WO2023028854A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2023028854A1
WO2023028854A1 PCT/CN2021/115746 CN2021115746W WO2023028854A1 WO 2023028854 A1 WO2023028854 A1 WO 2023028854A1 CN 2021115746 W CN2021115746 W CN 2021115746W WO 2023028854 A1 WO2023028854 A1 WO 2023028854A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dielectric structure
unit
sub
base layer
Prior art date
Application number
PCT/CN2021/115746
Other languages
English (en)
French (fr)
Inventor
魏振业
王其云
***
陈立
曾诚
罗雄一
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/115746 priority Critical patent/WO2023028854A1/zh
Priority to CN202180002358.6A priority patent/CN116097922A/zh
Priority to US17/796,552 priority patent/US20240188396A1/en
Publication of WO2023028854A1 publication Critical patent/WO2023028854A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display substrate, a manufacturing method thereof, and a display device.
  • Quantum Dot Organic Light-Emitting Diode QD-OLED
  • QD-OLED Quantum Dot Organic Light-Emitting Diode
  • This solution uses blue OLED as backlight
  • the source excites photochromic quantum dot (Quantum Dot, QD) particles to obtain different red and green lights.
  • Embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device.
  • the present disclosure provides a display substrate, which includes a base layer and a plurality of sub-pixel units arranged in an array on one side of the base layer, each of the sub-pixel units is connected to Corresponding to one light emitting unit, at least part of the plurality of sub-pixel units constitutes a pixel unit; characterized in that, the sub-pixel unit also includes a light spreading unit located on one side of the light emitting surface of the light emitting unit; the light spreading unit includes A first medium structure and a second medium structure, the orthographic projection of the first medium structure on the base layer at least partially overlaps the orthographic projection of one light-emitting unit on the base layer, the second medium
  • the structure is arranged in contact with at least one side of the first dielectric structure in a direction parallel to the plane of the base layer; the first dielectric structure has a first refractive index, and the second dielectric structure has a second refractive index , the first refractive index is greater than the second refractive index; the first
  • the angle range of the first included angle is 10° to 40°.
  • the height and width of the first section of the first dielectric structure satisfy the following relationship: Wherein, a is the height of the first cross-section of the first dielectric structure, L is the width of the first cross-section of the first dielectric structure, ⁇ 1 is the first included angle, and ⁇ 2 is the width of the first cross-section of the first dielectric structure. A second included angle between the contact surface of the second dielectric structure with the first dielectric structure and the bottom surface facing the light emitting unit.
  • the second included angle ranges from 10° to 90°.
  • the second included angle ranges from 50° to 90°.
  • the height of the first section ranges from 2 microns to 20 microns.
  • the sub-pixel unit further includes a light conversion unit located on a side of the first dielectric structure away from the light-emitting unit; the light conversion unit is on the base layer The orthographic projection of the light-emitting unit on the base layer at least partially overlaps; and, the orthographic projection of the light conversion unit on the base layer overlaps with the first dielectric structure on the base layer The orthographic projections on at least partially overlap; the light conversion unit is used to convert the luminous color of the luminous unit into a target luminous color.
  • the light conversion unit includes a quantum dot structure.
  • the ratio of the second refractive index to the first refractive index ranges from 0.5 to 0.9.
  • the orthographic projection of the first medium structure on the plane where the light emitting surface is located covers the orthographic projection of the light emitting unit on the plane where the light emitting surface is located.
  • the shape of the first section of the first dielectric structure is a rectangle, and the shape of the second dielectric structure along the direction perpendicular to the contact surface and the direction perpendicular to the light emitting surface
  • the shape of the cross-section is rectangular; or, the shape of the first cross-section of the first dielectric structure is an inverted trapezoid, and the shape of the second dielectric structure is along the direction perpendicular to the contact surface and the direction perpendicular to the light-emitting surface.
  • the shape of the section is trapezoidal.
  • the second dielectric structure is disposed between two adjacent first dielectric structures, and the sub-pixel units corresponding to the two adjacent first dielectric structures emit light in different colors.
  • the orthographic projection of the light conversion unit on the base layer covers the orthographic projection of its corresponding light emitting unit on the base layer.
  • the material of the second dielectric structure is a siloxane material doped with hollow particles.
  • the plurality of sub-pixel units includes a red sub-pixel unit, a green sub-pixel unit and a blue sub-pixel unit, and the light-emitting units corresponding to the plurality of sub-pixel units emit blue light.
  • each of the pixel units includes three sub-pixel units, and the three sub-pixel units include a first sub-pixel unit, a second sub-pixel unit, and a third sub-pixel unit; a plurality of the sub-pixel units correspond to The luminous colors of the luminous units are all the first luminous color; the first sub-pixel unit includes a first light conversion unit, the second sub-pixel unit includes a second light conversion unit, and the third sub-pixel unit includes a transparent Light unit; the first light converting unit is used to convert the first light emitting color of the corresponding light emitting unit to a second light emitting color; the second light converting unit is used to convert the first light emitting color of the corresponding light emitting unit to The third luminous color; the light-transmitting unit is used to transmit the light emitted by the corresponding luminous unit without changing the first luminous color.
  • the first luminous color is blue
  • the second luminous color is red
  • the third luminous color is green
  • the present disclosure provides a display device comprising the above-mentioned display substrate.
  • the present disclosure provides a method for preparing a display substrate, the preparation method comprising: providing a base layer; forming a plurality of light emitting units arranged in an array on one side of the base layer, each of the The light-emitting unit corresponds to a sub-pixel unit, and at least part of the plurality of sub-pixel units constitutes a pixel unit; a light spreading unit is formed on the side of each light-emitting unit away from the base layer, and the light spreading unit includes a first a medium structure and a second medium structure, the orthographic projection of the first medium structure on the base layer at least partially overlaps the orthographic projection of one light-emitting unit on the base layer, the second medium structure and
  • the first dielectric structure is arranged in contact with at least one side in a direction parallel to the plane of the base layer; the first dielectric structure has a first refractive index, the second dielectric structure has a second refractive index, and the The first refractive index is greater than the
  • Fig. 1a is a schematic structural diagram of a sub-pixel unit provided by an embodiment of the present disclosure.
  • Fig. 1b is a schematic plan view of a sub-pixel unit provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of another sub-pixel unit provided by an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of the light brightness distribution curve when the first included angle ⁇ 1 is in the range of 10°-60° in a specific embodiment.
  • FIG. 4 is a schematic diagram of the proportion of light rays that can be effectively used under different angles of the first included angle ⁇ 1.
  • 5 is a schematic diagram of light incident from the bottom surface of the first dielectric structure to the contact surface of the first dielectric structure and the second dielectric structure.
  • FIG. 6 is a schematic structural diagram of another sub-pixel unit provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another sub-pixel unit provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic plan view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a light emitting unit of a sub-pixel unit in an embodiment of the present disclosure
  • FIG. 11 is a flowchart of a method for manufacturing a sub-pixel unit provided by an embodiment of the present disclosure.
  • FIG. 12 is a flow chart of a method for preparing a display substrate provided by an embodiment of the present disclosure.
  • OLED is a surface light source
  • the emitted light cannot be collimated and emitted, it will affect the effect of QD particles effectively using OLED light.
  • FIG. 1a is a schematic structural diagram of a sub-pixel unit provided by an embodiment of the present disclosure
  • FIG. 1b is a schematic plan view of a sub-pixel unit provided by an embodiment of the present disclosure, as shown in As shown in FIG. 1a and FIG.
  • the sub-pixel unit includes: a base layer 21, a light emitting unit 11 located on one side of the base layer 21, and a light spreading unit 12 located on the side of the light emitting surface of the light emitting unit 11, and the light spreading unit 12 includes The first dielectric structure 121 and the second dielectric structure 122, the orthographic projection of the first dielectric structure 121 on the base layer 21 and the orthographic projection of the light emitting unit 11 on the base layer 21 at least partially overlap, the second dielectric structure 122 and the first
  • the dielectric structure 121 is arranged in contact with at least one side in a direction parallel to the plane of the base layer 21; the first dielectric structure 121 has a first refractive index n1, the second dielectric structure 122 has a second refractive index n2, and the first refractive index n1 greater than the second refractive index n2.
  • the second dielectric structure 122 is arranged around the first dielectric structure 121, and the side of the second dielectric structure 122 facing the first dielectric structure 121 is connected to the side of the first dielectric structure 121.
  • the surrounding sides of the first dielectric structure 121 are in direct contact, and the surrounding sides of the first dielectric structure 121 are referred to as contact surfaces of the first dielectric structure 121 and the second dielectric structure 122 in the embodiments of the present disclosure.
  • the second dielectric structure 122 may also be disposed in contact with the first dielectric structure 121 only on one or more sides of the first dielectric structure 121 .
  • the visual effect caused by the color crosstalk between sub-pixels of different colors is relatively strong, but the color crosstalk between sub-pixels of the same color is relatively imperceptible. Therefore, considering reducing the complexity of the process, only the second dielectric structure 122 is disposed between the first dielectric structures 121 corresponding to two adjacent sub-pixels of different colors. For example, the same material as that of the first dielectric structure 121 may be filled between the first dielectric structures 121 corresponding to adjacent sub-pixels of the same color (or prepared in one process with the first dielectric structure 121 ).
  • the first dielectric structure 121 is an optically denser medium
  • the second dielectric structure 122 is an optically thinner medium.
  • TIR total internal reflection
  • the condition for total reflection to occur at the contact surface between the first dielectric structure 121 and the second dielectric structure 122 is: ⁇ arcsin(n2/n1), where ⁇ is the normal distance between the incident light and the contact surface n2 is the second refractive index of the second dielectric structure 122, n1 is the first refractive index of the first dielectric structure 121, and arcsin(n2/n1) refers to the total reflection angle of the contact surface.
  • the light emitted by the light-emitting unit 11 enters the first dielectric structure 121 through the bottom surface of the first dielectric structure 121 facing the light-emitting unit 11.
  • the incident angle of the light is greater than or equal to arcsin(n2/n1), the total reflection angle of the contact surface of the first dielectric structure 121 and the second dielectric structure 122, the light will be Total reflection occurs on the contact surface between the first dielectric structure 121 and the second dielectric structure 122 .
  • any incident angle greater than or equal to the total reflection angle will cause total reflection when it irradiates the contact surface, thereby effectively improving the light-emitting unit 11.
  • the converging effect of the emitted light improves the light utilization rate of the light emitting unit 11 .
  • the light-emitting unit 11 may be an organic light-emitting diode (OLED), for example, a blue-light organic light-emitting diode.
  • OLED organic light-emitting diode
  • the sub-pixel unit can be applied to a QD-OLED device, which can effectively improve the utilization effect of QD particles on the light emitted by the light-emitting unit 11.
  • FIG. 1a is a schematic diagram of a longitudinal section of the sub-pixel unit shown in FIG. 1b along the AA' direction or along the BB' direction.
  • the first included angle ⁇ 1 between the diagonal line and the bottom edge of the first cross-section of the first dielectric structure 121 is equal to that between the first dielectric structure 121 and the second
  • the total reflection angle of the contact surface of the dielectric structure 122, that is, the first included angle ⁇ 1 is equal to arcsin(n2/n1)
  • the first cross-section is that the first dielectric structure 121 is along the direction perpendicular to the contact surface and perpendicular to the light emitting unit 11
  • the longitudinal section in the direction of the light-emitting surface that is, the AA' direction or the BB' direction).
  • total reflection can occur when light is incident on the contact surface between the first dielectric structure 121 and the second dielectric structure 122 at an incident angle greater than or equal to the first included angle ⁇ 1 , so that the light from the bottom surface of the first dielectric structure 121
  • the incident angle of the light incident on the top of the contact surface can be greater than or equal to the first included angle ⁇ 1 and total reflection occurs.
  • the collection effect of the light emitted by the light emitting unit 11 is further improved, and the light emission of the light emitting unit 11 is improved.
  • Efficiency on the other hand, in practical applications, can effectively avoid light crosstalk between adjacent sub-pixels, and can further improve the utilization effect of QD particles on the light emitted by the light emitting unit 11 .
  • the direction perpendicular to the contact surface can be understood as a direction perpendicular to the contact surface. cutting direction.
  • the first included angle ⁇ 1 is equal to the total reflection angle of the contact surface between the first dielectric structure 121 and the second dielectric structure 122, the smaller the first included angle ⁇ 1 , the more light rays can be totally reflected by the contact surface, That is, the more light that can be totally reflected, the better the collection effect of the light emitted by the light-emitting unit 11 in the first dielectric structure 121, and the higher the luminous efficiency of the light-emitting unit 11.
  • the first included angle ⁇ 1 can be set to be less than or equal to a preset angle, so that the incident light from the first dielectric structure 121 toward the bottom surface of the light emitting unit 11 at any angle
  • the light rays greater than or equal to the preset light ratio can be emitted from the first dielectric structure 121 back to the top surface of the light emitting unit 11 , that is, the light rays greater than or equal to the preset light ratio can be effectively used.
  • the preset angle can be set to 60°, and the angle range of the first included angle ⁇ 1 can be less than or equal to 60°, for example, the angle of the first included angle ⁇ 1 can be in the range of 10° to 60° value.
  • the first included angle ⁇ 1 is less than or equal to 60°, the light can be effectively used, and the influence of color crosstalk on adjacent pixels is small.
  • the ratio of the second refraction index n2 to the first refraction index n1 ranges from 0.5 to 0.9, which can ensure that the light rays greater than or equal to the preset light ratio can be effectively used.
  • the angle range of the first included angle ⁇ 1 may be 10° to 40°, for example, the first included angle ⁇ 1 may be set to 40°.
  • the first included angle ⁇ 1 is 10° to 40°, the proportion of light that can be effectively used is relatively large.
  • the orthographic projection of the first dielectric structure 121 on the base layer 21 coincides with the orthographic projection of the light emitting unit 11 on the base layer 21, or the orthographic projection of the first dielectric structure 121 on the base layer 21 covers the light emitting unit Orthographic projection of 11 on base layer 21 .
  • This structural design can make full use of the light emitted by the light emitting unit 11 and improve the light extraction efficiency of the display substrate.
  • the orthographic projection of the first dielectric structure 121 on the base layer 21 covers the orthographic projection of the light-emitting unit 11 on the base layer 21, the diagonal of the first section of the first dielectric structure 121 and the The first included angle ⁇ 1 between the bases is designed to be less than or equal to 60°.
  • the orthographic projection of the first dielectric structure 121 on the base layer 21 covers the orthographic projection of the light-emitting unit 11 on the base layer 21 , compared to the orthographic projection of the first dielectric structure 121 on the base layer 21 and When the orthographic projection of the light emitting unit 11 on the base layer 21 overlaps or the orthographic projection of the light emitting unit 11 on the base layer 21 covers the orthographic projection of the first dielectric structure 121 on the base layer 21, from the vertex of the first included angle ⁇ 1 Among the light emitted from the position, the ratio of the light totally reflected by the contact surface between the first dielectric structure 121 and the second dielectric structure 122 on the opposite side of the apex of the first included angle ⁇ 1 is lower, so it can have better prevention of color crosstalk Effect.
  • an encapsulation structure may also be included between the light-emitting unit 11 and the first dielectric structure 121, for example, the light-emitting unit 11 is encapsulated in the form of a three-layer encapsulation sub-layer of inorganic layer-organic layer-inorganic layer to prevent light emission. Unit 11 is attacked by water and oxygen.
  • the height a and width L of the first section of the first dielectric structure 121 satisfy the following relationship:
  • a is the height of the first cross-section of the first dielectric structure 121
  • L is the width of the first cross-section of the first dielectric structure 121
  • ⁇ 1 is the first included angle
  • ⁇ 2 is the sum of the second dielectric structure 122 and A second included angle between the contact surface of the first dielectric structure 121 and the bottom surface facing the light emitting unit 11 .
  • the angle range of the second included angle ⁇ 2 is 10° to 90°. In some embodiments, the second included angle ⁇ 2 ranges from 50° to 90°. In some embodiments, the second included angle ⁇ 2 is 90°. In some embodiments, the second included angle ⁇ 2 is less than 90°.
  • the shape of the first section of the first dielectric structure 121 is an inverted trapezoid; 'direction or BB' direction) the shape of the longitudinal section is trapezoidal.
  • the inverted trapezoid refers to a shape in which the width of the upper part is greater than that of the lower part.
  • FIG. 1a only exemplarily shows the situation that the shape of the first section of the first dielectric structure 121 is an inverted trapezoid, and the shape of the longitudinal section of the second dielectric structure 122 is a trapezoid, but embodiments of the present disclosure include but not only
  • FIG. 2 is a schematic structural diagram of another sub-pixel unit provided by an embodiment of the present disclosure.
  • the shape of the longitudinal section of the structure 122 along the direction perpendicular to the contact surface and the direction perpendicular to the light emitting surface of the light emitting unit 11 is rectangular.
  • the height a of the first section ranges from 2 microns to 20 microns.
  • the sub-pixel unit is applied to a display substrate, and the display substrate includes a plurality of sub-pixel units arranged in an array, and the width of the first section of the first dielectric structure 121 in each sub-pixel unit is equal to the pixel resolution of the display substrate The corresponding pixel width.
  • the height a, width L, first included angle ⁇ 1 , and second included angle of the first section of the first dielectric structure 121 are analyzed below. The relationship between the angle ⁇ 2 is described in detail.
  • the included angle ⁇ enters the first dielectric structure 121 and is incident on the contact surface of the first dielectric structure 121 and the second dielectric structure 122. At this time, the angle between the light ray and the normal line of the contact surface is relative to the contact surface is the included angle ⁇ .
  • the included angle ⁇ is the first included angle ⁇ 1 , at this time the height a of the first section of the first dielectric structure 121,
  • Fig. 3 is a schematic diagram of the light brightness distribution curve of the first included angle ⁇ 1 in the range of 10° to 60° in a specific embodiment, according to the light-emitting unit 11 (such as blue light OLED) under different first included angle ⁇ 1 conditions
  • the relationship between the first included angle ⁇ 1 and the light brightness can be determined, and the light brightness distribution curve of the first included angle ⁇ 1 in the range of 10° to 60° is shown in Figure 3.
  • the first included angle ⁇ 1 According to the relationship between the first included angle ⁇ 1 and the luminance of the light, when the first included angle is ⁇ 1 , integrate the luminance distribution curve corresponding to the range of ⁇ 1 to 60°, record it as the first integral, and take the 10° to 60° The luminance distribution curve corresponding to the ° range is integrated, which is recorded as the second integral. According to the ratio of the first integral and the second integral, the effective light ratio of the first angle ⁇ 1 at different angles can be determined.
  • Fig. 4 is a schematic diagram of the effective light ratio of the first angle ⁇ 1 at different angles
  • Table 1 is the result of the effective light ratio of the first angle ⁇ 1 obtained by theoretical testing at different angles
  • the incident light rays with an incident angle greater than or equal to 10° can be Total reflection occurs at the contact surface between the first dielectric structure 121 and the second dielectric structure 122, that is, light rays at almost all incident angles can undergo total reflection at the contact surface.
  • the integral ratio it can be determined that the proportion of light that can be effectively used can be determined. up to 100%.
  • the incident light with an incident angle greater than or equal to 40° can pass between the first dielectric structure 121 and the second dielectric structure 121.
  • Total reflection occurs at the contact surface of the dielectric structure 122 , that is, light from most incident angles can undergo total reflection at the contact surface. According to the integral ratio, it can be determined that the proportion of light that can be effectively used can be as high as 90%.
  • the first included angle ⁇ 1 40° at this time, that is, the total reflection angle is 40°, and when the angle range of the first included angle ⁇ 1 is 10° to 40°, the light utilization effect is better.
  • the utilization rate is as high as 90% and above.
  • the aforementioned preset light ratio may be the corresponding light ratio when the first included angle ⁇ 1 in Table 1 is 60°, that is, 74%.
  • the width of the first section of the first dielectric structure 121 in the sub-pixel unit can be defined as the pixel width corresponding to the pixel resolution of the display substrate.
  • the pixel width should be 42um.
  • the amount of available light mainly depends on the refractive index ratio between the second dielectric structure 122 and the first dielectric structure 121 , that is, depends on the size of the first included angle ⁇ 1 .
  • the shape of the first section of the first dielectric structure 121 is set as an inverted trapezoid
  • the shape of the longitudinal section of the second dielectric structure 122 is set as a trapezoid.
  • FIG. 5 is a schematic diagram of light incident from the bottom surface of the first dielectric structure to the contact surface of the first dielectric structure and the second dielectric structure.
  • the first cross-section is a rectangular cross-section
  • the contact surface is a vertical surface (perpendicular to the bottom surface).
  • the reflection angle ⁇ of the light on the vertical surface is ⁇ 1 .
  • the reflection angle ⁇ of the light on the inclined surface changes, which is increased by 90°- ⁇ from the previous ⁇ 1 2 .
  • Table 2 is the result of the effective light ratio of the first angle ⁇ 1 and the second angle ⁇ 2 obtained by theoretical testing at different angles.
  • the aforementioned preset light ratio may be the corresponding light ratio when the first included angle ⁇ 1 in Table 1 is 60°, that is, 74%.
  • the height (thickness) of the first dielectric structure 121 and the second dielectric structure 122 is in practical applications, the width of the first section of the first dielectric structure 121 in the sub-pixel unit is equal to the pixel width corresponding to the pixel resolution of the display substrate.
  • the pixel width should be 42um.
  • the above formula Wherein L is the pixel width, i.e.
  • the quantification of total reflection under the boundary condition can be obtained data, for example, the required heights (thicknesses) of the first dielectric structure 121 and the second dielectric structure 122 at different pixel resolutions.
  • the material of the first dielectric structure 121 is siloxane material. In some embodiments, in order to increase the refractive index of the first dielectric structure 121, the material of the first dielectric structure 121 is a siloxane material doped with a filler, the doping ratio of the filler is 50%, and the material of the filler Titanium dioxide (TiO 2 ) and/or zirconium dioxide (ZrO 2 ) are included.
  • the refractive index of the first dielectric structure 121 can be increased by 0.3 to 0.4 by doping titanium dioxide (TiO 2 ) fillers, and the refractive index of the first dielectric structure 121 can be increased by 0.2 to 0.4 by doping zirconium dioxide (ZrO 2 ) fillers. 0.8.
  • the value range of the first refractive index n1 is 1.6 to 2.1.
  • the main component of the material of the second dielectric structure 122 is siloxane material.
  • the material of the second dielectric structure 122 is a siloxane material doped with hollow particles, and the hollow particles are generally silicon dioxide (SiO 2 ) spheres filled with air, nitrogen and other gases , and its particle size is between 10 nanometers and 100 nanometers.
  • the second refractive index n2 ranges from 1.3 to 1.4.
  • FIG. 6 is a schematic structural diagram of another sub-pixel unit provided by an embodiment of the present disclosure. As shown in FIG. The side away from the light emitting unit 11 , and the light conversion unit 13 is disposed corresponding to the first dielectric structure 121 .
  • the orthographic projection of the light conversion unit 13 on the base layer 21 at least partially overlaps the orthographic projection of the corresponding light emitting unit 11 on the base layer 21 , and the orthographic projection of the light conversion unit 13 on the base layer 21 The projection at least partially overlaps the orthographic projection of the corresponding first medium structure 121 on the base layer 21 .
  • the orthographic projection of the light converting unit 13 on the base layer 21 covers the orthographic projection of its corresponding light-emitting unit 11 on the base layer 21, and the orthographic projection of the light converting unit 13 on the base layer 21 covers its corresponding Orthographic projection of a dielectric structure 121 on the base layer 21 .
  • the area of the light conversion unit 13 receiving the light corresponding to the light emitting unit 11 can be increased, and the light output efficiency of the display substrate can be improved.
  • the light converting unit 13 is used for converting the light emitting color of the light emitting unit 11 into a target light emitting color.
  • the light conversion unit 13 includes a quantum dot structure including quantum dot (QD) particles.
  • QD quantum dot
  • the light emitting unit 11 is a blue OLED device, and the light emitting unit 11 uses blue fluorescent material or phosphorescent material as a light source material for exciting QD particles.
  • the light conversion unit 13 includes a red light conversion unit or a green light conversion unit
  • the red light conversion unit includes a red quantum dot structure
  • the green light conversion unit includes a green quantum dot structure
  • the red quantum dot structure is used to convert blue light into OLED
  • the blue light emitted by the device is converted into red light
  • the green quantum dot structure is used to convert the blue light emitted by the blue OLED device into green light.
  • the light conversion unit 13 is formed by mixing QD nanoparticles and scattering particles of different sizes in the resin, and the doping ratio of the scattering particles is ⁇ 60%.
  • the QD particle size of the red light conversion unit is between 3nm and 7nm
  • the green The QD particle size of the light conversion unit is between 4nm and 6nm.
  • the material of QD particle can be one or more in ZnCdSe2, CdSe, CdTe, InP, InAs, the material of QD particle can not be limited to above-mentioned material, and from II-VI group compound, III-V group compound, IV -Selected from group VI compounds, group IV elements, group IV compounds and/or combinations thereof.
  • the orthographic projection of the first medium structure 121 on the plane where the light emitting surface of the light emitting unit 11 is located covers the orthographic projection of the light emitting unit 11 on the plane where the light emitting surface is located.
  • FIG. 7 is a schematic structural diagram of another sub-pixel unit provided by an embodiment of the present disclosure. As shown in FIG. The side away from the light-emitting unit 11 , and the light-transmitting unit 14 is disposed corresponding to the first dielectric structure 121 .
  • the orthographic projection of the light-transmitting unit 14 on the base layer 21 at least partially overlaps the orthographic projection of the corresponding light-emitting unit 11 on the base layer 21 , and the orthographic projection of the light-transmitting unit 14 on the base layer 21 The projection at least partially overlaps the orthographic projection of the corresponding first medium structure 121 on the base layer 21 .
  • the orthographic projection of the light-transmitting unit 14 on the base layer 21 covers the orthographic projection of its corresponding light-emitting unit 11 on the base layer 21
  • the orthographic projection of the light-transmitting unit 14 on the base layer 21 covers its The corresponding orthographic projection of the first dielectric structure 121 on the base layer 21 .
  • the light transmitting unit 14 is used for transmitting the light emitted by the light emitting unit 11 without changing the light emitting color of the light emitting unit 11 .
  • the light emitting color of the light emitting unit 11 is blue light
  • the light passing through the light transmitting unit 14 is blue light.
  • the material of the light-transmitting unit 14 is a material with a high refractive index, and a large number of scattering particles (doping ratio ⁇ 60%) are distributed in the light-transmitting unit 14, or some blue particles are evenly distributed in the light-transmitting unit 14. color dye.
  • the cross-sectional shape of the light emitting unit 11 parallel to the plane where the light emitting surface is located may be a rectangle.
  • the cross-sectional shape of the first dielectric structure 121 parallel to the plane where the light-emitting surface of the light-emitting unit 11 is located may be a rectangle.
  • the cross-sectional shape of the light converting unit 13 parallel to the plane where the light emitting surface of the light emitting unit 11 is located may be a rectangle.
  • the cross-sectional shape of the light-transmitting unit 14 parallel to the plane where the light-emitting surface of the light-emitting unit 11 is located may be a rectangle.
  • the height (thickness) a of the first dielectric structure 121 is the same as the height (thickness) of the second dielectric structure 122 , and the bottom surface of the first dielectric structure 121 facing the light-emitting unit 11 and the second dielectric structure 122 face The bottom surface of the light emitting unit 11 is flush, and the top surface of the first dielectric structure 121 facing away from the light emitting unit 11 is flush with the top surface of the second dielectric structure 122 facing away from the light emitting unit 11 .
  • FIG. 8 is a schematic plan view of a display substrate provided by an embodiment of the present disclosure.
  • the display substrate has a display area AA and a non-display area NA outside the display area AA.
  • Multiple scan lines GL and multiple data lines DL are arranged in the display area AA; multiple scan lines GL and multiple data lines DL are intersected to define multiple sub-pixel units.
  • every three adjacent sub-pixel units along the row direction form a pixel unit, and three adjacent sub-pixel units (such as red sub-pixel unit R, green sub-pixel unit G and blue sub-pixel unit B ) are used to display different colors.
  • the sub-pixel units in the same row are provided with scan signals by the same scan line GL
  • the sub-pixel units in the same column are provided with data voltage signals by the same data line DL.
  • a gate driving circuit and a driving chip may be disposed in the non-display area NA, the scanning line GL is connected to the gate driving circuit, and the data line DL is connected to the driving chip.
  • Each sub-pixel unit includes a light-emitting unit and a pixel circuit corresponding to the light-emitting unit.
  • the pixel circuit is connected to the scanning line GL and the data line DL.
  • the pixel circuit is configured to provide the light-emitting unit with an
  • the driving signal is used to drive the light emitting unit to emit light.
  • the pixel circuit includes at least a writing transistor and a driving transistor.
  • the gate of the writing transistor is connected to the scanning line GL.
  • the signal is transmitted to the gate of the driving transistor, and the driving transistor provides driving current to the light-emitting unit according to the voltage difference between the gate and the first electrode, so that the light-emitting unit displays.
  • both the writing transistor and the driving transistor can be thin film transistors, and the thin film transistor includes a gate, a first pole and a second pole, wherein one of the first pole and the second pole is a source, and the other The one is the drain.
  • FIG. 9 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • the display substrate includes a base layer 21 and a plurality of sub-pixel units arranged in an array on one side of the base layer 21. At least some of the pixel units form a pixel unit P, and each pixel unit P includes a plurality of sub-pixel units L.
  • each pixel unit P includes three sub-pixel units L, and the three sub-pixel units L include a first sub-pixel unit L(R), a second sub-pixel unit L(G) and a third sub-pixel unit L( B).
  • the first sub-pixel unit L(R) is a red sub-pixel unit
  • the second sub-pixel unit L(G) is a green sub-pixel unit
  • the third sub-pixel unit L(B) is a blue sub-pixel unit.
  • each sub-pixel unit adopts the sub-pixel units provided in the above-mentioned embodiments.
  • the plurality of sub-pixel units L have different emission colors, and the emission colors of the light-emitting units 11 corresponding to the plurality of sub-pixel units L are all blue.
  • the plurality of sub-pixel units L includes a first sub-pixel unit L(R), a second sub-pixel unit L(G) and a third sub-pixel unit L(B).
  • the first sub-pixel unit L(R) is used to emit red light
  • the second sub-pixel unit L(G) is used to emit green light
  • the third sub-pixel unit L(B) is used to emit blue light.
  • the light-emitting units 11 in each sub-pixel unit L have the same light-emitting color, and the light-emitting colors of the light-emitting units 11 in each sub-pixel unit L are all the first light-emitting color.
  • the first light-emitting color is blue .
  • the first sub-pixel unit L(R) includes a first light conversion unit 13(R)
  • the second sub-pixel unit L(G) includes a second light conversion unit 13(G)
  • the third sub-pixel unit Unit L(B) includes a light-transmitting unit 14(B).
  • the first light converting unit 13 (R) is used for converting the first light emitting color of the corresponding light emitting unit 11 into a second light emitting color, for example, the second light emitting color is red.
  • the second light converting unit 13(G) is used for converting the first light emitting color of the corresponding light emitting unit 11 into a third light emitting color, for example, the third light emitting color is green.
  • the light transmitting unit 14(B) is used for transmitting the light emitted by the corresponding light emitting unit 11 without changing the first light emitting color.
  • the pixel circuits of the above sub-pixel units may be disposed on the base layer 21 , and the pixel circuits are used to drive the light emitting units of the sub-pixel units L on the base layer 21 to emit light.
  • FIG. 10 is a schematic structural diagram of the light emitting unit of the sub-pixel unit in the embodiment of the present disclosure.
  • the first electrode 111 and the second electrode 112 are arranged oppositely, and the light-emitting functional layer 113 is located between the second electrode 112 and the first electrode 111; the first electrode 111 can be the anode of the light-emitting unit 11, and the second electrode 112 can be In the cathode of the light emitting unit 11 , when a current is generated between the first electrode 111 and the second electrode 112 , the light emitting functional layer 113 emits light.
  • the light-emitting functional layer 113 may include: a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, and an electron injection layer stacked in sequence.
  • the light-emitting unit 11 may be an OLED (Organic Light-Emitting Diode, organic electroluminescent diode) device.
  • the organic light-emitting layer uses an organic light-emitting material.
  • the OLED is a blue OLED.
  • the display substrate further includes a thin film encapsulation (TFE) layer 22, and the thin film encapsulation (TFE) layer 22 is located on the side of each light emitting unit 11 away from the base layer 21. ) layer 22 is used to protect the light-emitting unit 11 from water and oxygen.
  • the thin film encapsulation (TFE) layer 22 is formed by stacking a first inorganic material layer, an organic material layer and a second inorganic material layer in sequence.
  • the first inorganic material layer The material of the second inorganic material layer may be silicon oxide, the organic material layer may be formed by ink jet printing (IJP), and the material of the second inorganic material layer may be silicon nitride.
  • the light propagation unit 12 of each sub-pixel unit L is disposed on the side of the thin film encapsulation (TFE) layer 22 away from the base layer 21, and the light propagation unit 12 includes a first dielectric structure 121 and a second dielectric structure 122.
  • the second dielectric structure 122 is filled between the first dielectric structures 121 of two adjacent sub-pixel units L, and the sub-pixels corresponding to the adjacent two first dielectric structures 121
  • the pixel units emit light in different colors.
  • the first dielectric structure 121 in the light propagation unit 12 reference may be made to the related descriptions in the embodiments of the above-mentioned sub-pixel unit, which will not be repeated here.
  • the display substrate further includes a flat layer 23 , and the flat layer 23 is disposed on a side of each light propagation unit 12 away from the base layer 21 .
  • the planarization layer 23 is provided to planarize the light propagation unit 12 and to better prepare the light conversion unit 13 and the light transmission unit 14 .
  • each pixel unit P includes a first sub-pixel unit L(R), a second sub-pixel unit L(G) and a third sub-pixel unit L(B ), the light conversion unit 13 of each sub-pixel unit L includes the first light conversion unit 13 (R) of the first sub-pixel unit L (R), the second light conversion unit 13 ( G), the light-transmitting unit 14 of each sub-pixel unit L includes the light-transmitting unit 14(B) of the third sub-pixel unit L(B).
  • an isolation structure 24 is further provided between two adjacent light conversion units 13 , and an isolation structure 24 is further provided between adjacent light conversion units 13 and light transmission units 14 , the isolation structure 24 is a black matrix (BM), and the isolation structure is made of silicon-based organic resin, which is doped with carbon black and other substances, so as to avoid crosstalk between light rays of different colors emitted by two adjacent sub-pixel units L, and at the same time play a role
  • BM black matrix
  • an encapsulation structure layer 25 is provided on the side away from the base layer 21 of each light conversion unit 13 , light transmission unit 14 and isolation structure 24 , and the encapsulation structure layer 25 consists of It is made by mixing organic packaging material and inorganic particle scattering material.
  • Embodiments of the present disclosure also provide a display device, which includes the display substrate provided in the above embodiments.
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • FIG. 11 is a flow chart of a method for preparing a sub-pixel unit provided by an embodiment of the present disclosure. As shown in FIGS. 1a, 2, and 11, the preparation method include:
  • Step S31 providing the base layer 21 .
  • Step S32 forming the light emitting unit 11 on one side of the base layer 21 .
  • Step S33 forming the light propagation unit 12 on the side of the light emitting unit 11 away from the base layer 21 .
  • the light propagation unit 12 includes a first dielectric structure 121 and a second dielectric structure 122, the orthographic projection of the first dielectric structure 121 on the base layer 21 and the orthographic projection of the light emitting unit 11 on the base layer 21 at least partially overlap, the second The second dielectric structure 122 is arranged in contact with at least one side of the first dielectric structure 121 in a direction parallel to the plane of the base layer 21; the first dielectric structure 121 has a first refractive index, and the second dielectric structure 122 has a second refractive index, The first refractive index is greater than the second refractive index; the first included angle between the diagonal line of the first section of the first dielectric structure 121 and the bottom edge is the full area of the contact surface between the first dielectric structure 121 and the second dielectric structure 122 Reflection angle, the first cross-section is the vertical cross-section of the first dielectric structure 121 along the direction perpendicular to the contact surface and the direction perpendicular to the light-emitting surface
  • An embodiment of the present disclosure also provides a method for preparing a display substrate, the preparation method comprising: providing a base layer; forming a plurality of light-emitting units arranged in an array on one side of the base layer, each light-emitting unit corresponding to a sub-pixel unit, At least part of the plurality of sub-pixel units constitutes a pixel unit; a light spreading unit is formed on a side of each light emitting unit away from the base layer.
  • the light propagation unit includes a first dielectric structure and a second dielectric structure, the orthographic projection of the first dielectric structure on the base layer and the orthographic projection of a light-emitting unit on the base layer at least partially overlap, the second dielectric structure and the first
  • the dielectric structure is arranged in contact with at least one side in a direction parallel to the plane of the base layer;
  • the first dielectric structure has a first refractive index
  • the second dielectric structure has a second refractive index
  • the first refractive index is greater than the second refractive index;
  • the first included angle between the diagonal line and the bottom edge of the first section of a dielectric structure is equal to the total reflection angle of the contact surface between the first dielectric structure and the second dielectric structure, and the first section is the vertical direction of the first dielectric structure along the The direction of the contact surface and the section perpendicular to the direction of the light-emitting surface;
  • the first included angle is less than or equal to the preset angle, so that the incident light from
  • FIG. 12 is a flow chart of a method for preparing a display substrate provided by an embodiment of the present disclosure. As shown in FIGS. 9 and 12 , the preparation method includes:
  • Step S41 providing the base layer 21 .
  • Step S42 forming the light emitting unit 11 of a plurality of sub-pixel units L arranged in an array on one side of the base layer 21 .
  • each light-emitting unit corresponds to a sub-pixel unit one by one, and at least part of the plurality of sub-pixel units constitutes a pixel unit.
  • Step S43 performing a thin film encapsulation (TFE) process to form a thin film encapsulation layer 22 on a side of each light emitting unit 11 away from the base layer 21 .
  • TFE thin film encapsulation
  • Step S44 forming the light propagation unit 12 of each sub-pixel unit L on the side of the thin film encapsulation layer 22 away from the base layer 21 .
  • a second dielectric structure material layer is formed on the side of the thin film encapsulation layer 22 away from the base layer 21, and the second dielectric structure material layer is patterned by photolithography to form the second dielectric structure 122, and the second The first dielectric structure region corresponding to the region corresponding to the light emitting unit 11 between the dielectric structures 122; the first dielectric structure material is formed and filled in the first dielectric structure region, and cured by ultraviolet (UV) exposure or thermal curing A first dielectric structure 121 is formed.
  • UV ultraviolet
  • Step S45 forming a flat layer 23 on a side of the light propagation unit 12 of each sub-pixel unit L away from the base layer 21 .
  • Step S46 forming an isolation structure 24 on a side of the flat layer 23 away from the base layer 21 , and defining a light conversion unit area and a light transmission unit area between the isolation structures 24 .
  • an isolation structure material layer is formed on the side of the flat layer 23 far away from the base layer 21, and the isolation structure material layer is patterned by using photolithography technology to form the isolation structure 24 and the light beams corresponding to each light propagation unit 12. Conversion unit area, light transmission unit area.
  • Step S47 forming the corresponding light conversion unit 13 in the light conversion unit area, and forming the light transmission unit 14 in the light transmission unit area.
  • inkjet printing technology is used to fill the corresponding color quantum dot structure material in each light conversion unit area, such as quantum dot (QD) particle colloid, and solidify and stabilize to form the light conversion unit 13 of each sub-pixel unit L, such as The first light conversion unit 13(R) of the first sub-pixel unit L(R), the first light conversion unit 13(G) of the second sub-pixel unit L(G); each light transmission unit area is filled with light transmission
  • the unit material is cured to form the light-transmitting unit 14 of each sub-pixel unit L, such as the light-transmitting unit 14(B) of the third sub-pixel unit L(B).
  • Step S48 forming an encapsulation structure layer 25 on the side of the light conversion unit 13 , the light transmission unit 14 and the isolation structure 24 of each sub-pixel unit L away from the base layer 21 .
  • encapsulation is performed using a mixed solution of an organic encapsulation material and an inorganic particle scattering material to form the encapsulation structure layer 25 .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示基板及其制备方法、显示装置,显示基板包括位于基底层上的呈阵列排布的多个子像素单元,子像素单元包括位于发光单元的一侧的光传播单元;光传播单元包括第一介质结构和第二介质结构,第一介质结构的正投影与发光单元的正投影至少部分交叠,第二介质结构与第一介质结构在平行于基底层所在平面的方向上的至少一侧接触设置;第一介质结构的第一折射率大于第二介质结构的第二折射率;第一介质结构的第一截面的对角线与底边之间的第一夹角等于第一介质结构与第二介质结构的接触面的全反射角;第一夹角小于或等于预设角度,以使从第一介质结构的底面入射的光线中大于或等于预设光线比例的光线均能够从第一介质结构的顶面出射。

Description

显示基板及其制备方法、显示装置 技术领域
本公开涉及显示技术领域,特别涉及一种显示基板及其制备方法、显示装置。
背景技术
量子点有机发光器件(Quantum Dot Organic Light-Emitting Diode,QD-OLED)因具有优秀的色域表现、良好的色彩的展示能力,而被认为是下一代显示方案,该方案是利用蓝光OLED作为背光源来激发光致变色的量子点(Quantum Dot,QD)粒子,得到不同的红绿光。
发明内容
本公开实施例提供了一种显示基板及其制备方法、显示装置。
根据本公开的第一方面,本公开提供一种显示基板,该显示基板包括基底层和位于所述基底层的一侧的呈阵列排布的多个子像素单元,每个所述子像素单元与一个发光单元对应,多个子像素单元中的至少部分构成一个像素单元;其特征在于,所述子像素单元还包括位于所述发光单元的发光面一侧的光传播单元;所述光传播单元包括第一介质结构和第二介质结构,所述第一介质结构在所述基底层上的正投影与一个所述发光单元在所述基底层上的正投影至少部分交叠,所述第二介质结构与所述第一介质结构在平行于所述基底层所在平面的方向上的至少一侧接触设置;所述第一介质结构具有第一折射率,所述第二介质结构具有第二折射率,所述第一折射率大于所述第二折射率;所述第一介质结构的第一截面的对角线与底边之间的第一夹角等于所述第一介质结构与所述第二介质结构的接触面的全反射角,所述第一截面为所述第一介质结构沿垂直于所述接触面的方向、且垂直于所述发光面的方向的截面;所述第一夹角小于或等于预设角度,以使以任意角度从所述第一介质结构朝向所述发光单元的底面入射的光线中,大于或等于预设光线比例的光线均能够从所述第一介质结构背向所述发光单元的顶面出射,所述预设角度为60°。
在一些实施例中,所述第一夹角的角度范围为10°至40°。
在一些实施例中,所述第一介质结构的所述第一截面的高度和宽度满足以下关系:
Figure PCTCN2021115746-appb-000001
其中,a为所述第一介质结构的所述第一截面的高度,L为所述第一介质结构的所述第一截面的宽度,θ 1为所述第一夹角,θ 2为所述第二介质结构的与所述第一介质结构的接触面与朝向所述发光单元的底面之间的第二夹角。
在一些实施例中,所述第二夹角的角度范围为10°至90°。
在一些实施例中,所述第二夹角的角度范围为50°至90°。
在一些实施例中,所述第一截面的高度的取值范围为2微米至20微米。
在一些实施例中,所述子像素单元还包括光转换单元,所述光转换单元位于所述第一介质结构的远离所述发光单元的一侧;所述光转换单元在所述基底层上的正投影与所述发光单元在所述基底层上的正投影至少部分交叠;并且,所述光转换单元在所述基底层上的正投影与所述第一介质结构在所述基底层上的正投影至少部分交叠;所述光转换单元用于将所述发光单元的发光颜色转换为目标发光颜色。
在一些实施例中,所述光转换单元包括量子点结构。
在一些实施例中,所述第二折射率与所述第一折射率的比值范围为0.5至0.9。
在一些实施例中,所述第一介质结构在所述发光面所在平面上的正投影覆盖所述发光单元在所述发光面所在平面上的的正投影。
在一些实施例中,所述第一介质结构的所述第一截面的形状为矩形,所述第二介质结构的沿垂直于所述接触面的方向、且垂直于所述发光面的方向的截面的形状为矩形;或者,所述第一介质结构的第一截面的形状为倒梯形,所述第二介质结构的沿垂直于所述接触面的方向、且垂直于所述发光面的方向的截面的形状为梯形。
在一些实施例中,所述第二介质结构设置在相邻两个所述第一介质结构之间,相邻两个所述第一介质结构对应的子像素单元的发光颜色不同。
在一些实施例中,所述光转换单元在所述基底层上的正投影覆盖其对应的所述发光单元在所述基底层上的正投影。
在一些实施例中,所述第二介质结构的材料为掺杂有中空粒子的硅氧烷材料。
在一些实施例中,多个所述子像素单元包括红色子像素单元、绿色子像素单元和蓝色子像素单元,多个所述子像素单元对应的发光单元的发光颜色均为蓝色。
在一些实施例中,每个所述像素单元包括三个子像素单元,该三个子像素单元包括第一子像素单元、第二子像素单元和第三子像素单元;多个所述子像素单元对应的发光单元的发光颜色均为第一发光颜色;所述第一子像素单元包括第一光转换单元,所述第二子像素单元包括第二光转换单元,所述第三子像素单元包括透光单元;所述第一光转换单元用于将对应的发光单元的第一发光颜色转换为第二发光颜色;所述第二光转换单元用于将对应的发光单元的第一发光颜色转换为第三发光颜色;所述透光单元用于透过对应的发光单元发出的光线而不改变第一发光颜色。
在一些实施例中,所述第一发光颜色为蓝色,所述第二发光颜色为红色,所述第三发光颜色为绿色。
根据本公开的第二方面,本公开提供一种显示装置,该显示装置包括上述的显示基板。
根据本公开的第三方面,本公开提供一种显示基板的制备方法,该制备方法包括:提供基底层;在所述基底层的一侧形成阵列排布的多个发光单元,每个所述发光单元与一个子像素单元对应,多个子像素单元中的至少部分构成一个像素单元;在每个所述发光单元远离所述基底层的一侧形成光传播单元,所述光传播单元包括第一介质结构和第二介质结构,所述第一介质结构在所述基底层上的正投影与一个所述发光单元在所述基底层上的正投影至少部分交叠,所述第二介质结构与所述第一介质结构在平行于所述基底层所在平面的方向上的至少一侧接触设置;所述第一介质结构具有第一折射率,所述第二介质结构具有第二折射率,所述第一折射率大于所述第二折射率;其中,所述第一介质结构的第一截面的对角线与底边之间的第一夹角等于所述第一介质结构与所述第二介质结构的接触 面的全反射角,所述第一截面为所述第一介质结构沿垂直于所述接触面的方向、且垂直于所述发光面的方向的截面;所述第一夹角小于或等于预设角度,以使以任意角度从所述第一介质结构朝向所述发光单元的底面入射的光线中,大于或等于预设光线比例的光线从所述第一介质结构背向所述发光单元的顶面出射,所述预设角度为60°。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1a为本公开实施例提供的一种子像素单元的结构示意图。
图1b为本公开实施例提供的一种子像素单元的平面示意图。
图2为本公开实施例提供的另一种子像素单元的结构示意图。
图3为一个具体实施例中第一夹角θ1在10°~60°范围内的光线亮度分布曲线的示意图。
图4为第一夹角θ1在不同角度下的可有效利用的光线比例的示意图。
图5为光线从第一介质结构的底面入射至第一介质结构与第二介质结构的接触面的示意图。
图6为本公开实施例提供的又一种子像素单元的结构示意图。
图7为本公开实施例提供的再一种子像素单元的结构示意图。
图8为本公开实施例提供的一种显示基板的平面示意图。
图9为本公开实施例提供的一种显示基板的结构示意图。
图10为本公开实施例中子像素单元的发光单元的结构示意图;
图11为本公开实施例提供的一种子像素单元的制备方法的流程图。
图12为本公开实施例提供的一种显示基板的制备方法的流程图。
具体实施方式
为使本领域的技术人员更好地理解本公开实施例的技术方案,下面将结合本公开实施例的附图对本公开实施例所提供的显示基板及其制备 方法、显示装置的技术方案进行清楚、完整地描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现且不应当被解释为限于本文阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“包含”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其他特征、整体、步骤、操作、元件、组件和/或其群组。
将理解的是,虽然本文可以使用术语第一、第二等来描述各种元件/结构,但这些元件/结构不应当受限于这些术语。这些术语仅用于区分一个元件/结构和另一元件/结构。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
在相关技术中,在QD-OLED器件中,由于OLED是一种面光源,其发射的光线如果无法汇集准直发射,会影响QD粒子有效利用OLED光的效果。
有鉴于此,本公开实施例提供了一种子像素单元,图1a为本公开实施例提供的一种子像素单元的结构示意图,图1b为本公开实施例提供的一种子像素单元的平面示意图,如图1a和图1b所示,该子像素单元包括:基底层21、位于基底层21的一侧的发光单元11以及位于发光单元11的发光面一侧的光传播单元12,光传播单元12包括第一介质结构121和第二介质结构122,第一介质结构121在基底层21上的正投影与发光单元11在基底层21上的正投影至少部分交叠,第二介质结构122与第一介质结构121在平行于基底层21所在平面的方向上的至少一侧接触设置;第一介质结构121具有第一折射率n1,第二介质结构122具有第二折射率 n2,第一折射率n1大于第二折射率n2。
在一个具体实施例中,如图1b所示,第二介质结构122围绕第一介质结构121的四周设置,且第二介质结构122朝向第一介质结构121的一侧与第一介质结构121的四周侧面直接接触,第一介质结构121的四周侧面在本公开实施例中被称为第一介质结构121与第二介质结构122的接触面。可选地,第二介质结构122也可以只在第一介质结构121的一侧或多侧与第一介质结构121接触设置。例如,不同颜色的子像素之间的颜色串扰引起的视觉效果较强烈,而相同颜色的子像素之间的颜色串扰相对不易察觉,因此,从降低工艺复杂度考虑,可以仅将第二介质结构122设置在两个相邻的不同颜色子像素对应的第一介质结构121之间。例如,可以在相邻的相同颜色子像素对应的第一介质结构121之间填充与第一介质结构121相同的材料(或者与第一介质结构121一次工艺制备)。
在本公开实施例中,第一介质结构121为光密介质,第二介质结构122为光疏介质。根据光的全反射(total internal reflection,TIR)原理,当光线从具有较高折射率的介质(也称为光密介质)进入到具有较低折射率的介质(也称为光疏介质)时,当入射角大于或等于全反射角(也称为临界角)θc时,即入射光线远离法线时,折射光线将会消失,所有的入射光线将被反射而不进入低折射率的介质;当入射角小于全反射角θc时,光线同时发生向具有较低折射率的介质中的折射,以及向具有较高折射率的介质中的反射。
根据全反射的定义,在第一介质结构121与第二介质结构122的接触面处发生全反射的条件为:θ≥arcsin(n2/n1),其中,θ为入射光线与该接触面的法线的夹角,n2为第二介质结构122的第二折射率,n1为第一介质结构121的第一折射率,arcsin(n2/n1)即指该接触面的全反射角。
因此,发光单元11发出的光线通过第一介质结构121的朝向发光单元11的底面射入第一介质结构121,当从第一介质结构121的底面入射的光线照射到第一介质结构121与第二介质结构122的接触面上,且该光线的入射角大于或等于第一介质结构121与第二介质结构122的接触面的全反射角即arcsin(n2/n1)时,该光线将在第一介质结构121与第二介质 结构122的接触面上发生全反射。
对于所有从第一介质结构121的朝向发光单元11的底面入射的光线中,任一以大于或等于全反射角的入射角照射到接触面时均将发生全反射,从而有效提高了发光单元11发射的光线的汇聚效果,从而提高发光单元11的光线利用率。
在本公开实施例中,在实际应用中,该发光单元11可以是有机发光二极管(OLED),例如可以是蓝光有机发光二极管,通过光传播单元12的设置,能够有效提高发光单元11发射的光线的汇集效果,从而有效提升了发光单元11的发光效率,在实际应用中,子像素单元可以应用于QD-OLED器件中,可以有效改善QD粒子对发光单元11发射的光线的利用效果。
需要说明的是,图1a是图1b所示子像素单元沿AA’方向或沿BB’方向的纵截面的示意图。
在本公开实施例中,如图1a和图1b所示,第一介质结构121的第一截面的对角线与底边之间的第一夹角θ 1等于第一介质结构121与第二介质结构122的接触面的全反射角,即第一夹角θ 1等于arcsin(n2/n1),第一截面为第一介质结构121沿垂直于该接触面的方向、且垂直于发光单元11的发光面的方向(即AA’方向或BB’方向)的纵截面。如此设置,当光线以大于或等于第一夹角θ 1的入射角入射至第一介质结构121与第二介质结构122的接触面时均能够发生全反射,使得从第一介质结构121的底面入射至接触面的顶部的光线的入射角均能够大于或等于第一夹角θ 1而发生全反射,一方面,进一步提高了发光单元11发射的光线的汇集效果,提升了发光单元11的发光效率,另一方面,在实际应用中,可以有效避免相邻子像素之间发生发光串扰,且可以进一步改善QD粒子对发光单元11发射的光线的利用效果。
需要说明的是,在本公开实施例中,当第一介质结构121与第二介质结构122的接触面的形状为弧形时,沿垂直于接触面的方向可以理解为垂直于接触面的一个切面方向。
由于第一夹角θ 1等于第一介质结构121与第二介质结构122的接触面的全反射角,因此,第一夹角θ 1越小,能够被接触面全反射的光线就 越多,即能够发生全反射的光线就越多,发光单元11发射的光线在第一介质结构121中的汇集效果就越佳,发光单元11的发光效率就越高,在实际应用中,能够有效利用的OLED的光强就越多,QD粒子对OLED发射的光线的利用效果就越佳。由此可见,通过调整第一夹角θ 1的设置,能够调整发光单元11发出的从第一介质结构121朝向发光单元11的底面入射的光线中,可以被有效利用的光线比例。
在本公开实施例中,如图1a所示,第一夹角θ 1可以设置为小于或等于预设角度,以使以任意角度从第一介质结构121朝向发光单元11的底面入射的光线中,大于或等于预设光线比例的光线均能够从第一介质结构121背向发光单元11的顶面出射,即大于或等于预设光线比例的光线均能够被有效利用。
在一些实施例中,预设角度可以设置为60°,第一夹角θ 1的角度范围可以小于或等于60°,例如,第一夹角θ 1的角度可以在10°至60°范围内取值。当第一夹角θ 1小于或等于60°时,光线能够被有效利用,而对相邻像素造成的颜色串扰影响较小。
在一些实施例中,第二折射率n2与第一折射率n1的比值范围为0.5至0.9,可以确保大于或等于预设光线比例的光线均能够被有效利用。
在一些实施例中,第一夹角θ 1的角度范围可以为10°至40°,例如第一夹角θ 1可以设置为40°。第一夹角θ 1为10°至40°时,能够被有效利用的光线比例较大。
在一些实施例中,第一介质结构121在基底层21上的正投影与发光单元11在基底层21上的正投影重合,或者第一介质结构121在基底层21上的正投影覆盖发光单元11在基底层21上的正投影。这种结构设计可以充分利用发光单元11发出的光线,提高显示基板的出光效率。
需要说明的是,当第一介质结构121在基底层21上的正投影覆盖发光单元11在基底层21上的正投影时,仍然可以以第一介质结构121的第一截面的对角线与底边之间的第一夹角θ 1小于或等于60°进行设计。可以理解的是,当第一介质结构121在基底层21上的正投影覆盖发光单元11在基底层21上的正投影时,相比于第一介质结构121在基底层21上的正投影与发光单元11在基底层21上的正投影重合或者发光单元11在基 底层21上的正投影覆盖第一介质结构121在基底层21上的正投影的情况,从第一夹角θ 1的顶点位置射出的光线中,未被第一夹角θ 1的顶点对侧的第一介质结构121与第二介质结构122的接触面全反射的光线比例更低,因此可以具有更好的防止颜色串扰的效果。
在一些实施例中,发光单元11与第一介质结构121之间还可以包括封装结构,例如通过无机层-有机层-无机层的三层封装子层的形式对发光单元11进行封装,防止发光单元11受到水氧侵蚀。
在一些实施例中,如图1a所示,第一介质结构121的第一截面的高度a和宽度L满足以下关系:
Figure PCTCN2021115746-appb-000002
其中,a为第一介质结构121的所述第一截面的高度,L为第一介质结构121的第一截面的宽度,θ 1为第一夹角,θ 2为第二介质结构122的与第一介质结构121的接触面与朝向发光单元11的底面之间的第二夹角。
其中,第二夹角θ 2的角度范围为10°至90°。在一些实施例中,第二夹角θ 2的角度范围为50°至90°。在一些实施例中,第二夹角θ 2为90°。在一些实施例中,第二夹角θ 2小于90°。
在一些实施例中,第一介质结构121的第一截面的形状为倒梯形,第二介质结构122的沿垂直于该接触面的方向、且垂直于发光单元11的发光面的方向(即AA’方向或BB’方向)的纵截面的形状为梯形。其中,倒梯形是指上部宽度大于下部宽度的形状。
需要说明的是,图1a仅示例性示出第一介质结构121的第一截面的形状为倒梯形,第二介质结构122的纵截面的形状为梯形的情形,但本公开实施例包括但不仅限于此,图2为本公开实施例提供的另一种子像素单元的结构示意图,在一些实施例中,如图2所示,第一介质结构121的第一截面的形状为矩形,第二介质结构122的沿垂直于该接触面的方向、且垂直于发光单元11的发光面的方向(即AA’方向或BB’方向)的纵截面的形状为矩形。
在一些实施例中,第一截面的高度a的取值范围为2微米至20微米。
在一些实施例中,子像素单元应用于显示基板,显示基板包括呈阵列排布的多个子像素单元,每个子像素单元中第一介质结构121的第一截 面的宽度等于显示基板的像素分辨率所对应的像素宽度。
下面分别以图1a所示的子像素单元和图2所示的子像素单元为例,对第一介质结构121的第一截面的高度a、宽度L、第一夹角θ 1、第二夹角θ 2之间的关系进行详细说明。
在第一介质结构121的第一截面的形状为矩形,第二介质结构122的纵截面的形状为矩形的情况下,如图2所示,光线以与第一介质结构121的底面之间的夹角θ的角度进入第一介质结构121,并入射至第一介质结构121与第二介质结构122的接触面,此时该光线相对于接触面,与接触面的法线之间的夹角为夹角θ。当该光线为沿第一介质结构121的第一截面的对角线入射的光线时,该夹角θ为第一夹角θ 1,此时第一介质结构121的第一截面的高度a、宽度L、第一夹角θ 1、第二夹角θ 2之间的关系为:tanθ 1=a/L。
图3为一个具体实施例中第一夹角θ 1在10°~60°范围内的光线亮度分布曲线的示意图,根据对发光单元11(如蓝光OLED)在不同第一夹角θ 1条件下的光线亮度的实验测试数据,可以确定第一夹角θ 1与光线亮度之间的关系,第一夹角θ 1在10°~60°范围内的光线亮度分布曲线如图3所示。
根据第一夹角θ 1与光线亮度的关系,在第一夹角为θ 1时,对θ 1~60°范围对应的亮度分布曲线进行积分,记为第一积分,并对10°~60°范围对应的亮度分布曲线进行积分,记为第二积分,根据第一积分和第二积分的比值可以确定第一夹角θ 1在不同角度下的可有效利用的光线比例。
表1
Figure PCTCN2021115746-appb-000003
Figure PCTCN2021115746-appb-000004
图4为第一夹角θ 1在不同角度下的可有效利用的光线比例的示意图,表1为理论测试得到的第一夹角θ 1在不同角度下的可有效利用的光线比例的结果,如表1和图4所示,当第一夹角θ 1为10°时,以大于或等于10°的入射角度(入射光线与第一介质结构121的底面的夹角)入射的光线均可在第一介质结构121与第二介质结构122的接触面处发生全反射,即基本全部入射角度的光线均可在接触面处发生全反射,根据积分比值,可以确定可有效利用的光线比例可高达100%。当第一夹角θ 1为40°时,以大于或等于40°的入射角度(入射光线与第一介质结构121的底面的夹角)入射的光线均可在第一介质结构121与第二介质结构122的接触面处发生全反射,即基本大部分入射角度的光线均可在接触面处发生全反射,根据积分比值,可以确定可有效利用的光线比例可高达90%。
由上表可知,第一夹角θ 1的值越小,则能够有效利用的发光单元11的光强越多,一般认为90%的光被利用,对相邻子像素的光线串扰可以忽略不计,故由上表可知,此时第一夹角θ 1=40°,即全反射角为40°,第一夹角θ 1的角度范围为10°至40°时,光线利用效果较佳,利用率高达90%及以上。
示例性的,当上述预设角度为60°时,上述预设光线比例可以为表1中第一夹角θ 1为60°时对应的光线比例,即74%。
在实际应用中,子像素单元中第一介质结构121的第一截面的宽度可以定义为显示基板的像素分辨率所对应的像素宽度,当像素分辨率为600PPI时,像素宽度应为42um,当第一夹角θ 1=40°时,由上式tanθ 1=a/L,其中L为像素宽度,即第一截面的宽度,则第一介质结构121和第二介质结构122的高度(厚度)应为a=L*tanθ 1,即a=34um;当像素分辨率为300PPI时,像素宽度应为84um,在第一夹角θ 1=40°时,由上式tanθ 1=a/L,其中L为像素宽度,则第一介质结构121和第二介质结构122的高度(厚度)应为a=L*tanθ 1,即a=70um;当像素分辨率为160PPI时, 像素宽度应为159um,在第一夹角θ 1=40°时,由上式tanθ 1=a/L,其中L为像素宽度,则第一介质结构121和第二介质结构122的高度(厚度)应为a=L*tanθ 1,即a=131um。
在如图2所示的子像素单元中,能够利用的光线数量主要取决于第二介质结构122与第一介质结构121之间的折射率比值,即取决于第一夹角θ 1的大小。
为进一步提高光线的利用效果,在一些实施例中,将第一介质结构121的第一截面的形状设置为倒梯形,且将第二介质结构122的纵截面的形状设置为梯形。图5为光线从第一介质结构的底面入射至第一介质结构与第二介质结构的接触面的示意图,在第一截面为矩形截面情况下,第一介质结构121与第二介质结构122的接触面为垂直面(垂直于底面),在第一介质结构121的第一截面的形状为倒梯形,第二介质结构122的纵截面的形状为梯形的情况下,第一介质结构121与第二介质结构122的接触面为倾斜面(相对底面的法线倾斜),如图1a和图5所示,假设入射光线的入射角度为θ 1,则光线在垂直面的反射角即第一夹角应为θ 1,在倾斜面的反射角为θ,同时倾斜面相对底面的角度即第二夹角设为θ 2,则根据几何关系可知,在入射光线的角度保持为θ 1不变的情况下,则其在倾斜面处的反射角有θ=θ 1+90°-θ 2。当接触面为垂直面,光线在垂直面处的反射角θ为θ 1,当接触面为倾斜面,光线在倾斜面处的反射角θ发生变化,由之前的θ 1增加了90°-θ 2
表2
Figure PCTCN2021115746-appb-000005
Figure PCTCN2021115746-appb-000006
表2为理论测试得到的第一夹角θ 1和第二夹角θ 2在不同角度下的可有效利用的光线比例的结果,表2示出了在倾斜面处的反射角θ、第一夹角θ 1、第二夹角θ 2之间关系以及第一夹角θ 1和第二夹角θ 2在不同角度下的可有效利用的光线比例,如表2所示,当光线的入射角度即第一夹角θ 1为10°时达到最佳光线利用率,当第二夹角θ 2=50°时,光线在倾斜的接触面上的反射角θ为50°;当光线的入射角度即第一夹角θ 1为40°时达到90%的光线利用率,当第二夹角θ 2=50°时,光线在倾斜的接触面上的反射角θ为80°。
根据表2可知,当第一夹角θ 1的角度范围为10°~40°,第二夹角θ 2的角度范围为50°~90°时,光线利用效果较佳,利用率高达90%及以上。
示例性的,当上述预设角度为60°时,上述预设光线比例可以为表1中第一夹角θ 1为60°时对应的光线比例,即74%。
由图1a中的几何关系可知,第一介质结构121和第二介质结构122的高度(厚度)为
Figure PCTCN2021115746-appb-000007
在实际应用中,子像素单元中第一介质结构121的第一截面的宽度等于显示基板的像素分辨率所对应的像素宽度,当像素分辨率为600PPI时,像素宽度应为42um,当第一夹角θ 1=40°,第二夹角θ 2=70°时,由上式
Figure PCTCN2021115746-appb-000008
其中L为像素宽度,即第一截面的宽度,则第一介质结构121和第二介质结构122的高度(厚度)应为a=27um;当像素分辨率为300PPI时,像素宽度应为84um,当第一夹角θ 1=40°,第二夹角θ 2=70°时,由上式
Figure PCTCN2021115746-appb-000009
其中L为像素宽度,即第一截面的宽度,则第一介质 结构121和第二介质结构122的高度(厚度)应为a=54um;当像素分辨率为160PPI时,像素宽度应为159um,当第一夹角θ 1=40°,第二夹角θ 2=70°时,由上式
Figure PCTCN2021115746-appb-000010
其中L为像素宽度,即第一截面的宽度,则第一介质结构121和第二介质结构122的高度(厚度)应为a=102um。
在本公开实施例中,可以根据第一介质结构121的折射率和第二介质结构122的折射率的关系,得到边界条件(沿第一截面的对角线入射)下实现全反射的可以量化的数据,例如,在不同像素分辨率下,第一介质结构121和第二介质结构122所需的高度(厚度)。
在一些实施例中,第一介质结构121的材料为硅氧烷材料。在一些实施例中,为了提高第一介质结构121的折射率,第一介质结构121的材料为掺杂有填充物的硅氧烷材料,填充物的掺杂比为50%,填充物的材料包括二氧化钛(TiO 2)和/或二氧化锆(ZrO 2)。通过掺杂二氧化钛(TiO 2)填充物能够使得第一介质结构121的折射率提高0.3~0.4,通过掺杂二氧化锆(ZrO 2)填充物能够使得第一介质结构121的折射率提高0.2~0.8。
在一些实施例中,第一折射率n1的取值范围为1.6至2.1。
在一些实施例中,第二介质结构122的材料主要成分为硅氧烷材料。为了降低第二介质结构122的折射率,第二介质结构122的材料为掺杂有中空粒子的硅氧烷材料,中空粒子一般是填充空气、氮气等气体的二氧化硅(SiO 2)圆球,其粒径在10纳米~100纳米。
在一些实施例中,第二折射率n2的取值范围为1.3至1.4。
图6为本公开实施例提供的又一种子像素单元的结构示意图,如图6所示,在一些实施例中,子像素单元还包括光转换单元13,光转换单元13位于第一介质结构121的远离发光单元11的一侧,且光转换单元13与第一介质结构121对应设置。
如图6所示,光转换单元13在基底层21上的正投影与对应的发光单元11在基底层21上的正投影至少部分交叠,并且,光转换单元13在基底层21上的正投影与对应的第一介质结构121在基底层21上的正投影至少部分交叠。
优选地,光转换单元13在基底层21上的正投影覆盖其对应的发光 单元11在基底层21上的正投影,并且,光转换单元13在基底层21上的正投影覆盖其对应的第一介质结构121在基底层21上的正投影。由此可以增大光转换单元13接收对应发光单元11的光线的面积,提高显示基板出光效率。
其中,光转换单元13用于将发光单元11的发光颜色转换为目标发光颜色。
在一些实施例中,光转换单元13包括量子点结构,量子点结构包括量子点(QD)粒子。
在一些实施例中,发光单元11为蓝光OLED器件,发光单元11以蓝色的荧光材料或磷光材料作为激发QD粒子的光源材料。
在一些实施例中,光转换单元13包括红光转换单元或绿光转换单元,红光转换单元包括红色量子点结构,绿光转换单元包括绿色量子点结构,红色量子点结构用于将蓝光OLED器件发射的蓝光转换为红光,绿色量子点结构用于将蓝光OLED器件发射的蓝光转换为绿光。
其中,光转换单元13由不同尺寸的QD纳米粒子和散射粒子在树脂中混合而成,散射粒子的掺杂比≤60%,一般红光转换单元的QD粒径为3nm~7nm之间,绿光转换单元的QD粒径为4~6nm之间。其中,QD粒子的材料可以为ZnCdSe2,CdSe,CdTe,InP,InAs中的一种或多种,QD粒子的材料可以不限于上述材料,并从II-VI族化合物、III-V族化合物、IV-VI族化合物、IV族元素、IV族化合物和/或它们的组合中选择。
在一些实施例中,第一介质结构121在发光单元11的发光面所在平面上的正投影覆盖发光单元11在发光面所在平面上的的正投影。
图7为本公开实施例提供的再一种子像素单元的结构示意图,如图7所示,在一些实施例中,子像素单元还包括透光单元14,透光单元14位于第一介质结构121的远离发光单元11的一侧,且透光单元14与第一介质结构121对应设置。
如图7所示,透光单元14在基底层21上的正投影与对应的发光单元11在基底层21上的正投影至少部分交叠,并且,透光单元14在基底层21上的正投影与对应的第一介质结构121在基底层21上的正投影至少部分交叠。
在一些实施例中,透光单元14在基底层21上的正投影覆盖其对应的发光单元11在基底层21上的正投影,并且,透光单元14在基底层21上的正投影覆盖其对应的第一介质结构121在基底层21上的正投影。
其中,透光单元14用于透射发光单元11发出的光线而不改变发光单元11的发光颜色。例如,发光单元11的发光颜色为蓝光,则透过透光单元14的光为蓝光。
在一些实施例中,透光单元14的材料采用具有高折射率的材料,透光单元14中分布有大量的散射粒子(掺杂比≤60%),或者透光单元14中均匀散布一些蓝色染料。
在一些实施例中,发光单元11的平行于发光面所在平面的截面形状可以是矩形。在一些实施例中,第一介质结构121的平行于发光单元11的发光面所在平面的截面形状可以是矩形。在一些实施例中,光转换单元13的平行于发光单元11的发光面所在平面的截面形状可以是矩形。在一些实施例中,透光单元14的平行于发光单元11的发光面所在平面的截面形状可以是矩形。
在一些实施例中,第一介质结构121的高度(厚度)a与第二介质结构122的高度(厚度)相同,且第一介质结构121的朝向发光单元11的底面与第二介质结构122朝向发光单元11的底面平齐,且第一介质结构121的背向发光单元11的顶面与第二介质结构122背向发光单元11的顶面平齐。
图8为本公开实施例提供的一种显示基板的平面示意图,如图8所示,显示基板具有显示区AA和位于显示区AA之外的非显示区NA。显示区AA中设置有多条扫描线GL和多条数据线DL;多条扫描线GL和多条数据线DL交叉设置限定出多个子像素单元。示例性地,沿行方向每三个相邻的子像素单元组成一个像素单元,且三个相邻的子像素单元(例如红色子像素单元R、绿色子像素单元G和蓝色子像素单元B)用于显示不同颜色。其中,位于同一行的子像素单元由同一条扫描线GL提供扫描信号,位于同一列的子像素单元由同一条数据线DL提供数据电压信号。非显示区NA中可以设置有栅极驱动电路和驱动芯片(图中未示出),扫描线GL与栅极驱动电路连接,数据线DL与驱动芯片连接。
每个子像素单元包括发光单元和与该发光单元对应的像素电路,像素电路与扫描线GL和数据线DL连接,像素电路配置为根据扫描线GL和数据线DL提供的电信号,向发光单元提供驱动信号,以驱动发光单元进行发光。例如,像素电路至少包括写入晶体管和驱动晶体管,写入晶体管的栅极与扫描线GL连接,写入晶体管配置为响应于扫描线GL提供的扫描信号的控制,将数据线DL提供的数据电压信号传输至驱动晶体管的栅极,驱动晶体管根据其栅极和第一极之间的压差,向发光单元提供驱动电流,以使发光单元进行显示。需要说明的是,写入晶体管和驱动晶体管均可以是薄膜晶体管,薄膜晶体管包括栅极、第一极和第二极,其中,第一极和第二极中的一者为源极,另一者为漏极。
图9为本公开实施例提供的一种显示基板的结构示意图,如图9所示,显示基板包括基底层21和位于基底层21的一侧的呈阵列排布的多个子像素单元,多个子像素单元中的至少部分构成一个像素单元P,每个像素单元P包括多个子像素单元L。
示例性的,每个像素单元P包括三个子像素单元L,该三个子像素单元L包括第一子像素单元L(R)、第二子像素单元L(G)和第三子像素单元L(B)。示例性的,第一子像素单元L(R)为红色子像素单元,第二子像素单元L(G)为绿色子像素单元,第三子像素单元L(B)为蓝色子像素单元。
在本公开实施例中,每个子像素单元采用上述实施例所提供的子像素单元。
在像素单元P中,多个子像素单元L的发光颜色不同,多个子像素单元L对应的发光单元11的发光颜色均为蓝色。示例性的,在像素单元P中,多个子像素单元L包括第一子像素单元L(R)、第二子像素单元L(G)和第三子像素单元L(B)。第一子像素单元L(R)用于发射红光,第二子像素单元L(G)用于发射绿光,第三子像素单元L(B)用于发射蓝光。
在显示基板中,各子像素单元L中的发光单元11的发光颜色相同,各子像素单元L的发光单元11的发光颜色均为第一发光颜色,示例性的,第一发光颜色为蓝色。
如图9所示,第一子像素单元L(R)包括第一光转换单元13(R),第 二子像素单元L(G)包括第二光转换单元13(G),第三子像素单元L(B)包括透光单元14(B)。
第一光转换单元13(R)用于将对应的发光单元11的第一发光颜色转换为第二发光颜色,示例性的,第二发光颜色为红色。第二光转换单元13(G)用于将对应的发光单元11的第一发光颜色转换为第三发光颜色,示例性的,第三发光颜色为绿色。透光单元14(B)用于透射对应的发光单元11发出的光线而不改变第一发光颜色。
在本公开实施例中,上述子像素单元的像素电路可以设置于基底层21上,像素电路用于驱动基底层21上的各子像素单元L的发光单元发光。
在本公开实施例中,各子像素单元L的发光单元11均设置于基底层21上。图10为本公开实施例中子像素单元的发光单元的结构示意图,如图10所示,在每个子像素单元L中,发光单元11可以包括:第一电极111、第二电极112和发光功能层113,第一电极111和第二电极112相对设置,发光功能层113位于第二电极112与第一电极111之间;第一电极111可以为发光单元11的阳极,第二电极112可以为发光单元11的阴极,当第一电极111与第二电极112之间产生电流时,发光功能层113发射光线。其中,发光功能层113可以包括依次叠置的:空穴注入层、空穴传输层、有机发光层、电子传输层和电子注入层。在本公开实施例中,发光单元11可以为OLED(Organic Light-Emitting Diode,有机电致发光二极管)器件,此时,有机发光层采用有机发光材料,示例性的,OLED为蓝光OLED。
在本公开实施例中,如图9所示,显示基板还包括薄膜封装(TFE)层22,薄膜封装(TFE)层22位于各发光单元11的背离基底层21的一侧,薄膜封装(TFE)层22用于保护发光单元11阻隔水氧的作用,薄膜封装(TFE)层22是由第一无机材料层、有机材料层和第二无机材料层依次叠置而成,第一无机材料层的材料可以为氧化硅,有机材料层可以通过喷墨印刷(IJP)方式形成,第二无机材料层的材料可以为氮化硅。
在本公开实施例中,如图9所示,各子像素单元L的光传播单元12设置于薄膜封装(TFE)层22的远离基底层21的一侧,光传播单元12包括第一介质结构121和第二介质结构122,在本公开实施例中,第二介质结构122填充于相邻两个子像素单元L的第一介质结构121之间,相邻两 个第一介质结构121对应的子像素单元的发光颜色不同。关于光传播单元12中第一介质结构121的具体描述可参见上述子像素单元的实施例中的相关描述,此处不再赘述。
在本公开实施例中,如图9所示,显示基板还包括平坦层23,平坦层23设置于各光传播单元12的远离基底层21的一侧。平坦层23是为了平坦化光传播单元12且为了更好地制备光转换单元13和透光单元14而设置的。
在本公开实施例中,如图9所示,各子像素单元L的光转换单元13设置于平坦层23的远离基底层21的一侧,且各子像素单元L的透光单元14设置于平坦层23的远离基底层21的一侧,示例性的,每个像素单元P包括第一子像素单元L(R)、第二子像素单元L(G)和第三子像素单元L(B),各子像素单元L的光转换单元13包括第一子像素单元L(R)的第一光转换单元13(R)、第二子像素单元L(G)的第二光转换单元13(G),各子像素单元L的透光单元14包括第三子像素单元L(B)的透光单元14(B)。
关于光转换单元13和透光单元14的具体描述可参见上述子像素单元的实施例中相关的描述,此处不再赘述。
在本公开实施例中,如图9所示,相邻两个光转换单元13之间还设置有隔离结构24,相邻的光转换单元13和透光单元14之间还设置有隔离结构24,隔离结构24为黑矩阵(BM),隔离结构由硅类有机树脂构成,其中掺杂有炭黑等物质,以避免相邻两个子像素单元L发出的不同颜色的光线形成串扰,同时起到对相邻的两个光转换单元13、相邻的光转换单元13和透光单元14进行限位的功能。
在本公开实施例中,如图9所示,在各光转换单元13、透光单元14和隔离结构24的远离基底层21的一侧还设置有封装结构层25,该封装结构层25由有机封装材料和无机粒子散射材料混合制成。
本公开实施例还提供的一种显示装置,该显示装置包括上述实施例提供的显示基板。
该显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开实施例还提供一种子像素单元的制备方法,图11为本公开实施例提供的一种子像素单元的制备方法的流程图,如图1a、图2、和图11所示,该制备方法包括:
步骤S31、提供基底层21。
步骤S32、在基底层21的一侧形成发光单元11。
步骤S33、在发光单元11远离基底层21的一侧形成光传播单元12。
其中,光传播单元12包括第一介质结构121和第二介质结构122,第一介质结构121在基底层21上的正投影与发光单元11在基底层21上的正投影至少部分交叠,第二介质结构122与第一介质结构121在平行于基底层21所在平面的方向上的至少一侧接触设置;第一介质结构121具有第一折射率,第二介质结构122具有第二折射率,第一折射率大于第二折射率;第一介质结构121的第一截面的对角线与底边之间的第一夹角为第一介质结构121与第二介质结构122的接触面的全反射角,第一截面为第一介质结构121的沿垂直于该接触面的方向、且垂直于发光单元11的发光面的方向(即AA’方向或BB’方向)的纵截面;第一夹角小于或等于预设角度,以使以任意角度从第一介质结构121朝向发光单元11的底面入射的光线中,大于或等于预设光线比例的光线从第一介质结构121背向发光单元11的顶面出射,预设角度为60°。
本公开实施例还提供一种显示基板的制备方法,该制备方法包括:提供基底层;在基底层的一侧形成阵列排布的多个发光单元,每个发光单元与一个子像素单元对应,多个子像素单元中的至少部分构成一个像素单元;在每个发光单元远离基底层的一侧形成光传播单元。
其中,光传播单元包括第一介质结构和第二介质结构,第一介质结构在基底层上的正投影与一个发光单元在基底层上的正投影至少部分交叠,第二介质结构与第一介质结构在平行于基底层所在平面的方向上的至少一侧接触设置;第一介质结构具有第一折射率,第二介质结构具有第二折射率,第一折射率大于第二折射率;第一介质结构的第一截面的对角线与底边之间的第一夹角等于第一介质结构与第二介质结构的接触面的全反射角,第一截面为第一介质结构沿垂直于接触面的方向、且垂直于发光面方向的截面;第一夹角小于或等于预设角度,以使以任意角度从第一介 质结构朝向发光单元的底面入射的光线中,大于或等于预设光线比例的光线从第一介质结构背向发光单元的顶面出射,预设角度为60°。
本公开实施例还提供另一种显示基板的制备方法,图12为本公开实施例提供的一种显示基板的制备方法的流程图,如图9和图12所示,该制备方法包括:
步骤S41、提供基底层21。
步骤S42、在基底层21的一侧形成阵列排布的多个子像素单元L的发光单元11。
其中,每个发光单元与一个子像素单元一一对应,多个子像素单元中的至少部分构成一个像素单元。
步骤S43、进行薄膜封装(TFE)工艺,以在各发光单元11的远离基底层21的一侧形成薄膜封装层22。
步骤S44、在薄膜封装层22的远离基底层21的一侧形成各子像素单元L的光传播单元12。
具体地,在薄膜封装层22的远离基底层21的一侧形成第二介质结构材料层,利用光刻技术对第二介质结构材料层进行构图工艺,以形成第二介质结构122,以及第二介质结构122之间的与发光单元11对于的区域相对应的第一介质结构区域;在第一介质结构区域中形成填充第一介质结构材料,并使用紫外(UV)曝光或热固化方式进行固化形成第一介质结构121。
步骤S45、在各子像素单元L的光传播单元12的远离基底层21的一侧形成平坦层23。
步骤S46、在平坦层23的远离基底层21的一侧形成隔离结构24,隔离结构24之间限定出光转换单元区域及透光单元区域。
具体地,在平坦层23的远离基底层21的一侧形成隔离结构材料层,利用光刻技术对隔离结构材料层进行构图工艺,形成隔离结构24,以及与各光传播单元12对应设置的光转换单元区域、透光单元区域。
步骤S47、在光转换单元区域中形成相应的光转换单元13,并在透光单元区域中形成透光单元14。
具体地,利用喷墨打印技术在各光转换单元区域中填充相应颜色的 量子点结构材料,如量子点(QD)粒子胶体,并固化稳定,形成各子像素单元L的光转换单元13,如第一子像素单元L(R)的第一光转换单元13(R)、第二子像素单元L(G)的第一光转换单元13(G);在各透光单元区域中填充透光单元材料,并固化形成各子像素单元L的透光单元14,如第三子像素单元L(B)的透光单元14(B)。
步骤S48、在各子像素单元L的光转换单元13、透光单元14以及隔离结构24的远离基底层21的一侧形成封装结构层25。
具体地,使用有机封装材料和无机粒子散射材料的混合溶液进行封装,以形成封装结构层25。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (19)

  1. 一种显示基板,包括基底层和位于所述基底层的一侧的呈阵列排布的多个子像素单元,每个所述子像素单元与一个发光单元对应,多个子像素单元中的至少部分构成一个像素单元;其特征在于,所述子像素单元还包括位于所述发光单元的发光面一侧的光传播单元;所述光传播单元包括第一介质结构和第二介质结构,所述第一介质结构在所述基底层上的正投影与一个所述发光单元在所述基底层上的正投影至少部分交叠,所述第二介质结构与所述第一介质结构在平行于所述基底层所在平面的方向上的至少一侧接触设置;所述第一介质结构具有第一折射率,所述第二介质结构具有第二折射率,所述第一折射率大于所述第二折射率;
    所述第一介质结构的第一截面的对角线与底边之间的第一夹角等于所述第一介质结构与所述第二介质结构的接触面的全反射角,所述第一截面为所述第一介质结构沿垂直于所述接触面的方向、且垂直于所述发光面的方向的截面;
    所述第一夹角小于或等于预设角度,以使以任意角度从所述第一介质结构朝向所述发光单元的底面入射的光线中,大于或等于预设光线比例的光线均能够从所述第一介质结构背向所述发光单元的顶面出射,所述预设角度为60°。
  2. 根据权利要求1所述的显示基板,其特征在于,所述第一夹角的角度范围为10°至40°。
  3. 根据权利要求1所述的显示基板,其特征在于,所述第一介质结构的所述第一截面的高度和宽度满足以下关系:
    Figure PCTCN2021115746-appb-100001
    其中,a为所述第一介质结构的所述第一截面的高度,L为所述第一介质结构的所述第一截面的宽度,θ 1为所述第一夹角,θ 2为所述第二介质结构的与所述第一介质结构的接触面与朝向所述发光单元的底面之间的第二夹角。
  4. 根据权利要求3所述的显示基板,其特征在于,所述第二夹角的角度范围为10°至90°。
  5. 根据权利要求4所述的显示基板,其特征在于,所述第二夹角的角度范围为50°至90°。
  6. 根据权利要求3所述的显示基板,其特征在于,所述第一截面的高度的取值范围为2微米至20微米。
  7. 根据权利要求1所述的显示基板,其特征在于,所述子像素单元还包括光转换单元,所述光转换单元位于所述第一介质结构的远离所述发光单元的一侧;
    所述光转换单元在所述基底层上的正投影与所述发光单元在所述基底层上的正投影至少部分交叠;
    并且,所述光转换单元在所述基底层上的正投影与所述第一介质结构在所述基底层上的正投影至少部分交叠;
    所述光转换单元用于将所述发光单元的发光颜色转换为目标发光颜色。
  8. 根据权利要求7所述的显示基板,其特征在于,所述光转换单元包括量子点结构。
  9. 根据权利要求1所述的显示基板,其特征在于,所述第二折射率与所述第一折射率的比值范围为0.5至0.9。
  10. 根据权利要求1所述的显示基板,其特征在于,所述第一介质结构在所述发光面所在平面上的正投影覆盖所述发光单元在所述发光面所在平面上的的正投影。
  11. 根据权利要求1所述的显示基板,其特征在于,所述第一介质结构的所述第一截面的形状为矩形,所述第二介质结构的沿垂直于所述接触面的方向、且垂直于所述发光面的方向的截面的形状为矩形;或者,所述第一介质结构的第一截面的形状为倒梯形,所述第二介质结构的沿垂直于所述接触面的方向、且垂直于所述发光面的方向的截面的形状为梯形。
  12. 根据权利要求1所述的显示基板,其特征在于,所述第二介质结构设置在相邻两个所述第一介质结构之间,相邻两个所述第一介质结构对应的子像素单元的发光颜色不同。
  13. 根据权利要求7所述的显示基板,其特征在于,所述光转换单元在所述基底层上的正投影覆盖其对应的所述发光单元在所述基底层上的正投影。
  14. 根据权利要求1所述的显示基板,其特征在于,所述第二介质结构的材料为掺杂有中空粒子的硅氧烷材料。
  15. 根据权利要求1所述的显示基板,其特征在于,多个所述子像素单元包括红色子像素单元、绿色子像素单元和蓝色子像素单元,多个所述子像素单元对应的发光单元的发光颜色均为蓝色。
  16. 根据权利要求1所述的显示基板,其特征在于,每个所述像素单元包括三个子像素单元,该三个子像素单元包括第一子像素单元、第二子像素单元和第三子像素单元;
    多个所述子像素单元对应的发光单元的发光颜色均为第一发光颜色;
    所述第一子像素单元包括第一光转换单元,所述第二子像素单元包括第二光转换单元,所述第三子像素单元包括透光单元;
    所述第一光转换单元用于将对应的发光单元的第一发光颜色转换为第二发光颜色;
    所述第二光转换单元用于将对应的发光单元的第一发光颜色转换为第三发光颜色;
    所述透光单元用于透过对应的发光单元发出的光线而不改变第一发光颜色。
  17. 根据权利要求16所述的显示基板,其特征在于,所述第一发光颜色为蓝色,所述第二发光颜色为红色,所述第三发光颜色为绿色。
  18. 一种显示装置,其特征在于,包括如权利要求1-17中任一项所述的显示基板。
  19. 一种显示基板的制备方法,其特征在于,包括:
    提供基底层;
    在所述基底层的一侧形成阵列排布的多个发光单元,每个所述发光单元与一个子像素单元对应,多个子像素单元中的至少部分构成一个像素单元;
    在每个所述发光单元远离所述基底层的一侧形成光传播单元,所述光传播单元包括第一介质结构和第二介质结构,所述第一介质结构在所述基底层上的正投影与一个所述发光单元在所述基底层上的正投影至少部分交叠,所述第二介质结构与所述第一介质结构在平行于所述基底层所在平面的方向上的至少一侧接触设置;所述第一介质结构具有第一折射率,所述第二介质结构具有第二折射率,所述第一折射率大于所述第二折射率;
    其中,所述第一介质结构的第一截面的对角线与底边之间的第一夹角等于所述第一介质结构与所述第二介质结构的接触面的全反射角,所述第一截面为所述第一介质结构沿垂直于所述接触面的方向、且垂直于所述发光面的方向的截面;所述第一夹角小于或等于预设角度,以使以任意角度从所述第一介质结构朝向所述发光单元的底面入射的光线中,大于或等于预设光线比例的光线从所述第一介质结构背向所述发光单元的顶面出射,所述预设角度为60°。
PCT/CN2021/115746 2021-08-31 2021-08-31 显示基板及其制备方法、显示装置 WO2023028854A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/115746 WO2023028854A1 (zh) 2021-08-31 2021-08-31 显示基板及其制备方法、显示装置
CN202180002358.6A CN116097922A (zh) 2021-08-31 2021-08-31 显示基板及其制备方法、显示装置
US17/796,552 US20240188396A1 (en) 2021-08-31 2021-08-31 Display substrate, method for manufacturing the display substrate and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115746 WO2023028854A1 (zh) 2021-08-31 2021-08-31 显示基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023028854A1 true WO2023028854A1 (zh) 2023-03-09

Family

ID=85410686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115746 WO2023028854A1 (zh) 2021-08-31 2021-08-31 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20240188396A1 (zh)
CN (1) CN116097922A (zh)
WO (1) WO2023028854A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219357A (zh) * 2012-01-24 2013-07-24 佳能株式会社 显示设备
CN104037357A (zh) * 2014-06-05 2014-09-10 京东方科技集团股份有限公司 一种有机发光显示装置及其制造方法
KR20150052480A (ko) * 2013-11-06 2015-05-14 선문대학교 산학협력단 반사격벽에 의해 구획된 유기발광장치
CN106405918A (zh) * 2015-07-31 2017-02-15 三星电子株式会社 显示面板及具有该显示面板的显示装置
CN110459560A (zh) * 2019-07-26 2019-11-15 深圳市华星光电半导体显示技术有限公司 一种量子点彩色滤光片、显示面板及显示装置
CN112885972A (zh) * 2021-01-11 2021-06-01 京东方科技集团股份有限公司 一种显示基板的制备方法、显示基板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219357A (zh) * 2012-01-24 2013-07-24 佳能株式会社 显示设备
KR20150052480A (ko) * 2013-11-06 2015-05-14 선문대학교 산학협력단 반사격벽에 의해 구획된 유기발광장치
CN104037357A (zh) * 2014-06-05 2014-09-10 京东方科技集团股份有限公司 一种有机发光显示装置及其制造方法
CN106405918A (zh) * 2015-07-31 2017-02-15 三星电子株式会社 显示面板及具有该显示面板的显示装置
CN110459560A (zh) * 2019-07-26 2019-11-15 深圳市华星光电半导体显示技术有限公司 一种量子点彩色滤光片、显示面板及显示装置
CN112885972A (zh) * 2021-01-11 2021-06-01 京东方科技集团股份有限公司 一种显示基板的制备方法、显示基板及显示装置

Also Published As

Publication number Publication date
CN116097922A (zh) 2023-05-09
US20240188396A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
CN110908168B (zh) 显示设备
US11404492B2 (en) Display device
CN113261128A (zh) 显示装置
WO2021238444A1 (zh) 显示面板及其制作方法、显示装置
TW201827900A (zh) 畫素結構與具有此畫素結構的顯示面板
US11289544B2 (en) Display device including wavelength conversion patterns having corresponding protruding and indentation pattern parts
JP7392653B2 (ja) 発光デバイスおよび画像表示装置
US20230037592A1 (en) Display panel, method for manufacturing the same, and display device
CN105425469A (zh) 一种背光模组及其制作方法、显示装置
CN113113455A (zh) Oled显示面板与显示装置
CN114067695A (zh) 拼接型显示装置
WO2023028854A1 (zh) 显示基板及其制备方法、显示装置
CN114005853A (zh) 显示装置
KR20220016388A (ko) 타일형 표시 장치
US20230030535A1 (en) Display device
US20220223573A1 (en) Tiled display
US11882744B2 (en) Display device including display devices connected together via protrusions and grooves
US20220128740A1 (en) Tiled display device
CN219961262U (zh) 显示装置
WO2022236841A1 (zh) 滤色器结构及其制备方法、显示面板
US11951741B2 (en) Inkjet printing apparatus
US20230178693A1 (en) Display device
WO2023201637A1 (zh) 显示面板及显示装置
US20220085098A1 (en) Tiled display device
US20240014363A1 (en) Display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17796552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE