WO2023026814A1 - 化学機械研磨用組成物および研磨方法 - Google Patents

化学機械研磨用組成物および研磨方法 Download PDF

Info

Publication number
WO2023026814A1
WO2023026814A1 PCT/JP2022/029924 JP2022029924W WO2023026814A1 WO 2023026814 A1 WO2023026814 A1 WO 2023026814A1 JP 2022029924 W JP2022029924 W JP 2022029924W WO 2023026814 A1 WO2023026814 A1 WO 2023026814A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
mass
group
polishing composition
Prior art date
Application number
PCT/JP2022/029924
Other languages
English (en)
French (fr)
Inventor
昂輝 石牧
壮一郎 赤木
祐吾 田井
清信 窪田
遼 須原
弥里 山口
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2023026814A1 publication Critical patent/WO2023026814A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a chemical mechanical polishing composition and a polishing method using the same.
  • CMP chemical mechanical polishing
  • CMP a chemical mechanical polishing composition is supplied onto a polishing pad attached to a surface plate, a semiconductor substrate is pressed against the polishing pad, and the semiconductor substrate and the polishing pad are slid against each other to polish the semiconductor substrate. It is a technology that chemically and mechanically polishes the In CMP, unevenness on the surface of a semiconductor substrate can be removed by chemical reaction with reagents and mechanical polishing with abrasive grains, and the surface can be planarized.
  • Some aspects of the present invention provide a chemical mechanical polishing composition capable of chemically mechanically polishing a semiconductor substrate containing ruthenium or molybdenum while maintaining a stable polishing rate while suppressing corrosion of ruthenium or molybdenum. It provides
  • the present invention has been made to solve at least part of the above-mentioned problems, and can be implemented as any of the following aspects.
  • the abrasive grain (A) may have a functional group represented by the following general formula (1) or (2). - SO 3 - M + (1) - COO - M + (2) (M + represents a monovalent cation.)
  • the abrasive grain (A) may have a functional group represented by the following general formula (3) or (4). -NR 1 R 2 (3) -N + R 1 R 2 R 3 M ( 4) (In formulas (3) and (4) above, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. M ⁇ represents an anion.)
  • the absolute value of the zeta potential of the abrasive grains (A) in the chemical mechanical polishing composition may be 2 mV or more.
  • the MD (% by mass) may be 0.001 to 5% by mass.
  • the pH may be 6 or more and 12 or less.
  • the pH may be 1.5 or more and 4 or less.
  • the abrasive grains (A) in the chemical mechanical polishing composition may have an average secondary particle size of 5 nm or more and 70 nm or less.
  • One aspect of the polishing method according to the present invention is A step of polishing a semiconductor substrate using the chemical mechanical polishing composition according to any one of the above aspects.
  • the semiconductor substrate may have a portion composed of at least one selected from the group consisting of ruthenium, molybdenum, ruthenium alloys and molybdenum alloys.
  • the chemical mechanical polishing composition of the present invention it is possible to perform chemical mechanical polishing on a semiconductor substrate containing ruthenium or molybdenum while maintaining a stable polishing rate while suppressing corrosion of ruthenium or molybdenum.
  • FIG. 1 is a cross-sectional view schematically showing an object to be processed suitable for use in the polishing process according to this embodiment.
  • FIG. 2 is a cross-sectional view schematically showing the object to be processed at the end of the first polishing step.
  • FIG. 3 is a cross-sectional view schematically showing the object to be processed at the end of the second polishing step.
  • FIG. 4 is a perspective view schematically showing a chemical mechanical polishing apparatus.
  • a chemical mechanical polishing composition according to one embodiment of the present invention comprises abrasive grains (A) (also referred to herein as “component (A)”), amino groups and salts thereof.
  • a compound (D) having at least one functional group selected from the group consisting of a carboxy group and at least one functional group selected from the group consisting of salts thereof herein referred to as "component (D )”
  • Component (A) The chemical mechanical polishing composition according to this embodiment contains abrasive grains (A).
  • Component (A) includes inorganic particles such as silica, ceria, alumina, zirconia, and titania, with silica particles being preferred.
  • silica particles include fumed silica, colloidal silica, etc. Among them, colloidal silica is preferable. Colloidal silica is preferably used from the viewpoint of reducing polishing defects such as scratches. As colloidal silica, for example, one produced by the method described in JP-A-2003-109921 can be used.
  • the component (A) is silica particles containing silica as the main component, it may further contain other components.
  • Other components include aluminum compounds, silicon compounds, and the like.
  • aluminum compounds include aluminum hydroxide, aluminum oxide (alumina), aluminum chloride, aluminum nitride, aluminum acetate, aluminum phosphate, aluminum sulfate, sodium aluminate, and potassium aluminate.
  • silicon compounds include silicon nitride, silicon carbide, silicates, silicones, silicon resins, and the like.
  • component (A) is not particularly limited, and may be spherical, cocoon-shaped, chain-spherical, or have a plurality of projections on the surface.
  • Abrasive grains having a plurality of projections on their surfaces can be produced by applying the methods described in, for example, Japanese Patent Application Laid-Open No. 2007-153732 and Japanese Patent Application Laid-Open No. 2013-121631.
  • the absolute value of the zeta potential of component (A) in the chemical mechanical polishing composition is preferably 2 mV or more, more preferably 5 mV or more.
  • the absolute value of the zeta potential of component (A) in the chemical mechanical polishing composition is preferably 10 mV or more, more preferably 15 mV or more, and particularly preferably 20 mV or more. be.
  • the absolute value of the zeta potential of component (A) in the chemical mechanical polishing composition is preferably 6 mV or more, more preferably 7 mV or more.
  • the electrostatic repulsive force between the abrasive grains effectively prevents the particles from aggregating, and the semiconductor substrate containing ruthenium or molybdenum can be polished at a more stable polishing rate.
  • the zeta potential measuring device "ELSZ-2000ZS” manufactured by Otsuka Electronics Co., Ltd., "Zetasizer Ultra” manufactured by Malvern, Dispersion Technology Inc. and DT300 manufactured by
  • the average secondary particle size of component (A) in the chemical mechanical polishing composition is preferably 20 nm or more, more preferably 50 nm or more.
  • the average secondary particle size of component (A) in the chemical mechanical polishing composition is preferably 70 nm or less, more preferably 60 nm or less.
  • the chemical mechanical polishing composition can provide a sufficient polishing rate for a ruthenium film and has excellent stability without sedimentation and separation of particles. is obtained.
  • the average secondary particle size of the component (A) in the chemical mechanical polishing composition can be measured using a particle size distribution analyzer that employs a dynamic light scattering method.
  • a particle size distribution analyzer examples include model "Zetasizer Ultra” manufactured by Malvern.
  • the average secondary particle size was calculated by volume conversion.
  • the average secondary particle size of component (A) in the chemical mechanical polishing composition is preferably 5 nm or more, more preferably 7 nm or more.
  • the average secondary particle size of component (A) in the chemical mechanical polishing composition is preferably 70 nm or less, more preferably 60 nm or less.
  • the average secondary particle size of component (A) is within the above range, mechanical polishing performance is reduced due to the small particle size, but surface free energy is increased to improve reactivity with molybdenum. It is possible to obtain a chemical mechanical polishing composition which provides a sufficient polishing rate for a molybdenum film and has excellent stability without sedimentation and separation of particles.
  • the content of component (A) [MA (% by mass)] is preferably 0.1% by mass or more, more preferably 0.1% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. It is 3% by mass or more, and particularly preferably 0.5% by mass or more.
  • the content of component (A) [MA (% by mass)] is preferably 10% by mass or less, more preferably 8% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass. and particularly preferably 5% by mass or less.
  • Component (A) is preferably an abrasive grain with at least a portion of its surface modified with a functional group.
  • Abrasive grains having at least a portion of the surface modified with functional groups have a larger absolute value of zeta potential than abrasive grains not surface-modified with functional groups, so that electrostatic repulsion between abrasive grains increases. .
  • the dispersibility of the abrasive grains in the chemical mechanical polishing composition is improved, so that high-speed polishing can be performed while reducing the occurrence of polishing scratches and dishing.
  • Component (A) can have, for example, a functional group represented by the following general formula (1). - SO 3 - M + (1) (M + represents a monovalent cation.)
  • Examples of monovalent cations represented by M + in general formula (1) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + . That is, the functional group represented by the general formula (1) can be rephrased as "at least one functional group selected from the group consisting of a sulfo group and a salt thereof".
  • the "salt of a sulfo group” means that the hydrogen ion contained in the sulfo group (--SO 3 H) is replaced with a monovalent cation such as Li + , Na + , K + , NH 4 + Refers to functional groups.
  • Component (A) having a functional group represented by the general formula (1) is an abrasive grain having a functional group represented by the general formula (1) fixed to its surface via a covalent bond.
  • Abrasive grains to which a compound having a functional group represented by the general formula (1) is physically or ionically adsorbed on the surface are not included.
  • the component (A) having the functional group represented by the above general formula (1) can be produced as follows. First, silica prepared by a known method and a mercapto group-containing silane coupling agent are sufficiently stirred in an acidic medium to covalently bond the mercapto group-containing silane coupling agent to the surface of the silica. Examples of mercapto group-containing silane coupling agents include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane. Next, by further adding an appropriate amount of hydrogen peroxide and allowing to stand sufficiently, the component (A) having the functional group represented by the general formula (1) can be obtained.
  • the zeta potential of the component (A) having a functional group represented by the general formula (1) is a negative potential in the chemical mechanical polishing composition, and the negative potential is preferably -10 mV or less. It is preferably -15 mV or less, and particularly preferably -20 mV or less.
  • the electrostatic repulsive force between the abrasive grains effectively prevents particles from aggregating with each other, and a semiconductor substrate containing ruthenium or molybdenum can be polished at a more stable polishing rate.
  • the apparatus mentioned above can be used for a zeta-potential measuring apparatus.
  • the zeta potential of component (A) can be adjusted by appropriately increasing or decreasing the amount of the mercapto group-containing silane coupling agent or the like added.
  • the content of component (A) is is preferably 0.5% by mass or more, and more preferably 1% by mass or more, when the total mass of is 100% by mass.
  • the content of component (A) is preferably 10% by mass or less, more preferably 5% by mass or less, when the total mass of the chemical mechanical polishing composition is 100% by mass.
  • the content of the component (A) having a functional group represented by the general formula (1) is within the above range, a semiconductor substrate containing ruthenium or molybdenum can be polished at a stable polishing rate, and the composition for chemical mechanical polishing The storage stability of the product may be improved.
  • Component (A) can have, for example, a functional group represented by the following general formula (2). - COO - M + (2) (M + represents a monovalent cation.)
  • Examples of monovalent cations represented by M + in general formula (2) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + . That is, the functional group represented by the above general formula (2) can also be rephrased as "at least one functional group selected from the group consisting of a carboxy group and a salt thereof".
  • the term “salt of carboxyl group” refers to a functional group obtained by substituting a monovalent cation such as Li + , Na + , K + , NH 4 + for the hydrogen ion contained in the carboxyl group (-COOH). That's what I mean.
  • the component (A) having the functional group represented by the general formula (2) is an abrasive grain having the functional group represented by the general formula (2) fixed to its surface via a covalent bond. Abrasive grains to which a compound having a functional group represented by the general formula (2) is physically or ionically adsorbed on the surface are not included.
  • the component (A) having the functional group represented by the general formula (2) can be produced as follows. First, silica prepared by a known method and a carboxylic anhydride-containing silane coupling agent are sufficiently stirred in a basic medium to covalently bond the carboxylic anhydride-containing silane coupling agent to the surface of the abrasive grains. Abrasive grains having a functional group represented by the above general formula (2) can be obtained by allowing the Examples of the carboxylic anhydride-containing silane coupling agent include 3-(triethoxysilyl)propylsuccinic anhydride.
  • the component (A) having a functional group represented by the general formula (2) has a negative zeta potential in the chemical mechanical polishing composition, and the negative potential is preferably -5 mV or less, and more It is preferably -7 mV or less, and particularly preferably -10 mV or less.
  • the zeta potential of the component (A) is within the above range, the electrostatic repulsive force between the abrasive grains effectively prevents the particles from aggregating, and the semiconductor substrate containing ruthenium can sometimes be polished at a more stable polishing rate.
  • the apparatus mentioned above can be used for a zeta-potential measuring apparatus.
  • the zeta potential of the component (A) having the functional group represented by the general formula (2) can be adjusted by appropriately increasing or decreasing the amount of the above-described carboxylic anhydride-containing silane coupling agent or the like added.
  • the content of the component (A) is the total mass of the chemical mechanical polishing composition. Based on 100% by mass, the content is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and particularly preferably 0.5% by mass or more.
  • the content of component (A) is preferably 10% by mass or less, more preferably 8% by mass or less, particularly preferably 5% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. % by mass or less.
  • the content of component (A) is within the above range, a semiconductor substrate containing ruthenium or molybdenum can be polished at a stable polishing rate, and the storage stability of the chemical mechanical polishing composition may be improved.
  • Component (A) can have, for example, a functional group represented by the following general formula (3) and/or the following general formula (4).
  • -NR 1 R 2 (3) -N + R 1 R 2 R 3 M ( 4) (In formulas (3) and (4) above, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. M ⁇ represents an anion. .)
  • the functional group represented by the above general formula (3) represents an amino group
  • the functional group represented by the above general formula (4) represents a salt of the amino group. Therefore, the functional group represented by the general formula (3) and the functional group represented by the general formula (4) are collectively referred to as "at least one functional group selected from the group consisting of an amino group and a salt thereof. ” can also be rephrased.
  • the component (A) having a functional group represented by the general formula (3) and/or the general formula (4) is represented by the general formula (3) and/or the general formula (4) on its surface.
  • the functional group is an abrasive grain fixed via a covalent bond, and the compound having the functional group represented by the general formula (3) and / or the general formula (4) on the surface is physically or ionic Abrasive grains such as those adsorbed to are not included.
  • the anions represented by M ⁇ are not limited to these, but anions such as OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CN ⁇ and the like , and anions derived from acidic compounds.
  • each of R 1 to R 3 independently represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group, and two of R 1 to R 3 Two or more may combine to form a ring structure.
  • the hydrocarbon group represented by R 1 to R 3 may be an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an araliphatic hydrocarbon group, or an alicyclic hydrocarbon group. Moreover, the aliphatic of the aliphatic hydrocarbon group and the araliphatic hydrocarbon group may be saturated or unsaturated, and may be linear or branched. These hydrocarbon groups include, for example, linear, branched or cyclic alkyl groups, alkenyl groups, aralkyl groups, and aryl groups.
  • the alkyl group is preferably a lower alkyl group having 1 to 6 carbon atoms, more preferably a lower alkyl group having 1 to 4 carbon atoms.
  • alkyl groups include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group and n-pentyl group.
  • the alkenyl group is preferably a lower alkenyl group having 1 to 6 carbon atoms, more preferably a lower alkenyl group having 1 to 4 carbon atoms.
  • alkenyl groups include vinyl groups, n-propenyl groups, iso-propenyl groups, n-butenyl groups, iso-butenyl groups, sec-butenyl groups, tert-butenyl groups and the like.
  • the aralkyl group preferably has 7 to 12 carbon atoms.
  • examples of such aralkyl groups include benzyl, phenethyl, phenylpropyl, phenylbutyl, phenylhexyl, methylbenzyl, methylphenethyl and ethylbenzyl groups.
  • the aryl group preferably has 6 to 14 carbon atoms.
  • Examples of such aryl groups include phenyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2 ,6-xylyl group, 3,5-xylyl group, naphthyl group, anthryl group and the like.
  • aromatic rings of the above aryl groups and aralkyl groups may have, for example, lower alkyl groups such as methyl groups and ethyl groups, halogen atoms, nitro groups, amino groups, hydroxy groups, etc. as substituents.
  • the component (A) having a functional group represented by the general formula (3) and / or the general formula (4) is obtained by, for example, sufficiently stirring silica and an amino group-containing silane coupling agent in an acidic medium, By covalently bonding an amino group-containing silane coupling agent to the surface of silica, abrasive grains having functional groups represented by the general formula (3) and/or the general formula (4) can be produced.
  • amino group-containing silane coupling agents include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • the zeta potential of component (A) having a functional group represented by general formula (3) and/or general formula (4) is It has a negative potential in the polishing composition, and the negative potential is preferably -10 mV or less, more preferably -15 mV or less.
  • the component (A) having the functional group represented by the general formula (3) and/or the general formula (4) has a positive zeta potential. potential, and its positive potential is preferably 10 mV or more, more preferably 15 mV or more.
  • the electrostatic repulsive force between the abrasive grains effectively prevents particles from aggregating with each other, and a semiconductor substrate containing ruthenium or molybdenum can be polished at a more stable polishing rate.
  • the apparatus mentioned above can be used for a zeta-potential measuring apparatus.
  • the zeta potential of the component (A) having a functional group represented by the general formula (3) and/or the general formula (4) can be adjusted by appropriately increasing or decreasing the amount of the amino group-containing silane coupling agent or the like added. can be adjusted by
  • the component (A) is contained
  • the amount is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1% by mass when the total mass of the chemical mechanical polishing composition is 100% by mass. That's it.
  • the content of component (A) is preferably 10% by mass or less, more preferably 8% by mass or less, particularly preferably 5% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. % by mass or less.
  • the content of component (A) is within the above range, a semiconductor substrate containing ruthenium or molybdenum can be polished at a stable polishing rate, and the storage stability of the chemical mechanical polishing composition may be improved.
  • the chemical mechanical polishing composition according to the present embodiment contains at least one functional group selected from the group consisting of amino groups and salts thereof, and at least one functional group selected from the group consisting of carboxy groups and salts thereof. It contains a compound (D) having a group and Component (D) can suppress excessive corrosion of ruthenium and molybdenum sites by adsorbing to the surface of a semiconductor substrate containing ruthenium or molybdenum to form a protective film.
  • Amino groups and salts thereof include functional groups represented by the following general formula (5) or (6). -NR 4 R 5 (5) - N + R 4 R 5 R 6 M - (6) (In formulas (5) and (6) above, R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. M ⁇ represents an anion. show.)
  • each of R 4 to R 6 independently represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group, and two of R 4 to R 6 Two or more may combine to form a ring structure.
  • the hydrocarbon groups represented by R 4 to R 6 may be aliphatic hydrocarbon groups, aromatic hydrocarbon groups, araliphatic hydrocarbon groups or alicyclic hydrocarbon groups. Moreover, the aliphatic of the aliphatic hydrocarbon group and the araliphatic hydrocarbon group may be saturated or unsaturated, and may be linear or branched. These hydrocarbon groups include, for example, linear, branched or cyclic alkyl groups, alkenyl groups, aralkyl groups, and aryl groups.
  • the alkyl group is preferably a lower alkyl group having 1 to 6 carbon atoms, more preferably a lower alkyl group having 1 to 4 carbon atoms.
  • alkyl groups include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group and n-pentyl group.
  • the alkenyl group is preferably a lower alkenyl group having 1 to 6 carbon atoms, more preferably a lower alkenyl group having 1 to 4 carbon atoms.
  • alkenyl groups include vinyl groups, n-propenyl groups, iso-propenyl groups, n-butenyl groups, iso-butenyl groups, sec-butenyl groups, tert-butenyl groups and the like.
  • the aralkyl group preferably has 7 to 12 carbon atoms.
  • examples of such aralkyl groups include benzyl, phenethyl, phenylpropyl, phenylbutyl, phenylhexyl, methylbenzyl, methylphenethyl and ethylbenzyl groups.
  • the aryl group preferably has 6 to 14 carbon atoms.
  • Examples of such aryl groups include phenyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2 ,6-xylyl group, 3,5-xylyl group, naphthyl group, anthryl group and the like.
  • the aromatic ring of the aryl group and the aralkyl group may have, for example, a lower alkyl group such as a methyl group or an ethyl group, a halogen atom, a nitro group, an amino group, a hydroxy group, or the like, as a substituent.
  • the carboxy group and its salt include functional groups represented by the following general formula (7).
  • - COO - M + (7) (M + represents a monovalent cation.)
  • Examples of monovalent cations represented by M + in general formula (7) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + .
  • Component (D) is a structure having at least one functional group selected from the group consisting of amino groups and salts thereof and at least one functional group selected from the group consisting of carboxy groups and salts thereof. Although not particularly limited, it preferably has a structure represented by the following general formula (8). —N(CH 2 COO — M + ) n ( R ) 2-n (8) (In formula (8) above, R 7 represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group. M + represents a monovalent cation. n represents an integer of 1 to 2.)
  • examples of the hydrocarbon group represented by R 7 include the same hydrocarbon groups as the hydrocarbon groups exemplified for R 4 to R 6 in general formulas (6) and (7) above. be done.
  • examples of the monovalent cation represented by M + in the general formula (8) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + .
  • component (D) has a structure represented by the above general formula (8), component (D) is effectively coordinated to the surface of ruthenium or molybdenum and adsorbed to form a protective film. Excessive corrosion of ruthenium sites and molybdenum sites can be suppressed.
  • Component (D) includes, for example, N-(phosphonomethyl)iminodiacetic acid, hydroxyethyliminodiacetic acid, nitrilotriacetic acid, N-(2-carboxyethyl)iminodiacetic acid, ethylenediaminetetraacetic acid, L-glutamic acid diacetic acid tetraacetic acid Sodium, glycine-N,N-bis(methylenephosphonic acid), 3,3′,3′′-nitrilotripropionic acid, glycol ether diamine tetraacetic acid, hydroxyethylethylenediamine triacetic acid, 1,3-propanediamine-N,N ,N′,N′-tetraacetic acid, triethylenetetraaminehexaacetic acid, dihydroxyethylglycine, (S,S)-ethylenediaminedisuccinic acid trihydrate, iminodiacetic acid, trans-1,2-diaminocyclohexane-N
  • the content of component (D) [MD (% by mass)] is preferably 0.001% by mass or more, more preferably 0.001% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. 005% by mass or more.
  • the content of component (D) [MD (% by mass)] is preferably 5% by mass or less, more preferably 2% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass. and particularly preferably 1% by mass or less.
  • the content of component (D) [MD (% by mass)] is preferably 0.05% by mass or more when the total mass of the chemical mechanical polishing composition is 100% by mass. , more preferably 0.1% by mass or more, and particularly preferably 0.15% by mass or more.
  • the content of component (D) [MD (% by mass)] is preferably 5% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass. , more preferably 2% by mass or less, and particularly preferably 1% by mass or less.
  • the content of component (D) [MD (% by mass)] is preferably 0.001% by mass or more when the total mass of the chemical mechanical polishing composition is 100% by mass. and more preferably 0.005% by mass or more.
  • the content of component (D) [MD (% by mass)] is preferably 1% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass. , more preferably 0.1% by mass or less, and particularly preferably 0.05% by mass or less.
  • the value of MA/MD is preferably 0.1 or more, It is more preferably 0.12 or more, and particularly preferably 0.3 or more.
  • the value of MA/MD is preferably 700 or less, more preferably 600 or less.
  • the value of MA/MD is preferably 0.1 or more, more preferably 0.12 or more, and particularly preferably 0.3 or more.
  • the MA/MD value is preferably 40 or less, more preferably 35 or less, and particularly preferably 30 or less.
  • the MA/MD value is preferably 10 or more, more preferably 20 or more, and particularly preferably 25 or more.
  • the value of MA/MD is preferably 700 or less, more preferably 600 or less.
  • the chemical mechanical polishing composition according to the present embodiment contains periodate ions (IO 4 ⁇ ), hypochlorite ions (ClO ⁇ ), chlorite ions (ClO 2 ⁇ ) and hypobromite ions (BrO - ) containing an acid or a salt thereof (B) containing at least one anion selected from the group consisting of (hereinafter also referred to as "specific anion species"). It is presumed that the anion contained in component (B) functions as an oxidizing agent and oxidizes ruthenium and molybdenum to promote polishing.
  • component (B) include periodic acid, chlorous acid, hypochlorous acid, hypobromous acid, sodium periodate, potassium periodate, ammonium periodate, sodium chlorite, and chlorine.
  • potassium hypochlorite, sodium hypochlorite, potassium hypochlorite, sodium hypobromite and the like are preferred, and periodic acid is more preferred.
  • Component (B) may be used alone or in combination of two or more.
  • the content (mol/L) of component (B) is preferably 0.001 mol/L or more, more preferably 0.002 mol/L or more, and particularly preferably 1 L of the chemical mechanical polishing composition. is 0.003 mol/L or more.
  • the content (mol/L) of component (B) is preferably 0.05 mol/L or less, more preferably 0.04 mol/L or less, and particularly preferably 1 L of the chemical mechanical polishing composition. is 0.035 mol/L or less.
  • component (B) When the content of component (B) is within the above range, ruthenium or molybdenum is oxidized to promote polishing, and excessive reaction between ruthenium or molybdenum and specific anion species can be prevented, thereby suppressing corrosion of ruthenium or molybdenum. Sometimes.
  • the content (% by mass) of component (B) is preferably 0.01% by mass or more, more preferably 0.05% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. or more, and particularly preferably 0.1% by mass or more.
  • the content (% by mass) of component (B) is preferably 10% by mass or less, more preferably 8% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass, Especially preferably, it is 7% by mass or less.
  • component (B) When the content of component (B) is within the above range, ruthenium or molybdenum is oxidized to promote polishing, and excessive reaction between ruthenium or molybdenum and specific anion species can be prevented, thereby suppressing corrosion of ruthenium or molybdenum. Sometimes.
  • the chemical mechanical polishing composition according to this embodiment may contain hydrogen peroxide (C). Hydrogen peroxide (C) oxidizes ruthenium and molybdenum to promote polishing, and component (C) reacts with ruthenium and molybdenum to form a bond between ruthenium and molybdenum and the specific anion species contained in component (B). It has the function of preventing excessive reactions and suppressing the generation of halogen gas and the corrosion of ruthenium and molybdenum.
  • the content (mol/L) of component (C) is preferably 0.0005 mol/L or more, more preferably 0.0009 mol/L or more, and particularly preferably 1 L of the chemical mechanical polishing composition. is 0.0012 mol/L or more.
  • the content (mol/L) of component (C) is preferably 0.5 mol/L or less, more preferably 0.4 mol/L or less, and particularly preferably 1 L of the chemical mechanical polishing composition. is 0.3 mol/L or less.
  • the content (% by mass) of component (C) is preferably 0.0017% by mass or more, more preferably 0.003% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. or more, particularly preferably 0.004% by mass or more.
  • the content (% by mass) of component (C) is preferably 1.7% by mass or less, more preferably 1.4% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. or less, and particularly preferably 1% by mass or less.
  • ruthenium and molybdenum are oxidized to promote polishing, and component (C) reacts with ruthenium and molybdenum to form ruthenium and molybdenum contained in component (B). Excessive reaction with a specific anion species that is contained in the metal can be prevented, and corrosion of ruthenium and molybdenum can be suppressed.
  • the chemical mechanical polishing composition according to the present embodiment contains, in addition to the components described above, a liquid medium, an onium salt, an iron (III) compound, a water-soluble polymer, and a nitrogen-containing heterocyclic compound, if necessary. , surfactants, organic acids and salts thereof, inorganic acids and salts thereof, basic compounds and the like.
  • the chemical mechanical polishing composition according to this embodiment contains a liquid medium.
  • the liquid medium includes water, a mixed medium of water and alcohol, a mixed medium containing water and an organic solvent compatible with water, and the like. Among these, it is preferable to use water or a mixed medium of water and alcohol, and it is more preferable to use water. Pure water can be preferably used as a raw material of water.
  • the liquid medium may be blended as the balance of each component described above.
  • the chemical mechanical polishing composition according to this embodiment may contain an onium salt. It is believed that the onium salt is adsorbed on the surface of the molybdenum film to form a protective film, thereby reducing corrosion of the molybdenum film.
  • the onium salt is not particularly limited as long as it is a compound containing an onium ion, but an onium salt represented by the following general formula (9) is preferable.
  • R 8 , R 9 and R 10 each independently represent an alkyl group having n or less carbon atoms, R 11 represents an alkyl group, an aryl group or a hydroxy group.
  • M ⁇ is represents a monovalent anion.
  • n represents an integer of 1 or more.
  • onium salt represented by the general formula (9) examples include ethyltrimethylammonium hydroxide, propyltrimethylammonium hydroxide, octyltrimethylammonium hydroxide, hexadecyltrimethylammonium hydroxide, 1-hydroxyethyltrimethylammonium hydroxide 2-hydroxyethyltrimethylammonium hydroxide, 1-hydroxypropyltrimethylammonium hydroxide, 2-hydroxypropyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide and the like. Among these, ethyltrimethylammonium hydroxide and 2-hydroxyethyltrimethylammonium hydroxide are preferred. These onium salts may be used singly or in combination of two or more.
  • the content of the onium salt is preferably 0.005 mass % when the total mass of the chemical mechanical polishing composition is 100 mass %. % or more, more preferably 0.01 mass % or more.
  • the content of the onium salt is preferably 0.5% by mass or less, more preferably 0.4% by mass or less, when the total mass of the chemical mechanical polishing composition is 100% by mass.
  • the chemical mechanical polishing composition according to this embodiment may contain an iron (III) compound.
  • Iron (III) compounds can oxidize molybdenum to create a brittle modified layer on the surface of the molybdenum film, which can facilitate polishing of the molybdenum film.
  • the iron (III) compound may be either an organic acid iron salt or an inorganic acid iron salt as long as it has the effects described above.
  • iron (III) compounds include iron (III) nitrate, iron (III) ammonium sulfate, iron (III) perchlorate, iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric iron (III) ammonium oxalate, iron (III) ammonium oxalate, iron (III) acetylacetonate, and the like.
  • iron(III) compounds iron(III) nitrate, iron(III) citrate and iron(III) acetylacetonate are preferred, with iron(III) nitrate being particularly preferred.
  • iron (III) compounds By using these iron (III) compounds, an oxide can be formed on the molybdenum surface, making it easy to scrape off the oxide with the component (A), suppressing residue, dishing and corrosion, A flat polished surface can be obtained while maintaining a good polishing rate.
  • These iron (III) compounds may be used singly or in combination of two or more.
  • the content of the iron (III) compound is It is preferably 0.001% by mass or more, more preferably 0.01% by mass or more.
  • the content (% by mass) of the iron (III) compound is preferably 1% by mass or less, more preferably 0.1% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass. is.
  • the content of the iron (III) compound is within the above range, the surface of molybdenum can be effectively oxidized, so it is thought that the molybdenum polishing rate can be further increased and dishing and erosion can be effectively suppressed. be done.
  • the chemical mechanical polishing composition according to this embodiment may contain a water-soluble polymer.
  • the water-soluble polymer may adsorb to the surface of the surface to be polished, reduce polishing friction, and reduce the occurrence of dishing on the surface to be polished.
  • water-soluble polymers include polycarboxylic acid, polystyrenesulfonic acid, polyacrylic acid, polymethacrylic acid, polyether, polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polyethyleneimine, polyallylamine, and hydroxyethylcellulose. . These can be used singly or in combination of two or more.
  • the weight average molecular weight (Mw) of the water-soluble polymer is preferably 10,000 or more and 1,500,000 or less, more preferably 40,000 or more and 1,200,000 or less.
  • weight average molecular weight refers to weight average molecular weight in terms of polyethylene glycol measured by GPC (gel permeation chromatography).
  • the content of the water-soluble polymer is preferably It is 0.001% by mass or more, more preferably 0.002% by mass or more.
  • the content of the water-soluble polymer is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, when the total mass of the chemical mechanical polishing composition is 100% by mass.
  • a nitrogen-containing heterocyclic compound is an organic compound containing at least one heterocyclic ring selected from five- and six-membered heterocyclic rings having at least one nitrogen atom.
  • Specific examples of the heterocyclic ring include five-membered heterocyclic rings such as pyrrole structure, imidazole structure and triazole structure; six-membered heterocyclic rings such as pyridine structure, pyrimidine structure, pyridazine structure and pyrazine structure.
  • the heterocycle may form a condensed ring.
  • an indole structure an isoindole structure, a benzimidazole structure, a benzotriazole structure, a quinoline structure, an isoquinoline structure, a quinazoline structure, a cinnoline structure, a phthalazine structure, a quinoxaline structure, and an acridine structure.
  • heterocyclic compounds having such structures heterocyclic compounds having a pyridine structure, a quinoline structure, a benzimidazole structure, and a benzotriazole structure are preferred.
  • nitrogen-containing heterocyclic compounds include aziridine, pyridine, pyrimidine, pyrrolidine, piperidine, pyrazine, triazine, pyrrole, imidazole, indole, quinoline, isoquinoline, benzoisoquinoline, purine, pteridine, triazole, triazolidine, benzotriazole, carboxy Benzotriazoles and derivatives having these skeletons are included. Among these, at least one selected from the group consisting of benzotriazole and triazole is preferred. These nitrogen-containing heterocyclic compounds may be used singly or in combination of two or more.
  • the surfactant is not particularly limited, and anionic surfactants, cationic surfactants, nonionic surfactants and the like can be used.
  • anionic surfactants include sulfates such as alkyl ether sulfates and polyoxyethylene alkylphenyl ether sulfates; and fluorine-containing surfactants such as perfluoroalkyl compounds.
  • cationic surfactants include aliphatic amine salts and aliphatic ammonium salts.
  • Nonionic surfactants include, for example, nonionic surfactants having a triple bond such as acetylene glycol, acetylene glycol ethylene oxide adducts, and acetylene alcohol; polyethylene glycol type surfactants and the like. These surfactants may be used singly or in combination of two or more.
  • the chemical mechanical polishing composition according to this embodiment may contain at least one selected from the group consisting of organic acids and salts thereof (excluding component (D)).
  • the organic acid and its salt may be able to improve the polishing rate of a semiconductor substrate containing ruthenium or molybdenum due to a synergistic effect with component (A).
  • the organic acid and its salt are preferably compounds having a carboxy group and compounds having a sulfo group.
  • compounds having a carboxy group include stearic acid, lauric acid, oleic acid, myristic acid, alkenylsuccinic acid, lactic acid, tartaric acid, fumaric acid, glycolic acid, phthalic acid, maleic acid, formic acid, acetic acid, oxalic acid, citric acid, acid, malic acid, malonic acid, glutaric acid, succinic acid, benzoic acid, quinolinic acid, quinaldic acid, amidosulfuric acid, propionic acid, trifluoroacetic acid; glycine, alanine, aspartic acid, glutamic acid, lysine, arginine, tryptophan, dodecylamino amino acids such as ethylaminoethylglycine, aromatic amino acids and heterocyclic amino acids; imino acids such as alkylimin
  • Examples of compounds having a sulfo group include alkylbenzenesulfonic acids such as dodecylbenzenesulfonic acid and p-toluenesulfonic acid; alkylnaphthalenesulfonic acids such as butylnaphthalenesulfonic acid; ⁇ -olefinsulfonic acids such as tetradecenesulfonic acid; These salts are mentioned. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the organic acid (salt) is It is preferably 0.001% by mass or more, more preferably 0.01% by mass or more.
  • the content of the organic acid (salt) is preferably 5% by mass or less, more preferably 1% by mass or less, when the total mass of the chemical mechanical polishing composition is 100% by mass.
  • the inorganic acid is preferably at least one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and salts thereof.
  • the inorganic acid may form a salt with a separately added base in the chemical mechanical polishing composition.
  • Basic compounds include organic bases and inorganic bases.
  • Preferred organic bases are amines such as triethylamine, monoethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzylamine, methylamine, ethylenediamine, diglycolamine and isopropylamine. be done.
  • examples of inorganic bases include ammonia, potassium hydroxide, sodium hydroxide and the like. Among these basic compounds, ammonia and potassium hydroxide are preferred. These basic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the pH of the chemical mechanical polishing composition according to this embodiment is preferably 6.0 or higher, more preferably 6.5 or higher, and particularly preferably 7.0 or higher. be.
  • the pH of the chemical mechanical polishing composition according to this embodiment is preferably 12.0 or less, more preferably 11.0 or less, and particularly preferably 10.0 or less. be.
  • the pH of the chemical mechanical polishing composition according to the present embodiment is preferably 1.5 or higher, more preferably 2.0 or higher.
  • the pH of the chemical mechanical polishing composition according to this embodiment is preferably 4.0 or less, more preferably 3.5 or less.
  • the pH is within the above range, corrosion of molybdenum can be effectively suppressed in some cases.
  • the pH of the chemical mechanical polishing composition can be adjusted, for example, by adding the aforementioned organic acid (salt), inorganic acid (salt), basic compound, or the like, and one or more of these can be used. be able to.
  • pH refers to hydrogen ion exponent, and its value can be measured using a commercially available pH meter (for example, desktop pH meter manufactured by Horiba Ltd.).
  • the chemical mechanical polishing composition according to the present embodiment can be prepared by dissolving or dispersing each component described above in a liquid medium such as water.
  • the method of dissolving or dispersing is not particularly limited, and any method may be applied as long as it can dissolve or disperse uniformly.
  • the mixing order and mixing method of the components described above are not particularly limited.
  • the chemical mechanical polishing composition can also be prepared as a concentrated type stock solution and diluted with a liquid medium such as water at the time of use.
  • a polishing method includes a step of polishing a semiconductor substrate using the chemical mechanical polishing composition described above.
  • the chemical mechanical polishing composition can chemically mechanically polish a semiconductor substrate containing ruthenium or molybdenum while maintaining a stable polishing rate while suppressing corrosion of ruthenium or molybdenum. Therefore, the semiconductor substrate, which is the object to be processed, preferably has a portion composed of at least one selected from the group consisting of ruthenium, molybdenum, ruthenium alloys and molybdenum alloys.
  • Examples of a semiconductor substrate having a portion composed of at least one selected from the group consisting of ruthenium, molybdenum, ruthenium alloys and molybdenum alloys include an object 100 to be processed as shown in FIG.
  • FIG. 1 shows a cross-sectional view schematically showing an object 100 to be processed.
  • the object to be processed 100 is manufactured through the following steps (1) to (4).
  • a substrate 10 is prepared.
  • the substrate 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon. Furthermore, functional devices such as transistors (not shown) may be formed on the substrate 10 .
  • a silicon oxide film 12 which is an insulating film, is formed on the substrate 10 by thermal oxidation.
  • the silicon oxide film 12 is patterned. Using the obtained pattern as a mask, a wiring trench 14 is formed in the silicon oxide film 12 by photolithography.
  • a ruthenium-containing film 16 is formed on the surface of the silicon oxide film 12 and the inner wall surface of the wiring trench 14 .
  • the ruthenium-containing film 16 can be formed, for example, by chemical vapor deposition (CVD) using a ruthenium precursor, atomic layer deposition (ALD), or physical vapor deposition (PVD) such as sputtering.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • PVD physical vapor deposition
  • a molybdenum-containing film may be formed instead of the ruthenium-containing film 16 .
  • a molybdenum-containing film can be formed, for example, by chemical vapor deposition (CVD) or atomic layer deposition (ALD) using a molybdenum precursor, or physical vapor deposition (PVD) such as sputtering.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • PVD physical vapor deposition
  • a copper film 18 having a film thickness of 10,000 to 15,000 ⁇ (“ ⁇ " means 0.1 nm) is deposited by chemical vapor deposition or electroplating.
  • means 0.1 nm
  • the copper content in the copper-containing alloy is preferably 95% by mass or more.
  • FIG. 2 is a cross-sectional view schematically showing the object to be processed 100 at the end of the first polishing step.
  • the copper film 18 is polished using a chemical mechanical polishing composition for copper films until the ruthenium-containing film 16 (or molybdenum-containing film) is exposed.
  • the chemical mechanical polishing composition for copper films include the chemical mechanical polishing aqueous dispersion described in JP-A-2010-153790.
  • FIG. 3 is a cross-sectional view schematically showing the object to be processed 100 at the end of the second polishing step.
  • the chemical mechanical polishing composition of the present invention is used to partially polish the ruthenium-containing film 16 (or molybdenum-containing film), the copper film 18, and the silicon oxide film 12. do.
  • FIG. 4 is a perspective view schematically showing the polishing apparatus 200.
  • a slurry (chemical mechanical polishing composition) 44 is supplied from a slurry supply nozzle 42, and a semiconductor substrate 50 is polished while rotating a turntable 48 on which a polishing pad 46 is attached. is brought into contact with the carrier head 52 holding the . 4 also shows the water supply nozzle 54 and the dresser 56. As shown in FIG.
  • the material of the polishing pad 46 may be any of foamed polyurethane type, non-woven fabric type, and suede type, but is preferably foamed polyurethane type.
  • the polishing load of the carrier head 52 can be selected within the range of 0.7-70 psi, preferably 1.5-35 psi. Also, the rotation speed of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, preferably 30 to 150 rpm.
  • the lower limit of the flow rate of the chemical mechanical polishing composition supplied from the slurry supply nozzle 42 is 15 mL/min, preferably 50 mL/min, and the upper limit of the flow rate is 400 mL/min, preferably 300 mL/min. minutes.
  • polishing devices examples include models “EPO-112" and “F-REX300SII” manufactured by Ebara Corporation; models “LGP-510” and “LGP-552” manufactured by Lapmaster SFT; model “LGP-552” manufactured by Applied Materials; Mirra”, “Reflexion”; Model “POLI-400L” manufactured by G&P TECHNOLOGY; Model “Reflexion LK” manufactured by AMAT.
  • a (3-triethoxysilyl)mercapto group-containing silane coupling agent trade name “KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.
  • aqueous dispersion E PL-3 (19.5% colloidal silica dispersion manufactured by Fuso Chemical Industry Co., Ltd.) as it is, an aqueous dispersion containing unmodified silica particles having an average secondary particle diameter of 60 nm in terms of volume used as E.
  • Silica particles were prepared according to Example 1 described in JP-A-2004-315300 to obtain a colloidal silica particle dispersion having a silica concentration of 4% by mass and an average secondary particle diameter of 7 nm in terms of volume. rice field.
  • Aqueous Dispersion G Silica particles were produced according to Example 1 described in JP-A-2004-315300 to obtain a colloidal silica particle dispersion having a silica concentration of 4% by mass and an average secondary particle size of 7 nm. After that, 6510 g of the resulting colloidal silica particle dispersion was heated to 60°C. After that, 15.5 g of (3-triethoxysilyl) propylsuccinic anhydride (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added, and the mixture was further stirred at 60°C for 4 hours. An aqueous dispersion G containing modified silica particles was obtained.
  • Aqueous Dispersion H Silica particles were prepared according to Example 1 described in JP-A-2004-315300 to obtain a colloidal silica particle dispersion having a silica concentration of 4% by mass and an average secondary particle size of 7 nm. Subsequently, 25% aqueous ammonia (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to 6510 g of the resulting colloidal silica particle dispersion to adjust the pH to 9.
  • Silica particles were prepared according to Comparative Example 1 described in WO 2008/072637 to obtain Silica Particle Dispersion L having a silica concentration of 29% by mass and an average secondary particle diameter of 23 nm in terms of volume. rice field.
  • the zeta potential of abrasive grains was measured using a zeta potential measuring device (manufactured by Dispersion Technology Inc., model "DT300"). Tables 1 to 5 show the results. shown together.
  • the evaluation criteria for the polishing rate of the ruthenium film are as follows. Tables 1 to 3 also show the evaluation results of the polishing rate of the ruthenium film.
  • Evaluation criteria A: When the polishing rate was 100 nm/min or more, it was judged to be very good.
  • C When the polishing rate was less than 50 nm/min, the polishing rate was so low that it was difficult to put into practical use, so it was judged to be unsatisfactory.
  • the evaluation criteria for the molybdenum film polishing rate are as follows. Tables 4 and 5 also show the evaluation results of the molybdenum film polishing rate. (Evaluation criteria) A: When the polishing rate was 100 nm/min or more, it was judged to be very good. B: When the polishing rate was less than 100 nm/min, the polishing rate was so low that it was difficult to put into practical use, so it was judged to be defective.
  • Etching rate of ruthenium film (nm/min) (thickness of ruthenium film before etching (nm) ⁇ thickness of ruthenium film after etching (nm))/etching time (min)
  • Molybdenum film etching rate (nm/min) (thickness of molybdenum film before etching (nm) - thickness of molybdenum film after etching (nm))/etching time (min)
  • the evaluation criteria for the etching rate of the ruthenium film are as follows. Tables 1 to 3 also show the evaluation results of the etching rate of the ruthenium film. (Evaluation criteria) A: When the etching rate was less than 1.5 nm/min, it was judged to be very good. B: When the etching rate was 1.5 nm/min or more and less than 3 nm/min, it was judged to be good because it could be put to practical use. C: When the etching rate was 3 nm/min or more, the etching rate was so high that it was difficult to put into practical use, so it was judged to be defective.
  • the evaluation criteria for the etching rate of the molybdenum film are as follows. Tables 4 and 5 also show the evaluation results of the etching rate of the molybdenum film. (Evaluation criteria) A: When the etching rate was less than 20 nm/min, it was judged to be very good. B: When the etching rate was 20 nm/min or more, the etching rate was so high that it was difficult to put into practical use, so it was judged to be unsatisfactory.
  • the evaluation criteria for the volatility are as follows. Tables 1 to 5 also show the storage stability evaluation results of the chemical mechanical polishing composition.
  • Tables 1 to 5 show the composition of the chemical mechanical polishing composition used in each example and each comparative example and each evaluation result.
  • Component (D) Preparation of "myristyliminodipropionate/dodecylaminoethylaminoethylglycine prepared in section: Sanyo Chemical Industries, Ltd., trade name "Lebon S” ⁇ Component (B)> ⁇ H 5 IO 6 (periodic acid): manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., trade name “orthoperiodic acid” ⁇ KClO (potassium hypochlorite): manufactured by Kanto Chemical Co., Ltd., trade name “potassium hypochlorite solution” - KClO 2 (potassium chlorite): manufactured by Angene, trade name "Potassium Chlorite” ⁇ NaBrO (sodium hypobromite): manufactured by Kanto Chemical Co., Ltd., trade name “sodium hypobromite” ⁇ Component (C)> ⁇ Hydrogen peroxide: Fujifilm Wako Pure Chemical Co., Ltd., 30%
  • the content of component (A) relative to the content of component (D) is too large, so component (D) does not form a ruthenium film. It can be seen that the surface cannot be effectively protected and corrosion of the ruthenium film occurs.
  • the chemical mechanical polishing composition of Comparative Example 8 having an MA/MD of more than 700 the storage stability was deteriorated because the content of component (A) was too large relative to the content of component (D). It can be seen that the polishing rate of the molybdenum film is reduced.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same function, method, and result, or configurations that have the same purpose and effect).
  • the present invention includes configurations in which non-essential portions of the configurations described in the embodiments are replaced.
  • the present invention includes a configuration that achieves the same effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the present invention includes configurations obtained by adding known techniques to the configurations described in the embodiments.
  • SYMBOLS 10 Substrate, 12... Silicon oxide film, 14... Wiring groove, 16... Ruthenium-containing film, 18... Copper film, 42... Slurry supply nozzle, 44... Slurry (chemical mechanical polishing composition), 46... Polishing pad , 48... Turntable, 50... Semiconductor substrate, 52... Carrier head, 54... Water supply nozzle, 56... Dresser, 100... Object to be processed, 200... Polishing apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

ルテニウムやモリブデンの腐食を抑制しつつ、ルテニウムやモリブデンを含む半導体基板を安定した研磨速度を維持しながら化学機械研磨を行うことができる化学機械研磨用組成物を提供する。 本発明に係る化学機械研磨用組成物は、砥粒(A)と、アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基およびその塩からなる群より選択される少なくとも1種の官能基とを有する化合物(D)と、を含有し、前記砥粒(A)の含有量をMA(質量%)、前記化合物(D)の含有量をMD(質量%)とした場合、MA/MD=0.1~700である。

Description

化学機械研磨用組成物および研磨方法
 本発明は、化学機械研磨用組成物およびそれを用いた研磨方法に関する。
 半導体集積回路の製造技術の向上に伴い、半導体素子の高集積化、高速動作が求められている。これに伴い、半導体素子における微細回路の製造工程において要求される半導体基板表面の平坦性はより厳しくなってきており、化学機械研磨(Chemical Mechanical Polishing:CMP)が半導体素子の製造工程に不可欠な技術となっている。
 CMPは、定盤上に貼り付けた研磨用パッド上に化学機械研磨用組成物を供給し、そこへ半導体基板を押し当て、半導体基板と研磨用パッドとを相互に摺動させることにより半導体基板を化学的かつ機械的に研磨する技術である。CMPでは、試薬による化学的な反応と砥粒による機械的な研磨により半導体基板表面の凹凸を削り、その表面を平坦化することができる。
 近年、このようなCMPを経て製造される半導体基板の銅配線を作成する際の凹部への銅の埋め込み性を改善するために、ルテニウム膜やモリブデン膜を使用する方法が検討されている(例えば、特許文献1~3参照)。
特表2009-514219号公報 特表2010-535424号公報 国際公開第2019/151145号
 このようなCMPにおいて、研磨対象がルテニウムを含む場合、揮発性の高い四酸化ルテニウムガスの発生を抑制し、ルテニウムを含む部位を研磨するためには、塩基性の化学機械研磨用組成物と、過ヨウ素酸カリウムや次亜塩素酸カリウムのような高い酸化力を有するハロゲン系酸化剤とを用いて化学機械研磨を行う必要がある。しかしながら、塩基性の化学機械研磨用組成物を用いると、四酸化ルテニウムガスの発生を抑制できるものの、不十分に酸化した酸化ルテニウムが研磨用パッド表面に付着し、研磨用パッドの研磨特性を劣化させてしまう。その結果、ルテニウムを含む半導体基板を、安定した研磨速度を維持しながら化学機械研磨を行うことは困難となる。一方、研磨対象がルテニウムやモリブデンを含む場合、高い酸化力を有する酸化剤を使用する必要があるが、例えば高い酸化力を有するハロゲン系酸化剤を用いた場合、ルテニウムやモリブデンを腐食させてしまうおそれがある。
 本発明に係る幾つかの態様は、ルテニウムやモリブデンの腐食を抑制しつつ、ルテニウムやモリブデンを含む半導体基板を安定した研磨速度を維持しながら化学機械研磨を行うことができる化学機械研磨用組成物を提供するものである。
 本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下のいずれかの態様として実現することができる。
 本発明に係る化学機械研磨用組成物の一態様は、
 砥粒(A)と、
 アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基およびその塩からなる群より選択される少なくとも1種の官能基と、を有する化合物(D)と、を含有し、
 前記砥粒(A)の含有量をMA(質量%)、前記化合物(D)の含有量をMD(質量%)とした場合、MA/MD=0.1~700である。
 前記化学機械研磨用組成物の一態様において、
 前記砥粒(A)が、下記一般式(1)または(2)で表される官能基を有してもよい。
 -SO  ・・・・・(1)
 -COO ・・・・・(2)
(Mは1価の陽イオンを表す。)
 前記化学機械研磨用組成物の一態様において、
 前記砥粒(A)が、下記一般式(3)または(4)で表される官能基を有してもよい。
 -NR ・・・・・(3)
 -N ・・・・・(4)
(上記式(3)および(4)中、R、RおよびRは各々独立して、水素原子、または置換もしくは非置換の炭化水素基を表す。Mは陰イオンを表す。)
 前記化学機械研磨用組成物のいずれかの態様において、
 化学機械研磨用組成物中の前記砥粒(A)のゼータ電位の絶対値が2mV以上であってもよい。
 前記化学機械研磨用組成物のいずれかの態様において、
 前記MD(質量%)が0.001~5質量%であってもよい。
 前記化学機械研磨用組成物のいずれかの態様において、
 pHが6以上12以下であってもよい。
 前記化学機械研磨用組成物のいずれかの態様において、
 pHが1.5以上4以下であってもよい。
 前記化学機械研磨用組成物のいずれかの態様において、
 化学機械研磨用組成物における前記砥粒(A)の平均二次粒子径が5nm以上70nm以下であってもよい。
 本発明に係る研磨方法の一態様は、
 前記いずれかの態様の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む。
 前記研磨方法の一態様において、
 前記半導体基板が、ルテニウム、モリブデン、ルテニウム合金およびモリブデン合金からなる群より選択される少なくとも1種により構成される部位を備えていてもよい。
 本発明に係る化学機械研磨用組成物によれば、ルテニウムやモリブデンの腐食を抑制しつつ、ルテニウムやモリブデンを含む半導体基板を安定した研磨速度を維持しながら化学機械研磨を行うことができる。
図1は、本実施形態に係る研磨工程での使用に適した被処理体を模式的に示した断面図である。 図2は、第1研磨工程終了時での被処理体を模式的に示した断面図である。 図3は、第2研磨工程終了時での被処理体を模式的に示した断面図である。 図4は、化学機械研磨装置を模式的に示した斜視図である。
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。
 本明細書において、「A~B」のように記載された数値範囲は、数値Aを下限値として含み、かつ、数値Bを上限値として含むものとして解釈される。
 1.化学機械研磨用組成物
 本発明の一実施形態に係る化学機械研磨用組成物は、砥粒(A)(本明細書において、「成分(A)」ともいう)と、アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基およびその塩からなる群より選択される少なくとも1種の官能基と、を有する化合物(D)(本明細書において、「成分(D)」ともいう)と、を含有し、前記砥粒(A)の含有量をMA(質量%)、前記化合物(D)の含有量をMD(質量%)とした場合、MA/MD=0.1~700である。
 以下、本実施形態に係る化学機械研磨用組成物に含まれる各成分について詳細に説明する。
 1.1.成分(A)
 本実施形態に係る化学機械研磨用組成物は、砥粒(A)を含有する。成分(A)としては、シリカ、セリア、アルミナ、ジルコニア、チタニア等の無機粒子が挙げられるが、中でもシリカ粒子が好ましい。シリカ粒子としては、ヒュームドシリカ、コロイダルシリカ等が挙げられるが、中でもコロイダルシリカが好ましい。コロイダルシリカは、スクラッチ等の研磨欠陥を低減する観点から好ましく用いられる。コロイダルシリカとしては、例えば特開2003-109921号公報等に記載された方法で製造されたものを使用することができる。
 成分(A)がシリカを主成分とするシリカ粒子の場合、さらに他の成分を含有してもよい。他の成分としては、アルミニウム化合物、ケイ素化合物等が挙げられる。シリカ粒子がアルミニウム化合物またはケイ素化合物をさらに含有することで、シリカ粒子の表面硬度を小さくすることができるため、安定した研磨速度を維持しながら、被研磨面の研磨傷やディッシングの発生をより低減できる場合がある。
 アルミニウム化合物としては、例えば、水酸化アルミニウム、酸化アルミニウム(アルミナ)、塩化アルミニウム、窒化アルミニウム、酢酸アルミニウム、リン酸アルミニウム、硫酸アルミニウム、アルミン酸ナトリウム、アルミン酸カリウム等が挙げられる。一方、ケイ素化合物としては、窒化ケイ素、炭化ケイ素、ケイ酸塩、シリコーン、ケイ素樹脂等が挙げられる。
 成分(A)の形状は、特に限定されず、球状であっても、繭状であっても、連鎖球状であっても、表面に複数の突起を有してもよい。表面に複数の突起を有する砥粒は、例えば特開2007-153732号公報や特開2013-121631号公報に記載された方法を適用して製造することができる。
 成分(A)のゼータ電位の絶対値は、化学機械研磨用組成物中において、好ましくは2mV以上であり、より好ましくは5mV以上である。研磨対象がルテニウムを含む場合、成分(A)のゼータ電位の絶対値は、化学機械研磨用組成物中において、好ましくは10mV以上であり、より好ましくは15mV以上であり、特に好ましくは20mV以上である。研磨対象がモリブデンを含む場合、成分(A)のゼータ電位の絶対値は、化学機械研磨用組成物中において、好ましくは6mV以上であり、より好ましくは7mV以上である。成分(A)のゼータ電位の絶対値が前記範囲にあると、砥粒間の静電反発力によって効果的に粒子同士の凝集を防ぐと共に、ルテニウムやモリブデンを含む半導体基板をより安定した研磨速度で研磨することができる。なお、ゼータ電位測定装置としては、大塚電子社製の「ELSZ-2000ZS」、Malvern社製の「Zetasizer Ultra」、Dispersion Technology Inc.製のDT300等が挙げられる。
 研磨対象がルテニウムを含む場合、化学機械研磨用組成物中における成分(A)の平均二次粒子径は、好ましくは20nm以上であり、より好ましくは50nm以上である。研磨対象がルテニウムを含む場合、化学機械研磨用組成物中における成分(A)の平均二次粒子径は、好ましくは70nm以下であり、より好ましくは60nm以下である。成分(A)の平均二次粒子径が前記範囲にあると、ルテニウム膜に対する十分な研磨速度が得られると共に、粒子の沈降・分離を生ずることのない安定性に優れた化学機械研磨用組成物が得られる。なお、化学機械研磨用組成物中における成分(A)の平均二次粒子径は、動的光散乱法によって行われる粒度分布測定装置を用いて測定することができる。このような粒度分布測定装置としては、例えばMalvern社製、型式「Zetasizer Ultra」が挙げられる。なお、平均二次粒子径は体積換算によって算出された。
 研磨対象がモリブデンを含む場合、化学機械研磨用組成物中における成分(A)の平均二次粒子径は、好ましくは5nm以上であり、より好ましくは7nm以上である。研磨対象がモリブデンを含む場合、化学機械研磨用組成物中における成分(A)の平均二次粒子径は、好ましくは70nm以下であり、より好ましくは60nm以下である。成分(A)の平均二次粒子径が前記範囲にあると、小粒径のため機械的な研磨性能は低下するが、表面自由エネルギーが増大することでモリブデンとの反応性が向上するため、モリブデン膜に対する十分な研磨速度が得られると共に、粒子の沈降・分離を生ずることのない安定性に優れた化学機械研磨用組成物が得られる。
 成分(A)の含有量〔MA(質量%)〕は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1質量%以上であり、より好ましくは0.3質量%以上であり、特に好ましくは0.5質量%以上である。成分(A)の含有量〔MA(質量%)〕は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%以下であり、より好ましくは8質量%以下であり、特に好ましくは5質量%以下である。成分(A)の含有量が前記範囲にあると、ルテニウムやモリブデンを含む半導体基板を安定した研磨速度で研磨できると共に、化学機械研磨用組成物の保存安定性が良好となる場合がある。
 成分(A)は、その表面の少なくとも一部が官能基によって修飾された砥粒であることが好ましい。表面の少なくとも一部が官能基によって修飾された砥粒は、官能基によって表面修飾されていない砥粒に比べてゼータ電位の絶対値が大きくなるので、砥粒同士の静電反発力が増大する。その結果、化学機械研磨用組成物中における砥粒の分散性が向上するため、研磨傷やディッシングの発生を低減しながら、高速研磨することができる。
 成分(A)は、例えば、下記一般式(1)で表される官能基を有することができる。
 -SO  ・・・・・(1)
(Mは1価の陽イオンを表す。)
 上記一般式(1)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。すなわち、上記一般式(1)で表される官能基は、「スルホ基およびその塩からなる群より選択される少なくとも1種の官能基」と言い換えることもできる。ここで、「スルホ基の塩」とは、スルホ基(-SOH)に含まれている水素イオンをLi、Na、K、NH 等の1価の陽イオンで置換した官能基のことをいう。上記一般式(1)で表される官能基を有する成分(A)は、その表面に上記一般式(1)で表される官能基が共有結合を介して固定された砥粒であり、その表面に上記一般式(1)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したような砥粒は含まれない。
 上記一般式(1)で表される官能基を有する成分(A)は、以下のようにして製造することができる。まず、公知の方法により作成されたシリカと、メルカプト基含有シランカップリング剤を酸性媒体中で十分に攪拌することにより、シリカの表面にメルカプト基含有シランカップリング剤を共有結合させる。ここで、メルカプト基含有シランカップリング剤としては、例えば、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。次に、過酸化水素を更に適量添加して十分に放置することにより、上記一般式(1)で表される官能基を有する成分(A)を得ることができる。
 上記一般式(1)で表される官能基を有する成分(A)のゼータ電位は、化学機械研磨用組成物中において負電位であり、その負電位は、好ましくは-10mV以下であり、より好ましくは-15mV以下であり、特に好ましくは-20mV以下である。成分(A)のゼータ電位が前記範囲にあると、砥粒間の静電反発力によって効果的に粒子同士の凝集を防ぐと共に、ルテニウムやモリブデンを含む半導体基板をより安定した研磨速度で研磨できる場合がある。なお、ゼータ電位測定装置は、上述した装置を使用することができる。成分(A)のゼータ電位は、上述したメルカプト基含有シランカップリング剤等の添加量を適宜増減することにより調整することができる。
 本実施形態に係る化学機械研磨用組成物が上記一般式(1)で表される官能基を有する成分(A)を含有する場合、成分(A)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.5質量%以上であり、より好ましくは1質量%以上である。成分(A)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%以下であり、より好ましくは5質量%以下である。上記一般式(1)で表される官能基を有する成分(A)の含有量が前記範囲であると、ルテニウムやモリブデンを含む半導体基板を安定した研磨速度で研磨できると共に、化学機械研磨用組成物の保存安定性が良好となる場合がある。
 成分(A)は、例えば、下記一般式(2)で表される官能基を有することができる。
 -COO ・・・・・(2)
(Mは1価の陽イオンを表す。)
 上記一般式(2)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。すなわち、上記一般式(2)で表される官能基は、「カルボキシ基およびその塩からなる群より選択される少なくとも1種の官能基」と言い換えることもできる。ここで、「カルボキシ基の塩」とは、カルボキシ基(-COOH)に含まれている水素イオンをLi、Na、K、NH 等の1価の陽イオンで置換した官能基のことをいう。上記一般式(2)で表される官能基を有する成分(A)は、その表面に上記一般式(2)で表される官能基が共有結合を介して固定された砥粒であり、その表面に上記一般式(2)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したような砥粒は含まれない。
 上記一般式(2)で表される官能基を有する成分(A)は、以下のようにして製造することができる。まず、公知の方法により作成されたシリカと、カルボン酸無水物含有シランカップリング剤とを塩基性媒体中で十分に攪拌し、砥粒の表面にカルボン酸無水物含有シランカップリング剤を共有結合させることにより、上記一般式(2)で表される官能基を有する砥粒を得ることができる。ここで、カルボン酸無水物含有シランカップリング剤としては、例えば、3-(トリエトキシシリル)プロピルコハク酸無水物等が挙げられる。
 上記一般式(2)で表される官能基を有する成分(A)のゼータ電位は、化学機械研磨用組成物中において負電位であり、その負電位は、好ましくは-5mV以下であり、より好ましくは-7mV以下であり、特に好ましくは-10mV以下である。成分(A)のゼータ電位が前記範囲にあると、砥粒間の静電反発力によって効果的に粒子同士の凝集を防ぐと共に、ルテニウムを含む半導体基板をより安定した研磨速度で研磨できる場合がある。なお、ゼータ電位測定装置は、上述した装置を使用することができる。上記一般式(2)で表される官能基を有する成分(A)のゼータ電位は、上述したカルボン酸無水物含有シランカップリング剤等の添加量を適宜増減することにより調整することができる。
 本実施形態に係る化学機械研磨用組成物が上記一般式(2)で表される成分(A)を含有する場合、成分(A)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1質量%以上であり、より好ましくは0.3質量%以上であり、特に好ましくは0.5質量%以上である。成分(A)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%以下であり、より好ましくは8質量%以下であり、特に好ましくは5質量%以下である。成分(A)の含有量が前記範囲にあると、ルテニウムやモリブデンを含む半導体基板を安定した研磨速度で研磨できると共に、化学機械研磨用組成物の保存安定性が良好となる場合がある。
 成分(A)は、例えば、下記一般式(3)および/または下記一般式(4)で表される官能基を有することができる。
 -NR ・・・・・(3)
 -N ・・・・・(4)
(上記式(3)および上記式(4)中、R、RおよびRは各々独立して、水素原子、または置換もしくは非置換の炭化水素基を表す。Mは陰イオンを表す。)
 上記一般式(3)で表される官能基はアミノ基を表しており、上記一般式(4)で表される官能基はアミノ基の塩を表している。したがって、上記一般式(3)で表される官能基と上記一般式(4)で表される官能基を纏めて、「アミノ基およびその塩からなる群より選択される少なくとも1種の官能基」と言い換えることもできる。上記一般式(3)および/または上記一般式(4)で表される官能基を有する成分(A)は、その表面に上記一般式(3)および/または上記一般式(4)で表される官能基が共有結合を介して固定された砥粒であり、その表面に上記一般式(3)および/または上記一般式(4)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したような砥粒は含まれない。
 上記一般式(4)中、Mで表される陰イオンとしては、これらに限定されないが、例えば、OH、F、Cl、Br、I、CN等の陰イオンの他、酸性化合物由来の陰イオンが挙げられる。
 上記一般式(3)および上記一般式(4)中、R~Rは各々独立して、水素原子、または置換もしくは非置換の炭化水素基を表すが、R~Rのうち2つ以上が結合して環構造を形成していてもよい。
 R~Rで表される炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基、芳香脂肪族炭化水素基、または脂環式炭化水素基のいずれでもよい。また、脂肪族炭化水素基および芳香脂肪族炭化水素基の脂肪族は、飽和でも不飽和でもよく、直鎖状でも分岐状でもよい。これらの炭化水素基としては、例えば、直鎖状、分岐状または環状の、アルキル基、アルケニル基、アラルキル基、およびアリール基等が挙げられる。
 アルキル基としては、炭素数が1~6の低級アルキル基が好ましく、炭素数が1~4の低級アルキル基がより好ましい。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、iso-ペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、iso-ヘキシル基、sec-ヘキシル基、tert-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アルケニル基としては、炭素数が1~6の低級アルケニル基が好ましく、炭素数が1~4の低級アルケニル基がより好ましい。このようなアルケニル基としては、例えば、ビニル基、n-プロペニル基、iso-プロペニル基、n-ブテニル基、iso-ブテニル基、sec-ブテニル基、tert-ブテニル基等が挙げられる。
 アラルキル基としては、炭素数が7~12のものが好ましい。このようなアラルキル基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基、フェニルブチル基、フェニルヘキシル基、メチルベンジル基、メチルフェネチル基、エチルベンジル基等が挙げられる。
 アリール基としては、炭素数が6~14のものが好ましい。このようなアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,5-キシリル基、ナフチル基、アントリル基等が挙げられる。
 上記のアリール基およびアラルキル基の芳香環は、例えば、メチル基、エチル基等の低級アルキル基や、ハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基等を、置換基として有していてもよい。
 上記一般式(3)および/または上記一般式(4)で表される官能基を有する成分(A)は、例えば、シリカとアミノ基含有シランカップリング剤を酸性媒体中で十分に攪拌し、シリカの表面にアミノ基含有シランカップリング剤を共有結合させることにより、上記一般式(3)および/または上記一般式(4)で表される官能基を有する砥粒を製造することができる。ここで、アミノ基含有シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3―アミノプロピルトリエトキシシラン等が挙げられる。
 化学機械研磨用組成物のpHが6以上12以下の場合、上記一般式(3)および/または上記一般式(4)で表される官能基を有する成分(A)のゼータ電位は、化学機械研磨用組成物中において負電位であり、その負電位は、好ましくは-10mV以下であり、より好ましくは-15mV以下である。化学機械研磨用組成物のpHが1.5以上4以下の場合、上記一般式(3)および/または上記一般式(4)で表される官能基を有する成分(A)のゼータ電位は正電位であり、その正電位は、好ましくは10mV以上であり、より好ましくは15mV以上である。成分(A)のゼータ電位が前記範囲にあると、砥粒間の静電反発力によって効果的に粒子同士の凝集を防ぐと共に、ルテニウムやモリブデンを含む半導体基板をより安定した研磨速度で研磨できる場合がある。なお、ゼータ電位測定装置は、上述した装置を使用することができる。上記一般式(3)および/または上記一般式(4)で表される官能基を有する成分(A)のゼータ電位は、上述したアミノ基含有シランカップリング剤等の添加量を適宜増減することにより調整することができる。
 本実施形態に係る化学機械研磨用組成物が上記一般式(3)および/または上記一般式(4)で表される官能基を有する成分(A)を含有する場合、成分(A)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1質量%以上であり、より好ましくは0.5質量%以上であり、特に好ましくは1質量%以上である。成分(A)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%以下であり、より好ましくは8質量%以下であり、特に好ましくは5質量%以下である。成分(A)の含有量が前記範囲にあると、ルテニウムやモリブデンを含む半導体基板を安定した研磨速度で研磨できると共に、化学機械研磨用組成物の保存安定性が良好となる場合がある。
 1.2.成分(D)
 本実施形態に係る化学機械研磨用組成物は、アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基およびその塩からなる群より選択される少なくとも1種の官能基と、を有する化合物(D)を含有する。成分(D)は、ルテニウムやモリブデンを含有する半導体基板の表面に吸着して保護膜を形成することにより、ルテニウム部位やモリブデン部位の過剰な腐食を抑制することができる。
 アミノ基およびその塩としては、下記一般式(5)または下記一般式(6)で表される官能基が挙げられる。
 -NR ・・・・・(5)
 -N ・・・・・(6)
(上記式(5)および上記式(6)中、R、R、およびRは各々独立して、水素原子、または置換もしくは非置換の炭化水素基を表す。Mは陰イオンを表す。)
 上記一般式(5)および上記一般式(6)中、R~Rは各々独立して、水素原子、または置換もしくは非置換の炭化水素基を表すが、R~Rのうち2つ以上が結合して環構造を形成していてもよい。
 R~Rで表される炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基、芳香脂肪族炭化水素基、または脂環式炭化水素基のいずれでもよい。また、脂肪族炭化水素基および芳香脂肪族炭化水素基の脂肪族は、飽和でも不飽和でもよく、直鎖状でも分岐状でもよい。これらの炭化水素基としては、例えば、直鎖状、分岐状または環状の、アルキル基、アルケニル基、アラルキル基、およびアリール基等が挙げられる。
 アルキル基としては、炭素数が1~6の低級アルキル基が好ましく、炭素数が1~4の低級アルキル基がより好ましい。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、iso-ペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、iso-ヘキシル基、sec-ヘキシル基、tert-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アルケニル基としては、炭素数が1~6の低級アルケニル基が好ましく、炭素数が1~4の低級アルケニル基がより好ましい。このようなアルケニル基としては、例えば、ビニル基、n-プロペニル基、iso-プロペニル基、n-ブテニル基、iso-ブテニル基、sec-ブテニル基、tert-ブテニル基等が挙げられる。
 アラルキル基としては、炭素数が7~12のものが好ましい。このようなアラルキル基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基、フェニルブチル基、フェニルヘキシル基、メチルベンジル基、メチルフェネチル基、エチルベンジル基等が挙げられる。
 アリール基としては、炭素数が6~14のものが好ましい。このようなアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,5-キシリル基、ナフチル基、アントリル基等が挙げられる。
 前記アリール基および前記アラルキル基の芳香環は、例えば、メチル基、エチル基等の低級アルキル基や、ハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基等を、置換基として有していてもよい。
 カルボキシ基およびその塩としては、下記一般式(7)で表される官能基が挙げられる。
 -COO ・・・・・(7)
(Mは1価の陽イオンを表す。)
 上記一般式(7)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。
 成分(D)は、アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基およびその塩からなる群より選択される少なくとも1種の官能基とを有する構造であれば特に限定されないが、下記一般式(8)で表される構造を有することが好ましい。
 -N(CHCOO(R2-n ・・・・・(8)
(上記式(8)中、Rは水素原子、または置換もしくは非置換の炭化水素基を表す。Mは1価の陽イオンを表す。nは1~2の整数を表す。)
 上記一般式(8)中、Rで表される炭化水素基としては、上記一般式(6)および(7)のR~Rで例示した炭化水素基と同様の炭化水素基が挙げられる。上記一般式(8)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。
 成分(D)が上記一般式(8)で表される構造を有することにより、成分(D)がルテニウムやモリブデンの表面に効果的に配位し、吸着して保護膜を形成することにより、ルテニウム部位やモリブデン部位の過剰な腐食を抑制することができる。
 成分(D)としては、例えば、N-(ホスホノメチル)イミノ二酢酸、ヒドロキシエチルイミノ二酢酸、ニトリロ三酢酸、N-(2-カルボキシエチル)イミノ二酢酸、エチレンジアミン四酢酸、L-グルタミン酸二酢酸四ナトリウム、グリシン-N,N-ビス(メチレンホスホン酸)、3,3’,3’’-ニトリロトリプロピオン酸、グリコールエーテルジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、1,3-プロパンジアミン-N,N,N’,N’-四酢酸、トリエチレンテトラアミン六酢酸、ジヒドロキシエチルグリシン、(S,S)-エチレンジアミンジコハク酸三水和物、イミノ二酢酸、trans-1,2-ジアミノシクロヘキサン-N,N,N’,N’-四酢酸水和物等が挙げられる。これらの成分(D)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 成分(D)の含有量〔MD(質量%)〕は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001質量%以上であり、より好ましくは0.005質量%以上である。成分(D)の含有量〔MD(質量%)〕は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは5質量%以下であり、より好ましくは2質量%以下であり、特に好ましくは1質量%以下である。成分(D)の含有量が前記範囲にあると、ルテニウムやモリブデンを含有する半導体基板の過剰な腐食を効果的に抑制できる場合がある。
 研磨対象がルテニウムを含む場合、成分(D)の含有量〔MD(質量%)〕は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.05質量%以上であり、より好ましくは0.1質量%以上であり、特に好ましくは0.15質量%以上である。研磨対象がルテニウムを含む場合、成分(D)の含有量〔MD(質量%)〕は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは5質量%以下であり、より好ましくは2質量%以下であり、特に好ましくは1質量%以下である。
 研磨対象がモリブデンを含む場合、成分(D)の含有量〔MD(質量%)〕は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001質量%以上であり、より好ましくは0.005質量%以上である。研磨対象がモリブデンを含む場合、成分(D)の含有量〔MD(質量%)〕は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは1質量%以下であり、より好ましくは0.1質量%以下であり、特に好ましくは0.05質量%以下である。
 前記砥粒(A)の含有量をMA(質量%)、前記化合物(D)の含有量をMD(質量%)とした場合、MA/MDの値は、好ましくは0.1以上であり、より好ましくは0.12以上であり、特に好ましくは0.3以上である。MA/MDの値は、好ましくは700以下であり、より好ましくは600以下である。MA/MDの値が前記範囲にあると、ルテニウム膜やモリブデン膜を効率的に研磨することができると共に、成分(D)がルテニウム膜やモリブデン膜の表面に吸着することでルテニウムやモリブデンの過剰な腐食を抑制でき、平滑な被研磨面を得ることができる。
 研磨対象がルテニウムを含む場合、MA/MDの値は、好ましくは0.1以上であり、より好ましくは0.12以上であり、特に好ましくは0.3以上である。研磨対象がルテニウムを含む場合、MA/MDの値は、好ましくは40以下であり、より好ましくは35以下であり、特に好ましくは30以下である。
 研磨対象がモリブデンを含む場合、MA/MDの値は、好ましくは10以上であり、より好ましくは20以上であり、特に好ましくは25以上である。研磨対象がモリブデンを含む場合、MA/MDの値は、好ましくは700以下であり、より好ましくは600以下である。
 1.3.成分(B)
 本実施形態に係る化学機械研磨用組成物は、過ヨウ素酸イオン(IO )、次亜塩素酸イオン(ClO)、亜塩素酸イオン(ClO )および次亜臭素酸イオン(BrO)からなる群より選択される少なくとも1種のアニオン(以下、「特定アニオン種」ともいう)を含む酸またはその塩(B)を含有してもよい。成分(B)に含まれるアニオンは、酸化剤として機能し、ルテニウムやモリブデンを酸化して研磨を促進するものと推測される。
 成分(B)の具体例としては、過ヨウ素酸、亜塩素酸、次亜塩素酸、次亜臭素酸、過ヨウ素酸ナトリウム、過ヨウ素酸カリウム、過ヨウ素酸アンモニウム、亜塩素酸ナトリウム、亜塩素酸カリウム、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜臭素酸ナトリウム等が挙げられる。これらの中でも、過ヨウ素酸、亜塩素酸カリウム、次亜塩素酸カリウムおよび次亜臭素酸ナトリウムからなる群より選択される少なくとも1種の化合物が好ましく、過ヨウ素酸がより好ましい。成分(B)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 成分(B)の含有量(mol/L)は、化学機械研磨用組成物1Lに対して、好ましくは0.001mol/L以上であり、より好ましくは0.002mol/L以上であり、特に好ましくは0.003mol/L以上である。成分(B)の含有量(mol/L)は、化学機械研磨用組成物1Lに対して、好ましくは0.05mol/L以下であり、より好ましくは0.04mol/L以下であり、特に好ましくは0.035mol/L以下である。成分(B)の含有量が前記範囲にあると、ルテニウムやモリブデンを酸化して研磨を促進させると共に、ルテニウムやモリブデンと特定アニオン種との過剰な反応を防ぎ、ルテニウムやモリブデンの腐食を抑制できる場合がある。
 成分(B)の含有量(質量%)は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上であり、特に好ましくは0.1質量%以上である。成分(B)の含有量(質量%)は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%以下であり、より好ましくは8質量%以下であり、特に好ましくは7質量%以下である。成分(B)の含有量が前記範囲にあると、ルテニウムやモリブデンを酸化して研磨を促進させると共に、ルテニウムやモリブデンと特定アニオン種との過剰な反応を防ぎ、ルテニウムやモリブデンの腐食を抑制できる場合がある。
 1.4.成分(C)
 本実施形態に係る化学機械研磨用組成物は、過酸化水素(C)を含有してもよい。過酸化水素(C)は、ルテニウムやモリブデンを酸化して研磨を促進させると共に、成分(C)がルテニウムやモリブデンと反応することでルテニウムやモリブデンと成分(B)に含まれる特定アニオン種との過剰な反応を防ぎ、ハロゲンガスの発生やルテニウムやモリブデンの腐食を抑制する機能を有する。
 成分(C)の含有量(mol/L)は、化学機械研磨用組成物1Lに対して、好ましくは0.0005mol/L以上であり、より好ましくは0.0009mol/L以上であり、特に好ましくは0.0012mol/L以上である。成分(C)の含有量(mol/L)は、化学機械研磨用組成物1Lに対して、好ましくは0.5mol/L以下であり、より好ましくは0.4mol/L以下であり、特に好ましくは0.3mol/L以下である。成分(C)の含有量が前記範囲にあると、ルテニウムやモリブデンを酸化して研磨を促進させると共に、成分(C)がルテニウムやモリブデンと反応することでルテニウムやモリブデンと成分(B)に含まれる特定アニオン種との過剰な反応を防ぎ、ルテニウムやモリブデンの腐食を抑制できる場合がある。
 成分(C)の含有量(質量%)は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.0017質量%以上であり、より好ましくは0.003質量%以上であり、特に好ましくは0.004質量%以上である。成分(C)の含有量(質量%)は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは1.7質量%以下であり、より好ましくは1.4質量%以下であり、特に好ましくは1質量%以下である。成分(C)の含有量が前記範囲にあると、ルテニウムやモリブデンを酸化して研磨を促進させると共に、成分(C)がルテニウムやモリブデンと反応することでルテニウムやモリブデンと成分(B)に含まれる特定アニオン種との過剰な反応を防ぎ、ルテニウムやモリブデンの腐食を抑制できる場合がある。
 1.5.その他の成分
 本実施形態に係る化学機械研磨用組成物は、前述の各成分の他、必要に応じて、液状媒体、オニウム塩、鉄(III)化合物、水溶性高分子、含窒素複素環化合物、界面活性剤、有機酸およびその塩、無機酸およびその塩、塩基性化合物等を含有してもよい。
<液状媒体>
 本実施形態に係る化学機械研磨用組成物は、液状媒体を含有する。液状媒体としては、水、水およびアルコールの混合媒体、水および水との相溶性を有する有機溶媒を含む混合媒体等が挙げられる。これらの中でも、水、水およびアルコールの混合媒体を用いることが好ましく、水を用いることがより好ましい。水の原料としては純水を好ましく使用することができる。液状媒体は、前述の各成分の残部として配合されていればよい。
<オニウム塩>
 本実施形態に係る化学機械研磨用組成物は、オニウム塩を含有してもよい。オニウム塩は、モリブデン膜の表面に吸着して保護膜を形成し、モリブデン膜の腐食を低減するものと考えられる。オニウム塩としては、オニウムイオンを含む化合物であれば特に限定されないが、下記一般式(9)で表されるオニウム塩が好ましい。
Figure JPOXMLDOC01-appb-C000001
(式(9)中、R、R、およびR10は各々独立して炭素数がn個以下のアルキル基を表し、R11はアルキル基、アリール基またはヒドロキシ基を表す。Mは1価のアニオンを表す。nは1以上の整数を表す。)
 上記一般式(9)で表されるオニウム塩の具体例としては、エチルトリメチルアンモニウムヒドロキシド、プロピルトリメチルアンモニウムヒドロキシド、オクチルトリメチルアンモニウムヒドロキシド、ヘキサデシルトリメチルアンモニウムヒドロキシド、1-ヒドロキシエチルトリメチルアンモニウムヒドロキシド、2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド、1-ヒドロキシプロピルトリメチルアンモニウムヒドロキシド、2-ヒドロキシプロピルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等が挙げられる。これらの中でも、エチルトリメチルアンモニウムヒドロキシド、2-ヒドロキシエチルトリメチルアンモニウムヒドロキシドが好ましい。これらのオニウム塩は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物がオニウム塩を含有する場合、オニウム塩の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.005質量%以上であり、より好ましくは0.01質量%以上である。オニウム塩の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.5質量%以下であり、より好ましくは0.4質量%以下である。
<鉄(III)化合物>
 本実施形態に係る化学機械研磨用組成物は、鉄(III)化合物を含有してもよい。鉄(III)化合物は、モリブデンを酸化してモリブデン膜の表面に脆弱な改質層を作り出し、モリブデン膜の研磨を促進できる場合がある。
 鉄(III)化合物は、上述した効果を有するものであれば、有機酸鉄塩または無機酸鉄塩のいずれであってもよい。鉄(III)化合物としては、例えば、硝酸鉄(III)、硫酸アンモニウム鉄(III)、過塩素酸鉄(III)、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸アンモニウム鉄(III)、およびシュウ酸アンモニウム鉄(III)、アセチルアセトン鉄(III)等が挙げられる。これらの鉄(III)化合物のうち、硝酸鉄(III)、クエン酸鉄(III)、およびアセチルアセトン鉄(III)が好ましく、硝酸鉄(III)が特に好ましい。これらの鉄(III)化合物を使用することで、モリブデン表面に酸化物を形成することができ、成分(A)で該酸化物を削り取ることが容易となり、残渣、ディッシングおよびコロージョンを抑制しつつ、研磨速度を良好に保ちながら平坦性を有する被研磨面を得ることができる。これらの鉄(III)化合物は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物が鉄(III)化合物を含有する場合、鉄(III)化合物の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上である。鉄(III)化合物の含有量(質量%)は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは1質量%以下であり、より好ましくは0.1質量%以下である。鉄(III)化合物の含有量が前記範囲にあると、モリブデンの表面を効果的に酸化させることができるので、モリブデンの研磨速度をより増大させると共に、ディッシングやエロージョンを効果的に抑制できると考えられる。
<水溶性高分子>
 本実施形態に係る化学機械研磨用組成物は、水溶性高分子を含有してもよい。水溶性高分子は、被研磨面の表面に吸着して研磨摩擦を低減させ、被研磨面におけるディッシングの発生を低減できる場合がある。
 水溶性高分子の具体例としては、ポリカルボン酸、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリエーテル、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンイミン、ポリアリルアミン、ヒドロキシエチルセルロース等が挙げられる。これらは、1種単独であるいは2種以上組み合わせて使用することができる。
 水溶性高分子の重量平均分子量(Mw)は、好ましくは1万以上150万以下、より好ましくは4万以上120万以下である。ここで、「重量平均分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の重量平均分子量のことを指す。
 本実施形態に係る化学機械研磨用組成物が水溶性高分子を含有する場合、水溶性高分子の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001質量%以上であり、より好ましくは0.002質量%以上である。水溶性高分子の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1質量%以下であり、より好ましくは0.01質量%以下である。
<含窒素複素環化合物>
 含窒素複素環化合物は、少なくとも1個の窒素原子を有する、複素五員環および複素六員環から選択される少なくとも1種の複素環を含む有機化合物である。前記複素環の具体例としては、ピロール構造、イミダゾール構造、トリアゾール構造等の複素五員環;ピリジン構造、ピリミジン構造、ピリダジン構造、ピラジン構造等の複素六員環が挙げられる。該複素環は縮合環を形成していてもよい。具体的には、インドール構造、イソインドール構造、ベンゾイミダゾール構造、ベンゾトリアゾール構造、キノリン構造、イソキノリン構造、キナゾリン構造、シンノリン構造、フタラジン構造、キノキサリン構造、アクリジン構造等が挙げられる。このような構造を有する複素環化合物のうち、ピリジン構造、キノリン構造、ベンゾイミダゾール構造、ベンゾトリアゾール構造を有する複素環化合物が好ましい。
 含窒素複素環化合物の具体例としては、アジリジン、ピリジン、ピリミジン、ピロリジン、ピペリジン、ピラジン、トリアジン、ピロール、イミダゾール、インドール、キノリン、イソキノリン、ベンゾイソキノリン、プリン、プテリジン、トリアゾール、トリアゾリジン、ベンゾトリアゾール、カルボキシベンゾトリアゾール、およびこれらの骨格を有する誘導体が挙げられる。これらの中でも、ベンゾトリアゾールおよびトリアゾールからなる群より選択される少なくとも1種であることが好ましい。これらの含窒素複素環化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<界面活性剤>
 界面活性剤としては、特に制限されず、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤等を使用することができる。アニオン性界面活性剤としては、例えば、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸塩;パーフルオロアルキル化合物等の含フッ素系界面活性剤等が挙げられる。カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。非イオン性界面活性剤としては、例えば、アセチレングリコール、アセチレングリコールエチレンオキサイド付加物、アセチレンアルコール等の三重結合を有する非イオン性界面活性剤;ポリエチレングリコール型界面活性剤等が挙げられる。これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<有機酸およびその塩>
 本実施形態に係る化学機械研磨用組成物は、有機酸およびその塩(前記成分(D)を除く)からなる群より選択される少なくとも1種を含有してもよい。有機酸およびその塩は、成分(A)との相乗効果により、ルテニウムやモリブデンを含有する半導体基板の研磨速度を向上させることができる場合がある。
 有機酸およびその塩としては、カルボキシ基を有する化合物、スルホ基を有する化合物であることが好ましい。カルボキシ基を有する化合物としては、例えば、ステアリン酸、ラウリン酸、オレイン酸、ミリスチン酸、アルケニルコハク酸、乳酸、酒石酸、フマル酸、グリコール酸、フタル酸、マレイン酸、ギ酸、酢酸、シュウ酸、クエン酸、リンゴ酸、マロン酸、グルタル酸、コハク酸、安息香酸、キノリン酸、キナルジン酸、アミド硫酸、プロピオン酸、トリフルオロ酢酸;グリシン、アラニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、トリプトファン、ドデシルアミノエチルアミノエチルグリシン、芳香族アミノ酸、複素環型アミノ酸等のアミノ酸;アルキルイミノジカルボン酸等のイミノ酸;およびこれらの塩が挙げられる。スルホ基を有する化合物としては、例えば、ドデシルベンゼンスルホン酸、p-トルエンスルホン酸等のアルキルベンゼンスルホン酸;ブチルナフタレンスルホン酸等のアルキルナフタレンスルホン酸;テトラデセンスルホン酸等のα-オレフィンスルホン酸;およびこれらの塩が挙げられる。これらの化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物が有機酸(塩)を含有する場合、有機酸(塩)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上である。有機酸(塩)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは5質量%以下であり、より好ましくは1質量%以下である。
<無機酸およびその塩>
 無機酸としては、塩酸、硝酸、硫酸、リン酸、およびこれらの塩からなる群より選択される少なくとも1種であることが好ましい。なお、無機酸は、化学機械研磨用組成物中で別途添加した塩基と塩を形成してもよい。
<塩基性化合物>
 塩基性化合物としては、有機塩基および無機塩基が挙げられる。有機塩基としては、アミンが好ましく、例えばトリエチルアミン、モノエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルアミン、メチルアミン、エチレンジアミン、ジグリコールアミン、イソプロピルアミン等が挙げられる。無機塩基としては、例えばアンモニア、水酸化カリウム、水酸化ナトリウム等が挙げられる。これらの塩基性化合物の中でも、アンモニア、水酸化カリウムが好ましい。これらの塩基性化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 1.6.pH
 研磨対象がルテニウムを含む場合、本実施形態に係る化学機械研磨用組成物のpHは、好ましくは6.0以上であり、より好ましくは6.5以上であり、特に好ましくは7.0以上である。研磨対象がルテニウムを含む場合、本実施形態に係る化学機械研磨用組成物のpHは、好ましくは12.0以下であり、より好ましくは11.0以下であり、特に好ましくは10.0以下である。pHが前記範囲にあると、四酸化ルテニウムガスの発生やルテニウムの腐食を効果的に抑制できる場合がある。
 研磨対象がモリブデンを含む場合、本実施形態に係る化学機械研磨用組成物のpHは、好ましくは1.5以上であり、より好ましくは2.0以上である。研磨対象がモリブデンを含む場合、本実施形態に係る化学機械研磨用組成物のpHは、好ましくは4.0以下であり、より好ましくは3.5以下である。pHが前記範囲にあると、モリブデンの腐食を効果的に抑制できる場合がある。
 なお、化学機械研磨用組成物のpHは、例えば、前述の有機酸(塩)、無機酸(塩)、塩基性化合物等を添加することにより調整することができ、これらの1種以上を用いることができる。
 本発明において、pHは、水素イオン指数のことを指し、その値は、市販のpHメーター(例えば、堀場製作所社製、卓上型pHメーター)を用いて測定することができる。
 1.7.化学機械研磨用組成物の調製方法
 本実施形態に係る化学機械研磨用組成物は、水等の液状媒体に前述した各成分を溶解または分散させることにより調製することができる。溶解または分散させる方法は、特に制限されず、均一に溶解または分散できればどのような方法を適用してもよい。また、前述した各成分の混合順序や混合方法についても特に制限されない。
 また、化学機械研磨用組成物は、濃縮タイプの原液として調製し、使用時に水等の液状媒体で希釈して使用することもできる。
 2.研磨方法
 本発明の一実施形態に係る研磨方法は、前述の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む。該化学機械研磨用組成物は、ルテニウムやモリブデンの腐食を抑制しつつ、ルテニウムやモリブデンを含む半導体基板を安定した研磨速度を維持しながら化学機械研磨を行うことができる。そのため、被処理体たる半導体基板は、ルテニウム、モリブデン、ルテニウム合金およびモリブデン合金からなる群より選択される少なくとも1種により構成される部位を備えていることが好ましい。以下、図1~図4を参照しながら、本実施形態に係る研磨方法について詳細に説明する。
 ルテニウム、モリブデン、ルテニウム合金およびモリブデン合金からなる群より選択される少なくとも1種により構成される部位を備えた半導体基板としては、例えば図1に示すような被処理体100が挙げられる。図1に、被処理体100を模式的に示した断面図を示す。被処理体100は、以下の工程(1)~(4)を経ることにより作製される。
 (1)まず、図1に示すように、基体10を用意する。基体10は、例えばシリコン基板とその上に形成された酸化シリコン膜とから構成されていてもよい。さらに、基体10には、(図示しない)トランジスタ等の機能デバイスが形成されていてもよい。次に、基体10の上に、熱酸化法を用いて絶縁膜である酸化シリコン膜12を形成する。
 (2)次いで、酸化シリコン膜12をパターニングする。得られたパターンをマスクとして、フォトリソグラフィー法により酸化シリコン膜12に配線用溝14を形成する。
 (3)次いで、酸化シリコン膜12の表面および配線用溝14の内壁面にルテニウム含有膜16を形成する。ルテニウム含有膜16は、例えば、ルテニウムプレカーサを用いた化学気相成長法(CVD)や原子層堆積法(ALD)、またはスパッタリングなどの物理気相堆積法(PVD)により形成することができる。なお、当該工程においては、ルテニウム含有膜16に代えてモリブデン含有膜を形成してもよい。モリブデン含有膜は、例えば、モリブデンプレカーサを用いた化学気相成長法(CVD)や原子層堆積法(ALD)、またはスパッタリングなどの物理気相堆積法(PVD)により形成することができる。
 (4)次いで、化学蒸着法または電気めっき法により、膜厚10,000~15,000Å(ここで、「Å」とは0.1nmのことを指す)の銅膜18を堆積させる。銅膜18の材料としては、純度の高い銅だけでなく、銅を含有する合金を使用することもできる。銅を含有する合金中の銅含有量としては、95質量%以上であることが好ましい。
 続いて、被処理体100の第1研磨工程を行う。図2は、第1研磨工程終了時での被処理体100を模式的に示した断面図である。図2に示すように、第1研磨工程では、銅膜用の化学機械研磨用組成物を用いてルテニウム含有膜16(あるいはモリブデン含有膜)が露出するまで銅膜18を研磨する。銅膜用の化学機械研磨用組成物としては、例えば特開2010-153790号公報に記載された化学機械研磨用水系分散体が挙げられる。
 続いて、被処理体100の第2研磨工程を行う。図3は、第2研磨工程終了時での被処理体100を模式的に示した断面図である。図3に示すように、第2研磨工程では、本発明の化学機械研磨用組成物を用いてルテニウム含有膜16(あるいはモリブデン含有膜)、銅膜18、および酸化シリコン膜12の一部を研磨する。
 第1研磨工程および第2研磨工程には、例えば図4に示すような研磨装置200を用いることができる。図4は、研磨装置200を模式的に示した斜視図である。第1研磨工程および第2研磨工程は、スラリー供給ノズル42からスラリー(化学機械研磨用組成物)44を供給し、かつ研磨用パッド46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図4には、水供給ノズル54およびドレッサー56も併せて示してある。
 研磨用パッド46の材質は、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプの何れであってもよいが、発泡ポリウレタンタイプであることが好ましい。
 キャリアーヘッド52の研磨荷重は、0.7~70psiの範囲内で選択することができ、好ましくは1.5~35psiである。また、ターンテーブル48およびキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給される化学機械研磨用組成物の流量の下限値は15mL/分であり、好ましくは50mL/分であり、その流量の上限値は400mL/分であり、好ましくは300mL/分である。
 市販の研磨装置としては、例えば、荏原製作所製、型式「EPO-112」、「F-REX300SII」;ラップマスターSFT製、型式「LGP-510」、「LGP-552」;アプライドマテリアル製、型式「Mirra」、「Reflexion」;G&P TECHNOLOGY製、型式「POLI-400L」;AMAT製、型式「Reflexion LK」等が挙げられる。
 3.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本実施例における「部」および「%」は、特に断らない限り質量基準である。
 3.1.シリカ粒子水分散体の調製
 3.1.1.水分散体Aの調製
 PL-3(扶桑化学工業社製、19.5%コロイダルシリカ分散液)2000gに25%アンモニア水(富士フイルム和光純薬社製)を添加し、pH9に調整した。その後、(3-トリエトキシシリル)メルカプト基含有シランカップリング剤(商品名「KBM-803」、信越化学工業社製)3.9gを滴下し、60℃で2時間撹拌した。その後、過酸化水素(富士フイルム和光純薬社製)50gを添加し、常圧下で8時間還流し、体積換算における平均二次粒子径58nmのスルホ基で表面修飾された繭型のシリカ粒子を含む水分散体Aを得た。なお、水分散体A~L中における各シリカ粒子の体積換算における平均二次粒子径は、粒度分布測定装置(Malvern社製、型式「Zetasizer Ultra」)により測定した。
 3.1.2.水分散体Bの調製
 PL-3(扶桑化学工業社製、19.5%コロイダルシリカ分散液)2000gを60℃に加熱した。その後、(3-トリエトキシシリル)プロピルコハク酸無水物(東京化成工業社製)15.5gを加え、さらに60℃で4時間撹拌し、体積換算における平均二次粒子径60nmのカルボキシ基で表面修飾された繭型のシリカ粒子を含む水分散体Bを得た。
 3.1.3.水分散体Cの調製
 メタノール70gと3-アミノプロピルトリエトキシシラン(東京化成工業社製)11.3gの混合液を、PL-3(扶桑化学工業社製、19.5%コロイダルシリカ分散液)2000gへ滴下し、常圧下で2時間還流を行った。その後、容量を一定に保ちつつ純水を滴下し、塔頂温が100℃に達した時点で純水の滴下を終了し、体積換算における平均二次粒子径56nmのアミノ基で表面修飾された繭型のシリカ粒子を含む水分散体Cを得た。
 3.1.4.水分散体Dの調製
 PL-2L(扶桑化学工業社製、20%コロイダルシリカ分散液)1950gに25%アンモニア水(富士フイルム和光純薬社製)を添加し、pH9に調整した。その後、(3-トリエトキシシリル)メルカプト基含有シランカップリング剤(商品名「KBM-803」、信越化学工業社製)3.9gを滴下し、60℃で2時間撹拌した。その後、過酸化水素(富士フイルム和光純薬社製)50gを添加し、常圧下で8時間還流し、体積換算における平均二次粒子径23nmのスルホ基で表面修飾された球型のシリカ粒子を含む水分散体Dを得た。
 3.1.5.水分散体Eの調製
 PL-3(扶桑化学工業社製、19.5%コロイダルシリカ分散液)をそのまま、体積換算における平均二次粒子径60nmの表面修飾されていないシリカ粒子を含む水分散体Eとして使用した。
 3.1.6.水分散体Fの調製
 特開2004-315300号公報に記載された実施例1に従ってシリカ粒子を作製し、シリカ濃度4質量%、体積換算における平均二次粒子径7nmのコロイダルシリカ粒子分散体を得た。
 3.1.7.水分散体Gの調製
 特開2004-315300号公報に記載された実施例1に従ってシリカ粒子を作製し、シリカ濃度4質量%、平均二次粒子径7nmのコロイダルシリカ粒子分散体を得た。その後、得られたコロイダルシリカ粒子分散体6510gを60℃に加熱した。その後、(3-トリエトキシシリル)プロピルコハク酸無水物(東京化成工業社製)15.5gを加え、さらに60℃で4時間撹拌し、体積換算における平均二次粒子径7nmのカルボキシ基で表面修飾されたシリカ粒子を含む水分散体Gを得た。
 3.1.8.水分散体Hの調製
 特開2004-315300号公報に記載された実施例1に従ってシリカ粒子を作製し、シリカ濃度4質量%、平均二次粒子径7nmのコロイダルシリカ粒子分散体を得た。続いて、得られたコロイダルシリカ粒子分散体6510gに25%アンモニア水(富士フイルム和光純薬社製)を添加し、pH9に調整した。その後、(3-トリエトキシシリル)メルカプト基含有シランカップリング剤(商品名「KBM-803」、信越化学工業社製)3.9gを滴下し、60℃で2時間撹拌した。その後、過酸化水素(富士フイルム和光純薬社製)50gを添加し、常圧下で8時間還流し、体積換算における平均二次粒子径7nmのスルホ基で表面修飾されたシリカ粒子を含む水分散体Hを得た。
 3.1.9.水分散体Iの調製
 特開2020-25005号公報の実施例に記載された方法と同様に、扶桑化学工業社製の高純度コロイダルシリカ(品番:PL-1;シリカ濃度12質量%)3250gに25%アンモニア水(富士フイルム和光純薬社製)を添加し、pH9に調整した。その後、(3-トリエトキシシリル)メルカプト基含有シランカップリング剤(商品名「KBM-803」、信越化学工業株式会社製)3.9gを滴下し、60℃で2時間撹拌した。その後、過酸化水素(富士フイルム和光純薬社製)50gを添加し、常圧下で8時間還流し、体積換算における平均二次粒子径38nmのスルホ基で表面修飾されたシリカ粒子を含む水分散体Iを得た。
 3.1.10.水分散体Jの調製
 特開2020-25005号公報の実施例に記載された方法と同様に、扶桑化学工業社製の高純度コロイダルシリカ(品番:PL-1;シリカ濃度12質量%)3250gを60℃に加熱した。その後、(3-トリエトキシシリル)プロピルコハク酸無水物(東京化成工業社製)15.5gを加え、さらに60℃で4時間撹拌し、体積換算における平均二次粒子径38nmのカルボキシ基で表面修飾されたシリカ粒子を含む水分散体Jを得た。
 3.1.11.水分散体Kの調製
 特開2020-25005号公報の実施例に記載された方法と同様に、体積換算における平均二次粒子径38nmの高純度コロイダルシリカ(扶桑化学工業社製、品番:PL-1;シリカ濃度12質量%)を含む水分散体Kを得た。
 3.1.12.水分散体Lの調製
 国際公開第2008/072637号に記載された比較例1に従ってシリカ粒子を作製し、シリカ濃度29質量%、体積換算における平均二次粒子径23nmのシリカ粒子分散体Lを得た。
 3.2.成分(D)の調製
 3.2.1.ラウリルイミノジプロピオン酸塩の調製
 アルキルアミンとしてラウリルアミン(東京化成工業社製)3.6g(19.5mmol)、3―クロロプロピオン酸(東京化学工業社製)5.7g(52.9mmol)を、水5.0mL、エタノール(関東化学社製)32mLの混合溶液に加え、6時間還流撹拌した。この還流撹拌中に、水酸化カリウム(関東化学社製)より調製した水酸化カリウム水溶液(5.0mol/L)7.8mLを加えpH調整を行った。その後、溶液を4℃に冷却し、沈殿物を生成した。生成した沈殿物を、エタノールにて洗浄した後、ろ過し、減圧乾燥させて固体を回収し、ラウリルイミノジプロピオン酸塩を得た。
 3.2.2.ミリスチルイミノジプロピオン酸塩の調製
 アルキルアミンとしてミリスチルアミン(東京化成工業社製)4.2g(19.5mmol)を用いた他は、上記「3.2.1.ラウリルイミノジプロピオン酸塩の調製」と同様の操作を行い、ミリスチルイミノジプロピオン酸塩を得た。
 3.3.化学機械研磨用組成物の調製
 表1~表5に示す組成となるように各成分を混合し、さらに表1~表5に示すpHとなるように水酸化カリウム水溶液(関東化学社製、商品名「48%水酸化カリウム水溶液」)とリン酸(富士フイルム和光純薬社製、商品名「りん酸」)または硝酸(関東化学社製、商品名「硝酸1.38」)とを必要に応じて添加して調整し、全成分の合計量が100質量%となるように純水を添加して、各実施例および各比較例の化学機械研磨用組成物を調製した。このようにして得られた各化学機械研磨用組成物について、ゼータ電位測定装置(Dispersion Technology Inc.製、型式「DT300」)を用いて砥粒のゼータ電位を測定した結果を表1~表5に併せて示す。
 3.4.評価方法
 3.4.1.研磨速度評価
 上記で調製した化学機械研磨用組成物を用いて、直径12インチのルテニウム膜100nm付きウエハおよび直径12インチのモリブデン膜500nm付きウエハを被研磨体として、下記の条件で化学機械研磨試験を行った。
(研磨条件)
・研磨装置:荏原製作所社製、型式「F-REX300SII」
・研磨パッド:デュポン社製、「多孔質ポリウレタン製パッド;Optivisiоn9500 CMP Polishing pad」
・化学機械研磨用組成物供給速度:250mL/分
・定盤回転数:100rpm
・ヘッド回転数:90rpm
・ヘッド押し付け圧:2psi
・研磨時間:60秒
・研磨速度(nm/分)=(研磨前の膜の厚さ(nm)-研磨後の膜の厚さ(nm))/研磨時間(分)
 なお、ルテニウム膜およびモリブデン膜の厚さは、抵抗率測定機(ケーエルエー・テンコール社製、型式「RS-100」)により直流4探針法で抵抗を測定し、このシート抵抗値とルテニウムの体積抵抗率から下記式によって算出した。
・ルテニウム膜の厚さ(nm)=[ルテニウム膜の体積抵抗率(Ω・m)÷シート抵抗値(Ω/sq)]×10
・モリブデン膜の厚さ(nm)=[モリブデン膜の体積抵抗率(Ω・m)÷シート抵抗値(Ω/sq)]×10
 ルテニウム膜の研磨速度の評価基準は下記の通りである。ルテニウム膜の研磨速度の評価結果を表1~表3に併せて示す。
(評価基準)
A:研磨速度が100nm/分以上である場合、非常に良好と判断した。
B:研磨速度が50nm/分以上100nm/分未満である場合、実用に供することができるので良好と判断した。
C:研磨速度が50nm/分未満である場合、研磨速度が小さく実用困難であるため不良と判断した。
 モリブデン膜の研磨速度の評価基準は下記の通りである。モリブデン膜の研磨速度の評価結果を表4~表5に併せて示す。
(評価基準)
A:研磨速度が100nm/分以上である場合、非常に良好と判断した。
B:研磨速度が100nm/分未満である場合、研磨速度が小さく実用困難であるため不良と判断した。
 3.4.2.エッチング速度評価
 上記で調製した化学機械研磨用組成物を60℃に昇温し、30mm×10mmに裁断した、ルテニウム膜100nm付きウエハ片あるいはモリブデン膜200nm付きウエハ片を5分間浸漬した。その後、ウエハ片を取り出して流水で水洗し、上記「3.4.1.研磨速度評価」と同様の方法によりルテニウム膜あるいはモリブデン膜の厚さを測定した。そして、浸漬前後のルテニウム膜あるいはモリブデン膜の厚さの変化からエッチング速度を下記式により算出した。
・ルテニウム膜のエッチング速度(nm/分)=(エッチング前のルテニウム膜の厚さ(nm)-エッチング後のルテニウム膜の厚さ(nm))/エッチング時間(分)
・モリブデン膜のエッチング速度(nm/分)=(エッチング前のモリブデン膜の厚さ(nm)-エッチング後のモリブデン膜の厚さ(nm))/エッチング時間(分)
 ルテニウム膜のエッチング速度の評価基準は下記の通りである。ルテニウム膜のエッチング速度の評価結果を表1~表3に併せて示す。
(評価基準)
A:エッチング速度が1.5nm/分未満である場合、非常に良好と判断した。
B:エッチング速度が1.5nm/分以上3nm/分未満である場合、実用に供することができるので良好と判断した。
C:エッチング速度が3nm/分以上である場合、エッチング速度が大きく実用困難であるため不良と判断した。
 モリブデン膜のエッチング速度の評価基準は下記の通りである。モリブデン膜のエッチング速度の評価結果を表4~表5に併せて示す。
(評価基準)
A:エッチング速度が20nm/分未満である場合、非常に良好と判断した。
B:エッチング速度が20nm/分以上である場合、エッチング速度が大きく実用困難であるため不良と判断した。
 3.4.3.貯蔵安定性評価
 上記で調製した化学機械研磨用組成物を20℃の恒温保管庫にて3日間または7日間保管した後、直径12インチのルテニウム膜100nm付きウエハあるいは直径12インチのモリブデン膜500nm付きウエハを被研磨体として、上記「3.4.1.研磨速度評価」と同じ研磨条件で化学機械研磨試験を行った。そして、保管前後のルテニウム膜の研磨速度の変動率を下記式により算出した。
 変動率(%)=|((「3.4.1.研磨速度評価」の項で算出された研磨速度)-(保管後の化学機械研磨用組成物を用いた場合の研磨速度))/(「3.4.1.研磨速度評価」の項で算出された研磨速度)×100|
 変動率の評価基準は下記の通りである。化学機械研磨用組成物の貯蔵安定性の評価結果を表1~表5に併せて示す。
(評価基準)
A:貯蔵後7日経過時の研磨速度の変動率が10%未満である場合、非常に良好と判断した。
B:貯蔵後3日経過時の研磨速度の変動率が10%未満であるが、貯蔵後7日経過時の研磨速度の変動率が10%以上である場合、実用に供することができるので良好と判断した。
C:貯蔵後3日経過時の研磨速度の変動率が10%以上である場合、実用困難であるため不良と判断した。
 3.5.評価結果
 表1~表5に、各実施例および各比較例で使用した化学機械研磨用組成物の組成ならびに各評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上表1~上表5中の各成分は、それぞれ下記の商品または試薬を用いた。
<成分(A)>
・水分散体A~L:上記「3.1.シリカ粒子水分散体の調製」の項で調製した水分散体A~L
<成分(D)>
・N-(ホスホノメチル)イミノ二酢酸:シグマアルドリッチ社製、商品名「N-(ホスホノメチル)イミノ二酢酸 水和物」
・ヒドロキシエチルイミノ二酢酸:東京化成工業社製、商品名「N-(2-Hydroxyethyl)iminodiacetic Acid」
・N-(2-カルボキシエチル)イミノ二酢酸:東京化成工業社製、商品名「N-(2-Carboxyethyl)iminodiacetic Acid」
・ニトリロ三酢酸:東京化成工業社製、商品名「Nitrilotriacetic Acid」
・3,3’,3’’-ニトリロトリプロピオン酸:東京化成工業社製、商品名「3,3’,3’’-Nitrilopropionic Acid」
・エチレンジアミン四酢酸:東京化成工業社製、商品名「Ethylenediaminetetraacetic Acid」
・L-グルタミン酸二酢酸四ナトリウム:東京化成工業社製、商品名「Tetrasodium N,N-Bis(carboxymethyl)-L-glutamate (ca. 40% in Water)」
・グリシン-N,N-ビス(メチレンホスホン酸):東京化成工業社製、商品名「Glycine-N,N-bis(methylenephosphonic Acid)」
・グリコールエーテルジアミン四酢酸:東京化成工業社製、商品名「Ethylene Glycol Bis(2-aminoethyl Ether)-N,N,N’,N’-tetraacetic Acid」
・ラウリルイミノジプロピオン酸塩:上記「3.2.成分(D)の調製」の項で調製したラウリルイミノジプロピオン酸塩
・ミリスチルイミノジプロピオン酸塩:上記「3.2.成分(D)の調製」の項で調製したミリスチルイミノジプロピオン酸塩
・ドデシルアミノエチルアミノエチルグリシン:三洋化成工業社製、商品名「レボン S」
<成分(B)>
・HIO(過ヨウ素酸):富士フイルム和光純薬社製、商品名「オルト過よう素酸」
・KClO(次亜塩素酸カリウム):関東化学社製、商品名「次亜塩素酸カリウム溶液」
・KClO(亜塩素酸カリウム):Angene社製、商品名「Potassium Chlorite」
・NaBrO(次亜臭素酸ナトリウム):関東化学社製、商品名「次亜臭素酸ナトリウム」
<成分(C)>
・過酸化水素:富士フイルム和光純薬社製、30%水溶液
<その他の成分>
・2-ホスホノブタン-1,2,4-トリカルボン酸:東京化成工業社製、商品名「2-Phosphonobutane-1,2,4-tricarboxylic Acid (ca. 50% in Water)」
・N,N,N’,N’-テトラメチルエチレンジアミン:東京化成工業社製、商品名「N,N,N’,N’-Tetramethylethylenediamine」
・1-ヒドロキシエチリデン-1,1’-ジホスホン酸:東京化成工業社製、商品名「1-Hydroxyethane-1,1-diphosphonic Acid (ca. 60% in Water, ca. 4.2mol/L)」
・エチレンジアミンテトラ(メチレンホスホン酸):東京化成工業社製、商品名「N,N,N’,N’-Ethylenediaminetetrakis(methylenephosphonic Acid)」
・L-酒石酸:東京化成工業株式会社製、商品名「L-酒石酸」
・マロン酸:東京化成工業社製、商品名「Malonic Acid」
・フタル酸:東京化成工業社製、商品名「Phthalic Acid」
・クエン酸:東京化成工業社製、商品名「Citric Acid」
・アジピン酸:東京化成工業社製、商品名「Adipic Acid」
・硝酸鉄九水和物、富士フイルム和光純薬社製、商品名「硝酸鉄(III)九水和物」
・クエン酸鉄水和物、富士フイルム和光純薬社製、商品名「くえん酸鉄(III)n水和物」
・アセチルアセトン鉄、東京化成工業社製、商品名「Tris(2,4-pentanedionato)iron(III)」
・水酸化エチルトリメチルアンモニウム、SACHEM社製、商品名「Envure SETM 3330」
・水酸化ベンジルトリメチルアンモニウム、東京化成工業社製、商品名「Benzyltrimethylammonium Hydroxide (40% in Water)」
・水酸化トリメチルアダマンチルアンモニウム、東京化成工業社製、商品名「N,N,N-Trimethyl-1-adamantylammonium Hydroxide (25% in Water)」
・水酸化テトラエチルアンモニウム、東京化成工業社製、商品名「Tetraethylammonium Hydroxide (10% in Water)」
・水酸化テトラブチルアンモニウム、東京化成工業社製、商品名「Tetrabutylammonium Hydroxide (40% in Water)」
 MA/MD=0.1~700の範囲にある実施例1~26の化学機械研磨用組成物によれば、ルテニウム膜やモリブデン膜を効率的に研磨することができると共に、成分(D)がルテニウム膜やモリブデン膜の表面に吸着することでルテニウムの過剰な腐食を抑制できることがわかる。
 これに対し、成分(D)の代替成分を含有する比較例1~5、10~13の化学機械研磨用組成物によれば、ルテニウム膜やモリブデン膜の表面を効果的に保護することができないためにルテニウム膜やモリブデン膜の腐食が生じるか、あるいは当該成分が特性アニオン種と反応して分解することで貯蔵安定性が著しく悪化して実用に供することが困難であることがわかる。MA/MDが0.1未満の比較例6、9の化学機械研磨用組成物によれば、成分(D)の含有量に対する成分(A)の含有量が少なすぎるために、ルテニウム膜やモリブデン膜を効率的に研磨することができず、研磨速度が小さくなることがわかる。MA/MDが700超の比較例7の化学機械研磨用組成物によれば、成分(D)の含有量に対する成分(A)の含有量が多すぎるために、成分(D)がルテニウム膜の表面を効果的に保護することができず、ルテニウム膜の腐食が生じていることがわかる。MA/MDが700超の比較例8の化学機械研磨用組成物によれば、成分(D)の含有量に対する成分(A)の含有量が多すぎるために貯蔵安定性が悪化しており、モリブデン膜の研磨速度が小さくなることがわかる。
 本発明は、前述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
10…基体、12…酸化シリコン膜、14…配線用溝、16…ルテニウム含有膜、18…銅膜、42…スラリー供給ノズル、44…スラリー(化学機械研磨用組成物)、46…研磨用パッド、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、100…被処理体、200…研磨装置

Claims (10)

  1.  砥粒(A)と、
     アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基およびその塩からなる群より選択される少なくとも1種の官能基と、を有する化合物(D)と、を含有し、
     前記砥粒(A)の含有量をMA(質量%)、前記化合物(D)の含有量をMD(質量%)とした場合、MA/MD=0.1~700である、化学機械研磨用組成物。
  2.  前記砥粒(A)が、下記一般式(1)または(2)で表される官能基を有する、請求項1に記載の化学機械研磨用組成物。
     -SO  ・・・・・(1)
     -COO ・・・・・(2)
    (Mは1価の陽イオンを表す。)
  3.  前記砥粒(A)が、下記一般式(3)または(4)で表される官能基を有する、請求項1に記載の化学機械研磨用組成物。
     -NR ・・・・・(3)
     -N ・・・・・(4)
    (上記式(3)および(4)中、R、RおよびRは各々独立して、水素原子、または置換もしくは非置換の炭化水素基を表す。Mは陰イオンを表す。)
  4.  化学機械研磨用組成物中の前記砥粒(A)のゼータ電位の絶対値が2mV以上である、請求項1ないし請求項3のいずれか一項に記載の化学機械研磨用組成物。
  5.  前記MD(質量%)が0.001~5質量%である、請求項1ないし請求項4のいずれか一項に記載の化学機械研磨用組成物。
  6.  pHが6以上12以下である、請求項1ないし請求項5のいずれか一項に記載の化学機械研磨用組成物。
  7.  pHが1.5以上4以下である、請求項1ないし請求項5のいずれか一項に記載の化学機械研磨用組成物。
  8.  化学機械研磨用組成物における前記砥粒(A)の平均二次粒子径が5nm以上70nm以下である、請求項7に記載の化学機械研磨用組成物。
  9.  請求項1ないし請求項8のいずれか一項に記載の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む、研磨方法。
  10.  前記半導体基板が、ルテニウム、モリブデン、ルテニウム合金およびモリブデン合金からなる群より選択される少なくとも1種により構成される部位を備える、請求項9に記載の研磨方法。
PCT/JP2022/029924 2021-08-24 2022-08-04 化学機械研磨用組成物および研磨方法 WO2023026814A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021136296 2021-08-24
JP2021-136296 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023026814A1 true WO2023026814A1 (ja) 2023-03-02

Family

ID=85323164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029924 WO2023026814A1 (ja) 2021-08-24 2022-08-04 化学機械研磨用組成物および研磨方法

Country Status (2)

Country Link
TW (1) TW202323464A (ja)
WO (1) WO2023026814A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269910A (ja) * 2005-03-25 2006-10-05 Fuji Photo Film Co Ltd 金属用研磨液及びこれを用いた研磨方法
JP2008546214A (ja) * 2005-06-06 2008-12-18 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 集積された化学機械研磨組成物および単一プラテン処理のためのプロセス
JP2016030831A (ja) * 2014-07-25 2016-03-07 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated コバルト含有基板の化学的機械的研磨(cmp)
JP2016069522A (ja) * 2014-09-30 2016-05-09 株式会社フジミインコーポレーテッド 組成物
JP2020025066A (ja) * 2018-03-15 2020-02-13 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、研磨方法、および半導体基板の製造方法
JP2020035895A (ja) * 2018-08-30 2020-03-05 Jsr株式会社 化学機械研磨用水系分散体及びその製造方法
JP2020096190A (ja) * 2015-03-04 2020-06-18 日立化成株式会社 Cmp用研磨液、及び、これを用いた研磨方法
JP2020178083A (ja) * 2019-04-22 2020-10-29 扶桑化学工業株式会社 金属研磨用コロイダルシリカ
JP2021019113A (ja) * 2019-07-22 2021-02-15 Jsr株式会社 化学機械研磨用組成物及びその製造方法、並びに研磨方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269910A (ja) * 2005-03-25 2006-10-05 Fuji Photo Film Co Ltd 金属用研磨液及びこれを用いた研磨方法
JP2008546214A (ja) * 2005-06-06 2008-12-18 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 集積された化学機械研磨組成物および単一プラテン処理のためのプロセス
JP2016030831A (ja) * 2014-07-25 2016-03-07 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated コバルト含有基板の化学的機械的研磨(cmp)
JP2016069522A (ja) * 2014-09-30 2016-05-09 株式会社フジミインコーポレーテッド 組成物
JP2020096190A (ja) * 2015-03-04 2020-06-18 日立化成株式会社 Cmp用研磨液、及び、これを用いた研磨方法
JP2020025066A (ja) * 2018-03-15 2020-02-13 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、研磨方法、および半導体基板の製造方法
JP2020035895A (ja) * 2018-08-30 2020-03-05 Jsr株式会社 化学機械研磨用水系分散体及びその製造方法
JP2020178083A (ja) * 2019-04-22 2020-10-29 扶桑化学工業株式会社 金属研磨用コロイダルシリカ
JP2021019113A (ja) * 2019-07-22 2021-02-15 Jsr株式会社 化学機械研磨用組成物及びその製造方法、並びに研磨方法

Also Published As

Publication number Publication date
TW202323464A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
JP4261058B2 (ja) 銅/タンタル基体に有用な化学的機械研磨スラリー
KR101144419B1 (ko) 금속-함유 기판의 화학 기계적 평탄화를 위한 방법 및 조성물
TWI685553B (zh) 金屬化學機械平坦化(cmp)組合物及其方法
TW201723139A (zh) 一種化學機械拋光液及其應用
TW201920533A (zh) 用於銅及矽通孔(tsv)應用的化學機械平坦化(cmp)組合物及其方法
TW202010005A (zh) 化學機械研磨用水系分散體及其製造方法
JP2007095841A (ja) 化学的機械的研磨方法
WO2023026814A1 (ja) 化学機械研磨用組成物および研磨方法
JP2008244316A (ja) 金属用研磨液及び研磨方法
WO2023026813A1 (ja) 化学機械研磨用組成物および研磨方法
WO2023026780A1 (ja) 化学機械研磨用組成物および研磨方法
WO2023026779A1 (ja) 化学機械研磨用組成物および研磨方法
WO2023026778A1 (ja) 化学機械研磨用組成物および研磨方法
WO2021117428A1 (ja) 化学機械研磨用組成物及び研磨方法
JP6892035B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
WO2023085008A1 (ja) 化学機械研磨用組成物およびその製造方法、ならびに研磨方法
WO2023085007A1 (ja) 化学機械研磨用組成物および研磨方法
WO2023085009A1 (ja) 化学機械研磨用組成物および研磨方法
JP2023030893A (ja) 化学機械研磨用組成物および研磨方法
JP2023072344A (ja) 化学機械研磨用組成物および研磨方法
JP7468811B1 (ja) 化学機械研磨用組成物及び研磨方法
JP2007220759A (ja) 金属用研磨液及びそれを用いた化学的機械的研磨方法
JP6892034B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP6892033B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
WO2023007938A1 (ja) 化学機械研磨用組成物および研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE