WO2023032582A1 - Coated tool and cutting tool - Google Patents

Coated tool and cutting tool Download PDF

Info

Publication number
WO2023032582A1
WO2023032582A1 PCT/JP2022/029847 JP2022029847W WO2023032582A1 WO 2023032582 A1 WO2023032582 A1 WO 2023032582A1 JP 2022029847 W JP2022029847 W JP 2022029847W WO 2023032582 A1 WO2023032582 A1 WO 2023032582A1
Authority
WO
WIPO (PCT)
Prior art keywords
coated tool
layer
hardness
gpa
coating layer
Prior art date
Application number
PCT/JP2022/029847
Other languages
French (fr)
Japanese (ja)
Inventor
聡史 森
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023545180A priority Critical patent/JPWO2023032582A1/ja
Priority to CN202280054577.3A priority patent/CN117813172A/en
Publication of WO2023032582A1 publication Critical patent/WO2023032582A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Definitions

  • the present disclosure relates to coated tools and cutting tools.
  • Coated tools having substrates such as cemented carbide, cermet, ceramics or boron nitride sintered bodies are known as tools used for cutting such as turning and milling (see Patent Document 1).
  • a coated tool according to one aspect of the present disclosure is a coated tool having a substrate and a coating layer located on at least part of the surface of the substrate.
  • the coated tool according to one aspect of the present disclosure has a measurement range from the surface of the coating layer to a depth of 20% of the thickness of the coating layer, and while changing the indentation load of the indenter, at five locations with different depths in the measurement range.
  • the variation coefficient of hardness (standard deviation/average value) obtained from the average value and standard deviation of the measured values for 15 times is 0.11 or less at each depth.
  • FIG. 1 is a perspective view showing an example of a coated tool according to an embodiment
  • FIG. FIG. 2 is a side cross-sectional view showing an example of the coated tool according to the embodiment.
  • FIG. 3 is a schematic enlarged view of part III shown in FIG. 4 is a schematic enlarged view of the VI portion shown in FIG. 3.
  • FIG. 5 is a front view showing an example of the cutting tool according to the embodiment;
  • FIG. 6 shows sample no. 1 to No. 7 is a table summarizing the results of hardness measurement for No. 7.
  • FIG. 7 shows sample no. 1 to No. 7 is a table summarizing the standard deviation, the coefficient of variation, and the difference in the coefficient of variation calculated based on the hardness measurement results for No. 7.
  • FIG. 8 shows sample no. 1 to No. 3 is a table summarizing the results of the cutting test for No. 3.
  • the conventional technology described above has room for further improvement in terms of improving the finished surface quality of the work material without compromising durability.
  • ⁇ Coated tool> 1 is a perspective view showing an example of a coated tool according to an embodiment; FIG. As shown in FIG. 1 , the coated tool 1 according to the embodiment may have a chip body 2 and a cutting edge portion 3 .
  • the coated tool 1 according to the embodiment has, for example, a hexahedral shape in which the upper and lower surfaces (surfaces intersecting the Z-axis shown in FIG. 1) are parallelograms.
  • the coated tool 1 has a first surface 6 (here, the top surface), a second surface 7 (here, the side surface) connected to the first surface 6, and a position between the first surface 6 and the second surface 7. It has a ridgeline portion 8 that The first face 6 has a rake face for scooping chips generated by cutting. Also, the second surface 7 has a flank.
  • the first surface 6 has a plurality of (here, four) corners 61 when viewed from above.
  • the corner portion 61 is a region including the corner of the first surface 6 .
  • a cutting edge 11 is positioned on the ridgeline portion 8 of at least one of the plurality of corner portions 61 .
  • the coated tool 1 cuts a work material by bringing the cutting edge 11 into contact with the work material.
  • the tip body 2 is made of cemented carbide, for example.
  • Cemented carbide contains W (tungsten), specifically WC (tungsten carbide).
  • the cemented carbide may contain at least one of Ni (nickel) and Co (cobalt).
  • the tip body 2 may be made of cermet.
  • the cermet contains, for example, Ti (titanium), specifically TiC (titanium carbide) or TiN (titanium nitride).
  • the cermet may contain Ni or Co.
  • a bearing surface 4 for attaching the cutting edge portion 3 may be positioned on one of the locations of the tip body 2 corresponding to the corner portion 61 of the coated tool 1 . Further, a through hole 5 may be positioned in the central portion of the chip body 2 so as to vertically penetrate the chip body 2 . A screw 75 for attaching the coated tool 1 to a holder 70, which will be described later, is inserted into the through hole 5 (see FIG. 5).
  • FIG. 2 is a side sectional view showing an example of the coated tool 1 according to the embodiment.
  • the cutting edge portion 3 has a base 10 .
  • the cutting edge portion 3 has a coating layer 20 located on at least a part of the surface of the base 10 .
  • a third surface 9 that is continuous with the first surface 6 and the second surface 7 may be positioned on at least a portion of the cutting edge 11 .
  • the third surface 9 may be, for example, a C surface (chamfer surface) in which the corners of the first surface 6 and the second surface 7 are cut obliquely and linearly.
  • the third surface 9 may be an R surface (round surface) in which the corners of the first surface 6 and the second surface 7 are rounded. Note that the cutting edge 11 does not necessarily need to have the third surface 9 .
  • a substrate 30 made of cemented carbide or cermet, for example, may be located on the underside of the base body 10 .
  • the base 10 is bonded to the bearing surface 4 of the chip body 2 via the substrate 30 and the bonding material 40 .
  • the bonding material 40 is, for example, brazing material.
  • the base body 10 may be joined to the tip body 2 via a joining material 40 at a portion other than the seat surface 4 of the tip body 2 .
  • the coating layer 20 is coated on the substrate 10 for the purpose of improving wear resistance, heat resistance, etc. of the cutting edge 3, for example.
  • the coating layer 20 is positioned on both the chip body 2 and the base 10 in the example of FIG.
  • the second surface 7 has high wear resistance and heat resistance.
  • the coated tool 1 having such a configuration can improve the finished surface quality of the work material without impairing the durability. Further, in the coated tool 1 having such a configuration, the hardness of the coating layer 20 is uniform. If the hardness of the coating layer 20 is uniform, the wear of the cutting edge during machining will be uniform. As a result, the finished surface quality of the work material is improved.
  • the average value of 15 measurements may be 25 GPa or more at each depth.
  • the coated tool 1 having such a configuration has high hardness, improves the wear resistance of the cutting edge, and reduces variations in machining of the machined surface. As a result, the surface quality of the work material is improved.
  • the arithmetic mean roughness Ra of the coating layer 20 may be 0.2 ⁇ m or less.
  • the coated tool 1 having such a configuration can improve the finished surface quality of the work material without impairing the durability.
  • FIG. 3 is a schematic enlarged view of part III shown in FIG.
  • the coating layer 20 has at least a hard layer 21.
  • the hard layer 21 may have one or more metal nitride layers.
  • the hard layer 21 is a layer superior in abrasion resistance as compared with the intermediate layer 22 described later.
  • the hard layer 21 may be a single layer, or multiple metal nitride layers may be stacked.
  • the hard layer 21 may have a first hard layer 23 in which a plurality of metal nitride layers are laminated, and a second hard layer 24 located on the first hard layer 23. .
  • the configuration of the hard layer 21 will be described later.
  • the covering layer 20 may have an intermediate layer 22 .
  • Intermediate layer 22 may be located between substrate 10 and hard layer 21 . Specifically, the intermediate layer 22 may be in contact with the substrate 10 on one side and the hard layer 21 on the other side.
  • the intermediate layer 22 has higher adhesion to the substrate 10 than the hard layer 21 does.
  • Metal elements having such properties include Zr, V, Cr, W, Al, Si, and Y, for example.
  • the intermediate layer 22 contains at least one metal element among the above metal elements.
  • simple Ti, simple Zr, simple V, simple Cr, and simple Al are not used as the intermediate layer 22 . This is because they are not suitable for use in cutting tools because they all have low melting points and low oxidation resistance. Also, Hf alone, Nb alone, Ta alone, and Mo alone have low adhesion to the substrate 10 . However, this does not apply to alloys containing Ti, Zr, V, Cr, Ta, Nb, Hf and Al.
  • the intermediate layer 22 may be an Al--Cr alloy layer containing an Al--Cr alloy. Since the intermediate layer 22 has particularly high adhesion to the substrate 10, it is highly effective in improving the adhesion between the substrate 10 and the coating layer 20. As shown in FIG.
  • the content of Al in the intermediate layer 22 may be higher than the content of Cr in the intermediate layer 22 .
  • the composition ratio (atomic %) of Al and Cr in the intermediate layer 22 may be 70:30.
  • the intermediate layer 22 may contain components other than the above metal elements (Zr, V, Cr, W, Al, Si, Y). However, from the viewpoint of adhesion to the substrate 10, the intermediate layer 22 may contain at least 95 atomic percent of the above metal elements in total. More preferably, the intermediate layer 22 may contain the above metal elements in a total amount of 98 atomic % or more. For example, if the intermediate layer 22 is an Al—Cr alloy layer, the intermediate layer 22 may contain at least Al and Cr in a total amount of 95 atomic % or more. Furthermore, the intermediate layer 22 may contain at least Al and Cr in a total amount of 98 atomic % or more. For example, it can be identified by analysis using an EDS (energy dispersive X-ray spectrometer) attached to a STEM (scanning transmission electron microscope).
  • EDS energy dispersive X-ray spectrometer
  • STEM scanning transmission electron microscope
  • the intermediate layer 22 contains Ti as little as possible from the viewpoint of improving adhesion with the substrate 10 .
  • the content of Ti in the intermediate layer 22 may be 15 atomic % or less.
  • the cBN used as the substrate 10 is an insulator.
  • cBN which is an insulator, has room for improvement in adhesion to films formed by the PVD method (physical vapor deposition).
  • the coated tool 1 according to the embodiment by providing the conductive intermediate layer 22 on the surface of the base 10, the adhesion between the hard layer 21 formed by PVD and the intermediate layer 22 is high.
  • FIG. 4 is a schematic enlarged view of the IV section shown in FIG. 3.
  • FIG. 4 is a schematic enlarged view of the IV section shown in FIG. 3.
  • the hard layer 21 has a first hard layer 23 located on the intermediate layer 22 and a second hard layer 24 located on the first hard layer 23 .
  • the first hard layer 23 comprises at least one element selected from Group 4 elements, Group 5 elements and Group 6 elements of the periodic table, Al, Si, B, Y and Mn, C, N and It may contain cubic crystals composed of at least one element selected from O.
  • each of the first metal nitride layer 23a and the second metal nitride layer 23b may be 50 nm or less.
  • the first metal nitride layer 23a and the second metal nitride layer 23b may contain the metal contained in the intermediate layer 22.
  • the intermediate layer 22 contains two types of metal (here, referred to as "first metal” and "second metal”).
  • first metal nitride layer 23a contains nitrides of the first metal and the third metal.
  • a third metal is a metal that is not contained in the intermediate layer 22 .
  • the second metal nitride layer 23b contains nitrides of the first metal and the second metal.
  • the intermediate layer 22 may contain Al and Cr.
  • the first metal nitride layer 23a may contain Al.
  • the first metal nitride layer 23a may be an AlTiN layer containing AlTiN, which is a nitride of Al and Ti.
  • the second metal nitride layer 23b may be an AlCrN layer containing AlCrN, which is a nitride of Al and Cr.
  • the adhesion between the intermediate layer 22 and the hard layer 21 is high. This makes it difficult for the hard layer 21 to separate from the intermediate layer 22, so that the durability of the coating layer 20 is high.
  • the thickness of the second hard layer 24 may be thicker than the thickness of the first hard layer 23 .
  • the thickness of the second hard layer 24 may be 1 ⁇ m or more.
  • the thickness of the second hard layer 24 may be 1.2 ⁇ m.
  • the cutting tool 100 has a coated tool 1 and a holder 70 for fixing the coated tool 1.
  • the holder 70 is a rod-shaped member extending from a first end (upper end in FIG. 5) toward a second end (lower end in FIG. 5).
  • the holder 70 is made of steel or cast iron, for example. In particular, among these members, it is preferable to use steel with high toughness.
  • the coated tool 1 is positioned in the pocket 73 of the holder 70 and attached to the holder 70 with screws 75 . That is, the screw 75 is inserted into the through hole 5 of the coated tool 1, and the tip of the screw 75 is inserted into the screw hole formed in the seating surface of the pocket 73 to screw the screw portions together. Thereby, the coated tool 1 is attached to the holder 70 so that the cutting edge portion 3 protrudes outward from the holder 70 .
  • the embodiment exemplifies a cutting tool used for so-called turning.
  • Turning includes, for example, inner diameter machining, outer diameter machining, and grooving.
  • the cutting tools are not limited to those used for turning.
  • the coated tool 1 may be used as a cutting tool used for milling.
  • cutting tools used for milling include flat milling cutters, face milling cutters, side milling cutters, grooving milling cutters, single-blade end mills, multiple-blade end mills, tapered blade end mills, ball end mills, and other end mills. .
  • Example 2 A cubic boron nitride sintered body containing cubic boron nitride powder and a compound of Ti and a compound of Al as a binder phase is produced, and the obtained cubic boron nitride sintered body is used as a cemented carbide. It was joined to the bearing surface of the tip body made of through a joining material.
  • the obtained first mixed powder and second mixed powder were mixed at a volume ratio of 68 or more and 78 or less: 22 or more and 32 or less.
  • An organic solvent and an organic binder were added to the prepared powder. Alcohols such as acetone and IPA can be used as the organic solvent.
  • the organic binder paraffin, acrylic resin, or the like can be used. After that, they were pulverized and mixed in a ball mill for 20 hours or more and 24 hours or less, and then the organic solvent was evaporated to obtain a third mixed powder.
  • a dispersant may be added as necessary in the process using a ball mill.
  • the compact was placed in an ultra-high pressure heating apparatus and heated at 1200°C to 1500°C for 15 minutes to 30 minutes under a pressure of 4 GPa to 6 GPa.
  • a cubic boron nitride sintered body according to the embodiment was obtained.
  • the obtained cubic boron nitride sintered body was attached to the bearing surface of the tip body made of a cemented carbide via a bonding material.
  • Example 1 a coating layer was formed on the surface of the chip by physical vapor deposition (PVD). After that, the coating layer was subjected to Aerowrap (registered trademark) treatment under the conditions shown below, thereby obtaining sample No. 1 (Example 1) was produced.
  • Sample No. 1 is a coated tool in which the formed coating layer was not subjected to Aerolap (registered trademark) treatment.
  • 2 Comparative Example 1).
  • a commercially available coated tool whose substrate is cBN was prepared. 3 (Comparative Example 2).
  • sample no. 4 (Example 2) was produced.
  • Sample No. 1 is a coated tool in which the formed coating layer was not subjected to Aerolap (registered trademark) treatment. 5 (Comparative Example 3), Sample No. 6 (comparative example 4) and sample no. 7 (Comparative Example 5).
  • the media is jetted by the rotation of the vanes.
  • the number of rotations of the vanes is controlled to 40 Hz (40 rotations per second) by an inverter.
  • the measurement range is from the surface of the coating layer to a depth of 20% of the thickness of the coating layer for each sample.
  • the hardness was measured (nanoindentation test) by changing the indentation load of the indenter in the range of 10N to 50N in increments of 10N.
  • the displacement of the indenter (change in indentation depth) is measured when the load is changed by applying a load, holding the maximum load, and removing the load.
  • a load-displacement curve was obtained by Then, the hardness was calculated from the obtained load-displacement curve. This series of measurements was performed 15 times each at indentation loads (maximum loads) of 10 N, 20 N, 30 N, 40 N and 50 N (that is, at 5 different depths), and the average of the 15 hardness measurements was taken. , the hardness at the indentation load.
  • the hardness of the cubic boron nitride sintered body of the cutting edge and the coating layer on the cemented carbide of the tip body were measured as described above. rice field.
  • Fig. 6 shows sample No. 1 to No. 7 is a table summarizing the results of hardness measurement for No. 7.
  • sample no. 1 to No. 7 has a substrate made of cBN. 4 to No. 7 has a substrate made of cemented carbide (WC--Co alloy).
  • the thickness (average thickness) of the coating layer was 1 to No. 7 are both 3.0 ⁇ m.
  • Sample no. 1 and no. In contrast to Sample No. 4, which is a comparative example, Aerowrap (registered trademark) is applied to the coating layer. In Nos. 2, 3, 5 to 7, Aerowrap (registered trademark) was not applied to the coating layer.
  • Ratio 1 of the indentation depth to the average thickness shown in FIG. 6 is the ratio of the maximum indentation depth of the indenter to the average thickness of the coating layer when the indentation load is 10N.
  • the ratios 2 to 5 of the indentation depth to the average thickness are the ratios of the maximum indentation depth of the indenter to the average thickness of the coating layer when the indentation loads are 20 N, 30 N, 40 N, and 50 N, respectively. .
  • Sample no. For 2 the ratios 1-5 of indentation depth to average thickness were 5.5%, 8.4%, 10.1%, 12.3% and 12.9%, respectively.
  • Sample no. For 4 the ratios of indentation depth to average thickness 1-5 were 4.6%, 6.5%, 8.2%, 9.7% and 11.0%, respectively.
  • Sample no. For 5 the ratios of indentation depth to average thickness 1-5 were 4.6%, 6.6%, 8.6%, 10.0% and 11.2%, respectively.
  • Hardness 1 shown in Fig. 6 is the average of 15 measurements performed with the indentation load set to 10N.
  • hardnesses 2 to 5 are averages of 15 measurements performed with indentation loads set to 20N, 30N, 40N and 50N, respectively.
  • Sample No. The hardness of No. 1 was 28.7 GPa for hardness 1, 28.5 GPa for hardness 2, 27.8 GPa for hardness 3, 28.1 GPa for hardness 4, and 28.5 GPa for hardness 5.
  • Sample no. The hardness of No. 2 was 12.9 GPa for hardness 1, 20.0 GPa for hardness 2, 20.7 GPa for hardness 3, 20.1 GPa for hardness 4, and 20.8 GPa for hardness 5.
  • Sample no. The hardness of No. 3 was 29.9 GPa for hardness 1, 32.2 GPa for hardness 2, 30.8 GPa for hardness 3, 30.4 GPa for hardness 4, and 31.1 GPa for hardness 5.
  • Sample No. The hardness of No. 4 was 30.2 GPa for hardness 1, 31.7 GPa for hardness 2, 32.1 GPa for hardness 3, 30.5 GPa for hardness 4, and 31.2 GPa for hardness 5.
  • Sample no. The hardness of No. 5 was 29.2 GPa for hardness 1, 30.7 GPa for hardness 2, 28.7 GPa for hardness 3, 29.5 GPa for hardness 4, and 29.2 GPa for hardness 5.
  • Sample no. 6, hardness 1 was 27.6 GPa
  • hardness 2 was 27.4 GPa
  • hardness 3 was 25.3 GPa
  • hardness 4 was 23.8 GPa
  • hardness 5 was 22.0 GPa.
  • Sample no. The hardness of No. 7 was 24.5 GPa for hardness 1, 29.1 GPa for hardness 2, 27.5 GPa for hardness 3, 26.8 GPa for hardness 4, and 25.2 GPa for hardness 5.
  • sample No. that was subjected to Aerowrap (registered trademark) treatment The hardness of 1 is 25 GPa or more at hardnesses 1 to 5 (in other words, at each indentation depth).
  • Sample No. which was not subjected to Aerowrap (registered trademark) treatment The hardness of No. 2 was less than 25 GPa in hardnesses 1 to 5.
  • sample No. 1 subjected to the Aerowrap (registered trademark) treatment Sample No. 1 was not subjected to Aerowrap (registered trademark) treatment. It can be seen that the hardness is higher than that of 2.
  • Fig. 7 shows sample No. 1 to No. 7 is a table summarizing the standard deviation, the coefficient of variation, and the difference in the coefficient of variation calculated based on the hardness measurement results for No. 7.
  • ⁇ 1 shown in Fig. 7 is the standard deviation of the measured values of 15 measurements performed with an indentation load (maximum load) of 10N. Specifically, the square of the difference between each measurement value for 15 times and the average value (that is, hardness 1) was averaged, and the positive square root thereof was calculated as ⁇ 1. Similarly, ⁇ 2 to ⁇ 5 are the standard deviations of 15 measurements performed at indentation loads of 20N, 30N, 40N and 50N, respectively.
  • Sample No. 1 the standard deviation of hardness was 2.49 GPa for ⁇ 1, 2.29 GPa for ⁇ 2, 2.79 GPa for ⁇ 3, 2.78 GPa for ⁇ 4, and 1.71 GPa for ⁇ 5.
  • Sample no. 2 the standard deviation of hardness was 8.32 GPa for ⁇ 1, 8.70 GPa for ⁇ 2, 8.88 GPa for ⁇ 3, 12.27 GPa for ⁇ 4, and 7.17 GPa for ⁇ 5.
  • Sample no. 3 the standard deviation of hardness was 4.42 GPa for ⁇ 1, 4.50 GPa for ⁇ 2, 4.13 GPa for ⁇ 3, 4.16 GPa for ⁇ 4, and 3.84 GPa for ⁇ 5.
  • Sample No. 4 the standard deviation of hardness was 2.70 GPa for ⁇ 1, 2.70 GPa for ⁇ 2, 2.70 GPa for ⁇ 3, 1.92 GPa for ⁇ 4, and 2.71 GPa for ⁇ 5.
  • Sample no. 5 the standard deviation of hardness was 5.82 GPa for ⁇ 1, 4.11 GPa for ⁇ 2, 5.77 GPa for ⁇ 3, 4.95 GPa for ⁇ 4, and 4.17 GPa for ⁇ 5.
  • Sample no. 6 the standard deviation of hardness was 4.00 GPa for ⁇ 1, 4.23 GPa for ⁇ 2, 4.47 GPa for ⁇ 3, 4.72 GPa for ⁇ 4, and 4.17 GPa for ⁇ 5.
  • Sample no. 7 the standard deviation of hardness was 7.46 GPa for ⁇ 1, 4.96 GPa for ⁇ 2, 7.56 GPa for ⁇ 3, 5.31 GPa for ⁇ 4, and 5.25 GPa for ⁇ 5.
  • the "variation coefficient 1" shown in FIG. 7 is a value obtained by dividing the standard deviation ⁇ 1 by the hardness 1 (standard deviation ⁇ 1/hardness 1).
  • the coefficient of variation 2 is the value obtained by dividing the standard deviation ⁇ 2 by the hardness 2
  • the coefficient of variation 3 is the value obtained by dividing the standard deviation ⁇ 3 by the hardness 3
  • the coefficient of variation 4 is the value obtained by dividing the standard deviation ⁇ 4 by the hardness 4.
  • the coefficient of variation 5 is the value obtained by dividing the standard deviation ⁇ 5 by the hardness 5.
  • Sample No. 1 the coefficient of variation 1 was 0.09, the coefficient of variation 2 was 0.08, the coefficient of variation 3 was 0.10, the coefficient of variation 4 was 0.10, and the coefficient of variation 5 was 0.06.
  • Sample no. 2 the coefficient of variation 1 was 0.42, the coefficient of variation 2 was 0.43, the coefficient of variation 3 was 0.43, the coefficient of variation 4 was 0.61, and the coefficient of variation 5 was 0.34.
  • Sample no. 3 the coefficient of variation 1 was 0.15, the coefficient of variation 2 was 0.14, the coefficient of variation 3 was 0.13, the coefficient of variation 4 was 0.14, and the coefficient of variation 5 was 0.12.
  • Sample No. 4 the coefficient of variation 1 was 0.09, the coefficient of variation 2 was 0.09, the coefficient of variation 3 was 0.08, the coefficient of variation 4 was 0.06, and the coefficient of variation 5 was 0.09.
  • Sample no. 5 the coefficient of variation 1 was 0.20, the coefficient of variation 2 was 0.13, the coefficient of variation 3 was 0.20, the coefficient of variation 4 was 0.17, and the coefficient of variation 5 was 0.14.
  • Sample no. 6 the coefficient of variation 1 was 0.15, the coefficient of variation 2 was 0.15, the coefficient of variation 3 was 0.18, the coefficient of variation 4 was 0.20, and the coefficient of variation 5 was 0.23.
  • Sample no. 7 the coefficient of variation 1 was 0.30, the coefficient of variation 2 was 0.17, the coefficient of variation 3 was 0.27, the coefficient of variation 4 was 0.20, and the coefficient of variation 5 was 0.21.
  • the coefficient of variation of 4 was less than or equal to 0.11 for any of the coefficients of variation 1-5 (ie, at all indentation depths measured).
  • the coefficient of variation of 7 was greater than 0.11 for any of the coefficients of variation 1-5.
  • the coating layer of No. 4 is sample No. 4, which is a comparative example. 2, No. 3, No. 5 to No. Compared to the coating layer No. 7, it can be seen that there is little variation in hardness depending on the measurement points, in other words, the hardness is more uniform.
  • the sample No. 1 whose substrate is cBN. 1 to No. 3 was subjected to a cutting test. Specifically, using SCr420H as a work material, an intermittent test was conducted under the conditions shown below. After the intermittent test, the arithmetic mean roughness of the cut surface of the work material SC420H was measured.
  • Fig. 8 shows sample No. 1 to No. 3 is a table summarizing the results of the cutting test for No. 3.
  • the arithmetic mean roughness Ra of the cut surface of the work material was 0.69 ⁇ m, 1.48 ⁇ m and 1.34 ⁇ m, respectively.
  • sample No. 1 which is an example
  • the work material cut using No. 1 is the comparative sample No. 1. 2 and no.
  • the surface roughness of the cut surface was smaller than that of the work material cut using No. 3.
  • the coated tool according to the example can improve the finished surface quality of the work material compared to the coated tool according to the comparative example.
  • the coated tool 1 in which the substrate 10 made of boron nitride particles or the like is attached to the tip body 2 made of cemented carbide or the like and coated with the coating layer 20 has been described.
  • the coated tool according to the present disclosure is, for example, a hexahedral substrate having parallelogram-shaped upper and lower surfaces, all of which are cubic boron nitride sintered bodies, and a coating on the substrate. Layers may be formed.
  • the upper and lower surfaces of the covered tool 1 are parallelogram-shaped is shown, but the upper and lower surfaces of the covered tool 1 may be rhombic, square, or the like. Moreover, the shape of the upper surface and the lower surface of the coated tool 1 may be triangular, pentagonal, hexagonal, or the like.
  • the substrate 10 contains cubic boron nitride (cBN) particles.
  • the substrates disclosed herein may contain particles such as, for example, hexagonal boron nitride (hBN), rhombohedral boron nitride (rBN), wurtzite boron nitride (wBN), and the like.
  • the substrate 10 is not limited to boron nitride, and may be cemented carbide, cermet, or the like.
  • Cemented carbide contains W (tungsten), specifically WC (tungsten carbide).
  • the cemented carbide may contain Ni (nickel) or Co (cobalt).
  • the cermet contains, for example, Ti (titanium), specifically TiC (titanium carbide) or TiN (titanium nitride).
  • the cermet may contain Ni or Co.
  • the coated tool according to the embodiment includes a substrate (substrate 10 as an example) and a coating layer (coating layer 20 as an example) located on at least a part of the surface of the substrate.
  • a coated tool having The coated tool according to one aspect of the present disclosure has a measurement range from the surface of the coating layer to a depth of 20% of the thickness of the coating layer, and while changing the indentation load of the indenter, at five locations with different depths in the measurement range.
  • the variation coefficient of hardness standard deviation/average value obtained from the average value and standard deviation of the measured values for 15 times is 0.11 or less at each depth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

A coated tool according to the present disclosure comprises a base and a coating layer positioned on at least a portion of the surface of the base. With the coated tool according to one aspect of the present disclosure, in a case in which a range from the surface of the coated layer to a depth of 20% of the thickness of the coated layer is defined as a measurement range, and the hardness is measured 15 times each at five locations of different depths in the measurement range while varying the pressing load of an indenter, a variation coefficient (standard deviation/average value) of hardness determined from the average value and standard deviation of the 15 measurements is 0.11 or less at each depth.

Description

被覆工具および切削工具coated and cutting tools
 本開示は、被覆工具および切削工具に関する。 The present disclosure relates to coated tools and cutting tools.
 旋削加工や転削加工等の切削加工に用いられる工具として、たとえば超硬合金、サーメット、セラミックスあるいは窒化硼素質焼結体等の基体を有する被覆工具が知られている(特許文献1参照)。 Coated tools having substrates such as cemented carbide, cermet, ceramics or boron nitride sintered bodies are known as tools used for cutting such as turning and milling (see Patent Document 1).
特開2002-3284号公報JP-A-2002-3284
 本開示の一態様による被覆工具は、基体と基体の表面の少なくとも一部に位置する被覆層とを有する被覆工具である。本開示の一態様による被覆工具は、被覆層の表面から被覆層の厚みの20%の深さまでを測定範囲とし、圧子の押し込み荷重を変化させつつ、測定範囲における異なる深さの5カ所で各々15回ずつ硬度を測定した場合において、15回分の測定値の平均値および標準偏差から求められる硬度の変動係数(標準偏差/平均値)が、各深さにおいて0.11以下である。 A coated tool according to one aspect of the present disclosure is a coated tool having a substrate and a coating layer located on at least part of the surface of the substrate. The coated tool according to one aspect of the present disclosure has a measurement range from the surface of the coating layer to a depth of 20% of the thickness of the coating layer, and while changing the indentation load of the indenter, at five locations with different depths in the measurement range. When the hardness is measured 15 times each, the variation coefficient of hardness (standard deviation/average value) obtained from the average value and standard deviation of the measured values for 15 times is 0.11 or less at each depth.
図1は、実施形態に係る被覆工具の一例を示す斜視図である。1 is a perspective view showing an example of a coated tool according to an embodiment; FIG. 図2は、実施形態に係る被覆工具の一例を示す側断面図である。FIG. 2 is a side cross-sectional view showing an example of the coated tool according to the embodiment. 図3は、図2に示すIII部の模式的な拡大図である。FIG. 3 is a schematic enlarged view of part III shown in FIG. 図4は、図3に示すVI部の模式的な拡大図である。4 is a schematic enlarged view of the VI portion shown in FIG. 3. FIG. 図5は、実施形態に係る切削工具の一例を示す正面図である。FIG. 5 is a front view showing an example of the cutting tool according to the embodiment; 図6は、試料No.1~No.7についての硬度測定の結果をまとめた表である。FIG. 6 shows sample no. 1 to No. 7 is a table summarizing the results of hardness measurement for No. 7. 図7は、試料No.1~No.7についての硬度測定の結果に基づいて算出した標準偏差、変動係数および変動係数差をまとめた表である。FIG. 7 shows sample no. 1 to No. 7 is a table summarizing the standard deviation, the coefficient of variation, and the difference in the coefficient of variation calculated based on the hardness measurement results for No. 7. 図8は、試料No.1~No.3についての切削試験の結果をまとめた表である。FIG. 8 shows sample no. 1 to No. 3 is a table summarizing the results of the cutting test for No. 3.
 以下に、本開示による被覆工具および切削工具を実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。なお、この実施形態により本開示による被覆工具および切削工具が限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。 Hereinafter, embodiments for carrying out the coated tool and cutting tool according to the present disclosure (hereinafter referred to as "embodiments") will be described in detail with reference to the drawings. It should be noted that this embodiment does not limit the coated tools and cutting tools according to the present disclosure. Further, each embodiment can be appropriately combined within a range that does not contradict the processing contents. Also, in each of the following embodiments, the same parts are denoted by the same reference numerals, and overlapping descriptions are omitted.
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、例えば製造精度、設置精度などのずれを許容するものとする。 Further, in the embodiments described below, expressions such as "constant", "perpendicular", "perpendicular" or "parallel" may be used, but these expressions are strictly "constant", "perpendicular", " It does not have to be "perpendicular" or "parallel". That is, each of the expressions described above allows deviations in, for example, manufacturing accuracy and installation accuracy.
 上述した従来技術には、耐久性を損なうことなく、被削材の仕上げ面品位を向上させるという点で更なる改善の余地がある。 The conventional technology described above has room for further improvement in terms of improving the finished surface quality of the work material without compromising durability.
<被覆工具>
 図1は、実施形態に係る被覆工具の一例を示す斜視図である。図1に示すように、実施形態に係る被覆工具1は、チップ本体2と、切刃部3とを有していてもよい。実施形態に係る被覆工具1は、たとえば、上面および下面(図1に示すZ軸と交わる面)の形状が平行四辺形である六面体形状を有する。
<Coated tool>
1 is a perspective view showing an example of a coated tool according to an embodiment; FIG. As shown in FIG. 1 , the coated tool 1 according to the embodiment may have a chip body 2 and a cutting edge portion 3 . The coated tool 1 according to the embodiment has, for example, a hexahedral shape in which the upper and lower surfaces (surfaces intersecting the Z-axis shown in FIG. 1) are parallelograms.
 被覆工具1は、第1面6(ここでは、上面)と、第1面6に連接する第2面7(ここでは、側面)と、第1面6と第2面7との間に位置する稜線部8とを有する。第1面6は、切削により生じた切屑をすくい取るすくい面を有する。また、第2面7は、逃げ面を有する。 The coated tool 1 has a first surface 6 (here, the top surface), a second surface 7 (here, the side surface) connected to the first surface 6, and a position between the first surface 6 and the second surface 7. It has a ridgeline portion 8 that The first face 6 has a rake face for scooping chips generated by cutting. Also, the second surface 7 has a flank.
 第1面6は、平面視したとき、複数(ここでは、4つ)の角部61を有する。角部61は、第1面6の角を含む領域である。複数の角部61のうちの少なくとも1つにおける稜線部8には、切刃11が位置している。被覆工具1は、切刃11を被削材に当てることによって被削材を切削する。 The first surface 6 has a plurality of (here, four) corners 61 when viewed from above. The corner portion 61 is a region including the corner of the first surface 6 . A cutting edge 11 is positioned on the ridgeline portion 8 of at least one of the plurality of corner portions 61 . The coated tool 1 cuts a work material by bringing the cutting edge 11 into contact with the work material.
(チップ本体2)
 チップ本体2は、たとえば超硬合金で形成される。超硬合金は、W(タングステン)、具体的には、WC(炭化タングステン)を含有する。また、超硬合金は、Ni(ニッケル)およびCo(コバルト)の少なくとも一方を含有していてもよい。また、チップ本体2は、サーメットで形成されてもよい。サーメットは、たとえばTi(チタン)、具体的には、TiC(炭化チタン)またはTiN(窒化チタン)を含有する。また、サーメットは、NiやCoを含有していてもよい。
(Chip body 2)
The tip body 2 is made of cemented carbide, for example. Cemented carbide contains W (tungsten), specifically WC (tungsten carbide). Moreover, the cemented carbide may contain at least one of Ni (nickel) and Co (cobalt). Alternatively, the tip body 2 may be made of cermet. The cermet contains, for example, Ti (titanium), specifically TiC (titanium carbide) or TiN (titanium nitride). Moreover, the cermet may contain Ni or Co.
 チップ本体2のうち、被覆工具1の角部61に対応する箇所の1つには、切刃部3を取り付けるための座面4が位置していてもよい。また、チップ本体2の中央部には、チップ本体2を上下に貫通する貫通孔5が位置していてもよい。貫通孔5には、後述するホルダ70に被覆工具1を取り付けるためのネジ75が挿入される(図5参照)。 A bearing surface 4 for attaching the cutting edge portion 3 may be positioned on one of the locations of the tip body 2 corresponding to the corner portion 61 of the coated tool 1 . Further, a through hole 5 may be positioned in the central portion of the chip body 2 so as to vertically penetrate the chip body 2 . A screw 75 for attaching the coated tool 1 to a holder 70, which will be described later, is inserted into the through hole 5 (see FIG. 5).
(切刃部3)
 切刃部3は、チップ本体2の座面4に取り付けられることによってチップ本体2と一体化されている。切刃部3は、被覆工具1が有する複数の角部61のうちの1つを構成する。また、切刃部3は、上述した第1面6、第2面7および稜線部8の一部を構成する。切刃11は、切刃部3における稜線部8の少なくとも一部に位置している。
(Cutting edge part 3)
The cutting edge portion 3 is integrated with the tip body 2 by being attached to the bearing surface 4 of the tip body 2 . The cutting edge portion 3 constitutes one of the plurality of corner portions 61 of the coated tool 1 . Moreover, the cutting edge portion 3 constitutes a part of the first surface 6, the second surface 7 and the ridgeline portion 8 described above. The cutting edge 11 is located on at least a part of the ridgeline portion 8 of the cutting edge portion 3 .
 かかる切刃部3の構成について図2を参照して説明する。図2は、実施形態に係る被覆工具1の一例を示す側断面図である。図2に示すように、切刃部3は、基体10を有する。また、切刃部3は、基体10の表面の少なくとも一部に位置する被覆層20を有する。 The configuration of the cutting edge portion 3 will be described with reference to FIG. FIG. 2 is a side sectional view showing an example of the coated tool 1 according to the embodiment. As shown in FIG. 2 , the cutting edge portion 3 has a base 10 . Moreover, the cutting edge portion 3 has a coating layer 20 located on at least a part of the surface of the base 10 .
(基体10)
 基体10は、超硬合金やサーメット、セラミックスであってもよい。また、基体10は、複数の窒化硼素粒子を含有する窒化硼素質焼結体であってもよい。実施形態において、基体10は、複数の立方晶窒化硼素粒子を含有する立方晶窒化硼素(cBN)質焼結体であってもよい。基体10は、複数の窒化硼素粒子の間に、TiN、Al、Al等を含有する結合相を有していてもよい。複数の窒化硼素粒子は、かかる結合相によって強固に結合される。なお、基体10は、必ずしも結合相を有することを要しない。
(Substrate 10)
The substrate 10 may be cemented carbide, cermet, or ceramics. Also, the substrate 10 may be a boron nitride sintered body containing a plurality of boron nitride particles. In embodiments, the substrate 10 may be a cubic boron nitride (cBN) sintered body containing a plurality of cubic boron nitride particles. The substrate 10 may have a binder phase containing TiN, Al, Al2O3 , etc. between the boron nitride particles. A plurality of boron nitride particles are strongly bound together by such a binding phase. Note that the substrate 10 does not necessarily need to have a binder phase.
 切刃11の少なくとも一部には、第1面6と第2面7とに連続する第3面9が位置していてもよい。第3面9は、たとえば、第1面6と第2面7との角部を斜め且つ直線的に削ったC面(チャンファー面)であってもよい。また、第3面9は、第1面6と第2面7との角部を丸めたR面(ラウンド面)であってもよい。なお、切刃11は、必ずしも第3面9を有することを要しない。 A third surface 9 that is continuous with the first surface 6 and the second surface 7 may be positioned on at least a portion of the cutting edge 11 . The third surface 9 may be, for example, a C surface (chamfer surface) in which the corners of the first surface 6 and the second surface 7 are cut obliquely and linearly. Also, the third surface 9 may be an R surface (round surface) in which the corners of the first surface 6 and the second surface 7 are rounded. Note that the cutting edge 11 does not necessarily need to have the third surface 9 .
 基体10の下面には、たとえば超硬合金またはサーメットからなる基板30が位置していてもよい。この場合、基体10は、基板30および接合材40を介してチップ本体2の座面4に接合している。接合材40は、たとえばロウ材である。チップ本体2の座面4以外の部分では、基体10は接合材40を介してチップ本体2と接合していてもよい。 A substrate 30 made of cemented carbide or cermet, for example, may be located on the underside of the base body 10 . In this case, the base 10 is bonded to the bearing surface 4 of the chip body 2 via the substrate 30 and the bonding material 40 . The bonding material 40 is, for example, brazing material. The base body 10 may be joined to the tip body 2 via a joining material 40 at a portion other than the seat surface 4 of the tip body 2 .
(被覆層20)
 被覆層20は、例えば、切刃部3の耐摩耗性、耐熱性等を向上させることを目的として基体10に被覆される。図2の例では、被覆層20がチップ本体2および基体10の両方に位置しているが、被覆層20は、少なくとも基体10の上に位置していればよい。被覆層20が切刃部3の第2面7に相当する基体10の側面に位置する場合、第2面7の耐摩耗性、耐熱性が高い。
(Coating layer 20)
The coating layer 20 is coated on the substrate 10 for the purpose of improving wear resistance, heat resistance, etc. of the cutting edge 3, for example. Although the coating layer 20 is positioned on both the chip body 2 and the base 10 in the example of FIG. When the coating layer 20 is positioned on the side surface of the substrate 10 corresponding to the second surface 7 of the cutting edge portion 3, the second surface 7 has high wear resistance and heat resistance.
 実施形態に係る被覆工具1は、被覆層20の表面を測定開始点とし、圧子の押し込み荷重を変化させながら、被覆層20の表面から被覆層20の20%の深さまで圧子を押し込んで異なる深さの5ヶ所で各々15回ずつ硬度を測定した場合において、15回分の測定値の平均値および標準偏差から求められる硬度の変動係数(標準偏差/平均値)が、各深さにおいて0.11以下であってもよい。 The coated tool 1 according to the embodiment uses the surface of the coating layer 20 as a measurement starting point, and while changing the indentation load of the indenter, presses the indenter from the surface of the coating layer 20 to a depth of 20% of the coating layer 20 to measure different depths. When the hardness was measured 15 times at each of 5 locations, the coefficient of variation of hardness (standard deviation / average value) obtained from the average value and standard deviation of the measured values for 15 times was 0.11 at each depth. It may be below.
 かかる構成を有する被覆工具1は、耐久性を損なうことなく、被削材の仕上げ面品位を向上させることができる。また、かかる構成を有する被覆工具1は、被覆層20の硬度が均質である。被覆層20の硬度が均質であると、加工中の刃先の摩耗が均一となる。この結果、被削材の仕上げ面品位が向上する。 The coated tool 1 having such a configuration can improve the finished surface quality of the work material without impairing the durability. Further, in the coated tool 1 having such a configuration, the hardness of the coating layer 20 is uniform. If the hardness of the coating layer 20 is uniform, the wear of the cutting edge during machining will be uniform. As a result, the finished surface quality of the work material is improved.
 また、被覆層20における変動係数の最大値と最小値との差は、0.06以下であってもよい。かかる構成を有する被覆工具1は、被覆層20の硬度が深さ方向においても均質である。これにより、加工中の刃先の摩耗がより均一となるため、被削材の仕上げ面品位がさらに向上する。 Also, the difference between the maximum value and the minimum value of the coefficient of variation in the coating layer 20 may be 0.06 or less. In the coated tool 1 having such a configuration, the hardness of the coating layer 20 is uniform even in the depth direction. As a result, the wear of the cutting edge during machining becomes more uniform, and the finished surface quality of the work material is further improved.
 また、15回分の測定値の平均値は、各深さにおいて25GPa以上であってもよい。かかる構成を有する被覆工具1は、硬度が高く、刃先の耐摩耗性が向上し、加工面の加工バラツキが小さくなる。この結果、被削材の面品位が向上する。 Also, the average value of 15 measurements may be 25 GPa or more at each depth. The coated tool 1 having such a configuration has high hardness, improves the wear resistance of the cutting edge, and reduces variations in machining of the machined surface. As a result, the surface quality of the work material is improved.
 また、15回分の測定値の平均値は、各深さにおいて30GPa以上であってもよい。かかる構成を有する被覆工具1は、硬度がさらに高く、刃先の耐摩耗性がさらに向上し、加工面の加工バラツキがより小さくなる。この結果、被削材の面品位がさらに向上する。 Also, the average value of 15 measurements may be 30 GPa or more at each depth. The coated tool 1 having such a configuration has higher hardness, further improved wear resistance of the cutting edge, and reduced variation in machining of the machined surface. As a result, the surface quality of the work material is further improved.
 また、被覆層20の算術平均粗さRaは、0.2μm以下であってもよい。かかる構成を有する被覆工具1は、耐久性を損なうことなく、被削材の仕上げ面品位を向上させることができる。 Also, the arithmetic mean roughness Ra of the coating layer 20 may be 0.2 μm or less. The coated tool 1 having such a configuration can improve the finished surface quality of the work material without impairing the durability.
(被覆層20の具体的な構成)
 次に、被覆層20の具体的な構成について図3を参照して説明する。図3は、図2に示すIII部の模式的な拡大図である。
(Specific configuration of coating layer 20)
Next, a specific configuration of the coating layer 20 will be described with reference to FIG. FIG. 3 is a schematic enlarged view of part III shown in FIG.
 図3に示すように、被覆層20は、少なくとも硬質層21を有する。硬質層21は、1層以上の金属窒化物層を有していてもよい。硬質層21は、後述する中間層22と比較して耐摩耗性に優れた層である。硬質層21は1層であってもよいし、複数の金属窒化物層が重なっていてもよい。具体的には、硬質層21は、複数の金属窒化物層が積層された第1硬質層23と、第1硬質層23の上に位置する第2硬質層24とを有していてもよい。かかる硬質層21の構成については後述する。 As shown in FIG. 3, the coating layer 20 has at least a hard layer 21. The hard layer 21 may have one or more metal nitride layers. The hard layer 21 is a layer superior in abrasion resistance as compared with the intermediate layer 22 described later. The hard layer 21 may be a single layer, or multiple metal nitride layers may be stacked. Specifically, the hard layer 21 may have a first hard layer 23 in which a plurality of metal nitride layers are laminated, and a second hard layer 24 located on the first hard layer 23. . The configuration of the hard layer 21 will be described later.
(中間層22)
 また、被覆層20は、中間層22を有していてもよい。中間層22は、基体10と硬質層21との間に位置していてもよい。具体的には、中間層22は、一方の面において基体10に接し、且つ、他方の面において硬質層21に接していてもよい。
(Intermediate layer 22)
Also, the covering layer 20 may have an intermediate layer 22 . Intermediate layer 22 may be located between substrate 10 and hard layer 21 . Specifically, the intermediate layer 22 may be in contact with the substrate 10 on one side and the hard layer 21 on the other side.
 中間層22は、基体10との密着性が硬質層21と比べて高い。このような特性を有する金属元素としては、たとえば、Zr、V、Cr、W、Al、Si、Yが挙げられる。中間層22は、上記金属元素のうち少なくとも1種以上の金属元素を含有する。 The intermediate layer 22 has higher adhesion to the substrate 10 than the hard layer 21 does. Metal elements having such properties include Zr, V, Cr, W, Al, Si, and Y, for example. The intermediate layer 22 contains at least one metal element among the above metal elements.
 なお、Tiの単体、Zrの単体、Vの単体、Crの単体およびAlの単体は、中間層22としては用いられない。これらはいずれも融点が低く、耐酸化性が低いことから、切削工具への使用に適さないためである。また、Hfの単体、Nbの単体、Taの単体、Moの単体は基体10との密着性が低い。ただし、Ti、Zr、V、Cr、Ta、Nb、Hf、Alを含む合金については、この限りではない。 It should be noted that simple Ti, simple Zr, simple V, simple Cr, and simple Al are not used as the intermediate layer 22 . This is because they are not suitable for use in cutting tools because they all have low melting points and low oxidation resistance. Also, Hf alone, Nb alone, Ta alone, and Mo alone have low adhesion to the substrate 10 . However, this does not apply to alloys containing Ti, Zr, V, Cr, Ta, Nb, Hf and Al.
 中間層22は、Al-Cr合金を含有するAl-Cr合金層であってもよい。かかる中間層22は、基体10との密着性が特に高いことから、基体10と被覆層20との密着性を向上させる効果が高い。 The intermediate layer 22 may be an Al--Cr alloy layer containing an Al--Cr alloy. Since the intermediate layer 22 has particularly high adhesion to the substrate 10, it is highly effective in improving the adhesion between the substrate 10 and the coating layer 20. As shown in FIG.
 中間層22がAl-Cr合金層である場合、中間層22におけるAlの含有量は、中間層22におけるCrの含有量よりも多くてもよい。たとえば、中間層22におけるAlとCrとの組成比(原子%)は、70:30であってもよい。このような組成比率とすることで、基体10と中間層22との密着性はより高い。 When the intermediate layer 22 is an Al—Cr alloy layer, the content of Al in the intermediate layer 22 may be higher than the content of Cr in the intermediate layer 22 . For example, the composition ratio (atomic %) of Al and Cr in the intermediate layer 22 may be 70:30. By setting such a composition ratio, the adhesion between the substrate 10 and the intermediate layer 22 is higher.
 中間層22は、上記金属元素(Zr、V、Cr、W、Al、Si、Y)以外の成分を含有していてもよい。ただし、基体10との密着性の観点から、中間層22は、上記金属元素を合量で少なくとも95原子%以上含有していてもよい。より好ましくは、中間層22は、上記金属元素を合量で98原子%以上含有してもよい。たとえば、中間層22がAl-Cr合金層である場合、中間層22は、少なくとも、AlおよびCrを合量で95原子%以上含有していてもよい。さらに中間層22は、少なくとも、AlおよびCrを合量で98原子%以上含有していてもよい。たとえば、STEM(走査透過電子顕微鏡)に付属しているEDS(エネルギー分散型X線分光器)を用いた分析により特定可能である。 The intermediate layer 22 may contain components other than the above metal elements (Zr, V, Cr, W, Al, Si, Y). However, from the viewpoint of adhesion to the substrate 10, the intermediate layer 22 may contain at least 95 atomic percent of the above metal elements in total. More preferably, the intermediate layer 22 may contain the above metal elements in a total amount of 98 atomic % or more. For example, if the intermediate layer 22 is an Al—Cr alloy layer, the intermediate layer 22 may contain at least Al and Cr in a total amount of 95 atomic % or more. Furthermore, the intermediate layer 22 may contain at least Al and Cr in a total amount of 98 atomic % or more. For example, it can be identified by analysis using an EDS (energy dispersive X-ray spectrometer) attached to a STEM (scanning transmission electron microscope).
 また、Tiは実施形態に係る基体10との濡れ性が悪いため、基体10との密着性向上の観点から、中間層22は、Tiを極力含有していないことが好ましい。具体的には、中間層22におけるTiの含有量は、15原子%以下であってもよい。 In addition, since Ti has poor wettability with the substrate 10 according to the embodiment, it is preferable that the intermediate layer 22 contains Ti as little as possible from the viewpoint of improving adhesion with the substrate 10 . Specifically, the content of Ti in the intermediate layer 22 may be 15 atomic % or less.
 このように、実施形態に係る被覆工具1では、基体10との濡れ性が硬質層21と比べて高い中間層22を基体10と硬質層21との間に設けることにより、基体10と被覆層20との密着性を向上させることができる。なお、中間層22は、硬質層21との密着性も高いため、硬質層21が中間層22から剥離するといったことも生じにくい。 Thus, in the coated tool 1 according to the embodiment, by providing the intermediate layer 22 between the substrate 10 and the hard layer 21, which has higher wettability with the substrate 10 than the hard layer 21, the substrate 10 and the coating layer 20 can be improved. In addition, since the intermediate layer 22 has high adhesion to the hard layer 21 , the hard layer 21 is less likely to separate from the intermediate layer 22 .
 また、基体10として用いられるcBNは、絶縁体である。絶縁体であるcBNには、PVD法(物理蒸着)により形成される膜との密着性に改善の余地があった。これに対し、実施形態に係る被覆工具1では、導電性を有する中間層22を基体10の表面に設けることで、PVDにより形成される硬質層21と中間層22との密着性が高い。 Also, the cBN used as the substrate 10 is an insulator. cBN, which is an insulator, has room for improvement in adhesion to films formed by the PVD method (physical vapor deposition). On the other hand, in the coated tool 1 according to the embodiment, by providing the conductive intermediate layer 22 on the surface of the base 10, the adhesion between the hard layer 21 formed by PVD and the intermediate layer 22 is high.
(硬質層21)
 次に、硬質層21の構成について図3および図4を参照して説明する。図4は、図3に示すIV部の模式的な拡大図である。
(Hard layer 21)
Next, the configuration of the hard layer 21 will be described with reference to FIGS. 3 and 4. FIG. 4 is a schematic enlarged view of the IV section shown in FIG. 3. FIG.
 図3に示すように、硬質層21は、中間層22の上に位置する第1硬質層23と、第1硬質層23の上に位置する第2硬質層24とを有する。 As shown in FIG. 3 , the hard layer 21 has a first hard layer 23 located on the intermediate layer 22 and a second hard layer 24 located on the first hard layer 23 .
(第1硬質層23)
 第1硬質層23は、周期表第4族元素、第5族元素および第6族元素ならびにAl、Si、B、YおよびMnの中から選ばれた少なくとも1種の元素と、C、NおよびOの中から選ばれた少なくとも1種の元素とからなる立方晶の結晶を含有していてもよい。
(First hard layer 23)
The first hard layer 23 comprises at least one element selected from Group 4 elements, Group 5 elements and Group 6 elements of the periodic table, Al, Si, B, Y and Mn, C, N and It may contain cubic crystals composed of at least one element selected from O.
 具体的には、第1硬質層23は、複数の第1金属窒化物層23aと複数の第2金属窒化物層23bとを有していてもよい。また、第1硬質層23は、第1金属窒化物層23aと第2金属窒化物層23bとが交互に積層された構成を有していてもよい。 Specifically, the first hard layer 23 may have a plurality of first metal nitride layers 23a and a plurality of second metal nitride layers 23b. Also, the first hard layer 23 may have a structure in which the first metal nitride layers 23a and the second metal nitride layers 23b are alternately laminated.
 第1金属窒化物層23aおよび第2金属窒化物層23bの厚みは、それぞれ50nm以下としてもよい。このように、第1金属窒化物層23aおよび第2金属窒化物層23bを薄く形成することで、第1金属窒化物層23aおよび第2金属窒化物層23bの残留応力が小さい。これにより、たとえば、第1金属窒化物層23aおよび第2金属窒化物層23bの剥離やクラック等が生じ難くなることから、被覆層20の耐久性が高い。 The thickness of each of the first metal nitride layer 23a and the second metal nitride layer 23b may be 50 nm or less. By forming the first metal nitride layer 23a and the second metal nitride layer 23b thin in this way, the residual stress of the first metal nitride layer 23a and the second metal nitride layer 23b is small. As a result, for example, separation and cracking of the first metal nitride layer 23a and the second metal nitride layer 23b are less likely to occur, so the durability of the coating layer 20 is high.
 第1金属窒化物層23aは、中間層22に接する層であり、第2金属窒化物層23bは、第1金属窒化物層23a上に形成される。 The first metal nitride layer 23a is a layer in contact with the intermediate layer 22, and the second metal nitride layer 23b is formed on the first metal nitride layer 23a.
 第1金属窒化物層23aおよび第2金属窒化物層23bは、中間層22に含まれる金属を含有していてもよい。 The first metal nitride layer 23a and the second metal nitride layer 23b may contain the metal contained in the intermediate layer 22.
 たとえば、中間層22に2種類の金属(ここでは、「第1の金属」、「第2の金属」とする)が含まれているとする。この場合、第1金属窒化物層23aは、第1の金属および第3の金属の窒化物を含有する。第3の金属は、中間層22に含まれない金属である。また、第2金属窒化物層23bは、第1の金属および第2の金属の窒化物を含有する。 For example, assume that the intermediate layer 22 contains two types of metal (here, referred to as "first metal" and "second metal"). In this case, the first metal nitride layer 23a contains nitrides of the first metal and the third metal. A third metal is a metal that is not contained in the intermediate layer 22 . Also, the second metal nitride layer 23b contains nitrides of the first metal and the second metal.
 たとえば、実施形態において、中間層22は、AlおよびCrを含有してもよい。この場合、第1金属窒化物層23aは、Alを含有してもよい。具体的には、第1金属窒化物層23aは、AlおよびTiの窒化物であるAlTiNを含有するAlTiN層であってもよい。また、第2金属窒化物層23bは、AlおよびCrの窒化物であるAlCrNを含有するAlCrN層であってもよい。 For example, in embodiments, the intermediate layer 22 may contain Al and Cr. In this case, the first metal nitride layer 23a may contain Al. Specifically, the first metal nitride layer 23a may be an AlTiN layer containing AlTiN, which is a nitride of Al and Ti. Also, the second metal nitride layer 23b may be an AlCrN layer containing AlCrN, which is a nitride of Al and Cr.
 このように、中間層22に含まれる金属を含有する第1金属窒化物層23aを中間層22の上に位置させることで、中間層22と硬質層21との密着性が高い。これにより、硬質層21が中間層22から剥離し難くなるため、被覆層20の耐久性が高い。 By positioning the first metal nitride layer 23a containing the metal contained in the intermediate layer 22 on the intermediate layer 22 in this manner, the adhesion between the intermediate layer 22 and the hard layer 21 is high. This makes it difficult for the hard layer 21 to separate from the intermediate layer 22, so that the durability of the coating layer 20 is high.
 第1金属窒化物層23aすなわちAlTiN層は、上述した中間層22との密着性の他、たとえば耐摩耗性に優れる。また、第2金属窒化物層23bすなわちAlCrN層は、たとえば耐熱性、耐酸化性に優れる。このように、被覆層20は、互いに異なる組成の第1金属窒化物層23aおよび第2金属窒化物層23bを含むことで、硬質層21の耐摩耗性や耐熱性等の特性を制御することができる。これにより、被覆工具1の工具寿命を延ばすことができる。たとえば、実施形態に係る硬質層21においては、AlCrNが持つ優れた耐熱性を維持しつつ、中間層22との密着性や耐摩耗性といった機械的性質を向上させることができる。 The first metal nitride layer 23a, that is, the AlTiN layer, has excellent adhesion to the intermediate layer 22 described above, as well as wear resistance, for example. Also, the second metal nitride layer 23b, that is, the AlCrN layer is excellent in heat resistance and oxidation resistance, for example. Thus, the coating layer 20 includes the first metal nitride layer 23a and the second metal nitride layer 23b having different compositions, thereby controlling the properties of the hard layer 21 such as wear resistance and heat resistance. can be done. Thereby, the tool life of the coated tool 1 can be extended. For example, in the hard layer 21 according to the embodiment, mechanical properties such as adhesion to the intermediate layer 22 and wear resistance can be improved while maintaining the excellent heat resistance of AlCrN.
 なお、第1硬質層23は、たとえばアークイオンプレーティング法(AIP法)により成膜してもよい。AIP法は、真空雰囲気でアーク放電を利用してターゲット金属(ここでは、AlTiターゲットおよびAlCrターゲット)を蒸発させ、Nガスと結合することによって金属窒化物(ここでは、AlTiNとAlCrN)を成膜する方法である。なお、中間層22もAIP法により成膜してもよい。 Note that the first hard layer 23 may be formed by, for example, an arc ion plating method (AIP method). The AIP method utilizes arc discharge in a vacuum atmosphere to evaporate target metals (here, AlTi target and AlCr target) and form metal nitrides (here, AlTiN and AlCrN) by combining with N2 gas. It is a method of filming. Note that the intermediate layer 22 may also be formed by the AIP method.
 第2硬質層24は、第1硬質層23の上に位置してもよい。具体的には、第2硬質層24は、第1硬質層23のうち第2金属窒化物層23bと接する。第2硬質層24は、たとえば、第1金属窒化物層23aと同様、TiおよびAlを含有する金属窒化物層(AlTiN層)である。 The second hard layer 24 may be positioned on the first hard layer 23. Specifically, the second hard layer 24 is in contact with the second metal nitride layer 23 b of the first hard layer 23 . The second hard layer 24 is, for example, a metal nitride layer (AlTiN layer) containing Ti and Al, like the first metal nitride layer 23a.
 第2硬質層24の厚みは、第1金属窒化物層23aおよび第2金属窒化物層23bの各厚みよりも厚くてもよい。具体的には、上述したように第1金属窒化物層23aおよび第2金属窒化物層23bの厚みは50nm以下とした場合、第2硬質層24の厚みは、1μm以上としてもよい。たとえば、第2硬質層24の厚みは、1.2μmであってもよい。 The thickness of the second hard layer 24 may be thicker than each thickness of the first metal nitride layer 23a and the second metal nitride layer 23b. Specifically, when the thickness of the first metal nitride layer 23a and the second metal nitride layer 23b is set to 50 nm or less as described above, the thickness of the second hard layer 24 may be set to 1 μm or more. For example, the thickness of the second hard layer 24 may be 1.2 μm.
 これにより、たとえば、第2硬質層24の摩擦係数が低い場合には、被覆工具1の耐溶着性を向上させることができる。また、たとえば、第2硬質層24の硬度が高い場合には、被覆工具1の耐摩耗性を向上させることができる。また、たとえば、第2硬質層24の酸化開始温度が高い場合には、被覆工具1の耐酸化性を向上させることができる。 Thereby, for example, when the coefficient of friction of the second hard layer 24 is low, the welding resistance of the coated tool 1 can be improved. Moreover, for example, when the hardness of the second hard layer 24 is high, the wear resistance of the coated tool 1 can be improved. Moreover, for example, when the oxidation start temperature of the second hard layer 24 is high, the oxidation resistance of the coated tool 1 can be improved.
 また、第2硬質層24の厚みは、第1硬質層23の厚みよりも厚くてもよい。具体的には、実施形態において、第1硬質層23の厚みは0.5μm以下とした場合、第2硬質層24の厚みは、1μm以上であってもよい。たとえば、第1硬質層23の厚みが0.3μmである場合、第2硬質層24の厚みは1.2μmであってもよい。このように、第2硬質層24を第1硬質層23よりも厚くすることで、上述した耐溶着性、耐摩耗性等を向上させる効果がさらに高い。 Also, the thickness of the second hard layer 24 may be thicker than the thickness of the first hard layer 23 . Specifically, in the embodiment, when the thickness of the first hard layer 23 is 0.5 μm or less, the thickness of the second hard layer 24 may be 1 μm or more. For example, when the thickness of the first hard layer 23 is 0.3 μm, the thickness of the second hard layer 24 may be 1.2 μm. By making the second hard layer 24 thicker than the first hard layer 23 in this manner, the effect of improving the above-described adhesion resistance, wear resistance, and the like is further enhanced.
 なお、中間層22の厚みは、たとえば0.1μm以上、0.6μm未満であってもよい。すなわち、中間層22は、第1金属窒化物層23aおよび第2金属窒化物層23bの各々よりも厚く、且つ、第1硬質層23よりも薄くてもよい。 Note that the thickness of the intermediate layer 22 may be, for example, 0.1 μm or more and less than 0.6 μm. That is, the intermediate layer 22 may be thicker than each of the first metal nitride layer 23 a and the second metal nitride layer 23 b and thinner than the first hard layer 23 .
<切削工具>
 次に、上述した被覆工具1を備えた切削工具の構成について図5を参照して説明する。図5は、実施形態に係る切削工具の一例を示す正面図である。
<Cutting tool>
Next, the configuration of a cutting tool provided with the above-described coated tool 1 will be described with reference to FIG. FIG. 5 is a front view showing an example of the cutting tool according to the embodiment;
 図5に示すように、実施形態に係る切削工具100は、被覆工具1と、被覆工具1を固定するためのホルダ70とを有する。 As shown in FIG. 5, the cutting tool 100 according to the embodiment has a coated tool 1 and a holder 70 for fixing the coated tool 1.
 ホルダ70は、第1端(図5における上端)から第2端(図5における下端)に向かって伸びる棒状の部材である。ホルダ70は、たとえば、鋼、鋳鉄製である。特に、これらの部材の中で靱性の高い鋼が用いられることが好ましい。 The holder 70 is a rod-shaped member extending from a first end (upper end in FIG. 5) toward a second end (lower end in FIG. 5). The holder 70 is made of steel or cast iron, for example. In particular, among these members, it is preferable to use steel with high toughness.
 ホルダ70は、第1端側の端部にポケット73を有する。ポケット73は、被覆工具1が装着される部分であり、被削材の回転方向と交わる着座面と、着座面に対して傾斜する拘束側面とを有する。着座面には、後述するネジ75を螺合させるネジ孔が設けられている。 The holder 70 has a pocket 73 at the end on the first end side. The pocket 73 is a portion to which the coated tool 1 is mounted, and has a seating surface that intersects with the rotational direction of the work material and a restraining side surface that is inclined with respect to the seating surface. The seating surface is provided with screw holes into which screws 75, which will be described later, are screwed.
 被覆工具1は、ホルダ70のポケット73に位置し、ネジ75によってホルダ70に装着される。すなわち、被覆工具1の貫通孔5にネジ75を挿入し、このネジ75の先端をポケット73の着座面に形成されたネジ孔に挿入してネジ部同士を螺合させる。これにより、被覆工具1は、切刃部3がホルダ70から外方に突出するようにホルダ70に装着される。 The coated tool 1 is positioned in the pocket 73 of the holder 70 and attached to the holder 70 with screws 75 . That is, the screw 75 is inserted into the through hole 5 of the coated tool 1, and the tip of the screw 75 is inserted into the screw hole formed in the seating surface of the pocket 73 to screw the screw portions together. Thereby, the coated tool 1 is attached to the holder 70 so that the cutting edge portion 3 protrudes outward from the holder 70 .
 実施形態においては、いわゆる旋削加工に用いられる切削工具を例示している。旋削加工としては、例えば、内径加工、外径加工及び溝入れ加工が挙げられる。なお、切削工具としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具に被覆工具1を用いてもよい。転削加工に用いられる切削工具としては、たとえば、平フライス、正面フライス、側フライス、溝切りフライスなどフライス、1枚刃エンドミル、複数刃エンドミル、テーパ刃エンドミル、ボールエンドミルなどのエンドミルなどが挙げられる。 The embodiment exemplifies a cutting tool used for so-called turning. Turning includes, for example, inner diameter machining, outer diameter machining, and grooving. The cutting tools are not limited to those used for turning. For example, the coated tool 1 may be used as a cutting tool used for milling. Examples of cutting tools used for milling include flat milling cutters, face milling cutters, side milling cutters, grooving milling cutters, single-blade end mills, multiple-blade end mills, tapered blade end mills, ball end mills, and other end mills. .
(実施例)
 立方晶窒化硼素粉末と、結合相としてTiの化合物及びAlの化合物と、を含有する立方晶窒化硼素質焼結体を作製し、得られた立方晶窒化硼素質焼結体を、超硬合金からなるチップ本体の座面に接合材を介して接合した。
(Example)
A cubic boron nitride sintered body containing cubic boron nitride powder and a compound of Ti and a compound of Al as a binder phase is produced, and the obtained cubic boron nitride sintered body is used as a cemented carbide. It was joined to the bearing surface of the tip body made of through a joining material.
 具体的に説明すると、まず、TiN原料粉末72体積%以上82体積%以下と、Al原料粉末13体積%以上23体積%以下と、Al原料粉末1体積%以上11体積%以下とを準備した。次にて、準備した各原料粉末に有機溶媒を添加した。有機溶媒としては、アセトン、イソプロピルアルコール(IPA)等のアルコール類が用いられ得る。その後、ボールミルにて、20時間以上24時間以下、粉砕および混合した。粉砕および混合後、溶媒を蒸発させることにより、第1混合粉末を得た。 Specifically, first, 72% by volume or more and 82% by volume or less of TiN raw material powder, 13% by volume or more and 23% by volume or less of Al raw material powder, and 1% by volume or more and 11% by volume or less of Al 2 O 3 raw material powder are combined. Got ready. Next, an organic solvent was added to each prepared raw material powder. Alcohols such as acetone and isopropyl alcohol (IPA) can be used as the organic solvent. After that, they were pulverized and mixed in a ball mill for 20 hours or more and 24 hours or less. After pulverization and mixing, the first mixed powder was obtained by evaporating the solvent.
 また、平均粒径が2.5μm以上4.5μm以下であるcBN粉末と、平均粒径が0.5μm1.5μm以下であるcBN粉末とを、体積比で8以上9以下:1以上2以下の割合で調合した。次に、調合した粉末に有機溶媒を添加した。有機溶媒としては、アセトン、IPA等のアルコール類が用いられ得る。その後、ボールミルにて、20時間以上24時間以下、粉砕および混合した。粉砕および混合後、溶媒を蒸発させることにより、第2混合粉末を得た。 Further, a cBN powder having an average particle size of 2.5 μm or more and 4.5 μm or less and a cBN powder having an average particle size of 0.5 μm or less and 1.5 μm or less are mixed in a volume ratio of 8 or more and 9 or less: 1 or more and 2 or less. Mixed in proportion. Next, an organic solvent was added to the prepared powder. Alcohols such as acetone and IPA can be used as the organic solvent. After that, they were pulverized and mixed in a ball mill for 20 hours or more and 24 hours or less. After grinding and mixing, the solvent was evaporated to obtain a second mixed powder.
 次に、得られた第1混合粉末と第2混合粉末とを、体積比で68以上78以下:22以上32以下の割合で調合した。調合した粉末に有機溶媒と有機バインダとを添加した。有機溶媒としては、アセトン、IPA等のアルコール類が用いられ得る。また、有機バインダとしては、パラフィン、アクリル系樹脂等が用いられ得る。その後、ボールミルにて20時間以上24時間以下粉砕混合し、さらにその後、有機溶媒を蒸発させることにより、第3混合粉末を得た。なお、ボールミルを用いた工程では必要に応じて分散剤を添加しても良い。 Next, the obtained first mixed powder and second mixed powder were mixed at a volume ratio of 68 or more and 78 or less: 22 or more and 32 or less. An organic solvent and an organic binder were added to the prepared powder. Alcohols such as acetone and IPA can be used as the organic solvent. As the organic binder, paraffin, acrylic resin, or the like can be used. After that, they were pulverized and mixed in a ball mill for 20 hours or more and 24 hours or less, and then the organic solvent was evaporated to obtain a third mixed powder. In addition, a dispersant may be added as necessary in the process using a ball mill.
 そして、この第3混合粉末を所定形状に成形することによって成形体を得た。成形には、一軸加圧プレス、冷間等方圧プレス(CIP)等の既知の方法が使用され得る。この成形体を300℃以上600℃以下の範囲内の所定の温度にて加熱し、有機バインダを蒸発除去した。 Then, a compact was obtained by molding this third mixed powder into a predetermined shape. For molding, known methods such as uniaxial pressure pressing, cold isostatic pressing (CIP), etc. can be used. This compact was heated at a predetermined temperature in the range of 300° C. or higher and 600° C. or lower to evaporate and remove the organic binder.
 次に、成形体を超高圧加熱装置に装入し、4GPa以上6GPa以下の圧力下において1200℃以上1500℃以下で15分以上30分以下加熱した。これにより、実施形態に係る立方晶窒化硼素質焼結体を得た。そして、得られた立方晶窒化硼素質焼結体を、超硬合金からなるチップ本体の座面に接合材を介して取り付けた。 Next, the compact was placed in an ultra-high pressure heating apparatus and heated at 1200°C to 1500°C for 15 minutes to 30 minutes under a pressure of 4 GPa to 6 GPa. Thus, a cubic boron nitride sintered body according to the embodiment was obtained. Then, the obtained cubic boron nitride sintered body was attached to the bearing surface of the tip body made of a cemented carbide via a bonding material.
 次に、物理気相蒸着(PVD)法によってチップの表面に被覆層を製膜した。その後、被覆層に対し、エアロラップ(登録商標)処理を以下に示す条件にて行うことにより、試料No.1(実施例1)を作製した。また、製膜した被覆層に対してエアロラップ(登録商標)処理を行わなかった被覆工具を試料No.2(比較例1)とした。また、基体がcBNである市販の被覆工具を用意し、試料No.3(比較例2)とした。 Next, a coating layer was formed on the surface of the chip by physical vapor deposition (PVD). After that, the coating layer was subjected to Aerowrap (registered trademark) treatment under the conditions shown below, thereby obtaining sample No. 1 (Example 1) was produced. Sample No. 1 is a coated tool in which the formed coating layer was not subjected to Aerolap (registered trademark) treatment. 2 (Comparative Example 1). Also, a commercially available coated tool whose substrate is cBN was prepared. 3 (Comparative Example 2).
 また、超硬合金(WC-Co系合金)の表面に物理気相蒸着法によって被覆層を成膜し、その後、被覆層に対してエアロラップ(登録商標)処理を以下に示す条件にて行うことにより、試料No.4(実施例2)を作製した。また、製膜した被覆層に対してエアロラップ(登録商標)処理を行わなかった被覆工具を試料No.5(比較例3)、試料No.6(比較例4)および試料No.7(比較例5)とした。 In addition, a coating layer is formed on the surface of the cemented carbide (WC-Co alloy) by physical vapor deposition, and then the coating layer is subjected to Aerowrap (registered trademark) treatment under the conditions shown below. Therefore, sample no. 4 (Example 2) was produced. Sample No. 1 is a coated tool in which the formed coating layer was not subjected to Aerolap (registered trademark) treatment. 5 (Comparative Example 3), Sample No. 6 (comparative example 4) and sample no. 7 (Comparative Example 5).
<エアロラップ(登録商標)処理の条件>
 装置:日本スピードショア社製 エアロラップ(登録商標)
 メディア:マルチコーン
 メディア径:0.1~0.5mm
 羽部インバータ周波数:40Hz
 噴射時間:0秒(処理なし、試料No.2,No.3,No.5~No.7)、10秒(試料No.1,No.4)
 湿式/乾式:湿式
<Conditions for Aerowrap (registered trademark) treatment>
Equipment: Japan Speed Shore Aero Wrap (registered trademark)
Media: Multi-cone Media diameter: 0.1 to 0.5 mm
Blade inverter frequency: 40Hz
Injection time: 0 seconds (no treatment, samples No. 2, No. 3, No. 5 to No. 7), 10 seconds (samples No. 1, No. 4)
Wet/Dry: Wet
 なお、メディアは、羽部の回転により噴射される。羽部の回転数は、インバータによって40Hz(1秒間に40回転)に制御される。 It should be noted that the media is jetted by the rotation of the vanes. The number of rotations of the vanes is controlled to 40 Hz (40 rotations per second) by an inverter.
 次に、微小押し込み硬さ試験機「ENT-1100b/a」((株)エリオニクス製)を用い、各試料に対して、被覆層の表面から被覆層の厚みの20%の深さまでを測定範囲とし、圧子の押し込み荷重を10N~50Nの範囲において10N刻みで変化させて硬度の測定(ナノインデンテーション試験)を行った。 Next, using a micro indentation hardness tester "ENT-1100b/a" (manufactured by Elionix Co., Ltd.), the measurement range is from the surface of the coating layer to a depth of 20% of the thickness of the coating layer for each sample. The hardness was measured (nanoindentation test) by changing the indentation load of the indenter in the range of 10N to 50N in increments of 10N.
 具体的には、被覆層の表面に圧子を接触させた後、荷重印加、最大荷重保持および除荷の流れで荷重を変化させたときの圧子の変位(押込深さの変化)を測定することによって荷重変位曲線を得た。そして、得られた荷重変位曲線から硬度を算出した。この一連の測定を、押込荷重(最大荷重)10N、20N、30N、40Nおよび50Nにて(すなわち、異なる深さの5ヶ所で)それぞれ15回ずつ行い、15回分の硬度の測定値の平均を、その押込荷重における硬度とした。 Specifically, after the indenter is brought into contact with the surface of the coating layer, the displacement of the indenter (change in indentation depth) is measured when the load is changed by applying a load, holding the maximum load, and removing the load. A load-displacement curve was obtained by Then, the hardness was calculated from the obtained load-displacement curve. This series of measurements was performed 15 times each at indentation loads (maximum loads) of 10 N, 20 N, 30 N, 40 N and 50 N (that is, at 5 different depths), and the average of the 15 hardness measurements was taken. , the hardness at the indentation load.
 また、エアロラップ(登録商標)処理の効果を確認するために、刃先の立方晶窒化硼素質焼結体及び、チップ本体の超硬合金上の被覆層に対しても上述した硬度の測定を行った。 In addition, in order to confirm the effect of the Aerowrap (registered trademark) treatment, the hardness of the cubic boron nitride sintered body of the cutting edge and the coating layer on the cemented carbide of the tip body were measured as described above. rice field.
 図6は、試料No.1~No.7についての硬度測定の結果をまとめた表である。図6に示すように、試料No.1~No.7のうち、試料No.1~No.3はcBNからなる基体を有し、試料No.4~No.7は超硬合金(WC-Co系合金)からなる基体を有する。被覆層の厚み(平均厚み)は、試料No.1~No.7ともに3.0μmである。実施例である試料No.1およびNo.4は、被覆層に対してエアロラップ(登録商標)を行っているのに対し、比較例である試料No.2,3,5~7は、被覆層に対してエアロラップ(登録商標)を行っていない。 Fig. 6 shows sample No. 1 to No. 7 is a table summarizing the results of hardness measurement for No. 7. As shown in FIG. 1 to No. 7, sample no. 1 to No. Sample No. 3 has a substrate made of cBN. 4 to No. 7 has a substrate made of cemented carbide (WC--Co alloy). The thickness (average thickness) of the coating layer was 1 to No. 7 are both 3.0 μm. Sample no. 1 and no. In contrast to Sample No. 4, which is a comparative example, Aerowrap (registered trademark) is applied to the coating layer. In Nos. 2, 3, 5 to 7, Aerowrap (registered trademark) was not applied to the coating layer.
 図6に示す「平均厚みに対する押込深さの割合1」は、押込荷重を10Nとした場合における、被覆層の平均厚みに対する圧子の最大押込深さの割合のことである。同様に、平均厚みに対する押込深さの割合2~5は、それぞれ押込荷重を20N、30N、40Nおよび50Nとした場合における、被覆層の平均厚みに対する圧子の最大押込深さの割合のことである。 "Ratio 1 of the indentation depth to the average thickness" shown in FIG. 6 is the ratio of the maximum indentation depth of the indenter to the average thickness of the coating layer when the indentation load is 10N. Similarly, the ratios 2 to 5 of the indentation depth to the average thickness are the ratios of the maximum indentation depth of the indenter to the average thickness of the coating layer when the indentation loads are 20 N, 30 N, 40 N, and 50 N, respectively. .
 試料No.1について、平均厚みに対する押込深さの割合1~5は、それぞれ4.6%、6.8%、8.6%、9.9%および11.1%であった。試料No.2について、平均厚みに対する押込深さの割合1~5は、それぞれ5.5%、8.4%、10.1%、12.3%および12.9%であった。試料No.3について、平均厚みに対する押込深さの割合1~5は、それぞれ5.5%、8.4%、10.1%、12.3%および12.9%であった。試料No.4について、平均厚みに対する押込深さの割合1~5は、それぞれ4.6%、6.5%、8.2%、9.7%および11.0%であった。試料No.5について、平均厚みに対する押込深さの割合1~5は、それぞれ4.6%、6.6%、8.6%、10.0%および11.2%であった。試料No.6について、平均厚みに対する押込深さの割合1~5は、それぞれ4.7%、6.8%、8.8%、10.6%および12.5%であった。試料No.7について、平均厚みに対する押込深さの割合1~5は、それぞれ5.0%、6.7%、8.5%、10.2%および11.8%であった。  Sample No. For 1, the ratios 1-5 of indentation depth to average thickness were 4.6%, 6.8%, 8.6%, 9.9% and 11.1%, respectively. Sample no. For 2, the ratios 1-5 of indentation depth to average thickness were 5.5%, 8.4%, 10.1%, 12.3% and 12.9%, respectively. Sample no. For 3, the ratios of indentation depth to average thickness 1-5 were 5.5%, 8.4%, 10.1%, 12.3% and 12.9%, respectively. Sample no. For 4, the ratios of indentation depth to average thickness 1-5 were 4.6%, 6.5%, 8.2%, 9.7% and 11.0%, respectively. Sample no. For 5, the ratios of indentation depth to average thickness 1-5 were 4.6%, 6.6%, 8.6%, 10.0% and 11.2%, respectively. Sample no. For 6, the ratios of indentation depth to average thickness 1-5 were 4.7%, 6.8%, 8.8%, 10.6% and 12.5%, respectively. Sample no. For 7, the ratios of indentation depth to average thickness 1-5 were 5.0%, 6.7%, 8.5%, 10.2% and 11.8%, respectively.
 また、図6に示す「硬度1」は、押込荷重を10Nに設定して実施した15回の測定の測定値の平均である。同様に、硬度2~5は、それぞれ押込荷重を20N、30N、40Nおよび50Nに設定して実施した15回の測定の測定値の平均である。 "Hardness 1" shown in Fig. 6 is the average of 15 measurements performed with the indentation load set to 10N. Similarly, hardnesses 2 to 5 are averages of 15 measurements performed with indentation loads set to 20N, 30N, 40N and 50N, respectively.
 試料No.1の硬度は、硬度1が28.7GPa、硬度2が28.5GPa、硬度3が27.8GPa、硬度4が28.1GPa、硬度5が28.5GPaであった。試料No.2の硬度は、硬度1が12.9GPa、硬度2が20.0GPa、硬度3が20.7GPa、硬度4が20.1GPa、硬度5が20.8GPaであった。試料No.3の硬度は、硬度1が29.9GPa、硬度2が32.2GPa、硬度3が30.8GPa、硬度4が30.4GPa、硬度5が31.1GPaであった。  Sample No. The hardness of No. 1 was 28.7 GPa for hardness 1, 28.5 GPa for hardness 2, 27.8 GPa for hardness 3, 28.1 GPa for hardness 4, and 28.5 GPa for hardness 5. Sample no. The hardness of No. 2 was 12.9 GPa for hardness 1, 20.0 GPa for hardness 2, 20.7 GPa for hardness 3, 20.1 GPa for hardness 4, and 20.8 GPa for hardness 5. Sample no. The hardness of No. 3 was 29.9 GPa for hardness 1, 32.2 GPa for hardness 2, 30.8 GPa for hardness 3, 30.4 GPa for hardness 4, and 31.1 GPa for hardness 5.
 試料No.4の硬度は、硬度1が30.2GPa、硬度2が31.7GPa、硬度3が32.1GPa、硬度4が30.5GPa、硬度5が31.2GPaであった。試料No.5の硬度は、硬度1が29.2GPa、硬度2が30.7GPa、硬度3が28.7GPa、硬度4が29.5GPa、硬度5が29.2GPaであった。試料No.6の硬度は、硬度1が27.6GPa、硬度2が27.4GPa、硬度3が25.3GPa、硬度4が23.8GPa、硬度5が22.0GPaであった。試料No.7の硬度は、硬度1が24.5GPa、硬度2が29.1GPa、硬度3が27.5GPa、硬度4が26.8GPa、硬度5が25.2GPaであった。  Sample No. The hardness of No. 4 was 30.2 GPa for hardness 1, 31.7 GPa for hardness 2, 32.1 GPa for hardness 3, 30.5 GPa for hardness 4, and 31.2 GPa for hardness 5. Sample no. The hardness of No. 5 was 29.2 GPa for hardness 1, 30.7 GPa for hardness 2, 28.7 GPa for hardness 3, 29.5 GPa for hardness 4, and 29.2 GPa for hardness 5. Sample no. 6, hardness 1 was 27.6 GPa, hardness 2 was 27.4 GPa, hardness 3 was 25.3 GPa, hardness 4 was 23.8 GPa, and hardness 5 was 22.0 GPa. Sample no. The hardness of No. 7 was 24.5 GPa for hardness 1, 29.1 GPa for hardness 2, 27.5 GPa for hardness 3, 26.8 GPa for hardness 4, and 25.2 GPa for hardness 5.
 このように、エアロラップ(登録商標)処理を行った試料No.1の硬度は、硬度1~5において(言い換えれば、各押込深さにおいて)、いずれも25GPa以上である。これに対し、エアロラップ(登録商標)処理を行わなかった試料No.2の硬度は、硬度1~5において、いずれも25GPa未満であった。このように、エアロラップ(登録商標)処理を行った試料No.1は、エアロラップ(登録商標)処理を行わなかった試料No.2と比べて高硬度であることがわかる。 In this way, the sample No. that was subjected to Aerowrap (registered trademark) treatment. The hardness of 1 is 25 GPa or more at hardnesses 1 to 5 (in other words, at each indentation depth). On the other hand, Sample No. which was not subjected to Aerowrap (registered trademark) treatment. The hardness of No. 2 was less than 25 GPa in hardnesses 1 to 5. Thus, sample No. 1 subjected to the Aerowrap (registered trademark) treatment. Sample No. 1 was not subjected to Aerowrap (registered trademark) treatment. It can be seen that the hardness is higher than that of 2.
 図7は、試料No.1~No.7についての硬度測定の結果に基づいて算出した標準偏差、変動係数および変動係数差をまとめた表である。 Fig. 7 shows sample No. 1 to No. 7 is a table summarizing the standard deviation, the coefficient of variation, and the difference in the coefficient of variation calculated based on the hardness measurement results for No. 7.
 図7に示す「σ1」は、押込荷重(最大荷重)10Nで実施した15回の測定の測定値の標準偏差である。具体的には、15回分の各測定値と平均値(すなわち硬度1)との差の2乗を平均し、その正の平方根をσ1として算出した。同様に、σ2~σ5は、それぞれ、押込荷重20N、30N、40Nおよび50Nで実施した15回の測定の測定値の標準偏差である。 "σ1" shown in Fig. 7 is the standard deviation of the measured values of 15 measurements performed with an indentation load (maximum load) of 10N. Specifically, the square of the difference between each measurement value for 15 times and the average value (that is, hardness 1) was averaged, and the positive square root thereof was calculated as σ1. Similarly, σ2 to σ5 are the standard deviations of 15 measurements performed at indentation loads of 20N, 30N, 40N and 50N, respectively.
 試料No.1について、硬度の標準偏差は、σ1が2.49GPa、σ2が2.29Gpa、σ3が2.79GPa、σ4が2.78GPa、σ5が1.71GPaであった。試料No.2について、硬度の標準偏差は、σ1が8.32GPa、σ2が8.70Gpa、σ3が8.88GPa、σ4が12.27GPa、σ5が7.17GPaであった。試料No.3について、硬度の標準偏差は、σ1が4.42GPa、σ2が4.50Gpa、σ3が4.13GPa、σ4が4.16GPa、σ5が3.84GPaであった。  Sample No. 1, the standard deviation of hardness was 2.49 GPa for σ1, 2.29 GPa for σ2, 2.79 GPa for σ3, 2.78 GPa for σ4, and 1.71 GPa for σ5. Sample no. 2, the standard deviation of hardness was 8.32 GPa for σ1, 8.70 GPa for σ2, 8.88 GPa for σ3, 12.27 GPa for σ4, and 7.17 GPa for σ5. Sample no. 3, the standard deviation of hardness was 4.42 GPa for σ1, 4.50 GPa for σ2, 4.13 GPa for σ3, 4.16 GPa for σ4, and 3.84 GPa for σ5.
 試料No.4について、硬度の標準偏差は、σ1が2.70GPa、σ2が2.70Gpa、σ3が2.70GPa、σ4が1.92GPa、σ5が2.71GPaであった。試料No.5について、硬度の標準偏差は、σ1が5.82GPa、σ2が4.11Gpa、σ3が5.77GPa、σ4が4.95GPa、σ5が4.17GPaであった。試料No.6について、硬度の標準偏差は、σ1が4.00GPa、σ2が4.23Gpa、σ3が4.47GPa、σ4が4.72GPa、σ5が4.17GPaであった。試料No.7について、硬度の標準偏差は、σ1が7.46GPa、σ2が4.96Gpa、σ3が7.56GPa、σ4が5.31GPa、σ5が5.25GPaであった。  Sample No. 4, the standard deviation of hardness was 2.70 GPa for σ1, 2.70 GPa for σ2, 2.70 GPa for σ3, 1.92 GPa for σ4, and 2.71 GPa for σ5. Sample no. 5, the standard deviation of hardness was 5.82 GPa for σ1, 4.11 GPa for σ2, 5.77 GPa for σ3, 4.95 GPa for σ4, and 4.17 GPa for σ5. Sample no. 6, the standard deviation of hardness was 4.00 GPa for σ1, 4.23 GPa for σ2, 4.47 GPa for σ3, 4.72 GPa for σ4, and 4.17 GPa for σ5. Sample no. 7, the standard deviation of hardness was 7.46 GPa for σ1, 4.96 GPa for σ2, 7.56 GPa for σ3, 5.31 GPa for σ4, and 5.25 GPa for σ5.
 また、図7に示す「変動係数1」は、標準偏差σ1を硬度1で割った値(標準偏差σ1/硬度1)である。同様に、変動係数2は、標準偏差σ2を硬度2で割った値であり、変動係数3は、標準偏差σ3を硬度3で割った値であり、変動係数4は、標準偏差σ4を硬度4で割った値であり、変動係数5は、標準偏差σ5を硬度5で割った値である。 Also, the "variation coefficient 1" shown in FIG. 7 is a value obtained by dividing the standard deviation σ1 by the hardness 1 (standard deviation σ1/hardness 1). Similarly, the coefficient of variation 2 is the value obtained by dividing the standard deviation σ2 by the hardness 2, the coefficient of variation 3 is the value obtained by dividing the standard deviation σ3 by the hardness 3, and the coefficient of variation 4 is the value obtained by dividing the standard deviation σ4 by the hardness 4. and the coefficient of variation 5 is the value obtained by dividing the standard deviation σ5 by the hardness 5.
 試料No.1について、変動係数1は0.09、変動係数2は0.08、変動係数3は0.10、変動係数4は0.10、変動係数5は0.06であった。試料No.2について、変動係数1は0.42、変動係数2は0.43、変動係数3は0.43、変動係数4は0.61、変動係数5は0.34であった。試料No.3について、変動係数1は0.15、変動係数2は0.14、変動係数3は0.13、変動係数4は0.14、変動係数5は0.12であった。  Sample No. 1, the coefficient of variation 1 was 0.09, the coefficient of variation 2 was 0.08, the coefficient of variation 3 was 0.10, the coefficient of variation 4 was 0.10, and the coefficient of variation 5 was 0.06. Sample no. 2, the coefficient of variation 1 was 0.42, the coefficient of variation 2 was 0.43, the coefficient of variation 3 was 0.43, the coefficient of variation 4 was 0.61, and the coefficient of variation 5 was 0.34. Sample no. 3, the coefficient of variation 1 was 0.15, the coefficient of variation 2 was 0.14, the coefficient of variation 3 was 0.13, the coefficient of variation 4 was 0.14, and the coefficient of variation 5 was 0.12.
 試料No.4について、変動係数1は0.09、変動係数2は0.09、変動係数3は0.08、変動係数4は0.06、変動係数5は0.09であった。試料No.5について、変動係数1は0.20、変動係数2は0.13、変動係数3は0.20、変動係数4は0.17、変動係数5は0.14であった。試料No.6について、変動係数1は0.15、変動係数2は0.15、変動係数3は0.18、変動係数4は0.20、変動係数5は0.23であった。試料No.7について、変動係数1は0.30、変動係数2は0.17、変動係数3は0.27、変動係数4は0.20、変動係数5は0.21であった。  Sample No. 4, the coefficient of variation 1 was 0.09, the coefficient of variation 2 was 0.09, the coefficient of variation 3 was 0.08, the coefficient of variation 4 was 0.06, and the coefficient of variation 5 was 0.09. Sample no. 5, the coefficient of variation 1 was 0.20, the coefficient of variation 2 was 0.13, the coefficient of variation 3 was 0.20, the coefficient of variation 4 was 0.17, and the coefficient of variation 5 was 0.14. Sample no. 6, the coefficient of variation 1 was 0.15, the coefficient of variation 2 was 0.15, the coefficient of variation 3 was 0.18, the coefficient of variation 4 was 0.20, and the coefficient of variation 5 was 0.23. Sample no. 7, the coefficient of variation 1 was 0.30, the coefficient of variation 2 was 0.17, the coefficient of variation 3 was 0.27, the coefficient of variation 4 was 0.20, and the coefficient of variation 5 was 0.21.
 このように、実施例である試料No.1およびNo.4の変動係数は、変動係数1~5のいずれにおいても(すなわち、測定した全ての押込深さにおいて)0.11以下であった。これに対し、比較例である試料No.2,No.3,No.5~No.7の変動係数は、変動係数1~5のいずれにおいても0.11よりも大きかった。この結果から、実施例である試料No.1およびNo.4の被覆層は、比較例である試料No.2,No.3,No.5~No.7の被覆層と比較して、測定箇所による硬度のバラツキが少ない、言い換えれば、硬度がより均質であることがわかる。 In this way, sample No. 1, which is an example, 1 and no. The coefficient of variation of 4 was less than or equal to 0.11 for any of the coefficients of variation 1-5 (ie, at all indentation depths measured). On the other hand, Sample No. which is a comparative example. 2, No. 3, No. 5 to No. The coefficient of variation of 7 was greater than 0.11 for any of the coefficients of variation 1-5. Based on this result, sample No. 1, which is an example, 1 and no. The coating layer of No. 4 is sample No. 4, which is a comparative example. 2, No. 3, No. 5 to No. Compared to the coating layer No. 7, it can be seen that there is little variation in hardness depending on the measurement points, in other words, the hardness is more uniform.
 また、基体がcBNである試料No.1~No.3について切削試験を行った。具体的には、被削材にSCr420Hを使用して、下記に示す条件にて断続試験を行った。断続試験後、被削材SC420Hの切削面の算術平均粗さを測定した。 In addition, the sample No. 1 whose substrate is cBN. 1 to No. 3 was subjected to a cutting test. Specifically, using SCr420H as a work material, an intermittent test was conducted under the conditions shown below. After the intermittent test, the arithmetic mean roughness of the cut surface of the work material SC420H was measured.
<切削試験条件>
被削材:SCr420H(Φ70×50mm、Φ10-8穴)
切削速度Vc:150m/min
送りf:0.2mm/rev
切込ap:0.2mm
雰囲気:WET
<Cutting test conditions>
Work material: SCr420H (Φ70×50mm, Φ10-8 hole)
Cutting speed Vc: 150m/min
Feed f: 0.2mm/rev
Cutting depth ap: 0.2mm
Atmosphere: WET
 図8は、試料No.1~No.3についての切削試験の結果をまとめた表である。図8に示すように、試料No.1~No.3について、被削材の切削面の算術平均粗さRaは、それぞれ、0.69μm、1.48μmおよび1.34μmであった。 Fig. 8 shows sample No. 1 to No. 3 is a table summarizing the results of the cutting test for No. 3. As shown in FIG. 1 to No. 3, the arithmetic mean roughness Ra of the cut surface of the work material was 0.69 μm, 1.48 μm and 1.34 μm, respectively.
 このように、実施例である試料No.1を用いて切削した被削材は、比較例である試料No.2およびNo.3を用いて切削した被削材と比べて切削面の面粗さが小さかった。この結果から明らかなように、実施例に係る被覆工具は、比較例に係る被覆工具と比べて、被削材の仕上げ面品位を向上させることができる。 In this way, sample No. 1, which is an example, The work material cut using No. 1 is the comparative sample No. 1. 2 and no. The surface roughness of the cut surface was smaller than that of the work material cut using No. 3. As is clear from this result, the coated tool according to the example can improve the finished surface quality of the work material compared to the coated tool according to the comparative example.
<その他の実施形態>
 上述した実施形態では、窒化硼素粒子等からなる基体10を、超硬合金等からなるチップ本体2に取り付け、これらを被覆層20でコーティングした被覆工具1について説明した。これに限らず、本開示による被覆工具は、たとえば、上面および下面の形状が平行四辺形である六面体形状の基体の全てが立方晶窒化硼素質焼結体であって、かかる基体の上に被覆層が形成されたものであってもよい。
<Other embodiments>
In the above-described embodiment, the coated tool 1 in which the substrate 10 made of boron nitride particles or the like is attached to the tip body 2 made of cemented carbide or the like and coated with the coating layer 20 has been described. Without being limited to this, the coated tool according to the present disclosure is, for example, a hexahedral substrate having parallelogram-shaped upper and lower surfaces, all of which are cubic boron nitride sintered bodies, and a coating on the substrate. Layers may be formed.
 上述した実施形態では、被覆工具1の上面および下面の形状が平行四辺形である場合の例を示したが、被覆工具1の上面および下面の形状は、ひし形や正方形等であってもよい。また、被覆工具1の上面および下面の形状は、三角形、五角形、六角形等であってもよい。 In the above-described embodiment, an example in which the upper and lower surfaces of the covered tool 1 are parallelogram-shaped is shown, but the upper and lower surfaces of the covered tool 1 may be rhombic, square, or the like. Moreover, the shape of the upper surface and the lower surface of the coated tool 1 may be triangular, pentagonal, hexagonal, or the like.
 また、被覆工具1の形状は、ポジティブ型であってもよいしネガティブ型であってもよい。ポジティブ型は、被覆工具1の上面の中心および下面の中心を通る中心軸に対して側面が傾斜しているタイプであり、ネガティブ型は、上記中心軸に対して側面が平行なタイプである。 Further, the shape of the coated tool 1 may be either positive type or negative type. The positive type is a type in which the side surfaces are inclined with respect to a central axis passing through the center of the upper surface and the lower surface of the coated tool 1, and the negative type is a type in which the side surfaces are parallel to the central axis.
 上述した実施形態では、基体10が立方晶窒化硼素(cBN)の粒子を含有する場合の例について説明した。これに限らず、本願の開示する基体は、たとえば、六方晶窒化硼素(hBN)、菱面体晶窒化硼素(rBN)、ウルツ鉱窒化硼素(wBN)等の粒子を含有していてもよい。また、基体10は、窒化硼素に限らず、たとえば超硬合金およびサーメット等であってもよい。超硬合金は、W(タングステン)、具体的には、WC(炭化タングステン)を含有する。また、超硬合金は、Ni(ニッケル)やCo(コバルト)を含有していてもよい。また、サーメットは、たとえばTi(チタン)、具体的には、TiC(炭化チタン)またはTiN(窒化チタン)を含有する。また、サーメットは、NiやCoを含有していてもよい。 In the above-described embodiment, an example in which the substrate 10 contains cubic boron nitride (cBN) particles has been described. Without limitation, the substrates disclosed herein may contain particles such as, for example, hexagonal boron nitride (hBN), rhombohedral boron nitride (rBN), wurtzite boron nitride (wBN), and the like. Further, the substrate 10 is not limited to boron nitride, and may be cemented carbide, cermet, or the like. Cemented carbide contains W (tungsten), specifically WC (tungsten carbide). Moreover, the cemented carbide may contain Ni (nickel) or Co (cobalt). Also, the cermet contains, for example, Ti (titanium), specifically TiC (titanium carbide) or TiN (titanium nitride). Moreover, the cermet may contain Ni or Co.
 上述した実施形態では、被覆工具1が切削加工に用いられるものとして説明したが、本願による被覆工具は、たとえば掘削用の工具や刃物など、切削工具以外への適用も可能である。 In the above-described embodiment, the coated tool 1 is used for cutting, but the coated tool according to the present application can also be applied to tools other than cutting tools, such as excavating tools and blades.
 上述してきたように、実施形態に係る被覆工具(一例として、被覆工具1)は、基体(一例として、基体10)と基体の表面の少なくとも一部に位置する被覆層(一例として、被覆層20)とを有する被覆工具である。本開示の一態様による被覆工具は、被覆層の表面から被覆層の厚みの20%の深さまでを測定範囲とし、圧子の押し込み荷重を変化させつつ、測定範囲における異なる深さの5カ所で各々15回ずつ硬度を測定した場合において、15回分の測定値の平均値および標準偏差から求められる硬度の変動係数(標準偏差/平均値)が、各深さにおいて0.11以下である。 As described above, the coated tool according to the embodiment (coated tool 1 as an example) includes a substrate (substrate 10 as an example) and a coating layer (coating layer 20 as an example) located on at least a part of the surface of the substrate. ) is a coated tool having The coated tool according to one aspect of the present disclosure has a measurement range from the surface of the coating layer to a depth of 20% of the thickness of the coating layer, and while changing the indentation load of the indenter, at five locations with different depths in the measurement range. When the hardness is measured 15 times each, the variation coefficient of hardness (standard deviation/average value) obtained from the average value and standard deviation of the measured values for 15 times is 0.11 or less at each depth.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments so shown and described. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.
 1 被覆工具
 2 チップ本体
 3 切刃部
 4 座面
 5 貫通孔
 8 稜線部
 10 基体
 11 切刃
 20 被覆層
 21 硬質層
 22 中間層
 23 第1硬質層
 23a 第1金属窒化物層
 23b 第2金属窒化物層
 24 第2硬質層
 30 基板
 40 接合材
 61 角部
 70 ホルダ
 73 ポケット
 75 ネジ
 100 切削工具
REFERENCE SIGNS LIST 1 coated tool 2 tip body 3 cutting edge portion 4 bearing surface 5 through hole 8 ridge line portion 10 substrate 11 cutting edge 20 coating layer 21 hard layer 22 intermediate layer 23 first hard layer 23a first metal nitride layer 23b second metal nitride Material Layer 24 Second Hard Layer 30 Substrate 40 Joining Material 61 Corner 70 Holder 73 Pocket 75 Screw 100 Cutting Tool

Claims (10)

  1.  基体と該基体の表面の少なくとも一部に位置する被覆層とを有する被覆工具であって、
     前記被覆層の表面から前記被覆層の厚みの20%の深さまでを測定範囲とし、圧子の押し込み荷重を変化させつつ、前記測定範囲における異なる深さの5カ所で各々15回ずつ硬度を測定した場合において、
     前記15回分の測定値の平均値および標準偏差から求められる硬度の変動係数(前記標準偏差/前記平均値)が、各前記深さにおいて0.11以下である、被覆工具。
    A coated tool having a substrate and a coating layer located on at least a portion of the surface of the substrate,
    The measurement range is from the surface of the coating layer to a depth of 20% of the thickness of the coating layer, and while changing the indentation load of the indenter, the hardness was measured 15 times at each of five different depths in the measurement range. in the case of
    A coated tool, wherein a hardness variation coefficient (said standard deviation/said average value) obtained from an average value and a standard deviation of said 15 measured values is 0.11 or less at each said depth.
  2.  前記平均値が、各前記深さにおいて25GPa以上である、請求項1に記載の被覆工具。 The coated tool according to claim 1, wherein said average value is 25 GPa or more at each said depth.
  3.  前記平均値が、各前記深さにおいて30GPa以上である、請求項1または2に記載の被覆工具。 The coated tool according to claim 1 or 2, wherein said average value is 30 GPa or more at each said depth.
  4.  前記被覆層の算術平均粗さRaが、0.2μm以下である、請求項1~3のいずれか一つに記載の被覆工具。 The coated tool according to any one of claims 1 to 3, wherein the coating layer has an arithmetic mean roughness Ra of 0.2 μm or less.
  5.  前記被覆層は、周期表第4族元素、第5族元素および第6族元素ならびにAl、Si、B、YおよびMnの中から選ばれた少なくとも1種の元素と、C、NおよびOの中から選ばれた少なくとも1種の元素とからなる立方晶の結晶を含有する、請求項1~4のいずれか一つに記載の被覆工具。 The coating layer contains at least one element selected from Group 4 elements, Group 5 elements and Group 6 elements of the periodic table, Al, Si, B, Y and Mn, and C, N and O. The coated tool according to any one of claims 1 to 4, which contains cubic crystals consisting of at least one element selected from among.
  6.  前記被覆層は、前記立方晶の結晶としてAlTiN結晶を含有するAlTiN層を有する、請求項5に記載の被覆工具。 The coated tool according to claim 5, wherein the coating layer has an AlTiN layer containing AlTiN crystals as the cubic crystals.
  7.  前記被覆層は、前記立方晶の結晶としてAlCrN結晶を含有するAlCrN層を有する、請求項5に記載の被覆工具。 The coated tool according to claim 5, wherein the coating layer has an AlCrN layer containing AlCrN crystals as the cubic crystals.
  8.  前記被覆層は、前記立方晶の結晶として、AlTi結晶を含有する複数のAlTiN層と、AlCrN結晶を含有する複数のAlCrN層とを有する、請求項5に記載の被覆工具。 The coated tool according to claim 5, wherein the coating layer has a plurality of AlTiN layers containing AlTi crystals and a plurality of AlCrN layers containing AlCrN crystals as the cubic crystals.
  9.  前記基体は、超硬合金、サーメット、セラミックス、および立方晶窒化硼素を含有する焼結体から選択される少なくとも1種である、請求項1~8のいずれか一つに記載の被覆工具。 The coated tool according to any one of claims 1 to 8, wherein the substrate is at least one selected from cemented carbide, cermet, ceramics, and a sintered body containing cubic boron nitride.
  10.  第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、
     前記ポケットに位置する請求項1~9のいずれか一つに記載の被覆工具と、を備えた切削工具。
    a holder extending from a first end toward a second end and having a pocket on the first end side;
    A cutting tool comprising a coated tool according to any one of claims 1 to 9 located in said pocket.
PCT/JP2022/029847 2021-08-31 2022-08-03 Coated tool and cutting tool WO2023032582A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023545180A JPWO2023032582A1 (en) 2021-08-31 2022-08-03
CN202280054577.3A CN117813172A (en) 2021-08-31 2022-08-03 Covering tool and cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-141975 2021-08-31
JP2021141975 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032582A1 true WO2023032582A1 (en) 2023-03-09

Family

ID=85410971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029847 WO2023032582A1 (en) 2021-08-31 2022-08-03 Coated tool and cutting tool

Country Status (3)

Country Link
JP (1) JPWO2023032582A1 (en)
CN (1) CN117813172A (en)
WO (1) WO2023032582A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091920A (en) * 2002-08-09 2004-03-25 Kobe Steel Ltd PROCESS FOR FORMING ALUMINA COATING MAINLY COMPRISING alpha CRYSTAL STRUCTURE
JP2005212002A (en) * 2004-01-28 2005-08-11 National Institute Of Advanced Industrial & Technology Method for manufacturing machined product
JP2009167503A (en) * 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd Fine-grained cemented carbide
WO2010050542A1 (en) * 2008-10-29 2010-05-06 Ntn株式会社 Hard multilayer film formed body and method for manufacturing same
JP2013079445A (en) * 2011-09-22 2013-05-02 Ntn Corp Hard film and hard film formed body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091920A (en) * 2002-08-09 2004-03-25 Kobe Steel Ltd PROCESS FOR FORMING ALUMINA COATING MAINLY COMPRISING alpha CRYSTAL STRUCTURE
JP2005212002A (en) * 2004-01-28 2005-08-11 National Institute Of Advanced Industrial & Technology Method for manufacturing machined product
JP2009167503A (en) * 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd Fine-grained cemented carbide
WO2010050542A1 (en) * 2008-10-29 2010-05-06 Ntn株式会社 Hard multilayer film formed body and method for manufacturing same
JP2013079445A (en) * 2011-09-22 2013-05-02 Ntn Corp Hard film and hard film formed body

Also Published As

Publication number Publication date
JPWO2023032582A1 (en) 2023-03-09
CN117813172A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
KR102326622B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP2002144110A (en) Surface coat boron nitride sintered body tool
EP2636764A1 (en) Nanolaminated coated cutting tool
JP2002144111A (en) Surface coat boron nitride sintered body tool
WO2013015302A1 (en) Cutting tool
WO2018070195A1 (en) Surface-coated cutting tool
CN111867758B (en) Coated cutting tool and cutting tool provided with same
JP2015110256A (en) Surface-coated cutting tool
WO2023032582A1 (en) Coated tool and cutting tool
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
WO2022138147A1 (en) Coated tool and cutting tool
WO2022163719A1 (en) Coated tool and cutting tool
WO2022138400A1 (en) Coated tool and cutting tool
WO2022163718A1 (en) Coated tool and cutting tool
WO2024005058A1 (en) Insert and cutting tool
JP5266587B2 (en) CBN sintered body for cutting tools containing coarse cBN particles
JP5402155B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2022155406A (en) Insert and cutting tool
WO2022138146A1 (en) Insert and cutting tool
JP7422862B2 (en) Coated tools and cutting tools
JP7453344B2 (en) Coated tools and cutting tools
WO2023008113A1 (en) Coated tool and cutting tool
US20240181539A1 (en) Coated tool and cutting tool
WO2021193876A1 (en) Coated tool and cutting tool
WO2023007935A1 (en) Coated tool and cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280054577.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023545180

Country of ref document: JP