WO2023032705A1 - Plasma processing device and showerhead assembly - Google Patents

Plasma processing device and showerhead assembly Download PDF

Info

Publication number
WO2023032705A1
WO2023032705A1 PCT/JP2022/031314 JP2022031314W WO2023032705A1 WO 2023032705 A1 WO2023032705 A1 WO 2023032705A1 JP 2022031314 W JP2022031314 W JP 2022031314W WO 2023032705 A1 WO2023032705 A1 WO 2023032705A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma processing
gas holes
porous sheet
flexible porous
Prior art date
Application number
PCT/JP2022/031314
Other languages
French (fr)
Japanese (ja)
Inventor
将之 長山
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023032705A1 publication Critical patent/WO2023032705A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present disclosure relates to plasma processing apparatuses and showerhead assemblies.
  • US Pat. Nos. 6,300,000 and 6,000,000 disclose showerhead assemblies for use within a processing chamber.
  • the showerhead assembly disclosed in US Pat. No. 5,400,001 has a thermal gasket sheet positioned between the showerhead body and the gas diffusion plate.
  • the thermal gasket sheet includes a plurality of openings corresponding to the locations of the plurality of gas diffusion holes in the showerhead body.
  • the showerhead assembly disclosed in US Pat. No. 6,200,000 has a clamp positioned around the perimeter of the gas diffusion plate for clamping the gas diffusion plate and gas diffusion sheet to the showerhead body.
  • the showerhead assembly disclosed in Patent Document 2 has multiple gasket seals.
  • a plurality of gasket seals are located within the space defined between the surface of the base plate and the surface of the gas diffusion plate.
  • a porous insert is positioned within the space and between two of the plurality of gasket seals.
  • the technology according to the present disclosure suppresses abnormal electrical discharge in the showerhead assembly in an efficient manner.
  • One aspect of the present disclosure is a plasma processing apparatus comprising: a plasma processing chamber; a substrate support arranged in the plasma processing chamber; a lower electrode arranged in the substrate support; a showerhead assembly disposed above, the showerhead assembly comprising a metal member having a plurality of first gas holes; and a plurality of second gas holes respectively corresponding to the plurality of first gas holes.
  • an upper electrode having a hole; a fixing mechanism configured to fix the upper electrode to the metal member at its outer peripheral portion; a flexible porous sheet sandwiched between the metal member and the upper electrode; wherein the flexible porous sheet is arranged between a compressed portion compressed by the metal member and the upper electrode, and between the plurality of first gas holes and the plurality of second gas holes, respectively.
  • each of the plurality of first gas holes communicates with the second gas hole via the non-compressible portion.
  • abnormal electrical discharge in the showerhead assembly can be suppressed in an efficient manner.
  • FIG. 1 is an explanatory diagram schematically showing the configuration of a plasma processing system
  • FIG. 1 is a cross-sectional view showing an example of a configuration of a showerhead assembly according to this embodiment
  • FIG. FIG. 4 is a bottom view showing an example of the configuration of a gas diffusion plate; It is a bottom view which shows an example of a structure of a metal plate.
  • FIG. 2 is a partially enlarged cross-sectional view showing an example of the configuration of the showerhead assembly according to this embodiment
  • FIG. 4 is a partially enlarged cross-sectional view showing an example of a showerhead assembly according to a comparative embodiment
  • FIG. 5 is a cross-sectional view showing an example of a showerhead assembly according to a comparative embodiment, showing a state in which the gas diffusion plate is heated and deformed by heat input from plasma.
  • FIG. 4 is a cross-sectional view showing an example of the showerhead assembly according to the present embodiment, showing a state in which the gas diffusion plate is heated and deformed by heat input from plasma.
  • wafers In the manufacturing process of semiconductor devices, plasma processing is performed on substrates such as semiconductor wafers (hereinafter referred to as "wafers"). In plasma processing, plasma is generated by exciting a processing gas, and the substrate is processed with the plasma.
  • a plasma processing apparatus that performs plasma processing includes a shower head assembly.
  • a showerhead assembly for example, includes a gas diffusion plate and a metal plate.
  • the gas diffusion plate is a plate-like member whose lower surface serves as a plasma-exposed surface, and is provided with a plurality of second gas holes extending in the thickness direction from the lower surface.
  • the metal plate is provided with a plurality of first gas holes, each corresponding to a plurality of second gas holes in the gas diffusion plate.
  • abnormal discharge may occur in the shower head assembly during plasma processing.
  • plasma may enter between the gas diffusion plate and the metal plate through the second gas hole.
  • an electrical discharge may occur between the gas diffusion plate and the metal plate.
  • a method of sealing a porous body in at least one of the plurality of second gas holes of the gas diffusion plate or the plurality of first gas holes of the metal plate can be considered.
  • this method has poor productivity when the number of holes enclosing the porous body is large (for example, 100 or more).
  • FIG. 1 is an explanatory diagram schematically showing the configuration of a plasma processing system.
  • the plasma processing system includes a capacitively coupled plasma processing apparatus 1 and a controller 2.
  • the plasma processing apparatus 1 includes a plasma processing chamber 10 , a gas supply section 20 , a power supply 30 and an exhaust system 40 . Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. A substrate support 11 is positioned within the plasma processing chamber 10 .
  • the gas introduction is configured to introduce at least one process gas into the plasma processing chamber 10 .
  • the gas inlet includes showerhead assembly 13 .
  • a showerhead assembly 13 is positioned above the substrate support 11 . In one embodiment, showerhead assembly 13 forms at least a portion of the ceiling of plasma processing chamber 10 .
  • the plasma processing chamber 10 has a plasma processing space 10 s defined by a showerhead assembly 13 , sidewalls 10 a of the plasma processing chamber 10 and a substrate support 11 .
  • the plasma processing chamber 10 has at least one gas supply port for supplying at least one processing gas to the plasma processing space 10s and at least one gas exhaust port for exhausting gas from the plasma processing space 10s.
  • Side wall 10a is grounded.
  • showerhead assembly 13 and substrate support 11 are electrically isolated from the enclosure of plasma processing chamber 10 .
  • the substrate support section 11 includes a body section 111 and a ring assembly 112 .
  • the body portion 111 has a central region (substrate support surface) 111 a for supporting the substrate (wafer) W and an annular region (ring support surface) 111 b for supporting the ring assembly 112 .
  • the annular region 111b of the body portion 111 surrounds the central region 111a of the body portion 111 in plan view.
  • the substrate W is arranged on the central region 111 a of the main body 111
  • the ring assembly 112 is arranged on the annular region 111 b of the main body 111 so as to surround the substrate W on the central region 111 a of the main body 111 .
  • body portion 111 includes a base and an electrostatic chuck.
  • the base includes an electrically conductive member.
  • the conductive member of the base functions as a lower electrode.
  • the lower electrode may be arranged inside the electrostatic chuck.
  • An electrostatic chuck is arranged on the base.
  • the upper surface of the electrostatic chuck has a substrate support surface 111a.
  • Ring assembly 112 includes one or more annular members. At least one of the one or more annular members is an edge ring.
  • the substrate supporter 11 may include a temperature control module configured to control at least one of the electrostatic chuck, the ring assembly 112, and the substrate to a target temperature.
  • the temperature control module may include heaters, heat transfer media, flow paths, or combinations thereof.
  • the substrate support section 11 may include a heat transfer gas supply section configured to supply a heat transfer gas between the back surface of the substrate W and the substrate support surface 111a.
  • the showerhead assembly 13 is configured to introduce at least one processing gas from the gas supply 20 into the plasma processing space 10s.
  • the showerhead assembly 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and a plurality of gas inlets 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s through a plurality of gas introduction ports 13c.
  • showerhead assembly 13 also includes an upper electrode.
  • the gas introduction section may include one or more side gas injectors (SGI: Side Gas Injector) attached to one or more openings formed in the side wall 10a.
  • SGI Side Gas Injector
  • the gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22 .
  • gas supply 20 is configured to supply at least one process gas from respective gas sources 21 through respective flow controllers 22 to showerhead assembly 13 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure controlled flow controller.
  • gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow of at least one process gas.
  • Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • RF power supply 31 is configured to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to the bottom electrode and/or the top electrode.
  • RF power source 31 may function as at least part of a plasma generator configured to generate a plasma from one or more process gases in plasma processing chamber 10 .
  • a bias RF signal to the lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
  • the RF power supply 31 includes a first RF generator 31a and a second RF generator 31b.
  • the first RF generator 31a is coupled to the lower electrode and/or the upper electrode via at least one impedance matching circuit and configured to generate a source RF signal (source RF power) for plasma generation.
  • the source RF signal has a frequency within the range of 13 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies.
  • One or more source RF signals generated are provided to the bottom electrode and/or the top electrode.
  • a second RF generator 31b is coupled to the lower electrode via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power).
  • the bias RF signal has a lower frequency than the source RF signal. In one embodiment, the bias RF signal has a frequency within the range of 400 kHz to 13.56 MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. One or more bias RF signals generated are provided to the bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
  • Power supply 30 may also include a DC power supply 32 coupled to plasma processing chamber 10 .
  • the DC power supply 32 includes a first DC generator 32a and a second DC generator 32b.
  • the first DC generator 32a is connected to the bottom electrode and configured to generate a first DC signal.
  • the generated first bias DC signal is applied to the bottom electrode.
  • the second DC generator 32b is connected to the upper electrode and configured to generate the second DC signal.
  • the generated second DC signal is applied to the upper electrode.
  • at least one of the first and second DC signals may be pulsed. Note that the first and second DC generators 32a and 32b may be provided in addition to the RF power supply 31, and the first DC generator 32a may be provided instead of the second RF generator 31b. good.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Exhaust system 40 may include a pressure regulating valve and a vacuum pump.
  • the pressure regulating valve regulates the pressure in the plasma processing space 10s.
  • Vacuum pumps may include turbomolecular pumps, dry pumps, or combinations thereof.
  • the controller 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure. Controller 2 may be configured to control elements of plasma processing apparatus 1 to perform the various processes described herein. In one embodiment, part or all of the controller 2 may be included in the plasma processing apparatus 1 .
  • the control unit 2 may include, for example, a computer 2a.
  • the computer 2a may include, for example, a processing unit (CPU: Central Processing Unit) 2a1, a storage unit 2a2, and a communication interface 2a3. Processing unit 2a1 can be configured to perform various control operations based on programs stored in storage unit 2a2.
  • the storage unit 2a2 may include RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the showerhead assembly 13.
  • FIG. 3 is a bottom view showing an example of the configuration of a gas diffusion plate, which will be described later.
  • FIG. 4 is a bottom view showing an example of the configuration of a metal plate, which will be described later.
  • FIG. 5 is a partially enlarged cross-sectional view showing an example of the configuration of the showerhead assembly 13. As shown in FIG.
  • the showerhead assembly 13 includes a gas diffusion plate 200 as a second plate, a metal plate 210 as a first plate, a fixing mechanism, and a flexible porous sheet 230, as shown in FIG. Prepare.
  • Gas diffusion plate 200 functions as a top electrode.
  • Metal plate 210 may be a metal member.
  • One surface (specifically, the lower surface) of the gas diffusion plate 200 serves as a plasma exposed surface 200a exposed to the plasma P in the plasma processing space 10s. Accordingly, the gas diffusion plate 200 has a plasma exposed surface 200a.
  • the gas diffusion plate 200 also has a plurality of second gas holes 201 extending from the upper surface to the lower surface.
  • the lower surface of gas diffusion plate 200 has a plasma exposed surface 200a.
  • the lower end of each second gas hole 201 serves as the aforementioned gas introduction port 13c.
  • Each second gas hole 201 is formed so as to penetrate the gas diffusion plate 200 in the thickness direction of the gas diffusion plate 200 (that is, the vertical direction). As shown in FIG. 3, the number of second gas holes 201 formed is one hundred or more, specifically several hundred. Further, the second gas holes 201 are provided, for example, in the entire central portion of the gas diffusion plate 200 in plan view.
  • the second gas holes 201 have, for example, a uniform thickness along the thickness direction (that is, the vertical direction) of the gas diffusion plate 200 and a diameter of 1 mm or less.
  • gas diffusion plate 200 is exposed to the plasma P and consumed, it is made of a high-purity, low-dust material.
  • gas diffusion plate 200 is formed of silicon (Si).
  • the gas diffusion plate 200 may be made of quartz.
  • a metal plate 210 has a plurality of first gas holes 211 each corresponding to a plurality of second gas holes 201 .
  • Each first gas hole 211 forms a gas channel C with a corresponding second gas hole 201 .
  • Each first gas hole 211 is formed to extend to the lower surface of metal plate 210 .
  • the metal plate 210 has the aforementioned gas diffusion chambers 13b.
  • the lower end of each first gas hole 211 is connected to the lower surface of the metal plate 210, while the upper end is connected to, for example, the gas diffusion chamber 13b.
  • the number of first gas holes 211 to be formed is the same as the number of second gas holes 201 to be formed, and is 100 or more, specifically several hundred, as shown in FIG.
  • the first gas hole 211 is provided, for example, in the entire central portion of the metal plate 210 in plan view.
  • the lower end of the first gas hole 211 may have a shape (flare shape) that widens toward the gas diffusion plate 200 (that is, downward).
  • a shape that widens toward the gas diffusion plate 200 (that is, downward).
  • the upper portion of the second gas hole 201 has, for example, a uniform thickness along the thickness direction (that is, the vertical direction) of the metal plate 210, and has a diameter of, for example, 1 mm or less. Note that the first gas hole 211 may have a uniform thickness throughout.
  • the metal plate 210 includes a flow path 212 as a temperature control module configured to cool the gas diffusion plate 200 whose temperature is raised by heat input from the plasma P, as shown in FIG.
  • a heat transfer fluid such as brine or gas, flows through channel 212 .
  • the metal plate 210 is made of a metal material, that is, a conductive material.
  • the electrically conductive material is aluminum.
  • metal plate 210 is electrically grounded.
  • the fixing mechanism is configured to fix the gas diffusion plate 200 to the metal plate 210 at its outer peripheral portion.
  • the securing mechanism includes securing member 220 .
  • the securing mechanism includes a clamp.
  • the fixing member 220 fixes to the metal plate 210 , for example, a plurality of locations on the outer peripheral portion of the gas diffusion plate 200 that are spaced apart from each other in the circumferential direction.
  • a known method can be used for fixing the gas diffusion plate 200 by the fixing member 220 .
  • the fixing member 220 may fix the gas diffusion plate 200 by screwing, or may fix the gas diffusion plate 200 by being sandwiched between the fixing member 220 and the metal plate 210 .
  • the fixing member 220 may press and fix the gas diffusion plate 200 against the metal plate 210 by lifting the gas diffusion plate 200 .
  • a flexible porous sheet 230 is sandwiched between the metal plate 210 and the gas diffusion plate 200 .
  • the flexible porous sheet 230 is arranged between the compressed portion 230a compressed by the metal plate 210 and the gas diffusion plate 200, and the plurality of first gas holes 211 and the plurality of second gas holes 201, respectively. and a plurality of uncompressed portions 230b.
  • Each of the plurality of first gas holes 211 communicates with the second gas holes 201 via the non-compressible portion 230b. That is, a gas channel C is formed by the first gas hole 211, the second gas hole 201 and the non-compressible portion 230b.
  • the flexible porous sheet 230 is a sheet-like member that is flexible and has a large number of fine holes.
  • the flexible porous sheet 230 is formed with fine holes smaller than the first and second gas holes 201 and 211 throughout. Specifically, the fine holes are irregular in three-dimensional space. are arranged in For example, one flexible porous sheet 230 is provided between the gas diffusion plate 200 and the metal plate 210 . A flexible porous sheet 230 fills all the gas channels C. Specifically, the flexible porous sheet 230 fills the top side of each second gas hole 201 and the bottom side of each first gas hole 211 .
  • the flexible porous sheet 230 is, for example, circular in plan view. In addition, the flexible porous sheet 230 is larger than the formation area of the second gas holes 201 in the gas diffusion plate 200 and the formation area of the first gas holes 211 in the metal plate 210 in plan view.
  • This flexible porous sheet 230 satisfies the following (1) and (2) as shown in FIG. (1) Parts other than the parts corresponding to the gas channels C are compressed between the gas diffusion plate 200 and the metal plate 210 . (2) the portion corresponding to gas channel C is not compressed;
  • the gas diffusion plate 200 is deformed by increasing the temperature as described later, and the central portion is separated from the metal plate 210 .
  • the flexible porous sheet 230 satisfies (1) and (2) above at least when the gas diffusion plate 200 is not deformed as described above.
  • the flexible porous sheet 230 has a porosity of 10% to 60%.
  • the pressure of the gas supplied to the first gas holes 211 may be changed according to the porosity of the flexible porous sheet 230 .
  • the porosity of the flexible porous sheet 230 is low, the pressure of the gas supplied to the first gas holes 211 may be increased.
  • the pore diameter of the flexible porous sheet 230 is, for example, 1-30 ⁇ m.
  • the flexible porous sheet 230 is compressed by the gas diffusion plate 200 and the metal plate 210 with a pressure that does not damage the flexible porous sheet 230 .
  • the thickness of the flexible porous sheet 230 is such that the gap between the gas diffusion plate 200 and the metal plate 210 remains open even when the gas diffusion plate 200 is deformed as described above. It is a thickness that does not become a space (space).
  • the flexible porous sheet 230 has a thickness of 500 ⁇ m or more and 5000 ⁇ m or less in a steady state before being sandwiched between the gas diffusion plate 200 and the metal plate 210. It has a thickness of 1000 ⁇ m or more and 2000 ⁇ m or less.
  • the thickness of the flexible porous sheet 230 is such that the flexible porous sheet 230 can cover the portion forming the flared shape, for example. thickness.
  • the flexible porous sheet 230 is made of, for example, fluororesin.
  • the fluoroplastic is polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), or a combination thereof.
  • the flexible porous sheet 230 may be made of fibrous metal, and more specifically, it may be made of fibrous metal and formed into a porous sheet. In other words, the flexible porous sheet 230 may be porous metallic paper. In one embodiment, the fibrous metal is formed of stainless steel (SUS), nickel (Ni), copper (Cu), or combinations of two or more thereof.
  • the flexible porous sheet 230 may be a fibrous metal sheet impregnated with an impregnating agent.
  • the flexible porous sheet 230 may be obtained by impregnating the fibrous metal sheet with an impregnating agent on the portions other than the portions corresponding to the gas channels C.
  • the impregnating agent is a resin, adhesive, or combination thereof.
  • Flexible porous sheet 230 may be foamed aluminum or carbon fiber.
  • FIG. 6 is a partially enlarged cross-sectional view showing an example of a showerhead assembly according to a comparative embodiment.
  • 7 and 8 are cross-sectional views showing an example of the showerhead assembly according to the comparative embodiment and the present embodiment, respectively, showing a state in which the gas diffusion plate 200 is heated and deformed by heat input from the plasma.
  • the showerhead assembly 500 has a flexible porous sheet 230 between the gas diffusion plate 200 and the metal plate 210 as shown in FIG. are not provided and both plates 200, 210 are in direct contact with each other.
  • the gas diffusion plate 200 is consumed by the plasma, and the plasma may enter between the gas diffusion plate 200 and the metal plate 210 through the second gas holes 201 . .
  • abnormal discharge may occur between the gas diffusion plate 200 and the metal plate 210 .
  • the first gas hole 211 has a flare shape as described above, the above abnormal discharge is likely to occur.
  • Abnormal discharge is thought to occur when: That is, when at least one of the charge remaining on the gas diffusion plate 200, the pressure in the empty space between the gas diffusion plate 200 and the metal plate 210, or the width of the space is within the discharge range. It is thought that abnormal discharge occurs in
  • showerhead assembly 13 sandwiches flexible porous sheet 230 between gas diffusion plate 200 and metal plate 210 . All gas channels C are then filled with a flexible porous sheet 230 . Specifically, the area where the gas diffusion plate 200 and the metal plate 210 are adjacent to each other in every gas channel C is filled with the flexible porous sheet 230 . Accordingly, in this embodiment, the size of the empty space (space) between the gas diffusion plate 200 and the metal plate 210 is excluded from the discharge range. Therefore, according to the showerhead assembly 13 , it is possible to suppress the occurrence of abnormal discharge in the showerhead assembly 13 . Even when the first gas hole 211 has a flared shape as described above, it is possible to similarly suppress abnormal discharge from occurring in the showerhead assembly 13 . As mentioned above, the pore size of the flexible porous sheet 230 is, for example, 1-30 ⁇ m. The smaller the pore diameter of the flexible porous sheet 230, the narrower the discharge space, and thus the more effective the suppression of abnormal discharge.
  • the processing gas supplied to the showerhead assembly 13 passes through the flexible porous sheet 230 in the gas channel C and is supplied from the lower end of the gas channel C to the plasma processing space 10s. That is, even if the inside of the gas channel C is filled with the flexible porous sheet 230 in order to suppress the occurrence of abnormal discharge in the shower head assembly 13, the processing gas is not supplied to the plasma processing space 10s through the gas channel C. Supply is uninterrupted.
  • the showerhead assembly 13 can fill all the gas channels C with the porous material at once by simply sandwiching, for example, one flexible porous sheet 230 between the gas diffusion plate 200 and the metal plate 210. can be done. Therefore, the showerhead assembly 13 can be manufactured in a short time compared to the case where each gas channel C is individually filled with a porous body. Therefore, according to the present embodiment, the occurrence of abnormal discharge in the showerhead assembly 13 can be suppressed without lowering the productivity of the showerhead assembly 13 .
  • a vacuum heat insulating space is formed between the gas diffusion plate 200 and the metal plate 210 in portions other than the portion corresponding to the gas channel C. This is because the gas diffusion plate 200 and the metal plate 210 each have minute irregularities on their surfaces.
  • a compressed flexible porous sheet 230 exists between the gas diffusion plate 200 and the metal plate 210 in portions other than the portion corresponding to the gas channel C. there is Therefore, the ratio of the space occupied by the vacuum insulation space between the gas diffusion plate 200 and the metal plate 210 is small. Therefore, according to this embodiment, the cooling efficiency of the gas diffusion plate 200 by the metal plate 210 can be improved.
  • the heat input from the plasma P raises the temperature of the gas diffusion plate 200, and as a result, thermal expansion, that is, deformation occurs.
  • the gas diffusion plate 200 has its outer peripheral portion fixed to the metal plate 210 and its central portion not fixed, so that its central portion is separated from the metal plate 210 as shown in FIGS. It transforms like Then, a gap K is created between the central portion of the gas diffusion plate 200 and the central portion of the metal plate 210 .
  • the gap K becomes an empty space (space). Then, this gap K also causes abnormal discharge.
  • the flexible porous sheet 230 is compressed between the gas diffusion plate 200 and the metal plate 210 before the deformation of the gas diffusion plate 200 as described above. exists in the In the showerhead assembly 13 according to this embodiment, when the gas diffusion plate 200 is deformed as described above, the force acting on the flexible porous sheet 230 is weakened, so that the flexible porous sheet 230 expands from the compressed state. Therefore, the gap K caused by the deformation of the gas diffusion plate 200 is filled with the flexible porous sheet 230 as shown in FIG. 8 and does not become a space. Therefore, according to the present embodiment, abnormal discharge can be suppressed when the gas diffusion plate 200 is deformed by heat input from the plasma.
  • the cooling efficiency of the gas diffusion plate 200 by the metal plate 210 decreases.
  • the flexible porous sheet 230 fills the space between the central portion of the gas diffusion plate 200 and the central portion of the metal plate 210 . Therefore, it is possible to suppress the decrease in the cooling efficiency.
  • the present embodiment it is possible to suppress abnormal discharge from occurring in the shower head assembly 13 without reducing productivity. As a result, if the replacement timing of the gas diffusion plate 200 is determined according to the presence or absence of abnormal discharge, the life of the gas diffusion plate 200 can be extended. In recent years, as devices have become more highly integrated and miniaturized, the amount of power supplied for generating plasma has increased, and the gas diffusion plate 200 has been rapidly consumed by the plasma. In addition, as a result of an increase in the power supplied for plasma generation, the amount of heat input from the plasma to the gas diffusion plate 200 increases, and the gas diffusion plate 200 tends to be distorted. Therefore, in recent years, as a result of the increase in power supply for plasma generation, abnormal discharge is more likely to occur, so it is useful to be able to suppress abnormal discharge as in the present embodiment.
  • the gap K between the central portion of the gas diffusion plate 200 and the central portion of the metal plate 210, which is generated when the gas diffusion plate 200 is deformed by the heat input from the plasma, is defined by the flexible porous sheet 230.
  • the above gaps may not be completely filled with the flexible porous sheet 230, and some of the gaps may be spaces.
  • the number of flexible porous sheets 230 is one.
  • the flexible porous sheet 230 may be divided into a plurality of pieces as long as the productivity is not lowered.
  • plasma processing apparatus 10 plasma processing chamber 11 substrate support 13 showerhead assembly 30 power supply 200 gas diffusion plate 200a plasma exposed surface 201 second gas hole 210 metal plate 211 first gas hole 220 fixing member 230 flexible porous material sheet

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A plasma processing device comprising a plasma processing chamber, a substrate support unit disposed in the plasma processing chamber, a lower electrode disposed in the substrate support unit, and a showerhead assembly disposed over the substrate support unit, the showerhead assembly including: a metal member having a plurality of first gas holes; an upper electrode having a plurality of second gas holes respectively corresponding to the plurality of first gas holes; a fixing mechanism configured to fix the upper electrode onto the metal member via an outer peripheral portion of the upper electrode; and a flexible porous sheet sandwiched between the metal member and the upper electrode, the flexible porous sheet having a compressed portion compressed by the metal member and the upper electrode, and a plurality of non-compressed portions respectively disposed between the plurality of first gas holes and the plurality of second gas holes, each of the plurality of first gas holes being in communication with the second gas holes via the non-compressed portions.

Description

プラズマ処理装置及びシャワーヘッドアセンブリPlasma processing equipment and shower head assembly
 本開示は、プラズマ処理装置及びシャワーヘッドアセンブリに関する。 The present disclosure relates to plasma processing apparatuses and showerhead assemblies.
 特許文献1及び特許文献2には、処理チャンバ内で使用するシャワーヘッドアセンブリが開示されている。
 特許文献1に開示のシャワーヘッドアセンブリは、シャワーヘッド本体とガス拡散プレートとの間に配置される熱ガスケットシートを有する。熱ガスケットシートは、シャワーヘッド本体の複数のガス拡散孔の位置に対応する複数の開口を含む。また、特許文献1に開示のシャワーヘッドアセンブリは、ガス拡散プレートとガス拡散シートをシャワーヘッド本体にクランプするために、ガス拡散プレートの周縁の周りに配置されるクランプを有する。
US Pat. Nos. 6,300,000 and 6,000,000 disclose showerhead assemblies for use within a processing chamber.
The showerhead assembly disclosed in US Pat. No. 5,400,001 has a thermal gasket sheet positioned between the showerhead body and the gas diffusion plate. The thermal gasket sheet includes a plurality of openings corresponding to the locations of the plurality of gas diffusion holes in the showerhead body. Also, the showerhead assembly disclosed in US Pat. No. 6,200,000 has a clamp positioned around the perimeter of the gas diffusion plate for clamping the gas diffusion plate and gas diffusion sheet to the showerhead body.
 特許文献2に開示のシャワーヘッドアセンブリは、複数のガスケットシールを有する。複数のガスケットシールは、ベースプレートの表面とガス拡散プレートの表面との間に確定される空間内に位置する。上記空間内における、複数のガスケットシールのうちの2つの間には、多孔質インサートが配置される。 The showerhead assembly disclosed in Patent Document 2 has multiple gasket seals. A plurality of gasket seals are located within the space defined between the surface of the base plate and the surface of the gas diffusion plate. A porous insert is positioned within the space and between two of the plurality of gasket seals.
米国特許出願公開第2021/32752号明細書U.S. Patent Application Publication No. 2021/32752 米国特許出願公開第2017/101713号明細書U.S. Patent Application Publication No. 2017/101713
 本開示にかかる技術は、効率的な手法でシャワーヘッドアセンブリにおける異常放電を抑制する。 The technology according to the present disclosure suppresses abnormal electrical discharge in the showerhead assembly in an efficient manner.
 本開示の一態様は、プラズマ処理装置であって、プラズマ処理チャンバと、前記プラズマ処理チャンバ内に配置される基板支持部と、前記基板支持部内に配置される下部電極と、前記基板支持部の上方に配置されるシャワーヘッドアセンブリと、を備え、前記シャワーヘッドアセンブリは、複数の第1のガス穴を有する金属部材と、前記複数の第1のガス穴にそれぞれ対応する複数の第2のガス穴を有する上部電極と、前記上部電極をその外周部分で前記金属部材に固定するように構成される固定機構と、前記金属部材と上部電極との間に挟まれる可撓性多孔質シートと、を備え、前記可撓性多孔質シートは、前記金属部材及び前記上部電極により圧縮される圧縮部分と、前記複数の第1のガス穴と前記複数の第2のガス穴との間にそれぞれ配置される複数の非圧縮部分とを有し、前記複数の第1のガス穴の各々は、前記非圧縮部分を介して前記第2のガス穴と連通している。 One aspect of the present disclosure is a plasma processing apparatus comprising: a plasma processing chamber; a substrate support arranged in the plasma processing chamber; a lower electrode arranged in the substrate support; a showerhead assembly disposed above, the showerhead assembly comprising a metal member having a plurality of first gas holes; and a plurality of second gas holes respectively corresponding to the plurality of first gas holes. an upper electrode having a hole; a fixing mechanism configured to fix the upper electrode to the metal member at its outer peripheral portion; a flexible porous sheet sandwiched between the metal member and the upper electrode; wherein the flexible porous sheet is arranged between a compressed portion compressed by the metal member and the upper electrode, and between the plurality of first gas holes and the plurality of second gas holes, respectively. each of the plurality of first gas holes communicates with the second gas hole via the non-compressible portion.
 本開示によれば、効率的な手法でシャワーヘッドアセンブリにおける異常放電を抑制することができる。 According to the present disclosure, abnormal electrical discharge in the showerhead assembly can be suppressed in an efficient manner.
プラズマ処理システムの構成を模式的に示す説明図である。1 is an explanatory diagram schematically showing the configuration of a plasma processing system; FIG. 本実施の形態にかかるシャワーヘッドアセンブリの構成の一例を示す断面図である。1 is a cross-sectional view showing an example of a configuration of a showerhead assembly according to this embodiment; FIG. ガス拡散プレートの構成の一例を示す下面図である。FIG. 4 is a bottom view showing an example of the configuration of a gas diffusion plate; 金属プレートの構成の一例を示す下面図である。It is a bottom view which shows an example of a structure of a metal plate. 本実施の形態にかかるシャワーヘッドアセンブリの構成の一例を示す部分拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view showing an example of the configuration of the showerhead assembly according to this embodiment; 比較の形態にかかるシャワーヘッドアセンブリの一例を示す部分拡大断面図である。FIG. 4 is a partially enlarged cross-sectional view showing an example of a showerhead assembly according to a comparative embodiment; 比較の形態にかかるシャワーヘッドアセンブリの一例を示す断面図であり、プラズマからの入熱によりガス拡散プレートが昇温し変形した状態を示している。FIG. 5 is a cross-sectional view showing an example of a showerhead assembly according to a comparative embodiment, showing a state in which the gas diffusion plate is heated and deformed by heat input from plasma. 本実施の形態にかかるシャワーヘッドアセンブリの一例を示す断面図であり、プラズマからの入熱によりガス拡散プレートが昇温し変形した状態を示している。FIG. 4 is a cross-sectional view showing an example of the showerhead assembly according to the present embodiment, showing a state in which the gas diffusion plate is heated and deformed by heat input from plasma.
 半導体デバイスの製造工程では、半導体ウェハ(以下、「ウェハ」という。)等の基板にプラズマ処理が行われる。プラズマ処理では、処理ガスを励起させることによりプラズマを生成し、当該プラズマによって基板を処理する。 In the manufacturing process of semiconductor devices, plasma processing is performed on substrates such as semiconductor wafers (hereinafter referred to as "wafers"). In plasma processing, plasma is generated by exciting a processing gas, and the substrate is processed with the plasma.
 プラズマ処理を行うプラズマ処理装置は、シャワーヘッドアセンブリを備える。シャワーヘッドアセンブリは、例えばガス拡散プレートと金属プレートと、を有する。ガス拡散プレートは、その下面がプラズマ暴露面となる板状部材であり、下面から厚さ方向に延びる複数の第2のガス穴が設けられている。金属プレートは、それぞれがガス拡散プレートの複数の第2のガス穴に対応する複数の第1のガス穴が設けられている。 A plasma processing apparatus that performs plasma processing includes a shower head assembly. A showerhead assembly, for example, includes a gas diffusion plate and a metal plate. The gas diffusion plate is a plate-like member whose lower surface serves as a plasma-exposed surface, and is provided with a plurality of second gas holes extending in the thickness direction from the lower surface. The metal plate is provided with a plurality of first gas holes, each corresponding to a plurality of second gas holes in the gas diffusion plate.
 ところで、プラズマ処理中にシャワーヘッドアセンブリに異常放電が生じる場合がある。例えば、ガス拡散プレートが消耗することにより、プラズマが第2のガス穴を通じて、ガス拡散プレートと金属プレートとの間に入り込むことがある。その結果、ガス拡散プレートと金属プレートとの間で放電が生じる場合がある。 By the way, abnormal discharge may occur in the shower head assembly during plasma processing. For example, as the gas diffusion plate wears out, plasma may enter between the gas diffusion plate and the metal plate through the second gas hole. As a result, an electrical discharge may occur between the gas diffusion plate and the metal plate.
 このような異常放電の対策方法として、例えば、ガス拡散プレートの複数の第2のガス穴それぞれ、または、金属プレートの複数の第1のガス穴それぞれの少なくともいずれか一方に多孔体を封入する方法が考えられる。しかし、この方法は、多孔体を封入する穴の数が多い場合(例えば百以上等の場合)、生産性が悪い。 As a countermeasure against such abnormal discharge, for example, a method of sealing a porous body in at least one of the plurality of second gas holes of the gas diffusion plate or the plurality of first gas holes of the metal plate. can be considered. However, this method has poor productivity when the number of holes enclosing the porous body is large (for example, 100 or more).
 本開示にかかる技術は、上記事情に鑑みてなされたものであり、効率的な手法でシャワーヘッドアセンブリにおける異常放電を抑制する。以下、本実施形態にかかるシャワーヘッドアセンブリ及びプラズマ処理装置について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 The technology according to the present disclosure has been made in view of the above circumstances, and suppresses abnormal discharge in the showerhead assembly by an efficient method. Hereinafter, a showerhead assembly and a plasma processing apparatus according to this embodiment will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
<プラズマ処理システム>
 先ず、一実施形態にかかるプラズマ処理システムについて、図1を用いて説明する。図1は、プラズマ処理システムの構成を模式的に示す説明図である。
<Plasma processing system>
First, a plasma processing system according to one embodiment will be described with reference to FIG. FIG. 1 is an explanatory diagram schematically showing the configuration of a plasma processing system.
 プラズマ処理システムは、容量結合型プラズマ処理装置1及び制御部2を含む。プラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッドアセンブリ13を含む。シャワーヘッドアセンブリ13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッドアセンブリ13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッドアセンブリ13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間10sに供給するための少なくとも1つのガス供給口と、プラズマ処理空間10sからガスを排出するための少なくとも1つのガス排出口とを有する。側壁10aは接地される。シャワーヘッドアセンブリ13及び基板支持部11は、プラズマ処理チャンバ10の筐体とは電気的に絶縁される。 The plasma processing system includes a capacitively coupled plasma processing apparatus 1 and a controller 2. The plasma processing apparatus 1 includes a plasma processing chamber 10 , a gas supply section 20 , a power supply 30 and an exhaust system 40 . Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. A substrate support 11 is positioned within the plasma processing chamber 10 . The gas introduction is configured to introduce at least one process gas into the plasma processing chamber 10 . The gas inlet includes showerhead assembly 13 . A showerhead assembly 13 is positioned above the substrate support 11 . In one embodiment, showerhead assembly 13 forms at least a portion of the ceiling of plasma processing chamber 10 . The plasma processing chamber 10 has a plasma processing space 10 s defined by a showerhead assembly 13 , sidewalls 10 a of the plasma processing chamber 10 and a substrate support 11 . The plasma processing chamber 10 has at least one gas supply port for supplying at least one processing gas to the plasma processing space 10s and at least one gas exhaust port for exhausting gas from the plasma processing space 10s. Side wall 10a is grounded. Showerhead assembly 13 and substrate support 11 are electrically isolated from the enclosure of plasma processing chamber 10 .
 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板(ウェハ)Wを支持するための中央領域(基板支持面)111aと、リングアセンブリ112を支持するための環状領域(リング支持面)111bとを有する。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。一実施形態において、本体部111は、基台及び静電チャックを含む。基台は、導電性部材を含む。基台の導電性部材は下部電極として機能する。なお、下部電極が静電チャック内に配置されてもよい。静電チャックは、基台の上に配置される。静電チャックの上面は、基板支持面111aを有する。リングアセンブリ112は、1又は複数の環状部材を含む。1又は複数の環状部材のうち少なくとも1つはエッジリングである。また、図示は省略するが、基板支持部11は、静電チャック、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路、又はこれらの組み合わせを含んでもよい。流路には、ブラインやガスのような伝熱流体が流れる。また、基板支持部11は、基板Wの裏面と基板支持面111aとの間に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。 The substrate support section 11 includes a body section 111 and a ring assembly 112 . The body portion 111 has a central region (substrate support surface) 111 a for supporting the substrate (wafer) W and an annular region (ring support surface) 111 b for supporting the ring assembly 112 . The annular region 111b of the body portion 111 surrounds the central region 111a of the body portion 111 in plan view. The substrate W is arranged on the central region 111 a of the main body 111 , and the ring assembly 112 is arranged on the annular region 111 b of the main body 111 so as to surround the substrate W on the central region 111 a of the main body 111 . In one embodiment, body portion 111 includes a base and an electrostatic chuck. The base includes an electrically conductive member. The conductive member of the base functions as a lower electrode. Note that the lower electrode may be arranged inside the electrostatic chuck. An electrostatic chuck is arranged on the base. The upper surface of the electrostatic chuck has a substrate support surface 111a. Ring assembly 112 includes one or more annular members. At least one of the one or more annular members is an edge ring. Also, although not shown, the substrate supporter 11 may include a temperature control module configured to control at least one of the electrostatic chuck, the ring assembly 112, and the substrate to a target temperature. The temperature control module may include heaters, heat transfer media, flow paths, or combinations thereof. A heat transfer fluid, such as brine or gas, flows through the channel. Further, the substrate support section 11 may include a heat transfer gas supply section configured to supply a heat transfer gas between the back surface of the substrate W and the substrate support surface 111a.
 シャワーヘッドアセンブリ13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッドアセンブリ13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッドアセンブリ13は、上部電極を含む。なお、ガス導入部は、シャワーヘッドアセンブリ13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。 The showerhead assembly 13 is configured to introduce at least one processing gas from the gas supply 20 into the plasma processing space 10s. The showerhead assembly 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and a plurality of gas inlets 13c. The processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s through a plurality of gas introduction ports 13c. Showerhead assembly 13 also includes an upper electrode. In addition to the showerhead assembly 13, the gas introduction section may include one or more side gas injectors (SGI: Side Gas Injector) attached to one or more openings formed in the side wall 10a.
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッドアセンブリ13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する1又はそれ以上の流量変調デバイスを含んでもよい。 The gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22 . In one embodiment, gas supply 20 is configured to supply at least one process gas from respective gas sources 21 through respective flow controllers 22 to showerhead assembly 13 . Each flow controller 22 may include, for example, a mass flow controller or a pressure controlled flow controller. Additionally, gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow of at least one process gas.
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、ソースRF信号及びバイアスRF信号のような少なくとも1つのRF信号(RF電力)を、下部電極及び/又は上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ処理チャンバ10において1又はそれ以上の処理ガスからプラズマを生成するように構成されるプラズマ生成部の少なくとも一部として機能し得る。また、バイアスRF信号を下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。 Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit. RF power supply 31 is configured to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to the bottom electrode and/or the top electrode. Thereby, plasma is formed from at least one processing gas supplied to the plasma processing space 10s. Accordingly, RF power source 31 may function as at least part of a plasma generator configured to generate a plasma from one or more process gases in plasma processing chamber 10 . Further, by supplying a bias RF signal to the lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W. FIG.
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して下部電極及び/又は上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、13MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、下部電極及び/又は上部電極に供給される。第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。一実施形態において、バイアスRF信号は、ソースRF信号よりも低い周波数を有する。一実施形態において、バイアスRF信号は、400kHz~13.56MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。 In one embodiment, the RF power supply 31 includes a first RF generator 31a and a second RF generator 31b. The first RF generator 31a is coupled to the lower electrode and/or the upper electrode via at least one impedance matching circuit and configured to generate a source RF signal (source RF power) for plasma generation. In one embodiment, the source RF signal has a frequency within the range of 13 MHz to 150 MHz. In one embodiment, the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. One or more source RF signals generated are provided to the bottom electrode and/or the top electrode. A second RF generator 31b is coupled to the lower electrode via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power). In one embodiment, the bias RF signal has a lower frequency than the source RF signal. In one embodiment, the bias RF signal has a frequency within the range of 400 kHz to 13.56 MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. One or more bias RF signals generated are provided to the bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のバイアスDC信号は、下部電極に印加される。一実施形態において、第2のDC生成部32bは、上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、上部電極に印加される。種々の実施形態において、第1及び第2のDC信号のうち少なくとも1つがパルス化されてもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。 Power supply 30 may also include a DC power supply 32 coupled to plasma processing chamber 10 . The DC power supply 32 includes a first DC generator 32a and a second DC generator 32b. In one embodiment, the first DC generator 32a is connected to the bottom electrode and configured to generate a first DC signal. The generated first bias DC signal is applied to the bottom electrode. In one embodiment, the second DC generator 32b is connected to the upper electrode and configured to generate the second DC signal. The generated second DC signal is applied to the upper electrode. In various embodiments, at least one of the first and second DC signals may be pulsed. Note that the first and second DC generators 32a and 32b may be provided in addition to the RF power supply 31, and the first DC generator 32a may be provided instead of the second RF generator 31b. good.
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。 The exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example. Exhaust system 40 may include a pressure regulating valve and a vacuum pump. The pressure regulating valve regulates the pressure in the plasma processing space 10s. Vacuum pumps may include turbomolecular pumps, dry pumps, or combinations thereof.
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、例えばコンピュータ2aを含んでもよい。コンピュータ2aは、例えば、処理部(CPU:Central Processing Unit)2a1、記憶部2a2、及び通信インターフェース2a3を含んでもよい。処理部2a1は、記憶部2a2に格納されたプログラムに基づいて種々の制御動作を行うように構成され得る。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。 The controller 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure. Controller 2 may be configured to control elements of plasma processing apparatus 1 to perform the various processes described herein. In one embodiment, part or all of the controller 2 may be included in the plasma processing apparatus 1 . The control unit 2 may include, for example, a computer 2a. The computer 2a may include, for example, a processing unit (CPU: Central Processing Unit) 2a1, a storage unit 2a2, and a communication interface 2a3. Processing unit 2a1 can be configured to perform various control operations based on programs stored in storage unit 2a2. The storage unit 2a2 may include RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof. The communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
<シャワーヘッドアセンブリ>
 次に、上述したシャワーヘッドアセンブリ13の構成に関し、図2~図4を用いて、さらに説明する。図2は、シャワーヘッドアセンブリ13の構成の一例を示す断面図である。図3は、後述のガス拡散プレートの構成の一例を示す下面図である。図4は、後述の金属プレートの構成の一例を示す下面図である。図5は、シャワーヘッドアセンブリ13の構成の一例を示す部分拡大断面図である。
<Shower head assembly>
Next, the configuration of the showerhead assembly 13 described above will be further described with reference to FIGS. 2 to 4. FIG. FIG. 2 is a cross-sectional view showing an example of the configuration of the showerhead assembly 13. As shown in FIG. FIG. 3 is a bottom view showing an example of the configuration of a gas diffusion plate, which will be described later. FIG. 4 is a bottom view showing an example of the configuration of a metal plate, which will be described later. FIG. 5 is a partially enlarged cross-sectional view showing an example of the configuration of the showerhead assembly 13. As shown in FIG.
 シャワーヘッドアセンブリ13は、図2に示すように、第2のプレートとしてのガス拡散プレート200と、第1のプレートとしての金属プレート210と、固定機構と、可撓性多孔質シート230と、を備える。ガス拡散プレート200は、上部電極として機能する。金属プレート210は、金属部材であってもよい。 The showerhead assembly 13 includes a gas diffusion plate 200 as a second plate, a metal plate 210 as a first plate, a fixing mechanism, and a flexible porous sheet 230, as shown in FIG. Prepare. Gas diffusion plate 200 functions as a top electrode. Metal plate 210 may be a metal member.
 ガス拡散プレート200は、一の面(具体的には下面)が、プラズマ処理空間10s内のプラズマPに暴露されるプラズマ暴露面200aとなる。従って、ガス拡散プレート200は、プラズマ暴露面200aを有する。 One surface (specifically, the lower surface) of the gas diffusion plate 200 serves as a plasma exposed surface 200a exposed to the plasma P in the plasma processing space 10s. Accordingly, the gas diffusion plate 200 has a plasma exposed surface 200a.
 また、ガス拡散プレート200は、上面から下面まで延びる複数の第2のガス穴201を有する。一実施形態において、ガス拡散プレート200の下面は、プラズマ暴露面200aを有する。各第2のガス穴201の下端は、前述のガス導入口13cとなる。各第2のガス穴201は、ガス拡散プレート200の厚さ方向(すなわち上下方向)に、当該ガス拡散プレート200を貫通するように、形成されている。第2のガス穴201の形成数は、図3に示すように、百個以上、具体的には、数百個である。また、第2のガス穴201は、例えば、ガス拡散プレート200の平面視における中央部全体に設けられている。 The gas diffusion plate 200 also has a plurality of second gas holes 201 extending from the upper surface to the lower surface. In one embodiment, the lower surface of gas diffusion plate 200 has a plasma exposed surface 200a. The lower end of each second gas hole 201 serves as the aforementioned gas introduction port 13c. Each second gas hole 201 is formed so as to penetrate the gas diffusion plate 200 in the thickness direction of the gas diffusion plate 200 (that is, the vertical direction). As shown in FIG. 3, the number of second gas holes 201 formed is one hundred or more, specifically several hundred. Further, the second gas holes 201 are provided, for example, in the entire central portion of the gas diffusion plate 200 in plan view.
 さらに、第2のガス穴201は、例えば、ガス拡散プレート200の厚さ方向(すなわち上下方向)に沿って、均一な太さを有し、1mm以下の直径を有する。 Furthermore, the second gas holes 201 have, for example, a uniform thickness along the thickness direction (that is, the vertical direction) of the gas diffusion plate 200 and a diameter of 1 mm or less.
 ガス拡散プレート200は、プラズマPに暴露され消耗するため、高純度で低発塵性の材料で形成されている。一実施形態において、ガス拡散プレート200は、シリコン(Si)で形成される。また、ガス拡散プレート200は、石英で形成されてもよい。 Because the gas diffusion plate 200 is exposed to the plasma P and consumed, it is made of a high-purity, low-dust material. In one embodiment, gas diffusion plate 200 is formed of silicon (Si). Alternatively, the gas diffusion plate 200 may be made of quartz.
 金属プレート210は、それぞれが複数の第2のガス穴201に対応する複数の第1のガス穴211を有する。各第1のガス穴211は、対応する第2のガス穴201と共にガスチャネルCを形成する。また、各第1のガス穴211は、金属プレート210の下面まで延びるように形成されている。一実施形態において、金属プレート210は、前述のガス拡散室13bを有する。各第1のガス穴211の下端が金属プレート210の下面に接続されているのに対し、上端は、例えばガス拡散室13bに接続されている。第1のガス穴211の形成数は、第2のガス穴201の形成数と同じであり、図4に示すように、百個以上、具体的には数百個である。また、第1のガス穴211は、例えば、金属プレート210の平面視における中央部全体に設けられている。 A metal plate 210 has a plurality of first gas holes 211 each corresponding to a plurality of second gas holes 201 . Each first gas hole 211 forms a gas channel C with a corresponding second gas hole 201 . Each first gas hole 211 is formed to extend to the lower surface of metal plate 210 . In one embodiment, the metal plate 210 has the aforementioned gas diffusion chambers 13b. The lower end of each first gas hole 211 is connected to the lower surface of the metal plate 210, while the upper end is connected to, for example, the gas diffusion chamber 13b. The number of first gas holes 211 to be formed is the same as the number of second gas holes 201 to be formed, and is 100 or more, specifically several hundred, as shown in FIG. Also, the first gas hole 211 is provided, for example, in the entire central portion of the metal plate 210 in plan view.
 さらに、第1のガス穴211の下端部は、図5に示すように、ガス拡散プレート200(すなわち下方)に向けて拡がる形状(フレア形状)を有していてもよい。第1のガス穴211を上述のような形状とすることにより、第1のガス穴211の中心軸と第2のガス穴201の中心軸とが多少ずれても、第1のガス穴211からのガスを第2のガス穴201に導入することができる。言い換えると、第1のガス穴211を上述のような形状とすることにより、第1のガス穴211と、対応する第2のガス穴201との位置合わせを容易に行うことができる。第2のガス穴201の上側の部分は、例えば、金属プレート210の厚さ方向(すなわち上下方向)に沿って、均一な太さを有し、直径が例えば1mm以下である。なお、第1のガス穴211は、全体に亘って、均一な太さを有していてもよい。 Furthermore, as shown in FIG. 5, the lower end of the first gas hole 211 may have a shape (flare shape) that widens toward the gas diffusion plate 200 (that is, downward). By forming the first gas hole 211 into the shape described above, even if the central axis of the first gas hole 211 and the central axis of the second gas hole 201 deviate slightly, of gas can be introduced into the second gas hole 201 . In other words, by forming the first gas hole 211 into the shape described above, it is possible to easily align the first gas hole 211 and the corresponding second gas hole 201 . The upper portion of the second gas hole 201 has, for example, a uniform thickness along the thickness direction (that is, the vertical direction) of the metal plate 210, and has a diameter of, for example, 1 mm or less. Note that the first gas hole 211 may have a uniform thickness throughout.
 一実施形態において、金属プレート210は、図2に示すように、プラズマPからの入熱により昇温するガス拡散プレート200を冷却するように構成される温調モジュールとして、流路212を含む。流路212には、ブラインやガスのような伝熱流体が流れる。 In one embodiment, the metal plate 210 includes a flow path 212 as a temperature control module configured to cool the gas diffusion plate 200 whose temperature is raised by heat input from the plasma P, as shown in FIG. A heat transfer fluid, such as brine or gas, flows through channel 212 .
 金属プレート210は、金属材料すなわち導電性材料で形成される。一実施形態において、上記導電性材料はアルミニウムである。また、一実施形態において、金属プレート210は電気的に接地される。 The metal plate 210 is made of a metal material, that is, a conductive material. In one embodiment, the electrically conductive material is aluminum. Also, in one embodiment, metal plate 210 is electrically grounded.
 固定機構は、ガス拡散プレート200をその外周部分で金属プレート210に固定するように構成されている。一実施形態において、固定機構は、固定部材220を含む。一実施形態において、固定機構は、クランプを含む。固定部材220は、例えば、ガス拡散プレート200の外周部における周方向に互いに離間した複数個所を、金属プレート210に固定する。固定部材220によるガス拡散プレート200の固定方式には公知の方式を用いることができる。例えば、固定部材220は、螺着によりガス拡散プレート200を固定してもよいし、金属プレート210との間に挟み込むことでガス拡散プレート200を固定してもよい。また、固定部材220は、ガス拡散プレート200を吊り上げることにより、当該ガス拡散プレート200を金属プレート210に対して押し付けて固定してもよい。 The fixing mechanism is configured to fix the gas diffusion plate 200 to the metal plate 210 at its outer peripheral portion. In one embodiment, the securing mechanism includes securing member 220 . In one embodiment, the securing mechanism includes a clamp. The fixing member 220 fixes to the metal plate 210 , for example, a plurality of locations on the outer peripheral portion of the gas diffusion plate 200 that are spaced apart from each other in the circumferential direction. A known method can be used for fixing the gas diffusion plate 200 by the fixing member 220 . For example, the fixing member 220 may fix the gas diffusion plate 200 by screwing, or may fix the gas diffusion plate 200 by being sandwiched between the fixing member 220 and the metal plate 210 . Alternatively, the fixing member 220 may press and fix the gas diffusion plate 200 against the metal plate 210 by lifting the gas diffusion plate 200 .
 可撓性多孔質シート230は、金属プレート210とガス拡散プレート200との間に挟まれる。可撓性多孔質シート230は、金属プレート210及びガス拡散プレート200により圧縮される圧縮部分230aと、複数の第1のガス穴211と複数の第2のガス穴201との間にそれぞれ配置される複数の非圧縮部分230bとを有する。そして、複数の第1のガス穴211の各々は、非圧縮部分230bを介して第2のガス穴201と連通している。すなわち、第1のガス穴211、第2のガス穴201及び非圧縮部分230bによりガスチャネルCが形成される。可撓性多孔質シート230は、可撓性を有すると共に微小な穴を多数有するシート状の部材である。可撓性多孔質シート230は、第1及び第2のガス穴201,211よりも小さい微***が全体に形成されており、上記微***は、具体的には、3次元空間内に不規則に配列されている。また、可撓性多孔質シート230は、ガス拡散プレート200と金属プレート210との間に例えば1枚設けられている。可撓性多孔質シート230は、全てのガスチャネルCを充填する。具体的には、可撓性多孔質シート230は、各第2のガス穴201の上側と、各第1のガス穴211の下側と、を充填する。 A flexible porous sheet 230 is sandwiched between the metal plate 210 and the gas diffusion plate 200 . The flexible porous sheet 230 is arranged between the compressed portion 230a compressed by the metal plate 210 and the gas diffusion plate 200, and the plurality of first gas holes 211 and the plurality of second gas holes 201, respectively. and a plurality of uncompressed portions 230b. Each of the plurality of first gas holes 211 communicates with the second gas holes 201 via the non-compressible portion 230b. That is, a gas channel C is formed by the first gas hole 211, the second gas hole 201 and the non-compressible portion 230b. The flexible porous sheet 230 is a sheet-like member that is flexible and has a large number of fine holes. The flexible porous sheet 230 is formed with fine holes smaller than the first and second gas holes 201 and 211 throughout. Specifically, the fine holes are irregular in three-dimensional space. are arranged in For example, one flexible porous sheet 230 is provided between the gas diffusion plate 200 and the metal plate 210 . A flexible porous sheet 230 fills all the gas channels C. Specifically, the flexible porous sheet 230 fills the top side of each second gas hole 201 and the bottom side of each first gas hole 211 .
 可撓性多孔質シート230は、例えば、平面視円状に形成されている。また、可撓性多孔質シート230は、平面視で、ガス拡散プレート200における第2のガス穴201の形成領域及び金属プレート210の第1のガス穴211の形成領域よりも大きい。 The flexible porous sheet 230 is, for example, circular in plan view. In addition, the flexible porous sheet 230 is larger than the formation area of the second gas holes 201 in the gas diffusion plate 200 and the formation area of the first gas holes 211 in the metal plate 210 in plan view.
 この可撓性多孔質シート230は、図5に示すように、以下の(1)、(2)を満たす。
(1)ガスチャネルCに対応する部分以外の部分が、ガス拡散プレート200と金属プレート210との間で圧縮されている。
(2)ガスチャネルCに対応する部分は圧縮されてない。
This flexible porous sheet 230 satisfies the following (1) and (2) as shown in FIG.
(1) Parts other than the parts corresponding to the gas channels C are compressed between the gas diffusion plate 200 and the metal plate 210 .
(2) the portion corresponding to gas channel C is not compressed;
 ガス拡散プレート200は、後述のように昇温することにより変形し、その中央部が金属プレート210から離間する。可撓性多孔質シート230は、少なくともガス拡散プレート200が上述のような変形をしてない状態において、上記(1)、(2)を満たす。 The gas diffusion plate 200 is deformed by increasing the temperature as described later, and the central portion is separated from the metal plate 210 . The flexible porous sheet 230 satisfies (1) and (2) above at least when the gas diffusion plate 200 is not deformed as described above.
 可撓性多孔質シート230は、10%~60%の気孔率を有する。なお、可撓性多孔質シート230の気孔率に応じて、第1のガス穴211に供給するガスの圧力を変えてもよい。例えば、可撓性多孔質シート230の気孔率が低い場合に、第1のガス穴211に供給するガスの圧力を大きくしてもよい。また、可撓性多孔質シート230の気孔径は例えば1-30μmである。 The flexible porous sheet 230 has a porosity of 10% to 60%. Note that the pressure of the gas supplied to the first gas holes 211 may be changed according to the porosity of the flexible porous sheet 230 . For example, when the porosity of the flexible porous sheet 230 is low, the pressure of the gas supplied to the first gas holes 211 may be increased. Also, the pore diameter of the flexible porous sheet 230 is, for example, 1-30 μm.
 可撓性多孔質シート230は、当該可撓性多孔質シート230が破損しない程度の圧力で、ガス拡散プレート200と金属プレート210とにより圧縮される。
 一実施形態において、可撓性多孔質シート230の厚さは、ガス拡散プレート200に上述のような変形が生じた場合でも、ガス拡散プレート200と金属プレート210との間の隙間が、空いたスペース(空間)にならない厚さである。具体的には、例えば、可撓性多孔質シート230は、ガス拡散プレート200と金属プレート210との間に挟み込まれる前の定常状態において、500μm以上5000μm以下の厚さを有し、好ましくは、1000μm以上2000μm以下の厚さを有する。金属プレート210の下側が前述のようにフレア形状を有する場合、可撓性多孔質シート230の厚さは、例えば、当該可撓性多孔質シート230でフレア形状を成す部分を覆うことが可能な厚さとされる。
The flexible porous sheet 230 is compressed by the gas diffusion plate 200 and the metal plate 210 with a pressure that does not damage the flexible porous sheet 230 .
In one embodiment, the thickness of the flexible porous sheet 230 is such that the gap between the gas diffusion plate 200 and the metal plate 210 remains open even when the gas diffusion plate 200 is deformed as described above. It is a thickness that does not become a space (space). Specifically, for example, the flexible porous sheet 230 has a thickness of 500 μm or more and 5000 μm or less in a steady state before being sandwiched between the gas diffusion plate 200 and the metal plate 210. It has a thickness of 1000 μm or more and 2000 μm or less. When the underside of the metal plate 210 has a flared shape as described above, the thickness of the flexible porous sheet 230 is such that the flexible porous sheet 230 can cover the portion forming the flared shape, for example. thickness.
 可撓性多孔質シート230は、例えば、フッ素樹脂で形成されている。一実施形態において、フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)またはこれらの組み合わせである。 The flexible porous sheet 230 is made of, for example, fluororesin. In one embodiment, the fluoroplastic is polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), or a combination thereof.
 可撓性多孔質シート230は、繊維状金属で形成されていてもよく、具体的には、繊維状金属で、多孔質のシート状に形成されていてもよい。言い換えると、可撓性多孔質シート230は、多孔質の金属紙であってもよい。一実施形態において、繊維状金属は、ステンレス(SUS)、ニッケル(Ni)、銅(Cu)またこれらの2つ以上の組み合わせで形成される。 The flexible porous sheet 230 may be made of fibrous metal, and more specifically, it may be made of fibrous metal and formed into a porous sheet. In other words, the flexible porous sheet 230 may be porous metallic paper. In one embodiment, the fibrous metal is formed of stainless steel (SUS), nickel (Ni), copper (Cu), or combinations of two or more thereof.
 また、可撓性多孔質シート230は、繊維状金属製のシートに、含浸剤を用いて含侵処理を施したものであってもよい。具体的には、繊維状の金属製のシートにおける、ガスチャネルCに対応する部分以外の部分に、含浸剤を用いて含侵処理を行い、可撓性多孔質シート230としてもよい。一実施形態において、含浸剤は、樹脂、粘着剤またはこれらの組み合わせである。
 可撓性多孔質シート230は、発泡アルミニウムまたは炭素繊維であってもよい。
Alternatively, the flexible porous sheet 230 may be a fibrous metal sheet impregnated with an impregnating agent. Specifically, the flexible porous sheet 230 may be obtained by impregnating the fibrous metal sheet with an impregnating agent on the portions other than the portions corresponding to the gas channels C. FIG. In one embodiment, the impregnating agent is a resin, adhesive, or combination thereof.
Flexible porous sheet 230 may be foamed aluminum or carbon fiber.
(シャワーヘッドアセンブリ13の作用効果)
 続いて、シャワーヘッドアセンブリ13の主な作用効果について説明する。図6は、比較の形態にかかるシャワーヘッドアセンブリの一例を示す部分拡大断面図である。図7及び図8はそれぞれ、比較の形態及び本実施の形態にかかるシャワーヘッドアセンブリの一例を示す断面図であり、プラズマからの入熱によりガス拡散プレート200が昇温し変形した状態を示している。
(Action and effect of shower head assembly 13)
Next, main functions and effects of the showerhead assembly 13 will be described. FIG. 6 is a partially enlarged cross-sectional view showing an example of a showerhead assembly according to a comparative embodiment. 7 and 8 are cross-sectional views showing an example of the showerhead assembly according to the comparative embodiment and the present embodiment, respectively, showing a state in which the gas diffusion plate 200 is heated and deformed by heat input from the plasma. there is
 本実施形態にかかるシャワーヘッドアセンブリ13と異なり、比較の形態にかかるシャワーヘッドアセンブリ500は、図6に示すように、ガス拡散プレート200と金属プレート210との間に、可撓性多孔質シート230が設けられておらず、両プレート200、210が互いに直接接触する。 Unlike the showerhead assembly 13 according to the present embodiment, the showerhead assembly 500 according to the comparative form has a flexible porous sheet 230 between the gas diffusion plate 200 and the metal plate 210 as shown in FIG. are not provided and both plates 200, 210 are in direct contact with each other.
 比較の形態にかかるシャワーヘッドアセンブリ500では、ガス拡散プレート200がプラズマによって消耗することにより、プラズマが、第2のガス穴201を通じて、ガス拡散プレート200と金属プレート210との間に入り込むことがある。その結果、ガス拡散プレート200と金属プレート210との間で異常放電が生じることがある。特に、第1のガス穴211が上述のようにフレア形状を有する場合、上記異常放電が生じやすい。 In the comparative showerhead assembly 500 , the gas diffusion plate 200 is consumed by the plasma, and the plasma may enter between the gas diffusion plate 200 and the metal plate 210 through the second gas holes 201 . . As a result, abnormal discharge may occur between the gas diffusion plate 200 and the metal plate 210 . In particular, when the first gas hole 211 has a flare shape as described above, the above abnormal discharge is likely to occur.
 異常放電は以下のときに生じると考えられる。すなわち、ガス拡散プレート200に残留する電荷、ガス拡散プレート200と金属プレート210との間の空いたスペース(空間)内の圧力または上記空間の広さの少なくともいずれか1つが、放電範囲にあるときに、異常放電が生じると考えられる。  Abnormal discharge is thought to occur when: That is, when at least one of the charge remaining on the gas diffusion plate 200, the pressure in the empty space between the gas diffusion plate 200 and the metal plate 210, or the width of the space is within the discharge range. It is thought that abnormal discharge occurs in
 それに対し、本実施の形態にかかるシャワーヘッドアセンブリ13は、ガス拡散プレート200と金属プレート210との間に可撓性多孔質シート230を挟み込んでいる。そして、全てのガスチャネルCが可撓性多孔質シート230で満たされている。具体的には、全てのガスチャネルCにおける、ガス拡散プレート200と金属プレート210とが互いに隣接する領域が、可撓性多孔質シート230で満たされている。これにより、本実施形態では、ガス拡散プレート200と金属プレート210との間の空いたスペース(空間)の広さを、放電範囲から外している。したがって、シャワーヘッドアセンブリ13によれば、当該シャワーヘッドアセンブリ13に異常放電が生じるのを抑制することができる。第1のガス穴211が前述のようにフレア形状を有する場合でも、同様にして、シャワーヘッドアセンブリ13に異常放電が生じるのを抑制することができる。
 前述のように、可撓性多孔質シート230の気孔径は例えば1-30μmである。可撓性多孔質シート230の気孔径が小さい方が、放電空間が狭くなるため、異常放電の抑制効果が高い。
In contrast, showerhead assembly 13 according to the present embodiment sandwiches flexible porous sheet 230 between gas diffusion plate 200 and metal plate 210 . All gas channels C are then filled with a flexible porous sheet 230 . Specifically, the area where the gas diffusion plate 200 and the metal plate 210 are adjacent to each other in every gas channel C is filled with the flexible porous sheet 230 . Accordingly, in this embodiment, the size of the empty space (space) between the gas diffusion plate 200 and the metal plate 210 is excluded from the discharge range. Therefore, according to the showerhead assembly 13 , it is possible to suppress the occurrence of abnormal discharge in the showerhead assembly 13 . Even when the first gas hole 211 has a flared shape as described above, it is possible to similarly suppress abnormal discharge from occurring in the showerhead assembly 13 .
As mentioned above, the pore size of the flexible porous sheet 230 is, for example, 1-30 μm. The smaller the pore diameter of the flexible porous sheet 230, the narrower the discharge space, and thus the more effective the suppression of abnormal discharge.
 なお、シャワーヘッドアセンブリ13に供給された処理ガスは、ガスチャネルC内の可撓性多孔質シート230を通過して、ガスチャネルCの下端から、プラズマ処理空間10sに供給される。つまり、シャワーヘッドアセンブリ13に異常放電が生じるのを抑制するために、ガスチャネルC内を可撓性多孔質シート230で満たしても、ガスチャネルCを介したプラズマ処理空間10sへの処理ガスの供給は妨げられない。 The processing gas supplied to the showerhead assembly 13 passes through the flexible porous sheet 230 in the gas channel C and is supplied from the lower end of the gas channel C to the plasma processing space 10s. That is, even if the inside of the gas channel C is filled with the flexible porous sheet 230 in order to suppress the occurrence of abnormal discharge in the shower head assembly 13, the processing gas is not supplied to the plasma processing space 10s through the gas channel C. Supply is uninterrupted.
 さらに、シャワーヘッドアセンブリ13は、例えば1枚の可撓性多孔質シート230をガス拡散プレート200と金属プレート210との間に挟み込むだけで、全てのガスチャネルCを一括して多孔体で満たすことができる。したがって、各ガスチャネルCに個別に多孔体を封入する場合に比べて、シャワーヘッドアセンブリ13は、短時間で作製することができる。したがって、本実施形態によれば、シャワーヘッドアセンブリ13に異常放電が生じるのを、シャワーヘッドアセンブリ13の生産性を低下させずに抑制することができる。 Furthermore, the showerhead assembly 13 can fill all the gas channels C with the porous material at once by simply sandwiching, for example, one flexible porous sheet 230 between the gas diffusion plate 200 and the metal plate 210. can be done. Therefore, the showerhead assembly 13 can be manufactured in a short time compared to the case where each gas channel C is individually filled with a porous body. Therefore, according to the present embodiment, the occurrence of abnormal discharge in the showerhead assembly 13 can be suppressed without lowering the productivity of the showerhead assembly 13 .
 また、比較の形態にかかるシャワーヘッドアセンブリ500では、ガスチャネルCに対応する部分以外の部分において、ガス拡散プレート200と金属プレート210との間に、真空断熱空間が形成されている。これは、ガス拡散プレート200及び金属プレート210がそれぞれ、その表面に微小な凹凸を有するからである。 Also, in the showerhead assembly 500 according to the comparative embodiment, a vacuum heat insulating space is formed between the gas diffusion plate 200 and the metal plate 210 in portions other than the portion corresponding to the gas channel C. This is because the gas diffusion plate 200 and the metal plate 210 each have minute irregularities on their surfaces.
 それに対し、本実施形態では、ガスチャネルCに対応する部分以外の部分において、ガス拡散プレート200と金属プレート210との間には、圧縮された状態の可撓性多孔質シート230が存在している。そのため、ガス拡散プレート200と金属プレート210との間を、真空断熱空間が占める割合が小さい。したがって、本実施形態によれば、金属プレート210によるガス拡散プレート200の冷却効率を向上させることができる。 In contrast, in the present embodiment, a compressed flexible porous sheet 230 exists between the gas diffusion plate 200 and the metal plate 210 in portions other than the portion corresponding to the gas channel C. there is Therefore, the ratio of the space occupied by the vacuum insulation space between the gas diffusion plate 200 and the metal plate 210 is small. Therefore, according to this embodiment, the cooling efficiency of the gas diffusion plate 200 by the metal plate 210 can be improved.
 また、本実施の形態及び比較の形態にかかるシャワーヘッドアセンブリ13,500では、プラズマPからの入熱により、ガス拡散プレート200が昇温し、その結果、熱膨張する場合、すなわち、変形する場合がある。この場合、ガス拡散プレート200は、その外周部が金属プレート210に固定され、その中央部が固定されていないため、図7及び図8に示すように、その中央部が金属プレート210から離間するように変形する。そうすると、ガス拡散プレート200の中央部と、金属プレート210の中央部との間に、隙間Kが生じる。比較の形態にかかるシャワーヘッドアセンブリ500では、図7に示すように、上記隙間Kが、空いたスペース(空間)となる。そうすると、この隙間Kも異常放電の原因となる。 Moreover, in the showerhead assemblies 13 and 500 according to the present embodiment and the comparative embodiment, the heat input from the plasma P raises the temperature of the gas diffusion plate 200, and as a result, thermal expansion, that is, deformation occurs. There is In this case, the gas diffusion plate 200 has its outer peripheral portion fixed to the metal plate 210 and its central portion not fixed, so that its central portion is separated from the metal plate 210 as shown in FIGS. It transforms like Then, a gap K is created between the central portion of the gas diffusion plate 200 and the central portion of the metal plate 210 . In the showerhead assembly 500 according to the comparative embodiment, as shown in FIG. 7, the gap K becomes an empty space (space). Then, this gap K also causes abnormal discharge.
 それに対し、本実施形態にかかるシャワーヘッドアセンブリ13では、上述のようなガス拡散プレート200の変形の前において、可撓性多孔質シート230が、ガス拡散プレート200と金属プレート210との間で圧縮された状態で存在する。そして、本実施形態にかかるシャワーヘッドアセンブリ13では、ガス拡散プレート200が上述のように変形すると、可撓性多孔質シート230に作用する力が弱まるため、圧縮された状態から膨張する。そのため、ガス拡散プレート200が変形することにより生じる、上記隙間Kは、図8に示すように、可撓性多孔質シート230で満たされ、空間にならない。したがって、本実施形態によれば、ガス拡散プレート200がプラズマからの入熱により変形したときの異常放電を抑制することができる。 In contrast, in the showerhead assembly 13 according to this embodiment, the flexible porous sheet 230 is compressed between the gas diffusion plate 200 and the metal plate 210 before the deformation of the gas diffusion plate 200 as described above. exists in the In the showerhead assembly 13 according to this embodiment, when the gas diffusion plate 200 is deformed as described above, the force acting on the flexible porous sheet 230 is weakened, so that the flexible porous sheet 230 expands from the compressed state. Therefore, the gap K caused by the deformation of the gas diffusion plate 200 is filled with the flexible porous sheet 230 as shown in FIG. 8 and does not become a space. Therefore, according to the present embodiment, abnormal discharge can be suppressed when the gas diffusion plate 200 is deformed by heat input from the plasma.
 また、ガス拡散プレート200が変形することにより、当該ガス拡散プレート200の中央部と金属プレート210の中央部との間に空間が生じると、金属プレート210によるガス拡散プレート200の冷却効率が低下する。それに対し、本実施形態では、ガス拡散プレート200が変形しても、当該ガス拡散プレート200の中央部と金属プレート210の中央部との間は、可撓性多孔質シート230で満たされる。そのため、上記冷却効率の低下を抑制することができる。 In addition, if the deformation of the gas diffusion plate 200 creates a space between the central portion of the gas diffusion plate 200 and the central portion of the metal plate 210, the cooling efficiency of the gas diffusion plate 200 by the metal plate 210 decreases. . In contrast, in this embodiment, even if the gas diffusion plate 200 is deformed, the flexible porous sheet 230 fills the space between the central portion of the gas diffusion plate 200 and the central portion of the metal plate 210 . Therefore, it is possible to suppress the decrease in the cooling efficiency.
 以上のように、本実施形態によれば、シャワーヘッドアセンブリ13に異常放電が生じるのを、生産性を低下させずに抑制することができる。その結果、ガス拡散プレート200の交換タイミングを、上記異常放電の有無に応じて決定している場合は、ガス拡散プレート200の寿命を延ばすことができる。近年では、デバイスの高集積化、微細化に伴い、プラズマ生成用の供給電力が高くなってきており、プラズマによるガス拡散プレート200の消耗が速くなっている。また、プラズマ生成用の供給電力が高くなってきた結果、ガス拡散プレート200に対するプラズマからの入熱量が多くなっており、ガス拡散プレート200が歪みやすくなっている。したがって、近年では、プラズマ生成用の供給電力が高くなってきた結果、異常放電が生じやすくなっているため、本実施形態のように、異常放電が抑制できることは有用である。 As described above, according to the present embodiment, it is possible to suppress abnormal discharge from occurring in the shower head assembly 13 without reducing productivity. As a result, if the replacement timing of the gas diffusion plate 200 is determined according to the presence or absence of abnormal discharge, the life of the gas diffusion plate 200 can be extended. In recent years, as devices have become more highly integrated and miniaturized, the amount of power supplied for generating plasma has increased, and the gas diffusion plate 200 has been rapidly consumed by the plasma. In addition, as a result of an increase in the power supplied for plasma generation, the amount of heat input from the plasma to the gas diffusion plate 200 increases, and the gas diffusion plate 200 tends to be distorted. Therefore, in recent years, as a result of the increase in power supply for plasma generation, abnormal discharge is more likely to occur, so it is useful to be able to suppress abnormal discharge as in the present embodiment.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The embodiments described above may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 以上では、プラズマからの入熱によりガス拡散プレート200が変形したときに生じる、ガス拡散プレート200の中央部と金属プレート210の中央部との間の隙間Kは、可撓性多孔質シート230で満たされるものとした。しかし、上記隙間は、可撓性多孔質シート230で全て満たされていなくてもよく、一部が空間となってもよい。 As described above, the gap K between the central portion of the gas diffusion plate 200 and the central portion of the metal plate 210, which is generated when the gas diffusion plate 200 is deformed by the heat input from the plasma, is defined by the flexible porous sheet 230. assumed to be satisfied. However, the above gaps may not be completely filled with the flexible porous sheet 230, and some of the gaps may be spaces.
 また、以上では、可撓性多孔質シート230は1枚とした。しかし、可撓性多孔質シート230は、生産性が低下しない範囲で複数に分割されていてもよい。 Also, in the above description, the number of flexible porous sheets 230 is one. However, the flexible porous sheet 230 may be divided into a plurality of pieces as long as the productivity is not lowered.
1    プラズマ処理装置
10   プラズマ処理チャンバ
11   基板支持部
13   シャワーヘッドアセンブリ
30   電源
200  ガス拡散プレート
200a プラズマ暴露面
201  第2のガス穴
210  金属プレート
211  第1のガス穴
220  固定部材
230  可撓性多孔質シート
1 plasma processing apparatus 10 plasma processing chamber 11 substrate support 13 showerhead assembly 30 power supply 200 gas diffusion plate 200a plasma exposed surface 201 second gas hole 210 metal plate 211 first gas hole 220 fixing member 230 flexible porous material sheet

Claims (11)

  1. プラズマ処理チャンバと、
    前記プラズマ処理チャンバ内に配置される基板支持部と、
    前記基板支持部内に配置される下部電極と、
    前記基板支持部の上方に配置されるシャワーヘッドアセンブリと、を備え、
    前記シャワーヘッドアセンブリは、
    複数の第1のガス穴を有する金属部材と、
    前記複数の第1のガス穴にそれぞれ対応する複数の第2のガス穴を有する上部電極と、
    前記上部電極をその外周部分で前記金属部材に固定するように構成される固定機構と、
    前記金属部材と上部電極との間に挟まれる可撓性多孔質シートと、を備え、
    前記可撓性多孔質シートは、
     前記金属部材及び前記上部電極により圧縮される圧縮部分と、
     前記複数の第1のガス穴と前記複数の第2のガス穴との間にそれぞれ配置される複数の非圧縮部分とを有し、
     前記複数の第1のガス穴の各々は、前記非圧縮部分を介して前記第2のガス穴と連通している、プラズマ処理装置。
    a plasma processing chamber;
    a substrate support positioned within the plasma processing chamber;
    a lower electrode disposed within the substrate support;
    a showerhead assembly positioned above the substrate support;
    The showerhead assembly includes:
    a metal member having a plurality of first gas holes;
    an upper electrode having a plurality of second gas holes respectively corresponding to the plurality of first gas holes;
    a fixing mechanism configured to fix the upper electrode to the metal member at its outer peripheral portion;
    a flexible porous sheet sandwiched between the metal member and the upper electrode;
    The flexible porous sheet is
    a compressed portion compressed by the metal member and the upper electrode;
    a plurality of incompressible portions respectively arranged between the plurality of first gas holes and the plurality of second gas holes;
    The plasma processing apparatus, wherein each of the plurality of first gas holes communicates with the second gas holes via the non-compressible portion.
  2. 前記可撓性多孔質シートは、フッ素樹脂で形成されている、請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein said flexible porous sheet is made of fluororesin.
  3. 前記フッ素樹脂は、ポリテトラフルオロエチレン、パープルオロアルコキシアルカンまたはこれらの組み合わせである、請求項2に記載のプラズマ処理装置。 3. The plasma processing apparatus according to claim 2, wherein said fluororesin is polytetrafluoroethylene, purple-oroalkoxyalkane, or a combination thereof.
  4. 前記可撓性多孔質シートは、繊維状金属で形成されている、請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein said flexible porous sheet is made of fibrous metal.
  5. 前記繊維状金属は、ステンレス、ニッケル、銅またはこれらの2つ以上の組み合わせで形成されている、請求項4に記載のプラズマ処理装置。 5. The plasma processing apparatus of claim 4, wherein said fibrous metal is made of stainless steel, nickel, copper, or a combination of two or more thereof.
  6. 前記可撓性多孔質シートは、10%~60%の気孔率を有する、請求項1~5のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 5, wherein said flexible porous sheet has a porosity of 10% to 60%.
  7. 前記可撓性多孔質シートは、500μm以上の厚さを有する、請求項1~6のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 6, wherein said flexible porous sheet has a thickness of 500 µm or more.
  8. 前記第1のガス穴及び前記第2のガス穴はそれぞれ、1mm以下の径を有する、請求項1~7のいずれか1項に記載のプラズマ処理装置。 8. The plasma processing apparatus according to claim 1, wherein each of said first gas hole and said second gas hole has a diameter of 1 mm or less.
  9. 前記第1のガス穴は、前記上部電極に向けて拡がるフレア形状を有する、請求項1~8のいずれか1項に記載のプラズマ処理装置。 9. The plasma processing apparatus according to claim 1, wherein said first gas hole has a flare shape that widens toward said upper electrode.
  10. 前記上部電極は、シリコン又は石英で形成されている、請求項1~9のいずれか1項に記載のプラズマ処理装置。 10. The plasma processing apparatus according to claim 1, wherein said upper electrode is made of silicon or quartz.
  11. プラズマ処理装置で使用するシャワーヘッドアセンブリであって、
    複数の第1のガス穴を有する第1のプレートと、
    前記複数の第1のガス穴にそれぞれ対応する複数の第2のガス穴を有する第2のプレートと、
    前記第2のプレートをその外周部分で前記第1のプレートに固定するように構成される固定機構と、
    前記第1のプレートと前記第2のプレートとの間に挟まれる可撓性多孔質シートと、を備え、
    前記可撓性多孔質シートは、
     前記第1のプレート及び前記第2のプレートにより圧縮される圧縮部分と、
     前記複数の第1のガス穴と前記複数の第2のガス穴との間にそれぞれ配置される複数の非圧縮部分とを有し、
     前記複数の第1のガス穴の各々は、前記非圧縮部分を介して前記第2のガス穴と連通している、シャワーヘッドアセンブリ。
     
    A showerhead assembly for use in a plasma processing apparatus, comprising:
    a first plate having a plurality of first gas holes;
    a second plate having a plurality of second gas holes respectively corresponding to the plurality of first gas holes;
    a fixing mechanism configured to fix the second plate to the first plate at its outer peripheral portion;
    a flexible porous sheet sandwiched between the first plate and the second plate;
    The flexible porous sheet is
    a compressed portion compressed by the first plate and the second plate;
    a plurality of incompressible portions respectively arranged between the plurality of first gas holes and the plurality of second gas holes;
    A showerhead assembly, wherein each of the plurality of first gas holes communicates with the second gas holes through the non-compressible portion.
PCT/JP2022/031314 2021-09-01 2022-08-19 Plasma processing device and showerhead assembly WO2023032705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142287 2021-09-01
JP2021-142287 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023032705A1 true WO2023032705A1 (en) 2023-03-09

Family

ID=85412242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031314 WO2023032705A1 (en) 2021-09-01 2022-08-19 Plasma processing device and showerhead assembly

Country Status (1)

Country Link
WO (1) WO2023032705A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005491A (en) * 2005-06-22 2007-01-11 Tokyo Electron Ltd Electrode assembly and plasma processing apparatus
CN102418086A (en) * 2011-11-16 2012-04-18 上海卓锐材料科技有限公司 Spraying head device for realizing gas isolation and homogenization
JP2012216823A (en) * 2011-03-31 2012-11-08 Tokyo Electron Ltd Electrode with gas discharge function and plasma processing apparatus
JP2018533207A (en) * 2015-10-08 2018-11-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shower head with reduced plasma ignition on the back
JP2019008986A (en) * 2017-06-23 2019-01-17 東京エレクトロン株式会社 Exhaust plate and plasma processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005491A (en) * 2005-06-22 2007-01-11 Tokyo Electron Ltd Electrode assembly and plasma processing apparatus
JP2012216823A (en) * 2011-03-31 2012-11-08 Tokyo Electron Ltd Electrode with gas discharge function and plasma processing apparatus
CN102418086A (en) * 2011-11-16 2012-04-18 上海卓锐材料科技有限公司 Spraying head device for realizing gas isolation and homogenization
JP2018533207A (en) * 2015-10-08 2018-11-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shower head with reduced plasma ignition on the back
JP2019008986A (en) * 2017-06-23 2019-01-17 東京エレクトロン株式会社 Exhaust plate and plasma processing device

Similar Documents

Publication Publication Date Title
KR102430205B1 (en) Plasma processing apparatus
JP5974054B2 (en) Temperature controlled hot edge ring assembly
JP5317424B2 (en) Plasma processing equipment
JP4819411B2 (en) Plasma processing equipment
JP5323628B2 (en) Plasma processing equipment
KR20100138687A (en) Plasma processing apparatus and plasma processing method
KR20100029830A (en) Showerhead electrode assemblies for plasma processing apparatuses
JP2019160846A (en) Placement device for processing object and processing device
WO2023032705A1 (en) Plasma processing device and showerhead assembly
KR20200051505A (en) Placing table and substrate processing apparatus
US20230090650A1 (en) Plasma processing apparatus
TW202329196A (en) Plasma processing apparatus
WO2023058475A1 (en) Plasma processing apparatus
WO2023120245A1 (en) Substrate support and plasma processing apparatus
US20230073711A1 (en) Substrate support assembly and plasma processing apparatus
JP2022158194A (en) Upper electrode assembly
US20230298864A1 (en) Upper electrode and plasma processing apparatus
WO2022215633A1 (en) Electrostatic chuck and substrate processing device
WO2022224887A1 (en) Gas supply system, substrate processing device, and operation method for gas supply system
KR20230045545A (en) Substrate supporter, substrate processing apparatus and electrostatic attraction method
JP2023006114A (en) Plasma processing chamber, plasma processing apparatus, and fastening member
JP2023006205A (en) Plasma processing apparatus and liner assembly
JP2022166511A (en) Electrode for plasma processing device and plasma processing device
JP2023018340A (en) Plasma processing apparatus
JP2023002168A (en) Shower head and plasma processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE