistance of the exposed area, and 60,000 or more and 200,000 or less. and the number average molecular weight is preferably 10,000 or more and 30,000 or less, more preferably 15,000 or more and 20,000 or less.
  • the content of phenols used for the synthesis of polyphenylene ether A that satisfies at least Condition 1 can be 1 mol% or more and 99 mol% or less, and is 5 mol% or more and 30 mol% or less with respect to the total raw material phenols at the time of synthesis. preferably 5 mol % or more and 15 mol % or less, and even more preferably 10 mol %.
  • the content of phenols used for the synthesis of polyphenylene ether A which satisfies at least Condition 2, can be less than 20 mol% with respect to the total raw material phenols at the time of synthesis, and is 1 mol% or more and less than 20 mol%. It is preferably 5 mol % or more and 15 mol % or less, and still more preferably 10 mol %.
  • Polyphenylene ether B in the present invention is obtained from raw material phenols containing raw material phenols containing phenols satisfying at least condition 1 and phenols satisfying at least condition 2, and phenol satisfying condition 2 for all raw material phenols at the time of synthesis It is a polyphenylene ether having a content of 20 mol % or more.
  • Polyphenylene ether B is a polyphenylene ether having a functional group containing a branched structure and an unsaturated carbon bond, and the content ratio of phenols satisfying condition 2 to the total raw material phenols at the time of synthesis is higher than that of polyphenylene ether A, Since it has many functional groups containing unsaturated carbon bonds, it has excellent radical polymerizability. On the other hand, phenols satisfying condition 2 make it difficult for the polymerization reaction to proceed, and the weight-average molecular weight is relatively small, so excellent developability is exhibited.
  • the polyphenylene ether B preferably has a weight average molecular weight of 5,000 or more and 40,000 or less, and more preferably 10,000 or more and 20,000 or less because the radical polymerizability and developability are further improved.
  • the number average molecular weight is preferably 5,000 or more and 20,000 or less, more preferably 5,000 or more and 12,000 or less.
  • the content of phenols used for the synthesis of polyphenylene ether B, which satisfies at least Condition 1, can be 1 mol% or more and 90 mol% or less, preferably 2 mol% or more and 50 mol% or less, relative to the total raw material phenols at the time of synthesis. and more preferably 5 mol % or more and 20 mol % or less.
  • the content of phenols used for the synthesis of polyphenylene ether B, which satisfies at least condition 2, can be 20 mol% or more, preferably 20 mol% or more and 90 mol% or less, relative to the total raw material phenols at the time of synthesis, More preferably, it is 50 mol % or more and 90 mol % or less.
  • the content of polyphenylene ether (polyphenylene ether A and polyphenylene ether B) in the curable composition of the present invention is based on the total amount excluding volatile components and inorganic fillers in the curable composition, preferably 50 to 90% by mass. and more preferably 60 to 80% by mass. Further, the content ratio of polyphenylene ether A and polyphenylene ether B (polyphenylene ether A:polyphenylene ether B) in the curable composition is preferably 10:90 to 90:10, preferably 25:75 to 75.
  • :25 is more preferable, 50:50 to 75:25 for improving the development resistance of the exposed area, and 50:50 to 75:25 for improving the photoradical polymerizability (photosensitivity) and the developability of the unexposed area. It can be from 25:75 to 50:50.
  • Polyphenylene ether A and polyphenylene ether B of the present invention can be produced by a known method for synthesizing polyphenylene ether, except that the raw material phenols used are changed. For example, it can be produced by the synthetic method disclosed in WO2020/017570.
  • polyphenylene ether depends on the type of raw material phenol used, it can be adjusted by changing the reaction temperature, reaction time, etc. when synthesizing polyphenylene ether.
  • a compound having an unsaturated carbon bond and a radically polymerizable functional group contained in the curable composition of the present invention undergoes radical polymerization with the unsaturated carbon bond in the structure of the polyphenylene ether described above. It is a compound having two or more functional groups to obtain.
  • a known and commonly used functional group can be used, and examples thereof include a thiol group and an allyl group.
  • radically polymerizable compounds include compounds having a thiol group, such as trimethylolpropane tris(3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, pentaerythritol tetrakis(3 -mercaptopropionate), tetraethylene glycol bis(3-mercaptopropionate), dipentaerythritol hexakis(3-mercaptopropionate) and the like.
  • Compounds having an allyl group include triallyl isocyanurate, diallyl phthalate, diallyl isophthalate, and diallyl 1,4-cyclohexanedicarboxylate.
  • the content of the radical polymerizable compound in the curable composition is preferably 1 to 99% by mass, preferably 10 to 20% by mass, based on the polyphenylene ether in the curable composition.
  • the photoradical generator contained in the curable composition of the present invention is a compound that generates radicals by light irradiation (exposure), and the generated radicals radically polymerize the above-mentioned polyphenylene ethers and radically polymerizable compounds, resulting in exposure to light. to provide development resistance.
  • photoradical generator a known and commonly used photoradical generator can be used. Examples thereof include benzoin ether, acetophenone, ⁇ -ketol, aromatic sulfonyl chloride, photoactive oxime, benzoin, benzyl, benzophenone, ketal, thioxanthone, and acylphosphine oxide.
  • benzoin ether photoradical generators examples include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-dimethoxy-1,2-diphenylethan-1-one, anisoin etc.
  • Acetophenone photoradical generators include, for example, 1-hydroxycyclohexyl phenyl ketone, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 1-[4-(2-hydroxyethoxy)-phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, methoxyacetophenone and the like.
  • Examples of ⁇ -ketol photoradical generators include 2-methyl-2-hydroxypropiophenone, 1-[4-(2-hydroxyethyl)-phenyl]-2-hydroxy-2-methylpropan-1-one, etc.
  • aromatic sulfonyl chloride photoradical generators examples include 2-naphthalenesulfonyl chloride.
  • photoactive oxime-based photopolymerization initiators examples include 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)-oxime.
  • Benzoin-based photoradical generators include, for example, benzoin.
  • Benzyl-based photoradical generators include, for example, benzyl.
  • Benzophenone photoradical generators include, for example, benzophenone, benzoylbenzoic acid, 3,3'-dimethyl-4-methoxybenzophenone, polyvinylbenzophenone, ⁇ -hydroxycyclohexylphenyl ketone, and the like.
  • ketal photoradical generators examples include benzyl dimethyl ketal.
  • Thioxanthone photoradical generators include, for example, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, dodecylthioxanthone and the like.
  • acylphosphine oxide photoradical generators include bis(2,6-dimethoxybenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)(2,4,4-trimethylpentyl)phosphine oxide, bis (2,6-dimethoxybenzoyl)-n-butylphosphine oxide, bis(2,6-dimethoxybenzoyl)-(2-methylpropan-1-yl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-(1 -methylpropan-1-yl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-t-butylphosphine oxide, bis(2,6-dimethoxybenzoyl)cyclohexylphosphine oxide, bis(2,6-dimethoxybenzoyl)octyl Phosphine oxide, bis(2-methoxybenzoyl)(2-methylpropan-1
  • photoradical generators Only one type of these photoradical generators may be used, or two or more types may be used.
  • the content of the photoradical generator in the curable composition is preferably 0.1 to 10% by mass, more preferably 1 to 5% by mass, relative to the polyphenylene ether in the curable composition. preferable.
  • the curable composition of the present invention can contain a solvent, if necessary, according to steps such as formulation and coating.
  • a solvent capable of dissolving the polyphenylene ether described above is preferable, and examples include conventionally usable solvents such as chloroform, methylene chloride, and toluene, as well as N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), and cyclohexanone.
  • NMP N-methyl-2-pyrrolidone
  • THF tetrahydrofuran
  • cyclohexanone cyclohexanone
  • propylene glycol monomethyl ether acetate (PMA) diethylene glycol monoethyl ether acetate (CA), methyl ethyl ketone, ethyl acetate and the like are preferably used. Only one type of these may be used, or two or more types may be used.
  • the curable composition of the present invention may contain other components in addition to the components described above, as long as the effects of the present invention are not impaired.
  • inorganic fillers such as silica, peroxides such as ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene, polyphenylene ethers other than the above polyphenylene ethers, maleimide resins, styrene elastomers, etc.
  • Resin and polymer components sensitizers, adhesion aids, surfactants, leveling agents, plasticizers, adhesion agents, colorants, fibers, silane coupling agents, flame retardants, cellulose nanofibers, dispersants, thermosetting A catalyst, a thickener, an antifoaming agent, an antioxidant, an antirust agent, an adhesion imparting agent, etc. may also be included. These components may be blended in appropriate amounts depending on the intended use. As an example, when it is desired to improve the dielectric properties, the content of the peroxide in the curable composition is preferably 0.1 to 10% by mass with respect to the polyphenylene ether in the curable composition, It is more preferably 1 to 5% by mass. Each of these components may be used alone or in combination of two or more.
  • a dry film has a resin layer comprising the curable composition of the present invention on a film material.
  • a dry film is used by laminating a resin layer so as to be in contact with a substrate.
  • a dry film is formed by uniformly applying a curable composition onto a carrier film (support film) by an appropriate method such as a blade coater, a lip coater, a comma coater, or a film coater, followed by drying to form the resin layer described above. , preferably by laminating a cover film (protective film) thereon.
  • the cover film and the carrier film may be made of the same film material or different films.
  • any of those known for use in dry films can be used.
  • thermoplastic film such as a polyester film such as polyethylene terephthalate having a thickness of 2 to 150 ⁇ m is used.
  • cover film a polyethylene film, a polypropylene film, or the like can be used.
  • the film thickness of the resin layer on the dry film is preferably 100 ⁇ m or less, more preferably in the range of 5 to 50 ⁇ m.
  • a cured product can be produced using a curable composition or a dry film having a resin layer comprising the curable composition.
  • the curable composition according to this embodiment is usually applied to negative photolithography.
  • a method for producing a pattern film, which is a cured product of the curable composition according to this embodiment, by applying the curable composition according to this embodiment to a negative photolithography method will be described.
  • a curable composition is applied onto a substrate and dried to form a resin layer, or a dry film is laminated onto the substrate to transfer a resin layer made of the curable composition.
  • a method for applying the curable composition onto the substrate conventional methods used for applying the curable composition, such as spin coater, bar coater, blade coater, curtain coater, screen printer, etc. can be used.
  • a method of spray coating with a spray coater, an inkjet method, or the like can be used.
  • drying the coating film methods such as air drying, heat drying using an oven or hot plate, and vacuum drying are used.
  • the drying conditions for the coating film are not particularly limited, but natural drying, air drying, or heat drying can be performed at 60 to 130° C. for 1 to 30 minutes.
  • the base material there are no particular restrictions on the base material, and it can be widely applied to semiconductor base materials such as silicon wafers, wiring boards, and base materials made of various resins and metals.
  • step 2 the resin layer formed on the base material is irradiated with light (exposed) through a photomask having a pattern or directly in a pattern.
  • the film material is peeled off and exposed, or if the film material has light transmittance, the film material is left on the resin layer for exposure, and then the film material is removed. exfoliate.
  • the exposure uses light of a wavelength capable of activating the photoradical polymerization initiator. Specifically, it is preferable that the maximum wavelength is in the range of 350 to 410 nm.
  • a contact aligner, mirror projection, stepper, laser direct exposure device, or the like can be used.
  • step 3 the resin layer is treated with a developer. Thereby, the pattern film can be formed by removing the unexposed portion of the resin layer. After development, the resin layer may be washed with a rinse if necessary.
  • any method can be selected from conventionally known photoresist development methods, such as a rotary spray method, a paddle method, an immersion method accompanied by ultrasonic treatment, and the like.
  • the developer can be a solvent that dissolves polyphenylene ether, which is the main component of the curable composition, and is preferably an organic solvent in order to prevent corrosion of circuits and the like.
  • solvents such as chloroform, methylene chloride, and toluene, N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), cyclohexanone, propylene glycol monomethyl ether acetate (PMA), diethylene glycol monoethyl ether acetate (CA), Solvents such as methyl ethyl ketone and ethyl acetate can be used, and only one type may be used, or two or more types may be mixed and used. From the viewpoint of adjusting the development speed, the developer may be combined with a solvent other than the organic solvent described above, and may contain an appropriate amount of a surfactant or the like, if necessary.
  • Distilled water, methanol, ethanol, isopropyl alcohol, etc. can be used as rinsing liquids.
  • the pattern film may be heated as step 5, if necessary.
  • the heating temperature is not particularly limited, but is, for example, heating at 100 to 220° C. for about 30 to 120 minutes.
  • the atmosphere (gas) at this time air may be used, or an inert gas such as nitrogen or argon may be used.
  • the electronic component has the cured product of the present embodiment described above, and the cured product of the present embodiment has excellent dielectric properties and heat resistance, so it can be used as a material for electronic components in various applications. Available.
  • ADAS advanced driving system
  • a raw material solution was prepared by dissolving 89.1 g (90 mol %) of 2,6-dimethylphenol and 10.9 g (10 mol %) of 2-allylphenol as raw material phenols in 1.5 L of toluene. This raw material solution was added dropwise to the flask and reacted at 40° C. for 10 hours while stirring at a rotational speed of 600 rpm. After completion of the reaction, the precipitate was reprecipitated with a mixture of 20 L of methanol and 22 mL of concentrated hydrochloric acid, filtered and dried at 80° C. for 24 hours to obtain PPEA-1.
  • PPEA-1 had a number average molecular weight of 17,500 and a weight average molecular weight of 192,000.
  • PPEA-2 was obtained in the same manner as in the synthesis method of PPEA-1 described above, except that the reaction time was changed to 8 hours.
  • PPEA-2 had a number average molecular weight of 19,000 and a weight average molecular weight of 84,600.
  • PPEA-3 was obtained in the same manner as in the synthesis method of PPEA-1 described above, except that the reaction time was changed to 6 hours.
  • PPEA-3 had a number average molecular weight of 14,500 and a weight average molecular weight of 50,000.
  • PPEA-4 was obtained in the same manner as in the synthesis method of PPEA-1 described above, except that the reaction time was changed to 5 hours.
  • PPEA-4 had a number average molecular weight of 12,000 and a weight average molecular weight of 36,000.
  • PPEB-3 ⁇ Synthesis of PPEB-3>> 1.1 g (10 mol%) of 2,6-dimethylphenol and 10.7 g (80 mol%) of 2-allyl-6-methylphenol, which are raw material phenols, were changed in the synthesis method of PPEB-1 described above.
  • PPEB-3 was obtained in the same manner except that PPEB-2 had a number average molecular weight of 5,600 and a weight average molecular weight of 14,000.
  • Examples 2 to 10 Comparative Examples 1 to 6>> A curable composition was prepared in the same manner as in Example 1 except that each component and the content were the components and values shown in Table 1, and varnishes of the curable compositions of Examples 2-13 and Comparative Examples 1-3 got
  • ⁇ Photosensitivity and developability evaluation>> The varnish of each curable composition is applied on a silicon wafer using a spin coater so that the film thickness after drying is about 3 ⁇ m, dried on a hot plate at 80 ° C. for 1 minute, and from each curable composition A resin layer was formed. After that, the silicon wafer on which the resin layer was formed was cut into a shape of 2.5 ⁇ 15 cm and used as a test sample for photosensitivity and developability.
  • the resin layer of each test sample was irradiated with 0 (unexposed), 400, 800, 1200, 1600 and 2000 mJ/cm 2 of light with a wavelength of 365 nm as an integrated light amount, and then developed by being immersed in cyclohexanone for 10 seconds.
  • the thickness of the resin layer remaining at each exposure dose was measured with a stylus surface profiler. Based on the difference (development contrast) between the residual film thickness of the unexposed portion and the residual film thickness of each exposed portion, the feasibility of photolithography was evaluated according to the following criteria.
  • Evaluation criteria ⁇ : Sufficient development contrast was obtained with exposure of 800 mJ/cm 2 or more. A: Sufficient development contrast was obtained with exposure of 1200 mJ/cm 2 or more. ⁇ : Sufficient development contrast was obtained with exposure of 2000 mJ/cm 2 . ⁇ : Slight development contrast was obtained with exposure of 2000 mJ/cm 2 .
  • x The exposed area has no development resistance, or the unexposed area is not developed and the development contrast cannot be obtained.
  • Each curable composition was applied to the glossy surface of a 18 ⁇ m thick copper foil with an applicator so that the film thickness after drying would be 30 ⁇ m, and dried in a hot air circulating drying oven at 90° C. for 30 minutes. Then, after curing in an inert oven at 200° C. for 1 hour, the copper foil was etched to obtain a cured product (cured film) of each composition.
  • the prepared cured film was cut into a length of 80 mm and a width of 45 mm as a test piece, and the dielectric constant Dk and the dielectric loss tangent Df were measured by the SPDR (Split Post Dielectric Resonator) resonator method.
  • SPDR Split Post Dielectric Resonator
  • a vector-type network analyzer E5071C and an SPDR resonator manufactured by Keysight Technologies LLC were used as measuring instruments, and a calculation program manufactured by QWED was used. The conditions were a frequency of 10 GHz and a measurement temperature of 25°C.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyethers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)

Abstract

The present invention addresses the problem of providing a photosensitive composition having low dielectric properties and excellent development contrast. This problem is solved by a photosensitive composition containing a polyphenylene ether A, a polyphenylene ether B, a radically polymerizable compound, and a photoradical generator, the polyphenylene ethers A, B each being obtained from raw material phenols including a phenol satisfying a condition 1 and a phenol satisfying a condition 2, the polyphenylene ether A having a weight-average molecular weight of more than 40,000 and less than or equal to 200,000 and containing less than 20 mol% of the phenol satisfying the condition 2 relative to all of the raw material phenols, and the polyphenylene ether B containing 20 mol% or more of the phenol satisfying the condition 2 relative to all of the raw material phenols. (Condition 1) Having hydrogen atoms at the ortho and para positions (Condition 2) Having a hydrogen atom at the para position and having a functional group containing an unsaturated carbon bond

Description

感光性組成物、ドライフィルム、硬化物、及び電子部品Photosensitive compositions, dry films, cured products, and electronic components
 本発明は、ポリフェニレンエーテルを含む感光性組成物、ドライフィルム、硬化物、及び電子部品に関する。 The present invention relates to photosensitive compositions, dry films, cured products, and electronic parts containing polyphenylene ether.
 半導体デバイス等の電子部品では、絶縁層、保護膜、導体層のパターン形成に際して、フォトリソグラフィ法が多く使用されている。 For electronic parts such as semiconductor devices, the photolithography method is often used for patterning insulating layers, protective films, and conductor layers.
 フォトリソグラフィ法は、シリコンウエハや銅張積層板等の基材上に感光性組成物からなる層を形成し、所定のパターンで光照射(露光)後、現像液にて未露光部又は露光部のいずれかを溶解除去し、パターンを形成する方法である。
 このようなフォトリソグラフィ法には、露光部を現像液に溶解させる方式、いわゆるポジ型と、(露光部が現像液に非溶解性となり、)未露光部を現像液に溶解させる方式、いわゆるネガ型とがある。
In the photolithography method, a layer made of a photosensitive composition is formed on a substrate such as a silicon wafer or a copper clad laminate, and after light irradiation (exposure) in a predetermined pattern, unexposed areas or exposed areas are removed with a developer. is dissolved and removed to form a pattern.
There are two types of photolithography: a method in which the exposed area is dissolved in the developer, the so-called positive type; There is a type.
 かかる現像工程の違いを考慮すると、例えば、ネガ型にて解像性の高いパターンを形成するためには、用いられる感光性組成物が、露光部の現像液へ耐溶解性と未露光部の現像液への優れた溶解性を両立すること、換言すれば、露光部と未露光部の現像速度の差(現像コントラスト)が大きいことが求められる。 Considering the difference in the development process, for example, in order to form a negative pattern with high resolution, the photosensitive composition to be used must be resistant to dissolution in the developer in the exposed area and in the unexposed area. It is required to have both excellent solubility in a developer, in other words, to have a large difference in development speed (development contrast) between an exposed portion and an unexposed portion.
 一方、電子部品における絶縁材では、高周波数帯の信号に対する伝送損失を抑制する観点から、比誘電率(Dk)や誘電正接(Df)等の誘電特性を低減することが検討されている。例えば、特許文献1及び2には、プリント配線板の永久保護膜であるソルダーレジスト等に有用であり、誘電正接を低減したネガ型の感光性樹脂組成物が開示されている。 On the other hand, for insulating materials in electronic parts, from the viewpoint of suppressing transmission loss for high frequency band signals, it is being studied to reduce dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df). For example, Patent Literatures 1 and 2 disclose negative photosensitive resin compositions that are useful for solder resists and the like that are permanent protective films for printed wiring boards and that have a reduced dielectric loss tangent.
特開2017-15890号公報JP 2017-15890 A 特開2017-68242号公報JP 2017-68242 A
 しかしながら、特許文献1及び2のような感光性樹脂組成物では、組成物成分として、現像性付与のためのカルボキシル基等の親水性基や光重合性のための(メタ)アクリレート基により、誘電特性を低減するには限界があった。 However, in the photosensitive resin compositions of Patent Documents 1 and 2, dielectric There was a limit to reducing the characteristics.
 本発明の目的は、低誘電特性と現像コントラストに優れた感光性組成物の提供を課題とする。 An object of the present invention is to provide a photosensitive composition with low dielectric properties and excellent development contrast.
 本発明者らは、分岐構造を有するポリフェニレンエーテルが有機溶剤に可溶であることと、かかる有機溶剤を現像液としたフォトリソグラフィ法に着目して鋭意検討した。その結果、本発明者らは、特定の原料フェノール類から得られる2種のポリフェニレンエーテルと、かかるポリフェニレンエーテル中に導入した不飽和炭素結合とラジカル重合する化合物と、を組み合せて配合した感光性組成物によれば、上記課題を有利に解決し得ることを見出し、本発明を完成させるに至った。即ち、本発明は以下の通りである。 The present inventors focused on the fact that polyphenylene ether having a branched structure is soluble in organic solvents and the photolithography method using such organic solvents as a developer. As a result, the present inventors have found a photosensitive composition prepared by combining two types of polyphenylene ether obtained from specific raw material phenols and a compound that undergoes radical polymerization with the unsaturated carbon bond introduced into the polyphenylene ether. According to the product, it was found that the above problems could be advantageously solved, and the present invention was completed. That is, the present invention is as follows.
 本発明は、
 ポリフェニレンエーテルAと、
 ポリフェニレンエーテルBと、
 不飽和炭素結合とラジカル重合可能な官能基を有する化合物と、
 光ラジカル発生剤と、を含み、
 前記ポリフェニレンエーテルAと前記ポリフェニレンエーテルBは、それぞれ、少なくとも下記条件1を満たすフェノール類と少なくとも下記条件2を満たすフェノール類とを含む原料フェノール類から得られ、
 前記ポリフェニレンエーテルAは、重量平均分子量が40,000超200,000以下であり、かつ、合成時の原料フェノール類全体に対する条件2を満たすフェノール類の含有量が20mol%未満であり、
 前記ポリフェニレンエーテルBは、合成時の原料フェノール類全体に対する条件2を満たすフェノール類の含有量が20mol%以上である、感光性組成物である。
(条件1)
 オルト位及びパラ位に水素原子を有する
(条件2)
 パラ位に水素原子を有し、不飽和炭素結合を含む官能基を有する
The present invention
Polyphenylene ether A;
a polyphenylene ether B;
a compound having an unsaturated carbon bond and a radically polymerizable functional group;
and a photoradical generator,
The polyphenylene ether A and the polyphenylene ether B are obtained from raw material phenols containing at least phenols satisfying at least the following condition 1 and at least phenols satisfying at least the following condition 2,
The polyphenylene ether A has a weight average molecular weight of more than 40,000 and not more than 200,000, and the content of phenols satisfying condition 2 with respect to the total raw material phenols during synthesis is less than 20 mol%,
The polyphenylene ether B is a photosensitive composition in which the content of phenols satisfying Condition 2 is 20 mol % or more with respect to the total raw material phenols at the time of synthesis.
(Condition 1)
Having hydrogen atoms at the ortho and para positions (Condition 2)
Having a hydrogen atom at the para position and having a functional group containing an unsaturated carbon bond
 前記ポリフェニレンエーテルBは、重量平均分子量が5,000以上40,000以下であることが好ましい。
 前記ポリフェニレンエーテルAと前記ポリフェニレンエーテルBの含有割合(ポリフェニレンエーテルA:ポリフェニレンエーテルB)が、質量比で25:75~75:25であることが好ましい。
 前記不飽和炭素結合とラジカル重合可能な官能基がチオール基及び/又はアリル基であることが好ましい。
The polyphenylene ether B preferably has a weight average molecular weight of 5,000 or more and 40,000 or less.
The content ratio of the polyphenylene ether A and the polyphenylene ether B (polyphenylene ether A:polyphenylene ether B) is preferably 25:75 to 75:25 by weight.
The unsaturated carbon bond and the functional group capable of radical polymerization are preferably a thiol group and/or an allyl group.
 本発明は、前記感光性組成物からなる樹脂層を有するドライフィルムであってもよい。 The present invention may be a dry film having a resin layer made of the photosensitive composition.
 本発明は、前記感光性組成物又は前記樹脂層の硬化物であってもよい。 The present invention may be a cured product of the photosensitive composition or the resin layer.
 本発明は、前記硬化物を有する電子部品であってもよい。 The present invention may be an electronic component having the cured product.
 本発明によれば、低誘電特性と現像コントラストに優れた感光性組成物を提供することが可能となる。 According to the present invention, it is possible to provide a photosensitive composition with low dielectric properties and excellent development contrast.
 本実施形態に係る硬化性組成物は、フォトリソグラフィ法に用いられる感光性組成物である。 The curable composition according to this embodiment is a photosensitive composition used in photolithography.
 以下では、感光性組成物のことを、単に「硬化性組成物」と表現する場合がある。また、本明細書において、「樹脂組成物」を「硬化性組成物」の意味で使用することがある。 In the following, the photosensitive composition may be simply referred to as "curable composition". Moreover, in this specification, the term "resin composition" may be used in the sense of a "curable composition."
 説明した化合物に異性体が存在する場合、特に断らない限り、存在し得る全ての異性体が本発明において使用可能である。 When the described compounds have isomers, all possible isomers can be used in the present invention unless otherwise specified.
 本発明において、「不飽和炭素結合」は、特に断らない限り、エチレン性またはアセチレン性の炭素間多重結合(二重結合または三重結合)を示す。 In the present invention, unless otherwise specified, an "unsaturated carbon bond" indicates an ethylenic or acetylenic multiple bond (double bond or triple bond) between carbon atoms.
 本発明において、不飽和炭素結合を有する官能基としては、特に限定されないが、アルケニル基(例えば、ビニル基、アリル基)、アルキニル基(例えば、エチニル基)、又は、(メタ)アクリルロイル基が挙げられ、硬化性に優れる観点からビニル基、アリル基、(メタ)アクリルロイル基を選択でき、中でも低誘電特性に優れる観点からアリル基であることが好ましい。なお、これらの不飽和炭素結合を有する官能基は、炭素数を、例えば15以下、10以下、8以下、5以下、3以下等とすることができる。 In the present invention, the functional group having an unsaturated carbon bond is not particularly limited. A vinyl group, an allyl group, or a (meth)acryloyl group can be selected from the viewpoint of excellent curability, and among them, an allyl group is preferable from the viewpoint of excellent low dielectric properties. These functional groups having unsaturated carbon bonds can have, for example, 15 or less, 10 or less, 8 or less, 5 or less, or 3 or less carbon atoms.
 本発明において、ポリフェニレンエーテル(PPE)の原料として用いられ、ポリフェニレンエーテルの構成単位になり得るフェノール類を総称して、「原料フェノール類」とする。 In the present invention, phenols that are used as raw materials for polyphenylene ether (PPE) and can be constituent units of polyphenylene ether are collectively referred to as "raw material phenols."
 本発明において、原料フェノール類の説明を行う際に「オルト位」や「パラ位」等と表現した場合、特に断りがない限り、フェノール性水酸基の位置を基準(イプソ位)とする。 In the present invention, when "ortho-position", "para-position", etc. are used when explaining raw material phenols, the position of the phenolic hydroxyl group is the reference (ipso-position) unless otherwise specified.
 本発明において、単に「オルト位」等と表現した場合、「オルト位の少なくとも一方」等を示す。従って、特に矛盾が生じない限り、単に「オルト位」とした場合、オルト位のどちらか一方を示すと解釈してもよいし、オルト位の両方を示すと解釈してもよい。 In the present invention, simply expressing "ortho position" or the like means "at least one of the ortho positions" or the like. Therefore, as long as there is no particular contradiction, the simple expression "ortho position" may be interpreted as indicating either one of the ortho positions or both of the ortho positions.
 本発明において、ポリフェニレンエーテルの数平均分子量(Mn)と重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)により求めたものである。GPCにおいては、Shodex K-805Lをカラムとして使用し、カラム温度を40℃、流量を1mL/min、溶離液をクロロホルム、標準物質をポリスチレンとする。 In the present invention, the number average molecular weight (Mn) and weight average molecular weight (Mw) of polyphenylene ether are determined by gel permeation chromatography (GPC). In GPC, Shodex K-805L is used as a column, the column temperature is 40° C., the flow rate is 1 mL/min, the eluent is chloroform, and the standard substance is polystyrene.
 本明細書において、原料フェノール類としては主に1価のフェノール類を開示しているが、本発明の効果を阻害しない範囲で、原料フェノール類として多価のフェノール類を使用してもよい。 Although monohydric phenols are mainly disclosed as raw material phenols in this specification, polyhydric phenols may be used as raw material phenols within a range that does not impair the effects of the present invention.
 本明細書において、数値範囲の上限値と下限値とが別々に記載されている場合、矛盾しない範囲で、各下限値と各上限値との全ての組み合わせが実質的に記載されているものとする。 In this specification, when the upper and lower limits of a numerical range are stated separately, it is assumed that all combinations of each lower limit and each upper limit are substantially stated in a consistent range. do.
<<<<<硬化性組成物の成分>>>>>
 硬化性組成物は、ポリフェニレンエーテルA、ポリフェニレンエーテルB、不飽和炭素結合とラジカル重合可能な官能基を有する化合物及び光ラジカル発生剤とを含む。また、硬化性組成物は、必要に応じて、その他の成分を含有していてもよい。以下、それぞれの成分について説明する。
<<<<<components of the curable composition>>>>>
The curable composition contains polyphenylene ether A, polyphenylene ether B, a compound having an unsaturated carbon bond and a radically polymerizable functional group, and a photoradical generator. Moreover, the curable composition may contain other components as needed. Each component will be described below.
<<<<ポリフェニレンエーテルA、B>>>>
 本発明の硬化性組成物が含有するポリフェニレンエーテルA及びBは、それぞれ、少なくとも下記条件1を満たすフェノール類と少なくとも下記条件2を満たすフェノール類を含む原料フェノール類から得られる。具体的には、少なくとも下記条件1を満たすフェノール類としては、条件1を満たし条件2を満たさないフェノール類又は条件1及び条件2を満たすフェノール類が挙げられ、少なくとも下記条件2を満たすフェノール類としては、条件2を満たし条件1を満たさないフェノール類又は条件1及び条件2を満たすフェノール類が挙げられる。
(条件1)
 オルト位及びパラ位に水素原子を有する
(条件2)
 パラ位に水素原子を有し、不飽和炭素結合を含む官能基を有する
<<<<Polyphenylene ether A, B>>>>
The polyphenylene ethers A and B contained in the curable composition of the present invention are obtained from raw material phenols containing phenols satisfying at least condition 1 below and phenols satisfying at least condition 2 below, respectively. Specifically, phenols that satisfy at least the following condition 1 include phenols that satisfy the condition 1 and do not satisfy the condition 2 or phenols that satisfy the conditions 1 and 2. Phenols that satisfy at least the following condition 2 include includes phenols satisfying condition 2 and not satisfying condition 1, or phenols satisfying condition 1 and condition 2.
(Condition 1)
Having hydrogen atoms at the ortho and para positions (Condition 2)
Having a hydrogen atom at the para position and having a functional group containing an unsaturated carbon bond
<<<原料フェノール(類)>>>
<<条件1を満たすフェノール類>>
 条件1を満たすフェノール類は、オルト位に水素原子を有するため、フェノール類と酸化重合される際に、イプソ位及びパラ位のみならず、オルト位においてもエーテル結合が形成され得るため、かかるフェノール類を原料フェノール類として用いて得られるポリフェニレンエーテルは分岐鎖状の構造を形成することが可能となる。
<<<Raw material phenol (type)>>>
<<Phenols satisfying condition 1>>
Phenols that satisfy Condition 1 have a hydrogen atom at the ortho position, and therefore, when oxidatively polymerized with phenols, ether bonds can be formed not only at the ipso and para positions but also at the ortho position. Polyphenylene ethers obtained by using phenols as raw material can form a branched chain structure.
 具体的には、条件1を満たすフェノール類から得られるポリフェニレンエーテルは、その構造の一部が、少なくともイプソ位、オルト位、パラ位の3か所がエーテル結合されたベンゼン環により分岐することとなる。 Specifically, polyphenylene ethers obtained from phenols that satisfy Condition 1 are partly branched by benzene rings ether-bonded at at least three positions, ipso-position, ortho-position, and para-position. Become.
 このように、その骨格内に分岐構造を有するポリフェニレンエーテルを、分岐ポリフェニレンエーテルと称する。かかる分岐ポリフェニレンエーテルによれば、有機溶剤への優れた溶解性が得られる。 A polyphenylene ether having a branched structure in its skeleton in this way is referred to as a branched polyphenylene ether. Such a branched polyphenylene ether provides excellent solubility in organic solvents.
 条件1を満たすフェノール類としては、フェノール、o-クレゾール、m-クレゾール、o-エチルフェノール、m-エチルフェノール、2,3-キシレノール、2,5-キシレノール、3,5-キシレノール、o-tert-ブチルフェノール、m-tert-ブチルフェノール、o-フェニルフェノール、m-フェニルフェノール、2-ドデシルフェノール、等を挙げることができ、1種のみを用いてもよいし、2種以上を用いてもよい。 Phenols satisfying condition 1 include phenol, o-cresol, m-cresol, o-ethylphenol, m-ethylphenol, 2,3-xylenol, 2,5-xylenol, 3,5-xylenol, o-tert -Butylphenol, m-tert-butylphenol, o-phenylphenol, m-phenylphenol, 2-dodecylphenol and the like can be mentioned, and only one kind may be used, or two or more kinds may be used.
<<条件2を満たすフェノール類>>
 条件2を満たすフェノール類は、不飽和炭素結合を含む官能基を有するため、かかるフェノール類を原料フェノールとして用いて得られるポリフェニレンエーテルはエチレン性またはアセチレン性の炭素間多重結合を含む官能基を有する。
<<Phenols satisfying condition 2>>
Since phenols satisfying condition 2 have functional groups containing unsaturated carbon bonds, polyphenylene ethers obtained by using such phenols as raw material phenols have functional groups containing ethylenic or acetylenic carbon-carbon multiple bonds. .
 具体的には、条件2を満たすフェノール類から得られるポリフェニレンエーテルは、その構造の一部が、少なくともベンゼン環のメタ位又はオルト位の2か所のいずれかに不飽和炭素結合を含む官能基を有することとなる。 Specifically, polyphenylene ethers obtained from phenols that satisfy condition 2 have a functional group containing an unsaturated carbon bond at least at either of the two meta-positions or ortho-positions of the benzene ring, part of the structure of which is will have
 このように、その骨格内に不飽和炭素結合を含む官能基を有するポリフェニレンエーテルを、感光性ポリフェニレンエーテルと称する。かかる感光性ポリフェニレンエーテルによれば、ラジカル等の活性種によるラジカル重合性が得られる。 Thus, a polyphenylene ether having a functional group containing an unsaturated carbon bond in its skeleton is called a photosensitive polyphenylene ether. According to such a photosensitive polyphenylene ether, radical polymerizability by active species such as radicals can be obtained.
 条件2を満たすフェノール類は、2-アリル-6-メチルフェノール、2-アリル-6-エチルフェノール、2-アリル-6-フェニルフェノール、2-アリル-6-スチリルフェノール、2,6-ジビニルフェノール、2,6-ジアリルフェノール、2,6-ジイソプロペニルフェノール、2,6-ジブテニルフェノール、2,6-ジイソブテニルフェノール、2,6-ジイソペンテニルフェノール、2-メチル-6-スチリルフェノール、2-ビニル-6-メチルフェノール、2-ビニル-6-エチルフェノール等を挙げることができ、1種のみを用いてもよいし、2種以上を用いてもよい。 Phenols satisfying condition 2 are 2-allyl-6-methylphenol, 2-allyl-6-ethylphenol, 2-allyl-6-phenylphenol, 2-allyl-6-styrylphenol, 2,6-divinylphenol , 2,6-diallylphenol, 2,6-diisopropenylphenol, 2,6-dibutenylphenol, 2,6-diisobutenylphenol, 2,6-diisopentenylphenol, 2-methyl-6-styrylphenol , 2-vinyl-6-methylphenol, 2-vinyl-6-ethylphenol, etc., and may be used alone or in combination of two or more.
<<条件1及び条件2を満たすフェノール類>>
 条件1及び条件2を満たすフェノール類は、オルト位及びパラ位に水素原子を有し、且つ、不飽和炭素結合を含む官能基を有するフェノール類である。かかるフェノール類を原料フェノールとして用いて得られるポリフェニレンエーテルは、その構造の一部が、少なくともイプソ位、オルト位、パラ位の3か所がエーテル結合されたベンゼン環により分岐し、且つ、少なくとも一つの不飽和炭素結合を含む炭化水素基を官能基として有する。
<<Phenols satisfying conditions 1 and 2>>
Phenols satisfying conditions 1 and 2 are phenols having hydrogen atoms at the ortho- and para-positions and functional groups containing unsaturated carbon bonds. A polyphenylene ether obtained by using such phenols as a raw material phenol has a part of its structure branched by a benzene ring in which at least three positions of the ipso-position, the ortho-position, and the para-position are ether-bonded, and at least one It has a hydrocarbon group containing one unsaturated carbon bond as a functional group.
 条件1及び条件2を満たすフェノール類としては、o-ビニルフェノール、m-ビニルフェノール、o-アリルフェノール、m-アリルフェノール、3-ビニル-6-メチルフェノール、3-ビニル-6-エチルフェノール、3-ビニル-5-メチルフェノール、3-ビニル-5-エチルフェノール、3-アリル-6-メチルフェノール、3-アリル-6-エチルフェノール、3-アリル-5-メチルフェノール、3-アリル-5-エチルフェノール等を挙げることができ、1種のみを用いてもよいし、2種以上を用いてもよい。 Examples of phenols satisfying conditions 1 and 2 include o-vinylphenol, m-vinylphenol, o-allylphenol, m-allylphenol, 3-vinyl-6-methylphenol, 3-vinyl-6-ethylphenol, 3-vinyl-5-methylphenol, 3-vinyl-5-ethylphenol, 3-allyl-6-methylphenol, 3-allyl-6-ethylphenol, 3-allyl-5-methylphenol, 3-allyl-5 -ethylphenol and the like can be mentioned, and only one kind may be used, or two or more kinds may be used.
<<条件1及び条件2のいずれも満たさないフェノール類>>
 本発明のポリフェニレンエーテルの合成に用いる原料フェノール類には、分岐構造による溶解性やラジカル重合性を調整する観点から、条件1及び条件2のいずれも満たさないフェノール類を含むことができる。
<<Phenols that do not satisfy both conditions 1 and 2>>
The raw material phenols used in the synthesis of the polyphenylene ether of the present invention may contain phenols that do not satisfy both conditions 1 and 2 from the viewpoint of adjusting the solubility and radical polymerizability due to the branched structure.
 このような原料フェノール類としては、例えば、パラ位に水素原子を有し、オルト位に水素原子を有さず、不飽和炭素結合を含む官能基を有しないフェノール類として、2,6-ジメチルフェノール、2,3,6-トリメチルフェノール、2-メチル-6-エチルフェノール、2-エチル-6-n-プロピルフェノール、2-メチル-6-n-ブチルフェノール、2-メチル-6-フェニルフェノール、2,6-ジフェニルフェノール、2,6-ジトリルフェノール等が挙げられ、かかるフェノール類によればベンゼン環のイプソ位及びパラ位においてエーテル結合が形成され、直鎖状に重合することから分岐構造が減少し溶解性が低下する。また、不飽和炭素結合を含む官能基を有さないため、ラジカル重合性が低減される。 Examples of such raw material phenols include, for example, phenols having a hydrogen atom at the para position, no hydrogen atom at the ortho position, and no functional group containing an unsaturated carbon bond, such as 2,6-dimethyl phenol, 2,3,6-trimethylphenol, 2-methyl-6-ethylphenol, 2-ethyl-6-n-propylphenol, 2-methyl-6-n-butylphenol, 2-methyl-6-phenylphenol, 2,6-diphenylphenol, 2,6-ditolylphenol, and the like. According to such phenols, ether bonds are formed at the ipso- and para-positions of the benzene ring, resulting in a branched structure due to linear polymerization. decreases and the solubility decreases. Moreover, since it does not have a functional group containing an unsaturated carbon bond, radical polymerizability is reduced.
 また、条件1及び条件2のいずれも満たさないフェノール類としては、パラ位とオルト位に水素原子を有さず、不飽和炭素結合を含む官能基を有しないフェノール類も挙げられる。かかるフェノール類は、ポリフェニレンエーテルの重合反応を抑制することができる。
 このような条件1及び条件2のいずれも満たさないフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
Phenols that do not satisfy both conditions 1 and 2 include phenols that do not have hydrogen atoms at the para- and ortho-positions and do not have a functional group containing an unsaturated carbon bond. Such phenols can suppress the polymerization reaction of polyphenylene ether.
As for the phenols that satisfy neither condition 1 nor condition 2, only one kind may be used, or two or more kinds may be used.
<<<ポリフェニレンエーテルA>>>
 本発明におけるポリフェニレンエーテルAは、少なくとも条件1を満たすフェノール類と少なくとも条件2を満たすフェノール類を含む原料フェノール類から得られ、合成時の原料フェノール類全体に対する条件2を満たすフェノール類の含有量が20mol%未満であり、重量平均分子量が40,000超200,000以下であるポリフェニレンエーテルである。
<<<Polyphenylene ether A>>>
Polyphenylene ether A in the present invention is obtained from raw material phenols containing phenols satisfying at least condition 1 and phenols satisfying at least condition 2, and the content of phenols satisfying condition 2 with respect to the entire raw material phenols at the time of synthesis is Polyphenylene ether containing less than 20 mol% and having a weight average molecular weight of more than 40,000 and not more than 200,000.
 ポリフェニレンエーテルAは、分岐構造と不飽和炭素結合を含む官能基を有するポリフェニレンエーテルであるが、合成時の原料フェノール類全体に対する条件2を満たすフェノール類の含有比率が、ポリフェニレンエーテルBに比べて低いことから、不飽和炭素結合を含む官能基による誘電特性の悪化が抑制され、かつ合成における重合反応が進み易く、重量平均分子量が比較的大きいことで、耐現像性に優れる。 Polyphenylene ether A is a polyphenylene ether having a functional group containing a branched structure and an unsaturated carbon bond, but the content ratio of phenols satisfying condition 2 to the total raw material phenols during synthesis is lower than that of polyphenylene ether B. Therefore, the deterioration of the dielectric properties due to the functional group containing the unsaturated carbon bond is suppressed, the polymerization reaction in the synthesis proceeds easily, and the weight average molecular weight is relatively large, so that the development resistance is excellent.
 ポリフェニレンエーテルAは、未露光部の現像性と露光部の耐現像性のバランスの観点から、重量平均分子量が40,000超200,000以下であることが好ましく、60,000以上200,000以下であることがより好ましく、また数平均分子量は、10,000以上30,000以下であることが好ましく、15,000以上20,000以下であることがより好ましい。 Polyphenylene ether A preferably has a weight average molecular weight of more than 40,000 and not more than 200,000, from the viewpoint of the balance between the developability of the unexposed area and the development resistance of the exposed area, and 60,000 or more and 200,000 or less. and the number average molecular weight is preferably 10,000 or more and 30,000 or less, more preferably 15,000 or more and 20,000 or less.
 ポリフェニレンエーテルAの合成に用いる、少なくとも条件1を満たすフェノール類の含有量は、合成時の原料フェノール類全体に対して1mol%以上99mol%以下とすることができ、5mol%以上30mol%以下であることが好ましく、5mol%以上15mol%以下であることがより好ましく、10mol%であることが更に好ましい。 The content of phenols used for the synthesis of polyphenylene ether A that satisfies at least Condition 1 can be 1 mol% or more and 99 mol% or less, and is 5 mol% or more and 30 mol% or less with respect to the total raw material phenols at the time of synthesis. preferably 5 mol % or more and 15 mol % or less, and even more preferably 10 mol %.
 ポリフェニレンエーテルAの合成に用いる、少なくとも条件2を満たすフェノール類の含有量は、合成時の原料フェノール類全体に対して、20mol%未満とすることができ、1mol%以上20mol%未満であることが好ましく、5mol%以上15mol%以下であることがより好ましく、10mol%であることが更に好ましい。 The content of phenols used for the synthesis of polyphenylene ether A, which satisfies at least Condition 2, can be less than 20 mol% with respect to the total raw material phenols at the time of synthesis, and is 1 mol% or more and less than 20 mol%. It is preferably 5 mol % or more and 15 mol % or less, and still more preferably 10 mol %.
 ポリフェニレンエーテルAの合成では、条件1及び条件2のいずれも満たさないフェノール類を本発明の効果を損なわない範囲で用いることができる。 In the synthesis of polyphenylene ether A, phenols that satisfy neither condition 1 nor condition 2 can be used as long as the effects of the present invention are not impaired.
<<<ポリフェニレンエーテルB>>>
 本発明におけるポリフェニレンエーテルBは、少なくとも条件1を満たすフェノール類と少なくとも条件2を満たすフェノール類を含む原料フェノール類を含む原料フェノール類から得られ、合成時の原料フェノール類全体に対する条件2を満たすフェノール類の含有量が20mol%以上であるポリフェニレンエーテルである。
<<<Polyphenylene ether B>>>
Polyphenylene ether B in the present invention is obtained from raw material phenols containing raw material phenols containing phenols satisfying at least condition 1 and phenols satisfying at least condition 2, and phenol satisfying condition 2 for all raw material phenols at the time of synthesis It is a polyphenylene ether having a content of 20 mol % or more.
 ポリフェニレンエーテルBは、分岐構造と不飽和炭素結合を含む官能基を有するポリフェニレンエーテルであり、合成時の原料フェノール類全体に対する条件2を満たすフェノール類の含有比率が、ポリフェニレンエーテルAに比べて高く、不飽和炭素結合を含む官能基を多く有することから、ラジカル重合性に優れる。一方で、条件2を満たすフェノール類により重合反応が進み難く、重量平均分子量が比較的小さくなることから、優れた現像性を示す。 Polyphenylene ether B is a polyphenylene ether having a functional group containing a branched structure and an unsaturated carbon bond, and the content ratio of phenols satisfying condition 2 to the total raw material phenols at the time of synthesis is higher than that of polyphenylene ether A, Since it has many functional groups containing unsaturated carbon bonds, it has excellent radical polymerizability. On the other hand, phenols satisfying condition 2 make it difficult for the polymerization reaction to proceed, and the weight-average molecular weight is relatively small, so excellent developability is exhibited.
 ポリフェニレンエーテルBは、重量平均分子量が5,000以上40,000以下であることが好ましく、ラジカル重合性や現像性がより向上することから10,000以上20,000以下であることがより好ましい。また数平均分子量は、5,000以上20,000以下であることが好ましく、5,000以上12,000以下であることがより好ましい。 The polyphenylene ether B preferably has a weight average molecular weight of 5,000 or more and 40,000 or less, and more preferably 10,000 or more and 20,000 or less because the radical polymerizability and developability are further improved. The number average molecular weight is preferably 5,000 or more and 20,000 or less, more preferably 5,000 or more and 12,000 or less.
 ポリフェニレンエーテルBの合成に用いる、少なくとも条件1を満たすフェノール類の含有量は、合成時の原料フェノール類全体に対して1mol%以上90mol%以下とすることができ、好ましくは2mol%以上50mol%以下であり、より好ましくは5mol%以上20mol%以下である。 The content of phenols used for the synthesis of polyphenylene ether B, which satisfies at least Condition 1, can be 1 mol% or more and 90 mol% or less, preferably 2 mol% or more and 50 mol% or less, relative to the total raw material phenols at the time of synthesis. and more preferably 5 mol % or more and 20 mol % or less.
 ポリフェニレンエーテルBの合成に用いる、少なくとも条件2を満たすフェノール類の含有量は、合成時の原料フェノール類全体に対して20mol%以上とすることができ、好ましくは20mol%以上90mol%以下であり、より好ましくは50mol%以上90mol%以下である。 The content of phenols used for the synthesis of polyphenylene ether B, which satisfies at least condition 2, can be 20 mol% or more, preferably 20 mol% or more and 90 mol% or less, relative to the total raw material phenols at the time of synthesis, More preferably, it is 50 mol % or more and 90 mol % or less.
 ポリフェニレンエーテルBの合成では、条件1及び条件2のいずれも満たさないフェノール類を本発明の効果を損なわない範囲で用いることができる。 In the synthesis of polyphenylene ether B, phenols that satisfy neither condition 1 nor condition 2 can be used as long as the effects of the present invention are not impaired.
<<<ポリフェニレンエーテルの含有量>>>
 本発明の硬化性組成物におけるポリフェニレンエーテル(ポリフェニレンエーテルA及びポリフェニレンエーテルB)の含有量は、硬化性組成物中の揮発成分と無機充填剤を除いた全量基準で、好ましくは50~90質量%であり、より好ましくは60~80質量%である。また、硬化性組成物におけるポリフェニレンエーテルAとポリフェニレンエーテルBの含有割合(ポリフェニレンエーテルA:ポリフェニレンエーテルB)は、質量比で、10:90~90:10であることが好ましく、25:75~75:25であることがより好ましく、露光部の耐現像性を向上する場合には50:50~75:25、光ラジカル重合性(感光性)や未露光部の現像性を向上する場合には25:75~50:50とすることができる。
<<<Polyphenylene ether content>>>
The content of polyphenylene ether (polyphenylene ether A and polyphenylene ether B) in the curable composition of the present invention is based on the total amount excluding volatile components and inorganic fillers in the curable composition, preferably 50 to 90% by mass. and more preferably 60 to 80% by mass. Further, the content ratio of polyphenylene ether A and polyphenylene ether B (polyphenylene ether A:polyphenylene ether B) in the curable composition is preferably 10:90 to 90:10, preferably 25:75 to 75. :25 is more preferable, 50:50 to 75:25 for improving the development resistance of the exposed area, and 50:50 to 75:25 for improving the photoradical polymerizability (photosensitivity) and the developability of the unexposed area. It can be from 25:75 to 50:50.
<<<ポリフェニレンエーテルA、Bの製造方法>>>
 本発明のポリフェニレンエーテルA及びポリフェニレンエーテルBは、使用する原料フェノール類を変更する以外は、公知のポリフェニレンエーテルの合成方法で製造することができる。例えば、国際公開第2020/017570号にて開示された合成方法にて製造することができる。
<<<Method for producing polyphenylene ethers A and B>>>
Polyphenylene ether A and polyphenylene ether B of the present invention can be produced by a known method for synthesizing polyphenylene ether, except that the raw material phenols used are changed. For example, it can be produced by the synthetic method disclosed in WO2020/017570.
 ポリフェニレンエーテルの分子量は、使用する原料フェノール類の種類にもよるが、ポリフェニレンエーテルを合成する際の反応温度や反応時間等を変更することで調整することが可能である。 Although the molecular weight of polyphenylene ether depends on the type of raw material phenol used, it can be adjusted by changing the reaction temperature, reaction time, etc. when synthesizing polyphenylene ether.
<<<<不飽和炭素結合とラジカル重合可能な官能基を有する化合物>>>>
 本発明の硬化性組成物が含有する不飽和炭素結合とラジカル重合可能な官能基を有する化合物(以下ラジカル重合化合物とも称す)は、上述したポリフェニレンエーテルの構造中の不飽和炭素結合とラジカル重合し得る官能基を2つ以上有する化合物である。前記ラジカル重合可能な官能基は公知慣用の官能基を用いることができ、例えば、チオール基、アリル基等が挙げられる。
<<<<Compounds having unsaturated carbon bonds and radically polymerizable functional groups>>>>
A compound having an unsaturated carbon bond and a radically polymerizable functional group contained in the curable composition of the present invention (hereinafter also referred to as a radically polymerizable compound) undergoes radical polymerization with the unsaturated carbon bond in the structure of the polyphenylene ether described above. It is a compound having two or more functional groups to obtain. As the functional group capable of radical polymerization, a known and commonly used functional group can be used, and examples thereof include a thiol group and an allyl group.
 ラジカル重合化合物は、例えば、チオール基を有する化合物としては、トリメチロールプロパン トリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)等が挙げられる。アリル基を有する化合物としては、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルイソフタレート、1,4-シクロヘキサンジカルボン酸ジアリル等が挙げられる。 Examples of radically polymerizable compounds include compounds having a thiol group, such as trimethylolpropane tris(3-mercaptopropionate), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, pentaerythritol tetrakis(3 -mercaptopropionate), tetraethylene glycol bis(3-mercaptopropionate), dipentaerythritol hexakis(3-mercaptopropionate) and the like. Compounds having an allyl group include triallyl isocyanurate, diallyl phthalate, diallyl isophthalate, and diallyl 1,4-cyclohexanedicarboxylate.
<<<不飽和炭素結合とラジカル重合可能な官能基を有する化合物の含有量>>>
 硬化性組成物中のラジカル重合化合物の含有量は、硬化性組成物中のポリフェニレンエーテルに対して、1~99質量%であることが好ましく、10~20質量%であることが好ましい。
<<<Content of compound having unsaturated carbon bond and radically polymerizable functional group>>>
The content of the radical polymerizable compound in the curable composition is preferably 1 to 99% by mass, preferably 10 to 20% by mass, based on the polyphenylene ether in the curable composition.
<<<<光ラジカル発生剤>>>>
 本発明の硬化性組成物が含有する光ラジカル発生剤は、光照射(露光)によってラジカルを発生する化合物であり、発生したラジカルにより、上述したポリフェニレンエーテルやラジカル重合化合物をラジカル重合させ、露光部に耐現像性を付与する。
<<<<photo radical generator>>>>
The photoradical generator contained in the curable composition of the present invention is a compound that generates radicals by light irradiation (exposure), and the generated radicals radically polymerize the above-mentioned polyphenylene ethers and radically polymerizable compounds, resulting in exposure to light. to provide development resistance.
 光ラジカル発生剤としては、公知慣用の光ラジカル発生剤を用いることができる。例えば、ベンゾインエーテル系、アセトフェノン系、α-ケトール系、芳香族スルホニルクロリド系、光活性オキシム系、ベンゾイン系、ベンジル系、ベンゾフェノン系、ケタール系、チオキサントン系、アシルフォスフィンオキシド系等が挙げられる。 As the photoradical generator, a known and commonly used photoradical generator can be used. Examples thereof include benzoin ether, acetophenone, α-ketol, aromatic sulfonyl chloride, photoactive oxime, benzoin, benzyl, benzophenone, ketal, thioxanthone, and acylphosphine oxide.
 ベンゾインエーテル系光ラジカル発生剤としては、例えば、ベンゾインメチルエーテル 、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、アニソイン等が挙げられる。 Examples of benzoin ether photoradical generators include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-dimethoxy-1,2-diphenylethan-1-one, anisoin etc.
 アセトフェノン系光ラジカル発生剤としては、例えば、1-ヒドロキシシクロヘキシル フェニルケトン、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、メトキシアセトフェノン等が挙げられる。 Acetophenone photoradical generators include, for example, 1-hydroxycyclohexyl phenyl ketone, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 1-[4-(2-hydroxyethoxy)-phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, methoxyacetophenone and the like.
 α-ケトール系光ラジカル発生剤としては、例えば、2-メチル-2-ヒドロキシプロ ピオフェノン、1-[4-(2-ヒドロキシエチル)-フェニル]-2-ヒドロキシ-2-メチルプロパン-1-オン等が挙げられる。 Examples of α-ketol photoradical generators include 2-methyl-2-hydroxypropiophenone, 1-[4-(2-hydroxyethyl)-phenyl]-2-hydroxy-2-methylpropan-1-one, etc.
 芳香族スルホニルクロリド系光ラジカル発生剤としては、例えば、2-ナフタレンスル ホニルクロライド等が挙げられる。光活性オキシム系光重合開始剤としては、例えば、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム等が挙げられる。 Examples of aromatic sulfonyl chloride photoradical generators include 2-naphthalenesulfonyl chloride. Examples of photoactive oxime-based photopolymerization initiators include 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)-oxime.
 ベンゾイン系光ラジカル発生剤としては、例えば、ベンゾイン等が挙げられる。 Benzoin-based photoradical generators include, for example, benzoin.
 ベンジル系光ラジカル発生剤としては、例えば、ベンジル等が挙げられる。 Benzyl-based photoradical generators include, for example, benzyl.
 ベンゾフェノン光ラジカル発生剤としては、例えば、ベンゾフェノン、ベンゾイル安息香酸、3,3´-ジメチル-4-メトキシベンゾフェノン、ポリビニルベンゾフェノン、α-ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。 Benzophenone photoradical generators include, for example, benzophenone, benzoylbenzoic acid, 3,3'-dimethyl-4-methoxybenzophenone, polyvinylbenzophenone, α-hydroxycyclohexylphenyl ketone, and the like.
 ケタール系光ラジカル発生剤としては、例えば、ベンジルジメチルケタール等が挙げられる。 Examples of ketal photoradical generators include benzyl dimethyl ketal.
 チオキサントン系光ラジカル発生剤としては、例えば、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、ドデシルチオキサントン等が挙げられる。 Thioxanthone photoradical generators include, for example, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, dodecylthioxanthone and the like.
 アシルフォスフィンオキシド系光ラジカル発生剤としては、例えば、ビス(2,6-ジメトキシベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)(2,4,4-トリメチルペンチル)ホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-n-ブチルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-(2-メチルプロパン-1-イル)ホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-(1-メチルプロパン-1-イル)ホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-t-ブチルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)シクロヘキシルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)オクチルホスフィンオキシド、ビス(2-メトキシベンゾイル)(2-メチルプロパン-1-イル)ホスフィンオキシド、ビス(2-メトキシベンゾイル)(1-メチルプロパン-1-イル)ホスフィンオキシド、ビス(2,6-ジエトキシベンゾイル)(2-メチルプロパン-1-イル)ホスフィンオキシド、ビス(2,6-ジエトキシベンゾイル)(1-メチルプロパン-1-イル)ホスフィンオキシド、ビス(2,6-ジブトキシベンゾイル)(2-メチルプロパン-1-イル)ホスフィンオキシド、ビス(2,4-ジメトキシベンゾイル)(2-メチルプロパン-1-イル)ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)(2,4-ジペントキシフェニル)ホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)ベンジルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2-フェニルプロピルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2-フェニルエチルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)ベンジルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2-フェニルプロピルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2-フェニルエチルホスフィンオキシド、2,6-ジメトキシベンゾイルベンジルブチルホスフィンオキシド、2,6-ジメトキシベンゾイルベンジルオクチルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,5-ジイソプロピルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2-メチルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-4-メチルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,5-ジエチルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,3,5,6-テトラメチルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジ-n-ブトキシフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)イソブチルホスフィンオキシド、2,6-ジメチトキシベンゾイル-2,4,6-トリメチ ルベンゾイル-n-ブチルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,4 -ジブトキシフェニルホスフィンオキシド、1,10-ビス[ビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド]デカン、トリ(2-メチルベンゾイル)ホスフィンオキシド等が挙げられる。 Examples of acylphosphine oxide photoradical generators include bis(2,6-dimethoxybenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)(2,4,4-trimethylpentyl)phosphine oxide, bis (2,6-dimethoxybenzoyl)-n-butylphosphine oxide, bis(2,6-dimethoxybenzoyl)-(2-methylpropan-1-yl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-(1 -methylpropan-1-yl)phosphine oxide, bis(2,6-dimethoxybenzoyl)-t-butylphosphine oxide, bis(2,6-dimethoxybenzoyl)cyclohexylphosphine oxide, bis(2,6-dimethoxybenzoyl)octyl Phosphine oxide, bis(2-methoxybenzoyl)(2-methylpropan-1-yl)phosphine oxide, bis(2-methoxybenzoyl)(1-methylpropan-1-yl)phosphine oxide, bis(2,6-di ethoxybenzoyl)(2-methylpropan-1-yl)phosphine oxide, bis(2,6-diethoxybenzoyl)(1-methylpropan-1-yl)phosphine oxide, bis(2,6-dibutoxybenzoyl)( 2-methylpropan-1-yl)phosphine oxide, bis(2,4-dimethoxybenzoyl)(2-methylpropan-1-yl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)(2,4- dipentoxyphenyl)phosphine oxide, bis(2,6-dimethoxybenzoyl)benzylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2-phenylpropylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2- Phenylethylphosphine oxide, bis(2,6-dimethoxybenzoyl)benzylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2-phenylpropylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2-phenylethylphosphine oxide, 2,6-dimethoxybenzoylbenzylbutylphosphine oxide, 2,6-dimethoxybenzoylbenzyloctylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,5-diisopropylphenylphosphine oxide, bis(2,4 ,6-trimethylbenzoyl)-2-methylphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-4-methylphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,5-diethylphenylphosphine oxide, bis(2,4,6- trimethylbenzoyl)-2,3,5,6-tetramethylphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,4-di-n-butoxyphenylphosphine oxide, 2,4,6-trimethyl Benzoyldiphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)isobutylphosphine oxide, 2,6-dimethoxybenzoyl-2 ,4,6-trimethylbenzoyl-n-butylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,4-dibutoxyphenylphosphine oxide, 1,10-bis[bis(2,4,6-trimethylbenzoyl)phosphine oxide]decane, tri(2-methylbenzoyl)phosphine oxide and the like.
 これらの光ラジカル発生剤は、1種のみが使用されてもよいし、2種以上が使用されてもよい。 Only one type of these photoradical generators may be used, or two or more types may be used.
<<<光ラジカル発生剤の含有量>>>
 硬化性組成物中の光ラジカル発生剤の含有量は、硬化性組成物中のポリフェニレンエーテルに対して、0.1~10質量%であることが好ましく、1~5質量%であることがより好ましい。
<<<content of photo-radical generator>>>
The content of the photoradical generator in the curable composition is preferably 0.1 to 10% by mass, more preferably 1 to 5% by mass, relative to the polyphenylene ether in the curable composition. preferable.
<<<<溶剤>>>>
 本発明の硬化性組成物は、配合や塗布等の工程に合わせ、必要に応じて溶剤を含むことができる。溶剤としては、上述したポリフェニレンエーテルを溶解できる溶剤が好ましく、例えば、クロロホルム、塩化メチレン、トルエン等の従来使用可能な溶剤の他、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン(THF)、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジエチレングリコールモノエチルエーテルアセテート(CA)、メチルエチルケトン、酢酸エチル等が好ましく使用される。
 これらは、1種のみが使用されてもよいし、2種以上が使用されてもよい。
<<<<solvent>>>>
The curable composition of the present invention can contain a solvent, if necessary, according to steps such as formulation and coating. As the solvent, a solvent capable of dissolving the polyphenylene ether described above is preferable, and examples include conventionally usable solvents such as chloroform, methylene chloride, and toluene, as well as N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), and cyclohexanone. , propylene glycol monomethyl ether acetate (PMA), diethylene glycol monoethyl ether acetate (CA), methyl ethyl ketone, ethyl acetate and the like are preferably used.
Only one type of these may be used, or two or more types may be used.
<<<<その他の成分>>>>
 本発明の硬化性組成物は、上述した成分以外に、本発明の効果を損なわない範囲で、その他の成分を含有していてもよい。例えば、シリカ等の無機充填材、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン等の過酸化物、上述したポリフェニレンエーテル以外のポリフェニレンエーテル、マレイミド樹脂、スチレン系エラストマー等の樹脂及びポリマー成分、増感剤、接着助剤、界面活性剤、レベリング剤、可塑剤、密着剤、着色剤、繊維、シランカップリング剤、難燃性剤、セルロースナノファイバー、分散剤、熱硬化触媒、増粘剤、消泡剤、酸化防止剤、防錆剤、密着性付与剤等を含んでもよい。
 これらの成分は、用途等に応じて適宜の量を配合すればよい。一例として、誘電特性を向上させたい場合、硬化性組成物中の過酸化物の含有量は、硬化性組成物中のポリフェニレンエーテルに対して、0.1~10質量%であることが好ましく、1~5質量%であることがより好ましい。
 これらの成分は、各々、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<<<<Other Ingredients>>>>
The curable composition of the present invention may contain other components in addition to the components described above, as long as the effects of the present invention are not impaired. For example, inorganic fillers such as silica, peroxides such as α,α'-bis(t-butylperoxy-m-isopropyl)benzene, polyphenylene ethers other than the above polyphenylene ethers, maleimide resins, styrene elastomers, etc. Resin and polymer components, sensitizers, adhesion aids, surfactants, leveling agents, plasticizers, adhesion agents, colorants, fibers, silane coupling agents, flame retardants, cellulose nanofibers, dispersants, thermosetting A catalyst, a thickener, an antifoaming agent, an antioxidant, an antirust agent, an adhesion imparting agent, etc. may also be included.
These components may be blended in appropriate amounts depending on the intended use. As an example, when it is desired to improve the dielectric properties, the content of the peroxide in the curable composition is preferably 0.1 to 10% by mass with respect to the polyphenylene ether in the curable composition, It is more preferably 1 to 5% by mass.
Each of these components may be used alone or in combination of two or more.
<<<<<ドライフィルム>>>>>
 ドライフィルムは、フィルム材料上に本発明の硬化性組成物からなる樹脂層を有する。ドライフィルムは、樹脂層を、基材に接するようにラミネートして使用される。
<<<<<Dry Film>>>>>>
A dry film has a resin layer comprising the curable composition of the present invention on a film material. A dry film is used by laminating a resin layer so as to be in contact with a substrate.
 ドライフィルムは、キャリアフィルム(支持フィルム)上に硬化性組成物をブレードコーター、リップコーター、コンマコーター、フィルムコーター等の適宜の方法により均一に塗布し、乾燥して、前記した樹脂層を形成し、好ましくはその上にカバーフィルム(保護フィルム)を積層することにより、製造することができる。カバーフィルムとキャリアフィルムは同一のフィルム材料であっても、異なるフィルムを用いてもよい。 A dry film is formed by uniformly applying a curable composition onto a carrier film (support film) by an appropriate method such as a blade coater, a lip coater, a comma coater, or a film coater, followed by drying to form the resin layer described above. , preferably by laminating a cover film (protective film) thereon. The cover film and the carrier film may be made of the same film material or different films.
 キャリアフィルム及びカバーフィルムのフィルム材料は、ドライフィルムに用いられるものとして公知のものをいずれも使用することができる。 For the film materials of the carrier film and the cover film, any of those known for use in dry films can be used.
 キャリアフィルムとしては、例えば、2~150μmの厚さのポリエチレンテレフタレート等のポリエステルフィルム等の熱可塑性フィルムが用いられる。 As the carrier film, for example, a thermoplastic film such as a polyester film such as polyethylene terephthalate having a thickness of 2 to 150 μm is used.
 カバーフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等を使用することができるが、樹脂層との接着力が、キャリアフィルムよりも小さいものが良い。 As the cover film, a polyethylene film, a polypropylene film, or the like can be used.
 ドライフィルム上の樹脂層の膜厚は、100μm以下が好ましく、5~50μmの範囲がより好ましい。 The film thickness of the resin layer on the dry film is preferably 100 μm or less, more preferably in the range of 5 to 50 μm.
<<<<<硬化物>>>>>
 硬化性組成物、又は硬化性組成物からなる樹脂層を有するドライフィルムを用いて、硬化物を製造することができる。
<<<<<hardened product>>>>>>
A cured product can be produced using a curable composition or a dry film having a resin layer comprising the curable composition.
 本実施形態に係る硬化性組成物は、通常、ネガ型のフォトリソグラフィ法に適用される。以下、本実施形態に係る硬化性組成物をネガ型のフォトリソグラフィ法に適用して、本実施形態に係る硬化性組成物の硬化物であるパターン膜を製造する方法を説明する。 The curable composition according to this embodiment is usually applied to negative photolithography. Hereinafter, a method for producing a pattern film, which is a cured product of the curable composition according to this embodiment, by applying the curable composition according to this embodiment to a negative photolithography method will be described.
 まず、ステップ1として、基材上に硬化性組成物を塗布、乾燥して樹脂層を形成する、或いは基材上にドライフィルムをラミネートして硬化性組成物からなる樹脂層を転写する。硬化性組成物を基材上に塗布する方法としては、従来、硬化性組成物の塗布に用いられていた方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法、さらにはインクジェット法等を用いることができる。 First, as step 1, a curable composition is applied onto a substrate and dried to form a resin layer, or a dry film is laminated onto the substrate to transfer a resin layer made of the curable composition. As a method for applying the curable composition onto the substrate, conventional methods used for applying the curable composition, such as spin coater, bar coater, blade coater, curtain coater, screen printer, etc. can be used. A method of spray coating with a spray coater, an inkjet method, or the like can be used.
 塗膜の乾燥方法としては、風乾、オーブン又はホットプレートによる加熱乾燥、真空乾燥等の方法が用いられる。また、塗膜の乾燥条件は、特に限定されないが、自然乾燥、送風乾燥、あるいは加熱乾燥を、60~130℃で1~30分の条件で行うことができる。 As a method for drying the coating film, methods such as air drying, heat drying using an oven or hot plate, and vacuum drying are used. The drying conditions for the coating film are not particularly limited, but natural drying, air drying, or heat drying can be performed at 60 to 130° C. for 1 to 30 minutes.
 基材については、特に制限はなく、シリコンウエハ等の半導体基材、配線基板、各種樹脂や金属などからなる基材に広く適用できる。 There are no particular restrictions on the base material, and it can be widely applied to semiconductor base materials such as silicon wafers, wiring boards, and base materials made of various resins and metals.
 次に、ステップ2として、基材上に形成した樹脂層を、パターンを有するフォトマスクを介して、あるいは直接パターン状に、光照射(露光)する。なお、ドライフィルムをラミネートする方法においては、フィルム材料を剥離して露光、或いはフィルム材料が光透過性を有する場合は、樹脂層上にフィルム材料が残した状態で露光し、その後にフィルム材料を剥離する。露光では、光ラジカル重合開始剤を活性化させることができる波長の光を用いる。具体的には、最大波長が350~410nmの範囲にあるものが好ましい。露光装置としては、コンタクトアライナー、ミラープロジェクション、ステッパー、レーザーダイレクト露光装置等を用いることができる。 Next, as step 2, the resin layer formed on the base material is irradiated with light (exposed) through a photomask having a pattern or directly in a pattern. In the method of laminating a dry film, the film material is peeled off and exposed, or if the film material has light transmittance, the film material is left on the resin layer for exposure, and then the film material is removed. exfoliate. The exposure uses light of a wavelength capable of activating the photoradical polymerization initiator. Specifically, it is preferable that the maximum wavelength is in the range of 350 to 410 nm. As an exposure device, a contact aligner, mirror projection, stepper, laser direct exposure device, or the like can be used.
 次いで、ステップ3として、樹脂層を現像液で処理する。これにより、樹脂層の未露光部分を除去してパターン膜を形成することができる。現像後は、必要に応じて樹脂層をリンス液により洗浄してもよい。 Then, as step 3, the resin layer is treated with a developer. Thereby, the pattern film can be formed by removing the unexposed portion of the resin layer. After development, the resin layer may be washed with a rinse if necessary.
 現像に用いる方法としては、従来知られているフォトレジストの現像方法、例えば回転スプレー法、パドル法、超音波処理を伴う浸せき法等の中から任意の方法を選択することができる。 As the method used for development, any method can be selected from conventionally known photoresist development methods, such as a rotary spray method, a paddle method, an immersion method accompanied by ultrasonic treatment, and the like.
 現像液は、硬化性組成物の主成分であるポリフェニレンエーテルを溶解する溶剤を用いることができ、回路等の腐食を防止するために、有機溶剤とすることが好ましい。例えば、クロロホルム、塩化メチレン、トルエン等の溶剤の他、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン(THF)、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジエチレングリコールモノエチルエーテルアセテート(CA)、メチルエチルケトン、酢酸エチル等の溶剤を用いることができ、1種のみを用いてもよいし、2種以上を混合して用いてもよい。
 また、現像液には、現像速度を調整する観点から、上記した有機溶剤以外の溶剤を組みわせることができ、必要に応じて、界面活性剤等を適当量含有してもよい。
The developer can be a solvent that dissolves polyphenylene ether, which is the main component of the curable composition, and is preferably an organic solvent in order to prevent corrosion of circuits and the like. For example, in addition to solvents such as chloroform, methylene chloride, and toluene, N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), cyclohexanone, propylene glycol monomethyl ether acetate (PMA), diethylene glycol monoethyl ether acetate (CA), Solvents such as methyl ethyl ketone and ethyl acetate can be used, and only one type may be used, or two or more types may be mixed and used.
From the viewpoint of adjusting the development speed, the developer may be combined with a solvent other than the organic solvent described above, and may contain an appropriate amount of a surfactant or the like, if necessary.
 リンス液としては、蒸留水、メタノール、エタノール、イソプロピルアルコール等が挙げられる。 Distilled water, methanol, ethanol, isopropyl alcohol, etc., can be used as rinsing liquids.
 また、必要に応じて、ステップ5として、パターン膜を加熱してもよい。加熱温度は、特に限定されないが、例えば、100~220℃で30~120分程度の加熱等である。このときの雰囲気(気体)としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いてもよい。 Also, the pattern film may be heated as step 5, if necessary. The heating temperature is not particularly limited, but is, for example, heating at 100 to 220° C. for about 30 to 120 minutes. As the atmosphere (gas) at this time, air may be used, or an inert gas such as nitrogen or argon may be used.
<<<<<電子部品>>>>>
 電子部品は、前述した本実施形態の硬化物を有するものであり、本実施形態の硬化物は、優れた誘電特性や耐熱性を有することから、電子部品を構成する材料として、種々の用途に使用可能である。
<<<<<Electronic Components>>>>>>
The electronic component has the cured product of the present embodiment described above, and the cured product of the present embodiment has excellent dielectric properties and heat resistance, so it can be used as a material for electronic components in various applications. Available.
 その用途は特に限定されないが、好ましくは、第5世代通信システム(5G)に代表される大容量高速通信や自動車のADAS(先進運転システム)向けミリ波レーダー等の電子部品における絶縁材料が挙げられる。 Although its use is not particularly limited, it is preferably an insulating material in electronic parts such as millimeter-wave radar for high-capacity high-speed communication and ADAS (advanced driving system) for automobiles, as represented by the fifth generation communication system (5G). .
<<<ポリフェニレンエーテルAの合成>>>
<<PPEA-1の合成>>
 3Lの二つ口ナスフラスコに、ジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)2.6gと、テトラメチルエチレンジアミン(TMEDA)3.18mLを加えて十分に溶解させ、100ml/minにて酸素を供給した。原料フェノール類である2,6-ジメチルフェノール89.1g(90mol%)と2-アリルフェノール10.9g(10mol%)とをトルエン1.5Lに溶解させ原料溶液を調製した。この原料溶液をフラスコに滴下し、600rpmの回転速度で攪拌しながら40℃で10時間反応させた。反応終了後、メタノール20L:濃塩酸22mLの混合液で再沈殿させてろ過にて取り出し、80℃で24時間乾燥させ、PPEA-1を得た。PPEA-1の数平均分子量は17,500、重量平均分子量は192,000であった。
<<<Synthesis of Polyphenylene Ether A>>>
<<Synthesis of PPEA-1>>
In a 3 L two-necked eggplant flask, 2.6 g of di-μ-hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride (Cu/TMEDA) and tetramethyl 3.18 mL of ethylenediamine (TMEDA) was added and sufficiently dissolved, and oxygen was supplied at 100 ml/min. A raw material solution was prepared by dissolving 89.1 g (90 mol %) of 2,6-dimethylphenol and 10.9 g (10 mol %) of 2-allylphenol as raw material phenols in 1.5 L of toluene. This raw material solution was added dropwise to the flask and reacted at 40° C. for 10 hours while stirring at a rotational speed of 600 rpm. After completion of the reaction, the precipitate was reprecipitated with a mixture of 20 L of methanol and 22 mL of concentrated hydrochloric acid, filtered and dried at 80° C. for 24 hours to obtain PPEA-1. PPEA-1 had a number average molecular weight of 17,500 and a weight average molecular weight of 192,000.
<<PPEA-2の合成>>
 上記したPPEA-1の合成方法にて、反応時間を8時間とする以外は同様の方法にて、PPEA-2を得た。PPEA-2の数平均分子量は19,000、重量平均分子量は84,600であった。
<<Synthesis of PPEA-2>>
PPEA-2 was obtained in the same manner as in the synthesis method of PPEA-1 described above, except that the reaction time was changed to 8 hours. PPEA-2 had a number average molecular weight of 19,000 and a weight average molecular weight of 84,600.
<<PPEA-3の合成>>
 上記したPPEA-1の合成方法にて、反応時間を6時間とする以外は同様の方法にて、PPEA-3を得た。PPEA-3の数平均分子量は14,500、重量平均分子量は50,000であった。
<<Synthesis of PPEA-3>>
PPEA-3 was obtained in the same manner as in the synthesis method of PPEA-1 described above, except that the reaction time was changed to 6 hours. PPEA-3 had a number average molecular weight of 14,500 and a weight average molecular weight of 50,000.
<<PPEA-4の合成>>
 上記したPPEA-1の合成方法にて、反応時間を5時間とする以外は同様の方法にて、PPEA-4を得た。PPEA-4の数平均分子量は12,000、重量平均分子量は36,000であった。
<<Synthesis of PPEA-4>>
PPEA-4 was obtained in the same manner as in the synthesis method of PPEA-1 described above, except that the reaction time was changed to 5 hours. PPEA-4 had a number average molecular weight of 12,000 and a weight average molecular weight of 36,000.
<<<ポリフェニレンエーテルBの合成>>>
<<PPEB-1の合成>>
 3Lの二つ口ナスフラスコに、ジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)0.050gと、テトラメチルエチレンジアミン(TMEDA)0.0047gを加えて十分に溶解させ、50ml/minにて酸素を供給した。原料フェノール類である2,6-ジメチルフェノール8.8g(80mol%)と、2-アリル-6-メチルフェノール0.67g(10mol%)2-アリルフェノール1.2g(10mol%)とをトルエン60mLに溶解させ原料溶液を調製した。この原料溶液をフラスコに滴下し、600rpmの回転速度で攪拌しながら40℃で18時間反応させた。反応終了後、メタノール1.2L:濃塩酸4mLの混合液で再沈殿させてろ過にて取り出し、80℃で24時間乾燥させ、PPEB-1を得た。PPEB-1の数平均分子量は5,600、重量平均分子量は11,500であった。
<<<Synthesis of Polyphenylene Ether B>>>
<<Synthesis of PPEB-1>>
0.050 g of di-μ-hydroxo-bis[(N,N,N′,N′-tetramethylethylenediamine)copper(II)]chloride (Cu/TMEDA) and tetramethyl 0.0047 g of ethylenediamine (TMEDA) was added and dissolved sufficiently, and oxygen was supplied at 50 ml/min. 8.8 g (80 mol %) of 2,6-dimethylphenol as raw material phenols, 0.67 g (10 mol %) of 2-allyl-6-methylphenol and 1.2 g (10 mol %) of 2-allylphenol were added to 60 mL of toluene. to prepare a raw material solution. This raw material solution was added dropwise to the flask and reacted at 40° C. for 18 hours while stirring at a rotational speed of 600 rpm. After completion of the reaction, the precipitate was reprecipitated with a mixture of 1.2 L of methanol and 4 mL of concentrated hydrochloric acid, filtered and dried at 80° C. for 24 hours to obtain PPEB-1. PPEB-1 had a number average molecular weight of 5,600 and a weight average molecular weight of 11,500.
<<PPEB-2の合成>>
 上記したPPEB-1の合成方法にて、原料フェノール類である2,6-ジメチルフェノールを5.5g(50mol%)と、2-アリル-6-メチルフェノールを5.3g(40mol%)に変更した以外は同様の方法にて、PPEB-2を得た。PPEB-2の数平均分子量は5,400、重量平均分子量は11,200であった。
<<Synthesis of PPEB-2>>
In the synthesis method of PPEB-1 described above, 5.5 g (50 mol%) of 2,6-dimethylphenol and 5.3 g (40 mol%) of 2-allyl-6-methylphenol, which are raw material phenols, were changed. PPEB-2 was obtained in the same manner except that PPEB-2 had a number average molecular weight of 5,400 and a weight average molecular weight of 11,200.
<<PPEB-3の合成>>
 上記したPPEB-1の合成方法にて、原料フェノール類である2,6-ジメチルフェノールを1.1g(10mol%)と、2-アリル-6-メチルフェノールを10.7g(80mol%)に変更した以外は同様の方法にて、PPEB-3を得た。PPEB-2の数平均分子量は5,600、重量平均分子量は14,000であった。
<<Synthesis of PPEB-3>>
1.1 g (10 mol%) of 2,6-dimethylphenol and 10.7 g (80 mol%) of 2-allyl-6-methylphenol, which are raw material phenols, were changed in the synthesis method of PPEB-1 described above. PPEB-3 was obtained in the same manner except that PPEB-2 had a number average molecular weight of 5,600 and a weight average molecular weight of 14,000.
<<<硬化性組成物の調製>>>
<<実施例1>>
 PPEA-1:75質量部と、PPEB-3:25質量部と、光ラジカル発生剤であるフェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド(IGM Resins社製:商品名「Omnirad819」):3質量部と、チオール基含有化合物であるトリメチロールプロパントリス(3-メルカプトプロピオネート)(SC有機化学株式会社製:商品名「TMMP」):20質量部とを配合し、シクロヘキサノン:400質量部を加えて40℃にて30分混合、攪拌して完全に溶解させた。次いで、過酸化物としてα,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン(日本油脂株式会社製:商品名「パーブチルP」):2質量部を配合し、マグネチックスターラーにて攪拌し、実施例1の樹硬化性組成物のワニスを得た。
<<<Preparation of Curable Composition>>>
<<Example 1>>
PPEA-1: 75 parts by mass, PPEB-3: 25 parts by mass, and phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (manufactured by IGM Resins: trade name “Omnirad819”), which is a photoradical generator. : 3 parts by mass and a thiol group-containing compound trimethylolpropane tris (3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: trade name "TMMP"): 20 parts by mass, and cyclohexanone: 400 Parts by mass were added and mixed and stirred for 30 minutes at 40° C. to dissolve completely. Next, α,α'-bis(t-butylperoxy-m-isopropyl)benzene (manufactured by NOF Co., Ltd.: product name "Perbutyl P"): 2 parts by mass was blended as a peroxide and placed in a magnetic stirrer. The varnish of the tree hardening composition of Example 1 was obtained.
<<実施例2~10、比較例1~6>>
 各成分と含有量を表1に示す成分及び数値とした以外は実施例1と同様に、硬化性組成物を調整し、実施例2-13、比較例1-3の硬化性組成物のワニスを得た。
<<Examples 2 to 10, Comparative Examples 1 to 6>>
A curable composition was prepared in the same manner as in Example 1 except that each component and the content were the components and values shown in Table 1, and varnishes of the curable compositions of Examples 2-13 and Comparative Examples 1-3 got
<<<評価>>>
 各硬化性組成物及び各硬化性組成物を硬化して得られた硬化膜について、以下の評価を行った。評価結果を表1に示す。
<<<evaluation>>>
Each curable composition and a cured film obtained by curing each curable composition were evaluated as follows. Table 1 shows the evaluation results.
<<感光性及び現像性評価>>
 各硬化性組成物のワニスを、シリコンウエハ上に、スピンコーターを用いて乾燥後の膜厚が約3μmとなるように塗布し、ホットプレートで80℃1分間乾燥させ、各硬化性組成物からなる樹脂層を形成した。その後、樹脂層を形成したシリコンウエハを2.5×15cmの形状に裁断し、感光性及び現像性の試験用サンプルとした。各試験サンプルの樹脂層に、波長365nmの光を積算光量として、0(未露光)、400、800、1200、1600、2000mJ/cm照射し、次いで、シクロヘキサノンに10秒間浸漬させて現像した。現像後の試験サンプルを乾燥させた後、各露光量にて残存した樹脂層の厚みを触針式表面形状測定器にて測定した。未露光部の残存膜厚と各露光部の残存膜厚の差(現像コントラスト)に基づき、フォトリソグラフィの可否を以下基準にて評価した。
(評価基準)
◎◎:800mJ/cm以上の露光で、十分な現像コントラストが得られた。
◎ :1200mJ/cm以上の露光で、十分な現像コントラストが得られた。
○ :2000mJ/cmの露光で、十分な現像コントラストが得られた。
△ :2000mJ/cmの露光で、僅かに現像コントラストが得られた。
× :露光部に耐現像性が得られない、または、未露光部が現像されず、現像コントラストが得られない。
<<Photosensitivity and developability evaluation>>
The varnish of each curable composition is applied on a silicon wafer using a spin coater so that the film thickness after drying is about 3 μm, dried on a hot plate at 80 ° C. for 1 minute, and from each curable composition A resin layer was formed. After that, the silicon wafer on which the resin layer was formed was cut into a shape of 2.5×15 cm and used as a test sample for photosensitivity and developability. The resin layer of each test sample was irradiated with 0 (unexposed), 400, 800, 1200, 1600 and 2000 mJ/cm 2 of light with a wavelength of 365 nm as an integrated light amount, and then developed by being immersed in cyclohexanone for 10 seconds. After drying the test sample after development, the thickness of the resin layer remaining at each exposure dose was measured with a stylus surface profiler. Based on the difference (development contrast) between the residual film thickness of the unexposed portion and the residual film thickness of each exposed portion, the feasibility of photolithography was evaluated according to the following criteria.
(Evaluation criteria)
⊚: Sufficient development contrast was obtained with exposure of 800 mJ/cm 2 or more.
A: Sufficient development contrast was obtained with exposure of 1200 mJ/cm 2 or more.
◯: Sufficient development contrast was obtained with exposure of 2000 mJ/cm 2 .
Δ: Slight development contrast was obtained with exposure of 2000 mJ/cm 2 .
x: The exposed area has no development resistance, or the unexposed area is not developed and the development contrast cannot be obtained.
<<誘電特性>>
 厚さ18μm銅箔の光沢面に、各硬化性組成物を乾燥後の膜厚が30μmになるようにアプリケーターにて塗布し、熱風式循環式乾燥炉で90℃30分乾燥した。次いで、イナートオーブンで200℃、1h硬化した後、銅箔をエッチングすることで各組成物からなる硬化物(硬化膜)を得た。
<<dielectric properties>>
Each curable composition was applied to the glossy surface of a 18 μm thick copper foil with an applicator so that the film thickness after drying would be 30 μm, and dried in a hot air circulating drying oven at 90° C. for 30 minutes. Then, after curing in an inert oven at 200° C. for 1 hour, the copper foil was etched to obtain a cured product (cured film) of each composition.
 作製した硬化膜を長さ80mm、幅45mmに切断したものを試験片として、SPDR(Split Post Dielectric Resonator)共振器法により比誘電率Dk及び誘電正接Df測定した。測定器には、キーサイトテクノロジー合同会社製のベクトル型ネットワークアナライザE5071C、SPDR共振器、計算プログラムはQWED社製のものを用いた。条件は、周波数10GHz、測定温度25℃とした。 The prepared cured film was cut into a length of 80 mm and a width of 45 mm as a test piece, and the dielectric constant Dk and the dielectric loss tangent Df were measured by the SPDR (Split Post Dielectric Resonator) resonator method. A vector-type network analyzer E5071C and an SPDR resonator manufactured by Keysight Technologies LLC were used as measuring instruments, and a calculation program manufactured by QWED was used. The conditions were a frequency of 10 GHz and a measurement temperature of 25°C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 

Claims (7)

  1.  ポリフェニレンエーテルAと、
     ポリフェニレンエーテルBと、
     不飽和炭素結合とラジカル重合可能な官能基を有する化合物と、
     光ラジカル発生剤と、を含み、
     前記ポリフェニレンエーテルAと前記ポリフェニレンエーテルBは、それぞれ、少なくとも下記条件1を満たすフェノール類と少なくとも下記条件2を満たすフェノール類とを含む原料フェノール類から得られ、
     前記ポリフェニレンエーテルAは、重量平均分子量が40,000超200,000以下であり、かつ、合成時の原料フェノール類全体に対する条件2を満たすフェノール類の含有量が20mol%未満であり、
     前記ポリフェニレンエーテルBは、合成時の原料フェノール類全体に対する条件2を満たすフェノール類の含有量が20mol%以上である、感光性組成物。
    (条件1)
     オルト位及びパラ位に水素原子を有する
    (条件2)
     パラ位に水素原子を有し、不飽和炭素結合を含む官能基を有する
    Polyphenylene ether A;
    a polyphenylene ether B;
    a compound having an unsaturated carbon bond and a radically polymerizable functional group;
    and a photoradical generator,
    The polyphenylene ether A and the polyphenylene ether B are obtained from raw material phenols containing at least phenols satisfying at least the following condition 1 and at least phenols satisfying at least the following condition 2,
    The polyphenylene ether A has a weight average molecular weight of more than 40,000 and not more than 200,000, and the content of phenols that satisfies condition 2 with respect to the total raw material phenols during synthesis is less than 20 mol%,
    The polyphenylene ether B is a photosensitive composition in which the content of phenols satisfying Condition 2 is 20 mol % or more with respect to the total raw material phenols at the time of synthesis.
    (Condition 1)
    Having hydrogen atoms at the ortho and para positions (Condition 2)
    Having a hydrogen atom at the para position and having a functional group containing an unsaturated carbon bond
  2.  前記ポリフェニレンエーテルBは、重量平均分子量が5,000以上40,000以下である、請求項1に記載の感光性組成物。 The photosensitive composition according to claim 1, wherein the polyphenylene ether B has a weight average molecular weight of 5,000 or more and 40,000 or less.
  3.  前記ポリフェニレンエーテルAと前記ポリフェニレンエーテルBの含有割合(ポリフェニレンエーテルA:ポリフェニレンエーテルB)が、質量比で25:75~75:25である、請求項1又は2に記載の感光性組成物。 The photosensitive composition according to claim 1 or 2, wherein the content ratio of said polyphenylene ether A and said polyphenylene ether B (polyphenylene ether A:polyphenylene ether B) is 25:75 to 75:25 in mass ratio.
  4.  前記不飽和炭素結合とラジカル重合可能な官能基がチオール基及び/又はアリル基である、請求項1~3のいずれか1項に記載の感光性組成物。 The photosensitive composition according to any one of claims 1 to 3, wherein the unsaturated carbon bond and the functional group capable of radical polymerization are a thiol group and/or an allyl group.
  5.  請求項1~4のいずれか1項に記載の感光性組成物からなる樹脂層を有するドライフィルム。 A dry film having a resin layer made of the photosensitive composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載の感光性組成物又は請求項5に記載の樹脂層の硬化物。 The cured product of the photosensitive composition according to any one of claims 1 to 4 or the resin layer according to claim 5.
  7.  請求項6に記載の硬化物を有する電子部品。 An electronic component having the cured product according to claim 6.
PCT/JP2022/031769 2021-09-03 2022-08-23 Photosensitive composition, dry film, cured product, and electronic component WO2023032765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-144220 2021-09-03
JP2021144220A JP2023037449A (en) 2021-09-03 2021-09-03 Photosensitive composition, dry film, cured article, and electronic component

Publications (1)

Publication Number Publication Date
WO2023032765A1 true WO2023032765A1 (en) 2023-03-09

Family

ID=85412509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031769 WO2023032765A1 (en) 2021-09-03 2022-08-23 Photosensitive composition, dry film, cured product, and electronic component

Country Status (3)

Country Link
JP (1) JP2023037449A (en)
TW (1) TW202323370A (en)
WO (1) WO2023032765A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120729A (en) * 1980-02-27 1981-09-22 Mitsubishi Chem Ind Ltd Polyphenylene ether having allyl group at side chain
JP2000104014A (en) * 1998-04-07 2000-04-11 Matsushita Electric Ind Co Ltd Forming process for polymerized coating, insulation coating method on metal material with this process and insulation coated metal conductor
JP2007166985A (en) * 2005-12-22 2007-07-05 Kyushu Univ Method for adjusting hydroxyl group content of aromatic polymer composition
WO2020017570A1 (en) * 2018-07-17 2020-01-23 太陽ホールディングス株式会社 Poly(phenylene ether), curable composition containing poly(phenylene ether), dry film, prepreg, cured object, laminate, and electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120729A (en) * 1980-02-27 1981-09-22 Mitsubishi Chem Ind Ltd Polyphenylene ether having allyl group at side chain
JP2000104014A (en) * 1998-04-07 2000-04-11 Matsushita Electric Ind Co Ltd Forming process for polymerized coating, insulation coating method on metal material with this process and insulation coated metal conductor
JP2007166985A (en) * 2005-12-22 2007-07-05 Kyushu Univ Method for adjusting hydroxyl group content of aromatic polymer composition
WO2020017570A1 (en) * 2018-07-17 2020-01-23 太陽ホールディングス株式会社 Poly(phenylene ether), curable composition containing poly(phenylene ether), dry film, prepreg, cured object, laminate, and electronic component

Also Published As

Publication number Publication date
TW202323370A (en) 2023-06-16
JP2023037449A (en) 2023-03-15

Similar Documents

Publication Publication Date Title
JP7366521B2 (en) Semiconductor device and its manufacturing method
TW201105695A (en) Light and thermal curable resin composition, dry film thereof and cured substance and printed circuit board using the same
KR101405818B1 (en) Composition, dry film, cured product, and printed wiring board
TW200935175A (en) Photosensitive resin composition and curing article thereof
JP2008026667A (en) Permanent resist composition and resist laminate
TWI734251B (en) Manufactuaring method of film and printed wiring board
WO2008010521A1 (en) Photosensitive resin composition
CN102164977B (en) Photosensitive resin composition and method for producing photosensitive resin used therein
KR20030013330A (en) Organosiloxane polymer, photo-curable resin composition, patterning process, and substrate-protecting coat
CN106243298B (en) Novel polymer, underlayer film composition containing the same, and method for forming underlayer film using the same
TW201716856A (en) Photo-sensitive resin composition, dry film, and printed wiring board (2)
US20090029287A1 (en) Photosensitive resin composition
JP6797911B2 (en) Sulfonium salt, photoacid generator, curable composition and resist composition
TW201027241A (en) Flame-retardant photocurable resin composition, dry film and cured product of the same, and printed wiring board using the composition, dry film or cured product
WO2008007764A1 (en) Photosensitive resin composition, layered product thereof, cured object therefrom, and method of forming pattern from the composition (3)
JP5825884B2 (en) Phenol resin composition and method for producing cured relief pattern
WO2022097684A1 (en) Photosensitive resin composition, cured product thereof and multilayer material
KR910003964B1 (en) Photocurable laminate
WO2023032765A1 (en) Photosensitive composition, dry film, cured product, and electronic component
TW201111911A (en) Photosensitive resin composition, photosensitive resin laminate, and method for forming resist pattern
JP6476558B2 (en) Acid group-containing (meth) acrylate resin, method for producing acid group-containing (meth) acrylate resin, curable resin material, cured product thereof, and resist material
JP2012022227A (en) Energy ray-curable composition containing iodonium alkyl fluorophosphate-based photoacid generator
JP2010266768A (en) Photosensitive resin composition
CN111886274B (en) Alkali-soluble resin containing unsaturated group, photosensitive resin composition containing the same as essential component, and cured product thereof
JP2010054847A (en) Photosensitive resin composition, and method of manufacturing rugged substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE