WO2023030066A1 - 一种投影仪的无感自动对焦的计算方法 - Google Patents

一种投影仪的无感自动对焦的计算方法 Download PDF

Info

Publication number
WO2023030066A1
WO2023030066A1 PCT/CN2022/113916 CN2022113916W WO2023030066A1 WO 2023030066 A1 WO2023030066 A1 WO 2023030066A1 CN 2022113916 W CN2022113916 W CN 2022113916W WO 2023030066 A1 WO2023030066 A1 WO 2023030066A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
projector
size
lens module
picture
Prior art date
Application number
PCT/CN2022/113916
Other languages
English (en)
French (fr)
Inventor
史振中
Original Assignee
安克创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安克创新科技股份有限公司 filed Critical 安克创新科技股份有限公司
Publication of WO2023030066A1 publication Critical patent/WO2023030066A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/53Means for automatic focusing, e.g. to compensate thermal effects

Definitions

  • the present application relates to the technical field of projectors, and more particularly relates to an automatic focusing method of a projector and the projector.
  • the automatic focusing method of projectors is generally similar to the "contrast" focusing on digital cameras.
  • the focusing motor needs to continuously move the lens to find contrast points in the picture until the picture is clear. Therefore, the autofocus process of the current projector is very slow and requires a focus map, which will interrupt the entire viewing process.
  • an autofocus method for a projector comprising: calculating the projection distance based on the measurement data of the distance measuring component of the projector; according to the throw ratio of the lens module of the projector, based on The projection distance calculates the size of the picture projected by the projector; according to the characteristics of the focus motor and the lens module of the projector, the driving parameters of the focus motor are calculated based on the size of the picture; based on the focus motor The driving parameters control the focus motor to drive the movement of the lens module to achieve automatic focus.
  • the calculation of the size of the picture projected by the projector based on the projection distance according to the throw ratio of the lens module of the projector includes: dividing the projection distance by the According to the projection ratio of the lens module, the horizontal size of the picture projected by the projector is obtained; according to the aspect ratio and the horizontal size of the picture projected by the projector, the vertical size of the picture projected by the projector is calculated; According to the horizontal size and the vertical size, calculate the diagonal size of the picture projected by the projector as the size of the picture.
  • the calculating the vertical size of the picture projected by the projector according to the aspect ratio of the picture projected by the projector and the horizontal size includes: calculating the horizontal size and the horizontal size The product of the aspect ratio, and calculate the reciprocal of the product, to obtain the vertical size of the picture projected by the projector.
  • the calculating the diagonal size of the picture projected by the projector according to the horizontal size and the vertical size includes: calculating the square of the horizontal size and the vertical size The square root of the sum is obtained to obtain the diagonal size of the picture projected by the projector.
  • the total distance steps of the focus motor, the total power of the lens module, and the relationship between the power of the lens module and the size of the screen Correspondence, calculating the driving parameters of the focus motor based on the size of the screen, including: according to the total number of steps of the focus motor, the total power of the lens module, and the power of the lens module and the The corresponding relationship between the size of the screen and the driving parameters of the focus motor are calculated based on the size of the screen.
  • calculating the driving parameters of the focus motor based on the size of the picture including: calculating the number of steps required for each conversion of the lens module according to the total number of steps of the focus motor and the total power of the lens module The number of steps for the focus motor to rotate; according to the corresponding relationship between the degree of the lens module and the size of the picture, determine the angle that the lens module needs to convert based on the calculated size of the picture; According to the number of steps that the focus motor needs to rotate for each degree of conversion of the lens module and the determined angle that the lens module needs to convert, calculate the total number of steps required by the focus motor as the driving parameter.
  • the ranging component includes a time-of-flight sensor module.
  • the ranging component includes a first time-of-flight sensor and a second time-of-flight sensor, wherein: the first time-of-flight sensor outputs a first distance, and the first distance is the first distance a distance from a location of a time-of-flight sensor to a first location on the projection screen; the second time-of-flight sensor outputs a second distance from the location of the second time-of-flight sensor to the projection screen The distance of the second position; wherein, the second distance is greater than the first distance, the second distance minus the first distance equals a third distance, and the third distance is the third distance from the third position to the The distance of the second position, the third position is the position between the second time-of-flight sensor and the second position; the calculation of the projection distance based on the measurement data of the ranging component of the projector includes: the first distance, the angle of the second time-of-flight sensor, and the distance between the first flight sensor and the second flight sensor, calculate the distance
  • a projector includes a distance measuring component, a memory, a processor, a focus motor, and a lens module, wherein: the distance measuring component is used for connecting the output and the projection screen The distance measurement data; the memory storage is used to store an executable program; the processor is used to execute the program stored in the memory, so that the processor performs the following operations: calculate the projection distance based on the distance measurement data ; according to the throw ratio of the lens module, calculate the size of the picture projected by the projector based on the projection distance; according to the characteristics of the focus motor and the lens module, calculate the size of the picture based on the Driving parameters of the focus motor; controlling the focus motor to drive the lens module to move based on the driving parameters of the focus motor, so as to realize automatic focusing.
  • the ranging component includes a time-of-flight sensor module.
  • the ranging component includes a first time-of-flight sensor and a second time-of-flight sensor, wherein: the first time-of-flight sensor outputs a first distance, and the first distance is the first distance a distance from the location of a time-of-flight sensor to a first location on the projection screen; and the second time-of-flight sensor outputs a second distance from the location of the second time-of-flight sensor to the projected The distance of the second position on the screen; wherein, the second distance is greater than the first distance, and the second distance minus the first distance equals a third distance, and the third distance is the third distance from the third position to The distance of the second position, the third position is the position between the second time-of-flight sensor and the second position; the processor calculates the projected distance based on the ranging data, including: based on the the first distance, the angle of the second time-of-flight sensor, and the distance between the first flight sensor and the second flight sensor, calculate the distance
  • the processor calculates the size of the picture projected by the projector based on the projection distance according to the projection ratio of the lens module of the projector, including: dividing the projection distance by Using the projection ratio of the lens module to obtain the horizontal size of the picture projected by the projector; according to the aspect ratio and the horizontal size of the picture projected by the projector, calculate the vertical direction of the picture projected by the projector Size: according to the horizontal size and the vertical size, calculate the diagonal size of the picture projected by the projector as the size of the picture.
  • the processor calculates the vertical size of the picture projected by the projector according to the aspect ratio of the picture projected by the projector and the horizontal size, including: calculating the horizontal size and the product of the aspect ratio, and calculate the reciprocal of the product to obtain the vertical size of the picture projected by the projector.
  • the processor calculates the diagonal size of the picture projected by the projector according to the horizontal size and the vertical size, including: calculating the horizontal size and the vertical size The square root of the sum of the squares of , obtains the diagonal size of the picture projected by the projector.
  • the processor calculates the driving parameters of the focus motor based on the size of the screen according to the characteristics of the focus motor and the lens module, including: The total number of distance steps, the total power of the lens module, and the corresponding relationship between the power of the lens module and the size of the picture, calculating the driving parameters of the focus motor based on the size of the picture .
  • the processor is based on the total number of steps of the focus motor, the total power of the lens module, and the relationship between the power of the lens module and the size of the screen.
  • the corresponding relationship between the calculation of the driving parameters of the focus motor based on the size of the picture includes: according to the total number of steps of the focus motor and the total power of the lens module, calculate the lens module per conversion The number of steps required for the focus motor to rotate at one time; according to the correspondence between the degree of the lens module and the size of the picture, based on the calculated size of the picture, it is determined that the lens module needs The angle of conversion; according to the number of steps that the focus motor needs to rotate for each degree of conversion of the lens module and the determined angle that the lens module needs to convert, calculate the total number of steps that the focus motor needs to rotate, as the drive parameters.
  • the projector can realize autofocus quickly, and since there is no need to pop up the focus map through the camera, the movie viewing process will not be interrupted, thereby improving user experience.
  • Fig. 1 shows a schematic flowchart of an autofocus method for a projector according to an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of an example of acquiring a screen size in an autofocus method for a projector according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram showing an example of the corresponding relationship between the diopter of the lens module and the screen size in the autofocus method of the projector according to the embodiment of the present application.
  • Fig. 4 shows a schematic block diagram of a projector according to an embodiment of the present application.
  • an autofocus method 100 for a projector may include the following steps:
  • step S110 the projection distance is calculated based on the measurement data of the distance measuring component of the projector
  • step S120 calculate the size of the picture projected by the projector based on the projection distance according to the throw ratio of the lens module of the projector;
  • step S130 according to the characteristics of the focus motor and the lens module of the projector, the driving parameters of the focus motor are calculated based on the size of the screen;
  • step S140 the focus motor is controlled to drive the movement of the lens module based on the drive parameters of the focus motor, so as to achieve automatic focusing.
  • the distance between the projector and the projection screen can be calculated according to the distance measurement data of the distance measurement component of the projector (such as a single time-of-flight (TOF) module capable of quickly measuring the distance).
  • the projection distance, combined with the projection ratio of the projector's lens module can calculate the size of the picture projected by the projector on the projection screen, and then according to the size, combined with the characteristics of the focus motor and lens module (mainly involving the overall size of the focus motor distance steps, the total degrees of the lens module, and the corresponding relationship between the degree of the lens module and the size of the screen), the driving parameters of the focus motor can be calculated, and the movement of the lens module can be controlled according to the driving parameters.
  • the distance measurement data of the distance measurement component of the projector such as a single time-of-flight (TOF) module capable of quickly measuring the distance.
  • the projection distance, combined with the projection ratio of the projector's lens module can calculate the size of the picture projected by the projector on the projection screen, and then according to the size
  • the first time-of-flight sensor when the ranging component of the projector includes a first time-of-flight sensor and a second time-of-flight sensor, the first time-of-flight sensor outputs a first distance, and the first distance is the position of the first time-of-flight sensor The distance to the first position on the projection screen; the second time-of-flight sensor outputs a second distance, and the second distance is the distance from the position of the second time-of-flight sensor to the second position on the projection screen; wherein, the second distance is greater than the first A distance, the second distance minus the first distance equals a third distance, the third distance is the distance from the third position to the second position, and the third position is a position between the second time-of-flight sensor and the second position.
  • the calculation of the projection distance based on the measurement data of the ranging component of the projector in step S110 may include: based on the first distance, the angle of the second time-of-flight sensor, and the distance between the first flight sensor and the second flight sensor , calculate the distance from the first position to the third position as the fourth distance; calculate the distance from the first position to the second position based on the third distance, the fourth distance and the angle, as the fifth distance; based on the third distance, the fourth The distance, the fifth distance, and the angle calculate the angle between the straight lines of the fourth distance and the fifth distance; calculate the projection based on the first distance, the angle, the angle, and the distance between the first flight sensor and the second flight sensor The projection distance from the projector to the projection screen.
  • calculating the size of the screen projected by the projector based on the projection distance based on the projection ratio of the lens module of the projector in step S120 may include: dividing the projection distance by the projection ratio of the lens module, Get the horizontal size of the screen projected by the projector; calculate the vertical size of the screen projected by the projector according to the aspect ratio and horizontal size of the screen projected by the projector; calculate the diagonal angle of the screen projected by the projector according to the horizontal size and vertical size Line size, as the size of the screen.
  • calculating the vertical size of the picture projected by the projector includes: calculating the product of the horizontal size and the aspect ratio, and calculating the reciprocal of the product to obtain the projected picture of the projector.
  • calculating the diagonal size of the picture projected by the projector includes: calculating the square root of the sum of the squares of the horizontal size and the vertical size to obtain the diagonal size of the picture projected by the projector. It will be described below in conjunction with FIG. 2 .
  • FIG. 2 shows a schematic diagram of an example of acquiring a screen size in an autofocus method for a projector according to an embodiment of the present application.
  • Z 2 is the position where the projector is placed, and the picture actually projected onto the projection screen T 2 W 2 U 2 V 2 is J 2 S 2 R 2 M 2 .
  • the projection distance measured by the ranging component of the projector is L0, which is the vertical distance from the projector Z 2 to (the center of) the projection screen.
  • the throw ratio of the lens module of the projector is R (for example, 1.27)
  • the diagonal dimension L3 of the projected picture J 2 S 2 R 2 M 2 can be calculated according to the horizontal dimension L1 and the vertical dimension L2 of the projected picture J 2 S 2 R 2 M 2 .
  • the diagonal size L3 can be used as the size of the projection screen J 2 S 2 R 2 M 2 .
  • calculating the driving parameters of the focus motor based on the size of the screen according to the characteristics of the focus motor and the lens module of the projector in step S130 may include: The total power of the group and the corresponding relationship between the power of the lens module and the size of the frame are calculated based on the size of the frame to calculate the driving parameters of the focus motor.
  • the driving parameters of the focus motor are calculated based on the size of the screen, which may include: According to the total number of steps of the focus motor and the total number of degrees of the lens module, calculate the number of steps that the lens module needs to rotate for each degree conversion; according to the corresponding relationship between the degree of the lens module and the size of the screen, Based on the calculated size of the screen, determine the angle that the lens module needs to convert; according to the number of steps that the focus motor needs to rotate per degree of conversion of the lens module and the determined angle that the lens module needs to convert, calculate the total distance steps required by the focus motor number, as a driving parameter. It will be described below in conjunction with FIG. 3 .
  • FIG. 3 is a schematic diagram showing an example of the corresponding relationship between the diopter of the lens module and the screen size in the autofocus method of the projector according to the embodiment of the present application.
  • the characteristics of the lens module G2 of the projector are as follows, the total degree is 48°, including the degree range from -24° to 24°, and each degree has its corresponding screen size.
  • several degrees and their corresponding screen sizes are exemplarily listed, including: 24°/60 inches, 11.1°/80 inches, 0°/100 inches, -125°/150 inches and -24°/180 inches.
  • the above data reflect the corresponding relationship between the power of the lens module and the size of the screen.
  • the unit of the picture size is inch.
  • the unit of the size of the projected picture calculated in the aforementioned step S120 is meter. Therefore, the unit conversion of the picture size can be performed first, and then according to the calculated picture size and the aforementioned According to the corresponding relationship between the power of the lens module and the size of the picture, the power that needs to be converted by the lens module corresponding to the picture size can be determined.
  • the number of steps required for the focus motor to rotate for each degree of conversion of the lens module can be calculated.
  • the total number of steps of the focus motor is 240 steps, combined with the aforementioned lens module with a total degree of 48°, it can be calculated that the number of steps required for the focus motor to rotate for each degree of conversion of the lens module is 5 steps, namely 5 steps/degree.
  • the total number of steps required by the focus motor can be obtained, namely Get the driving parameters of the focus motor.
  • the focus motor can be controlled to drive the lens module to move, that is, the focus motor executes the calculated distance steps, and drives the lens module to switch to the required angle.
  • the angle corresponds to the screen size and the screen calculated above. The size overlaps, so as to achieve the effect of fast focusing, one step in place, no need to constantly push the lens to find the contrast point in the picture, and no focus map is required.
  • the projector autofocus method 100 of the present application can use a distance measuring component such as a single TOF module to quickly measure the vertical distance between the projector and the projection screen, and calculate the actual projected screen size based on the currently measured distance , and then calculate the actual number of motor focus steps based on the actual calculated size and the angle ratio relationship between the output of the focus motor, and finally achieve the purpose of fast focus.
  • a distance measuring component such as a single TOF module to quickly measure the vertical distance between the projector and the projection screen, and calculate the actual projected screen size based on the currently measured distance , and then calculate the actual number of motor focus steps based on the actual calculated size and the angle ratio relationship between the output of the focus motor, and finally achieve the purpose of fast focus.
  • the auto-focus method of the projector according to the embodiment of the present application can quickly realize auto-focus, and since there is no need to pop up the focus map through the camera, it will not interrupt the viewing process and improve user experience.
  • FIG. 4 shows a schematic block diagram of a projector 400 according to an embodiment of the present application.
  • a projector 400 may include a ranging component 410 , a memory 420 , a processor 430 , a focus motor 440 and a lens module 450 .
  • the distance measuring component 410 is used to output the distance measurement data between the projection screen;
  • the memory 420 is used to store executable programs;
  • the processor 430 is used to execute the programs stored in the memory 420, so that the processor 430 executes the aforementioned An autofocus method for a projector according to an embodiment of the present application.
  • Those skilled in the art can understand the structure and specific operations of the components of the projector according to the embodiment of the present application in combination with the foregoing content. For the sake of brevity, specific details are not repeated here, and only some main operations are described.
  • the processor 430 executes the following steps: calculate the projection distance based on the ranging data output by the ranging component 410; according to the throw ratio of the lens module 450, Calculate the size of the picture projected by the projector 400 based on the projection distance; calculate the driving parameters of the focus motor 440 based on the size of the picture according to the characteristics of the focus motor 440 and the lens module 450; control the focus motor 440 to drive the lens based on the drive parameters of the focus motor 440 Module 450 movement for autofocus.
  • the ranging component 410 includes a time-of-flight sensor module.
  • the ranging component 410 includes a first time-of-flight sensor and a second time-of-flight sensor, wherein: the first time-of-flight sensor outputs a first distance, and the first distance is the first the distance from the position of the time-of-flight sensor to the first position on the projection screen; the second time-of-flight sensor outputs a second distance from the position of the second time-of-flight sensor to the projection screen The distance of the second position above; wherein, the second distance is greater than the first distance, the second distance minus the first distance is equal to the third distance, and the third distance is the third distance from the third position to the The distance between the second position, the third position is the position between the second time-of-flight sensor and the second position; the processor calculates the projected distance based on the ranging data, including: based on the the first distance, the angle of the second time-of-flight sensor, and the distance between the first flight sensor and the second flight sensor, and calculate the distance from the first
  • the processor 430 calculates the size of the picture projected by the projector 400 based on the projection distance according to the throw ratio of the lens module 450 of the projector 400, including: dividing the projection distance by the projection distance of the lens module 450 Projection ratio, obtain the horizontal size of the picture projected by the projector 400; calculate the vertical size of the picture projected by the projector 400 according to the aspect ratio and the horizontal size of the picture projected by the projector 400; calculate the projector according to the horizontal size and the vertical size 400 The diagonal size of the projected screen is used as the size of the screen.
  • the processor 430 calculates the vertical size of the picture projected by the projector 400 according to the aspect ratio and the horizontal size of the picture projected by the projector 400, including: calculating the product of the horizontal size and the aspect ratio, And calculate the reciprocal of the product to obtain the vertical size of the picture projected by the projector 400 .
  • the processor 430 calculates the diagonal size of the picture projected by the projector 400 according to the horizontal size and the vertical size, including: calculating the square root of the square sum of the horizontal size and the vertical size to obtain the projection The diagonal size of the picture projected by the instrument 400.
  • the processor 430 is based on the total number of steps of the focus motor 440, the total power of the lens module 450, and the corresponding relationship between the power of the lens module 450 and the size of the screen.
  • Calculating the driving parameters of the focus motor 440 according to the size of the picture includes: according to the total number of steps of the focus motor 440, the total power of the lens module 450, and the correspondence between the power of the lens module 450 and the size of the picture, The driving parameters of the focus motor 440 are calculated based on the size of the screen.
  • the processor 430 is based on the total number of steps of the focus motor 440, the total power of the lens module 450, and the corresponding relationship between the power of the lens module 450 and the size of the screen.
  • Calculate the driving parameters of the focus motor according to the size of the screen including: according to the total number of steps of the focus motor 440 and the total degree of the lens module 450, calculate the number of steps that the focus motor 440 needs to rotate for each degree of conversion of the lens module 450;
  • the corresponding relationship between the degree of the group 450 and the size of the picture is based on the calculated size of the picture to determine the angle that the lens module 450 needs to convert; according to the number of steps that the focus motor 440 needs to rotate for each degree of conversion of the lens module 450 As well as the determined angles that the lens module 450 needs to convert, the total number of steps required by the focus motor 440 is calculated as a driving parameter.
  • the projector 400 calculates the size of the picture projected by the projector on the projection screen according to the projection distance measured by the distance measuring component and the projection ratio of the lens module of the projector, and then according to This size, combined with the characteristics of the focus motor and the lens module (mainly involving the total number of steps of the focus motor, the total power of the lens module, and the correspondence between the power of the lens module and the size of the screen), is calculated
  • the driving parameters of the focus motor are obtained, and finally the movement of the lens module can be controlled according to the driving parameters, so that automatic focusing can be realized quickly, and since there is no need to pop up the focus map through the camera, the viewing process will not be interrupted and the user experience will be improved.
  • a storage medium is also provided, on which program instructions are stored, and when the program instructions are executed by a computer or a processor, they are used to execute the projector in the embodiment of the present application.
  • the corresponding steps for the autofocus method may include, for example, a memory card of a smart phone, a storage unit of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk ROM, etc. (CD-ROM), USB memory, or any combination of the above storage media.
  • the computer readable storage medium can be any combination of one or more computer readable storage medium.
  • the projector can quickly realize autofocus, and since there is no need to pop up the focus map through the camera, it will not interrupt the viewing process and improve user experience.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another device, or some features may be omitted, or not implemented.
  • the various component embodiments of the present application may be realized in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application can also be implemented as an apparatus program (for example, a computer program and a computer program product) for performing a part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals.
  • Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

一种投影仪的自动对焦方法和投影仪。投影仪的自动对焦方法包括:基于投影仪的测距部件的测量数据计算投影距离(S110);根据投影仪的镜头模组的投射比,基于投影距离计算投影仪投射的画面的尺寸(S120);根据投影仪的对焦马达和镜头模组的特性,基于画面的尺寸计算对焦马达的驱动参数(S130);基于对焦马达的驱动参数控制对焦马达驱动镜头模组运动,以实现自动对焦(S140)。利用该自动对焦方法,投影仪能够快速实现自动对焦。

Description

一种投影仪的无感自动对焦的计算方法
说明书
技术领域
本申请涉及投影仪技术领域,更具体地涉及一种投影仪的自动对焦方法和投影仪。
背景技术
目前,投影仪的自动对焦方式一般是类似于数码相机上的“反差式”对焦,整个对焦过程对焦马达需要不停地推动镜片运动,寻找画面中反差点,直到画面清晰。因此,目前投影仪自动对焦过程非常慢,且需要对焦图,会打断整个观影过程。
因此,需要一种用于投影仪的新的自动对焦方法来解决上述问题。
发明内容
根据本申请一方面,提供了一种投影仪的自动对焦方法,所述方法包括:基于投影仪的测距部件的测量数据计算投影距离;根据所述投影仪的镜头模组的投射比,基于所述投影距离计算所述投影仪投射的画面的尺寸;根据所述投影仪的对焦马达和镜头模组的特性,基于所述画面的尺寸计算所述对焦马达的驱动参数;基于所述对焦马达的驱动参数控制所述对焦马达驱动所述镜头模组运动,以实现自动对焦。
在本申请的一个实施例中,所述根据所述投影仪的镜头模组的投射比,基于所述投影距离计算所述投影仪投射的画面的尺寸,包括:将所述投影距离除以所述镜头模组的投射比,得到所述投影仪投射的画面的横向尺寸;根据所述投影仪投射的画面的长宽比以及所述横向尺寸,计算所述投影仪投射的画面的纵向尺寸;根据所述横向尺寸和所述纵向尺寸,计算所述投影仪投射的画面的对角线尺寸,作为所述画面的尺寸。
在本申请的一个实施例中,所述根据所述投影仪投射的画面的长宽比以及所述横向尺寸,计算所述投影仪投射的画面的纵向尺寸,包括:计算 所述横向尺寸与所述长宽比的乘积,并计算所述乘积的倒数,得到所述投影仪投射的画面的纵向尺寸。
在本申请的一个实施例中,所述根据所述横向尺寸和所述纵向尺寸,计算所述投影仪投射的画面的对角线尺寸,包括:计算所述横向尺寸和所述纵向尺寸的平方和的开平方结果,得到所述投影仪投射的画面的对角线尺寸。
在本申请的一个实施例中,所述根据所述对焦马达的总路程步数、所述镜头模组的总度数以及所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于所述画面的尺寸计算所述对焦马达的驱动参数,包括:根据所述对焦马达的总路程步数、所述镜头模组的总度数以及所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于所述画面的尺寸计算所述对焦马达的驱动参数。
在本申请的一个实施例中,根据所述对焦马达的总路程步数、所述镜头模组的总度数以及所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于所述画面的尺寸计算所述对焦马达的驱动参数,包括:根据所述对焦马达的总路程步数和所述镜头模组的总度数,计算所述镜头模组每转换一度需要所述对焦马达转动的步数;根据所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于计算得到的所述画面的尺寸确定所述镜头模组需要转换的角度;根据所述镜头模组每转换一度需要所述对焦马达转动的步数以及所确定的所述镜头模组需要转换的角度,计算所述对焦马达共计需要的路程步数,作为所述驱动参数。
在本申请的一个实施例中,所述测距部件包括飞行时间传感器模组。
在本申请的一个实施例中,所述测距部件包括第一飞行时间传感器和第二飞行时间传感器,其中:所述第一飞行时间传感器输出第一距离,所述第一距离为所述第一飞行时间传感器的位置到投影屏幕上的第一位置的距离;所述第二飞行时间传感器输出第二距离,所述第二距离为所述第二飞行时间传感器的位置到所述投影屏幕上的第二位置的距离;其中,所述第二距离大于所述第一距离,所述第二距离减去所述第一距离等于第三距离,所述第三距离为第三位置到所述第二位置的距离,所述第三位置为所述第二飞行时间传感器与所述第二位置之间的位置;所述基于投影仪的测 距部件的测量数据计算投影距离,包括:基于所述第一距离、所述第二飞行时间传感器的角度、以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述第一位置到所述第三位置的距离,作为第四距离;基于所述第三距离、所述第四距离和所述角度计算所述第一位置到所述第二位置的距离,作为第五距离;基于所述第三距离、所述第四距离、所述第五距离以及所述角度计算所述第四距离和所述第五距离各自所在直线之间的夹角;基于所述第一距离、所述角度、所述夹角以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述投影仪到所述投影屏幕的投影距离。
根据本申请另一方面,提供了一种投影仪,所述投影仪包括测距部件、存储器、处理器、对焦马达和镜头模组,其中:所述测距部件用于输出与投影屏幕之间的测距数据;所述存储器存储用于存储可执行程序;所述处理器用于执行所述存储器中存储的所述程序,使得所述处理器执行以下操作:基于所述测距数据计算投影距离;根据所述镜头模组的投射比,基于所述投影距离计算所述投影仪投射的画面的尺寸;根据所述对焦马达和所述镜头模组的特性,基于所述画面的尺寸计算所述对焦马达的驱动参数;基于所述对焦马达的驱动参数控制所述对焦马达驱动所述镜头模组运动,以实现自动对焦。
在本申请的一个实施例中,所述测距部件包括飞行时间传感器模组。
在本申请的一个实施例中,所述测距部件包括第一飞行时间传感器和第二飞行时间传感器,其中:所述第一飞行时间传感器输出第一距离,所述第一距离为所述第一飞行时间传感器的位置到所述投影屏幕上的第一位置的距离;所述第二飞行时间传感器输出第二距离,所述第二距离为所述第二飞行时间传感器的位置到所述投影屏幕上的第二位置的距离;其中,所述第二距离大于所述第一距离,所述第二距离减去所述第一距离等于第三距离,所述第三距离为第三位置到所述第二位置的距离,所述第三位置为所述第二飞行时间传感器与所述第二位置之间的位置;所述处理器基于所述测距数据计算投影距离,包括:基于所述第一距离、所述第二飞行时间传感器的角度、以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述第一位置到所述第三位置的距离,作为第四距离;基于所 述第三距离、所述第四距离和所述角度计算所述第一位置到所述第二位置的距离,作为第五距离;基于所述第三距离、所述第四距离、所述第五距离以及所述角度计算所述第四距离和所述第五距离各自所在直线之间的夹角;基于所述第一距离、所述角度、所述夹角以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述投影仪到所述投影屏幕的投影距离。
在本申请的一个实施例中,所述处理器根据所述投影仪的镜头模组的投射比,基于所述投影距离计算所述投影仪投射的画面的尺寸,包括:将所述投影距离除以所述镜头模组的投射比,得到所述投影仪投射的画面的横向尺寸;根据所述投影仪投射的画面的长宽比以及所述横向尺寸,计算所述投影仪投射的画面的纵向尺寸;根据所述横向尺寸和所述纵向尺寸,计算所述投影仪投射的画面的对角线尺寸,作为所述画面的尺寸。
在本申请的一个实施例中,所述处理器根据所述投影仪投射的画面的长宽比以及所述横向尺寸,计算所述投影仪投射的画面的纵向尺寸,包括:计算所述横向尺寸与所述长宽比的乘积,并计算所述乘积的倒数,得到所述投影仪投射的画面的纵向尺寸。
在本申请的一个实施例中,所述处理器根据所述横向尺寸和所述纵向尺寸,计算所述投影仪投射的画面的对角线尺寸,包括:计算所述横向尺寸和所述纵向尺寸的平方和的开平方结果,得到所述投影仪投射的画面的对角线尺寸。
在本申请的一个实施例中,所述处理器根据所述对焦马达和所述镜头模组的特性,基于所述画面的尺寸计算所述对焦马达的驱动参数,包括:根据所述对焦马达的总路程步数、所述镜头模组的总度数以及所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于所述画面的尺寸计算所述对焦马达的驱动参数。
在本申请的一个实施例中,所述处理器根据所述对焦马达的总路程步数、所述镜头模组的总度数以及所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于所述画面的尺寸计算所述对焦马达的驱动参数,包括:根据所述对焦马达的总路程步数和所述镜头模组的总度数,计算所述镜头模组每转换一度需要所述对焦马达转动的步数;根据所述镜头模组的 度数与所述画面的尺寸这两者之间的对应关系,基于计算得到的所述画面的尺寸确定所述镜头模组需要转换的角度;根据所述镜头模组每转换一度需要所述对焦马达转动的步数以及所确定的所述镜头模组需要转换的角度,计算所述对焦马达共计需要转动的步数,作为所述驱动参数。
根据本申请实施例的投影仪的自动对焦方法和投影仪能够快速实现自动对焦,且由于无需通过摄像头弹出对焦图,因此不会打断观影过程,提高用户体验。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1示出根据本申请实施例的投影仪的自动对焦方法的示意性流程图。
图2示出根据本申请实施例的投影仪的自动对焦方法中获取画面尺寸的一个示例的示意图。
图3示出根据本申请实施例的投影仪的自动对焦方法中镜头模组的度数与画面尺寸的对应关系的一个示例的示意图。
图4示出根据本申请实施例的投影仪的示意性框图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
首先,参考图1描述根据本申请实施例的投影仪的自动对焦方法100。 如图1所示,投影仪的自动对焦方法100可以包括如下步骤:
在步骤S110,基于投影仪的测距部件的测量数据计算投影距离;
在步骤S120,根据投影仪的镜头模组的投射比,基于投影距离计算投影仪投射的画面的尺寸;
在步骤S130,根据投影仪的对焦马达和镜头模组的特性,基于画面的尺寸计算对焦马达的驱动参数;
在步骤S140,基于对焦马达的驱动参数控制对焦马达驱动镜头模组运动,以实现自动对焦。
在本申请的实施例中,根据投影仪的测距部件(诸如能够快速测量距离的单飞行时间(TOF)模组)的测距数据可以计算投影仪与投影屏幕(诸如投影布)之间的投影距离,结合投影仪的镜头模组的投射比,可计算得到投影仪投射在投影屏幕上的画面的尺寸,再根据该尺寸,结合对焦马达和镜头模组的特性(主要涉及对焦马达的总路程步数、镜头模组的总度数以及镜头模组的度数与画面的尺寸这两者之间的对应关系),可计算得到对焦马达的驱动参数,根据该驱动参数可控制镜头模组运动,从而快速实现自动对焦,且由于无需通过摄像头弹出对焦图,因此不会打断观影过程,提高用户体验。
在本申请的实施例中,当投影仪的测距部件包括第一飞行时间传感器和第二飞行时间传感器时,第一飞行时间传感器输出第一距离,第一距离为第一飞行时间传感器的位置到投影屏幕上的第一位置的距离;第二飞行时间传感器输出第二距离,第二距离为第二飞行时间传感器的位置到投影屏幕上的第二位置的距离;其中,第二距离大于第一距离,第二距离减去第一距离等于第三距离,第三距离为第三位置到第二位置的距离,第三位置为第二飞行时间传感器与第二位置之间的位置。基于此,步骤S110的基于投影仪的测距部件的测量数据计算投影距离,可以包括:基于第一距离、第二飞行时间传感器的角度、以及第一飞行传感器与第二飞行传感器之间的距离,计算第一位置到第三位置的距离,作为第四距离;基于第三距离、第四距离和角度计算第一位置到第二位置的距离,作为第五距离;基于第三距离、第四距离、第五距离以及角度计算第四距离和第五距离各自所在直线之间的夹角;基于第一距离、角度、夹角以及第一飞行传感器与第二 飞行传感器之间的距离,计算投影仪到投影屏幕的投影距离。
在本申请的实施例中,步骤S120中的根据投影仪的镜头模组的投射比,基于投影距离计算投影仪投射的画面的尺寸,可以包括:将投影距离除以镜头模组的投射比,得到投影仪投射的画面的横向尺寸;根据投影仪投射的画面的长宽比以及横向尺寸,计算投影仪投射的画面的纵向尺寸;根据横向尺寸和纵向尺寸,计算投影仪投射的画面的对角线尺寸,作为画面的尺寸。其中,根据投影仪投射的画面的长宽比以及横向尺寸,计算投影仪投射的画面的纵向尺寸,包括:计算横向尺寸与长宽比的乘积,并计算该乘积的倒数,得到投影仪投射的画面的纵向尺寸。根据横向尺寸和纵向尺寸,计算投影仪投射的画面的对角线尺寸,包括:计算横向尺寸和纵向尺寸的平方和的开平方结果,得到投影仪投射的画面的对角线尺寸。下面结合图2来描述。
图2示出根据本申请实施例的投影仪的自动对焦方法中获取画面尺寸的一个示例的示意图。如图2所示,Z 2是投影仪摆放的位置,实际投射到投影屏幕T 2W 2U 2V 2的画面为J 2S 2R 2M 2。其中,投影仪的测距部件测量的投影距离为L0,其为投影仪Z 2到投影屏幕(的中心)的垂直距离。已知投影仪的镜头模组的投射比为R(例如1.27),则可根据该投射比R和投影距离L0,计算投射画面J 2S 2R 2M 2的横向尺寸L1。具体地,L1=L0/R。接着,可根据投射画面J 2S 2R 2M 2的横向尺寸L1以及已知的投射画面的长宽比S(例如16/9),计算投射画面J 2S 2R 2M 2的纵向尺寸L2。具体地,L2=1/S*L1。最后,可根据投射画面J 2S 2R 2M 2的横向尺寸L1和纵向尺寸L2计算投射画面J 2S 2R 2M 2的对角线尺寸L3。具体地,
Figure PCTCN2022113916-appb-000001
该对角线尺寸L3即可作为投射画面J 2S 2R 2M 2的尺寸。
在本申请的实施例中,步骤S130中的根据投影仪的对焦马达和镜头模组的特性,基于画面的尺寸计算对焦马达的驱动参数,可以包括:根据对焦马达的总路程步数、镜头模组的总度数以及镜头模组的度数与画面的尺寸这两者之间的对应关系,基于画面的尺寸计算对焦马达的驱动参数。其中,根据对焦马达的总路程步数、镜头模组的总度数以及镜头模组的度数与画面的尺寸这两者之间的对应关系,基于画面的尺寸计算对焦马达的驱动参数,可以包括:根据对焦马达的总路程步数和镜头模组的总度数, 计算镜头模组每转换一度需要对焦马达转动的步数;根据镜头模组的度数与画面的尺寸这两者之间的对应关系,基于计算得到的画面的尺寸确定镜头模组需要转换的角度;根据镜头模组每转换一度需要对焦马达转动的步数以及所确定的镜头模组需要转换的角度,计算对焦马达共计需要的路程步数,作为驱动参数。下面结合图3来描述。
图3示出根据本申请实施例的投影仪的自动对焦方法中镜头模组的度数与画面尺寸的对应关系的一个示例的示意图。如图3所示,作为示例,投影仪的镜头模组G2的特性如下,总度数是48°,包括从-24°到24°度的度数范围,每个度数有其对应的画面尺寸。在图3所示的示例中,示例性地列举了几个度数及其对应的画面尺寸,包括:24°/60寸、11.1°/80寸、0°/100寸、-125°/150寸以及-24°/180寸。上述数据反映了镜头模组的度数与画面尺寸的对应关系。此处,画面尺寸采用的单位是寸,一般情况下,前述步骤S120计算出的投影画面的尺寸的单位是米,因此,可以先进行画面尺寸的单位转换,然后根据计算出的画面尺寸以及前述的镜头模组的度数与画面尺寸的对应关系,可以确定与该画面尺寸对应的镜头模组需要转换的度数。
然后,可根据对焦马达的特性——总路程步数,再结合前述的镜头模组的总度数,计算镜头模组每转换一度需要对焦马达转动的步数。继续参考图3,假定对焦马达的总路程步数是240步,结合前述的镜头模组的总度数48°,可计算出镜头模组每转换一度需要对焦马达转动的步数为5步,即5步/度。最后,根据镜头模组每转换一度需要对焦马达转动的步数5步/度以及前面计算出的与画面尺寸对应的镜头模组需要转换的度数,能够得到对焦马达共计需要的路程步数,即得到对焦马达的驱动参数。根据该驱动参数,可以控制对焦马达驱动镜头模组运动,即对焦马达执行实现计算得到的路程步数,驱动镜头模组转换到需要的角度,该角度对应于的画面尺寸与前文计算出的画面尺寸重叠,从而达到快速对焦的效果,一步到位,无需不停地推动镜片运动而寻找画面中反差点,无需对焦图。
总体上,本申请的投影仪的自动对焦方法100可以使用诸如单TOF模组的测距部件,快速测量投影仪到投影屏幕之间的垂直距离,根据当前测量的距离计算出实际投放画面的尺寸,然后再根据实际算出的尺寸与对焦 马达输出的角度比例关系计算出马达对焦实际的步数,最终达到快速对焦的目的。
基于上面的描述,根据本申请实施例的投影仪的自动对焦方法能够快速实现自动对焦,且由于无需通过摄像头弹出对焦图,因此不会打断观影过程,提高用户体验。
以上示例性地示出了根据本申请实施例的投影仪的自动对焦方法。下面结合图4描述本申请另一方面提供的投影仪。
图4示出了根据本申请实施例的投影仪400的示意性框图。如图4所示,根据本申请实施例的投影仪400可以包括测距部件410、存储器420、处理器430、对焦马达440和镜头模组450。其中,测距部件410用于输出与投影屏幕之间的测距数据;存储器420存储用于存储可执行程序;处理器430用于执行存储器420中存储的程序,使得处理器430执行前文所述的根据本申请实施例的投影仪的自动对焦方法。本领域技术人员可以结合前文所述的内容理解根据本申请实施例的投影仪的各部件的结构和具体操作,为了简洁,此处不再赘述具体的细节,仅描述一些主要操作。
在本申请的一个实施例中,计算机程序在被处理器430运行时,使得处理器430执行如下步骤:基于测距部件410输出的测距数据计算投影距离;根据镜头模组450的投射比,基于投影距离计算投影仪400投射的画面的尺寸;根据对焦马达440和镜头模组450的特性,基于画面的尺寸计算对焦马达440的驱动参数;基于对焦马达440的驱动参数控制对焦马达440驱动镜头模组450运动,以实现自动对焦。
在本申请的一个实施例中,测距部件410包括飞行时间传感器模组。
在本申请的一个实施例中,测距部件410包括第一飞行时间传感器和第二飞行时间传感器,其中:所述第一飞行时间传感器输出第一距离,所述第一距离为所述第一飞行时间传感器的位置到所述投影屏幕上的第一位置的距离;所述第二飞行时间传感器输出第二距离,所述第二距离为所述第二飞行时间传感器的位置到所述投影屏幕上的第二位置的距离;其中,所述第二距离大于所述第一距离,所述第二距离减去所述第一距离等于第三距离,所述第三距离为第三位置到所述第二位置的距离,所述第三位置为所述第二飞行时间传感器与所述第二位置之间的位置;所述处理器基于 所述测距数据计算投影距离,包括:基于所述第一距离、所述第二飞行时间传感器的角度、以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述第一位置到所述第三位置的距离,作为第四距离;基于所述第三距离、所述第四距离和所述角度计算所述第一位置到所述第二位置的距离,作为第五距离;基于所述第三距离、所述第四距离、所述第五距离以及所述角度计算所述第四距离和所述第五距离各自所在直线之间的夹角;基于所述第一距离、所述角度、所述夹角以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述投影仪到所述投影屏幕的投影距离。
在本申请的一个实施例中,处理器430根据投影仪400的镜头模组450的投射比,基于投影距离计算投影仪400投射的画面的尺寸,包括:将投影距离除以镜头模组450的投射比,得到投影仪400投射的画面的横向尺寸;根据投影仪400投射的画面的长宽比以及横向尺寸,计算投影仪400投射的画面的纵向尺寸;根据横向尺寸和纵向尺寸,计算投影仪400投射的画面的对角线尺寸,作为画面的尺寸。
在本申请的一个实施例中,处理器430根据投影仪400投射的画面的长宽比以及横向尺寸,计算投影仪400投射的画面的纵向尺寸,包括:计算横向尺寸与长宽比的乘积,并计算该乘积的倒数,得到投影仪400投射的画面的纵向尺寸。
在本申请的一个实施例中,处理器430根据横向尺寸和纵向尺寸,计算投影仪400投射的画面的对角线尺寸,包括:计算横向尺寸和纵向尺寸的平方和的开平方结果,得到投影仪400投射的画面的对角线尺寸。
在本申请的一个实施例中,处理器430根据对焦马达440的总路程步数、镜头模组450的总度数以及镜头模组450的度数与画面的尺寸这两者之间的对应关系,基于画面的尺寸计算对焦马达440的驱动参数,包括:根据对焦马达440的总路程步数、镜头模组450的总度数以及镜头模组450的度数与画面的尺寸这两者之间的对应关系,基于画面的尺寸计算对焦马达440的驱动参数。
在本申请的一个实施例中,处理器430根据对焦马达440的总路程步数、镜头模组450的总度数以及镜头模组450的度数与画面的尺寸这两者之 间的对应关系,基于画面的尺寸计算对焦马达的驱动参数,包括:根据对焦马达440的总路程步数和镜头模组450的总度数,计算镜头模组450每转换一度需要对焦马达440转动的步数;根据镜头模组450的度数与画面的尺寸这两者之间的对应关系,基于计算得到的画面的尺寸确定镜头模组450需要转换的角度;根据镜头模组450每转换一度需要对焦马达440转动的步数以及所确定的镜头模组450需要转换的角度,计算对焦马达440共计需要的路程步数,作为驱动参数。
基于上面的描述,根据本申请实施例的投影仪400根据测距部件测量的投影距离,结合投影仪的镜头模组的投射比,计算得到投影仪投射在投影屏幕上的画面的尺寸,再根据该尺寸,结合对焦马达和镜头模组的特性(主要涉及对焦马达的总路程步数、镜头模组的总度数以及镜头模组的度数与画面的尺寸这两者之间的对应关系),计算得到对焦马达的驱动参数,最终根据该驱动参数可控制镜头模组运动,能够快速实现自动对焦,且由于无需通过摄像头弹出对焦图,因此不会打断观影过程,提高用户体验。
此外,根据本申请实施例,还提供了一种存储介质,在所述存储介质上存储了程序指令,在所述程序指令被计算机或处理器运行时用于执行本申请实施例的投影仪的自动对焦方法的相应步骤。所述存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。所述计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
基于上面的描述,根据本申请实施例的投影仪的自动对焦方法和投影仪能够快速实现自动对焦,且由于无需通过摄像头弹出对焦图,因此不会打断观影过程,提高用户体验。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件 的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来 使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种投影仪的自动对焦方法,其特征在于,所述方法包括:
    基于投影仪的测距部件的测量数据计算投影距离;
    根据所述投影仪的镜头模组的投射比,基于所述投影距离计算所述投影仪投射的画面的尺寸;
    根据所述投影仪的对焦马达和镜头模组的特性,基于所述画面的尺寸计算所述对焦马达的驱动参数;
    基于所述对焦马达的驱动参数控制所述对焦马达驱动所述镜头模组运动,以实现自动对焦。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述投影仪的镜头模组的投射比,基于所述投影距离计算所述投影仪投射的画面的尺寸,包括:
    将所述投影距离除以所述镜头模组的投射比,得到所述投影仪投射的画面的横向尺寸;
    根据所述投影仪投射的画面的长宽比以及所述横向尺寸,计算所述投影仪投射的画面的纵向尺寸;
    根据所述横向尺寸和所述纵向尺寸,计算所述投影仪投射的画面的对角线尺寸,作为所述画面的尺寸。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述投影仪投射的画面的长宽比以及所述横向尺寸,计算所述投影仪投射的画面的纵向尺寸,包括:
    计算所述横向尺寸与所述长宽比的乘积,并计算所述乘积的倒数,得到所述投影仪投射的画面的纵向尺寸。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述横向尺寸和所述纵向尺寸,计算所述投影仪投射的画面的对角线尺寸,包括:
    计算所述横向尺寸和所述纵向尺寸的平方和的开平方结果,得到所述投影仪投射的画面的对角线尺寸。
  5. 根据权利要求1-4中的任一项所述的方法,其特征在于,所述根据所述投影仪的对焦马达和镜头模组的特性,基于所述画面的尺寸计算所述对焦马达的驱动参数,包括:
    根据所述对焦马达的总路程步数、所述镜头模组的总度数以及所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于所述画面的尺寸计算所述对焦马达的驱动参数。
  6. 根据权利要求5所述的方法,其特征在于,根据所述对焦马达的总路程步数、所述镜头模组的总度数以及所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于所述画面的尺寸计算所述对焦马达的驱动参数,包括:
    根据所述对焦马达的总路程步数和所述镜头模组的总度数,计算所述镜头模组每转换一度需要所述对焦马达转动的步数;
    根据所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于计算得到的所述画面的尺寸确定所述镜头模组需要转换的角度;
    根据所述镜头模组每转换一度需要所述对焦马达转动的步数以及所确定的所述镜头模组需要转换的角度,计算所述对焦马达共计需要的路程步数,作为所述驱动参数。
  7. 根据权利要求1-4中的任一项所述的方法,其特征在于,所述测距部件包括飞行时间传感器模组。
  8. 根据权利要求7所述的方法,其特征在于,所述测距部件包括第一飞行时间传感器和第二飞行时间传感器,其中:
    所述第一飞行时间传感器输出第一距离,所述第一距离为所述第一飞行时间传感器的位置到投影屏幕上的第一位置的距离;
    所述第二飞行时间传感器输出第二距离,所述第二距离为所述第二飞行时间传感器的位置到所述投影屏幕上的第二位置的距离;
    其中,所述第二距离大于所述第一距离,所述第二距离减去所述第一距离等于第三距离,所述第三距离为第三位置到所述第二位置的距离,所述第三位置为所述第二飞行时间传感器与所述第二位置之间的位置;
    所述基于投影仪的测距部件的测量数据计算投影距离,包括:
    基于所述第一距离、所述第二飞行时间传感器的角度、以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述第一位置到所述第三位置的距离,作为第四距离;
    基于所述第三距离、所述第四距离和所述角度计算所述第一位置到所 述第二位置的距离,作为第五距离;
    基于所述第三距离、所述第四距离、所述第五距离以及所述角度计算所述第四距离和所述第五距离各自所在直线之间的夹角;
    基于所述第一距离、所述角度、所述夹角以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述投影仪到所述投影屏幕的投影距离。
  9. 一种投影仪,其特征在于,所述投影仪包括测距部件、存储器、处理器、对焦马达和镜头模组,其中:
    所述测距部件用于输出与投影屏幕之间的测距数据;
    所述存储器存储用于存储可执行程序;
    所述处理器用于执行所述存储器中存储的所述程序,使得所述处理器执行以下操作:
    基于所述测距数据计算投影距离;
    根据所述镜头模组的投射比,基于所述投影距离计算所述投影仪投射的画面的尺寸;
    根据所述对焦马达和所述镜头模组的特性,基于所述画面的尺寸计算所述对焦马达的驱动参数;
    基于所述对焦马达的驱动参数控制所述对焦马达驱动所述镜头模组运动,以实现自动对焦。
  10. 根据权利要求9所述的投影仪,其特征在于,所述测距部件包括飞行时间传感器模组。
  11. 根据权利要求10所述的投影仪,其特征在于,所述测距部件包括第一飞行时间传感器和第二飞行时间传感器,其中:
    所述第一飞行时间传感器输出第一距离,所述第一距离为所述第一飞行时间传感器的位置到所述投影屏幕上的第一位置的距离;
    所述第二飞行时间传感器输出第二距离,所述第二距离为所述第二飞行时间传感器的位置到所述投影屏幕上的第二位置的距离;
    其中,所述第二距离大于所述第一距离,所述第二距离减去所述第一距离等于第三距离,所述第三距离为第三位置到所述第二位置的距离,所述第三位置为所述第二飞行时间传感器与所述第二位置之间的位置;
    所述处理器基于所述测距数据计算投影距离,包括:
    基于所述第一距离、所述第二飞行时间传感器的角度、以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述第一位置到所述第三位置的距离,作为第四距离;
    基于所述第三距离、所述第四距离和所述角度计算所述第一位置到所述第二位置的距离,作为第五距离;
    基于所述第三距离、所述第四距离、所述第五距离以及所述角度计算所述第四距离和所述第五距离各自所在直线之间的夹角;
    基于所述第一距离、所述角度、所述夹角以及所述第一飞行传感器与所述第二飞行传感器之间的距离,计算所述投影仪到所述投影屏幕的投影距离。
  12. 根据权利要求9所述的投影仪,其特征在于,所述处理器根据所述投影仪的镜头模组的投射比,基于所述投影距离计算所述投影仪投射的画面的尺寸,包括:
    将所述投影距离除以所述镜头模组的投射比,得到所述投影仪投射的画面的横向尺寸;
    根据所述投影仪投射的画面的长宽比以及所述横向尺寸,计算所述投影仪投射的画面的纵向尺寸;
    根据所述横向尺寸和所述纵向尺寸,计算所述投影仪投射的画面的对角线尺寸,作为所述画面的尺寸。
  13. 根据权利要求12所述的投影仪,其特征在于,所述处理器根据所述投影仪投射的画面的长宽比以及所述横向尺寸,计算所述投影仪投射的画面的纵向尺寸,包括:
    计算所述横向尺寸与所述长宽比的乘积,并计算所述乘积的倒数,得到所述投影仪投射的画面的纵向尺寸。
  14. 根据权利要求12所述的投影仪,其特征在于,所述处理器根据所述横向尺寸和所述纵向尺寸,计算所述投影仪投射的画面的对角线尺寸,包括:
    计算所述横向尺寸和所述纵向尺寸的平方和的开平方结果,得到所述投影仪投射的画面的对角线尺寸。
  15. 根据权利要求9-14中的任一项所述的投影仪,其特征在于,所述处理器根据所述对焦马达和所述镜头模组的特性,基于所述画面的尺寸计算所述对焦马达的驱动参数,包括:
    根据所述对焦马达的总路程步数、所述镜头模组的总度数以及所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于所述画面的尺寸计算所述对焦马达的驱动参数。
  16. 根据权利要求15所述的投影仪,其特征在于,所述处理器根据所述对焦马达的总路程步数、所述镜头模组的总度数以及所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于所述画面的尺寸计算所述对焦马达的驱动参数,包括:
    根据所述对焦马达的总路程步数和所述镜头模组的总度数,计算所述镜头模组每转换一度需要所述对焦马达转动的步数;
    根据所述镜头模组的度数与所述画面的尺寸这两者之间的对应关系,基于计算得到的所述画面的尺寸确定所述镜头模组需要转换的角度;
    根据所述镜头模组每转换一度需要所述对焦马达转动的步数以及所确定的所述镜头模组需要转换的角度,计算所述对焦马达共计需要的路程步数,作为所述驱动参数。
PCT/CN2022/113916 2021-08-30 2022-08-22 一种投影仪的无感自动对焦的计算方法 WO2023030066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111004062.6A CN113900346B (zh) 2021-08-30 2021-08-30 投影仪的自动对焦方法和投影仪
CN202111004062.6 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023030066A1 true WO2023030066A1 (zh) 2023-03-09

Family

ID=79188584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113916 WO2023030066A1 (zh) 2021-08-30 2022-08-22 一种投影仪的无感自动对焦的计算方法

Country Status (2)

Country Link
CN (1) CN113900346B (zh)
WO (1) WO2023030066A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900346B (zh) * 2021-08-30 2023-08-29 安克创新科技股份有限公司 投影仪的自动对焦方法和投影仪
CN116774503B (zh) * 2023-06-25 2024-02-02 深圳紫晶光电科技有限公司 一种智能投影仪倾斜角自适应***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195324A (ja) * 1997-09-19 1999-04-09 Fujitsu General Ltd 簡易画面サイズ調整プロジェクタ
CN107037683A (zh) * 2017-05-25 2017-08-11 歌尔股份有限公司 一种投影仪及自动对焦的方法
CN107885023A (zh) * 2016-09-29 2018-04-06 意法半导体(R&D)有限公司 图像投影设备中用于亮度和自动聚焦控制的飞行时间感测
CN109426060A (zh) * 2017-08-21 2019-03-05 深圳光峰科技股份有限公司 投影仪自动调焦方法及投影仪
US20190120622A1 (en) * 2017-10-19 2019-04-25 Groove Unlimited, Llc Point determination and projection device
CN110927918A (zh) * 2019-12-27 2020-03-27 屏丽科技成都有限责任公司 一种长行程调焦镜头快速收敛聚焦方法及应用该装置的投影机
CN113900346A (zh) * 2021-08-30 2022-01-07 安克创新科技股份有限公司 投影仪的自动对焦方法和投影仪

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3908645B2 (ja) * 2002-10-23 2007-04-25 Necビューテクノロジー株式会社 プロジェクタ装置
JP5239279B2 (ja) * 2006-11-28 2013-07-17 セイコーエプソン株式会社 プロジェクタ
TW201315962A (zh) * 2011-10-05 2013-04-16 Au Optronics Corp 投影式影像辨識裝置及其影像辨識方法
WO2014082362A1 (zh) * 2012-11-30 2014-06-05 神画科技(深圳)有限公司 自动调焦的投影***
CN105824180A (zh) * 2016-03-29 2016-08-03 乐视控股(北京)有限公司 调节投影仪焦距的方法及装置
CN107305312B (zh) * 2016-04-18 2023-10-24 扬明光学股份有限公司 投影亮度和对比的自动调整***及方法
CN106950789B (zh) * 2017-03-29 2019-02-05 联想(北京)有限公司 投影设备
CN107168001B (zh) * 2017-07-20 2019-11-19 京东方科技集团股份有限公司 幕布、投影***及调焦方法
US20200241140A1 (en) * 2017-09-28 2020-07-30 Sony Semiconductor Solutions Corporation Apparatus and method
CN110491316A (zh) * 2019-07-08 2019-11-22 青岛小鸟看看科技有限公司 一种投影仪及其投影控制方法
CN112511814A (zh) * 2021-02-05 2021-03-16 深圳市橙子数字科技有限公司 投影仪的对焦方法、投影仪、计算机设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195324A (ja) * 1997-09-19 1999-04-09 Fujitsu General Ltd 簡易画面サイズ調整プロジェクタ
CN107885023A (zh) * 2016-09-29 2018-04-06 意法半导体(R&D)有限公司 图像投影设备中用于亮度和自动聚焦控制的飞行时间感测
CN107037683A (zh) * 2017-05-25 2017-08-11 歌尔股份有限公司 一种投影仪及自动对焦的方法
CN109426060A (zh) * 2017-08-21 2019-03-05 深圳光峰科技股份有限公司 投影仪自动调焦方法及投影仪
US20190120622A1 (en) * 2017-10-19 2019-04-25 Groove Unlimited, Llc Point determination and projection device
CN110927918A (zh) * 2019-12-27 2020-03-27 屏丽科技成都有限责任公司 一种长行程调焦镜头快速收敛聚焦方法及应用该装置的投影机
CN113900346A (zh) * 2021-08-30 2022-01-07 安克创新科技股份有限公司 投影仪的自动对焦方法和投影仪

Also Published As

Publication number Publication date
CN113900346A (zh) 2022-01-07
CN113900346B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2023030066A1 (zh) 一种投影仪的无感自动对焦的计算方法
US10834316B2 (en) Image processing apparatus, image processing method, and imaging system
US20200288059A1 (en) Image processor, image processing method and program, and imaging system
WO2016134534A1 (zh) 自动调整摄像头的方法和电子设备
US20190384056A1 (en) Method for correcting an image, storage medium and projection device
US10212403B2 (en) Method and apparatus for realizing trapezoidal distortion correction of projection plane
JP2009015828A (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2005006228A (ja) プロジェクタ
JP5846172B2 (ja) 画像処理装置、画像処理方法、プログラムおよび撮像システム
WO2021120422A1 (zh) 一种梯形校正方法、装置和电子设备及可读存储介质
WO2017054334A1 (zh) 一种投影方法、装置、终端及计算机存储介质
CN106954054B (zh) 一种图像矫正方法、装置及投影仪
WO2016197494A1 (zh) 对焦区域调整方法和装置
JP6665917B2 (ja) 画像処理装置
US9800773B2 (en) Digital camera apparatus with dynamically customized focus reticle and automatic focus reticle positioning
TW201513661A (zh) 攝影裝置及其調整系統、調整方法
JP2016053978A (ja) 画像処理装置
CN109146981A (zh) 结构光模组平行aa方法、装置、设备及存储介质
JP5796611B2 (ja) 画像処理装置、画像処理方法、プログラムおよび撮像システム
US9417688B2 (en) Measurement method, measurement device, projection apparatus, and computer-readable recording medium
WO2016115832A1 (zh) 一种拍摄方法、装置及终端
CN103208119B (zh) 一种校正手持设备拍摄的透视图像的方法
JP6079838B2 (ja) 画像処理装置、プログラム、画像処理方法および撮像システム
JP6439845B2 (ja) 画像処理装置
WO2019134513A1 (zh) 拍照对焦方法、装置、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE