WO2023030447A1 - 服务质量特征参数确定、数据发送方法、装置及设备 - Google Patents

服务质量特征参数确定、数据发送方法、装置及设备 Download PDF

Info

Publication number
WO2023030447A1
WO2023030447A1 PCT/CN2022/116517 CN2022116517W WO2023030447A1 WO 2023030447 A1 WO2023030447 A1 WO 2023030447A1 CN 2022116517 W CN2022116517 W CN 2022116517W WO 2023030447 A1 WO2023030447 A1 WO 2023030447A1
Authority
WO
WIPO (PCT)
Prior art keywords
synaesthesia
perception
communication
sensing
signal
Prior art date
Application number
PCT/CN2022/116517
Other languages
English (en)
French (fr)
Inventor
李健之
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22863582.7A priority Critical patent/EP4401336A1/en
Publication of WO2023030447A1 publication Critical patent/WO2023030447A1/zh
Priority to US18/596,564 priority patent/US20240214866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a method, device and equipment for determining quality of service characteristic parameters and sending data.
  • Future mobile communication systems such as the Beyond 5th Generation (B5G) system or the 6th Generation (6G) system will not only have communication capabilities, but will also have perception capabilities.
  • One or more devices with perception capabilities can perceive the orientation, distance, speed and other information of the target object through the transmission and reception of wireless signals, or detect, track, identify, and image the target object, event or environment, etc. .
  • the resolution of perception will be significantly improved compared with centimeter waves, so that 6G networks can provide more refined perception services.
  • Integrated Sensing and Communication has the potential to integrate wireless perception into large-scale mobile networks, where it becomes Perceptive Mobile Networks (PMNs).
  • PMN can evolve from the current 5G mobile network and is expected to become a ubiquitous wireless sensor network while providing stable and high-quality mobile communication services. It can be built on the existing mobile network infrastructure without major changes to the network structure and equipment. It will unleash the maximum capacity of the mobile network and avoid the high cost of infrastructure to build a new wide-area wireless sensor network separately. With increased coverage, integrated communication and sensing capabilities are expected to enable many new applications.
  • the perceived mobile network is capable of providing both communication and wireless sensing services, and has the potential to become a ubiquitous wireless sensing solution due to its large broadband coverage and robust infrastructure.
  • Perceived mobility networks can be widely used in communications and sensing in transportation, communications, energy, precision agriculture, and security, where existing solutions are either not feasible or inefficient. It can also provide complementary sensing capabilities to existing sensor networks, with unique day and night operation and the ability to see through fog, foliage and even solid objects.
  • the embodiment of the present application provides a quality of service characteristic parameter determination, data transmission method, device and equipment, which can solve the problem that the accuracy of the synaesthesia integration cannot be guaranteed because there is no definition of the QoS characteristic parameters of the synaesthesia integration in the prior art, and at the same time The problem of ensuring the efficiency of synesthesia integration.
  • a method for determining characteristic parameters of service quality including:
  • the sending device determines the QoS characteristic parameters of the synaesthesia quality of service
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • a device for determining characteristic parameters of quality of service including:
  • the first determination module is used to determine the QoS characteristic parameter of the synaesthesia quality of service
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • a method for determining characteristic parameters of service quality including:
  • the receiving device obtains the QoS characteristic parameters of the synaesthesia quality of service
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • a device for determining characteristic parameters of quality of service including:
  • the first obtaining module is used to obtain the QoS characteristic parameter of the synaesthesia quality of service
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • a method for sending data including:
  • the core network equipment acquires target data, and the target data includes: QoS characteristic parameters of synaesthesia service quality, integrated sensing and communication (Integrated Sensing and Communication, ISAC) quality index (Quality Identity, QI), perception quality index (Sensing Quality Identity, SQI) and communication quality index;
  • the core network device sends the target data to the sending device and/or the receiving device;
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • a data sending device including:
  • the second acquisition module is used to acquire target data, and the target data includes: synaesthesia quality of service QoS characteristic parameter, synaesthesia integration quality index ISAC QI, perception quality index SQI and communication quality index;
  • a first sending module configured to send the target data to a sending device and/or a receiving device
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • a sending device in a seventh aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction is executed by the processor When executed, the steps of the method described in the first aspect are realized.
  • a sending device including a processor and a communication interface, wherein the processor is used to determine a QoS characteristic parameter of the synaesthesia quality of service;
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • a receiving device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction is executed by the processor When executed, the steps of the method described in the third aspect are realized.
  • a receiving device including a processor and a communication interface, wherein the processor is used to acquire QoS characteristic parameters of synaesthesia service quality;
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • a core network device in an eleventh aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction being executed by the The steps of the method according to the fifth aspect are implemented when the processor executes.
  • a core network device including a processor and a communication interface, wherein the processor is used to obtain target data, and the target data includes: synaesthesia quality of service QoS characteristic parameters, synaesthesia integration quality Index ISAC QI, perceived quality index SQI, and communication quality index; the communication interface is used to send the target data to the sending device and/or the receiving device;
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the implementation as described in the first aspect, the third aspect, or the fifth aspect is achieved. steps of the method described above.
  • a chip in a fourteenth aspect, there is provided a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the first aspect and the third Aspect or the step of the method described in the fifth aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the first Aspect, the step of the method described in the third aspect or the fifth aspect.
  • a communication device configured to perform the steps of the method described in the first aspect, the third aspect or the fifth aspect.
  • FIG. 1 is a schematic flow diagram of a method for determining a quality of service characteristic parameter according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of network nodes involved in application situation 1;
  • Figure 3 is a schematic diagram of a V2X sensing scenario
  • FIG. 4 is a schematic diagram of a concurrent perception scenario
  • Figure 5 is a schematic diagram of data-to-DRB mapping in a concurrent perception scenario
  • FIG. 6 is a block diagram of a device for determining quality of service characteristic parameters according to an embodiment of the present application.
  • FIG. 7 is one of the structural block diagrams of the sending device according to the embodiment of the present application.
  • FIG. 8 is the second structural block diagram of the sending device according to the embodiment of the present application.
  • FIG. 9 is the second schematic flow diagram of the method for determining the quality of service characteristic parameters according to the embodiment of the present application.
  • Fig. 10 is the second block diagram of the device for determining the quality of service characteristic parameters according to the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a data sending method according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a data sending device according to an embodiment of the present application.
  • Fig. 13 is a structural block diagram of a communication device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th Generation (6th Generation , 6G) communication system.
  • 6th Generation 6th Generation
  • radar and communication systems may be co-located, or even physically integrated, they transmit two different signals in the time/frequency domain. They cooperate to share the same resources to minimize the interference between each other while working simultaneously.
  • Corresponding measures include beamforming, cooperative spectrum sharing, primary and secondary spectrum sharing, and dynamic coexistence.
  • effective interference cancellation usually has strict requirements on node mobility and information exchange between nodes, so the improvement of spectrum efficiency is actually relatively limited. Since interference in a coexistence system is caused by transmitting two separate signals, it is natural to ask whether we can simultaneously use one transmitted signal for both communication and radar sensing.
  • Radar systems often use specially designed waveforms, such as short pulses and chirps, that enable high power radiation and simplify receiver processing.
  • waveforms are not necessary for radar detection, a good example is passive radar or passive sensing with different radio signals as sensing signals.
  • Wireless sensing can broadly refer to retrieving information from received radio signals, rather than communication data modulated onto the signal at the transmitter.
  • the target signal reflection delay, angle of arrival (AoA), angle of departure (Angle of departure, AoD), Doppler and other dynamics can be analyzed by common signal processing methods. Parameters are estimated; for the perception of the physical characteristics of the target, it can be achieved by measuring equipment, objects, and living eigenmode signals. The two perception methods can be called perception parameter estimation and pattern recognition respectively.
  • wireless sensing refers to more general sensing techniques and applications that use radio signals.
  • Radar has evolved over the decades since its inception in the first half of the 20th century. Modern radar systems are deployed around the world in a variety of applications including air traffic control (ATC), geophysical monitoring, weather observation, and defense and security surveillance. Below 10GHz, most of the spectrum resources are mainly allocated to radar, while existing wireless communication systems such as 5G NR, LTE and Wi-Fi also exist in this spectrum range. At higher frequencies, such as mmWave, communication and radar platforms are also expected to coexist harmoniously. However, with the further development of wireless communication technology, more and more radar frequency bands will be interfered. From the perspective of historical development, radar and communication systems are constantly evolving towards miniaturization and higher frequency bands.
  • RCSS technology includes two research paths: (1) Radar-Communication Coexistence (RCC) and (2) Dual-Functional Radar-Communication system (DFRC).
  • RCC Radar-Communication Coexistence
  • DFRC Dual-Functional Radar-Communication system
  • the former considers that separate radar and communication systems share the same frequency spectrum, and how to design effective interference elimination and management technologies to achieve mutual non-interference between the two.
  • the latter considers how radar and communication systems share the same hardware platform in addition to sharing the same frequency spectrum, and how to design an integrated signal processing solution to simultaneously realize communication and radar perception functions.
  • RCC technology often requires radar and communication system to periodically exchange some information to achieve cooperation and mutual benefit, such as radar transmission waveform, beam pattern, communication modulation method, frame format, and channel state information between radar and communication system, etc.
  • DFRC technology realizes spectrum sharing directly through a shared hardware platform, without additional information exchange.
  • DFRC technology can also improve the performance of both through the collaborative work of both parties.
  • connotation and application of DFRC technology are far beyond the improvement of spectrum utilization, but have been further expanded to a variety of emerging civilian and military applications including Internet of Vehicles, indoor positioning and covert communication. Scenes
  • QoS refers to the use of various underlying technologies by the network to provide better service capabilities for designated network communications to solve problems such as network delay and congestion, thereby realizing the transmission capacity guarantee mechanism required by specific services.
  • the network When the network is congested, all data streams are likely to be dropped.
  • the network In order to meet the requirements of users for different applications and different quality of service, the network needs to be able to allocate and schedule resources according to user requirements, and provide different quality of service for different data streams: give priority to real-time and important data packets; Ordinary data packets that are not strong in nature are provided with a lower processing priority, and are even discarded when the network is congested.
  • QoS Quality of service
  • ITU International Telecommunication Union
  • QoS quality of service
  • x.902 the "information technology open processing reference model”.
  • LTE is based on bearer (Bearer) QoS policy design.
  • the radio bearer is divided into a signaling radio bearer (Signalling Radio Bearer, SRB) and a data radio bearer (Data Radio Bearer, DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the SRB is used for signaling transmission
  • the DRB is used for data transmission
  • the scheduling priority of all SRBs is higher than that of all DRBs.
  • Quality of Service Class Identifier QoS Class Identifier, QCI
  • QCI Quality of Service Class Identifier
  • the protocol TS 23.203 defines the QCI values corresponding to different bearer services.
  • bearers can be divided into two categories: guaranteed bit rate (Guaranteed Bit Rate, GBR) type bearers and non-guaranteed bit rate (Non-GBR) type bearers.
  • GBR Guarantee Bit Rate
  • Non-GBR non-guaranteed bit rate
  • the GBR type of bearer is used for services that require high real-time performance.
  • the scheduler needs to guarantee the lowest bit rate for this type of bearer.
  • the range of its QCI is 1-4.
  • a maximum rate is required for limitation.
  • the maximum bit rate (Maximum Bit Rate, MBR) is used to limit the maximum rate of the bearer.
  • MBR Maximum Bit Rate
  • the MBR parameter defines the upper limit of the rate that the GBR bearer can achieve under the condition that the Radio Bearer (Radio Bearer) RB resource is sufficient.
  • Non-GBR type bearers are used for services that do not require high real-time performance.
  • the scheduler does not need to guarantee the lowest bit rate for this type of bearers.
  • the range of its QCI is 5-9. In the case of network congestion, the business needs to bear the requirement of reducing the rate.
  • UE-AMBR Aggregate Maximum Bit Rate
  • 5G QoS Characteristics The characteristic parameter set of each network node (UE, gNB, UPF) when processing each QoS flow.
  • the 5G feature parameter set is divided into standardized QoS features and operator-specific (Operator-Specific) QoS features.
  • the former predefines the value of each parameter by standardization and is associated with a fixed 5QI value (an index that marks a series of parameters), and the latter is configured by the operator.
  • 5G adopts the data flow In-band QoS marking mechanism.
  • the gateway or APP Server marks the corresponding QoS processing label on the data flow, and the network side performs data packet forwarding based on the QoS label; the QoS label can be based on the service data flow.
  • Demand changes in real time to meet business needs in real time.
  • the NAS of the GW maps multiple Internet Protocol (IP) flows with the same QoS requirements to the same QoS flow; the gNB maps the QoS flows to the DRB to make the wireless side adapt to the QoS requirements;
  • IP Internet Protocol
  • the inbound network (Radio Access Network, RAN) side has a certain degree of freedom, such as gNB can convert QoS flow into DRB; downlink mapping belongs to network implementation; uplink mapping is based on typical (reflective) QoS or radio resource control (Radio Resource Control, RRC ) configuration.
  • the 5G QoS model also supports QoS flows with guaranteed bit rate (GBR QoS) and QoS flows with non-guaranteed bit rate (Non-GBR). AMBR is also used to clamp the total bandwidth of Non-GBR.
  • the 5G QoS model also supports reflective QoS.
  • QoS Flow is the most fine-grained QoS control from the 5G core network to the terminal.
  • QoS Flow ID QoS Flow ID
  • PDU Protocol Data Unit
  • the core network will notify gNodeB of the 5G QoS identifier (5G QoS Identifier, 5QI) corresponding to each QoS Flow, which is used to specify the QoS attributes of this QoS Flow.
  • 5G QoS Identifier, 5QI 5G QoS Identifier
  • the gNodeB When the UE initiates a service request, the gNodeB reads the QoS attribute values of each QoS Flow in the core network message, and maps different QoS Flows (different 5QIs) to the corresponding bearers according to the parameter configuration, and configures the appropriate wireless network for the service. Bearer parameters, transmission resource configuration parameters.
  • the mapping of QoS Flow to DRB is defined according to the new protocol layer of 5G, that is, the Service Data Adaptation Protocol (SDAP).
  • SDAP Service Data Adaptation Protocol
  • the main function of SDAP is to add the QoS Flow identifier (QFI value)
  • the end reads the value from the SDAP header of the data packet, and maps one or more QoS Flows to a DRB.
  • the embodiment of the present application provides a method for determining characteristic parameters of quality of service, including:
  • Step 101 the sending device determines the QoS characteristic parameters of the synaesthesia quality of service
  • this application is mainly aimed at synaesthesia integration services, that is, communication services and sensing services are required at the same time, therefore, the sending device needs to determine the synaesthesia QoS characteristic parameters, that is, the sending device needs to determine both the sensing QoS characteristic parameters , it is also necessary to determine the communication QoS characteristic parameters.
  • the synaesthesia QoS characteristic parameter is used to determine the synaesthesia parameter configuration information, so that the sending device can send the first signal according to the synaesthesia parameter configuration information, that is, the synaesthesia QoS characteristic parameter
  • the purpose of is to ensure the accurate transmission of the first signal.
  • the sending device sends the integrated signal of synaesthesia; if the signals of the two cannot use the same signal signal, the sensing signal and communication signal need to be sent separately, and the two can be sent by time division multiplexing, frequency division multiplexing or code division multiplexing, and the sending device sends the sensing signal and/or communication signal; That is to say, the above-mentioned first signal includes: at least one of a sensory signal, a communication signal, and a sensory integration signal.
  • the perceived delay budget is used to define the maximum perceived delay of the perceived service, and is used to quantitatively describe the real-time requirement of the perceived service.
  • Sensing Resolution Sensing Resolution
  • the perception resolution is used to define the fineness of perception services, and is related to network hardware devices and specific resource configurations, and this factor involves different configuration resources for different perception services.
  • the distance resolution is related to the configured sensing signal bandwidth
  • the angular resolution is related to the base station or terminal antenna aperture.
  • MSR Maximum Sensing Range
  • the maximum sensing range is used to define the maximum measurement range of the sensing measurement quantities supported by the sensing service.
  • A104 perception error (Sensing Error, SE);
  • the perception error is used to define the perception performance of the perception service, that is, the perception accuracy, which is related to network hardware equipment, specific resource configuration, and Signal-to-Noise Ratio (SNR);
  • the perception error can be obtained from the following Define one of the above three aspects: 1), the maximum error; 2), the percentage of the maximum error and the true value (relative maximum error); 3), the relative error distribution.
  • CSC Continuous Sensing Capacity
  • the continuous sensing capability is used to define the support capability of the sensing service for continuous sensing, which is mainly divided into single sensing and continuous sensing (such as target tracking, scanning imaging).
  • Sensing Update Rate (Sensing Update Rate);
  • sensing update frequency is used to define the update frequency of the sensing processing results requiring continuous sensing services.
  • the signal quality of the integrated synaesthesia is used to define the signal quality required by the integrated synaesthesia service, and different synaesthesia integrated services have different requirements.
  • the perceived security defines the security requirements of different perceived services and is divided into three levels.
  • the perceived privacy defines privacy requirements of different perceived services and is divided into three levels.
  • the detection probability is defined as the ability to judge the presence or absence of a target, and the probability that it is judged to be present under the assumption that the target exists.
  • the false alarm probability is defined as the ability to judge the presence or absence of a target, assuming that the target does not exist, it is judged as the probability of being present.
  • A101-A111 are usually QoS characteristic parameters related to perception
  • A112-A117 are usually QoS characteristic parameters related to communication.
  • 5G defines three service types: guaranteed bit rate (GBR), non-guaranteed bit rate (Non-GBR), and delay-critical GBR (Delay Critical GBD), which are used for data services with different real-time requirements. divided.
  • the sensing service covers a wide range, and one or more devices with sensing capabilities can sense the orientation, distance, speed and other information of the target object through the transmission and reception of wireless signals, or detect the target object, event or environment, etc. Tracking, recognition, imaging, etc.
  • Table 2 provides a specific definition manner of the perceptual QoS characteristic parameters, where the perceptual QoS characteristic parameters include at least one item of the parameters in Table 2.
  • the sensing service type (Sensing Service Type) is divided according to the two main requirements of the physical scope of the sensing service and the real-time requirement of the sensing.
  • the sensing service equal to the first preset value, that is, the large-scale sensing service (Large-scale Sensing, LSS), the corresponding sensing physical range is in the order of ten meters, hundreds of meters, and kilometers; the other is that the sensing physical range is less than
  • the sensing service with the first preset value that is, the small-scale sensing service (Small-scale Sensing, SSS) corresponds to the sensing physical range of centimeters, decimeters, and meters; according to the real-time perception requirements, analogous to the definition of 5G QoS, increase A Delay Critical type.
  • the types of sensing services can be divided into: Delay Critical LSS (corresponding to delay-sensitive sensing services whose sensing physical range is greater than or equal to the first preset value), LSS (corresponding to sensing physical range greater than or equal to the first Perceived services with a preset value), Delay Critical SSS (corresponding to delay-sensitive perceptual services whose perceptual physical range is smaller than the first preset value), and SSS (corresponding to perceptual services whose perceptual physical range is smaller than the first preset value), respectively Represented by Sensing Service Type I-IV. That is to say, the perceived service type mentioned in the embodiment of the present application includes at least one of the above four items.
  • 5G Similar to LTE's QCI, in order to divide the QoS of different data service types, 5G defines a 5G QoS identifier (5G Quality Identity, 5QI), which is used to index a 5G QoS characteristic parameter.
  • 5G QoS identifier 5G Quality Identity, 5QI
  • the standardized 5G QoS characteristic parameters have standardized pre-defined values of each parameter and are associated with fixed 5QI values (an index that marks a series of parameters).
  • the Sensing Quality Identity (SQI) values corresponding to different QoS are given here, as shown in Table 3.
  • the SQI should include at least one of the parameters listed in Table 3, and the corresponding value of the parameter.
  • the perceptual error can be the maximum absolute error (as shown in Table 3), or the maximum relative error (the percentage of the error and the true value), or even the error to describe the probability distribution.
  • Table 4 gives an example of another definition method of SQI.
  • Table 4 has the same function as Table 3, but the definition method is slightly different.
  • the sensing service type (Sensing Service Type) includes two types, one is Large-scale Sensing (LSS), and the corresponding sensing physical range is Ten meters, hundreds of meters, and kilometers; the other type is Small-scale Sensing (SSS), which corresponds to the perception of physical ranges of centimeters, decimeters, and meters.
  • LSS Large-scale Sensing
  • SSS Small-scale Sensing
  • synaesthesia QoS characteristic parameters in the embodiment of the present application may be determined by the sending device itself, or may be received from other devices. The following describes the acquisition methods of these two synesthesia QoS characteristic parameters in detail illustrate.
  • the sending device determines the characteristic parameters of synaesthesia QoS by itself
  • step 101 in the embodiment of the present application includes:
  • Step 1011 the sending device acquires a quality parameter set for synaesthesia integration
  • synaesthesia-integrated quality parameter set is the corresponding relationship between the synaesthesia-integrated quality index ISAC QI and the values of communication QoS characteristic parameters and perceptual QoS characteristic parameters;
  • the quality parameter set for the integration of communication and sensing is stipulated in a protocol or notified by a core network device.
  • Step 1012 the sending device receives the ISAC QI notified by the core network device or the receiving device;
  • Step 1013 the sending device determines the synaesthesia QoS characteristic parameters according to the ISAC QI and the synaesthesia integration quality parameter set.
  • the synaesthesia integration quality parameter set is set in advance, and the synaesthesia integration quality parameter set can be reflected in the form of a correspondence table, and the synaesthesia service requester can know that the service he requests corresponds to the synaesthesia integration
  • the sending device can determine the synaesthesia QoS characteristic parameter corresponding to the ISAC QI by searching the synaesthesia integrated quality parameter set through the ISAC QI.
  • this implementation method is based on the communication QoS, adding the way of mapping the perception QoS to the communication QoS, and finally forming the QoS characteristic parameters of the synaesthesia integration
  • the future B5G/6G network data service QoS may need to support more differentiated services than the existing 5G network, so its communication QoS may be more detailed and diverse than the existing 5G QoS definition.
  • This application only uses one possible communication QoS as an example for illustration, and the emphasis is on explaining the basic idea of mapping perceptual QoS characteristic parameters to communication QoS characteristic parameters. It is assumed that the communication QoS characteristic parameters include: Communication Resource Type, Communication Packet Delay Budget, Communication Packet Error Rate, Maximum Data Burst Volume, Average Window (Averaging Window) and so on. Table 5 gives a definition method of ISAC QI.
  • the communication QoS characteristic parameters listed in the above table are only examples, and do not mean that the communication QoS characteristic parameters of the future network only include these items.
  • the characteristic parameters related to perception and their values please refer to Table 2 and Table 3/Table 4.
  • the perceptual QoS characteristic parameters and their values are unified with "perceptual QoS characteristic parameters and values (refer to Table 2 and Table 3)" as the item name, and are embedded in the second column from the right of the above table.
  • "" is also used for the time being, as shown in the third column from the right.
  • the above table does not use “communication priority level”, but uses “ISAC priority level”. This is because the parameter of service priority level in the synaesthesia integration scenario needs to be able to represent both communication and perception. The order of precedence for all conditions that exist and exist concurrently. The values of the above priority levels are for reference only.
  • the synaesthesia-integrated business (with data communication and sensing needs at the same time) has a higher priority than the single communication or single sensing business, but the single communication or single sensing business has two Which one has the higher priority depends on the specific business. It can be seen from Table 5 that the ISAC QI definition method is mainly based on communication QoS, and the priority of perceived services will be affected by the factor that is specifically coupled with which communication services.
  • ISAC QI values are just examples, not necessarily the serial number values that are finally standardized or actually adopted by operators, and the actual use cases and QoS characteristic parameters are not limited to those listed in Table 5.
  • the main purpose of Table 5 (combining Table 2 and Table 3) is to provide a framework for ISAC QoS definition for subsequent standardization and reference for communication operators.
  • the mapping method of perceptual QoS characteristic parameters to communication QoS characteristic parameters given in Table 5 is clear and direct, and the QoS control process is relatively simple.
  • the network can easily establish the data flow granularity of communication-aware services, allocate transmission resources and computing resources that match the services for each node of the network, and realize differentiated services.
  • the above-mentioned ISAC QoS definition method is equivalent to maintaining all possible combinations of communication and perception concurrent services, including pure communication services and pure perception services, in a QoS table, and canceling the original communication B5QI/6G QoS Identifier (6G Quality Identity, 6QI) definition and perception SQI definition, that is to say, in this case, the synaesthesia QoS feature parameter also includes at least one of the synaesthesia service type and the synaesthesia priority level, the synaesthesia The priority level is used to determine the resource scheduling priority of the synesthesia integration signal.
  • synaesthesia business type includes at least one of the following:
  • a Sensing Implementation Method Indicator can be defined to indicate the implementation method of the synesthesia integration service that the base station or other sensing nodes can adopt.
  • a Sensing Implementation Method Indicator can be defined to indicate the implementation method of the synesthesia integration service that the base station or other sensing nodes can adopt.
  • the ways to realize synaesthesia integration services include but are not limited to the following:
  • SIMI 0: Focus on communication, use communication signals to achieve perception as much as possible, and it is difficult to guarantee perceived QoS;
  • SIMI 2: Sacrifice part of the communication QoS to satisfy the perceived QoS. Use dedicated sensing signals to time-division multiplex, or frequency-division multiplex, or time-division + frequency-division multiplex with communication data signals;
  • SIMI 4: The communication QoS and perception QoS reach a better level at the same time, using synaesthesia integrated signals;
  • SIMI 1: focus on communication QoS, while taking into account perceived QoS; A and C are time-division multiplexed;
  • SIMI 3: focus on perception QoS, while taking into account communication QoS; B and C are time-division multiplexed.
  • step 101 in the embodiment of the present application includes:
  • Step 1014 the sending device acquires a perceptual QoS parameter set and a communication QoS parameter set, the perceptual QoS parameter set is the corresponding relationship between the perceptual quality index SQI and the value of the perceptual QoS characteristic parameter, and the communication QoS parameter set is the communication quality index and Correspondence between the values of communication QoS characteristic parameters;
  • the QoS parameter set is stipulated by the protocol or notified by the core network equipment, and the communication QoS parameter set may also be stipulated by the protocol or notified by the core network equipment.
  • Step 1015 the sending device receives the SQI and communication quality index notified by the core network device or the receiving device;
  • Step 1016 the sending device acquires perceptual QoS characteristic parameters according to the SQI and perceptual QoS parameter set;
  • Step 1017 the sending device acquires communication QoS characteristic parameters according to the communication quality index and the communication QoS parameter set;
  • Step 1018 the sending device determines the perceptual QoS characteristic parameter and the communication QoS characteristic parameter as the synaesthesia QoS characteristic parameter.
  • the perceptual QoS parameter set and the communication QoS parameter set are used to determine the perceptual QoS characteristic parameter and the communication QoS characteristic parameter respectively, and these two QoS characteristic parameters are combined as the synaesthesia QoS characteristic parameter.
  • the characteristic parameters of communication QoS and the characteristic parameters of perception QoS are maintained separately, and then the mapping relationship between the two QoS is established separately, and finally the characteristic parameters of synaesthesia QoS are formed.
  • This implementation method does not need to directly define ISAC QoS, but uses and maintains communication and perception of two sets of QoS systems at the same time.
  • the two QoS are linked together through additionally defined service mapping relationships.
  • this newly added service mapping relationship can be indicated by an ISAC Mapping Index (ISAC MI).
  • ISAC MI ISAC Mapping Index
  • the network When there are only communication services or only perception services, the network only needs to refer to communication QoS or perception QoS to provide differentiated communication/perception services.
  • the network first judges whether the current communication and perception services satisfy the integration of synaesthesia according to the communication QoS and perception QoS conditions, and the communication and awareness strategies that need to be adopted.
  • the B5QI/6QI value can be determined according to the communication service type and the communication QoS definition; the SQI value can be determined according to the perception service type and the perception QoS definition (refer to the above "perception QoS definition").
  • the two processes determine the transmission resource configuration required by the communication service and the sensing service, and then the sensing network element (sensing network function) needs to further determine the two service mapping methods according to the communication and sensing service types and give the ISAC MI value. If the two services can be mapped, the sending device can send the integrated signal of synesthesia. If the two services cannot be mapped, the sending device needs to send the communication signal and the sensing signal separately.
  • Table 6 shows a possible mapping relationship between communication services and perception services and the corresponding ISAC MI values.
  • a communication service can be matched with multiple sensing services to achieve synaesthesia integration, and a sensing service can also be matched with multiple communication services, such as conversational voice and conversational video shown above (Live)
  • Table 6 shows only one possible SIMI value, and the possible ways can focus on communication QoS or perception QoS. It should be pointed out that whether the network uses the SIMI value is determined by the operator, that is, this parameter is optional.
  • the synaesthesia QoS feature parameter also includes at least one of the perceived service type, perceived priority level, communication service type, and communication priority level; the communication priority level is used to determine The resource scheduling priority of the communication signal; the perception priority level is used to determine the resource scheduling priority of the perception signal.
  • the communication service type includes at least one of the following:
  • step 101 in the embodiment of the present application includes:
  • the sending device receives the first information sent by the core network device or the receiving device;
  • the first information indicates a synaesthesia QoS characteristic parameter.
  • the synaesthesia QoS feature parameter does not need to be determined by the sending device itself, but can be obtained directly from other devices.
  • the sending device is a base station
  • the synaesthesia QoS feature The parameters can be directly notified by the core network equipment to the base station; when the sending device is a terminal, the synaesthesia QoS characteristic parameter is usually notified by the base station to the terminal.
  • the base station can be used as a receiving device for sensing signals, In this case, the synaesthesia QoS characteristic parameters of the base station may be notified by the core network equipment, or may be determined by the base station through ISAC QI and synaesthesia integration quality parameters in the above manner.
  • the first information is that it carries a synaesthesia QoS characteristic parameter, which can also be simply understood as that the first information is a synaesthesia QoS characteristic parameter.
  • the sending device determines to obtain the synaesthesia QoS characteristic parameters, it can determine the synaesthesia parameter configuration information according to the synaesthesia QoS characteristic parameters; then, according to the synaesthesia parameter configuration information, send the first
  • the receiving device also determines the synaesthesia parameter configuration information according to the synaesthesia QoS characteristic parameter, and then uses the synaesthesia parameter configuration information to receive the first signal; it needs to be explained What is more, realizing the sending and receiving of the first signal in this way can ensure the accuracy of the transmission of the first signal.
  • the above-mentioned first signal includes at least one of the following: a perception signal, a communication signal, and a synesthesia integration signal.
  • the synaesthesia parameter configuration information mentioned in the embodiments of this application includes but is not limited to at least one of the following:
  • this embodiment of the present application further includes:
  • the sending device determines the measurement quantity of the first signal according to the synaesthesia QoS characteristic parameter
  • the sending device sends the measurements to the receiving device.
  • the receiving device measures the first signal according to the measurement quantity, and determines the measurement value corresponding to the measurement quantity; it should be noted that the receiving device may directly receive
  • the measurement quantity sent by the sending device may also be the measurement quantity determined by itself to obtain the first signal according to the synaesthesia QoS characteristic parameters.
  • the sending device in order to successfully send the first signal, the sending device should also know which devices have participated in the integrated communication service. Specifically, this embodiment of the application also includes the following item:
  • the sending device receives the sending device and receiving device that participate in the synaesthesia sent by the core network device or the receiving device;
  • the core network device can determine the sending device and receiving device participating in the synaesthesia through the characteristic parameters of the synaesthesia QoS.
  • the receiving device sends it to the base station; when the sending device is a terminal and the receiving device is a base station, the core network device needs to first send the sending device and receiving device participating in the synaesthesia to the receiving device, and then the receiving device sends the synaesthesia participating The sending device and the receiving device then send to the sending device.
  • the sending device determines the sending device and the receiving device participating in the synaesthesia according to the synaesthesia QoS characteristic parameters
  • the sending device and receiving device participating in synesthesia may refer to the number of sending devices and receiving devices participating in synesthesia.
  • the sending device should also obtain the sensing mode of the service, and the sensing mode is used to indicate the sending and receiving end of the first signal, and perform the second Sending of a signal.
  • the sensing method can be obtained by the core network device according to the synaesthesia QoS characteristic parameter and sent to the sending device, or it can be obtained by the core network device according to the synaesthesia QoS characteristic parameter and then sent to the receiving device by The receiving device then sends it to the sending device; or, the sensing mode may also be determined by the sending device according to the synaesthesia QoS characteristic parameter.
  • the different sensing modes indicate different sending and receiving ends of the first signal; that is to say, the sensing mode is associated with the entity receiving and sending the first signal, specifically, the first signal is synaesthesia integration Signal as an example, the relationship between the entity corresponding to the perception method and the sending and receiving signal includes at least one of the following:
  • the first network node sends the synaesthesia integration signal, and the second network node receives the synaesthesia integration signal;
  • This situation refers to that the base station A sends the synaesthesia integrated signal, and the base station B receives the synaesthesia integrated signal.
  • the first network node sends and receives the integrated synaesthesia signal
  • This situation refers to that the base station A sends the synaesthesia integration signal, and the base station A receives the synaesthesia integration signal.
  • the first network node sends the synaesthesia integration signal, and the terminal device associated with the first network node receives the synaesthesia integration signal;
  • This situation refers to that the base station A sends the synaesthesia integrated signal, and the terminal receives the synaesthesia integrated signal.
  • the first terminal device sends the integrated synaesthesia signal, and the second terminal device receives the integrated synaesthesia signal;
  • This situation means that terminal A sends a synaesthesia integrated signal, and terminal B receives a synaesthesia integrated signal;
  • the first terminal device sends and receives the integrated synaesthesia signal
  • This situation means that terminal A sends a synaesthesia integrated signal, and terminal A receives a synaesthesia integrated signal;
  • the first terminal device sends the synaesthesia integration signal, and the first network node receives the synaesthesia integration signal;
  • This situation refers to that the terminal A sends the synaesthesia integrated signal, and the base station A receives the synaesthesia integrated signal.
  • the embodiment of this application can adopt the establishment of synaesthesia QoS features
  • the parameter and synaesthesia parameter configuration information, measurement quantity, sensing method, and the corresponding relationship table between the sending device and the receiving device participating in the synaesthesia are realized. When you need to obtain one of them, you only need to look up the table to get the corresponding data.
  • the characteristic parameters of synaesthesia QoS may include the value combination of various parameters in Table 5, and each value combination corresponds to an ISAC QI in Table 5, that is, the characteristic parameters of synaesthesia QoS are the same as the ISAC QI
  • this application adopts the establishment of a corresponding relationship table between ISAC QI and synaesthesia parameter configuration information, measurement quantity, sensing mode, sending device and receiving device participating in synaesthesia, and carries out the process based on the ISAC QI corresponding to the characteristic parameters of synaesthesia QoS. Look up the table to obtain the corresponding synaesthesia parameter configuration information, measurement quantities, sensing methods, sending devices and receiving devices participating in synaesthesia.
  • Table 7 gives the corresponding parameter configuration and sensing mode suggestions.
  • Table 7 ISAC QI value, corresponding synaesthesia parameter configuration and sensing mode of synaesthesia business type
  • the implementation manner of sending the first signal by the sending device may be as follows:
  • the sending device maps the first signal to a radio bearer RB by using a target mapping rule
  • the sending device sends the first signal to the receiving device through the RB;
  • the target mapping rule includes at least one of the following:
  • One first signal is mapped to one RB.
  • the receiving device also uses the same method to receive the first signal.
  • the RB includes at least one of a signaling radio bearer (SRB) and a data radio bearer (DRB).
  • SRB signaling radio bearer
  • DRB data radio bearer
  • the definition of QoS characteristic parameters can be used as the basis for the core network to divide QoS Flow for data services, and realize the mapping control of QoS Flow.
  • the QoS characteristic parameter QoS Profile used by gNB is allocated by the Session Management Function (SMF), and the 5QI value in 5G is included in the parameter set QoS configuration (QoS Profile) of the core network.
  • the sensing QoS parameters are allocated to the gNB by the sensing network function unit/sensing network element (Sensing Network Function, SNF). Since LTE/5G QoS is designed for data service transmission, its QoS usage and control process may be quite different from perceived QoS.
  • the sensing signal can be a pseudo-random sequence, such as m-sequence, Gold sequence, etc. Since end-to-end data information transmission is not involved, the sensing signal can be stored in each sensing node (such as outdoor macro base station, indoor small base station, dedicated sensing terminal and mobile terminal, etc.), and directly invoked when the sensing function is triggered, or based on local sensing
  • the signal sequence generation algorithm is directly calculated and generated, and sent to complete perception. At this time, there is no need for the NAS layer to perform QoS Flow mapping on the sensing data.
  • the sensing signal needs to pass through the wireless air interface, it is necessary to define the mapping relationship between the SQI and the radio bearer (Radio Bearer, RB) of the air interface.
  • Radio Bearer Radio Bearer
  • the sensing service involves air interface signaling interaction and sensing data sending and receiving, it needs the support of SRB and DRB at the same time.
  • the sensing signaling is carried by the SRB, and the sensing signal data is carried by the DRB.
  • the mapping between SQI and RB can be many-to-one or one-to-one.
  • Perceptual QoS Flow can use SRB and DRB independently.
  • Table 8 A possible perceptual QoS Flow and DRB mapping method
  • the base station or other possible sensing nodes insert into the data stream the sensing signal previously stored or calculated by the base station Data, and communication data signals are time-division/frequency-division multiplexed and sent, which can be regarded as a primary synaesthesia integration scenario at this time.
  • the sensing signal data does not involve end-to-end transmission, the NAS layer only maps the data IP Flow to the QoS Flow according to the ISAC QoS characteristic parameters/communication QoS characteristic parameters (the above two ISAC QI definition methods can be used). Service data share the same SRB and DRB.
  • the data stream is synaesthesia data.
  • the NAS layer of the future B5G/6G network will map IP flows with the same ISAC QoS requirements into the same QoS flow.
  • the base station or other sensing nodes then map the QoS Flow to the DRB to make the RAN side adapt to the QoS requirements. In this way, two-level mapping is formed, so that the RAN side has a certain degree of freedom.
  • the base station can convert M QoS flows into N DRBs (M ⁇ N) according to a certain strategy.
  • a special case is that when multiple data services and perception services are concurrent, matching QoS requirements for all perception services cannot be found in the defined ISAC QoS parameter set, that is, some data services are transmitted as a single QoS Flow, or some perception services
  • the business is independently carried over the wireless bearer. At this time, based on the SQI/perceptual QoS parameter set, a separate perceptual dedicated DRB is required.
  • Sensing network elements send synaesthesia QoS characteristic parameters (that is, ISAC QoS characteristic parameters) for 3D map perception and communication
  • a third party referring to the network (including the access network and the core network) and a third party other than the user) perceives the application and requests the network to use the outdoor macro base station to perform three-dimensional map perception of a certain area, such as the perception of the third-party application server to the core network
  • the network function unit/sensing network element (Sensing Network Function, SNF) or other network function unit/network element initiates a sensing request, and the sensing network element notifies multiple base stations near the sensing map to perform sensing operations.
  • the sensing method can be that the base station sends and receives the synaesthesia integrated signal and performs the sensing operation processing, or the base station A can transmit the synaesthesia integrated signal, and the base station B receives the synaesthesia integrated signal and performs the sensing operation processing, or it can be performed through the mobile phone
  • the terminal sends the synaesthesia integrated signal uplink, and the base station receives the synaesthesia integrated signal and performs the sensing operation processing.
  • the main implementation process includes:
  • the third-party perception application server can send a synaesthesia QoS characteristic parameter or a synaesthesia service request to the perception network element.
  • the third-party sensing application server can directly send the ISAC QI value (or the synaesthesia QoS feature parameter including ISAC QI) to the sensing node base station , the base station can directly determine the synaesthesia service type and the synaesthesia parameter configuration of the sensing node according to the ISAC QI value (or the synaesthesia QoS characteristic parameter including ISAC QI), which is convenient for the sensing node to schedule sensing resources and computing resources for sensing processing, which improves flexibility performance while reducing signaling overhead.
  • the ISAC QI value or the synaesthesia QoS feature parameter including ISAC QI
  • the quality parameter set of synaesthesia integration is forwarded by the sensing network element to the corresponding sensing node.
  • the sensing network element In this example, it is the base station that satisfies the sensing conditions in the three-dimensional map area (including having sensing capabilities and being able to provide parameter configurations that meet sensing needs, etc.).
  • the sensing network element includes two nodes, base station A and base station B, and the two nodes can be a single base station or multiple base stations; if the third-party sensing application server only sends synaesthesia service requests to the sensing network element, the sensing network element should also
  • the QoS parameters corresponding to the synaesthesia service can be determined according to the synaesthesia service request, and the quality parameter set of the synaesthesia integration is delivered to the corresponding sensing node.
  • Awareness network function/awareness network element can be a separate function/physical entity, or deployed in a general server of the core network as one of the functions of the core network, or deployed in the base station side as one of the functions of the base station.
  • the third-party perception application server can directly send a synaesthesia service request/syntheses QoS characteristic parameters to the base station, for example, ISAC QI or an operator-defined synaesthesia integrated quality parameter set.
  • the base station/mobile terminal can send the synaesthesia integration quality parameter set to the sensing network element, and forward it to the corresponding sensing node through the sensing network element.
  • the base station/mobile terminal can also directly send a synaesthesia service request, and the sensing network element determines the synaesthesia QoS characteristic parameters corresponding to the synaesthesia service according to the synaesthesia service request, and sends the synaesthesia integrated quality parameter set to the corresponding sensing node.
  • the sensing network element When sending/receiving synaesthesia integrated signals between the base station and the mobile user terminal to realize the perception of environmental information and generate a 3D map, or when the sensing process requires the cooperation of the mobile terminal, the sensing network element needs to be downloaded to the mobile terminal through the RAN side.
  • a quality parameter set for synaesthesia integration (or perceptual QoS characteristic parameters including the above parameters) is sent, and mobile terminals that cooperate with synaesthesia services configure corresponding synaesthesia parameters according to the quality parameter set for synaesthesia integration.
  • the mobile terminal Based on the RRC reconfiguration (Reconfiguration) message of the base station, maps the integrated QoS Flow to wireless air interface resources at the SDAP layer.
  • Sensing network elements send ISAC QoS characteristic parameters for V2X sensing/communication sensing
  • RSU Road Side Unit
  • Vehicle users need to sense the location and speed of pedestrians and vehicles on the road near the vehicle user through their own synaesthesia system or the Road Side Unit (RSU).
  • RSU Road Side Unit
  • This scenario needs to meet the requirements of low latency and high reliability, so the latency tolerance is lower than that of 3D map generation and weather detection, and its priority is higher than most perception services.
  • Vehicle users may be ordinary users who do not have a perception system and rely entirely on the RSU for perception; they may also be equipped with a synaesthesia integration system or a perception system that can interact with the RSU for information.
  • RSU is a roadside micro base station/small base station with sensing capabilities and sensing resources.
  • the vehicle user When a vehicle user needs an RSU for pedestrian driving awareness, the vehicle user sends an ISAC QoS characteristic parameter or a synaesthesia service request to a nearby RSU. If the ISAC QoS characteristic parameters are sent directly, if it is a standardized ISAC QoS characteristic parameter and a synaesthesia service, the vehicle user can directly send the ISAC QI value to the nearest sensing node RSU, and the nearest RSU forwards the ISAC QI to the sensing network element, and the sensing network element According to the ISAC QI value, it is possible to directly determine the types of communication and sensing services, determine which RSUs on the roadside participate in sensing, the number of RSUs participating in sensing processing, and the configuration of synaesthesia parameters of each sensing node, so as to facilitate sensing nodes to dispatch synaesthesia resources and computing resources for sensing processing, which improves flexibility and reduces signaling overhead.
  • the sensing network element sends the synaesthesia integration quality parameter set to the RSU (mainly the RSU within a certain range of vehicle users) that meets the sensing conditions, and the RSU determines the sensing mode according to the synaesthesia integration quality parameter set, and configures the synaesthesia parameters. Mobilize time-frequency resources and computing resources to meet perception needs. After completing the sensing calculation, the RSU reports the sensing result to the sensing network element in real time, and the sensing network element sends it to the vehicle user to provide the real-time sensing result.
  • the RSU reports the sensing result to the sensing network element in real time, and the sensing network element sends it to the vehicle user to provide the real-time sensing result.
  • the sensing network element should also be able to determine the synaesthesia QoS characteristic parameters corresponding to the synaesthesia service according to the synaesthesia service request, and set the synaesthesia integrated quality parameter set to Send it to the corresponding sensing node RSU.
  • synaesthesia-integrated quality parameter set is also applicable to the situation that the vehicle user itself has the perception ability.
  • the vehicle user After the synaesthesia service request is initiated, the vehicle user performs synaesthesia parameter configuration and synaesthesia processing, and finally combines the RSU sensing results to obtain a comprehensive sensing result.
  • the originator of the aforementioned sensing request may also be a third-party application server, and the third-party sensing application server may send sensing ISAC QoS characteristic parameters or a synaesthesia service request to the sensing network element.
  • the third-party sensing application server may send sensing ISAC QoS characteristic parameters or a synaesthesia service request to the sensing network element.
  • RSUs can directly determine the synaesthesia-integrated service type and the synaesthesia parameter configuration of the synaesthesia-integrated node, which facilitates the sensing node to schedule sensing communication resources and computing resources for sensing processing, which improves flexibility and reduces signaling overhead.
  • 3D map reconstruction and weather detection are concurrent.
  • the session business volume is relatively large in the current period, so it conforms to the synesthesia integration scenario; and for weather detection, due to the network video (buffer stream)/Transmission Control Protocol (Transmission Control Protocol, TCP) application business in the current period Streams are less (restricted) and require a dedicated sensing signal for sensing.
  • TCP Transmission Control Protocol
  • synaesthesia-integrated services may also be sent concurrently.
  • a certain mobile user in a certain area it is conducting a session video (live broadcast) service.
  • the live broadcast application side just wants to obtain The live broadcast location of the user is to accurately locate the user; at the same time, the intelligent transportation system in the vicinity of the user is communicating with the vehicle and sensing the real-time speed and trajectory.
  • the entire sensing scene is shown in Figure 4.
  • the two integrated synaesthesia services may adopt the same sensing method. For example, a large number of mobile terminals in the sensing area cooperate with the base station to send sensing/sensing integrated signals uplink, and the base station or sensing network element performs sensing calculations to obtain environmental information. At this time, the base station can configure appropriate radio bearer parameters and transmission resource configuration parameters for the service according to these two similar ISAC QoS characteristic parameters, and transmit the synaesthesia integration data of the two services on the same logical channel, that is, realize communication.
  • Sense integration Flow to Radio Bearer many-to-one mapping.
  • base station C also needs to perform communication and location awareness for mobile terminals 4 (pedestrians), and for mobile terminals 5 ( Driving on the road) for real-time communication and speed and trajectory perception. Since the real-time requirements and sensing distance of these two integrated synesthesia services are quite different from the previous 3D map reconstruction and weather perception services, base stations are required The transmission resources of different levels are invoked respectively to carry the two services.
  • This application classifies and quantifies the sensing needs and sensing services, defines the QoS of different synaesthesia integration services, determines the specific mapping relationship between sensing needs and sensing processing, and ensures the sensing processing of each sensing node (including sending The terminal configures the sensing signal format and parameters, and the receiving end determines the processing accuracy, sensing computing resources, etc.) can meet the QoS requirements of synaesthesia integration, and ultimately make the network synaesthesia integration function more efficient and flexible.
  • the executing subject may be the device for determining the quality of service characteristic parameter, or, the device used to execute the quality of service characteristic parameter determination method in the quality of service characteristic parameter determination device control module.
  • the method for determining the quality of service characteristic parameter performed by the device for determining the characteristic parameter of service quality is taken as an example to illustrate the device for determining the characteristic parameter of service quality provided in the embodiment of the present application.
  • the embodiment of the present application provides a quality of service characteristic parameter determination apparatus 600, which is applied to a sending device, including:
  • the first determining module 601 is used to determine the QoS characteristic parameter of the synaesthesia quality of service
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • the first determination module 601 includes:
  • the first acquisition unit is used to obtain the quality parameter set of synaesthesia integration, and the quality parameter set of synaesthesia integration is the corresponding relationship between the quality index ISAC QI of synaesthesia integration, the communication QoS characteristic parameter and the value of the perception QoS characteristic parameter ;
  • the first receiving unit is used to receive the ISAC QI notified by the core network device or the receiving device;
  • the first determination unit is configured to determine the synaesthesia QoS characteristic parameter according to the ISAC QI and the synaesthesia integration quality parameter set.
  • the telesensing integration quality parameter set is stipulated in a protocol or notified by a core network device.
  • the first determination module 601 includes:
  • the second acquiring unit is used to acquire a perceptual QoS parameter set and a communication QoS parameter set, the perceptual QoS parameter set is the corresponding relationship between the perceptual quality index SQI and the value of the perceptual QoS characteristic parameter, and the communication QoS parameter set is the communication quality The corresponding relationship between the index and the value of the communication QoS characteristic parameter;
  • the second receiving unit is used to receive the SQI and communication quality index notified by the core network device or the receiving device;
  • a third acquiring unit configured to acquire perceptual QoS characteristic parameters according to the SQI and perceptual QoS parameter set;
  • a fourth acquiring unit configured to acquire communication QoS characteristic parameters according to the communication quality index and the communication QoS parameter set
  • the second determining unit is configured to determine the perceptual QoS characteristic parameter and the communication QoS characteristic parameter as a synaesthesia QoS characteristic parameter.
  • the first determination module 601 includes:
  • the third receiving unit is configured to receive the first information sent by the core network device or the receiving device, where the first information indicates a synaesthesia QoS characteristic parameter.
  • the synaesthesia QoS characteristic parameter also includes at least one of the synaesthesia service type and the synaesthesia priority level; or, the synaesthesia QoS characteristic parameter also includes the perception service type, the perception priority level, the communication At least one of business type and communication priority level;
  • the synaesthesia priority level is used to determine the resource scheduling priority of the synaesthesia integrated signal;
  • the communication priority level is used to determine the resource scheduling priority of the communication signal;
  • the perception priority level is used to determine the perception The resource scheduling priority of the signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is smaller than a first preset value.
  • the communication service type includes at least one of the following:
  • the synaesthesia service type includes at least one of the following:
  • a delay-sensitive communication sensing service whose sensing physical range is greater than or equal to a second preset value
  • Sensing delay-sensitive communication sensing services whose physical range is smaller than a second preset value
  • Sensing communication sensing services whose physical range is smaller than a second preset value.
  • the first determination module 601 determines the QoS characteristic parameters of the synaesthesia quality of service, it further includes:
  • the second determination module is used to determine synaesthesia parameter configuration information according to the synaesthesia QoS characteristic parameters
  • the second sending module is configured to send the first signal to the receiving device according to the synaesthesia parameter configuration information
  • the synesthesia parameter configuration information includes at least one of the following:
  • the first signal includes at least one of the following: a perception signal, a communication signal, and a synesthesia integration signal.
  • the second sending module includes:
  • a first mapping unit configured to map the first signal to a radio bearer RB through a target mapping rule
  • a first sending unit configured to send a first signal to a receiving device through an RB
  • the target mapping rule includes at least one of the following:
  • One first signal is mapped to one RB.
  • the device also includes:
  • a third determining module configured to determine the measurement quantity of the first signal according to the synaesthesia QoS characteristic parameter
  • a third sending module configured to send the measured quantity to a receiving device
  • the first signal includes at least one of the following: perception signal, communication signal and synesthesia integration signal.
  • the device also includes:
  • the first receiving module is configured to receive the perception mode of the service sent by the core network device or the receiving device; or
  • the fourth determination module is used to determine the perception mode of the service according to the characteristic parameters of the synaesthesia QoS;
  • different sensing modes correspond to different transmitting and receiving ends of the first signal
  • the first signal includes at least one of the following: a perception signal, a communication signal, and a synesthesia integration signal.
  • the device also includes the following:
  • the second receiving module is used to receive the sending device and the receiving device participating in synaesthesia sent by the core network device or the receiving device;
  • the fifth determination module is configured to determine the sending device and the receiving device participating in the synaesthesia according to the synaesthesia QoS characteristic parameters.
  • this device embodiment is a device corresponding to the above-mentioned method, and all the implementation modes in the above-mentioned method embodiment are applicable to this device embodiment, and can also achieve the same technical effect, so details are not repeated here.
  • the apparatus for determining characteristic parameters of quality of service provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 1 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a sending device, including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • a sending device including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor, the application
  • the various processes of the embodiments of the method for determining the quality of service characteristic parameters on the sending device side can achieve the same technical effect, and are not repeated here to avoid repetition.
  • the embodiment of the present application also provides a readable storage medium.
  • the computer-readable storage medium stores a program or an instruction.
  • the embodiment of the quality of service characteristic parameter determination method applied to the sending device side is implemented.
  • Each process can achieve the same technical effect, so in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • the embodiment of the present application also provides a sending device, including a processor and a communication interface, and the processor is used to determine the QoS characteristic parameters of the synaesthesia quality of service;
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • This device embodiment corresponds to the above-mentioned embodiment of the method for determining service quality characteristic parameters.
  • the various implementation processes and implementation methods of the above-mentioned method embodiments can be applied to this device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a sending device.
  • the sending device is a base station
  • the base station 700 includes: an antenna 701 , a radio frequency device 702 , and a baseband device 703 .
  • the antenna 701 is connected to the radio frequency device 702 .
  • the radio frequency device 702 receives information through the antenna 701, and sends the received information to the baseband device 703 for processing.
  • the baseband device 703 processes the information to be sent and sends it to the radio frequency device 702
  • the radio frequency device 702 processes the received information and sends it out through the antenna 701 .
  • the foregoing frequency band processing apparatus may be located in the baseband apparatus 703 , and the methods performed by the base station in the above embodiments may be implemented in the baseband apparatus 703 , and the baseband apparatus 703 includes a processor 704 and a memory 705 .
  • the baseband device 703, for example, may include at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 703 may also include a network interface 706, configured to exchange information with the radio frequency device 702, such as a Common Public Radio Interface (Common Public Radio Interface, CPRI).
  • a network interface 706, configured to exchange information with the radio frequency device 702, such as a Common Public Radio Interface (Common Public Radio Interface, CPRI).
  • CPRI Common Public Radio Interface
  • the base station in the embodiment of the present invention also includes: instructions or programs stored in the memory 705 and operable on the processor 704, and the processor 704 calls the instructions or programs in the memory 705 to execute the functions executed by the modules shown in FIG. method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • FIG. 8 is a schematic diagram of a hardware structure for implementing a terminal.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, and a processor 810, etc. at least some of the components.
  • the terminal 800 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 810 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 804 may include a graphics processor (Graphics Processing Unit, GPU) 8041 and a microphone 8042, and the graphics processor 8041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072 .
  • the touch panel 8071 is also called a touch screen.
  • the touch panel 8071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 8072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 801 receives the downlink data from the network side device, and processes it to the processor 810; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 809 can be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 809 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 810 .
  • the processor 810 is used to implement:
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • processor 810 is used to implement:
  • the sending device acquires a synaesthesia-integrated quality parameter set, and the synaesthesia-integrated quality parameter set is the corresponding relationship between the synaesthesia-integrated quality index ISAC QI and the communication QoS characteristic parameter and the value of the perception QoS characteristic parameter;
  • the radio frequency unit 801 is configured to: receive the ISAC QI notified by the core network device or the receiving device;
  • the processor 810 is configured to implement: the sending device determines the synaesthesia QoS characteristic parameter according to the ISAC QI and the synaesthesia integration quality parameter set.
  • the telesensing integration quality parameter set is stipulated in a protocol or notified by a core network device.
  • processor 810 is used to implement:
  • the set of perceptual QoS parameters is the corresponding relationship between the value of the perceptual quality index SQI and the value of the perceptual QoS characteristic parameter
  • the set of communication QoS parameters is the combination of the communication quality index and the characteristic parameter of communication QoS Correspondence between values
  • the radio frequency unit 801 is configured to: receive the SQI and the communication quality index notified by the core network device or the receiving device;
  • the processor 810 is configured to: acquire perceptual QoS characteristic parameters according to the SQI and the perceptual QoS parameter set; acquire communication QoS characteristic parameters according to the communication quality index and the communication QoS parameter set;
  • the radio frequency unit 801 is configured to implement: the sending device receives first information sent by the core network device or the receiving device, where the first information indicates a synaesthesia QoS characteristic parameter.
  • the synaesthesia QoS characteristic parameter also includes at least one of the synaesthesia service type and the synaesthesia priority level; or, the synaesthesia QoS characteristic parameter also includes the perception service type, the perception priority level, the communication At least one of business type and communication priority level;
  • the synaesthesia priority level is used to determine the resource scheduling priority of the synaesthesia integrated signal;
  • the communication priority level is used to determine the resource scheduling priority of the communication signal;
  • the perception priority level is used to determine the perception The resource scheduling priority of the signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is smaller than a first preset value.
  • the communication service type includes at least one of the following:
  • the synaesthesia service type includes at least one of the following:
  • a delay-sensitive communication sensing service whose sensing physical range is greater than or equal to a second preset value
  • Sensing delay-sensitive communication sensing services whose physical range is smaller than a second preset value
  • Sensing communication sensing services whose physical range is smaller than a second preset value.
  • the sending device determines the QoS characteristic parameters of the synaesthesia quality of service, it further includes:
  • the sending device determines synaesthesia parameter configuration information according to the synaesthesia QoS characteristic parameter
  • the sending device sends a first signal to the receiving device according to the synaesthesia parameter configuration information
  • the synesthesia parameter configuration information includes at least one of the following:
  • the first signal includes at least one of the following: a perception signal, a communication signal, and a synesthesia integration signal.
  • processor 810 is used to implement:
  • the radio frequency unit 801 is configured to: send a first signal to a receiving device through an RB;
  • the target mapping rule includes at least one of the following:
  • One first signal is mapped to one RB.
  • processor 810 is also used to implement:
  • the sending device determines the measurement quantity of the first signal according to the synaesthesia QoS characteristic parameter
  • the radio frequency unit 801 is configured to: send the measured quantity to a receiving device;
  • the first signal includes at least one of the following: a perception signal, a communication signal, and a synesthesia integration signal.
  • the radio frequency unit 801 is also used to implement:
  • the perception method of receiving core network equipment or services sent by receiving equipment or
  • the processor 810 is also configured to: determine the sensing mode of the service according to the synaesthesia QoS characteristic parameters;
  • the different sensing methods correspond to different sensing signals or the sending and receiving ends of the synesthesia integration signal
  • the first signal includes at least one of the following: sensing signal, communication signal and synesthesia integration signal.
  • the radio frequency unit 801 is also used to implement:
  • the sending device receives the core network device or the sending device and receiving device participating in the synaesthesia sent by the receiving device;
  • the processor 810 is further configured to: determine a sending device and a receiving device participating in synaesthesia according to the synaesthesia QoS characteristic parameter.
  • the embodiment of the present application also provides a method for determining characteristic parameters of quality of service, including:
  • Step 901 the receiving device acquires QoS characteristic parameters of synaesthesia service quality
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • the receiving device obtains QoS characteristic parameters of synaesthesia quality of service, including:
  • the receiving device obtains a synaesthesia-integrated quality parameter set, and the synaesthesia-integrated quality parameter set is the corresponding relationship between the synaesthesia-integrated quality index ISAC QI and the communication QoS characteristic parameter and the value of the perception QoS characteristic parameter;
  • the receiving device receives the ISAC QI notified by the core network device or the sending device;
  • the receiving device determines the synaesthesia QoS characteristic parameters according to the ISAC QI and the synesthesia integration quality parameter set.
  • the telesensing integration quality parameter set is stipulated in a protocol, notified by a core network device, or notified by a sending device.
  • the receiving device obtains QoS characteristic parameters of synaesthesia quality of service, including:
  • the receiving device obtains a perception QoS parameter set and a communication QoS parameter set, the perception QoS parameter set is the corresponding relationship between the perception quality index SQI and the value of the perception QoS characteristic parameter, and the communication QoS parameter set is the communication quality index and the communication QoS characteristic Correspondence between parameter values;
  • the receiving device receives the core network device or the SQI and communication quality index notified by the sending device;
  • the receiving device acquires perceptual QoS characteristic parameters according to the SQI and perceptual QoS parameter set;
  • the receiving device acquires communication QoS characteristic parameters according to the communication quality index and the communication QoS parameter set;
  • the receiving device determines the perceptual QoS characteristic parameter and the communication QoS characteristic parameter as a synaesthesia QoS characteristic parameter.
  • the receiving device obtains QoS characteristic parameters of synaesthesia quality of service, including:
  • the receiving device receives the second information sent by the core network device or the sending device;
  • the second information indicates a synaesthesia QoS characteristic parameter.
  • the synaesthesia QoS characteristic parameter also includes at least one of the synaesthesia service type and the synaesthesia priority level; or, the synaesthesia QoS characteristic parameter also includes the perception service type, the perception priority level, the communication At least one of business type and communication priority level;
  • the synaesthesia priority level is used to determine the resource scheduling priority of the synaesthesia integrated signal;
  • the communication priority level is used to determine the resource scheduling priority of the communication signal;
  • the perception priority level is used to determine the perception The resource scheduling priority of the signal.
  • the method also includes:
  • the receiving device obtains synaesthesia parameter configuration information
  • the receiving device receives the first signal sent by the sending device according to the synaesthesia parameter configuration information
  • the synaesthesia parameter configuration information includes at least one of the following:
  • the first signal includes at least one of the following: a perception signal, a communication signal, and a synesthesia integration signal.
  • the receiving device acquires synesthesia parameter configuration information, including the following one:
  • the receiving device receives the synaesthesia parameter configuration information sent by the sending device or the core network device;
  • the receiving device determines synaesthesia parameter configuration information according to the synaesthesia QoS characteristic parameter.
  • the first signal sent by the receiving and sending device includes:
  • the target mapping rule includes at least one of the following:
  • One first signal is mapped to one RB.
  • the receiving device receives the synesthesia integration signal sent by the sending device according to the synaesthesia parameter configuration information, it further includes:
  • the receiving device acquires the measurement quantity of the first signal
  • the receiving device measures the first signal according to the measurement quantity of the first signal, and determines a measurement value corresponding to the measurement quantity.
  • the receiving device acquires the measurement quantity of the first signal, including the following item:
  • the receiving device receives the measurement quantity of the first signal sent by the sending device
  • the receiving device determines the measurement quantity of the first signal according to the synaesthesia QoS characteristic parameter.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is smaller than a first preset value.
  • the communication service type includes at least one of the following:
  • the synaesthesia service type includes at least one of the following:
  • a delay-sensitive communication sensing service whose sensing physical range is greater than or equal to a second preset value
  • Sensing delay-sensitive communication sensing services whose physical range is smaller than a second preset value
  • Sensing communication sensing services whose physical range is smaller than a second preset value.
  • the embodiment of the present application also provides an apparatus 1000 for determining characteristic parameters of quality of service, which is applied to a receiving device, including:
  • the first obtaining module 1001 is used to obtain the QoS characteristic parameter of the synaesthesia quality of service
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • the first obtaining module 1001 includes:
  • the fifth acquisition unit is used to obtain the quality parameter set of synaesthesia integration, and the quality parameter set of synaesthesia integration is the corresponding relationship between the quality index ISAC QI of synaesthesia integration, the communication QoS characteristic parameter and the value of the perception QoS characteristic parameter ;
  • the fourth receiving unit is used to receive the ISAC QI notified by the core network device or the sending device;
  • the third determination unit is configured to determine the synaesthesia QoS characteristic parameter according to the ISAC QI and the synaesthesia integration quality parameter set.
  • the telesensing integration quality parameter set is stipulated in a protocol, notified by a core network device, or notified by a sending device.
  • the first obtaining module 1001 includes:
  • the sixth acquisition unit is configured to acquire a perceptual QoS parameter set and a communication QoS parameter set, the perceptual QoS parameter set is the corresponding relationship between the perceptual quality index SQI and the value of the perceptual QoS characteristic parameter, and the communication QoS parameter set is the communication quality The corresponding relationship between the index and the value of the communication QoS characteristic parameter;
  • the fifth receiving unit is used to receive the SQI and communication quality index notified by the core network device or the sending device;
  • a seventh acquiring unit configured to acquire perceptual QoS characteristic parameters according to the SQI and perceptual QoS parameter set;
  • An eighth acquiring unit configured to acquire communication QoS characteristic parameters according to the communication quality index and the communication QoS parameter set;
  • a fourth determining unit is configured to determine the perceptual QoS characteristic parameter and the communication QoS characteristic parameter as a synaesthesia QoS characteristic parameter.
  • the first obtaining module 1001 includes:
  • a sixth receiving unit configured to receive the second information sent by the core network device or the sending device
  • the second information indicates a synaesthesia QoS characteristic parameter.
  • the synaesthesia QoS characteristic parameter also includes at least one of the synaesthesia service type and the synaesthesia priority level; or, the synaesthesia QoS characteristic parameter also includes the perception service type, the perception priority level, the communication At least one of business type and communication priority level;
  • the synaesthesia priority level is used to determine the resource scheduling priority of the synaesthesia integrated signal;
  • the communication priority level is used to determine the resource scheduling priority of the communication signal;
  • the perception priority level is used to determine the perception The resource scheduling priority of the signal.
  • the device also includes:
  • the third obtaining module is used to obtain synaesthesia parameter configuration information
  • a third receiving module configured to receive the first signal sent by the sending device according to the synaesthesia parameter configuration information
  • the synaesthesia parameter configuration information includes at least one of the following:
  • the first signal includes at least one of the following: a perception signal, a communication signal, and a synesthesia integration signal.
  • the third acquisition module is configured to implement one of the following:
  • the receiving device receives the synaesthesia parameter configuration information sent by the sending device or the core network device;
  • the receiving device determines synaesthesia parameter configuration information according to the synaesthesia QoS characteristic parameter.
  • the third receiving module is configured to:
  • the target mapping rule includes at least one of the following:
  • One first signal is mapped to one RB.
  • the third receiving module receives the first signal sent by the sending device according to the synaesthesia parameter configuration information, it further includes:
  • a fourth obtaining module configured for the receiving device to obtain the measured quantity of the first signal
  • the sixth determination module is configured to measure the first signal according to the measurement quantity of the first signal, and determine a measurement value corresponding to the measurement quantity.
  • the fourth acquisition module is configured to implement one of the following:
  • the receiving device receives the measurement quantity of the first signal sent by the sending device
  • the receiving device determines the measurement quantity of the first signal according to the synaesthesia QoS characteristic parameter.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is smaller than a first preset value.
  • the communication service type includes at least one of the following:
  • the synaesthesia service type includes at least one of the following:
  • a delay-sensitive communication sensing service whose sensing physical range is greater than or equal to a second preset value
  • Sensing delay-sensitive communication sensing services whose physical range is smaller than a second preset value
  • Sensing communication sensing services whose physical range is smaller than a second preset value.
  • the embodiment of the present application also provides a receiving device, including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • a receiving device including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor, the application
  • Each process of the embodiment of the method for determining the quality of service characteristic parameter on the receiving device side can achieve the same technical effect, so in order to avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a readable storage medium, where a program or instruction is stored on the computer-readable storage medium, and when the program or instruction is executed by a processor, the embodiment of the quality of service characteristic parameter determination method applied to the receiving device side is realized.
  • a program or instruction is stored on the computer-readable storage medium, and when the program or instruction is executed by a processor, the embodiment of the quality of service characteristic parameter determination method applied to the receiving device side is realized.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • the embodiment of the present application also provides a receiving device, including a processor and a communication interface, and the processor is used to obtain QoS characteristic parameters of the synaesthesia quality of service;
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • This device embodiment corresponds to the above-mentioned method embodiment applied to the receiving device side, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a receiving device.
  • a receiving device Specifically, for the structure of the receiving device, refer to the structure in FIG. 7 or FIG. 8 , which will not be repeated here.
  • the processor invokes instructions or programs in the memory to execute the methods executed by the modules shown in FIG. 10 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a data sending method, including:
  • Step 1101 the core network equipment obtains target data, and the target data includes: synaesthesia service quality QoS characteristic parameter, synaesthesia integration quality index ISAC QI, perception quality index SQI and communication quality index;
  • Step 1102 the core network device sends the target data to the sending device and/or the receiving device;
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • the method also includes:
  • the third information includes at least one of the following:
  • a sensing mode of the service where different sensing modes correspond to different transmitting and receiving ends of the first signal
  • the first signal includes at least one of the following: a perception signal, a communication signal, and a synesthesia integration signal.
  • the method further includes:
  • the core network device sends the sensing mode of the service to the sending device or the receiving device and/or the sending device and the receiving device participating in synesthesia.
  • the synaesthesia QoS characteristic parameter also includes at least one of the synaesthesia service type and the synaesthesia priority level; or, the synaesthesia QoS characteristic parameter also includes the perception service type, the perception priority level, the communication At least one of business type and communication priority level;
  • the synaesthesia priority level is used to determine the resource scheduling priority of the synaesthesia integrated signal;
  • the communication priority level is used to determine the resource scheduling priority of the communication signal;
  • the perception priority level is used to determine the perception The resource scheduling priority of the signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is smaller than a first preset value.
  • the communication service type includes at least one of the following:
  • the synaesthesia service type includes at least one of the following:
  • a delay-sensitive communication sensing service whose sensing physical range is greater than or equal to a second preset value
  • Sensing delay-sensitive communication sensing services whose physical range is smaller than a second preset value
  • Sensing communication sensing services whose physical range is smaller than a second preset value.
  • the embodiment of the present application also provides a data sending device 1200, which is applied to core network equipment, including:
  • the second acquisition module 1201 is used to acquire target data, and the target data includes: synaesthesia quality of service QoS characteristic parameters, synaesthesia integration quality index ISAC QI, perception quality index SQI and communication quality index;
  • a first sending module 1202 configured to send the target data to a sending device and/or a receiving device;
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • the device also includes:
  • a seventh determining module configured to determine third information according to the target data
  • the third information includes at least one of the following:
  • a sensing mode of the service where different sensing modes correspond to different transmitting and receiving ends of the first signal
  • the first signal includes at least one of the following: a perception signal, a communication signal, and a synesthesia integration signal.
  • the seventh determination module determines the third information according to the target data, it further includes:
  • the fourth sending module is configured to send the perception mode of the service and/or the sending device and the receiving device participating in synaesthesia to the sending device or the receiving device.
  • the synaesthesia QoS characteristic parameter also includes at least one of the synaesthesia service type and the synaesthesia priority level; or, the synaesthesia QoS characteristic parameter also includes the perception service type, the perception priority level, the communication At least one of business type and communication priority level;
  • the synaesthesia priority level is used to determine the resource scheduling priority of the synaesthesia integrated signal;
  • the communication priority level is used to determine the resource scheduling priority of the communication signal;
  • the perception priority level is used to determine the perception The resource scheduling priority of the signal.
  • the perceived service type includes at least one of the following:
  • Delay-sensitive sensing services whose sensing physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is greater than or equal to the first preset value
  • Sensing services whose physical range is smaller than a first preset value.
  • the communication service type includes at least one of the following:
  • the synaesthesia service type includes at least one of the following:
  • a delay-sensitive communication sensing service whose sensing physical range is greater than or equal to a second preset value
  • Sensing delay-sensitive communication sensing services whose physical range is smaller than a second preset value
  • Sensing communication sensing services whose physical range is smaller than a second preset value.
  • the embodiment of the present application also provides a core network device, including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • a core network device including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor, the application
  • the various processes of the embodiments of the data sending method on the core network device side can achieve the same technical effect, and will not be repeated here to avoid repetition.
  • the embodiment of the present application also provides a readable storage medium, on which a computer-readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each process of the embodiment of the data transmission method applied to the core network device side is realized , and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • the embodiment of the present application also provides a core network device, including a processor and a communication interface.
  • the processor is used to obtain target data, and the target data includes: synaesthesia service quality QoS characteristic parameters, synaesthesia integrated quality index ISAC QI, perception A quality index SQI and a communication quality index;
  • the communication interface is used to send the target data to the sending device and/or the receiving device;
  • the synaesthesia QoS feature parameters include at least one of the following:
  • Perception delay budget Perception delay budget, perception resolution, maximum perception range, perception error, continuous perception ability, perception update frequency, signal quality of synaesthesia integration, perception security, perception privacy, detection probability, false alarm probability, packet delay budget , packet error rate, maximum data burst, maximum data rate, bit error rate, average window.
  • This device embodiment corresponds to the above-mentioned embodiment of the method applied to the core network device side.
  • the various implementation processes and implementation methods of the above method embodiments can be applied to this core network device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a core network device.
  • the structure of the core network device refer to the structure of the base station in FIG. 7 , which will not be repeated here.
  • the processor calls the instructions or programs in the memory to execute the methods performed by the modules shown in Figure 12, and achieves the same technical effect. To avoid repetition, it is not repeated here.
  • this embodiment of the present application further provides a communication device 1300, including a processor 1301, a memory 1302, and programs or instructions stored in the memory 1302 and operable on the processor 1301,
  • a communication device 1300 including a processor 1301, a memory 1302, and programs or instructions stored in the memory 1302 and operable on the processor 1301,
  • the communication device 1300 is a sending device
  • the program or instruction is executed by the processor 1301
  • each process of the above embodiment of the method for determining a quality of service characteristic parameter can be implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a receiving device, when the program or instruction is executed by the processor 1301, each process of the above embodiment of the method for determining a quality of service characteristic parameter can be realized, and the same technical effect can be achieved.
  • the communication device 1300 is a core network device
  • each process of the above-mentioned data sending method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the sending device and the receiving device involved in the embodiment of the present application may be terminals, devices that provide voice and/or data connectivity to users, handheld devices with wireless connection functions, or other processing devices connected to wireless modems.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in this embodiment of the application.
  • the sending device and receiving device involved in the embodiment of the present application may be a base station (Base Transceiver Station, BTS) in Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA). It can be a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , or base stations in the future 5G network, etc., are not limited here.
  • BTS Base Transceiver Station
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • NodeB, NB Wideband Code Division Multiple Access
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • relay station or access point or base stations in the future 5G network, etc.
  • MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi user MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2-dimensional MIMO (2 Dimension MIMO, 2D-MIMO), 3-dimensional MIMO (3 Dimension MIMO, 3D-MIMO), full-dimensional MIMO (Full Dimension MIMO) FD-MIMO Or massive MIMO (massive-MIMO), or diversity transmission, precoding transmission, or beamforming transmission, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned quality of service characteristic parameter determination method or each process of the embodiment of the data sending method, and can achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of the present application.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种服务质量特征参数确定、数据发送方法、装置及设备,属于通信技术领域,本申请实施例的服务质量特征参数确定方法包括:发送设备确定通感服务质量QoS特征参数;其中,所述通感QoS特征参数包括以下至少一项:感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。

Description

服务质量特征参数确定、数据发送方法、装置及设备
相关申请的交叉引用
本申请主张在2021年09月06日在中国提交的中国专利申请No.202111039130.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,特别涉及一种服务质量特征参数确定、数据发送方法、装置及设备。
背景技术
未来移动通信***例如超5代(Beyond 5th Generation,B5G)***或第6代(6 th Generation,6G)***除了具备通信能力外,还将具备感知能力。具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。
通信感知一体化(Integrated Sensing and Communication,ISAC)有潜力将无线感知集成到大规模移动网络中,在这里成为感知移动网络(Perceptive Mobile Networks,PMNs)。PMN可以从目前的5G移动网络演变而来,有望成为一个无处不在的无线传感网络,同时提供稳定高质量的移动通信服务。它可以建立在现有移动网络基础设施之上,而不需要对网络结构和设备进行重大改变。它将释放移动网络的最大能力,并避免花费高昂基础设施成本去额外单独建设新的广域无线传感网络。随着覆盖范围的扩大,综合通信和传感能力有望实现许多新的应用。感知移动网络能够同时提供通信和无线感知服务,并且由于其较大的宽带覆盖范围和强大的基础设施,有可能成为一种无处不在的无线传感解决方案。其联合协调的通信和传感能力将提高我们社 会的生产力,并有助于催生出大量现有传感器网络无法有效实现的新应用。利用移动信号进行被动传感的一些早期工作已经证明了它的潜力。例如,基于全球移动通信***(Global System for Mobile Communications,GSM)的无线电信号的交通监控、天气预报和降雨遥感。感知移动网络可以广泛应用于交通、通信、能源、精准农业和安全领域的通信和传感,而现有的解决方案要么不可行,要么效率低下。它还可以为现有的传感器网络提供互补的传感能力,具有独特的昼夜操作功能,能够穿透雾、树叶甚至固体物体。
但是由于感知业务以及通信业务种类较多,而目前又没有通感一体化服务质量(Quality of Service,QoS)特征参数的明确定义,无法保证通感一体化的准确性,同时保证通感一体化效率的问题。
发明内容
本申请实施例提供一种服务质量特征参数确定、数据发送方法、装置及设备,能够解决因现有技术中没有通感一体化QoS特征参数的定义,无法保证通感一体化的准确性,同时保证通感一体化效率的问题。
第一方面,提供了一种服务质量特征参数确定方法,包括:
发送设备确定通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
第二方面,提供了一种服务质量特征参数确定装置,包括:
第一确定模块,用于确定通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、 虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
第三方面,提供了一种服务质量特征参数确定方法,包括:
接收设备获取通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
第四方面,提供了一种服务质量特征参数确定装置,包括:
第一获取模块,用于获取通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
第五方面,提供了一种数据发送方法,包括:
核心网设备获取目标数据,所述目标数据包括:通感服务质量QoS特征参数、通感一体化(Integrated Sensing and Communication,ISAC)质量索引(Quality Identity,QI)、感知质量索引(Sensing Quality Identity,SQI)以及通信质量索引;
核心网设备向发送设备和/或接收设备发送所述目标数据;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
第六方面,提供了一种数据发送装置,包括:
第二获取模块,用于获取目标数据,所述目标数据包括:通感服务质量QoS特征参数、通感一体化质量索引ISAC QI、感知质量索引SQI以及通信质量索引;
第一发送模块,用于向发送设备和/或接收设备发送所述目标数据;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
第七方面,提供了一种发送设备,该发送设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种发送设备,包括处理器及通信接口,其中,所述处理器用于确定通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
第九方面,提供了一种接收设备,该接收设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第十方面,提供了一种接收设备,包括处理器及通信接口,其中,所述处理器用于获取通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、 虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
第十一方面,提供了一种核心网设备,该核心网设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第五方面所述的方法的步骤。
第十二方面,提供了一种核心网设备,包括处理器及通信接口,其中,所述处理器用于获取目标数据,所述目标数据包括:通感服务质量QoS特征参数、通感一体化质量索引ISAC QI、感知质量索引SQI以及通信质量索引;所述通信接口用于向发送设备和/或接收设备发送所述目标数据;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
第十三方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面、第三方面或第五方面所述的方法的步骤。
第十四方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面、第三方面或第五方面所述的方法的步骤。
第十五方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面、第三方面或第五方面所述的方法的步骤。
第十六方面,提供了一种通信设备,被配置为执行如第一方面、第三方面或第五方面所述的方法的步骤。
在本申请实施例中,通过确定通感服务质量QoS特征参数,进而能够实现准确的进行信号的发送,提升了通感一体化的准确性以及通感一体化的效率。
附图说明
图1是本申请实施例的服务质量特征参数确定方法的流程示意图;
图2是应用情况一所涉及的网络节点的示意图;
图3是V2X感知情景示意图;
图4是并发感知场景的示意图;
图5是并发感知场景下的数据到DRB映射示意图;
图6是本申请实施例的服务质量特征参数确定装置的模块示意图;
图7是本申请实施例的发送设备的结构框图之一;
图8是本申请实施例的发送设备的结构框图之二;
图9是本申请实施例的服务质量特征参数确定方法的流程示意图之二;
图10是本申请实施例的服务质量特征参数确定装置的模块示意图之二;
图11是本申请实施例的数据发送方法的流程示意图;
图12是本申请实施例的数据发送装置的模块示意图;
图13是本申请实施例的通信设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
下面先对本申请所涉及的相关技术进行描述如下:
一、通信感知一体化/通感一体化
近几十年来,无线通信和雷达传感(Communication&Sensing,C&S)一直在并行发展,但交集有限。它们在信号处理算法、设备以及一定程度上的***架构方面都有很多共性。近年来,这两个***在共存、合作和联合设计上受到了越来越多研究人员的关注。
早期人们对通信***和雷达***共存的问题进行了广泛的研究,研究侧重是开发有效的干扰管理技术,使两个单独部署的***能够在相互不干扰的情况下平稳运行。虽然雷达和通信***可能在同一位置,甚至物理上集成,但它们在时间/频率域传输的是不同的两种信号。它们通过合作共享相同的资源,以最大限度地减少同时工作是对彼此之间的干扰。相应的措施包括波束赋形、合作频谱共享、主次频谱共享、动态共存等。然而有效的干扰消除通常对节点的移动性和节点之间的信息交换有着严格的要求,因此频谱效率的提高实际比较有限。由于共存***中的干扰是由发射两个独立的信号引起的,因此很自然地会问,我们是否可以同时使用一个发射信号同时进行通信和雷达传感。雷达***通常使用特别设计的波形,如短脉冲和啁啾,能够实现高功率辐射和简化接收机处理。然而这些波形对雷达探测来说不是必需的,无 源雷达或无源传感以不同的无线电信号作为感知信号就是一个很好的例子。
机器学习,特别是深度学习技术进一步促进了非专用无线电信号用于雷达传感的潜力。有了这些技术,传统雷达正朝着更通用的无线感知方向发展。这里的无线感知可以广泛地指从接收到的无线电信号中检索信息,而不是在发射机上调制到信号的通信数据。对于感知目标位置相关的无线感知,可以通过常用的信号处理方法,对目标信号反射时延、到达角(Angle of Arrival,AoA)、离开角(Angle of Departure,AoD)、多普勒等动力学参数进行估计;对于感知目标物理特征,可以通过测量设备、对象、活的固有模式信号来实现。两种感知方式可以分别称为感知参数估计以及模式识别。在这个意义上,无线感知是指使用无线电信号的更通用的传感技术和应用。
二、雷达技术
雷达自20世纪上半叶诞生以来已经发展了几十年。现代雷达***部署在世界各地,有多种应用,包括空中交通管制(Air Traffic Control,ATC)、地球物理监测、天气观测以及国防和安全监视等。在10GHz以下,大部分频谱资源主要分配给雷达,同时现有的无线通信***,如5G NR、LTE和Wi-Fi也存在于这个频谱范围内。在毫米波等更高频率,通信和雷达平台也有望实现和谐共存。然而,随着无线通信技术的进一步发展,将有越来越多的雷达频段受到干扰。从历史发展来看,雷达与通信***向小型化以及更高频段不断演进。目前,在毫米波频段,现有雷达与通信***的硬件架构、信道特性以及信号处理方法已经十分接近。从民用角度看,有相当一部分5G/B5G新兴应用需要进行感知与通信联合设计,例如智慧城市、智慧家庭等物联网应用,以及车联网、自动驾驶等智能交通应用。从军用角度看,雷达、通信、电子战等无线射频***的发展长期以来呈现相互割裂、各自为政的状态,消耗了大量频谱与硬件资源,降低了作战平台的效能。为高效利用频谱资源,并服务于多种民用与军用新兴应用场景,雷达与通信的频谱共享(Radar and Communication Spectrum Sharing,RCSS)近期引起了学界和工业界的高度关注。
总体而言,RCSS技术包含两条研究路径:(1)雷达与通信频谱共存(Radar-Communication Coexistence,RCC);(2)雷达通信一体化(Dual-Functional Radar-Communication system,DFRC)。其中,前者考虑的是分立的雷达与通 信***共用同一频谱,如何设计行之有效的干扰消除与管理技术来实现两者的互不干扰。后者则考虑的是雷达与通信***除了共享同一频谱外,还共用同一硬件平台,如何设计一体化信号处理方案来同时实现通信与雷达感知功能。RCC技术往往要求雷达和通信***周期性地交换一些信息以实现合作互利,例如雷达的发射波形、波束图样,通信的调制方式、帧格式以及雷达与通信***之间的信道状态信息等等。在实际***中,这一信息交换过程具有较高的复杂度。DFRC技术则直接通过共享硬件平台实现了频谱共享,并不需要额外的信息交换。此外,DFRC技术还能够通过双方的协同工作来同时提升二者的性能。如上文所述,当前,DFRC技术的内涵及应用已远远不止于对频谱利用率的提升,而是被进一步拓展至包括车联网、室内定位和隐蔽通信在内的多种新兴的民用及军用场景
三、LTE/5G服务质量(Quality of Service,QoS)
QoS是指网络利用各种底层技术,为指定的网络通信提供更好的服务能力,用来解决网络延迟和阻塞等问题,从而实现特定业务需要的传输能力保障机制。当网络发送拥塞时,所有的数据流都有可能被丢弃。为满足用户不同应用、不同服务质量的要求,需要网络能根据用户的要求分配和调度资源,为不同的数据流提供不同的服务质量:对实时性强且重要的数据报文优先处理;对实时性不强的普通数据报文,提供较低的处理优先级,网络拥塞时甚至丢弃。
QoS是从互联网中借鉴而来的技术概念,国际电信联盟(International Telecommunication Union,ITU)在x.902标准,即“信息技术开放式处理参考模型”中给出了对服务质量(QoS)的定义:在一个或多个对象的集体行为上的一套质量需求集合。吞吐量、传输延迟和错误率等一些服务质量参数描述了数据传输的速度和可靠性等。
LTE是基于承载(Bearer)的QoS策略设计。无线承载分为信令无线承载(Signalling Radio Bearer,SRB)和数据无线承载(Data Radio Bearer,DRB)。SRB用于信令的传输,DRB用于数据的传输,所有SRB的调度优先级要高于所有的DRB。服务质量等级标识(QoS Class Identifier,QCI),是***用于标识业务数据包传输特性的参数,协议TS 23.203定义了不同的承载业务对应 的QCI值。根据QCI的不同,承载(Bearer)可以划分为两大类:保证比特速率(Guaranteed Bit Rate,GBR)类承载和非保证比特速率(Non-GBR)类承载。GBR类承载,用于对实时性要求较高的业务,需要调度器对该类承载保证最低的比特速率,其QCI的范围是1-4。有了这个最低速率外,还需要一个最高速率进行限制。对于GBR承载来说,使用最大比特速率(Maximum Bit Rate,MBR)来限制该承载的最大速率。MBR参数定义了GBR承载在无线承载(Radio Bearer)RB资源充足的条件下,能够达到的速率上限。MBR的值大于或等于GBR的值。Non-GBR类承载,用于对实时性要求不高的业务,不需要调度器对该类承载保证最低的比特速率,其QCI的范围是5-9。在网络拥挤的情况下,业务需要承受降低速率的要求。对于Non-GBR,使用聚合最大比特速率(Aggregate Maximum Bit Rate,UE-AMBR)来限制所有Non-GBR承载的最大速率
5G QoS特征(5G QoS Characteristics)各网络节点(UE、gNB、UPF)处理每个QoS流时的特征参数集。5G特征参数集被分为标准化的QoS特征和运营商专用的(Operator-Specific)QoS特征。前者由标准化预先定义各参数的取值并与固定5QI取值(一种标记一系列参数的索引)关联,后者由运营商配置参数取值。5G采用数据流In-band QoS标记机制,基于业务的QoS需求,网关或APP Server对数据流标记相应的QoS处理标签,网络侧基于QoS标签,执行数据包转发;QoS标签可基于业务数据流的需求实时变化,实时满足业务需求。GW的NAS将多个有相同QoS需求的网际互连协议(Internet Protocol,IP)流(flow)映射到同一个QoS flow;gNB将QoS flow映射到DRB,使无线侧适配QoS需求;无线接入网络(Radio Access Network,RAN)侧有一定自由度,如gNB可将QoS流转换成DRB;下行映射属于网络实现;上行映射基于典型的(reflective)QoS或无线资源控制(Radio Resource Control,RRC)配置。5G QoS模型同样支持保障流比特速率(GBR QoS)的QoS流和非保障流比特速率(Non-GBR)的QoS流,也同样用AMBR来钳制Non GBR总带宽,5G QoS模型还支持反射QoS。
在5G独立(Standalone,SA)组网,gNodeB与UE之间仍然存在承载,但gNodeB与核心网之间不再采用承载的概念,由非独立(Non-Standalone, NSA)组网中的EPS Bearer变成了QoS Flow。QoS Flow是5G核心网到终端的QoS控制的最细粒度。每一个QoS Flow用一个服务质量流标识(QoS Flow ID,QFI)来标识。在一个协议数据单元(Protocol Data Unit,PDU)会话内,每个QoS Flow的QFI都是唯一的。核心网会通知gNodeB每个QoS Flow对应的5G QoS标识符(5G QoS Identifier,5QI),用于指定此QoS Flow的QoS属性。5G SA网络gNodeB与UE之间仍然存在承载,gNodeB会将QoS Flow映射到承载上,QoS Flow与空口Radio Bearer可以是多对一的映射关系。
当UE发起业务请求时,gNodeB读取来自核心网消息中各QoS Flow的QoS属性值,根据参数配置,将不同的QoS Flow(不同的5QI)映射到对应的承载上,为业务配置合适的无线承载参数、传输资源配置参数。QoS Flow到DRB的映射根据5G新增协议层,即服务数据适配协议(Service Data Adaptation Protocol,SDAP)定义,SDAP主要的功能为在数据包中添加QoS Flow的标识(即QFI值),接收端从数据包的SDAP头中读取该值,以及将一个或多个QoS Flow映射到一个DRB上。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的服务质量特征参数确定、数据发送方法、装置及设备进行详细地说明。
如图1所示,本申请实施例提供一种服务质量特征参数确定方法,包括:
步骤101,发送设备确定通感服务质量QoS特征参数;
需要说明的是,因本申请主要针对的是通感一体化业务,即同时需要进行通信业务和感知业务,因此,发送设备需要确定通感QoS特征参数,即发送设备既需要确定感知QoS特征参数,也需要确定通信QoS特征参数。
需要说明的是,该通感QoS特征参数用于进行通感参数配置信息的确定,进而使得发送设备依据该通感参数配置信息实现第一信号的发送,也就是说,该通感QoS特征参数的目的是保证第一信号的准确发送。
这里需要说明的是,在通信和感知业务同时存在时,若二者的信号能够同时使用相同的信号发送,则发送设备发送的便是通感一体化信号,若二者的信号不能使用相同的信号,则需要单独进行感知信号和通信信号的发送,二者可以采用时分复用,频分复用或码分复用的方式发送,则发送设备发送 的便是感知信号和/或通信信号;也就是说,上述的第一信号包括:感知信号、通信信号和通感一体化信号中的至少一项。
进一步需要说明的是,该通感QoS特征参数包括以下至少一项:
A101、感知延时预算(Sensing Delay Budget,SDB);
需要说明的是,该感知延时预算用于定义感知业务的最大感知延迟,用于定量地描述感知业务的实时性要求。
A102、感知分辨率(Sensing Resolution,SR);
需要说明的是,该感知分辨率用于定义感知业务的精细度,与网络硬件设备以及具体资源配置有关,且该因素因为不同感知业务,涉及到的配置资源也不同。例如距离分辨率与配置的感知信号带宽有关,角度分辨率与基站或者终端天线孔径有关。
A103、最大感知范围(Maximum Sensing Range,MSR);
需要说明的是,该最大感知范围用于定义感知业务所支持的感知测量量的最大测量范围。
A104、感知误差(Sensing Error,SE);
需要说明的是,该感知误差用于定义感知业务感知性能,即感知精确度,与网络硬件设备以及具体资源配置、信噪比(Signal-to-Noise Ratio,SNR)有关;感知误差可从下述三方面之一进行定义:1)、最大误差;2)、最大误差与真实值百分比(相对最大误差);3)、相对误差分布。
A105、连续感知能力(Continuous Sensing Capacity,CSC);
需要说明的是,该连续感知能力用于定义感知业务对连续感知的支持能力,主要分成单次感知、连续感知(例如目标追踪、扫描成像)。
A106、感知更新频率(Sensing Update Rate);
需要说明的是,该感知更新频率用于定义了要求连续感知业务的感知处理的结果更新频率。
A107、通感一体化信号质量(ISAC Signal Quality);
需要说明的是,该通感一体化信号质量用于定义通感一体化业务所需要 的信号质量,不同通感一体化业务有不同要求。
A108、感知安全性(Sensing Security);
需要说明的是,该感知安全性定义了不同感知业务对安全性的要求,划分为3个等级。
A109、感知隐私性(Sensing Privacy);
需要说明的是,该感知隐私性定义了不同感知业务对隐私性的要求,划分为3个等级。
A110、检测概率;
需要说明的是,该检测概率定义为判感知目标有无的能力,假设目标存在的情况下判决为有的概率。
A111、虚警概率;
需要说明的是,该虚警概率定义为判感知目标有无的能力,假设目标不存在的情况下判决为有的概率。
A112、包延时预算;
A113、误包率;
A114、最大数据突发量;
A115、最大数据速率;
A116、误比特率;
A117、平均窗口。
需要说明的是,上述的A101-A111通常是与感知相关的QoS特征参数,而A112-A117通常是与通信相关的QoS特征参数。
这里需要说明的是,5G中定义了保证比特速率(GBR)、非保证比特速率(Non-GBR),以及延迟关键GBR(Delay Critical GBD)三种业务类型,对不同实时性要求的数据业务进行了划分。感知业务覆盖范围广,具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小 基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。一些常见的感知业务如下表1所示。
表1常见感知业务分类
Figure PCTCN2022116517-appb-000001
可选地,表2给出了一种感知QoS特征参数的具体定义方式,其中感知QoS特征参数包括表2参数的至少一项。
表2感知QoS特征参数定义
Figure PCTCN2022116517-appb-000002
Figure PCTCN2022116517-appb-000003
Figure PCTCN2022116517-appb-000004
Figure PCTCN2022116517-appb-000005
这里需要说明的是,本申请中根据感知业务的物理作用范围、感知实时性要求两大主要要求对感知业务类型(Sensing Service Type)进行划分,感知范围包括两类,一类是感知物理范围大于或等于第一预设值的感知业务,即大尺度范围感知业务(Large-scale Sensing,LSS),对应感知物理范围为十米、百米、千米量级;另一类是感知物理范围小于第一预设值的感知业务,即小尺度范围感知业务(Small-scale Sensing,SSS),对应感知物理范围为厘米、分米、米量级;根据感知实时性要求,类比5G QoS定义,增加一种延迟敏感(Delay Critical)类型。因此,本申请实施例中可以将感知业务类型分为:Delay Critical LSS(对应感知物理范围大于或等于第一预设值的延迟敏感的感知业务)、LSS(对应感知物理范围大于或等于第一预设值的感知业务)、Delay Critical SSS(对应感知物理范围小于第一预设值的延迟敏感的感知业务)、SSS(对应感知物理范围小于第一预设值的感知业务)四类,分别用Sensing Service Type I-IV表示。也就是说,本申请实施例中所提到的感知业务类型包括以上四项中的至少一项。
类似于LTE的QCI,为了对不同数据业务类型QoS进行划分,5G定义了5G QoS标识符(5G Quality Identity,5QI),用于索引一个5G QoS特性参数。标准化的5G QoS特征参数有标准化预先定义各参数的取值并与固定5QI取值(一种标记一系列参数的索引)关联。
为了定义不同感知业务的QoS特性,这里给出不同QoS对应的感知质量索引(Sensing Quality Identity,SQI)值,如表3。实际使用时SQI应包括表3所列的参数中的至少一项,以及该参数的对应取值。对于某些感知QoS特征参数,可能包含多种描述形式,例如感知误差可以是最大绝对误差(如表3中所示),也可以是最大相对误差(误差与真实值百分比),甚至可以用误 差概率分布来描述。
表3感知质量索引SQI定义方式1
Figure PCTCN2022116517-appb-000006
Figure PCTCN2022116517-appb-000007
表4给出SQI的另一种定义方法示例,表4与表3功能相同,只是定义方法略有不同。在表4中,我们仅根据感知业务的物理作用范围对感知业务类型进行划分,这样感知业务类型(Sensing Service Type)包括两类,一类是Large-scale Sensing(LSS),对应感知物理范围为十米、百米、千米量级;另一类是Small-scale Sensing(SSS),对应感知物理范围为厘米、分米、米量级。
表4感知质量索引SQI定义方式2
Figure PCTCN2022116517-appb-000008
Figure PCTCN2022116517-appb-000009
需要说明的是,上述SQI取值只是示例,并不一定是最终标准化或运营商真实采用的序号值,实际用例以及感知QoS特征参数也不局限于表2中所列的。本申请定义表2和表3或者表4主要目的在于给出一种感知QoS定义的框架,供后续标准化和通信运营商参考。
进一步需要说明的是,本申请实施例中的通感QoS特征参数可以是发送设备自己确定的,也可以是从其他设备接收的,下面分别对这两种通感QoS特征参数的获取方式进行详细说明。
方式一、发送设备自己确定通感QoS特征参数
可选地,在此种情况下,本申请实施例的步骤101的可以采用的一种实现方式包括:
步骤1011,发送设备获取通感一体化质量参数集;
需要说明的是,所述通感一体化质量参数集为通感一体化质量索引ISAC QI与通信QoS特征参数以及感知QoS特征参数的取值的对应关系;
这里还需要说明的是,所述通感一体化质量参数集由协议约定或核心网设备通知。
步骤1012,发送设备接收核心网设备或者接收设备通知的ISAC QI;
步骤1013,发送设备根据所述ISAC QI和所述通感一体化质量参数集,确定通感QoS特征参数。
也就是说,此种情况下预先设置通感一体化质量参数集,该通感一体化质量参数集可以以对应关系表的形式体现,通感业务请求方能够知道自己请求的业务对应到通感一体化质量参数集中的哪一个ISAC QI,发送设备通过该ISAC QI查找述通感一体化质量参数集便能确定该ISAC QI对应的通感QoS特征参数。
需要注意的是,通信和感知两种业务的过程和结果存在较大差异,因此通信QoS特征参数与感知QoS特征参数(衡量指标)存在很大不同。最关键的是,网络中两种业务也不一定都会同时发生。
需要说明的是,此种实现方式是在通信QoS基础上,增加感知QoS映射 到通信QoS的方式,最终形成通感一体化QoS特征参数
未来的B5G/6G网络数据业务QoS可能相比现有5G网络需要支持更多差异化服务,因此其通信QoS也许比现有5G QoS定义更加细致和多样。本申请仅以一种可能的通信QoS为例子进行说明,重点在于说明感知QoS特征参数映射到通信QoS特征参数的基本思想。假设通信QoS特征参数包括:通信业务类型(Communication Resource Type)、通信延迟预算(Communication Packet Delay Budget)、误包率(Communication Packet Error Rate)、最大数据突发量(Maximum Data Burst Volumn)、平均窗口(Averaging Window)等等。表5给出了一种ISAC QI的定义方法。
表5 ISAC QI定义(即通感一体化质量参数集)
Figure PCTCN2022116517-appb-000010
Figure PCTCN2022116517-appb-000011
Figure PCTCN2022116517-appb-000012
Figure PCTCN2022116517-appb-000013
需要说明的是,上述表格所列通信QoS特征参数仅是举例,并不代表未来网络的通信QoS特征参数仅包含这几项。与感知有关的特征参数及它们的取值,可以参考表2以及表3/表4。同时为了简洁,感知QoS特征参数及其取值统一以“感知QoS特征参数及取值(参考表2、表3)”作为项目名,嵌入在上述表格右起第2列。该列的内容项使用“{表3SQI=xxx对应行}”简略表示(原有的SQI取消)。对于没有在表格里列出来的通信QoS特征参数以及取值,也暂时先用“…”表示,如右起第3列所示。
需要注意,上表没有使用“通信优先级水平”,而是使用“ISAC优先级水平”,这是因为通感一体化场景下业务优先级水平这个参数需要同时能够表征通信和感知两种业务单一存在以及同时存在所有情况的优先级顺序。上述优先级水平取值仅为参考,一般来说通感一体化业务(同时存在数据通信和感知需求)的优先级要比单一通信或者单一感知业务优先级高,但是单一通信或者单一感知业务两者谁的优先级高需要视具体业务而定。从表5可以看到,该ISAC QI定义方法主要以通信QoS为基础,感知业务的优先级会受到具体与哪种通信业务进行耦合这个因素的影响。不过,感知业务与通信业务一般会遵循一定的匹配规则,匹配规则可以考虑业务的实时性要求,即通感一体化场景下对于实时性要求较高的通信业务,对应的感知业务也是实时性要求较高的业务(例如,表5中ISAC QI=80相关内容);感知业务与通信业务的匹配规则也可以考虑具体业务应用场景关联性,对于需要多个移动终端参与的感知业务,可以与多用户通信业务相结合(例如,表5中ISAC QI=1、51相关内容)。
需要说明的是,上述ISAC QI取值只是示例,并不一定是最终标准化或运营商真实采用的序号值,实际用例以及QoS特征参数也不局限于表5中所 列的。表5(结合表2和表3)主要目的在于给出一种ISAC QoS定义的框架,供后续标准化和通信运营商参考。采用表5所给出的感知QoS特征参数到通信QoS特征参数的映射方法清晰直接,QoS控制过程也较为简单。根据上述ISAC QI定义,网络能够方便地建立通信感知业务的数据流粒度,为网络各节点分配与业务相匹配的传输资源和计算资源,实现差异化服务。
需要说明的是,上述ISAC QoS定义方法相当于需要把所有可能的通信和感知并发业务组合,包括纯通信业务和纯感知业务都维护在一个QoS表里,同时取消原有的通信B5QI/6G QoS标识符(6G Quality Identity,6QI)定义和感知SQI定义,也就是说,此种情况下,通感QoS特征参数还包括通感业务类型和通感优先级水平的至少一项,所述通感优先级水平用于确定通感一体化信号的资源调度优先级。
需要说明的是,该通感业务类型包括以下至少一项:
B11、感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
B12、感知物理范围大于或等于第二预设值的通信感知业务;
B13、感知物理范围小于第二预设值的延迟敏感的通信感知业务;
B14、感知物理范围小于第二预设值的通信感知业务。
需要说明的是,可选地,可以定义通感一体化实现方法指示(Sensing Implementation Method Indicator,SIMI),指示基站或者其他感知节点可采取的通感一体化业务实现方式。根据通信和感知的侧重程度不同,通感一体化业务的实现方式包括但不限于以下几种:
A、SIMI=0:侧重通信,利用通信信号,尽量实现感知,感知QoS难以得到保证;
B、SIMI=2:牺牲部分通信QoS,满足感知QoS。使用专用感知信号,与通信数据信号时分复用,或者频分复用,或者时分+频分复用;
C、SIMI=4:通信QoS和感知QoS同时达到较优水平,使用通感一体化信号;
D、SIMI=1:侧重通信QoS,同时兼顾感知QoS;A和C时分复用;
E、SIMI=3:侧重感知QoS,同时兼顾通信QoS;B和C时分复用。
具体实施哪种通信感知策略,可由网络中的感知网元(感知网络功能)确定。
可选地,在此种情况下,本申请实施例的步骤101的可以采用的另一种实现方式包括:
步骤1014,发送设备获取感知QoS参数集以及通信QoS参数集,所述感知QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系,所述通信QoS参数集为通信质量索引与通信QoS特征参数的取值的对应关系;
可选地,所述QoS参数集由协议约定或核心网设备通知,所述通信QoS参数集也可以是协议约定或核心网设备通知的。
步骤1015,发送设备接收核心网设备或者接收设备通知的SQI和通信质量索引;
步骤1016,发送设备根据所述SQI和感知QoS参数集,获取感知QoS特征参数;
步骤1017,发送设备根据所述通信质量索引和通信QoS参数集,获取通信QoS特征参数;
步骤1018,发送设备将所述感知QoS特征参数和所述通信QoS特征参数确定为通感QoS特征参数。
也就是说,此种情况下,是利用感知QoS参数集以及通信QoS参数集,分别确定感知QoS特征参数和通信QoS特征参数,将这两个QoS特征参数结合作为通感QoS特征参数。
此种情况下,是分别维护通信QoS特征参数和感知QoS特征参数,再单独建立两种QoS的映射关系,最终形成通感QoS特征参数。
此种实现方式与前面提到的另一种实现方式的区别在于不需要直接定义ISAC QoS,而是同时使用和维护通信、感知两套QoS体系。两种QoS通过额外定义的业务映射关系联系到一起。为了减少网络信令开销,这种新增的业务映射关系可以用通感一体化业务映射索引(ISAC Mapping Index,ISAC  MI)来指示。
当只有通信业务或者只有感知业务时,网络只需分别参考通信QoS或者感知QoS进行差异化通信/感知服务。
当一个或多个通信业务与一个或多个感知业务并发时(并发的通信业务数和感知业务数不一定相等),网络首先根据通信QoS和感知QoS判断当前通信和感知业务是否满足通感一体化条件,以及需要采取的通信和感知策略。
网络收到通信业务请求和感知业务请求后,根据通信业务类型以及通信QoS定义能够确定B5QI/6QI值;根据感知业务类型以及感知QoS定义(参考上文“感知QoS定义”)能够确定SQI值。两个过程确定了通信业务和感知业务各自所需要的传输资源配置,然后感知网元(感知网络功能)需要进一步根据通信和感知业务类型确定两种业务映射方式并给出ISAC MI值,若两种业务能够进行映射,则发送设备可以发送通感一体化的信号,若两种业务不能够进行映射,则发送设备需要单独发送通信信号和感知信号。表6给出一种可能的通信业务与感知业务映射关系以及对应ISAC MI取值。
表6通信业务与感知业务映射关系以及ISAC MI取值
Figure PCTCN2022116517-appb-000014
Figure PCTCN2022116517-appb-000015
从表6可以看出,一种通信业务,可以和多种感知业务匹配实现通感一体化,同时一种感知业务,也可以和多种通信业务匹配,例如上面所示的会话语音、会话视频(直播)2种通信业务与三维地形地貌感知、建筑表面重构、室外用户定位和追踪两种感知业务的关系。表6给出的仅是一种可能的SIMI取值,可能的方式可以侧重于通信QoS,也可以侧重于感知QoS。需要指出,网络是否使用SIMI值由运营商决定,即该参数是可选的。
也就是说,此种情况下,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平中的至少一项;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
需要说明的是,该通信业务类型包括以下至少一项:
B21、保证比特速率的通信业务;
B22、非保证比特速率的通信业务;
B23、保证比特速率的延迟敏感的通信业务
实现方式二在原有通信QoS和感知QoS基础上,新增通信B5QI/6QI与感知SQI之间的映射,其优点在于维护简单,当需要定义新的通信业务或者感知业务QoS时,可以直接对相应QoS做修改,并更新如表6的映射关系即可。同时给RAN侧的自由度更大。
二、其他设备通知通感QoS特征参数
可选地,在此种情况下,本申请实施例的步骤101的实现方式包括:
发送设备接收核心网设备或者接收设备发送的第一信息;
其中,所述第一信息指示通感QoS特征参数。
也就是说,在此种情况下,通感QoS特征参数无需发送设备自己确定,而是可以直接从其他设备处获取得到,可选地,在发送设备为基站的情况下,该通感QoS特征参数可以是核心网设备直接通知基站的;在发送设备为终端的情况下,该通感QoS特征参数通常是由基站通知给终端的,可选地,该基站可以作为感知信号的接收设备,在此种情况下,基站的通感QoS特征参数可以是核心网设备通知的,也可以是基站依据上述的方式通过ISAC QI和通感一体化质量参数集集确定得到的。
需要说明的是,该第一信息的一种实现方式为其携带通感QoS特征参数,也可以简单的理解为,该第一信息就为通感QoS特征参数。
可选地,在发送设备确定得到通感QoS特征参数后,便可以根据所述通感QoS特征参数,确定通感参数配置信息;然后根据所述通感参数配置信息,向接收设备发送第一信号;相对应地,接收设备在获取到通感QoS特征参数后,也根据该通感QoS特征参数确定通感参数配置信息,进而利用该通感参数配置信息进行第一信号的接收;需要说明的是,通过此种方式实现第一信号的发送和接收,可以保证第一信号的传输的准确性。
需要说明的是,上述的第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,本申请实施例中所提到的通感参数配置信息包括但不限于以下至少一项:
C11、第一信号的带宽;
C12、第一信号的发送天线数;
C13、第一信号的发射功率;
C14、第一信号的周期;
C15、第一信号的脉冲数。
可选地,为了实现对感知信号的准确测量,本申请实施例还包括:
发送设备根据所述通感QoS特征参数,确定第一信号的测量量;
发送设备将所述测量量发送给接收设备。
相应地,接收设备在获取到第一信号的测量量后,依据该测量量对所述第一信号进行测量,确定所述测量量对应的测量值;需要说明的是,接收设备可以是直接接收发送设备发送的测量量,也可以是自己依据通感QoS特征参数,确定得到第一信号的测量量。
还需要说明的是,为了能顺利进行第一信号的发送,发送设备还应当了解都有哪些设备参与了此次通感一体化业务,具体地,本申请实施例还包括以下一项:
D11、发送设备接收核心网设备或者接收设备发送的参与通感的发送设备和接收设备;
需要说明的是,核心网设备可以通过通感QoS特征参数确定得到参与通感的发送设备和接收设备,在发送设备为基站的情况下,核心网设备可以直接将该参与通感的发送设备和接收设备发送给基站;在发送设备为终端,接收设备为基站的情况下,核心网设备需要先将参与通感的发送设备和接收设备发送给接收设备,然后由接收设备将该参与通感的发送设备和接收设备再发送给发送设备。
D12、发送设备根据所述通感QoS特征参数,确定参与通感的发送设备和接收设备;
可选地,一种情况下,该参与通感的发送设备和接收设备可以指的是参与通感的发送设备和接收设备的数量。
还需要说明的是,为了保证发送设备能够准确的进行第一信号的发送,发送设备还应当获取业务的感知方式,所述感知方式用于指示第一信号的收发端,依据该感知方式进行第一信号的发送,可选地,该感知方式可以是核心网设备依据通感QoS特征参数得到并发送给发送设备的,也可以是核心网设备依据通感QoS特征参数得到发送给接收设备然后由接收设备再发送给发 送设备的;或者,该感知方式也可以是发送设备根据所述通感QoS特征参数确定得到的。
需要说明的是,不同的所述感知方式指示不同的第一信号的收发端;也就是说感知方式与接收和发送第一信号的实体相关联,具体地,以第一信号为通感一体化信号为例,所述感知方式所对应的实体与收发信号的关系包括以下至少一项:
E11、第一网络节点发送通感一体化信号,第二网络节点接收通感一体化信号;
此种情况指的是,基站A发送通感一体化信号,基站B接收通感一体化信号。
E12、第一网络节点发送并接收通感一体化信号;
此种情况指的是,基站A发送通感一体化信号,基站A接收通感一体化信号。
E13、第一网络节点发送通感一体化信号,第一网络节点关联的终端设备接收通感一体化信号;
此种情况指的是,基站A发送通感一体化信号,终端接收通感一体化信号。
E14、第一终端设备发送通感一体化信号,第二终端设备接收通感一体化信号;
此种情况指的是,终端A发送通感一体化信号,终端B接收通感一体化信号;
E15、第一终端设备发送并接收通感一体化信号;
此种情况指的是,终端A发送通感一体化信号,终端A接收通感一体化信号;
E16、第一终端设备发送通感一体化信号,第一网络节点接收通感一体化信号;
此种情况指的是,终端A发送通感一体化信号,基站A接收通感一体化 信号。
通常情况下,为了能快速的依据通感QoS特征参数确定得到通感参数配置信息、测量量、感知方式、参与通感的发送设备和接收设备,本申请实施例中可以采用建立通感QoS特征参数与通感参数配置信息、测量量、感知方式、参与通感的发送设备和接收设备对应关系表的方式实现,在需要获取其中一项时,只需要查表得到相应的数据即可。通常因通感QoS特征参数可能包括表5中的多种参数的取值组合,而每一种取值组合对应表5中的一个ISAC QI,也就是说,通感QoS特征参数是与ISAC QI对应的,本申请中采用建立ISAC QI与通感参数配置信息、测量量、感知方式、参与通感的发送设备和接收设备的对应关系表,通过依据与通感QoS特征参数对应的ISAC QI进行查表得到相应的通感参数配置信息、测量量、感知方式、参与通感的发送设备和接收设备。
需要说明的是,根据表5定义的几种ISAC QI值和通感业务类型,表7给出相应的参数配置和感知方式建议。
表7 ISAC QI值、通感业务类型相应的通感参数配置、感知方式
Figure PCTCN2022116517-appb-000016
Figure PCTCN2022116517-appb-000017
进一步还需要说明的是,本申请实施例发送设备进行第一信号发送的实现方式可以为:
发送设备通过目标映射规则,将所述第一信号映射至无线承载RB;
发送设备通过RB,向接收设备发送第一信号;
其中,所述目标映射规则包括以下至少一项:
多个第一信号映射到同一个RB;
一个第一信号映射到一个RB。
相应地,接收设备也采用相同的方式进行第一信号的接收。
需要说明的是,该RB包括信令无线承载(SRB)和数据无线承载(DRB)中的至少一项。
需要说明的是,在5G***中,QoS特征参数的定义可以作为核心网对数据业务划分QoS Flow的依据,实现QoS Flow的映射控制。gNB使用的 QoS特征参数QoS Profile由会话管理功能(Session Management Function,SMF)分配,5G中的5QI值包含在核心网的参数集QoS配置(QoS Profile)中。在本申请中感知QoS参数由感知网络功能单元/感知网元(Sensing Network Function,SNF)分配给gNB。由于LTE/5G QoS为数据业务传输而设计,其QoS的用法和控制流程可能与感知QoS存在较大不同。
可选地,当网络仅存在感知业务时,不涉及到数据传输。感知信号(序列/波形)可以是伪随机序列,例如m序列、Gold序列等。由于不涉及到端到端的数据信息传输,感知信号可保存在各个感知节点(例如室外宏基站、室内小基站、专用感知终端以及移动终端等),在触发感知功能时直接调用,或者根据本地感知信号序列生成算法直接计算生成、发送完成感知。此时不需要NAS层对感知数据进行QoS Flow映射。
由于感知信号需要经过无线空口,因此需要对SQI与空口无线承载(Radio Bearer,RB)的映射关系进行定义。同时由于感知业务涉及到空口信令交互以及感知数据收发,因此同时需要SRB以及DRB支撑,感知信令通过SRB承载,感知信号数据通过DRB承载。SQI与RB映射可以是多对一,也可以是一对一。感知QoS Flow可单独使用SRB和DRB。感知QoS Flow到DRB映射规则可以由SDAP层根据SQI确定。表8基于上文表1总结的几种典型感知业务以及表3定义的SQI值。
表8一种可能的感知QoS Flow与DRB映射方式
DRB ID SQI 感知业务类型
1 {1,2}或者其子集 II
2 {3,4,5,6}或者其子集 I/II
3 {7} I
4 {8,9}或者其子集 III
5 {10} IV
6 {11} IV
可选地,当通信业务和感知业务并发时,此时仅考虑通感一体化场景;一种情况是,基站或者其他可能感知节点,在数据流中***在基站事先存储或者计算生成的感知信号数据,和通信数据信号时分/频分复用发送,此时可看做是一种初级的通感一体化场景。因为感知信号数据不涉及端到端传输,NAS层仅根据ISAC QoS特征参数/通信QoS特征参数(可采用上述2种ISAC QI定义方法)对数据IP Flow到QoS Flow进行映射,在AS层两种业务数据共用相同的SRB和DRB。
大多数情况下,数据流为通感一体化数据。类似NR网络,未来B5G/6G网络NAS层将相同ISAC QoS需求的IP Flow映射进同一个QoS Flow。基站或者其他感知节点再将QoS Flow映射到DRB上,使RAN侧适配QoS需求。这样形成两级映射,使得RAN侧有一定的自由度,比如基站可以按照一定的策略将M个QoS流按一定的策略转换成N个DRB(M≥N)。
一种特殊情况是,多个数据业务和感知业务并发时,无法在已定义的ISAC QoS参数集中对所有感知业务找到匹配的QoS需求,即存在一些数据业务单独作为一个QoS Flow传输,或者一些感知业务单独进行无线承载。此时基于SQI/感知QoS参数集,需要单独的感知专用DRB。
下面对实际应用的具体应用情况进行举例说明如下。
具体应用情况一、感知网元发送通感QoS特征参数(即ISAC QoS特征参数)进行三维地图感知以及通信
假设第三方(指网络(包含接入网和核心网)、用户以外的第三方)感知应用请求网络利用室外宏基站对某个区域进行三维地图感知,例如第三方应用服务器向核心网中的感知网络功能单元/感知网元(Sensing Network Function,SNF)或者其他网络功能单元/网元发起感知请求,感知网元通知感知地图附近的多个基站进行感知操作。感知方式可以为基站自发自收通感一体化信号并执行感知运算处理进行,也可以通过基站A发射通感一体化信号,基站B接收通感一体化信号执行感知运算处理进行,还可以通过手机终端上 行发送通感一体化信号,基站接收通感一体化信号并执行感知运算处理进行。
当采用基站自发自收感知或者基站A发基站B收的方式时,此种情况所涉及的网络设备如图2所示,此种情况下主要实现过程包括:
(1)第三方感知应用服务器可以向感知网元发送通感QoS特征参数或者通感业务请求。
若直接发送通感QoS特征参数,如果是标准化的通感QoS特征参数和感知业务,则第三方感知应用服务器可以直接向感知节点基站发送ISAC QI值(或者包含ISAC QI的通感QoS特征参数),基站根据ISAC QI值(或者包含ISAC QI的通感QoS特征参数)可以直接确定通感业务类型、感知节点的通感参数配置,方便感知节点调度感知资源与运算资源进行感知处理,提高了灵活性同时减少了信令开销。如果是运营商特定的通感QoS特征参数,则需要在网络节点间传输具体的参数集。通感一体化质量参数集由感知网元转发至相应的感知节点,在这个例子中则是三维地图区域内满足进行感知条件(包括具备感知能力、能够提供满足感知需求参数配置等)的基站,包含基站A和基站B两种节点,且两种节点可以是单个基站也可以是多个基站;若仅是第三方感知应用服务器仅向感知网元发送通感业务请求,则感知网元也应可根据通感业务请求确定通感业务对应的QoS参数,并将通感一体化质量参数集下发至相应感知节点。
(2)感知网络功能/感知网元可以是单独的功能/物理实体,或者部署在核心网的通用服务器中作为核心网功能之一,或者部署在基站侧作为基站的功能之一。在最后这种情况下,第三方感知应用服务器可以直接向基站发送通感业务请求/通感QoS特征参数,例如,ISAC QI或者运营商自定义通感一体化质量参数集。
(3)当感知请求发起方是核心网时,通感QoS特征参数的用法与上述一致,只是第三方感知应用服务器变成了核心网。
(4)当感知业务发起方是基站或者移动终端时,基站/移动终端可发送通感一体化质量参数集至感知网元,经感知网元转发至相应感知节点。基站/ 移动终端也可直接发送通感业务请求,感知网元再根据通感业务请求确定通感业务对应的通感QoS特征参数,并将通感一体化质量参数集下发至相应感知节点。
当采用基站与移动用户终端之间发送/接收通感一体化信号,实现感知环境信息并进行三维地图生成时,亦或者感知过程需要移动终端配合时,感知网元需要通过RAN侧向移动终端下发通感一体化质量参数集(或者包含上述参数的感知QoS特征参数),配合进行通感业务的移动终端根据通感一体化质量参数集进行相应通感参数配置。移动终端基于基站的RRC重新配置(Reconfiguration)消息在SDAP层把通感一体化QoS Flow映射到无线空口资源。
具体应用情况二、感知网元发送ISAC QoS特征参数进行V2X感知/通信感知
如图3所示,考虑V2X的一种通感一体化情景——车辆用户行人、行车通信、感知。车辆用户需要通过自身通感***,或者路边基站单元(Road Side Unit,RSU)感知车辆用户附近的路上、路边行人和行车位置、速度。该场景需要满足低时延高可靠要求,因此时延容忍度要比三维地图生成、天气检测等要低,优先级要比大多数感知业务高。车辆用户可能为普通用户,没有感知***,完全依靠RSU帮助感知;也可能自身装备有通感一体化***或者感知***,能够与RSU进行信息交互。RSU为路边微基站/小基站,具备感知能力和感知资源。
当车辆用户需要RSU进行行人行车感知时,车辆用户向附近RSU发送ISAC QoS特征参数或者通感业务请求。若直接发送ISAC QoS特征参数,如果是标准化的ISAC QoS特征参数和通感业务,则车辆用户可以直接向最近感知节点RSU发送ISAC QI值,最近RSU将ISAC QI转发至感知网元,感知网元根据ISAC QI值可以直接确定通信以及感知业务类型、确定路边哪些RSU参与感知、参与感知处理的RSU个数、各感知节点的通感参数配置,方便感知节点调度通感资源与运算资源进行感知处理,提高了灵活性同时减少 了信令开销。如果是运营商特定的ISAC QoS特征参数,则需要在网络节点间传输具体的通感一体化质量参数集。感知网元将通感一体化质量参数集下发至满足感知条件的RSU(主要为车辆用户一定范围内的RSU),RSU根据通感一体化质量参数集确定感知方式,进行通感参数配置,调动满足感知需求的时频资源、计算资源等。完成感知计算后,RSU将感知结果实时上报至感知网元,感知网元再下发至车辆用户,提供实时感知结果。若仅是车辆用户仅向感知网元发送通感业务请求,则感知网元也应可根据通感业务请求确定通感业务对应的通感QoS特征参数,并将通感一体化质量参数集下发至相应感知节点RSU。
上述通感一体化质量参数集的用法也适用于车辆用户本身具备感知能力的情况。通感业务请求发起后,车辆用户自行进行通感参数配置和通感处理,最终结合RSU感知结果获得综合感知结果。
上述感知请求发起方也可以为第三方应用服务器,第三方感知应用服务器可以向感知网元发送感知ISAC QoS特征参数或者通感业务请求。RSUs根据ISAC QI可以直接确定通感一体化业务类型、通感一体化节点的通感参数配置,方便感知节点调度感知通信资源与运算资源进行感知处理,提高了灵活性同时减少了信令开销。
具体应用情况三、并发通感一体化业务下通感一体化数据到DRB的映射
考虑在某个区域内,三维地图重构与天气检测两种并发。其中对于三维地图重构,当前时段会话业务量较大,因此符合通感一体化场景;而对于天气检测,由于当前时段网络视频(缓冲流)/传输控制协议(Transmission Control Protocol,TCP)应用业务流较少(受限),需要使用专用感知信号进行感知。基站与移动终端之间,需要收发通感一体化信号完成通信感知。
对于感知区域内某个基站,还可能并发其他通感一体化业务,例如对某个区域内的某个移动用户,其正在进行会话视频(直播)业务,此时直播应用方正好同时想要获取该用户的所在直播位置,即对用户进行精确定位;同时该用户附近区域的智能交通***,正在对车辆进行通信和实时速度、轨迹 感知,整个感知场景如图4所示。
对于三维地图重构以及天气检测,一般实时性要求不高,而且通感一体化的持续时间较长。两种通感一体化业务可能会采取相同的感知方式,例如所在感知区域内大量移动终端配合基站,上行发送感知/通感一体化信号,基站或者感知网元进行感知运算,得到环境信息。此时基站可根据这两种相似的ISAC QoS特征参数,为业务配置合适的无线承载参数、传输资源配置参数,将两种业务的通感一体化数据放在相同的逻辑通道传输,即实现通感一体化Flow到Radio Bearer的多对一映射。此外,对于区域内的某些基站,可能同时还会并发其他通感一体化业务,如图4中基站C还需要进行对移动终端4(行人)的通信和定位感知,以及对移动终端5(路上行车)进行实时通信和速度、轨迹感知,由于这两种通感一体化业务的实时性要求、感知作用距离等均与前面的三维地图重构和天气感知业务有较大不同,因此需要基站分别调用不同等级的传输资源对这两种业务进行承载。如图5所示,对于基站A和基站B,三维地图重构(ISAC QI=1)与天气感知(ISAC QI=32)两种感知数据、通感一体化QoS Flow到DRB的映射是多对一(映射到DRB ID=1),而行人定位感知(ISAC QI=4)以及行车实时速度、轨迹感知(ISAC QI=80)的通感一体化QoS Flow到DRB的映射是一对一(分别映射到DRB ID=2和DRB ID=3)。
需要说明的是,由于目前感知业务种类较多,感知方式和感知测量量根据不同感知业务类型也各不相同,通感一体化场景下,容易造成网络通信和感知效率低下,感知有关的信令开销巨大的情况。本申请通过对感知需求、感知业务进行归类和量化、对不同通感一体化业务的QoS进行定义,确定了感知需求与感知处理的具体映射关系,确保了各个感知节点的感知处理(包括发送端配置感知信号格式和参数,以及接收端确定处理精度、感知计算资源等)都能满足通感一体化QoS需求,最终使得网络通感一体化功能更加高效、更加灵活。
需要说明的是,本申请实施例提供的服务质量特征参数确定方法,执行 主体可以为服务质量特征参数确定装置,或者,该服务质量特征参数确定装置中的用于执行服务质量特征参数确定方法的控制模块。本申请实施例中以服务质量特征参数确定装置执行服务质量特征参数确定方法为例,说明本申请实施例提供的服务质量特征参数确定装置。
如图6所示,本申请实施例提供一种服务质量特征参数确定装置600,应用于发送设备,包括:
第一确定模块601,用于确定通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
可选地,所述第一确定模块601,包括:
第一获取单元,用于获取通感一体化质量参数集,所述通感一体化质量参数集为通感一体化质量索引ISAC QI与通信QoS特征参数以及感知QoS特征参数的取值的对应关系;
第一接收单元,用于接收核心网设备或者接收设备通知的ISAC QI;
第一确定单元,用于根据所述ISAC QI和所述通感一体化质量参数集,确定通感QoS特征参数。
可选地,所述通感一体化质量参数集由协议约定或核心网设备通知。
可选地,所述第一确定模块601,包括:
第二获取单元,用于获取感知QoS参数集以及通信QoS参数集,所述感知QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系,所述通信QoS参数集为通信质量索引与通信QoS特征参数的取值的对应关系;
第二接收单元,用于接收核心网设备或者接收设备通知的SQI和通信质量索引;
第三获取单元,用于根据所述SQI和感知QoS参数集,获取感知QoS 特征参数;
第四获取单元,用于根据所述通信质量索引和通信QoS参数集,获取通信QoS特征参数;
第二确定单元,用于将所述感知QoS特征参数和所述通信QoS特征参数确定为通感QoS特征参数。
可选地,所述第一确定模块601,包括:
第三接收单元,用于接收核心网设备或者接收设备发送的第一信息,所述第一信息指示通感QoS特征参数。
可选地,所述通感QoS特征参数还包括通感业务类型和通感优先级水平中的至少一项;或者,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平中的至少一项;
其中,所述通感优先级水平用于确定通感一体化信号的资源调度优先级;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于第一预设值的延迟敏感的感知业务;
感知物理范围大于或等于第一预设值的感知业务;
感知物理范围小于第一预设值的延迟敏感的感知业务;
感知物理范围小于第一预设值的感知业务。
可选地,所述通信业务类型包括以下至少一项:
保证比特速率的通信业务;
非保证比特速率的通信业务;
保证比特速率的延迟敏感的通信业务。
可选地,所述通感业务类型包括以下至少一项:
感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
感知物理范围大于或等于第二预设值的通信感知业务;
感知物理范围小于第二预设值的延迟敏感的通信感知业务;
感知物理范围小于第二预设值的通信感知业务。
可选地,在所述第一确定模块601确定通感服务质量QoS特征参数之后,还包括:
第二确定模块,用于根据所述通感QoS特征参数,确定通感参数配置信息;
第二发送模块,用于根据所述通感参数配置信息,向接收设备发送第一信号;
其中,所述通感参数配置信息包括以下至少一项:
第一信号的带宽;
第一信号的发送天线数;
第一信号的发射功率;
第一信号的周期;
第一信号的脉冲数;
其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,所述第二发送模块,包括:
第一映射单元,用于通过目标映射规则,将所述第一信号映射至无线承载RB;
第一发送单元,用于通过RB,向接收设备发送第一信号;
其中,所述目标映射规则包括以下至少一项:
多个第一信号映射到同一个RB;
一个第一信号映射到一个RB。
可选地,所述装置,还包括:
第三确定模块,用于根据所述通感QoS特征参数,确定第一信号的测量量;
第三发送模块,用于将所述测量量发送给接收设备;
其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一 体化信号。
可选地,所述装置,还包括:
第一接收模块,用于接收核心网设备或接收设备发送的业务的感知方式;或者
第四确定模块,用于根据所述通感QoS特征参数,确定业务的感知方式;
其中,不同的所述感知方式对应不同的第一信号的收发端;
所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,所述装置,还包括以下一项:
第二接收模块,用于接收核心网设备或者接收设备发送的参与通感的发送设备和接收设备;
第五确定模块,用于根据所述通感QoS特征参数,确定参与通感的发送设备和接收设备。
需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。
本申请实施例提供的服务质量特征参数确定装置能够实现图1的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
优选的,本申请实施例还提供一种发送设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现应用于发送设备侧的服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现应用于发送设备侧的服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例还提供一种发送设备,包括处理器和通信接口,处理器用于确定通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
该设备实施例是与上述服务质量特征参数确定方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种发送设备。当该发送设备为基站时,如图7所示,该基站700包括:天线701、射频装置702、基带装置703。天线701与射频装置702连接。在上行方向上,射频装置702通过天线701接收信息,将接收的信息发送给基带装置703进行处理。在下行方向上,基带装置703对要发送的信息进行处理,并发送给射频装置702,射频装置702对收到的信息进行处理后经过天线701发送出去。
上述频带处理装置可以位于基带装置703中,以上实施例中基站执行的方法可以在基带装置703中实现,该基带装置703包括处理器704和存储器705。
基带装置703例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器704,与存储器705连接,以调用存储器705中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置703还可以包括网络接口706,用于与射频装置702交互信息,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的基站还包括:存储在存储器705上并可在处理器704上运行的指令或程序,处理器704调用存储器705中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
当该发送设备为终端时,图8为实现一种终端的硬件结构示意图。
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、以及处理器810等中的至少部分部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器810逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801将来自网络侧设备的下行数据接收后,给处理器810处理;另外,将上行的数据发送给网络侧设备。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存 器件、或其他非易失性固态存储器件。
处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
其中,处理器810用于实现:
确定通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
可选地,处理器810用于实现:
发送设备获取通感一体化质量参数集,所述通感一体化质量参数集为通感一体化质量索引ISAC QI与通信QoS特征参数以及感知QoS特征参数的取值的对应关系;
所述射频单元801用于实现:接收核心网设备或者接收设备通知的ISAC QI;
处理器810用于实现:发送设备根据所述ISAC QI和所述通感一体化质量参数集,确定通感QoS特征参数。
可选地,所述通感一体化质量参数集由协议约定或核心网设备通知。
可选地,处理器810用于实现:
获取感知QoS参数集以及通信QoS参数集,所述感知QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系,所述通信QoS参数集为通信质量索引与通信QoS特征参数的取值的对应关系;
所述射频单元801用于实现:接收核心网设备或者接收设备通知的SQI和通信质量索引;
处理器810用于实现:根据所述SQI和感知QoS参数集,获取感知QoS特征参数;根据所述通信质量索引和通信QoS参数集,获取通信QoS特征参数;
发送设备将所述感知QoS特征参数和所述通信QoS特征参数确定为通感QoS特征参数
可选地,所述射频单元801用于实现:发送设备接收核心网设备或者接收设备发送的第一信息,所述第一信息指示通感QoS特征参数。
可选地,所述通感QoS特征参数还包括通感业务类型和通感优先级水平中的至少一项;或者,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平中的至少一项;
其中,所述通感优先级水平用于确定通感一体化信号的资源调度优先级;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于第一预设值的延迟敏感的感知业务;
感知物理范围大于或等于第一预设值的感知业务;
感知物理范围小于第一预设值的延迟敏感的感知业务;
感知物理范围小于第一预设值的感知业务。
可选地,所述通信业务类型包括以下至少一项:
保证比特速率的通信业务;
非保证比特速率的通信业务;
保证比特速率的延迟敏感的通信业务。
可选地,所述通感业务类型包括以下至少一项:
感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
感知物理范围大于或等于第二预设值的通信感知业务;
感知物理范围小于第二预设值的延迟敏感的通信感知业务;
感知物理范围小于第二预设值的通信感知业务。
可选地,在所述发送设备确定通感服务质量QoS特征参数之后,还包括:
发送设备根据所述通感QoS特征参数,确定通感参数配置信息;
发送设备根据所述通感参数配置信息,向接收设备发送第一信号;
其中,所述通感参数配置信息包括以下至少一项:
第一信号的带宽;
第一信号的发送天线数;
第一信号的发射功率;
第一信号的周期;
第一信号的脉冲数;
其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,处理器810用于实现:
通过目标映射规则,将所述第一信号映射至无线承载RB;
所述射频单元801用于实现:通过RB,向接收设备发送第一信号;
其中,所述目标映射规则包括以下至少一项:
多个第一信号映射到同一个RB;
一个第一信号映射到一个RB。
可选地,处理器810还用于实现:
发送设备根据所述通感QoS特征参数,确定第一信号的测量量;
所述射频单元801用于实现:将所述测量量发送给接收设备;
其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,所述射频单元801还用于实现:
接收核心网设备或接收设备发送的业务的感知方式;或者
处理器810还用于实现:根据所述通感QoS特征参数,确定业务的感知方式;
其中,不同的所述感知方式对应不同的感知信号或者通感一体化信号的 收发端,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,所述射频单元801还用于实现:
发送设备接收核心网设备或者接收设备发送的参与通感的发送设备和接收设备;
处理器810还用于实现:根据所述通感QoS特征参数,确定参与通感的发送设备和接收设备。
需要说明的是,本申请实施例通过确定通感服务质量QoS参数,进而能够实现准确的进行信号的发送,提升了通感一体化的准确性以及感知的效率。
如图9所示,本申请实施例还提供一种服务质量特征参数确定方法,包括:
步骤901,接收设备获取通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
可选地,所述接收设备获取通感服务质量QoS特征参数,包括:
接收设备获取通感一体化质量参数集,所述通感一体化质量参数集为通感一体化质量索引ISAC QI与通信QoS特征参数以及感知QoS特征参数的取值的对应关系;
接收设备接收核心网设备或发送设备通知的ISAC QI;
接收设备根据所述ISAC QI和所述通感一体化质量参数集,确定通感QoS特征参数。
可选地,所述通感一体化质量参数集由协议约定、核心网设备通知或发送设备通知。
可选地,所述接收设备获取通感服务质量QoS特征参数,包括:
接收设备获取感知QoS参数集以及通信QoS参数集,所述感知QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系,所述通信QoS参数集为通信质量索引与通信QoS特征参数的取值的对应关系;
接收设备接收核心网设备或者发送设备通知的SQI和通信质量索引;
接收设备根据所述SQI和感知QoS参数集,获取感知QoS特征参数;
接收设备根据所述通信质量索引和通信QoS参数集,获取通信QoS特征参数;
接收设备将所述感知QoS特征参数和所述通信QoS特征参数确定为通感QoS特征参数。
可选地,所述接收设备获取通感服务质量QoS特征参数,包括:
接收设备接收核心网设备或者发送设备发送的第二信息;
其中,所述第二信息指示通感QoS特征参数。
可选地,所述通感QoS特征参数还包括通感业务类型和通感优先级水平中的至少一项;或者,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平中的至少一项;
其中,所述通感优先级水平用于确定通感一体化信号的资源调度优先级;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述方法,还包括:
接收设备获取通感参数配置信息;
接收设备根据所述通感参数配置信息,接收发送设备发送的第一信号;
所述通感参数配置信息包括以下至少一项:
第一信号的带宽、第一信号的发送天线数、第一信号的发射功率、第一信号的周期、第一信号的脉冲数;
其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,所述接收设备获取通感参数配置信息,包括以下一项:
所述接收设备接收发送设备或者核心网设备发送的通感参数配置信息;
接收设备根据所述通感QoS特征参数,确定通感参数配置信息。
可选地,所述接收发送设备发送的第一信号,包括:
确定第一信号与无线承载RB的目标映射规则;
根据所述目标映射规则,通过RB接收发送设备发送的第一信号;
其中,所述目标映射规则包括以下至少一项:
多个第一信号映射到同一个RB;
一个第一信号映射到一个RB。
可选地,在所述接收设备根据所述通感参数配置信息,接收发送设备发送的通感一体化信号之后,还包括:
接收设备获取所述第一信号的测量量;
接收设备根据所述第一信号的测量量,对所述第一信号进行测量,确定所述测量量对应的测量值。
可选地,所述接收设备获取所述第一信号的测量量,包括以下一项:
接收设备接收所述发送设备发送的第一信号的测量量;
接收设备根据所述通感QoS特征参数,确定第一信号的测量量。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于第一预设值的延迟敏感的感知业务;
感知物理范围大于或等于第一预设值的感知业务;
感知物理范围小于第一预设值的延迟敏感的感知业务;
感知物理范围小于第一预设值的感知业务。
可选地,所述通信业务类型包括以下至少一项:
保证比特速率的通信业务;
非保证比特速率的通信业务;
保证比特速率的延迟敏感的通信业务。
可选地,所述通感业务类型包括以下至少一项:
感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
感知物理范围大于或等于第二预设值的通信感知业务;
感知物理范围小于第二预设值的延迟敏感的通信感知业务;
感知物理范围小于第二预设值的通信感知业务。
需要说明的是,上述实施例中所有关于接收设备的描述均适用于该服务质量特征参数确定方法的实施例中,也能达到相同的技术效果,在此不再赘述。
如图10所示,本申请实施例还提供一种服务质量特征参数确定装置1000,应用于接收设备,包括:
第一获取模块1001,用于获取通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
可选地,所述第一获取模块1001,包括:
第五获取单元,用于获取通感一体化质量参数集,所述通感一体化质量参数集为通感一体化质量索引ISAC QI与通信QoS特征参数以及感知QoS特征参数的取值的对应关系;
第四接收单元,用于接收核心网设备或发送设备通知的ISAC QI;
第三确定单元,用于根据所述ISAC QI和所述通感一体化质量参数集,确定通感QoS特征参数。
可选地,所述通感一体化质量参数集由协议约定、核心网设备通知或发送设备通知。
可选地,所述第一获取模块1001,包括:
第六获取单元,用于获取感知QoS参数集以及通信QoS参数集,所述感知QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系,所述通信QoS参数集为通信质量索引与通信QoS特征参数的取值的对应关系;
第五接收单元,用于接收核心网设备或者发送设备通知的SQI和通信质量索引;
第七获取单元,用于根据所述SQI和感知QoS参数集,获取感知QoS特征参数;
第八获取单元,用于根据所述通信质量索引和通信QoS参数集,获取通信QoS特征参数;
第四确定单元,用于将所述感知QoS特征参数和所述通信QoS特征参数确定为通感QoS特征参数。
可选地,所述第一获取模块1001,包括:
第六接收单元,用于接收核心网设备或者发送设备发送的第二信息;
其中,所述第二信息指示通感QoS特征参数。
可选地,所述通感QoS特征参数还包括通感业务类型和通感优先级水平中的至少一项;或者,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平中的至少一项;
其中,所述通感优先级水平用于确定通感一体化信号的资源调度优先级;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述装置,还包括:
第三获取模块,用于获取通感参数配置信息;
第三接收模块,用于根据所述通感参数配置信息,接收发送设备发送的第一信号;
所述通感参数配置信息包括以下至少一项:
第一信号的带宽、第一信号的发送天线数、第一信号的发射功率、第一信号的周期、第一信号的脉冲数;
其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,所述第三获取模块,用于实现以下一项:
所述接收设备接收发送设备或者核心网设备发送的通感参数配置信息;
接收设备根据所述通感QoS特征参数,确定通感参数配置信息。
可选地,所述第三接收模块,用于实现:
确定第一信号与无线承载RB的目标映射规则;
根据所述目标映射规则,通过RB接收发送设备发送的第一信号;
其中,所述目标映射规则包括以下至少一项:
多个第一信号映射到同一个RB;
一个第一信号映射到一个RB。
可选地,在所述第三接收模块根据所述通感参数配置信息,接收发送设备发送的第一信号之后,还包括:
第四获取模块,用于接收设备获取所述第一信号的测量量;
第六确定模块,用于根据所述第一信号的测量量,对所述第一信号进行测量,确定所述测量量对应的测量值。
可选地,所述第四获取模块,用于实现以下一项:
接收设备接收所述发送设备发送的第一信号的测量量;
接收设备根据所述通感QoS特征参数,确定第一信号的测量量。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于第一预设值的延迟敏感的感知业务;
感知物理范围大于或等于第一预设值的感知业务;
感知物理范围小于第一预设值的延迟敏感的感知业务;
感知物理范围小于第一预设值的感知业务。
可选地,所述通信业务类型包括以下至少一项:
保证比特速率的通信业务;
非保证比特速率的通信业务;
保证比特速率的延迟敏感的通信业务。
可选地,所述通感业务类型包括以下至少一项:
感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
感知物理范围大于或等于第二预设值的通信感知业务;
感知物理范围小于第二预设值的延迟敏感的通信感知业务;
感知物理范围小于第二预设值的通信感知业务。
优选的,本申请实施例还提供一种接收设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现应用于接收设备侧的服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现应用于接收设备侧的服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例还提供一种接收设备,包括处理器和通信接口,处理器用于获取通感服务质量QoS特征参数;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
该设备实施例是与上述应用于接收设备侧的方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种接收设备,具体地,接收设备的结构可参见图7或图8的结构,在此不再赘述。
具体地,处理器调用存储器中的指令或程序执行图10所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
如图11所示,本申请实施例还提供一种数据发送方法,包括:
步骤1101,核心网设备获取目标数据,所述目标数据包括:通感服务质 量QoS特征参数、通感一体化质量索引ISAC QI、感知质量索引SQI以及通信质量索引;
步骤1102,核心网设备向发送设备和/或接收设备发送所述目标数据;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
可选地,所述方法,还包括:
根据所述目标数据,确定第三信息;
其中,所述第三信息包括以下至少一项:
业务的感知方式,不同的所述感知方式对应不同的第一信号的收发端;
参与通感的发送设备和接收设备;
其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,在所述根据所述目标数据,确定第三信息之后,还包括:
核心网设备向发送设备或接收设备发送所述业务的感知方式和/或参与通感的发送设备和接收设备。
可选地,所述通感QoS特征参数还包括通感业务类型和通感优先级水平中的至少一项;或者,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平中的至少一项;
其中,所述通感优先级水平用于确定通感一体化信号的资源调度优先级;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于第一预设值的延迟敏感的感知业务;
感知物理范围大于或等于第一预设值的感知业务;
感知物理范围小于第一预设值的延迟敏感的感知业务;
感知物理范围小于第一预设值的感知业务。
可选地,所述通信业务类型包括以下至少一项:
保证比特速率的通信业务;
非保证比特速率的通信业务;
保证比特速率的延迟敏感的通信业务。
可选地,所述通感业务类型包括以下至少一项:
感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
感知物理范围大于或等于第二预设值的通信感知业务;
感知物理范围小于第二预设值的延迟敏感的通信感知业务;
感知物理范围小于第二预设值的通信感知业务。
需要说明的是,上述实施例中所有关于核心网设备的描述均适用于该数据发送方法的实施例中,也能达到相同的技术效果,在此不再赘述。
如图12所示,本申请实施例还提供一种数据发送装置1200,应用于核心网设备,包括:
第二获取模块1201,用于获取目标数据,所述目标数据包括:通感服务质量QoS特征参数、通感一体化质量索引ISAC QI、感知质量索引SQI以及通信质量索引;
第一发送模块1202,用于向发送设备和/或接收设备发送所述目标数据;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
可选地,所述装置,还包括:
第七确定模块,用于根据所述目标数据,确定第三信息;
其中,所述第三信息包括以下至少一项:
业务的感知方式,不同的所述感知方式对应不同的第一信号的收发端;
参与通感的发送设备和接收设备;
其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
可选地,在所述第七确定模块根据所述目标数据,确定第三信息之后,还包括:
第四发送模块,用于向发送设备或接收设备发送所述业务的感知方式和/或参与通感的发送设备和接收设备。
可选地,所述通感QoS特征参数还包括通感业务类型和通感优先级水平中的至少一项;或者,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平中的至少一项;
其中,所述通感优先级水平用于确定通感一体化信号的资源调度优先级;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
可选地,所述感知业务类型包括以下至少一项:
感知物理范围大于或等于第一预设值的延迟敏感的感知业务;
感知物理范围大于或等于第一预设值的感知业务;
感知物理范围小于第一预设值的延迟敏感的感知业务;
感知物理范围小于第一预设值的感知业务。
可选地,所述通信业务类型包括以下至少一项:
保证比特速率的通信业务;
非保证比特速率的通信业务;
保证比特速率的延迟敏感的通信业务。
可选地,所述通感业务类型包括以下至少一项:
感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
感知物理范围大于或等于第二预设值的通信感知业务;
感知物理范围小于第二预设值的延迟敏感的通信感知业务;
感知物理范围小于第二预设值的通信感知业务。
需要说明的是,上述实施例中所有关于核心网设备的描述均适用于该数据发送方法的实施例中,也能达到相同的技术效果,在此不再赘述。
优选的,本申请实施例还提供一种核心网设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现应用于核心网设备侧的数据发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现应用于核心网设备侧的数据发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例还提供一种核心网设备,包括处理器和通信接口,处理器用于获取目标数据,所述目标数据包括:通感服务质量QoS特征参数、通感一体化质量索引ISAC QI、感知质量索引SQI以及通信质量索引;通信接口用于向发送设备和/或接收设备发送所述目标数据;
其中,所述通感QoS特征参数包括以下至少一项:
感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
该设备实施例是与上述应用于核心网设备侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该核心网设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种核心网设备,具体地,核心网设备的结构可参见图7的基站的结构,在此不再赘述。
具体地,处理器调用存储器中的指令或程序执行图12所示各模块执行的 方法,并达到相同的技术效果,为避免重复,故不在此赘述。
可选的,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301,存储器1302,存储在存储器1302上并可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为发送设备时,该程序或指令被处理器1301执行时实现上述服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为接收设备时,该程序或指令被处理器1301执行时实现上述服务质量特征参数确定方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为核心网设备时,该程序或指令被处理器1301执行时实现上述数据发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例涉及的发送设备和接收设备可以为终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的***中,终端设备的名称可能也不相同,例如在5G***中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为***、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的发送设备和接收设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple  Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
发送设备与接收设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2维MIMO(2 Dimension MIMO,2D-MIMO)、3维MIMO(3 Dimension MIMO,3D-MIMO)、全维度MIMO(Full Dimension MIMO)FD-MIMO或大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述服务质量特征参数确定方法或数据发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片、***芯片、芯片***或片上***芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被 组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (45)

  1. 一种服务质量特征参数确定方法,包括:
    发送设备确定通感服务质量QoS特征参数;
    其中,所述通感QoS特征参数包括以下至少一项:
    感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
  2. 根据权利要求1所述的方法,其中,所述发送设备确定通感服务质量QoS特征参数,包括:
    发送设备获取通感一体化质量参数集,所述通感一体化质量参数集为通感一体化质量索引ISAC QI与通信QoS特征参数以及感知QoS特征参数的取值的对应关系;
    发送设备接收核心网设备或者接收设备通知的ISAC QI;
    发送设备根据所述ISAC QI和所述通感一体化质量参数集,确定通感QoS特征参数。
  3. 根据权利要求2所述的方法,其中,所述通感一体化质量参数集由协议约定或核心网设备通知。
  4. 根据权利要求1所述的方法,其中,所述发送设备确定通感服务质量QoS特征参数,包括:
    发送设备获取感知QoS参数集以及通信QoS参数集,所述感知QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系,所述通信QoS参数集为通信质量索引与通信QoS特征参数的取值的对应关系;
    发送设备接收核心网设备或者接收设备通知的SQI和通信质量索引;
    发送设备根据所述SQI和感知QoS参数集,获取感知QoS特征参数;
    发送设备根据所述通信质量索引和通信QoS参数集,获取通信QoS特征参数;
    发送设备将所述感知QoS特征参数和所述通信QoS特征参数确定为通感QoS特征参数。
  5. 根据权利要求1所述的方法,其中,所述发送设备确定通感服务质量QoS特征参数,包括:
    发送设备接收核心网设备或者接收设备发送的第一信息,所述第一信息指示通感QoS特征参数。
  6. 根据权利要求1所述的方法,其中,所述通感QoS特征参数还包括通感业务类型和通感优先级水平中的至少一项;或者,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平中的至少一项;
    其中,所述通感优先级水平用于确定通感一体化信号的资源调度优先级;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
  7. 根据权利要求6所述的方法,其中,所述感知业务类型包括以下至少一项:
    感知物理范围大于或等于第一预设值的延迟敏感的感知业务;
    感知物理范围大于或等于第一预设值的感知业务;
    感知物理范围小于第一预设值的延迟敏感的感知业务;
    感知物理范围小于第一预设值的感知业务。
  8. 根据权利要求6所述的方法,其中,所述通信业务类型包括以下至少一项:
    保证比特速率的通信业务;
    非保证比特速率的通信业务;
    保证比特速率的延迟敏感的通信业务。
  9. 根据权利要求6所述的方法,其中,所述通感业务类型包括以下至少一项:
    感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
    感知物理范围大于或等于第二预设值的通信感知业务;
    感知物理范围小于第二预设值的延迟敏感的通信感知业务;
    感知物理范围小于第二预设值的通信感知业务。
  10. 根据权利要求1所述的方法,其中,在所述发送设备确定通感服务质量QoS特征参数之后,还包括:
    发送设备根据所述通感QoS特征参数,确定通感参数配置信息;
    发送设备根据所述通感参数配置信息,向接收设备发送第一信号;
    其中,所述通感参数配置信息包括以下至少一项:
    第一信号的带宽;
    第一信号的发送天线数;
    第一信号的发射功率;
    第一信号的周期;
    第一信号的脉冲数;
    其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
  11. 根据权利要求10所述的方法,其中,所述发送设备根据所述通感参数配置信息,向接收设备发送第一信号,包括:
    发送设备通过目标映射规则,将所述第一信号映射至无线承载RB;
    发送设备通过RB,向接收设备发送第一信号;
    其中,所述目标映射规则包括以下至少一项:
    多个第一信号映射到同一个RB;
    一个第一信号映射到一个RB。
  12. 根据权利要求1所述的方法,还包括:
    发送设备根据所述通感QoS特征参数,确定第一信号的测量量;
    发送设备将所述测量量发送给接收设备;
    其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
  13. 根据权利要求1所述的方法,还包括:
    发送设备接收核心网设备或接收设备发送的业务的感知方式;或者
    根据所述通感QoS特征参数,确定业务的感知方式;
    其中,不同的所述感知方式对应不同的第一信号的收发端;
    所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
  14. 根据权利要求1所述的方法,还包括以下一项:
    发送设备接收核心网设备或者接收设备发送的参与通感的发送设备和接收设备;
    发送设备根据所述通感QoS特征参数,确定参与通感的发送设备和接收设备。
  15. 一种通信方法,包括:
    接收设备获取通感服务质量QoS特征参数;
    其中,所述通感QoS特征参数包括以下至少一项:
    感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
  16. 根据权利要求15所述的方法,其中,所述接收设备获取通感服务质量QoS特征参数,包括:
    接收设备获取通感一体化质量参数集,所述通感一体化质量参数集为通感一体化质量索引ISAC QI与通信QoS特征参数以及感知QoS特征参数的取值的对应关系;
    接收设备接收核心网设备或发送设备通知的ISAC QI;
    接收设备根据所述ISAC QI和所述通感一体化质量参数集,确定通感QoS特征参数。
  17. 根据权利要求16所述的方法,其中,所述通感一体化质量参数集由 协议约定、核心网设备通知或发送设备通知。
  18. 根据权利要求15所述的方法,其中,所述接收设备获取通感服务质量QoS特征参数,包括:
    接收设备获取感知QoS参数集以及通信QoS参数集,所述感知QoS参数集为感知质量索引SQI与感知QoS特征参数的取值的对应关系,所述通信QoS参数集为通信质量索引与通信QoS特征参数的取值的对应关系;
    接收设备接收核心网设备或者发送设备通知的SQI和通信质量索引;
    接收设备根据所述SQI和感知QoS参数集,获取感知QoS特征参数;
    接收设备根据所述通信质量索引和通信QoS参数集,获取通信QoS特征参数;
    接收设备将所述感知QoS特征参数和所述通信QoS特征参数确定为通感QoS特征参数。
  19. 根据权利要求15所述的方法,其中,所述接收设备获取通感服务质量QoS特征参数,包括:
    接收设备接收核心网设备或者发送设备发送的第二信息;
    其中,所述第二信息指示通感QoS特征参数。
  20. 根据权利要求15所述的方法,其中,所述通感QoS特征参数还包括通感业务类型和通感优先级水平中的至少一项;或者,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平中的至少一项;
    其中,所述通感优先级水平用于确定通感一体化信号的资源调度优先级;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
  21. 根据权利要求15所述的方法,还包括:
    接收设备获取通感参数配置信息;
    接收设备根据所述通感参数配置信息,接收发送设备发送的第一信号;
    所述通感参数配置信息包括以下至少一项:
    第一信号的带宽、第一信号的发送天线数、第一信号的发射功率、第一信号的周期、第一信号的脉冲数;
    其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
  22. 根据权利要求21所述的方法,其中,所述接收设备获取通感参数配置信息,包括以下一项:
    所述接收设备接收发送设备或者核心网设备发送的通感参数配置信息;
    接收设备根据所述通感QoS特征参数,确定通感参数配置信息。
  23. 根据权利要求21所述的方法,其中,所述接收发送设备发送的第一信号,包括:
    确定第一信号与无线承载RB的目标映射规则;
    根据所述目标映射规则,通过RB接收发送设备发送的第一信号;
    其中,所述目标映射规则包括以下至少一项:
    多个第一信号映射到同一个RB;
    一个第一信号映射到一个RB。
  24. 根据权利要求21所述的方法,其中,在所述接收设备根据所述通感参数配置信息,接收发送设备发送的第一信号之后,还包括:
    接收设备获取所述第一信号的测量量;
    接收设备根据所述第一信号的测量量,对所述第一信号进行测量,确定所述测量量对应的测量值。
  25. 根据权利要求24所述的方法,其中,所述接收设备获取所述第一信号的测量量,包括以下一项:
    接收设备接收所述发送设备发送的第一信号的测量量;
    接收设备根据所述通感QoS特征参数,确定第一信号的测量量。
  26. 根据权利要求20所述的方法,其中,所述感知业务类型包括以下至少一项:
    感知物理范围大于或等于第一预设值的延迟敏感的感知业务;
    感知物理范围大于或等于第一预设值的感知业务;
    感知物理范围小于第一预设值的延迟敏感的感知业务;
    感知物理范围小于第一预设值的感知业务。
  27. 根据权利要求20所述的方法,其中,所述通信业务类型包括以下至少一项:
    保证比特速率的通信业务;
    非保证比特速率的通信业务;
    保证比特速率的延迟敏感的通信业务。
  28. 根据权利要求20所述的方法,其中,所述通感业务类型包括以下至少一项:
    感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
    感知物理范围大于或等于第二预设值的通信感知业务;
    感知物理范围小于第二预设值的延迟敏感的通信感知业务;
    感知物理范围小于第二预设值的通信感知业务。
  29. 一种数据发送方法,包括:
    核心网设备获取目标数据,所述目标数据包括:通感服务质量QoS特征参数、通感一体化质量索引ISAC QI、感知质量索引SQI以及通信质量索引;
    核心网设备向发送设备和/或接收设备发送所述目标数据;
    其中,所述通感QoS特征参数包括以下至少一项:
    感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
  30. 根据权利要求29所述的方法,还包括:
    根据所述目标数据,确定第三信息;
    其中,所述第三信息包括以下至少一项:
    业务的感知方式,不同的所述感知方式对应不同的第一信号的收发端;
    参与通感的发送设备和接收设备;
    其中,所述第一信号包括以下至少一项:感知信号、通信信号和通感一体化信号。
  31. 根据权利要求30所述的方法,其中,在所述根据所述目标数据,确定第三信息之后,还包括:
    核心网设备向发送设备或接收设备发送所述业务的感知方式和/或参与通感的发送设备和接收设备。
  32. 根据权利要求29所述的方法,其中,所述通感QoS特征参数还包括通感业务类型和通感优先级水平的至少一项;或者,所述通感QoS特征参数还包括感知业务类型、感知优先级水平、通信业务类型、通信优先级水平的至少一项;
    其中,所述通感优先级水平用于确定通感一体化信号的资源调度优先级;所述通信优先级水平用于确定通信信号的资源调度优先级;所述感知优先级水平用于确定感知信号的资源调度优先级。
  33. 根据权利要求32所述的方法,其中,所述感知业务类型包括以下至少一项:
    感知物理范围大于或等于第一预设值的延迟敏感的感知业务;
    感知物理范围大于或等于第一预设值的感知业务;
    感知物理范围小于第一预设值的延迟敏感的感知业务;
    感知物理范围小于第一预设值的感知业务。
  34. 根据权利要求32所述的方法,其中,所述通信业务类型包括以下至少一项:
    保证比特速率的通信业务;
    非保证比特速率的通信业务;
    保证比特速率的延迟敏感的通信业务。
  35. 根据权利要求32所述的方法,其中,所述通感业务类型包括以下至少一项:
    感知物理范围大于或等于第二预设值的延迟敏感的通信感知业务;
    感知物理范围大于或等于第二预设值的通信感知业务;
    感知物理范围小于第二预设值的延迟敏感的通信感知业务;
    感知物理范围小于第二预设值的通信感知业务。
  36. 一种服务质量特征参数确定装置,应用于发送设备,所述装置包括:
    第一确定模块,用于确定通感服务质量QoS特征参数;
    其中,所述通感QoS特征参数包括以下至少一项:
    感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
  37. 一种发送设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14中任一项所述的服务质量特征参数确定方法的步骤。
  38. 一种服务质量特征参数确定装置,应用于接收设备,所述装置包括:
    第一获取模块,用于获取通感服务质量QoS特征参数;
    其中,所述通感QoS特征参数包括以下至少一项:
    感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
  39. 一种接收设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求15至28中任一项所述的服务质量特征参数确定方法的步骤。
  40. 一种数据发送装置,应用于核心网设备,所述装置包括:
    第二获取模块,用于获取目标数据,所述目标数据包括:通感服务质量QoS特征参数、通感一体化质量索引ISAC QI、感知质量索引SQI以及通信 质量索引;
    第一发送模块,用于向发送设备和/或接收设备发送所述目标数据;
    其中,所述通感QoS特征参数包括以下至少一项:
    感知延时预算、感知分辨率、最大感知范围、感知误差、连续感知能力、感知更新频率、通感一体化信号质量、感知安全性、感知隐私性、检测概率、虚警概率、包延时预算、误包率、最大数据突发量、最大数据速率、误比特率、平均窗口。
  41. 一种核心网设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求29至35中任一项所述的数据发送方法的步骤。
  42. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至28中任一项所述的服务质量特征参数确定方法的步骤或如权利要求29至35中任一项所述的数据发送方法的步骤。
  43. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至28中任一项所述的服务质量特征参数确定方法的步骤或如权利要求29至35中任一项所述的数据发送方法的步骤。
  44. 一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至28中任一项所述的服务质量特征参数确定方法的步骤或如权利要求29至35中任一项所述的数据发送方法的步骤。
  45. 一种通信设备,被配置为执行如权利要求1至28中任一项所述的服务质量特征参数确定方法的步骤或如权利要求29至35中任一项所述的数据发送方法的步骤。
PCT/CN2022/116517 2021-09-06 2022-09-01 服务质量特征参数确定、数据发送方法、装置及设备 WO2023030447A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22863582.7A EP4401336A1 (en) 2021-09-06 2022-09-01 Quality-of-service feature parameter determination and data transmission methods and apparatuses, and device
US18/596,564 US20240214866A1 (en) 2021-09-06 2024-03-05 Quality of service characteristic parameter determining method and apparatus, data sending method and apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111039130.2A CN115776694A (zh) 2021-09-06 2021-09-06 服务质量特征参数确定、数据发送方法、装置及设备
CN202111039130.2 2021-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/596,564 Continuation US20240214866A1 (en) 2021-09-06 2024-03-05 Quality of service characteristic parameter determining method and apparatus, data sending method and apparatus, and device

Publications (1)

Publication Number Publication Date
WO2023030447A1 true WO2023030447A1 (zh) 2023-03-09

Family

ID=85387364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116517 WO2023030447A1 (zh) 2021-09-06 2022-09-01 服务质量特征参数确定、数据发送方法、装置及设备

Country Status (4)

Country Link
US (1) US20240214866A1 (zh)
EP (1) EP4401336A1 (zh)
CN (1) CN115776694A (zh)
WO (1) WO2023030447A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116232351A (zh) * 2023-03-15 2023-06-06 清华大学 通感一体化收发机***、通信传感模式切换方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645791A (zh) * 2016-07-22 2018-01-30 电信科学技术研究院 一种传输数据流的无线承载处理方法及装置
CN111614394A (zh) * 2019-02-25 2020-09-01 南京华鹞信息科技有限公司 一种使无人机网络具有群集性的分布式双层群集控制技术

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645791A (zh) * 2016-07-22 2018-01-30 电信科学技术研究院 一种传输数据流的无线承载处理方法及装置
CN111614394A (zh) * 2019-02-25 2020-09-01 南京华鹞信息科技有限公司 一种使无人机网络具有群集性的分布式双层群集控制技术

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA ALCATEL-LUCENT SHANGHAI BELL: "QoS Parameters", 3GPP DRAFT; R2-1702637 QOS PARAMETERS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20170403 - 20170407, 24 March 2017 (2017-03-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051253228 *
WANG XINYI; FEI ZESONG; HUANG JINGXUAN; LIU PENG: "Transmitter Design for Integrated Sensing and Communication Systems with Integrated Services", 2021 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC WORKSHOPS), IEEE, 28 July 2021 (2021-07-28), pages 43 - 47, XP033976716, DOI: 10.1109/ICCCWorkshops52231.2021.9538903 *
ZTE, SANECHIPS: "Discussion on QoS management", 3GPP DRAFT; R1-1906471 DISCUSSION ON QOS MANAGEMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051708506 *

Also Published As

Publication number Publication date
CN115776694A (zh) 2023-03-10
EP4401336A1 (en) 2024-07-17
US20240214866A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
WO2022100499A1 (zh) 感知信号传输方法和装置
WO2023030448A1 (zh) 服务质量特征参数确定、数据发送方法、装置及设备
Karoui et al. Performance comparison between LTE-V2X and ITS-G5 under realistic urban scenarios
JP2020092454A (ja) 通信装置、通信方法及びコンピュータプログラム
KR20190067805A (ko) 무선 통신에서의 혼잡 제어 방법 및 장치
US20240214866A1 (en) Quality of service characteristic parameter determining method and apparatus, data sending method and apparatus, and device
KR20240036592A (ko) 사이드링크 위치 추정을 위한 사이드링크 앵커 그룹
WO2023116755A1 (zh) 定位感知方法、感知测量方法、装置、终端及网络侧设备
Lottermann et al. LTE for vehicular communications
Cacciapuoti et al. Software-defined network controlled switching between millimeter wave and terahertz small cells
TW202312776A (zh) 側行鏈路定位參考訊號序列
KR20240042432A (ko) 사이드링크 포지션 추정을 위한 사이드링크 앵커 그룹
CN117043832A (zh) 测距辅助行人定位
US20240097845A1 (en) Method and apparatus for determining transmission resource, and communication device and storage medium
Abdulla et al. Fine-grained reliability for V2V communications around suburban and urban intersections
He et al. Reliable auxiliary communication of UAV via relay cache optimization
CN114554421B (zh) 一种通信方法及装置
JP6432739B2 (ja) 通信システム、端末、基地局及び通信制御方法
JP2016189545A (ja) 通信装置及び通信制御方法
JP6601789B2 (ja) 通信装置及びセル選択方法
US20240089713A1 (en) Method for terminal to transmit first signal and device for same in wireless communication system
JP6418395B2 (ja) 通信装置、基地局及び通信制御方法
WO2023165427A1 (zh) 感知QoS的实现方法、装置及第一设备
WO2024022422A1 (zh) 通信感知方法和装置
WO2024040469A1 (en) Methods, system, and apparatus for collaborative sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863582

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863582

Country of ref document: EP

Effective date: 20240408