WO2023029114A1 - 一种充放电电路、充放电方法以及终端 - Google Patents

一种充放电电路、充放电方法以及终端 Download PDF

Info

Publication number
WO2023029114A1
WO2023029114A1 PCT/CN2021/119215 CN2021119215W WO2023029114A1 WO 2023029114 A1 WO2023029114 A1 WO 2023029114A1 CN 2021119215 W CN2021119215 W CN 2021119215W WO 2023029114 A1 WO2023029114 A1 WO 2023029114A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
module
battery module
balanced
Prior art date
Application number
PCT/CN2021/119215
Other languages
English (en)
French (fr)
Inventor
马铭翔
Original Assignee
广东艾檬电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东艾檬电子科技有限公司 filed Critical 广东艾檬电子科技有限公司
Publication of WO2023029114A1 publication Critical patent/WO2023029114A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of charge and discharge, and in particular relates to a charge and discharge circuit, a charge and discharge method, and a terminal.
  • the charging power of mobile phones and tablets has reached more than 60W.
  • the current mainstream method is to use series batteries. This method doubles the battery voltage as a single battery, and under the same charging power, the current is 1/2 of the original. The heat is reduced to 1/4 of a single battery under the same conditions.
  • the purpose of the present application is to provide a charge and discharge circuit, a charge and discharge method, and a terminal, aiming to solve the problem that the battery module cannot be fully charged due to the inconsistency of the cell impedance.
  • the first aspect of the embodiments of the present application provides a charging and discharging circuit, and the charging and discharging circuit includes:
  • An acquisition module configured to acquire battery parameters of the battery module; wherein the battery module includes a plurality of battery cells connected in series in sequence, and the battery parameters include at least the power of the battery module and the voltage of each battery cell ;
  • a charging module configured to select a corresponding charging mode according to the battery parameters to charge the battery module; wherein the charging mode includes a switched capacitor charging mode and a Boost charging mode;
  • the equalization module is used to determine the battery cells to be balanced according to the battery parameters when the charging of the battery module is cut off, and perform equalized charging on the cells to be balanced in sequence.
  • the charging and discharging circuit further includes:
  • the discharge module is configured to select a corresponding discharge mode to discharge the battery module according to the battery parameters; wherein the discharge mode includes a switched capacitor discharge mode and a Buck discharge mode.
  • the charging and discharging circuit further includes:
  • An adapter identification module configured to obtain parameters of an adapter connected to the charging module, and if the parameters of the adapter are preset adapter parameters, control the charging module to establish a communication connection with the adapter to identify the charging module Charging protocol with said adapter.
  • the charging module includes:
  • Boost charging unit when the power of the battery module is less than a first threshold power or the power of the battery module is greater than a second threshold power, charge the battery module in the Boost charging mode;
  • a switched capacitor charging unit configured to charge the battery module in the switched capacitor charging mode when the power of the battery module is between the first preset power threshold and the second threshold power .
  • the equalization module includes:
  • a plurality of switch units, a plurality of the switch units and a plurality of the cells are connected in parallel one by one, and are used to sequentially connect the cells to be balanced into a balanced charging circuit, so as to perform balanced charging on the cells to be balanced .
  • the second aspect of the embodiment of the present application also provides a charging and discharging method, which is applied to the charging and discharging circuit described in any one of the above embodiments, and the charging and discharging method includes:
  • the battery module includes a plurality of battery cells connected in series, and the battery parameters include at least the power of the battery module and the voltage of each battery cell;
  • the charging mode includes a switched capacitor charging mode and a Boost charging mode
  • the cells to be balanced are determined according to the battery parameters, and the cells to be balanced are sequentially charged for equalization.
  • the charging and discharging method further includes:
  • a reference stepping power supply is used to replace the battery core, and a mapping relationship between the detection voltage output by the acquisition module and the voltage of the reference stepping power supply is established, so as to calibrate the actual voltage of the battery module.
  • the selecting a corresponding charging mode according to the battery parameters to charge the battery module includes:
  • the battery module When the power of the battery module is between the first preset power threshold and the second threshold power, the battery module is charged in the switched capacitor charging mode.
  • the sequentially performing equalization charging on the cells to be equalized includes:
  • a third aspect of the embodiments of the present application further provides a terminal, where the terminal includes the charging and discharging circuit as described in any one of the foregoing embodiments.
  • the embodiment of the present application provides a charge and discharge circuit, a charge and discharge method, and a terminal.
  • the battery parameters of the battery module are obtained through the acquisition module, and then the charging module selects a corresponding charging mode according to the battery parameters to charge the battery module.
  • the charging mode includes In the switched capacitor charging mode and Boost charging mode, after the charging cut-off, the battery cells to be balanced in the battery module are determined by the battery parameters at the charging cut-off of the equalization module, and the cells to be balanced are charged in sequence to solve the battery module problem. The problem of not being able to fully charge due to inconsistent cell impedance.
  • FIG. 1 is a schematic circuit diagram of a charging and discharging circuit provided in an embodiment of the present application
  • FIG. 2 is a schematic circuit diagram of another charging and discharging circuit provided in the embodiment of the present application.
  • FIG. 3 is a schematic circuit diagram of a switched capacitor charging chip provided in an embodiment of the present application.
  • FIG. 4 is a schematic circuit diagram of an equalization module provided in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a charging and discharging method provided in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of step S21 in the charging and discharging method provided by the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another charging and discharging method provided in the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another charging and discharging method provided in the embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another charging and discharging method provided in the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another charging and discharging method provided in the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another charging and discharging method provided in the embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the current mainstream method is to use series batteries. This method doubles the battery voltage as a single battery, and under the same charging power, the current is 1/2 of the original. The heat is reduced to 1/4 of a single battery under the same conditions. And because the currents on the paths of the batteries in series are equal. When the impedance of the two batteries is inconsistent, there will be a situation where one battery is fully charged or discharged but the other battery is not yet completed, resulting in shorter use time and never full charge during the user's use.
  • the embodiment of the present application provides a charging and discharging circuit, as shown in FIG. 1 , the charging and discharging circuit includes an acquisition module 40 , a charging module 20 and an equalization module 30 .
  • the charging and discharging circuit is applied to the battery module 10, the battery module 10 includes a plurality of battery cells connected in series in sequence, and the acquisition module 40 is used to acquire the battery parameters of the battery module 10, the battery parameters at least include the battery module 10 and the voltage of each battery cell, the charging module 20 selects the corresponding charging mode to charge the battery module 10 according to the battery parameters, the charging mode includes the switched capacitor charging mode and the Boost charging mode, in specific applications, the switched capacitor charging mode and the boost charging mode
  • the Boost charging mode can correspond to high-current charging and low-current charging respectively, and the switched capacitor charging mode and the Boost charging mode can respectively perform the process of charging the battery module 10 by two charging circuits.
  • the switched capacitor charging mode can be charged by the switched capacitor
  • the charging circuit composed of the chip and its peripheral circuits executes the charging process of the battery module 10
  • Boost charging mode the charging circuit composed of the boost chip and its peripheral circuits executes the charging process of the battery module 10 .
  • the balancing module 30 determines the cells to be balanced according to the battery parameters when the charging of the battery module 10 is cut off, and performs balanced charging on the cells to be balanced in sequence.
  • the main control module can determine the battery cell that is not fully charged according to the battery parameters (such as the voltage of each cell) of the battery module 10 at the end of charging.
  • the module detects the parameters of the electric core. If the voltage of the electric core obtained by the acquisition module 40 is less than 4.4V, it means that the electric core is not fully charged. Connect the battery cell to the balanced charging circuit, and use a small current (for example, in Boost charging mode) to carry out balanced charging on the battery cell.
  • the charge and discharge circuit further includes a discharge module 50, which is used to select a corresponding discharge mode to discharge the battery module 10 according to battery parameters; wherein, the discharge mode includes a switched capacitor discharge mode. and Buck discharge mode.
  • the switched capacitor discharge mode and the Buck discharge mode can correspond to high current discharge and small current discharge respectively, and the switched capacitor discharge mode and the Buck discharge mode can respectively perform the process of discharging the battery module 10 by two discharge circuits, for example
  • a discharge circuit composed of a switched capacitor charging chip and its peripheral circuits can perform the discharge process of the battery module 10
  • a discharge circuit composed of a step-down chip and its peripheral circuits can perform the discharge process of the battery module 10. discharge process.
  • the battery discharge circuit may be composed of a switched capacitor converter discharge circuit and a BUCK discharge circuit, the switched capacitor converter discharge circuit is used to discharge the battery module 10 in the switched capacitor discharge mode, and the BUCK discharge circuit is used to The Buck discharge mode discharges the battery module 10 .
  • the circuit efficiency of the switched capacitor converter is over 98%, with high efficiency and low loss.
  • the chip architecture is an open-loop architecture
  • the change in the output voltage is directly reflected in the change in the input voltage, which may trigger the undervoltage protection of the battery.
  • the charging and discharging circuit switches the power supply to the BUCK discharging circuit.
  • the efficiency of the BUCK circuit is low, it can output voltage stably when the battery is low, without the risk of triggering battery protection.
  • the charging and discharging circuit further includes an adapter identification module 60 .
  • the adapter identification module 60 is used to obtain the parameters of the adapter connected to the charging module 20. If the parameters of the adapter are preset adapter parameters, the charging module 20 is controlled to establish a communication connection with the adapter to identify the charging module 20 and the adapter. Charging protocol between adapters.
  • the charging module 20 includes a Boost charging unit 21 and a switched capacitor charging unit 22 .
  • the Boost charging unit 21 charges the battery module 10 in the Boost charging mode when the power of the battery module 10 is less than the first threshold power or the power of the battery module 10 is greater than the second threshold power.
  • the Boost charging unit can be a BOOST charging circuit composed of a boost chip and its peripheral circuits. During battery precharging and constant voltage charging, it can switch to this charging channel to charge the battery module 10, using BOOST charging The circuit can better manage the charging state of the battery and prevent the battery from being triggered by abnormal charging. And because the BOOST charging circuit has a battery path management circuit, after the chip (such as a power management chip, a boost chip, etc.) is charged, the MOS tube between the battery module 10 and the chip's charging should be disconnected, and the light load mode In this case, the power of the system is all provided by the SYS network. At this time, the charging module no longer charges and discharges the battery, which provides a reliable scenario for the subsequent battery equalization process.
  • the BOOST charging circuit has a battery path management circuit, after the chip (such as a power management chip, a boost chip, etc.) is charged, the MOS tube between the battery module 10 and the chip's charging should be disconnected, and the light load mode In this case, the power
  • the switched capacitor charging unit 22 is used for charging the battery module 10 in a switched capacitor charging mode when the power of the battery module 10 is between a first preset power threshold and a second threshold power.
  • the switched capacitor charging unit can be a charging circuit composed of a switched capacitor charging chip (such as BQ2597x, etc.) and its peripheral circuits.
  • the switched capacitor charging chip has the characteristics of high charging efficiency, and its charging efficiency can reach more than 98%. It is especially suitable for the current high current fast charging scene.
  • the charging and discharging circuit further includes a charging switch 70 for switching the Boost charging unit and the switched capacitor charging unit to charge the battery module 10 according to a switching instruction sent by the main control module.
  • the output voltage is 1/2 of the input voltage, and the output current is twice the input current. If the input voltage is 17.6V and the input current is 3.25A, the output voltage is 8.8V, and the output The current is 6.5A. Since the output current of the switched capacitor charging unit is large, the switched capacitor charging mode is only used when the battery is charged with a constant current, for example, when the power of the battery module 10 is between the first preset power threshold and the second threshold power, The battery module 10 is quickly charged by the switched capacitor charging unit.
  • the first preset power threshold in the above embodiment may be 20%Q
  • the second threshold power may be 80%Q or 90%Q, where Q is the capacity of the battery module 10 .
  • the equalization module 30 includes a plurality of switch units, and the plurality of switch units are connected in parallel with the plurality of batteries, and are used to sequentially connect the batteries to be balanced into the equalization charging circuit, so as to balance the batteries to be balanced Charge.
  • a plurality of switch units are connected in parallel with the cells one by one, and the plurality of switch units are turned on or off according to the received switch control signal, so that the cells to be balanced are connected to the equalization charging circuit, so that the cells to be balanced The cells are charged in an equalized manner.
  • the switching unit can be composed of switching devices such as switching tubes and relays. Each switching unit is used as a bypass switch to be turned on and off according to the switch control signal sent by the main control module. If it is turned on, the The battery cell corresponding to the switch unit is short-circuited and then turned off, and the battery cell corresponding to the switch unit is connected to the equalization charging circuit.
  • three switch tubes and two resistors are used to form a battery balancing circuit.
  • the two detection pins (pins ADC1 and ADC2) of the acquisition module respectively detect the voltage of the first battery cell 11 and the second battery cell 12. Theoretically, the voltage of the battery cell in a fully charged state is 4.4V.
  • the first switch tube Q1 is turned on, and the charging switch between the SYS pin of the charging chip and the battery module 10 is turned on, and the charging current flows through the first battery pack.
  • the first switch tube Q1 After the first battery cell 11 is fully charged, the first switch tube Q1 is turned off, and the battery is balanced. Finish.
  • the second switch tube Q2 and the third switch tube Q3 are turned on, and at this time the charging switch between the SYS pin of the charging chip and the battery module 10 is turned on , the charging current flows through the third switch tube Q3, the first resistor R1, and the second battery cell 12. Due to the current limit of the first resistor R1, the charging current is within 100mA for charging and charging.
  • the second battery cell 12 After the second battery cell 12 is fully charged, the second cell The second switching tube Q2 and the third switching tube Q3 are turned off, and the equalizing charging process of the battery module 10 is completed.
  • the first switching transistor Q1 and the second switching transistor Q2 may be NMOS transistors, and the third switching transistor Q3 may be a PMOS transistor.
  • the gates of the first switching transistor Q1 , the second switching transistor Q2 and the third switching transistor Q3 are connected to the main control module.
  • the main control module determines the cell to be balanced according to the cell voltage output by the acquisition module, and sends the corresponding switch control signal to the equalization module 30 to control the on and off of multiple switch units, so that the cell to be balanced is connected to the balance
  • the charging circuit is used for equalizing charging of the cells to be balanced.
  • the embodiment of the present application also provides a charge and discharge method, the charge and discharge method is applied to the charge and discharge circuit described in any one of the above embodiments, as shown in Figure 5, the charge and discharge method includes step S10, step S20, step S30.
  • step S10 the battery parameters of the battery module are obtained; wherein, the battery module includes a plurality of battery cells connected in series in sequence, and the battery parameters include at least the power of the battery module and the voltage of each battery cell .
  • a corresponding charging mode is selected according to the battery parameters to charge the battery module; wherein the charging mode includes a switched capacitor charging mode and a Boost charging mode.
  • step S30 when the charging of the battery module is cut off, the cells to be balanced are determined according to the battery parameters, and the cells to be balanced are sequentially charged for equalization.
  • step S20 selecting a corresponding charging mode according to the battery parameters to charge the battery module includes step S21 and step S22 .
  • step S21 when the electric quantity of the battery module is less than a first threshold electric quantity or the electric quantity of the battery module is greater than a second threshold electric quantity, the battery module is charged in the Boost charging mode.
  • step S22 when the power of the battery module is between the first preset power threshold and the second threshold power, the battery module is charged in the switched capacitor charging mode.
  • the charging and discharging method further includes step S60.
  • step S60 the parameters of the adapter connected to the charging module are obtained, and if the parameters of the adapter are preset adapter parameters, the charging module is controlled to establish a communication connection with the adapter to identify the connection between the charging module and the adapter.
  • the charging protocol between the adapters is not limited to the adapters.
  • the charging and discharging method described above may be implemented through the following steps S61 , S62 , S63 , S64 , S65 , S66 , S67 , and S68 .
  • S61 Insert the adapter, and obtain the parameters of the adapter by the charging module, and the parameters of the adapter include the output voltage of the adapter.
  • S62 Identify the voltage input by the adapter, start the Boost charging unit to charge the battery module, and perform BC 1.2 protocol identification.
  • BC1.2 Battery Charging v1.2
  • BC1.2 Battery Charging v1.2
  • SDP standard downstream port
  • DCP dedicated charging port
  • CDP charging downstream port
  • the SDP port supports the USB protocol, with a maximum current of 500mA. It can be considered that the SDP is an ordinary USB interface; the DCP does not support the data protocol, supports fast charging, and can provide large currents.
  • the DCP is mainly used for special chargers such as wall chargers; CDP supports both the data protocol Fast charging is also supported.
  • the charging and discharging method further includes step S40.
  • a corresponding discharge mode is selected according to the battery parameters to discharge the battery module; wherein the discharge mode includes a switched capacitor discharge mode and a Buck discharge mode.
  • the charging and discharging method described above may be implemented through the following steps S81 , S82 , S83 , S84 , and S85 .
  • S81 Turn on the power, connect the electric device to the battery module, use the BUCK discharge circuit to supply power by default, and obtain the initial voltage of the battery module.
  • S82 Determine whether the initial voltage of the battery module is higher than a first threshold voltage (for example, 3.6V).
  • the charging and discharging method further includes step S50.
  • step S50 the reference stepping power supply is used to replace the battery core, and the mapping relationship between the detection voltage output by the acquisition module and the voltage of the reference stepping power supply is established, so as to calculate the actual voltage of the battery module to calibrate.
  • the detection module uses a voltage dividing circuit composed of voltage dividing resistors to divide the voltage of the battery cell and then collects the voltage, in order to avoid detection errors in the process of voltage dividing detection, by using two reference
  • the stepping power supply simulates the cells in the battery module, and calibrates the voltage obtained by the acquisition module from the detection module, for example, establishing a mapping relationship between the detection voltage output by the acquisition module and the voltage of the reference stepping power supply, obtained by The detection voltage output by the module determines the actual voltage of the battery cell from the mapping relationship table, so as to achieve the purpose of calibrating the actual voltage of the battery cell.
  • the main control module When calibrating the voltage detection process of the first cell, set the reference step power supply of the simulated first cell to a preset step voltage (for example, the step voltage is set to 0.1V), from 3.3V to 4.4V, and the detection module Use two resistors to divide the first cell to proportional reduction, the main control module reads and obtains the detection voltage output by the module, and establishes a mapping relationship table between the detection voltage and the voltage of the reference stepping power supply.
  • the main control module acquires the detected voltage value of the first battery cell output by the acquisition module, the actual voltage of the first battery cell is determined according to the detected voltage value of the first battery cell and the mapping relationship table, so as to avoid abnormalities in equalization charging caused by detection errors.
  • the main control module When calibrating the voltage detection process of the second cell, set the reference step power supply of the simulated second cell to the preset step voltage (for example, the step voltage is set to 0.1V), from 3.3V to 4.4V, to obtain the module Use two resistors to divide the voltage to reduce the second cell proportionally.
  • the main control module reads and obtains the detection voltage output by the module, and establishes a mapping relationship table between the detection voltage and the voltage of the reference stepping power supply.
  • the main control module acquires the detected voltage value of the second battery cell output by the acquisition module, the actual voltage of the second battery cell is determined according to the detected voltage value of the second battery cell and the mapping relationship table, so as to avoid abnormality in equalization charging caused by detection errors.
  • the reference cell is inserted into the battery module, and the acquisition module detects whether the reference cell and the detected voltage value of the reference cell are consistent with the mapping relationship table. If not, re-execute the calibration step S50.
  • the sequentially equalizing charging of the cells to be balanced includes: sequentially connecting the cells to be balanced into a balanced charging circuit based on a plurality of switch units, so as to charge the cells to be balanced The cells are charged in an equalized manner, wherein the plurality of switching units are connected in parallel with the plurality of cells.
  • step S10, step S20, step S30, step S40, step S50, and step S60 described above can refer to the description of the working principle of the charging and discharging circuit in Figs. Let me repeat.
  • An embodiment of the present application further provides a terminal, the terminal includes the charging and discharging circuit described in any one of the foregoing embodiments.
  • the embodiment of the present application provides a charge and discharge circuit, a charge and discharge method, and a terminal.
  • the battery parameters of the battery module are obtained through the acquisition module, and then the charging module selects a corresponding charging mode according to the battery parameters to charge the battery module.
  • the charging mode includes In the switched capacitor charging mode and Boost charging mode, after the charging cut-off, the battery cells to be balanced in the battery module are determined by the battery parameters at the charging cut-off of the equalization module, and the cells to be balanced are charged in sequence to solve the battery module problem. The problem of not being able to fully charge due to inconsistent cell impedance.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请属于充放电技术领域,提供了一种充放电电路、充放电方法以及终端,通过获取模块获取电池模组的电池参数,然后由充电模块根据电池参数选择对应的充电模式对电池模组充电,充电模式包括开关电容充电模式和Boost充电模式,在充电截止后,通过均衡模块充电截止时的电池参数确定电池模组中的待均衡电芯,并依序对待均衡电芯进行均衡充电,从而解决电池模组中由于电芯阻抗不一致导致的无法充满的问题。

Description

一种充放电电路、充放电方法以及终端 技术领域
本申请属于充放电技术领域,尤其涉及一种充放电电路、充放电方法以及终端。
背景技术
随着快充技术的发展,目前手机以及平板已经去到60W以上的充电功率。而由于充电功率较大,目前原有的单电池架构想要满足如此大的充电电流,则会带来线材以及板级上的巨大发热,给用户带来不好的体验。针对此情形,目前主流的做法为使用串联电池的做法,这种做法将电池电压变为单节电池的2倍,在同样的充电功率下,电流为原来的1/2,这样充电路径的发热量降为同等情况下单节电池的1/4。
然而,由于串联电池的路径上的电流相等,当两个电池阻抗不一致时,则会存在一个电池充电完成或者放电完成而另一个电池还未完成的情况,导致用户使用中造成使用使用时间变短以及充电永远充不满的情况。
发明内容
本申请的目的在于提供一种充放电电路、充放电方法以及终端,旨在解决电池模组中由于电芯阻抗不一致导致的无法充满的问题。
本申请实施例的第一方面提供了一种充放电电路,所述充放电电路包括:
获取模块,用于获取电池模组的电池参数;其中,所述电池模组包括多个依序串联的电芯,所述电池参数至少包括所述电池模组的电量以及每个电芯的电压;
充电模块,用于根据所述电池参数选择对应的充电模式对所述电池模组充电;其中,所述充电模式包括开关电容充电模式和Boost充电模式;
均衡模块,用于在所述电池模组充电截止时根据所述电池参数确定待均衡电芯,并依序对所述待均衡电芯进行均衡充电。
在一个实施例中,所述充放电电路还包括:
放电模块,用于根据所述电池参数选择对应的放电模式对所述电池模组放电;其中,所述放电模式包括开关电容放电模式和Buck放电模式。
在一个实施例中,所述充放电电路还包括:
适配器识别模块,用于获取接入所述充电模块的适配器的参数,若所述适配器的参数为预设适配器参数,则控制所述充电模块与所述适配器建立通信连接,以识别所述充电模块与所述适配器之间的充电协议。
在一个实施例中,所述充电模块包括:
Boost充电单元,在所述电池模组的电量小于第一阈值电量或者所述电池模组的电量大于第二阈值电量时,以所述Boost充电模式对所述电池模组进行充电;
开关电容充电单元,用于在所述电池模组的电量位于所述第一预设电量阈值与所述第二阈值电量之间时,以所述开关电容充电模式对所述电池模组进行充电。
在一个实施例中,所述均衡模块包括:
多个开关单元,多个所述开关单元与多个所述电芯一一并联,用于依序将所述待均衡电芯接入均衡充电回路,以对所述待均衡电芯进行均衡充电。
本申请实施例第二方面还提供了一种充放电方法,应用于上述任意一项实施例所述的充放电电路,所述充放电方法包括:
获取电池模组的电池参数;其中,所述电池模组包括多个依序串联的电芯,所述电池参数至少包括所述电池模组的电量以及每个电芯的电压;
根据所述电池参数选择对应的充电模式对所述电池模组充电;其中,所述充电模式包括开关电容充电模式和Boost充电模式;
在所述电池模组充电截止时根据所述电池参数确定待均衡电芯,并依序对所述待均衡电芯进行均衡充电。
在一个实施例中,所述充放电方法还包括:
采用基准步进电源替换所述电芯,建立所述获取模块输出的检测电压与所述基准步进电源的电压之间的映射关系,以对所述电池模组的实际电压进行校准。
在一个实施例中,所述根据所述电池参数选择对应的充电模式对所述电池模组充电,包括:
在所述电池模组的电量小于第一阈值电量或者所述电池模组的电量大于第二阈值电量时,以所述Boost充电模式对所述电池模组进行充电;
在所述电池模组的电量位于所述第一预设电量阈值与所述第二阈值电量之 间时,以所述开关电容充电模式对所述电池模组进行充电。
在一个实施例中,所述依序对所述待均衡电芯进行均衡充电,包括:
基于多个开关单元,依序将所述待均衡电芯接入均衡充电回路,以对所述待均衡电芯进行均衡充电,其中,多个所述开关单元与多个所述电芯一一并联。
本申请实施例第三方面还提供了一种终端,所述终端包括如上述任一项实施例所述的充放电电路。
本申请实施例提供了一种充放电电路、充放电方法以及终端,通过获取模块获取电池模组的电池参数,然后由充电模块根据电池参数选择对应的充电模式对电池模组充电,充电模式包括开关电容充电模式和Boost充电模式,在充电截止后,通过均衡模块充电截止时的电池参数确定电池模组中的待均衡电芯,并依序对待均衡电芯进行均衡充电,从而解决电池模组中由于电芯阻抗不一致导致的无法充满的问题。
附图说明
图1为本申请实施例提供的一种充放电电路的电路示意图;
图2为本申请实施例提供的另一种充放电电路的电路示意图;
图3为本申请实施例提供的开关电容充电芯片的电路原理图;
图4为本申请实施例提供的均衡模块的电路示意图;
图5为本申请实施例提供的一种充放电方法的流程示意图;
图6为本申请实施例提供的充放电方法中步骤S21的流程示意图;
图7为本申请实施例提供的另一种充放电方法的流程示意图;
图8为本申请实施例提供的另一种充放电方法的流程示意图;
图9为本申请实施例提供的另一种充放电方法的流程示意图;
图10为本申请实施例提供的另一种充放电方法的流程示意图;
图11为本申请实施例提供的另一种充放电方法的流程示意图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直 接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在原有的单电池架构想要满足如此大的充电电流,会带来线材以及板级上的巨大发热,给用户带来不好的体验。针对此情形,目前主流的做法为使用串联电池的做法,这种做法将电池电压变为单节电池的2倍,在同样的充电功率下,电流为原来的1/2,这样充电路径的发热量降为同等情况下单节电池的1/4。而由于串联电池的路径上的电流相等的。当两个电池阻抗不一致时,则会存在一个电池充电完成或者放电完成而另一个电池还未完成的情况,导致用户使用中造成使用使用时间变短以及充电永远充不满的情况。
为了解决上述技术问题,本申请实施例提供了一种充放电电路,参见图1所示,所述充放电电路包括获取模块40、充电模块20以及均衡模块30。
具体的,充放电电路应用于电池模组10,电池模组10包括多个依序串联的电芯,获取模块40用于获取电池模组10的电池参数,该电池参数至少包括电池模组10的电量以及每个电芯的电压,充电模块20根据电池参数选择对应的充电模式对电池模组10充电,充电模式包括开关电容充电模式和Boost充电模式,在具体应用中,开关电容充电模式和Boost充电模式可以分别对应大电流充电和小电流充电,开关电容充电模式和Boost充电模式可以分别由两路充电电路执行对电池模组10充电的过程,例如,开关电容充电模式可以由开关电容充电芯片及其***电路组成的充电电路执行电池模组10的充电过程,Boost充电模式可以由升压芯片及其***电路组成的充电电路执行电池模组10的充电过程。
在本实施例中,均衡模块30在电池模组10充电截止时根据电池参数确定 待均衡电芯,并依序对待均衡电芯进行均衡充电。具体的,主控模块可以根据电池模组10在充电结束时的电池参数(例如每个电芯的电压)确定未充满的电芯,例如,电芯的理论充满标准电压为4.4V,由检测模块对电芯的参数进行检测,若获取模块40获取的电芯的电压小于4.4V,则说明该电芯未充满,则主控模块将该电芯标记为待均衡电芯,由均衡模块30将该电芯接入均衡充电回路中,采用小电流(例如在Boost充电模式下)对该电芯进行均衡充电。
在一个实施例中,参见图2所示,充放电电路还包括放电模块50,放电模块50用于根据电池参数选择对应的放电模式对电池模组10放电;其中,放电模式包括开关电容放电模式和Buck放电模式。
在具体应用中,开关电容放电模式和Buck放电模式可以分别对应大电流放电和小电流放电,开关电容放电模式和Buck放电模式可以分别由两路放电电路执行对电池模组10放电的过程,例如,开关电容放电模式可以由开关电容充电芯片及其***电路组成的放电电路执行电池模组10的放电过程,Buck放电模式可以由降压芯片及其***电路组成的放电电路执行电池模组10的放电过程。
在一个实施例中,电池放电电路可以由开关电容变换器放电电路以及BUCK放电电路组成,开关电容变换器放电电路用于以开关电容放电模式对电池模组10进行放电,BUCK放电电路用于以Buck放电模式对电池模组10进行放电。
在本实施例中,开关电容变换器电路效率有98%以上,效率较高,损耗较小。然而,由于该芯片架构为开环架构,开关电容快速充电器芯片在电池模组10处于低电量时,其输出电压的变化直接反应在输入电压变化上,可能会触发电池的欠压保护,因此,所以在电池模组10处于低压时,充放电电路将供电切换为BUCK放电电路供电,虽然BUCK电路的效率较低,但是在电池低压时能平稳输出电压,没有触发电池保护的风险。
在一个实施例中,参见图2所示,充放电电路还包括适配器识别模块60。在本实施例中,适配器识别模块60用于获取接入充电模块20的适配器的参数,若适配器的参数为预设适配器参数,则控制充电模块20与适配器建立通信连接,以识别充电模块20与适配器之间的充电协议。
在一个实施例中,参见图2所示,充电模块20包括Boost充电单元21、开关电容充电单元22。
Boost充电单元21在电池模组10的电量小于第一阈值电量或者电池模组 10的电量大于第二阈值电量时,以Boost充电模式对电池模组10进行充电。
在本实施例中,Boost充电单元可以为升压芯片及其***电路组成的BOOST充电电路,在电池预充电以及恒压充电时,可以切换到该充电通道对电池模组10充电,使用BOOST充电电路可以更好的管理电池的充电状态,防止电池由于充电异常触发的电池保护。而且由于BOOST充电电路具有电池路径管理电路,在芯片(例如电源管理芯片、升压芯片等)充电截止后,电池模组10与芯片的充电应交之间的MOS管断开,在轻载模式下,***的电全部由SYS网络提供,此时,充电模块不再对电池进行充放电,为后续的电池均衡处理过程提供了可靠的场景。
开关电容充电单元22用于在电池模组10的电量位于第一预设电量阈值与第二阈值电量之间时,以开关电容充电模式对电池模组10进行充电。
在本实施例中,开关电容充电单元可以为开关电容充电芯片(例如BQ2597x等)及其***电路组成的充电电路,开关电容充电芯片具有充电效率高的特点,其充电效率可达98%以上,特别适用于目前大电流快充场景。
在一个实施例中,参见图2所示,充放电电路还包括充电开关70,充电开关70用于根据主控模块发送的切换指令切换Boost充电单元、开关电容充电单元对电池模组10充电。
图3为开关电容充电芯片的原理示意图,结合图5所示,当开关管G1、开关管G3导通,开关管G2和开关管G4断开时,Vin=VCFLY+VOUT,IIN=ICFLY=IOUT;CIN为输入电容两端的电压,VCFLY为电容CFLY两端的电压,COUT为输出电容;当开关管G1、开关管G3断开,开关管G2和开关管G4导通时,VCFLY=VOUT,ICFLY=IOUT;因此,VOUT=(1/2)*Vin,IOUT=2*IIN。
因此,根据其电压电流变换特点,输出电压为输入电压的1/2,输出电流为输入电流的2倍,若输入电压为17.6V,输入电流为3.25A输入,则输出电压为8.8V,输出电流为6.5A。由于开关电容充电单元的输出电流较大,该开关电容充电模式只会在电池恒流充电时使用,例如在电池模组10的电量位于第一预设电量阈值与第二阈值电量之间时,由开关电容充电单元对电池模组10进行快速充电。
在具体应用中,上述实施例中的第一预设电量阈值可以为20%Q,第二阈值电量可以为80%Q或者90%Q,其中,Q为电池模组10的容量。
在一个实施例中,均衡模块30包括多个开关单元,多个开关单元与多个电芯一一并联,用于依序将待均衡电芯接入均衡充电回路,以对待均衡电芯进行均衡充电。
在本实施例中,通过多个开关单元与电芯一一并联,多个开关单元根据接收的开关控制信号进行导通或者关断,从而将待均衡电芯接入均衡充电回路,以对待均衡电芯进行均衡充电。
在具体应用中,开关单元可以由开关管、继电器等开关器件组成,每个开关单元作为一个旁路开关,以根据主控模块发送的开关控制信号导通和关断,若导通,则该开关单元对应的电芯则被短接,则关断,则该开关单元对应的电芯则被接入均衡充电回路。
参见图4所示,利用三个开关管以及两个电阻组成电池均衡电路。在电池充电截止时,获取模块的两个检测引脚(引脚ADC1、ADC2)分别对第一电芯11和第二电芯12进行电压检测,理论上电芯在充满状态下的电压都为4.4V。当第一电芯11的电压低于4.4V时,将第一开关管Q1打开,此时充电芯片的SYS引脚与电池模组10之间的充电开关导通,充电电流流经第一电芯11、第一开关管Q1、第二电阻R2,由于第二电阻R2的限流左右,充电电流在100mA以内充电充电,待第一电芯11充满后,第一开关管Q1关闭,电池均衡完成。当检测到第二电芯12的电压低于4.4V时,将第二开关管Q2和第三开关管Q3打开,此时充电芯片的SYS引脚与电池模组10之间的充电开关导通,充电电流流经第三开关管Q3、第一电阻R1、第二电芯12,由于第一电阻R1的限流左右,充电电流在100mA以内充电充电,待第二电芯12充满后,第二开关管Q2和第三开关管Q3关断,电池模组10的均衡充电过程完成。
在具体应用中,第一开关管Q1和第二开关管Q2可以为NMOS管,第三开关管Q3可以为PMOS管。第一开关管Q1、第二开关管Q2以及第三开关管Q3的栅极与主控模块连接。
主控模块根据获取模块输出的电芯电压确定待均衡电芯,并发送对应的开关控制信号至均衡模块30,控制多个开关单元的导通和关断,从而将待均衡电芯接入均衡充电回路,以对待均衡电芯进行均衡充电。
本申请实施例还提供了一种充放电方法,充放电方法应用于上述任意一项实施例所述的充放电电路,参见图5所示,所述充放电方法包括步骤S10、步骤S20、步骤S30。
在步骤S10中,获取电池模组的电池参数;其中,所述电池模组包括多个依序串联的电芯,所述电池参数至少包括所述电池模组的电量以及每个电芯的电压。
在步骤S20中,根据所述电池参数选择对应的充电模式对所述电池模组充电;其中,所述充电模式包括开关电容充电模式和Boost充电模式。
在步骤S30中,在所述电池模组充电截止时根据所述电池参数确定待均衡电芯,并依序对所述待均衡电芯进行均衡充电。
在一个实施例中,参见图6所示,在步骤S20中,根据所述电池参数选择对应的充电模式对所述电池模组充电,包括步骤S21和步骤S22。
在步骤S21中,在所述电池模组的电量小于第一阈值电量或者所述电池模组的电量大于第二阈值电量时,以所述Boost充电模式对所述电池模组进行充电。
在步骤S22中,在所述电池模组的电量位于所述第一预设电量阈值与所述第二阈值电量之间时,以所述开关电容充电模式对所述电池模组进行充电。
在一个实施例中,参见图7所示,所述充放电方法还包括步骤S60。
在步骤S60中,获取接入所述充电模块的适配器的参数,若所述适配器的参数为预设适配器参数,则控制所述充电模块与所述适配器建立通信连接,以识别所述充电模块与所述适配器之间的充电协议。
在一个应用场景中,如图8所述,上述充放电方法可以通过以下步骤S61、S62、S63、S64、S65、S66、S67、S68实现。
S61:***适配器,由充电模块获取适配器的参数,该适配器的参数包括适配器的输出电压。
S62:识别到适配器输入的电压,启动Boost充电单元对电池模组充电,并进行BC 1.2协议识别。
BC1.2(Battery Charging v1.2)是USB-IF下属的BC(Battery Charging)小组制定的协议,主要用于规范电池充电的需求,该协议最早基于USB2.0协议来实现。USB2.0协议规定外设从USB充电器抽取电流的最大值为500mA,500mA的电流限制无法满足日益增长的快充需求。因此,BC1.2引入了充电端口识别机制,主要包括以下几个USB端口类型:标准下行端口(SDP)、专用充电端口(DCP)、充电下行端口(CDP)。
SDP端口支持USB协议,最大电流500mA,可以认为SDP就是普通的USB 接口;DCP不支持数据协议,支持快充,可以提供大电流,DCP主要用于墙充等专用充电器;CDP既支持数据协议也支持快充。
S63:若BC 1.2协议识别失败,则判定充电模块接入的适配器为非标适配器,由Boost充电单元对电池模组进行小电流充电。
S64:若BC 1.2协议识别成功,则控制充电模块与适配器建立通信连接,以识别所述充电模块与所述适配器之间的快充协议。
S65:若快充协议识别成功,则判断电池模组的电量是否满足恒流充电条件,例如,电池模组的电量位于所述第一预设电量阈值与所述第二阈值电量之间时,则满足恒流充电条件,由开关电容充电单元对电池模组进行快速充电。
S65:若不满足恒流充电条件,则维持BC 1.2模式对电池模组充电。
S66:若满足恒流充电条件,则启动开关电容充电单元以开关电容充电模式对电池模组充电。
S66:若电池模组的电量达到第二阈值电量时,则切换至Boost充电单元以Boost充电模式对电池模组充电。
在一个实施例中,参见图9所以,所述充放电方法还包括步骤S40。
在步骤S40中,根据所述电池参数选择对应的放电模式对所述电池模组放电;其中,所述放电模式包括开关电容放电模式和Buck放电模式。
在一个应用场景中,如图10所述,上述充放电方法可以通过以下步骤S81、S82、S83、S84、S85实现。
S81:开机,用电设备接入电池模组,默认使用BUCK放电电路供电,并获取电池模组的初始电压。
S82:判断电池模组的初始电压是否高于第一阈值电压(例如3.6V)。
S83:若否,则继续使用BUCK放电电路供电。
S84:若是,则开启开关电容放电电路供电。
S85:在电池模组放电至其电压小于第一阈值电压时,切换BUCK放电电路供电。
在一个实施例中,参见图11所示,所述充放电方法还包括步骤S50。
在步骤S50中,采用基准步进电源替换所述电芯,建立所述获取模块输出的检测电压与所述基准步进电源的电压之间的映射关系,以对所述电池模组的实际电压进行校准。
在本实施例中,由于检测模块采用分压电阻组成的分压电路对电芯的电压 进行分压后进行电压采集,因此,为了避免分压检测过程中存在的检测误差,通过使用两个基准步进电源模拟电池模组中的电芯,对获取模块从检测模块获取的电压进行校准,例如,建立获取模块输出的检测电压与所述基准步进电源的电压之间的映射关系,由获取模块输出的检测电压从映射关系表中确定电芯的实际电压,从而实现对电芯的实际电压进行校准的目的。
在校准第一电芯的电压检测过程时,将模拟第一电芯的基准步进电源设置为预设步进电压(例如步进电压设置为0.1V),从3.3V至4.4V,检测模块采用两个电阻分压对第一电芯进行等比例缩小,主控模块读取获取模块输出的检测电压,建立检测电压与基准步进电源的电压之间的映射关系表,在实际应用中,当主控模块获取到获取模块输出的第一电芯检测电压值,则根据第一电芯检测电压值以及映射关系表确定第一电芯的实际电压,避免检测误差导致均衡充电出现异常。
在校准第二电芯的电压检测过程时,将模拟第二电芯的基准步进电源设置为预设步进电压(例如步进电压设置为0.1V),从3.3V至4.4V,获取模块采用两个电阻分压对第二电芯进行等比例缩小,主控模块读取获取模块输出的检测电压,建立检测电压与基准步进电源的电压之间的映射关系表,在实际应用中,当主控模块获取到获取模块输出的第二电芯检测电压值,则根据第二电芯检测电压值以及映射关系表确定第二电芯的实际电压,避免检测误差导致均衡充电出现异常。
在校准结束后,将基准电芯***电池模组中,并由获取模块检测该基准电芯与基准电芯的检测电压值是否与映射关系表一致,若不一致,则重新执行校准步骤S50。
在一个实施例中,所述依序对所述待均衡电芯进行均衡充电,包括:基于多个开关单元,依序将所述待均衡电芯接入均衡充电回路,以对所述待均衡电芯进行均衡充电,其中,多个所述开关单元与多个所述电芯一一并联。
为了描述的简洁,上述描述的步骤S10、步骤S20、步骤S30、步骤S40、步骤S50、步骤S60的具体工作过程,可以参考上述图1至图4中充放电电路的工作原理说明,此处不再赘述。
本申请实施例还提供了一种终端,所述终端包括如上述任一项实施例所述的充放电电路。
本申请实施例提供了一种充放电电路、充放电方法以及终端,通过获取模 块获取电池模组的电池参数,然后由充电模块根据电池参数选择对应的充电模式对电池模组充电,充电模式包括开关电容充电模式和Boost充电模式,在充电截止后,通过均衡模块充电截止时的电池参数确定电池模组中的待均衡电芯,并依序对待均衡电芯进行均衡充电,从而解决电池模组中由于电芯阻抗不一致导致的无法充满的问题。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述***中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种充放电电路,其特征在于,所述充放电电路包括:
    获取模块,用于获取电池模组的电池参数;其中,所述电池模组包括多个依序串联的电芯,所述电池参数至少包括所述电池模组的电量以及每个电芯的电压;
    充电模块,用于根据所述电池参数选择对应的充电模式对所述电池模组充电;其中,所述充电模式包括开关电容充电模式和Boost充电模式;
    均衡模块,用于在所述电池模组充电截止时根据所述电池参数确定待均衡电芯,并依序对所述待均衡电芯进行均衡充电。
  2. 如权利要求1所述的充放电电路,其特征在于,所述充放电电路还包括:
    放电模块,用于根据所述电池参数选择对应的放电模式对所述电池模组放电;其中,所述放电模式包括开关电容放电模式和Buck放电模式。
  3. 如权利要求1所述的充放电电路,其特征在于,所述充放电电路还包括:
    适配器识别模块,用于获取接入所述充电模块的适配器的参数,若所述适配器的参数为预设适配器参数,则控制所述充电模块与所述适配器建立通信连接,以识别所述充电模块与所述适配器之间的充电协议。
  4. 如权利要求1所述的充放电电路,其特征在于,所述充电模块包括:
    Boost充电单元,在所述电池模组的电量小于第一阈值电量或者所述电池模组的电量大于第二阈值电量时,以所述Boost充电模式对所述电池模组进行充电;
    开关电容充电单元,用于在所述电池模组的电量位于所述第一预设电量阈值与所述第二阈值电量之间时,以所述开关电容充电模式对所述电池模组进行充电。
  5. 如权利要求1所述的充放电电路,其特征在于,所述均衡模块包括:
    多个开关单元,多个所述开关单元与多个所述电芯一一并联,用于依序将所述待均衡电芯接入均衡充电回路,以对所述待均衡电芯进行均衡充电。
  6. 一种充放电方法,其特征在于,应用于如权利要求1-5任意一项所述的充放电电路,所述充放电方法包括:
    获取电池模组的电池参数;其中,所述电池模组包括多个依序串联的电芯,所述电池参数至少包括所述电池模组的电量以及每个电芯的电压;
    根据所述电池参数选择对应的充电模式对所述电池模组充电;其中,所述充电模式包括开关电容充电模式和Boost充电模式;
    在所述电池模组充电截止时根据所述电池参数确定待均衡电芯,并依序对所述待均衡电芯进行均衡充电。
  7. 如权利要求6所述的充放电方法,其特征在于,所述充放电方法还包括:
    采用基准步进电源替换所述电芯,建立所述获取模块输出的检测电压与所述基准步进电源的电压之间的映射关系,以对所述电池模组的实际电压进行校准。
  8. 如权利要求6所述的充放电方法,其特征在于,所述根据所述电池参数选择对应的充电模式对所述电池模组充电,包括:
    在所述电池模组的电量小于第一阈值电量或者所述电池模组的电量大于第二阈值电量时,以所述Boost充电模式对所述电池模组进行充电;
    在所述电池模组的电量位于所述第一预设电量阈值与所述第二阈值电量之间时,以所述开关电容充电模式对所述电池模组进行充电。
  9. 如权利要求6所述的充放电方法,其特征在于,所述依序对所述待均衡电芯进行均衡充电,包括:
    基于多个开关单元,依序将所述待均衡电芯接入均衡充电回路,以对所述待均衡电芯进行均衡充电,其中,多个所述开关单元与多个所述电芯一一并联。
  10. 一种终端,其特征在于,所述终端包括如权利要求1-5任一项所述的充放电电路。
PCT/CN2021/119215 2021-08-30 2021-09-18 一种充放电电路、充放电方法以及终端 WO2023029114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111007844.5A CN113675926B (zh) 2021-08-30 2021-08-30 一种充放电电路、充放电方法以及终端
CN202111007844.5 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023029114A1 true WO2023029114A1 (zh) 2023-03-09

Family

ID=78547468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119215 WO2023029114A1 (zh) 2021-08-30 2021-09-18 一种充放电电路、充放电方法以及终端

Country Status (2)

Country Link
CN (1) CN113675926B (zh)
WO (1) WO2023029114A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116559634A (zh) * 2023-07-11 2023-08-08 杭州华塑科技股份有限公司 电路故障检测方法、装置、存储介质和电子设备
CN116598631A (zh) * 2023-07-17 2023-08-15 合肥国轩循环科技有限公司 一种锂电池组及锂电池组充放电方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021973A (zh) * 2019-02-03 2019-07-16 华为技术有限公司 终端设备和控制转换电路的方法
CN110198057A (zh) * 2018-02-26 2019-09-03 立锜科技股份有限公司 充电电路及其电源转换电路
WO2020191541A1 (zh) * 2019-03-22 2020-10-01 Oppo广东移动通信有限公司 供电装置、方法及电子设备
CN111886775A (zh) * 2019-02-28 2020-11-03 Oppo广东移动通信有限公司 充电方法和充电装置
WO2020223880A1 (zh) * 2019-05-06 2020-11-12 Oppo广东移动通信有限公司 充电方法和充电装置
US20200373778A1 (en) * 2018-02-13 2020-11-26 Zte Corporation Charging Method, Apparatus and System, Charging Circuit and Terminal
CN112821475A (zh) * 2019-11-15 2021-05-18 北京小米移动软件有限公司 充电电路、充电控制方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063486B (zh) * 2018-01-23 2024-06-18 深圳可立克科技股份有限公司 适于多种电池充电的充电器及其充电方法、电能变换电路
CN109980306B (zh) * 2019-03-14 2021-06-01 浙江南都电源动力股份有限公司 电池模组一致性的优化方法
CN111521940A (zh) * 2020-04-30 2020-08-11 重庆车辆检测研究院有限公司 电池模组测试方法、装置及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200373778A1 (en) * 2018-02-13 2020-11-26 Zte Corporation Charging Method, Apparatus and System, Charging Circuit and Terminal
CN110198057A (zh) * 2018-02-26 2019-09-03 立锜科技股份有限公司 充电电路及其电源转换电路
CN110021973A (zh) * 2019-02-03 2019-07-16 华为技术有限公司 终端设备和控制转换电路的方法
CN111886775A (zh) * 2019-02-28 2020-11-03 Oppo广东移动通信有限公司 充电方法和充电装置
WO2020191541A1 (zh) * 2019-03-22 2020-10-01 Oppo广东移动通信有限公司 供电装置、方法及电子设备
WO2020223880A1 (zh) * 2019-05-06 2020-11-12 Oppo广东移动通信有限公司 充电方法和充电装置
CN112821475A (zh) * 2019-11-15 2021-05-18 北京小米移动软件有限公司 充电电路、充电控制方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116559634A (zh) * 2023-07-11 2023-08-08 杭州华塑科技股份有限公司 电路故障检测方法、装置、存储介质和电子设备
CN116559634B (zh) * 2023-07-11 2023-09-12 杭州华塑科技股份有限公司 电路故障检测方法、装置、存储介质和电子设备
CN116598631A (zh) * 2023-07-17 2023-08-15 合肥国轩循环科技有限公司 一种锂电池组及锂电池组充放电方法
CN116598631B (zh) * 2023-07-17 2023-09-26 合肥国轩循环科技有限公司 一种锂电池组及锂电池组充放电方法

Also Published As

Publication number Publication date
CN113675926A (zh) 2021-11-19
CN113675926B (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2023029114A1 (zh) 一种充放电电路、充放电方法以及终端
WO2019157844A1 (zh) 充电方法及装置、***、充电电路、终端、充电***
CN103219762B (zh) 一种充电控制电路
JP3428015B2 (ja) バッテリーパック
US6172481B1 (en) Method and apparatus for rapid charging batteries under sub-optimal interconnect conditions
TWI530053B (zh) 行動電源電路及其方法
JP3229696B2 (ja) 電池の充電方法
WO2022194106A1 (zh) 双电池充放电电路及控制方法、电子设备
CN108512269A (zh) 一种电池并联平衡装置及充放电控制方法
CN112713633A (zh) 一种电池充放电管理方法及电池充放电管理***
CN216659649U (zh) 化成分容电路、设备及***
WO2021249150A1 (zh) 混联电池充放电方法及混联电池***
CN105162206A (zh) 充电电池的充电控制方法
CN105490325A (zh) 用于切换电池组的多个电池组电池的方法和电池组***
CN109936290B (zh) 开关电源电路
CN114977423A (zh) 一种基于融合指标的串联锂离子电池组旁路均衡方法
CN113783245A (zh) 一种电池管理方法以及***
CN112787373A (zh) 电池组充放电方法、电路、***及设备
CN112578289B (zh) 一种双向电源的dc-dc电池模拟器以及测试方法
CN213181889U (zh) 一种测试电路、pcba控制器以及电器设备
CN208285033U (zh) 一种串联电池组均衡充电控制电路
CN112332487A (zh) 一种太阳能电池组主动均衡充电***
CN219247499U (zh) 电池模组和移动终端
CN219067895U (zh) 充电均衡电路及电池
CN214227856U (zh) 一种太阳能电池组主动均衡充电***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE