WO2023026671A1 - Decorative material, method for manufacturing decorative material, molded article, decorative panel, and electronic device - Google Patents

Decorative material, method for manufacturing decorative material, molded article, decorative panel, and electronic device Download PDF

Info

Publication number
WO2023026671A1
WO2023026671A1 PCT/JP2022/025383 JP2022025383W WO2023026671A1 WO 2023026671 A1 WO2023026671 A1 WO 2023026671A1 JP 2022025383 W JP2022025383 W JP 2022025383W WO 2023026671 A1 WO2023026671 A1 WO 2023026671A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal layer
mass
layer
compound
Prior art date
Application number
PCT/JP2022/025383
Other languages
French (fr)
Japanese (ja)
Inventor
陽大 石井
淳 渡部
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023026671A1 publication Critical patent/WO2023026671A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present disclosure relates to decorative materials, methods of manufacturing decorative materials, moldings, decorative panels, and electronic devices.
  • WO 2017/018468 discloses a cholesteric resin laminate comprising a substrate, an intermediate layer, and a cholesteric resin layer in this order, and the center of the reflection band of the cholesteric resin layer before and after heating the laminate at 130°C for 8 hours.
  • a cholesteric resin laminate having a wavelength difference of 50 nm or less is disclosed.
  • a cured liquid crystal layer obtained by curing a liquid crystal layer containing a cholesteric liquid crystal compound and a photoisomerizable compound on a substrate, and in the cured liquid crystal layer, photoisomerization of the photoisomerizable compound Disclosed is a decorative film for molding that has a plurality of regions with different conversion ratios.
  • Stretchability and heat resistance are required as properties of decorative materials including liquid crystal layers. Improvement of the stretchability of the liquid crystal layer is particularly desired among the constituent elements of the decorative material. However, when the stretchability of the liquid crystal layer is improved, the heat resistance of the liquid crystal layer tends to decrease. On the other hand, for example, a method of promoting the formation of a crosslinked structure in the manufacturing process of the liquid crystal layer is thought to contribute to improving the heat resistance of the liquid crystal layer, but the stretchability of the liquid crystal layer may decrease. Therefore, it is required to have both stretchability and heat resistance.
  • a decorative material that includes a liquid crystal layer that has excellent stretchability and properties that the reflected color of the liquid crystal does not easily change in a heat environment.
  • a method for manufacturing the decorative material there is provided a molding of the decorating material.
  • a decorating panel including moldings of the above decorating material.
  • an electronic device including a molding of the decorating material.
  • the present disclosure includes the following aspects.
  • the cholesteric liquid crystal layer contains a compound having a breaking elongation of 80% or more and a molecular weight of 10,000 or less per unit volume of the cholesteric liquid crystal layer.
  • a decorative material whose amount is less than 50 mg/cm 3 .
  • the decorating material according to ⁇ 1>, wherein the cholesteric liquid crystal layer is a cured product of a composition containing a cholesteric liquid crystal compound and an optically active compound.
  • the optically active compound contains an optically active compound having one polymerizable group.
  • ⁇ 4> The decorating material according to any one of ⁇ 1> to ⁇ 3>, wherein the cholesteric liquid crystal layer has a crosslink density of 0.02 mol/L to 0.06 mol/L.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, including an adhesive-containing layer adjacent to the cholesteric liquid crystal layer, wherein the breaking elongation of the adhesive-containing layer is equal to or higher than the breaking elongation of the cholesteric liquid crystal layer 1.
  • ⁇ 6> A molding of the decorative material according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> A decorative panel comprising a molding of the decorative material according to any one of ⁇ 1> to ⁇ 5>.
  • An electronic device comprising a molding of the decorative material according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 9> Preparing a composition containing a cholesteric liquid crystal compound having a polymerizable group, an optically active compound having a polymerizable group, and a photopolymerization initiator, and applying the composition on a peelable substrate. curing the composition with light to form a cholesteric liquid crystal layer having a crosslink density of 0.02 mol/L to 0.06 mol/L; and forming an adhesive-containing layer on the cholesteric liquid crystal layer. and, in this order, the optically active compound comprising an optically active compound having one polymerizable group.
  • a decorative material that includes a liquid crystal layer that has excellent stretchability and properties that the reflected color of the liquid crystal does not easily change in a heat environment.
  • a method for manufacturing the decorative material there is provided a molding of the decorating material.
  • a decorating panel including moldings of the above decorating material.
  • an electronic device including a molding of the decorating material.
  • a numerical range represented using “ ⁇ ” means a range that includes the numerical values described before and after " ⁇ " as lower and upper limits.
  • the upper limit value described in a certain numerical range may be replaced with the upper limit value of another numerical range described step by step, and is described in a certain numerical range Any given lower limit may be replaced by the lower limit of any other numerical range recited.
  • the upper or lower limit values described in a certain numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition is the total amount of the above multiple substances present in the composition. means.
  • step includes not only independent steps but also steps that cannot be clearly distinguished from other steps once the intended purpose is achieved.
  • Solid content in the present disclosure means components excluding solvent.
  • liquid components that do not correspond to solvents are included in the solid content.
  • Groups (atomic groups) for which "substituted” and “unsubstituted” are not described in the present disclosure include groups having no substituents and groups having substituents.
  • alkyl group includes not only alkyl groups without substituents (ie, unsubstituted alkyl groups) but also alkyl groups with substituents (ie, substituted alkyl groups).
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) in the present disclosure are obtained by gel permeation using columns manufactured by Tosoh Corporation (specifically, TSKgel GMHxL, TSKgel G4000HxL and TSKgel G2000HxL). It is measured using a chromatography (GPC) analyzer, tetrahydrofuran (THF) as a solvent, a differential refractometer and polystyrene as a standard substance.
  • GPC chromatography
  • the decorative material includes a cholesteric liquid crystal layer. Furthermore, the elongation at break of the cholesteric liquid crystal layer is 80% or more. Furthermore, the content of compounds having a molecular weight of 10,000 or less per unit volume of the cholesteric liquid crystal layer in the cholesteric liquid crystal layer is less than 50 mg/cm 3 . According to the above-described embodiments, a decorative material is provided that includes a liquid crystal layer that has excellent stretchability and properties that the reflected color of the liquid crystal does not easily change in a hot environment.
  • the reason why stretchability and heat resistance are improved is presumed as follows.
  • One of the factors that change the reflected color of liquid crystals in a hot environment is thought to be that the helical pitch of cholesteric liquid crystals changes due to heating.
  • the helical pitch changes, the wavelength of light reflected by the liquid crystal layer changes, resulting in a change in color.
  • the content of the compound having a molecular weight of 10,000 or less per unit volume of the cholesteric liquid crystal layer is set to less than 50 mg/cm 3 in the cholesteric liquid crystal layer.
  • the elongation at break of the cholesteric liquid crystal layer is set to 80% or more.
  • the stretchability of the cholesteric liquid crystal layer is improved. Therefore, according to one embodiment of the present disclosure, a decorative material is provided that includes a liquid crystal layer that has excellent stretchability and properties that the reflected color of the liquid crystal does not easily change in a heat environment.
  • a decorating material includes a cholesteric liquid crystal layer (hereinafter sometimes simply referred to as "liquid crystal layer”).
  • a “cholesteric liquid crystal layer” is a layer having a molecular alignment state unique to cholesteric liquid crystals.
  • the "orientation state of molecules peculiar to cholesteric liquid crystal” may be referred to as “cholesteric orientation state” or simply “orientation state”.
  • the alignment state may include an alignment state that reflects right-handed circularly polarized light, an alignment state that reflects left-handed circularly polarized light, or both.
  • the orientation state may be fixed by methods such as polymerization and cross-linking.
  • the liquid crystal layer may be a liquid crystal layer in which a cholesteric liquid crystal compound is fixed in a cholesteric alignment state.
  • the breaking elongation of the liquid crystal layer is 80% or more.
  • the stretchability of the liquid crystal layer is improved.
  • the elongation at break of the liquid crystal layer is preferably 85% or more, more preferably 90% or more, and even more preferably 110% or more.
  • the elongation at break of the liquid crystal layer is preferably 110% or more, more preferably 120% or more, and even more preferably 130% or more.
  • the elongation at break of the liquid crystal layer is preferably 140% or more, more preferably 150% or more.
  • the elongation at break of the liquid crystal layer is preferably 400% or less, more preferably 300% or less, and 250% or less. It is even more preferable to have
  • an increase in the breaking elongation of the liquid crystal layer enables application of the decorative material to use or processing involving a large amount of stretching, and the thickness of the liquid crystal layer before stretching is equal to the thickness of the liquid crystal layer following stretching. It may be set larger in consideration of the decrease.
  • the thickness of the liquid crystal layer before stretching may affect the development of the cholesteric alignment state. For this reason, the elongation at break of the liquid crystal layer may be set in consideration of the thickness of the liquid crystal layer before stretching and the development of the cholesteric alignment state, in addition to the stretchability.
  • Breaking elongation is measured by the following method.
  • a decorative material having dimensions of 1 cm ⁇ 5 cm is prepared. If the decorative material contains multiple constituent elements, remove constituent elements other than the object to be measured as much as possible in preparing the sample.
  • the breaking elongation of the object to be measured is calculated based on observation of the state of the object to be measured in the sample and the following formula.
  • the "gauge length at break” means the gauge length when the object to be measured in the sample is broken.
  • Breaking elongation (%) ⁇ (distance between gauges at break - distance between gauges before test) / (distance between gauges before test) ⁇ x 100
  • the method of adjusting the breaking elongation of the liquid crystal layer is not limited.
  • the breaking elongation of the liquid crystal layer is adjusted, for example, by the raw material of the liquid crystal layer and the manufacturing conditions of the liquid crystal layer. For example, if the number of cross-linking points between polymers formed during the manufacturing process of the liquid crystal layer is small, the elongation at break of the liquid crystal layer tends to increase.
  • the number of cross-linking points is adjusted by the number of reactive groups (eg, polymerizable groups) contained in the compound used as the raw material of the liquid crystal layer and the reaction conditions. Specific guidelines for determining the raw material of the liquid crystal layer and the manufacturing conditions of the liquid crystal layer include, for example, the crosslink density described below.
  • the crosslink density of the liquid crystal layer is preferably 0.02 mol/L to 0.06 mol/L, more preferably 0.02 mol/L to 0.05 mol/L, and 0.02 mol/L to 0.05 mol/L. 04 mol/L is more preferred.
  • the cross-linking density of the liquid crystal layer is 0.02 mol/L to 0.06 mol/L, the elongation at break of the liquid crystal layer increases and the stretchability improves.
  • the content of the compound having a molecular weight of 10,000 or less per unit volume of the liquid crystal layer in the liquid crystal layer is less than 50 mg/cm 3 .
  • a compound having a molecular weight of 10,000 or less may be referred to as a "low molecular weight compound”. If the content of the low-molecular compound in the liquid crystal layer is less than 50 mg/cm 3 , the reflected color of the liquid crystal is less likely to change in a hot environment. From the viewpoint of heat resistance (that is, the property that the reflected color of the liquid crystal does not easily change in a hot environment), the smaller the content of the low-molecular-weight compound, the better.
  • the content of the low molecular compound is preferably 40 mg/cm 3 or less, more preferably 30 mg/cm 3 or less, even more preferably 20 mg/cm 3 or less, and 10 mg/cm 3 or less. is particularly preferred. From the viewpoint of heat resistance, the lower limit of the content of the low-molecular compound is not limited.
  • the content of low-molecular-weight compounds may be 0 mg/cm 3 .
  • Low-molecular-weight compounds include, for example, cholesteric liquid crystal compounds, optically active compounds, polymerization initiators, polymerizable monomers, polyfunctional polymerizable compounds, photoisomerizable compounds, cross-linking agents, solvents and other additives. Aspects of each component are described in the component descriptions of the compositions below.
  • the method for reducing the content of low-molecular-weight compounds in the liquid crystal layer is not limited.
  • the content of the low-molecular compound in the liquid crystal layer is adjusted, for example, by the raw material of the liquid crystal layer and the manufacturing conditions of the liquid crystal layer.
  • Methods for reducing the content of low-molecular-weight compounds in the liquid crystal layer include, for example, a method using a polymerizable or crosslinkable compound as a raw material for the liquid crystal layer. For example, even if the raw material of the liquid crystal layer contains a large amount of low-molecular-weight compounds, the content of the low-molecular-weight compounds in the liquid crystal layer can be reduced by forming polymers with polymerizable or crosslinkable compounds during the manufacturing process of the liquid crystal layer.
  • the number of reactive groups (e.g., polymerizable groups) contained in the compound used as the raw material for the liquid crystal layer affects not only the elongation at break of the liquid crystal layer, but also the content of low-molecular-weight compounds in the liquid crystal layer.
  • the liquid crystal layer preferably has selective reflectivity.
  • “Selectively reflective” means that a selective reflection wavelength exists in a specific wavelength range.
  • “Selective reflection wavelength” is the average of two wavelengths showing the half-value transmittance (T1/2, unit: %) represented by the following formula, where Tmin (%) is the minimum transmittance of the object. means value.
  • the selective reflection wavelength of the liquid crystal layer may be set, for example, within the range of visible light (380 nm to 780 nm) and near-infrared light (over 780 nm and 2,000 nm or less).
  • Components of the liquid crystal layer include, for example, cholesteric liquid crystal compounds, optically active compounds, polymerization initiators, polymerizable monomers, polyfunctional polymerizable compounds, photoisomerizable compounds, cross-linking agents, solvents and other additives. Aspects of each component are described in the component descriptions of the compositions below.
  • Preferred components of the liquid crystal layer include, for example, a polymer having a structural unit derived from a cholesteric liquid crystal compound having a polymerizable group, a polymer having a structural unit derived from an optically active compound having a polymerizable group, and a polymerizable group. and a polymer having a structural unit derived from a cholesteric liquid crystal compound and a structural unit derived from an optically active compound having a polymerizable group.
  • the liquid crystal layer is preferably a cured product of a composition containing a cholesteric liquid crystal compound and an optically active compound.
  • the composition is cured, for example, by light or heat. A preferred method for curing the composition is described in the explanation of the method for producing the decorative material below.
  • the cured product may not contain a compound having liquid crystallinity.
  • the cured product may contain a compound having no liquid crystallinity formed by polymerization or crosslinking of a cholesteric liquid crystal compound having a reactive group.
  • Components of the composition include, for example, cholesteric liquid crystal compounds, optically active compounds, polymerization initiators, polymerizable monomers, polyfunctional polymerizable compounds, photoisomerizable compounds, cross-linking agents, solvents and other additives.
  • the composition preferably contains a cholesteric liquid crystal compound and an optically active compound. More preferably, the composition contains a cholesteric liquid crystal compound, an optically active compound, and a polymerization initiator. Specific aspects of each component are described below.
  • the composition preferably contains a cholesteric liquid crystal compound.
  • the type of cholesteric liquid crystal compound is not limited.
  • the cholesteric liquid crystal compound may be a known cholesteric liquid crystal compound.
  • the cholesteric liquid crystal compound preferably has a reactive group.
  • the reactive group is preferably a polymerizable group.
  • Polymerizable groups include, for example, radically polymerizable groups and cationic polymerizable groups.
  • the cholesteric liquid crystal compound preferably has a radically polymerizable group.
  • the radical polymerizable group is preferably at least one polymerizable group selected from the group consisting of a vinyl group, an acryloyl group and a methacryloyl group, and at least one polymerizable group selected from the group consisting of an acryloyl group and a methacryloyl group. More preferably, it is a polymerizable group.
  • the cholesteric liquid crystal compound may have two or more reactive groups.
  • the cholesteric liquid crystal compound may have two or more reactive groups.
  • the cholesteric liquid crystal compound may be a cholesteric liquid crystal compound having two or more reactive groups with different crosslinking mechanisms.
  • the cross-linking mechanism may be a condensation reaction, hydrogen bonding or polymerization. At least one of the cross-linking mechanisms of the two or more reactive groups is preferably polymerization.
  • the cross-linking mechanism preferably involves two or more types of polymerization. Examples of reactive groups utilized in the above-described crosslinking mechanism include vinyl groups, (meth)acryl groups, epoxy groups, oxetanyl groups, vinyl ether groups, hydroxy groups, carboxy groups and amino groups.
  • the cholesteric liquid crystal compound having two or more reactive groups with different cross-linking mechanisms may be a compound that can be cross-linked step by step.
  • the reactive groups react according to the cross-linking mechanism of each stage.
  • Methods for stepwise crosslinking of two or more reactive groups include, for example, a method of changing the reaction conditions in each step. Changes in reaction conditions include, for example, temperature, wavelength of light (irradiation), and polymerization mechanism. Utilization of a difference in polymerization mechanism is preferable because the reaction can be easily separated.
  • the polymerization mechanism is controlled, for example, by the type of polymerization initiator.
  • the combination of polymerizable groups includes a radical polymerizable group of vinyl group or (meth)acrylic group, and a cationically polymerizable group of epoxy group, oxetanyl group or vinyl ether group.
  • a radical polymerizable group of vinyl group or (meth)acrylic group a radical polymerizable group of vinyl group or (meth)acrylic group
  • a cationically polymerizable group of epoxy group, oxetanyl group or vinyl ether group Preferably.
  • the cholesteric liquid crystal compound preferably contains a cholesteric liquid crystal compound having one reactive group (preferably a polymerizable group).
  • the ratio of the content of the cholesteric liquid crystal compound having one reactive group to the content of the cholesteric liquid crystal compound is preferably from 96% by mass to 100% by mass, and from 97% by mass to It is more preferably 100% by mass, preferably 98% by mass to 100% by mass.
  • the cholesteric liquid crystal compound preferably contains a cholesteric liquid crystal compound having one reactive group and a cholesteric liquid crystal compound having two or more reactive groups. More preferably, the cholesteric liquid crystal compound includes a cholesteric liquid crystal compound having one reactive group and a cholesteric liquid crystal compound having two reactive groups. From the viewpoint of stretchability and heat resistance, the ratio of the content of the cholesteric liquid crystal compound having two or more reactive groups to the content of the cholesteric liquid crystal compound having one reactive group is 0 to 0 on a mass basis. 0.05 is preferred, 0 to 0.04 is more preferred, and 0 to 0.02 is preferred.
  • reactive groups are shown below. However, the reactive group is not limited to the specific examples below.
  • Et represents an ethyl group and n-Pr represents an n-propyl group.
  • Cholesteric liquid crystal compounds include, for example, rod-shaped cholesteric liquid crystal compounds and disk-shaped cholesteric liquid crystal compounds.
  • the rod-shaped cholesteric liquid crystal compound may be a low-molecular-weight or high-molecular-weight compound.
  • the discotic cholesteric liquid crystal compounds may be low-molecular-weight or high-molecular-weight compounds.
  • the term "polymer" used with respect to cholesteric liquid crystal compounds means compounds having a degree of polymerization of 100 or more (Polymer Physics, Phase Transition Dynamics, Masao Doi, p.2, Iwanami Shoten, 1992 ).
  • Two or more types of rod-shaped cholesteric liquid crystal compounds, two or more types of discotic liquid crystal compounds, or mixtures of rod-shaped cholesteric liquid crystal compounds and discotic liquid crystal compounds may be used. At least one of the two or more cholesteric liquid crystal compounds preferably has a reactive group.
  • the cholesteric liquid crystal compound is preferably a rod-shaped cholesteric liquid crystal compound.
  • Rod-shaped cholesteric liquid crystal compounds include, for example, azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenyl Included are pyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles.
  • Rod-shaped cholesteric liquid crystal compounds also include, for example, polymers of rod-shaped cholesteric liquid crystal compounds having reactive groups.
  • Examples of rod-shaped cholesteric liquid crystal compounds include compounds described in JP-A-2008-281989, JP-A-11-513019 and JP-A-2006-526165.
  • rod-shaped cholesteric liquid crystal compounds are shown below.
  • the rod-shaped cholesteric liquid crystal compound is not limited to the following specific examples.
  • the compounds shown below are synthesized, for example, by the method described in Japanese Patent Publication No. 11-513019.
  • rod-shaped cholesteric liquid crystal compounds having one polymerizable group examples include the following compounds. "Me” shown in the following chemical formula means a methyl group.
  • discotic cholesteric liquid crystal compounds include the following compounds. (1) C.I. Destrade et al., see, for example, Mol. Cryst. 71, 111 (1981) benzene derivatives (2) C.I. Destrade et al., see, for example, Mol. Cryst. 122, 141 (1985) and Physicslett, A, 78, 82 (1990) truxene derivatives (3)B. Kohne et al., see, for example, Angew. Chem. 96, 70 (1984) (4) J. Am. M. Lehn et al.'s research report (J. Chem. Commun., 1794 (1985) and J. Zhang et al.'s research report (J. Am. Chem. Soc. 116, 2655 (1994)) Azacrown-based or phenylacetylene-based macrocycles
  • the discotic cholesteric liquid crystal compound has a structure in which the various structures described above are used as a discotic mother nucleus at the center of the molecule, and groups such as linear alkyl groups, alkoxy groups and substituted benzoyloxy groups are arranged radially, Liquid crystal compounds that exhibit liquid crystallinity and are generally called discotic liquid crystals are included. Negative uniaxiality appears when aggregates of such compounds are uniformly oriented.
  • discotic cholesteric liquid crystal compounds include compounds described in paragraphs 0061 to 0075 of JP-A-2008-281989.
  • the discotic cholesteric liquid crystal compound having a reactive group may be fixed in an alignment state such as horizontal alignment, vertical alignment, tilt alignment and twist alignment.
  • the composition may contain one or more cholesteric liquid crystal compounds.
  • the ratio of the content of the cholesteric liquid crystal compound to the total mass of the solid content of the composition is preferably 30% by mass to 99% by mass, more preferably 40% by mass to 99% by mass, and 60% by mass to More preferably 99% by mass, particularly preferably 70% to 98% by mass.
  • the composition preferably contains an optically active compound.
  • An optically active compound can induce a helical structure of cholesteric liquid crystals.
  • an optically active compound can modulate helical pitch.
  • optically active compound is not limited.
  • the optically active compound may be a known optically active compound.
  • the optically active compound may be selected according to the desired helical structure. Examples of optically active compounds include Liquid Crystal Device Handbook (Chapter 3, Section 4-3, Chiral Agents for TN and STN, p. 199, Japan Society for the Promotion of Science, 142nd Committee, 1989), and JP-A-2003-287623. , JP-A-2002-302487, JP-A-2002-80478, JP-A-2002-80851, JP-A-2010-181852 and JP-A-2014-034581.
  • the optically active compound preferably has a cinnamoyl group.
  • the optically active compound preferably contains an asymmetric carbon atom.
  • the optically active compound may be an axially asymmetric compound or planar asymmetric compound containing no asymmetric carbon atoms.
  • Examples of axially chiral compounds and planar chiral compounds include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the optically active compound may have a reactive group.
  • the reactive group is preferably a polymerizable group.
  • the polymerizable group is preferably at least one polymerizable group selected from the group consisting of an ethylenically unsaturated group, an epoxy group and an aziridinyl group, more preferably an ethylenically unsaturated group, an acryloyl group and at least one polymerizable group selected from the group consisting of methacryloyl groups.
  • the optically active compound may have two or more reactive groups.
  • the optically active compound may have two or more reactive groups.
  • the optically active compound preferably contains an optically active compound having one polymerizable group.
  • the ratio of the content of the optically active compound having one polymerizable group to the content of the optically active compound is , preferably more than 0% by mass, more preferably 50% by mass or more, and even more preferably 70% by mass or more.
  • the upper limit may be 100% by mass.
  • the ratio of the content of the optically active compound having one polymerizable group to the content of the optically active compound may be 0% by mass to 100% by mass.
  • the composition preferably contains a cholesteric liquid crystal compound having a polymerizable group and an optically active compound having a polymerizable group.
  • the reaction between an optically active compound having a polymerizable group and a cholesteric liquid crystal compound having a polymerizable group is derived from structural units derived from the cholesteric liquid crystal compound having a polymerizable group and an optically active compound having a polymerizable group.
  • the type of polymerizable group in the optically active compound is preferably the same as the type of polymerizable group in the cholesteric liquid crystal compound.
  • the optically active compound may be a cholestech liquid crystal compound.
  • the optically active compound may be a photoisomerizable compound that also acts as an optically active compound, from the viewpoints of easiness in forming the liquid crystal layer, easiness in adjusting the helical pitch, and suppression of change in reflectance after molding.
  • photoisomerizable compounds that also act as optically active compounds include compounds represented by formula (CH1) described below.
  • Preferred optically active compounds include, for example, isosorbide derivatives, isomannide derivatives and binaphthyl derivatives.
  • optically active compounds are shown below. However, the optically active compound is not limited to the specific examples below.
  • n represents an integer of 2 to 12. From the viewpoint of synthesis cost, n is preferably 2 or 4.
  • the composition may contain one or more optically active compounds.
  • the ratio of the content of the optically active compound to the total mass of the solid content of the composition is 1% by mass to 20% by mass. %, more preferably 2% by mass to 10% by mass, even more preferably 3% by mass to 9% by mass, and particularly preferably 4% by mass to 8% by mass.
  • the content ratio of the optically active compound having a polymerizable group to the total mass of the solid content of the composition is preferably 0.2% by mass to 15% by mass. It is more preferably 0.5% to 10% by mass, even more preferably 1% to 8% by mass, and particularly preferably 1.5% to 5% by mass.
  • the ratio of the content of the optically active compound having no polymerizable group to the total mass of the solid content of the composition is preferably 0.2% by mass to 20% by mass. , more preferably 0.5% by mass to 10% by mass, and particularly preferably 2% by mass to 8% by mass.
  • the helical pitch and the selective reflection wavelength and its range are adjusted, for example, not only according to the type of cholesteric liquid crystal compound but also according to the content of the optically active compound. For example, when the content of the optically active compound in the liquid crystal layer is doubled, the helical pitch is halved and the central value of the selective reflection wavelength is also halved.
  • composition preferably contains a polymerization initiator.
  • the type of polymerization initiator is not limited.
  • the polymerization initiator may be a known polymerization initiator.
  • the polymerization initiator is preferably a photopolymerization initiator.
  • photopolymerization initiators include ⁇ -carbonyl compounds (see, for example, US Pat. Nos. 2,367,661 and 2,367,670) and acyloin ether compounds (see, for example, US Pat. No. 2,448,828). , ⁇ -hydrocarbon-substituted aromatic acyloin compounds (see, for example, US Pat. No. 2,722,512), polynuclear quinone compounds (see, for example, US Pat. Nos.
  • photopolymerization initiators examples include photoradical polymerization initiators and photocationic polymerization initiators.
  • Preferred radical photopolymerization initiators include, for example, ⁇ -hydroxyalkylphenone compounds, ⁇ -aminoalkylphenone compounds, acylphosphine oxide compounds, thioxanthone compounds and oxime ester compounds.
  • Preferred photocationic polymerization initiators include iodonium salt compounds and sulfonium salt compounds.
  • the composition may contain one or more polymerization initiators.
  • the content of the polymerization initiator relative to the total mass of the solid content of the composition is 0.05% by mass to 10% by mass. It is preferably 0.05% by mass to 5% by mass, more preferably 0.1% by mass to 4% by mass, and 0.2% by mass to 3% by mass. Especially preferred.
  • the composition may contain a polymerizable monomer.
  • Polymerizable monomers can promote cross-linking of cholesteric liquid crystal compounds.
  • polymerizable monomers examples include monomers or oligomers that have two or more ethylenically unsaturated bonds and undergo addition polymerization upon irradiation with light.
  • polymerizable monomers examples include compounds having an addition-polymerizable ethylenically unsaturated group.
  • Polymerizable monomers include monofunctional acrylates, monofunctional methacrylates, polyfunctional acrylates and polyfunctional methacrylates.
  • polymerizable monomers examples include polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate and phenoxyethyl (meth)acrylate.
  • polymerizable monomers examples include polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, trimethylolethane triacrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane diacrylate, neopentyl glycol di( meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, hexanediol di(meth)acrylate, trimethylolpropane tri (acryloyloxypropyl)ether, tri(acryloyloxyethyl)isocyanurate, tri(acryloyloxyethyl)cyanurate and glycerin tri(meth)acrylate.
  • polymerizable monomers examples include compounds formed by adding ethylene oxide or propylene oxide to polyfunctional alcohols such as trimethylolpropane and glycerin, followed by (meth)acrylate.
  • polymerizable monomers examples include urethane acrylates described in JP-B-48-41708, JP-B-50-6034 and JP-A-51-37193.
  • polymerizable monomers examples include polyester acrylates described in JP-A-48-64183, JP-B-49-43191 and JP-B-52-30490.
  • polymerizable monomers examples include epoxy acrylates, which are reaction products of epoxy resin and (meth)acrylic acid.
  • Preferred polymerizable monomers include trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate and dipentaerythritol penta(meth)acrylate.
  • Examples of preferred polymerizable monomers include “polymerizable compound B” described in JP-A-11-133600.
  • the polymerizable monomer may be a cationically polymerizable monomer.
  • cationic polymerizable monomers include, for example, JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, Examples include epoxy compounds, vinyl ether compounds and oxetane compounds described in JP-A-2001-310937 and JP-A-2001-220526.
  • Epoxy compounds include, for example, aromatic epoxides, alicyclic epoxides and aliphatic epoxides.
  • Aromatic epoxides include diglycidyl ether or polyglycidyl ether of bisphenol A, diglycidyl ether or polyglycidyl ether of alkylene oxide adduct of bisphenol A, diglycidyl ether or polyglycidyl ether of hydrogenated bisphenol A, hydrogenated bisphenol A and diglycidyl ethers or polyglycidyl ethers of alkylene oxide adducts of and novolac type epoxy resins.
  • Alkylene oxides include, for example, ethylene oxide and propylene oxide.
  • Alicyclic epoxides include, for example, cyclohexene oxide-containing compounds obtained by epoxidizing compounds having a cycloalkane ring (e.g., cyclohexene and cyclopentene rings) with an oxidizing agent (e.g., hydrogen peroxide and peracid). or a cyclopentene oxide-containing compound.
  • a cycloalkane ring e.g., cyclohexene and cyclopentene rings
  • an oxidizing agent e.g., hydrogen peroxide and peracid
  • Aliphatic epoxides include, for example, diglycidyl ethers or polyglycidyl ethers of aliphatic polyhydric alcohols and diglycidyl ethers or polyglycidyl ethers of alkylene oxide adducts of aliphatic polyhydric alcohols.
  • Aliphatic epoxides include, for example, diglycidyl ethers of alkylene glycols (eg, diglycidyl ethers of ethylene glycol, diglycidyl ethers of propylene glycol, and diglycidyl ethers of 1,6-hexanediol).
  • Aliphatic epoxides include, for example, polyglycidyl ethers of polyhydric alcohols (eg, diglycidyl ethers or polyglycidyl ethers of glycerin and diglycidyl ethers or polyglycidyl ethers of alkylene oxide adducts of glycerin).
  • Aliphatic epoxides include, for example, diglycidyl ethers of polyalkylene glycols (eg, diglycidyl ethers of polyethylene glycol or its alkylene oxide adducts and diglycidyl ethers of polypropylene glycol or its alkylene oxide adducts).
  • Alkylene oxides include, for example, ethylene oxide and propylene oxide.
  • Examples of cationic polymerizable monomers include monofunctional or bifunctional oxetane monomers.
  • 3-ethyl-3-hydroxymethyloxetane eg, OXT101 manufactured by Toagosei Co., Ltd.
  • 1,4-bis[(3-ethyl-3-oxetanyl)methoxymethyl]benzene eg, OXT121 manufactured by Toagosei Co., Ltd.
  • 3-ethyl-3-(phenoxymethyl) oxetane eg, OXT211 manufactured by Toagosei Co., Ltd.
  • di(1-ethyl-3-oxetanyl) methyl ether eg, OXT221 manufactured by Toagosei Co., Ltd.
  • 3-ethyl -3-(2-ethylhexyloxymethyl)oxetane eg, OXT212 manufactured by Toagosei Co., Ltd.
  • 3-ethyl-3-hydroxymethyloxetane 3-ethyl-3-(phenoxymethyl)oxetane and di(1-ethyl-3-oxetanyl)methyl ether.
  • Monofunctional or polyfunctional oxetane compounds described in JP-A-2001-220526 and JP-A-2001-310937 may also be used.
  • the composition may contain a polyfunctional polymerizable compound.
  • the polyfunctional polymerizable compound can contribute to suppression of change in reflectance after molding.
  • the polyfunctional polymerizable compound for example, a cholesteric liquid crystal compound having two or more ethylenically unsaturated groups and no cyclic ether group, a cholesteric liquid crystal compound having two or more cyclic ether groups and an ethylenic A cholesteric liquid crystal compound having no unsaturated groups, a cholesteric liquid crystal compound having two or more ethylenically unsaturated groups and two or more cyclic ether groups, an optically active compound having two or more polymerizable groups, and a cross-linking agent. mentioned.
  • Preferred ethylenically unsaturated groups include, for example, (meth)acrylic groups. More preferred ethylenically unsaturated groups include, for example, (meth)acryloxy groups.
  • Preferred cyclic ether groups include, for example, epoxy groups and oxetanyl groups. More preferred cyclic ether groups include, for example, oxetanyl groups.
  • the polyfunctional polymerizable compound has two or more ethylenically unsaturated groups and has no cyclic ether group, a cholesteric liquid crystal compound, two or more cyclic ether groups and an ethylenically unsaturated group It preferably contains at least one compound selected from the group consisting of a cholesteric liquid crystal compound having no and an optically active compound having two or more polymerizable groups, and an optically active compound having two or more polymerizable groups It is more preferable to include
  • the composition may contain one or more polyfunctional polymerizable compounds.
  • the content ratio of the polyfunctional polymerizable compound to the total mass of the solid content of the composition is preferably 0.5% by mass to 70% by mass, and 1% by mass. It is more preferably from 1 to 50 mass %, still more preferably from 1.5 mass % to 20 mass %, and particularly preferably from 2 mass % to 10 mass %.
  • the composition may contain a photoisomerizable compound.
  • the type of photoisomerizable compound is not limited.
  • the photoisomerizable compound may be a known photoisomerizable compound. From the viewpoint of suppression of change in reflectance after molding and maintenance of the isomerized structure, a compound whose steric structure changes upon exposure is preferred.
  • a photoisomerizable compound has a photoisomerizable structure.
  • the photoisomerizable compound preferably has a structure whose steric structure changes upon exposure, and the EZ configuration is isomerized upon exposure. It is more preferable to have a disubstituted or more ethylenically unsaturated bond that isomerizes, and it is particularly preferable to have a disubstituted ethylenically unsaturated bond whose EZ configuration is isomerized by exposure.
  • Isomerization of the EZ configuration includes cis-trans isomerization.
  • the disubstituted ethylenically unsaturated bond is preferably an ethylenically unsaturated bond substituted with an aromatic group and an ester bond.
  • the photoisomerization compound preferably has two or more photoisomerization structures.
  • the number of photoisomerizable structures in the photoisomerizable compound is preferably two to four, more preferably two.
  • the photoisomerizable compound is preferably a photoisomerizable compound that also acts as the optically active compound described above.
  • the photoisomerizable compound that also acts as an optically active compound is preferably an optically active compound having a molar extinction coefficient of 30,000 or more at a wavelength of 313 nm.
  • Examples of photoisomerizable compounds that also act as optically active compounds include compounds represented by the following formula (CH1).
  • the compound represented by the formula (CH1) can change its orientation structure such as helical pitch (twisting force, helical twist angle) depending on the amount of light irradiated.
  • the compound represented by the formula (CH1) is a compound in which the EZ configuration of two ethylenically unsaturated bonds can be isomerized by exposure.
  • Ar CH1 and Ar CH2 each independently represent an aryl group or a heteroaromatic ring group
  • R CH1 and R CH2 each independently represent a hydrogen atom or a cyano group
  • Ar 4 CH1 and Ar 4 CH2 in formula (CH1) are each independently preferably an aryl group.
  • the aryl group may have a substituent.
  • substituents include halogen atoms, alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, hydroxy groups, acyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, acyloxy groups, carboxy groups, cyano groups and heterocyclic groups.
  • a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, a hydroxy group, an acyloxy group, an alkoxycarbonyl group, or an aryloxycarbonyl group is more preferred.
  • the total carbon number of the aryl group is preferably 6-40, more preferably 6-30.
  • Ar CH1 and Ar CH2 are each independently preferably an aryl group represented by the following formula (CH2) or the following formula (CH3).
  • R CH3 and R CH4 are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an alkoxy group, a hydroxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, a carboxy group, or a cyano group
  • L CH1 and L CH2 each independently represent a halogen atom, an alkyl group, an alkoxy group, or a hydroxy group
  • nCH1 represents an integer of 0 to 4
  • nCH2 represents an integer of 0 to 6
  • * represents a bonding position with an ethylenically unsaturated bond in formula (CH1).
  • R CH3 and R CH4 in formula (CH2) and formula (CH3) are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, Alternatively, it is preferably an acyloxy group, more preferably an alkoxy group, a hydroxy group, or an acyloxy group, and particularly preferably an alkoxy group.
  • L CH1 and L CH2 in the formulas (CH2) and (CH3) are each independently preferably an alkoxy group having 1 to 10 carbon atoms or a hydroxy group.
  • nCH1 in formula (CH2) is preferably 0 or 1.
  • nCH2 in formula (CH3) is preferably 0 or 1.
  • the heteroaromatic ring groups in Ar 2 CH1 and Ar 2 CH2 of formula (CH1) may have a substituent.
  • Preferred substituents include, for example, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, a hydroxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, or a cyano group.
  • Halogen atoms, alkyl groups, alkenyl groups, aryl groups, alkoxy groups, or acyloxy groups are more preferred.
  • the total carbon number of the heteroaromatic ring group is preferably 4-40, more preferably 4-30.
  • the heteroaromatic ring group is preferably a pyridyl group, a pyrimidinyl group, a furyl group or a benzofuranyl group, more preferably a pyridyl group or a pyrimidinyl group.
  • R CH1 and R CH2 in formula (CH1) are preferably each independently a hydrogen atom.
  • Bu represents an n-butyl group.
  • the steric configuration of each ethylenically unsaturated bond in the following compounds is E-form (trans-form), and changes to Z-form (cis-form) upon exposure.
  • the composition may contain one or more photoisomerizable compounds.
  • the content of the photoisomerizable compound relative to the total mass of solids in the composition is preferably 1% by mass to 20% by mass, and 2% by mass to 10% by mass. %, more preferably 3% to 9% by mass, and particularly preferably 4% to 8% by mass.
  • the composition may contain a cross-linking agent.
  • the cross-linking agent can improve the strength and durability of the liquid crystal layer after curing.
  • the type of cross-linking agent is not limited.
  • the cross-linking agent may be a known cross-linking agent.
  • the cross-linking agent is preferably a compound that cures with ultraviolet light, heat or moisture.
  • cross-linking agents include polyfunctional acrylate compounds such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate; glycidyl (meth)acrylate, ethylene glycol diglycidyl ether, 3′,4′-epoxycyclohexyl Epoxy compounds such as methyl 3,4-epoxycyclohexanecarboxylate; Oxetane compounds such as 2-ethylhexyloxetane and xylylene bisoxetane; 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate], 4 , 4-bis(ethyleneiminocarbonylamino)diphenylmethane and other aziridine compounds; hexamethylene diisocyanate, biuret isocyanate and other isocyanate compounds; polyoxazoline compounds having oxazoline groups in side chains; vinyltrimethoxys,
  • the composition may contain one or more cross-linking agents.
  • the content ratio of the cross-linking agent to the total solid content of the composition is preferably 1% by mass to 20% by mass, and 3% by mass to 15% by mass. It is more preferable to have
  • composition may contain a solvent.
  • solvents include organic solvents.
  • organic solvents include ketone compounds (e.g., methyl ethyl ketone and methyl isobutyl ketone), alkyl halide compounds, amide compounds, sulfoxide compounds, heterocyclic compounds, hydrocarbon compounds, ester compounds, ether compounds and alcohol compounds.
  • a ketone compound is preferred in consideration of the load on the environment.
  • solvents include high-boiling solvents.
  • the boiling point of the high boiling point solvent is preferably 150° C. or higher, more preferably 160° C. or higher.
  • high-boiling solvents include furfuryl alcohol, 2-thiophene methanol, benzyl alcohol, tetrahydrofurfuryl alcohol, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, ethyl acetoacetate, methyl benzoate, ethyl benzoate and o - methyl toluate.
  • the composition may contain one or more solvents.
  • the ratio of the solvent content to the total mass of the composition is preferably 50% by mass to 85% by mass, more preferably 60% by mass to 80% by mass, and 65% by mass to 75% by mass. is more preferred.
  • the ratio of the content of the high-boiling solvent to the content of the solvent is preferably 2% by mass to 30% by mass, more preferably 4% by mass to 25% by mass. More preferably, it is 6% by mass to 20% by mass.
  • composition may contain other additives.
  • additives include, for example, surfactants, polymerization inhibitors, antioxidants, horizontal alignment agents, UV absorbers, light stabilizers, colorants and metal oxide particles.
  • the decorative material may contain one or more liquid crystal layers.
  • one liquid crystal layer may be in direct contact with another liquid crystal layer.
  • one liquid crystal layer may be in contact with another liquid crystal layer via another layer (for example, an adhesive-containing layer).
  • the color of one liquid crystal layer may be the same as or different from the color of the other liquid crystal layers. If the color of one liquid crystal layer is different from that of another liquid crystal layer, the design is improved by additive color mixture.
  • the compositions of two or more liquid crystal layers may be the same or different from each other.
  • the combination of alignment states of the liquid crystal layer is not limited either. Liquid crystal layers with the same orientation may be stacked. Liquid crystal layers with different alignment states may be stacked.
  • the decorating material may include a liquid crystal layer having a clockwise spiral structure and a liquid crystal layer having a counterclockwise spiral structure.
  • a "helical structure” means a helical structure of a cholesteric liquid crystal.
  • the thickness of the liquid crystal layer is preferably less than 10 ⁇ m, more preferably 5 ⁇ m or less, even more preferably 0.05 ⁇ m to 5 ⁇ m, further preferably 0.1 ⁇ m. ⁇ 4 ⁇ m is particularly preferred.
  • the decorating material contains two or more liquid crystal layers, it is preferable that the two or more liquid crystal layers are independently adjusted within the above range.
  • the method for producing the liquid crystal layer is not limited.
  • a liquid crystal layer is manufactured, for example, using the composition described above.
  • a liquid crystal layer is produced by applying and curing the composition.
  • a preferred method for applying and curing the composition is described in the description of the manufacturing method of the decorative material below.
  • the color of the liquid crystal layer and the change in color depending on the viewing angle are adjusted, for example, by at least one selected from the group consisting of helical pitch, refractive index and thickness.
  • the helical pitch is adjusted, for example, by the amount of an optically active compound (also referred to as a chiral agent, hereinafter the same) added. Details are described, for example, in "Fuji Film Research Report No. 50 (2005) pp. 60-63".
  • the helical pitch may be adjusted by the conditions such as temperature, illuminance and irradiation time when fixing the cholesteric alignment state.
  • each layer in the present disclosure are measured, for example, by using a spectrophotometer to measure the transmission spectrum of a single film of the layer to be measured formed on the alkali-free glass OA-10G, and the transmission spectrum and the transmittance calculated by the optical interferometry.
  • the refractive index may be measured using a Carnew precision refractometer (KPR-3000, Shimadzu Corporation).
  • the decorative material preferably contains an adhesive-containing layer.
  • the adhesive-containing layer can facilitate attachment of the decorative material to the object, for example.
  • the adhesive-containing layer can improve adhesion between layers, for example.
  • the adhesive-containing layer may further contain components other than the adhesive.
  • the adhesive-containing layer is preferably adjacent to the liquid crystal layer.
  • the elongation at break of the adhesive-containing layer is preferably equal to or higher than the elongation at break of the liquid crystal layer.
  • the ratio of the breaking elongation of the adhesive-containing layer to the breaking elongation of the liquid crystal layer is preferably 1.0 to 2.0, more preferably 1.5 to 2.0, and 1.75 to 1.75. 2.0 is more preferred.
  • the type of adhesive is not limited, and the adhesive may be any known adhesive used for permanent adhesion.
  • the adhesive may be any known adhesive used for temporary bonding.
  • the adhesive is preferably a component that stretches along with the liquid crystal layer during molding.
  • adhesives examples include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, and silicone adhesives.
  • a urethane resin adhesive or a silicone adhesive is preferable from the viewpoint of high adhesive strength.
  • the adhesive may be a thermosetting adhesive.
  • the adhesive may be a UV curable adhesive.
  • Adhesives include, for example, adhesives. That is, the adhesive-containing layer may contain a pressure-sensitive adhesive as an adhesive.
  • adhesives include acrylic adhesives, rubber adhesives, and silicone adhesives.
  • adhesives include acrylic adhesives and ultraviolet (UV) curable adhesives described in "Release Paper/Release Film and Adhesive Tape Characteristic Evaluation and Control Technology, Information Organization, 2004, Chapter 2". agents and silicone adhesives.
  • An acrylic pressure-sensitive adhesive refers to a pressure-sensitive adhesive containing a polymer of (meth)acrylic monomers.
  • the adhesive-containing layer may contain a tackifier in addition to the adhesive.
  • the thickness of the adhesive-containing layer is preferably 4 ⁇ m to 100 ⁇ m in terms of both adhesive strength and handling properties.
  • the method of forming the adhesive-containing layer is not limited.
  • Examples of the method for forming the adhesive-containing layer include a method of bonding a film having an adhesive-containing layer and a liquid crystal layer together, a method of bonding a single adhesive-containing layer and a liquid crystal layer together, and a composition containing an adhesive. A method of coating on the liquid crystal layer is mentioned.
  • the decorating material may contain a base material.
  • the substrate is preferably a resin substrate, and preferably a resin film.
  • resins examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), acrylic resin, urethane resin, urethane-acrylic resin, polycarbonate (PC), acrylic-polycarbonate, polyolefin, triacetylcellulose (TAC), cycloolefin.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • acrylic resin acrylic resin
  • PC polycarbonate
  • acrylic-polycarbonate polyolefin
  • TAC triacetylcellulose
  • COP acrylonitrile/butadiene/styrene copolymers
  • ABS resin acrylonitrile/butadiene/styrene copolymers
  • the substrate is a resin film containing at least one resin selected from the group consisting of polyethylene terephthalate, acrylic resin, urethane resin, urethane-acrylic resin, polycarbonate, acrylic-polycarbonate and polypropylene. and more preferably a resin film containing at least one resin selected from the group consisting of acrylic resins, polycarbonates and acrylic-polycarbonate resins.
  • the base material may have a single layer structure or a multilayer structure.
  • a preferred laminated film is, for example, a laminated film of acrylic resin/polycarbonate resin.
  • the base material may contain additives as necessary.
  • Additives include, for example, mineral oils, hydrocarbons, fatty acids, alcohols, fatty acid esters, fatty acid amides, metallic soaps, natural waxes, lubricants such as silicone, inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide, halogen-based Organic flame retardants such as phosphorus, organic or inorganic fillers such as metal powder, talc, calcium carbonate, potassium titanate, glass fiber, carbon fiber, wood powder, antioxidants, UV inhibitors, lubricants, dispersants, Coupling agents, foaming agents, additives such as coloring agents, polyolefins, polyesters, polyacetals, polyamides, polyphenylene ether resins, and engineering plastics other than the resins described above may be mentioned.
  • the base material may be a commercially available product.
  • Commercially available products include, for example, Technolloy (registered trademark) series (acrylic resin film or acrylic resin/polycarbonate resin laminated film, Sumitomo Chemical Co., Ltd.) ABS film (Okamoto Co., Ltd.), ABS sheet (Sekisui Seisei Co., Ltd.), Te Flex (registered trademark) series (PET film, Teijin Film Solution Co., Ltd.), Lumirror (registered trademark) easy molding type (PET film, Toray Industries, Inc.) and Pure Thermo (polypropylene film, Idemitsu Unitech Co., Ltd.).
  • the thickness of the substrate is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the thickness of the substrate is preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the decorative material may include an alignment layer adjacent to the liquid crystal layer.
  • the alignment layer can orient the molecules of the cholesteric liquid crystal compound during the manufacturing process of the liquid crystal layer.
  • the alignment layer is provided, for example, by rubbing an organic compound (preferably polymer), oblique vapor deposition of an inorganic compound such as SiO, or formation of a layer having microgrooves.
  • an orientation layer is also known in which an orientation function is produced by application of an electric field, application of a magnetic field, or light irradiation.
  • the alignment layer includes, for example, a rubbing alignment layer and a photo-alignment layer.
  • the rubbing treatment alignment layer is formed by, for example, rubbing treatment.
  • a photo-alignment layer is formed by light irradiation, for example.
  • Examples of the polymer used for the rubbing alignment layer include methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohols, modified polyvinyl alcohols, poly(N -methylolacrylamide), polyesters, polyimides, vinyl acetate copolymers, carboxymethylcellulose and polycarbonates.
  • Examples of polymers used in the rubbing alignment layer include silane coupling agents.
  • the polymer used for the rubbing treatment alignment layer is preferably, for example, a water-soluble polymer (eg, poly(N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol and modified polyvinyl alcohol), gelatin, polyvinyl alcohol or modified polyvinyl alcohol. is more preferred, and polyvinyl alcohol or modified polyvinyl alcohol is particularly preferred.
  • the rubbing treatment is performed, for example, by rubbing the surface of the film containing a polymer as a main component with paper or cloth in a certain direction.
  • a general rubbing method is described, for example, in "Liquid Crystal Handbook” (published by Maruzen Co., Ltd., Oct. 30, 2000).
  • the rubbing density (L) is quantified by the following formula (A).
  • Formula (A): L Nl(1+2 ⁇ rn/60v)
  • N represents the number of rubbing times
  • l represents the contact length of the rubbing roller
  • r represents the radius of the roller
  • n represents the revolutions per minute (rpm) of the roller
  • v represents the stage Represents movement speed (seconds).
  • Methods for increasing the rubbing density include, for example, increasing the number of times of rubbing, increasing the contact length of the rubbing roller, increasing the radius of the roller, increasing the number of rotations of the roller, and slowing down the stage movement speed. method.
  • the opposite condition of the above method can lower the rubbing density.
  • Japanese Patent No. 4052558 may be referred to as conditions for the rubbing treatment.
  • photo-alignment material used in the photo-alignment layer for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, JP-A-2007- 121721, JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, JP-A-3883848 and JP-A-4151746.
  • the photo-alignment layer is formed, for example, by applying linearly polarized light or non-polarized light to a layer formed of the above materials.
  • Linearly polarized light irradiation is an operation for causing a photoreaction in the photoalignment material.
  • the light used for light irradiation is preferably light with a peak wavelength of 200 nm to 700 nm, more preferably ultraviolet light with a peak wavelength of 400 nm or less.
  • Examples of light sources used for light irradiation include lamps (e.g., tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps and carbon arc lamps), lasers (e.g., semiconductor lasers, helium neon lasers). , argon ion lasers, helium cadmium lasers and YAG lasers), light emitting diodes and cathode ray tubes.
  • lamps e.g., tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps and carbon arc lamps
  • lasers e.g., semiconductor lasers, helium neon lasers.
  • argon ion lasers, helium cadmium lasers and YAG lasers argon ion lasers, helium cadmium lasers and YAG lasers
  • light emitting diodes and cathode ray tubes.
  • Methods for obtaining linearly polarized light include, for example, a method using a polarizing plate (e.g., an iodine polarizing plate, a dichroic dye polarizing plate, and a wire grid polarizing plate), a prism-based element (e.g., a Glan-Thompson prism), or a Brewster angle.
  • a method using a reflective polarizer and a method using light emitted from a laser light source having polarized light may be used to selectively irradiate only light of a required wavelength.
  • light may be irradiated perpendicularly or obliquely to the upper or lower surface of the alignment layer.
  • the angle of incidence of light on the alignment layer is preferably 0° to 90°, more preferably 40° to 90°.
  • the upper or lower surface of the alignment layer is obliquely irradiated with non-polarized light.
  • the incident angle is preferably 10° to 80°, more preferably 20° to 60°, particularly preferably 30° to 50°.
  • the irradiation time is preferably 1 minute to 60 minutes, more preferably 1 minute to 10 minutes.
  • the thickness of the orientation layer is preferably 0.01 ⁇ m to 10 ⁇ m.
  • the lower layer can be made to function as an orientation layer by directly performing an orientation treatment (for example, rubbing treatment) on the lower layer.
  • orientation treatment for example, rubbing treatment
  • the lower layer as described above include polyethylene terephthalate (PET).
  • the lower liquid crystal layer acts as an alignment layer
  • the cholesteric liquid crystal compound may be oriented during the manufacturing process of the upper liquid crystal layer in contact with the lower liquid crystal layer.
  • the cholesteric liquid crystal compound is aligned during the manufacturing process of the upper liquid crystal layer without providing an alignment layer or performing alignment treatment (for example, rubbing treatment).
  • the decorating material may contain a colored layer.
  • the colored layer can improve the design of the decorative material.
  • the decorating material includes a substrate, a colored layer, and a liquid crystal layer in this order. That is, the colored layer is preferably arranged between the substrate and the liquid crystal layer. From the viewpoint of designability, molding processability and durability, the decorative material preferably includes a substrate, a liquid crystal layer, and a colored layer.
  • the decorative material may contain two or more colored layers. At least one colored layer in the decorative material is preferably a layer visible through the liquid crystal layer. When at least one colored layer is a layer visible through the liquid crystal layer, the color changes according to the viewing angle of the colored layer based on the anisotropy according to the angle of light incident on the liquid crystal layer, It is thought that a special design property will be expressed.
  • the decorative material contains two or more colored layers, at least one colored layer is a layer that is visible through the liquid crystal layer, and at least one of the other colored layers is more visible to the observer than the liquid crystal layer. It is preferably a layer close to (also referred to as a "color filter layer").
  • the color filter layer may be a layer that is highly transmissive to light of specific wavelengths.
  • the color filter layer may be a monochromatic color filter layer.
  • the color filter layer may be a color filter layer having a color filter structure of two or more colors and, if necessary, a black matrix or the like. According to the color filter layer, for example, it is possible to obtain a decorative material that has excellent design properties and is visible in a specific wavelength range.
  • the total light transmittance of at least one colored layer is preferably 10% or less.
  • the colors of the colored layer include, for example, black, gray, white, red, orange, yellow, green, blue and purple.
  • the color of the colored layer may be a metallic color.
  • the components of the colored layer include, for example, colorants, resins (eg, binder resins), dispersants and other additives.
  • the colored layer may contain a polymerizable compound and a polymerization initiator.
  • the colored layer preferably contains a coloring agent.
  • Colorants include, for example, pigments and dyes. From the viewpoint of durability, pigments are preferred.
  • the metallic colored layer may contain components such as metallic particles and pearl pigments. Methods such as vapor deposition and plating may be applied to form the metallic colored layer.
  • pigments examples include inorganic pigments and organic pigments.
  • inorganic pigments examples include white pigments (e.g., titanium dioxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide and barium sulfate), black pigments (e.g., carbon black, titanium black, titanium carbon, iron oxide and graphite), iron oxide, barium yellow, cadmium red and chrome yellow.
  • white pigments e.g., titanium dioxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide and barium sulfate
  • black pigments e.g., carbon black, titanium black, titanium carbon, iron oxide and graphite
  • iron oxide barium yellow
  • cadmium red and chrome yellow examples of inorganic pigments
  • organic pigments examples include phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green; azo pigments such as azo red, azo yellow and azo orange; quinacridone pigments such as quinacridone red, syncash red and syncash magenta; Perylene pigments such as perylene maroon, carbazole violet, anthrapyridine, flavanthrone yellow, isoindoline yellow, indathrone blue, dibromoanzathrone red, anthraquinone red and diketopyrrolopyrrole. Specific examples of organic pigments include C.I. I.
  • the organic pigment an organic pigment described in paragraph 0093 of JP-A-2009-256572 may be applied.
  • the pigment may be a pigment having light transmittance and light reflectivity (so-called luster pigment).
  • Luster pigments include, for example, metallic luster pigments such as aluminum, copper, zinc, iron, nickel, tin, aluminum oxide and alloys thereof, interference mica pigments, white mica pigments, graphite pigments and glass flake pigments. be done.
  • the bright pigment may be a colorless bright pigment.
  • the glitter pigment may be a colored glitter pigment. When exposure is performed in molding the decorative material, the bright pigment is preferably used within a range that does not interfere with curing by exposure.
  • the colored layer may contain one or more colorants.
  • a combination of inorganic and organic pigments may be applied.
  • the content of the coloring agent in the total weight of the colored layer is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 50% by mass. more preferably 10% by mass to 40% by mass.
  • the colored layer preferably further contains a binder resin.
  • the binder resin is preferably a transparent resin.
  • a resin having a total light transmittance of 80% or more is preferable. The total light transmittance is measured with a spectrophotometer (eg, spectrophotometer UV-2100 manufactured by Shimadzu Corporation).
  • binder resins examples include acrylic resins, silicone resins, polyesters, polyurethanes and polyolefins.
  • the binder resin may be a homopolymer or a copolymer.
  • the colored layer is one or two or more. It may contain a binder resin.
  • the ratio of the content of the binder resin to the total mass of the colored layer is preferably 5% by mass to 70% by mass, more preferably 10% by mass to 60% by mass, and 20% by mass. % to 60% by weight is particularly preferred.
  • the colored layer may further contain a dispersant.
  • the dispersant can improve the dispersibility of the colorant (especially pigment) in the colored layer and improve the uniformity of color.
  • the dispersant is preferably a polymer dispersant.
  • Polymeric dispersants include, for example, silicone polymers, acrylic polymers and polyester polymers. From the viewpoint of heat resistance, the dispersant is preferably a silicone polymer such as a grafted silicone polymer.
  • the weight average molecular weight of the dispersant is preferably 1,000 to 5,000,000, more preferably 2,000 to 3,000,000, and 2,500 to 3,000,000. is particularly preferred. When the weight average molecular weight is 1,000 or more, the dispersibility of the colorant is further improved.
  • the dispersant may be a commercially available product.
  • Commercially available products include EFKA 4300 (acrylic polymer dispersant) available from BASF Japan Ltd., Homogenol L-18, Homogenol L-95 and Homogenol L-100 available from Kao Corporation, Lubrizol Japan Co., Ltd.
  • Solsperse 20000 and Solsperse 24000 available from the company, DISPERBYK-110, DISPERBYK-164, DISPERBYK-180 and DISPERBYK-182 available from BYK-Chemie Japan.
  • "Homogenol”, “Solsperse” and "DISPERBYK” are all registered trademarks.
  • the colored layer may contain one or more dispersants.
  • the content of the dispersant with respect to 100 parts by mass of the colorant is preferably 1 to 30 parts by mass.
  • the colored layer may further contain other additives.
  • additives include, for example, paragraph 0017 of Japanese Patent No. 4502784, surfactants described in Japanese Patent Application Laid-Open No. 2009-237362, paragraphs 0060 to 0071, and thermal polymerization inhibitors described in Japanese Patent No. 4502784, paragraph 0018. (Also referred to as a polymerization inhibitor. Preferred is phenothiazine.) and additives described in paragraphs 0058 to 0071 of JP-A-2000-310706.
  • the thickness of the colored layer is preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 3 ⁇ m to 50 ⁇ m, even more preferably 3 ⁇ m to 20 ⁇ m. It is particularly preferred to have When the decorative material contains two or more colored layers, it is preferable that the two or more colored layers are independently adjusted within the above ranges.
  • Examples of methods for forming the colored layer include a method using a colored layer-forming composition and a method of bonding colored films.
  • a method for forming the colored layer a method using a composition for forming a colored layer is preferable.
  • the colored layer may be formed using commercially available paints such as nax Real series, nax Admira series, nax Multi series (Nippon Paint Co., Ltd.), and Retan PG series (Kansai Paint Co., Ltd.).
  • Examples of the method using the colored layer-forming composition include a method of forming a colored layer by applying the colored layer-forming composition and a method of printing the colored layer-forming composition to form a colored layer.
  • Printing methods include, for example, screen printing, inkjet printing, flexographic printing, gravure printing and offset printing.
  • the components of the composition for forming the colored layer include, for example, the components of the colored layer described above.
  • the content of each component of the composition for forming a colored layer is, for example, the “total mass of the colored layer” described in the description of the content of each component of the colored layer described above, and the “solid content of the composition for forming a colored layer”. It is adjusted within the range read as "total mass of minutes”.
  • the colored layer-forming composition preferably further contains an organic solvent.
  • organic solvents include alcohol compounds, ester compounds, ether compounds, ketone compounds and aromatic hydrocarbon compounds.
  • the colored layer-forming composition may contain one or more organic solvents.
  • the ratio of the content of the organic solvent to the total mass of the colored layer-forming composition is preferably 5% by mass to 90% by mass, more preferably 30% by mass to 70% by mass.
  • Examples of the method for preparing the colored layer-forming composition include a method of mixing an organic solvent and a component to be introduced into the colored layer, such as a colorant.
  • a component to be introduced into the colored layer such as a colorant.
  • the composition for forming a colored layer contains a pigment as a coloring agent, from the viewpoint of further enhancing the uniform dispersibility and dispersion stability of the pigment, the composition for forming a colored layer is prepared using a pigment dispersion containing a pigment and a dispersant. is preferred.
  • the decorative material may contain an ultraviolet absorbing layer.
  • the ultraviolet absorption layer can improve light resistance.
  • the position of the ultraviolet absorption layer is not limited. It is preferable that the ultraviolet absorption layer be located closer to the viewer than the liquid crystal layer. In other words, it is preferable that the ultraviolet absorbing layer be arranged so that the liquid crystal layer can be seen through the ultraviolet absorbing layer.
  • the ultraviolet absorption layer is preferably a layer containing an ultraviolet absorber, more preferably a layer containing an ultraviolet absorber and a binder polymer.
  • the ultraviolet absorber may be an organic compound or an inorganic compound.
  • UV absorbers include triazine compounds, benzotriazole compounds, benzophenone compounds, salicylic acid compounds, and metal oxide particles.
  • the UV absorber may be a polymer containing UV absorbing structures. Examples of the polymer containing an ultraviolet absorbing structure include acrylic resins containing monomer units derived from acrylic acid ester compounds containing at least part of compounds such as triazine compounds, benzotriazole compounds, benzophenone compounds and salicylic acid compounds.
  • Metal oxide particles include, for example, titanium oxide particles, zinc oxide particles and cerium oxide particles.
  • binder polymers examples include polyolefins, acrylic resins, polyesters, fluororesins, siloxane resins, and polyurethanes.
  • the ultraviolet absorbing layer is formed, for example, using a composition for forming an ultraviolet absorbing layer.
  • the ultraviolet absorbing layer may be formed by applying a composition for forming an ultraviolet absorbing layer and, if necessary, drying the composition.
  • the composition for forming an ultraviolet absorbing layer contains the components of the ultraviolet absorbing layer described above and, if necessary, a solvent.
  • the thickness of the ultraviolet absorbing layer is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.1 ⁇ m to 50 ⁇ m, and more preferably 0.5 ⁇ m to 20 ⁇ m. Especially preferred.
  • the decorative material may contain a protective layer.
  • the protective layer preferably has sufficient strength to protect a layer such as the liquid crystal layer and has excellent weather resistance.
  • Weather resistance includes, for example, durability against environmental factors such as ultraviolet rays and moist heat. From the viewpoint of visibility and suppression of reflection of light (for example, reflection of fluorescent light), the protective layer may have antireflection ability.
  • the protective layer preferably contains a resin, at least one selected from the group consisting of siloxane resin, fluororesin, acrylic resin, melamine resin, polyolefin, polyester, polycarbonate and urethane resin. It more preferably contains a resin, and more preferably contains at least one resin selected from the group consisting of siloxane resins, fluororesins, acrylic resins, and urethane resins having voids.
  • the protective layer contains a siloxane resin or a fluororesin, the refractive index of the protective layer tends to be 1.5 or less (preferably 1.4 or less), and a protective layer having excellent antireflection performance can be easily obtained.
  • the protective layer contains low refractive index particles, the same antireflection effect can be obtained even if the refractive index of the protective layer is lowered to 1.5 or less.
  • a siloxane resin is obtained, for example, by hydrolytic condensation of a siloxane compound.
  • the siloxane compound is at least one compound selected from the group consisting of a siloxane compound represented by the following formula 1 and a hydrolysis condensate of the siloxane compound represented by the following formula 1 (hereinafter also referred to as a specific siloxane compound). is preferably
  • R 1 , R 2 and R 3 each independently represent an alkyl group having 1 to 6 carbon atoms or an alkenyl group
  • R 4 is each independently an alkyl group, vinyl group, Alternatively, vinyl group, epoxy group, vinylphenyl group, (meth)acryloxy group, (meth)acrylamide group, amino group, isocyanurate group, ureido group, mercapto group, sulfide group, polyoxyalkyl group, carboxy group and quaternary represents an alkyl group having a group selected from the group consisting of an ammonium group, m represents an integer of 0-2, and n represents an integer of 1-20.
  • the hydrolytic condensate of the siloxane compound represented by Formula 1 is obtained by hydrolyzing at least a part of the siloxane compound represented by Formula 1 and the substituents on the silicon atoms in the siloxane compound represented by Formula 1. , and a compound having a silanol group are condensed.
  • the alkyl group or alkenyl group having 1 to 6 carbon atoms in R 1 , R 2 and R 3 in Formula 1 may be linear, branched, or have a ring structure. good too.
  • the alkyl group or alkenyl group having 1 to 6 carbon atoms is preferably an alkyl group from the viewpoint of strength, light transmittance and haze of the protective layer.
  • Examples of alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and cyclohexyl group. is preferably a methyl group or an ethyl group, more preferably a methyl group.
  • each of the plurality of R 4 is preferably an alkyl group, preferably an alkyl group having 1 to 8 carbon atoms. is more preferable.
  • the number of carbon atoms in R 4 in Formula 1 is preferably 1-40, more preferably 1-20, and particularly preferably 1-8.
  • m in Formula 1 is preferably 1 or 2, more preferably 2, from the viewpoint of the strength, light transmittance and haze of the protective layer.
  • n in Formula 1 is preferably an integer of 2 to 20 from the viewpoint of the strength, light transmittance and haze of the protective layer.
  • siloxane compounds include, for example, Shin-Etsu Chemical Co., Ltd. KBE-04, KBE-13, KBE-22, KBE-1003, KBM-303, KBE-403, KBM-1403, KBE-503, KBM-5103 , KBE-903, KBE-9103P, KBE-585, KBE-803, KBE-846, KR-500, KR-515, KR-516, KR-517, KR-518, X-12-1135, X-12 -1126, X-12-1131; Dynasylan 4150 manufactured by Evonik Japan Co., Ltd.; MKC silicate MS51, MS56, MS57, MS56S manufactured by Mitsubishi Chemical Corporation; Ethyl silicate 28, N-propyl silicate, N-butyl manufactured by Colcoat Co., Ltd. Silicate, SS-101.
  • the protective layer-forming composition may contain a condensation catalyst that promotes condensation of the siloxane compound.
  • a condensation catalyst may be any known condensation catalyst.
  • fluororesins examples include resins described in paragraphs 0076 to 0106 of JP-A-2009-217258 and paragraphs 0083-0127 of JP-A-2007-229999.
  • fluororesins examples include fluorinated alkyl resins.
  • fluororesins examples include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxyalkane, perfluoroethylenepropene, and ethylenetetrafluoroethylene.
  • fluororesin supply source examples include a fluororesin dispersion that is dispersed in water by copolymerization with an emulsifier or a component that increases affinity with water.
  • raw materials for the fluororesin include compounds having at least one of a polymerizable functional group and a crosslinkable functional group and containing fluorine atoms.
  • Raw materials for the fluororesin include, for example, radically polymerizable monomers such as perfluoroalkyl (meth)acrylates, vinyl fluoride monomers, and vinylidene fluoride monomers.
  • Raw materials for the fluororesin include, for example, cationic polymerizable monomers such as perfluorooxetane.
  • fluororesins or raw materials for fluororesins examples include Lumiflon and Obbligato manufactured by AGC Corporation, ZEFFLE and NEOFLON manufactured by Daikin Industries, Ltd., Teflon (registered trademark) manufactured by DuPont, Kynar manufactured by Arkema, and Kyoeisha Chemical Co., Ltd. LINC3A manufactured by Daikin Industries, Ltd., Optool manufactured by Daikin Industries, Ltd., Opstar manufactured by Arakawa Chemical Industries, Ltd., and Tetrafluorooxetane manufactured by Daikin Industries, Ltd. can be mentioned.
  • low refractive index particles examples include particles described in paragraphs 0075 to 0103 of JP-A-2009-217258.
  • the low refractive index particles include hollow particles using inorganic oxide particles such as silica, hollow particles using resin particles such as acrylic resin particles, porous particles having a porous structure on the particle surface, and materials themselves having a low refractive index. Fluoride particles may be mentioned.
  • Commercially available hollow particles include Sururia manufactured by Nikki Shokubai Kasei Co., Ltd., Silinax manufactured by Nittetsu Mining Co., Ltd., and Techpolymer MBX, SBX and NH manufactured by Sekisui Plastics Co., Ltd.
  • Commercial products of the porous particles include, for example, Light Star manufactured by Nissan Chemical Industries, Ltd.
  • fluoride particles include, for example, magnesium fluoride nanoparticles manufactured by Rare Metals Laboratory Co., Ltd.
  • Core-shell particles may be used to form closed voids in a resin-containing matrix.
  • Examples of the method of forming a protective layer by applying a composition containing hollow particles include, for example, the method described in paragraphs 0028 to 0029 of JP-A-2009-103808, and paragraphs 0030 to 0030 of JP-A-2008-262187. The method described in paragraph 0031 or paragraph 0018 of JP-A-2017-500384 may be applied.
  • a urethane resin can be obtained, for example, by a reaction between a diisocyanate compound and a polyol or a polymerization reaction of a urethane (meth)acrylate compound.
  • Diisocyanate compounds include, for example, aromatic diisocyanates (e.g., 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,5-naphthalene diisocyanate, p- or m-phenylene diisocyanate, xylylene diisocyanate and m-tetramethylxylylene diisocyanate Diisocyanate compounds include, for example, alicyclic diisocyanates (e.g., isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate and hydrogenated tolylene diisocyanate).
  • diisocyanate compounds include aliphatic diisocyanates (eg, hexamethylene diisocyanate).From the viewpoint of resistance to fading, alicyclic diisocyanates (
  • Polyols include, for example, polyester polyols, polyether polyols, polycarbonate polyols and polyacrylic polyols. From the viewpoint of impact resistance, polyester polyols or polyacrylic polyols are preferred.
  • a polyester polyol can be obtained, for example, by a known method using an esterification reaction using a polybasic acid and a polyhydric alcohol.
  • Polybasic acids include, for example, polycarboxylic acids.
  • a monobasic fatty acid may also be used in combination, if desired.
  • polycarboxylic acids include aromatic polycarboxylic acids (e.g., phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydroisophthalic acid, hexahydrophthalic acid, hexahydroterephthalic acid, trimellitic acid and pyromellitic acid). ).
  • Polycarboxylic acids include, for example, aliphatic polycarboxylic acids such as adipic acid, sebacic acid, succinic acid, azelaic acid, fumaric acid, maleic acid and itaconic acid. Polycarboxylic acids may also be anhydrides of the previously mentioned compounds. One or more polybasic acids may be used.
  • Polyhydric alcohols include, for example, glycols and trihydric or higher polyhydric alcohols.
  • Glycols include, for example, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, hexylene glycol, 1,3-butanediol, 1,4 -butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, methylpropanediol, cyclohexanedimethanol and 3,3-diethyl-1,5 - Pentanediol.
  • trihydric or higher polyhydric alcohols examples include glycerol, trimethylolethane, trimethylolpropane, pentaerythritol and dipentaerythritol.
  • One or more polyhydric alcohols may be used.
  • polyacrylic polyols examples include known polyacrylic polyols having hydroxyl groups capable of reacting with isocyanate groups.
  • Monomers for polyacrylic polyol include, for example, (meth)acrylic acid, (meth)acrylic acid to which a hydroxyl group is added, (meth)acrylic acid alkyl esters, (meth)acrylamide and derivatives thereof, and carboxylic acid esters of vinyl alcohol. , unsaturated carboxylic acids and hydrocarbons with linear unsaturated alkyl moieties.
  • a urethane (meth)acrylate compound is obtained, for example, by urethanizing a compound having a hydroxy group and a (meth)acryloyl group and a polyisocyanate compound.
  • Examples of compounds having a hydroxy group and a (meth)acryloyl group include monofunctional (meth)acrylates having a hydroxy group and polyfunctional (meth)acrylates having a hydroxy group.
  • Monofunctional (meth)acrylates having a hydroxy group include, for example, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxy-n-butyl (meth)acrylate, 2-hydroxypropyl ( meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, N-(2-hydroxyethyl) ( meth)acrylamide, glycerin mono(meth)acrylate, polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, 2-hydroxy-3-phenoxypropyl(meth)acrylate, 2-(me
  • Polyfunctional (meth)acrylates having a hydroxy group include, for example, trimethylolpropane di(meth)acrylate, isocyanurate ethylene oxide (EO)-modified diacrylate, pentaerythritol tri(meth)acrylate and dipentaerythritol penta(meth) Acrylates are mentioned. From the viewpoint of scratch resistance of the protective layer, pentaerythritol triacrylate or dipentaerythritol pentaacrylate is preferred.
  • One or more compounds having a hydroxy group and a (meth)acryloyl group may be used.
  • polyisocyanate compounds include aromatic diisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, m-xylylene diisocyanate, and m-phenylenebis(dimethylmethylene) diisocyanate.
  • polyisocyanate compounds include hexamethylene diisocyanate, lysine diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 2-methyl-1,3-diisocyanatocyclohexane, 2-methyl-1,5-diisocyanate.
  • Aliphatic or alicyclic diisocyanate compounds such as natocyclohexane, 4,4'-dicyclohexylmethane diisocyanate and isophorone diisocyanate can be mentioned.
  • Urethane (meth)acrylate is cured, for example, by irradiation with actinic rays.
  • Actinic rays refer to ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the protective layer preferably contains a photopolymerization initiator from the viewpoint of curability. From the viewpoint of curability, the protective layer may further contain a photosensitizer as needed.
  • the protective layer preferably has a refractive index of 1.05 to 1.6, more preferably 1.2 to 1.5, and 1.2 to 1.5. 4 is more preferred.
  • the refractive index is the refractive index for light with a wavelength of 550 nm at 25°C.
  • a protective layer having a refractive index close to that of wax and gasoline (for example, 1.4 to 1.5) is used to prevent stains caused by wax and gasoline from becoming conspicuous. is preferably set.
  • the thickness of the protective layer is preferably 2 ⁇ m or more, more preferably 4 ⁇ m or more, still more preferably 4 ⁇ m to 50 ⁇ m, even more preferably 4 ⁇ m to 20 ⁇ m. Especially preferred.
  • the protective layer is formed, for example, by applying a protective layer-forming composition and, if necessary, drying.
  • the protective layer is formed, for example, by laminating film-formed protective layers.
  • Application methods include spray coating, brush coating, roller coating, bar coating and dip coating.
  • the object to which the composition for forming a protective layer is applied may be surface-treated.
  • Surface treatments include, for example, corona discharge treatment, glow treatment, atmospheric pressure plasma treatment, flame treatment and ultraviolet irradiation treatment.
  • the drying of the protective layer-forming composition may be performed at room temperature (25°C).
  • the protective layer-forming composition may be dried by heating.
  • the drying of the protective layer-forming composition should be carried out at 40° C. or higher. It is preferably carried out by heating at 200°C.
  • the heating time is preferably 1 minute to 30 minutes.
  • the manufacturing method of the protective layer-forming composition is not limited.
  • the composition for forming a protective layer can be prepared, for example, by mixing an organic solvent, a surfactant and water to disperse the organic solvent in water, then adding a specific siloxane compound to the dispersion and applying it to the surface of the dispersed organic solvent. It is manufactured by forming a shell layer to form a core-shell particle.
  • a composition for forming a protective layer is produced by, for example, mixing an organic solvent, a surfactant, a resin and a monomer.
  • the protective layer-forming composition preferably contains a surfactant.
  • Surfactants include, for example, nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants.
  • the protective layer-forming composition may contain other components in addition to the components described above, depending on the purpose.
  • Other ingredients include, for example, antistatic agents and preservatives.
  • the protective layer-forming composition may contain an antistatic agent.
  • the antistatic agent imparts antistatic properties to the protective layer and can suppress adhesion of contaminants.
  • the antistatic agent is preferably at least one antistatic agent selected from the group consisting of metal oxide particles, metal nanoparticles, conductive polymers and ionic liquids.
  • a relatively large amount of metal oxide particles are sometimes used to impart antistatic properties.
  • the protective layer contains metal oxide particles, the antifouling property of the protective layer can be improved.
  • metal oxide particles examples include tin oxide particles, antimony-doped tin oxide particles, tin-doped indium oxide particles, zinc oxide particles, and silica particles.
  • the average primary particle size of the metal oxide particles is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less.
  • the average primary particle size of the metal oxide particles is preferably 2 nm or more.
  • the average primary particle size of metal oxide particles is calculated from images of 300 or more particles observed using a transmission electron microscope.
  • the average particle size (average primary particle size) is calculated by determining the projected area of the particles from the image and determining the equivalent circle diameter based on the projected area.
  • the average primary particle size may be calculated by another method (for example, dynamic light scattering method).
  • the shape of the metal oxide particles may be spherical, plate-like or needle-like.
  • the protective layer-forming composition may contain one or more antistatic agents. Two or more antistatic agents having different compositions from each other may be used. Two or more antistatic agents having different average primary particle sizes may be used. Two or more antistatic agents having different shapes may be used.
  • the content of the antistatic agent relative to the total mass of the solid content of the protective layer-forming composition is 40% by mass or less. is preferably 30% by mass or less, and particularly preferably 20% by mass or less.
  • the ratio of the content of the metal oxide particles to the total mass of the solid content of the protective layer-forming composition is preferably 30% by mass or less, and 20% by mass. % or less, and particularly preferably 10 mass % or less.
  • the decorating material may contain a resin layer between the liquid crystal layer and the colored layer.
  • the resin layer preferably contains a different kind of resin from the resin contained in the protective layer.
  • the resin layer is preferably a transparent resin layer, more preferably a layer made of a transparent film.
  • transparent as used in reference to transparent films means having a total light transmission of 85% or greater. The total light transmittance of the transparent film is measured by the method described above.
  • the transparent film is preferably a film obtained by forming a transparent resin.
  • a transparent resin at least one selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), acrylic resin, polycarbonate (PC), triacetyl cellulose (TAC) and cycloolefin polymer (COP).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • acrylic resin polycarbonate
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • a resin film containing a terephthalate resin is preferred.
  • a resin film containing an acrylic resin in an amount of 60% by mass or more (more preferably 80% by mass or more, still more preferably 100% by mass) relative to the total mass of resins contained in the transparent film is more preferable.
  • Examples of commercially available transparent films include Acryprene (registered trademark) HBS010 (acrylic resin film, manufactured by Mitsubishi Chemical Corporation), Technoloy (registered trademark) S001G (acrylic resin film, manufactured by Sumitomo Chemical Co., Ltd.), C000 (polycarbonate resin film, manufactured by Sumitomo Chemical Co., Ltd.) and C001 (acrylic resin/polycarbonate resin laminated film, manufactured by Sumitomo Chemical Co., Ltd.).
  • the thickness of the resin layer is preferably 50 ⁇ m to 150 ⁇ m.
  • Examples of methods for forming the resin layer include a method of bonding a transparent film and a liquid crystal layer or a colored layer together.
  • Apparatus for the bonding process includes, for example, a laminator, a vacuum laminator and an autocut laminator.
  • the laminator preferably has a heatable roller, such as a rubber roller, and has pressure and heat capability. Heating using a laminator partially melts at least one of the transparent film and the liquid crystal layer, and can enhance adhesion between the liquid crystal layer and the transparent film.
  • the heating temperature is determined, for example, according to the material of the transparent film and the melting temperature of the liquid crystal layer. A heating temperature that makes the temperature of the transparent film 60° C. to 150° C. is preferred.
  • a heating temperature that makes the temperature of the transparent film 65° C. to 130° C. is more preferable.
  • a heating temperature that makes the temperature of the transparent film 70° C. to 100° C. is more preferable.
  • the linear pressure in the bonding step is preferably 60 N/cm to 200 N/cm, more preferably 70 N/cm to 160 N/cm, even more preferably 80 N/cm to 120 N/cm.
  • the decorative material may contain a cover film as the outermost layer.
  • the cover film includes, for example, a film having flexibility and peelability.
  • cover films include resin films such as polyethylene films. The cover film is introduced into the decorative material by laminating the cover film and the protective layer, for example.
  • the decorative material may contain other layers.
  • Other layers include, for example, a reflective layer, a self-healing layer, an antistatic layer, an antifouling layer, an anti-electromagnetic layer, and a conductive layer.
  • Other layers include, for example, layers contained in known decorative materials.
  • the other layer is formed, for example, through application of a composition containing components of the other layer and, if necessary, drying.
  • a method for producing a decorative material comprises preparing a composition containing a cholesteric liquid crystal compound having a polymerizable group, an optically active compound having a polymerizable group, and a photopolymerization initiator (hereinafter , referred to as a “preparation step”), applying the composition on a release substrate (hereinafter referred to as a “coating step”), curing the composition with light, and obtaining 0.02 mol / L Forming a cholesteric liquid crystal layer having a cross-linking density of ⁇ 0.06 mol/L (hereinafter referred to as “curing step”) and forming an adhesive-containing layer on the cholesteric liquid crystal layer (hereinafter referred to as “adhesion (referred to as "agent-containing layer forming step”)
  • a composition containing a cholesteric liquid crystal compound having a polymerizable group, an optically active compound having a polymerizable group, and a photopolymerization initiator is prepared. Furthermore, optically active compounds having a polymerizable group include optically active compounds having one polymerizable group.
  • An optically active compound having one polymerizable group (hereinafter referred to as a "monofunctional optically active compound" in this paragraph) is introduced into a polymer chain by reaction with a cholesteric liquid crystal compound having a polymerizable group or a polymer thereof. It is thought that On the other hand, monofunctional optically active compounds are considered to be incapable of cross-linking macromolecules. As a result, the content of the low-molecular compound in the liquid crystal layer formed through the curing process is reduced, and the liquid crystal layer having excellent stretchability is formed through the curing process.
  • the cholesteric liquid crystal compound having a polymerizable group preferably contains a cholesteric liquid crystal compound having one polymerizable group.
  • the cholesteric liquid crystal compound having a polymerizable group preferably includes a cholesteric liquid crystal compound having one polymerizable group and a cholesteric liquid crystal compound having two or more polymerizable groups.
  • the composition is applied onto the release substrate.
  • the application step may apply the composition to the peelable substrate.
  • the composition may be coated on the peelable substrate via another layer.
  • peelable substrates include laminates containing a substrate and an easy-adhesion layer.
  • the substrate includes, for example, the substrates described in the "Substrate” section above.
  • examples of commercially available release substrates include COSMOSHINE A4160 (Toyobo Co., Ltd.). Orientation treatment may be applied to the release substrate (preferably the substrate included in the release substrate).
  • the state of the composition may be a solution containing a solvent.
  • the state of the composition may be a melted liquid.
  • the composition may be applied by a roll coating method, a gravure printing method, or a spin coating method. Application of the composition may be done by wire bar coating, extrusion coating, direct gravure coating, reverse gravure coating or die coating. Application of the composition may be performed using an inkjet device. In the coating method using an inkjet device, the composition may be discharged from a nozzle.
  • the composition applied on the release substrate may be dried by a known method.
  • the composition may be dried by standing.
  • the composition may be dried by air drying.
  • the composition may be dried by heating. It is preferable that the cholesteric liquid crystal compound is oriented in the composition after application and drying.
  • the composition is cured by light to form a cholesteric liquid crystal layer having a crosslink density of 0.02 mol/L to 0.06 mol/L.
  • a cholesteric liquid crystal layer having excellent stretchability is formed.
  • the curing process can maintain and fix the alignment state of the molecules of the cholesteric liquid crystal compound.
  • the exposure step not only the composition but also the constituent elements other than the composition may be cured.
  • the light source may be selected according to the type and properties of the photopolymerization initiator.
  • a light source capable of emitting light having at least one wavelength selected from the group consisting of 285 nm, 365 nm and 405 nm is preferred.
  • Light sources include, for example, light-emitting diodes (UV-LEDs) that emit ultraviolet rays, ultrahigh-pressure mercury lamps, high-pressure mercury lamps, and metal halide lamps.
  • the exposure dose is preferably 5 mJ/cm 2 to 2,000 mJ/cm 2 and more preferably 10 mJ/cm 2 to 1,000 mJ/cm 2 .
  • the exposure step may include curing the composition with light under heating conditions. Heating in the exposure process can facilitate alignment of liquid crystal compounds.
  • the heating temperature may be determined according to the composition of the composition. The heating temperature may be 30°C to 120°C.
  • the oxygen concentration in the curing process is not limited.
  • the curing step may be performed under an oxygen atmosphere.
  • the curing step may be performed under air.
  • the curing step may be performed in a low-oxygen atmosphere (preferably with an oxygen concentration of 1,000 ppm or less).
  • the oxygen concentration may be 0 ppm.
  • the oxygen concentration may be greater than 0 ppm and less than or equal to 1,000 ppm.
  • the curing step is preferably performed in a low-oxygen atmosphere, more preferably under heating and in a low-oxygen atmosphere.
  • the exposure method for example, the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 may be applied.
  • an adhesive-containing layer is formed on the cholesteric liquid crystal layer.
  • the adhesive-containing layer forming step may form an adhesive-containing layer adjacent to the cholesteric liquid crystal layer.
  • the adhesive-containing layer may be formed on the cholesteric liquid crystal layer via another layer.
  • the step of forming the adhesive-containing layer preferably forms an adhesive-containing layer adjacent to the cholesteric liquid crystal layer. The method for forming the adhesive-containing layer is as described above.
  • the method for manufacturing the decorative material may include other steps. Depending on the layer structure of the decorating material, the method of manufacturing the decorating material may include forming layers other than the liquid crystal layer and the adhesive-containing layer.
  • the method for producing the decorative material may include photoisomerization of the liquid crystal layer (hereinafter referred to as "photoisomerization step").
  • the photoisomerization step preferably includes photoisomerization of the photoisomerizable compound contained in the liquid crystal layer. From the viewpoint of suppressing changes in reflectance after molding, it is preferable to isomerize the liquid crystal layer so that the photoisomerization rate differs between regions. It is more preferable to isomerize so that the difference in isomerization ratio occurs.
  • part of the liquid crystal layer may be isomerized, or part of the liquid crystal layer may be isomerized depending on the shape to be molded.
  • the isomerization ratio of the photoisomerization compound may be changed according to the shape to be molded.
  • the photoisomerization step may form a portion with an isomerization rate of 0% and a portion with an isomerization rate of 100% in the liquid crystal layer.
  • the photoisomerization step may form a portion with an isomerization rate of 10% and a portion with an isomerization rate of 80% in the liquid crystal layer.
  • the photoisomerization step may form a portion in the liquid crystal layer where the isomerization rate varies from 0% to 100%.
  • the photoisomerization step may form a portion where the isomerization ratio is 0% and a portion where the isomerization ratio changes from 50% to 100% in the liquid crystal layer.
  • the isomerization ratio is higher in a portion where the stretch ratio of the decorative material is increased during molding.
  • the progress of photoisomerization is confirmed by measuring the maximum wavelength of the reflectance of the isomerization part.
  • the photoisomerization ratio represents the ratio of the number of photoisomerized photoisomerized compound molecules to the total number of molecules of the target photoisomerizable compound, and is similarly determined by measuring the maximum wavelength of reflectance.
  • the photoisomerization step it is preferable to isomerize the liquid crystal layer by changing the intensity of exposure to the liquid crystal layer depending on the region.
  • the isomerization may be performed by exposing the liquid crystal layer to light with a plurality of steps of difference in exposure intensity or a stepless continuous difference. Isomerization is preferably achieved by exposing only a portion of the liquid crystal layer.
  • the isomerization rate may be controlled according to the exposure intensity.
  • the wavelength of light with which the liquid crystal layer is irradiated may be determined according to the photoisomerizable compound.
  • light with a wavelength range of 400 nm or less is preferably used, more preferably light with a wavelength range of 380 nm or less is used, and light with a wavelength range of 300 nm or more and 380 nm or less is used. is more preferred.
  • the adjustment of the wavelength of light may be performed by known means and methods.
  • Methods for adjusting the wavelength of light include, for example, a method using an optical filter, a method using two or more types of optical filters, and a method using a light source with a specific wavelength.
  • the liquid crystal layer is preferably irradiated with light in a wavelength range that does not generate polymerization initiation species from the photopolymerization initiator.
  • a mask is preferably used that transmits light in the wavelength range that causes photoisomerization of the photoisomeric compound and blocks light in the wavelength range that causes polymerization initiation species to be generated from the photopolymerization initiator.
  • the mask may be a known mask.
  • the mask may be a mask made by gravure printing, screen printing, or a method of patterning a sputtered chromium film with a photoresist.
  • the mask may be a mask made using a laser printer or an inkjet printer. One or more masks may be used.
  • different masks may be used for the portions of the liquid crystal layer that are photoisomerizable and the portions that are not photoisomerizable.
  • a mask may be used in which the amount of transmitted light is not constant but varies.
  • Light sources include ultra-high pressure mercury lamps, high pressure mercury lamps, and metal halide lamps.
  • Light sources include light-emitting diodes capable of emitting light with a narrow wavelength range.
  • a mask may or may not be used when using a light source capable of emitting light with a narrow wavelength band.
  • the exposure dose in the photoisomerization step is preferably 5 mJ/cm 2 to 2,000 mJ/cm 2 , more preferably 10 mJ/cm 2 to 1,000 mJ/cm 2 .
  • the amount of exposure may be changed in each part of the liquid crystal layer.
  • Isomerization by exposure is preferably carried out under heating conditions.
  • the heating temperature is, for example, 30.degree. C. to 100.degree.
  • the exposure method in the photoisomerization step for example, the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 may be applied.
  • Decorative materials are used, for example, to decorate various articles.
  • Applications of the decorative material include, for example, the interior and exterior of automobiles, the interior and exterior of electrical appliances, and packaging containers. Exteriors of electric products include, for example, housing panels of electronic devices. Electronic devices include, for example, smart phones, mobile phones and tablets. Preferable applications of the decorative material include, for example, automobile exteriors and housing panels for electronic devices.
  • the decorative material may be used as a molding.
  • the molding is a molding of the decorative material according to the present disclosure. Specific aspects of the decorative material are as described above.
  • a molded product is manufactured, for example, by molding a decorative material.
  • a molding method is not limited.
  • the molding method may be a known molding method. Examples of molding methods include insert molding and three-dimensional molding.
  • a molded product is obtained by placing a decorative material in a mold and injecting resin into the mold.
  • a molded article in which the decorative material is integrated with the surface of the resin molded article is obtained.
  • the method of manufacturing a molded product by insert molding includes the steps of placing a decorative material in an injection mold and closing the mold, injecting molten resin into the mold, and adding the decorative material. and a step of taking out the molded product with the resin.
  • a mold for injection molding (that is, a molding mold) includes a mold that has a convex shape (that is, a male mold) and a mold that has a concave shape that corresponds to the convex shape (that is, a female mold). The mold is closed after the decorative material is placed on the molding surface that will be the inner peripheral surface of the female mold.
  • a three-dimensional shape may be imparted to the decorative material in advance by molding (preforming) the decorative material using the molding die before placing the decorative material in the molding die. . Then, the decorative material imparted with the three-dimensional shape may be supplied to the molding die.
  • a method of aligning the decorative material and the molding die for example, a method of inserting and holding a fixing pin of the male mold into an alignment hole of the female mold can be used.
  • the positioning hole is formed in advance in the female mold at the end of the decorative material (the position where the three-dimensional shape is not given after molding).
  • the fixing pin is preliminarily formed in the male mold at a position to be fitted in the alignment hole.
  • the method of aligning the decorative material and the molding die may be a method other than inserting a fixing pin into the alignment hole.
  • the molten resin is injected into the molding die into which the decorative material is inserted.
  • the temperature of the molten resin injected into the molding die is set according to the physical properties of the resin used. For example, if the resin is an acrylic resin, the temperature of the molten resin is preferably in the range of 240°C or higher and 260°C or lower.
  • the position of the injection port (injection port) of the male mold is You may set according to the shape of a metal mold
  • the molding die is opened, and the decorative material is poured from the molding die into the molding base material, which is the solidified molten resin.
  • the immobilized intermediate molding is taken out.
  • the burr and the dummy portion of the molded product are integrated around the decorative portion that will be the final product (molded product).
  • the dummy portion has an insertion hole formed by inserting a fixing pin in the alignment described above.
  • a molded product can be obtained by subjecting the intermediate molded product before finishing processing to finishing processing for removing burrs and dummy portions.
  • Three-dimensional molding includes, for example, thermoforming, vacuum molding, pressure molding, and vacuum pressure molding.
  • Vacuum molding which is a type of three-dimensional molding, will be described below.
  • the method of vacuum forming is not limited. In vacuum molding, a method of performing three-dimensional molding under vacuum heating conditions is preferred. Vacuum refers to a state in which the inside of the chamber is evacuated to a degree of vacuum of 100 Pa or less.
  • the temperature in three-dimensional molding is preferably 60°C or higher, more preferably 80°C or higher, and even more preferably 100°C or higher.
  • the upper limit of the temperature in three-dimensional molding is preferably 200°C.
  • the temperature in three-dimensional molding refers to the temperature of the article to be three-dimensionally molded, and is measured by attaching a thermocouple to the surface of the article to be three-dimensionally molded.
  • Vacuum forming may be performed using vacuum forming techniques that are widely known in the molding field.
  • vacuum molding may be performed using Formech 508FS manufactured by Nippon Seiki Kogyo Co., Ltd.
  • Molded products of decorative materials are used, for example, to add decorations to various articles.
  • Applications of molded products include, for example, interiors and exteriors of automobiles, interiors and exteriors of electric appliances, and packaging containers. Exteriors of electric products include, for example, housing panels of electronic devices. Electronic devices include, for example, smart phones, mobile phones and tablets. Preferred applications for moldings include, for example, automotive exteriors and electronic device housing panels.
  • the decorative panel includes moldings of the decorative material of the present disclosure. Specific aspects of the decorative material and specific aspects of the molding of the decorative material are as described above.
  • the decorative panel may further include components other than the molding of the decorative material.
  • Decorative panels are used, for example, to add decorations to various articles.
  • Applications of decorative panels include, for example, the interior and exterior of automobiles, the interior and exterior of electrical appliances, and packaging containers. Exteriors of electric products include, for example, housing panels of electronic devices. Electronic devices include, for example, smart phones, mobile phones and tablets. Preferred applications of the decorative panel include, for example, automobile exteriors and housing panels for electronic devices.
  • an electronic device includes a molding of the decorative material according to the present disclosure. Specific aspects of the decorative material and specific aspects of the molding of the decorative material are as described above.
  • Electronic device WHEREIN It is preferable that the molding of a decorative material is utilized as a housing
  • ⁇ Peelable substrate> A polyethylene terephthalate film (Cosmoshine A4160, Toyobo Co., Ltd., film thickness: 100 ⁇ m) having an easy-adhesion layer on one side was prepared as a peelable substrate. Rubbing treatment (rayon cloth, pressure: 0.1 kgf, rotation speed: 1000 rpm (revolutions per minute), conveying speed: 10 m / min, number of times: 1 time) was performed.
  • Liquid crystal compound 1 Liquid crystal compound 1 is represented by the following chemical formula.
  • Liquid crystal compound 2 Liquid crystal compound 2 is represented by the following chemical formula.
  • Liquid crystal compound 3 is represented by the following chemical formula.
  • liquid crystal compound 4 (Liquid crystal compound 4)
  • the liquid crystal compound 4 is represented by the following chemical formula.
  • Liquid crystal compound 5 is represented by the following chemical formula.
  • liquid crystal compound 6 (Liquid crystal compound 6)
  • the liquid crystal compound 6 is LC242 manufactured by BASF.
  • Optically active compound 1 is represented by the following chemical formula.
  • Optically active compound 2 is represented by the following chemical formula.
  • Optically active compound 3 is LC756 manufactured by BASF. Optically active compound 3 has two polymerizable groups.
  • Optically active compound 4 is represented by the following chemical formula.
  • Surfactant 1 is represented by the following chemical formula.
  • Surfactant 2 is represented by the following chemical formula.
  • Surfactant 3 is KH40 manufactured by AGC Seimi Chemical Co., Ltd.
  • Liquid crystal compound 1 14.8 parts by mass
  • Liquid crystal compound 2 14.8 parts by mass
  • Liquid crystal compound 3 1.39 parts by mass
  • Optically active compound 1 2.17 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal compound 1 14.87 parts by mass
  • Liquid crystal compound 2 14.87 parts by mass
  • Liquid crystal compound 3 1.24 parts by mass
  • Optically active compound 1 2.17 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal compound 1 15.03 parts by mass
  • Liquid crystal compound 2 15.03 parts by mass
  • Liquid crystal compound 3 0.93 parts by mass
  • Optically active compound 1 2.17 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal compound 1 15.18 parts by mass
  • Liquid crystal compound 2 15.18 parts by mass
  • Liquid crystal compound 3 0.62 parts by mass
  • Optically active compound 1 2.17 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal layer forming coating liquid 5A having the following composition was prepared.
  • Liquid crystal compound 4 14.25 parts by mass
  • Liquid crystal compound 5 14.25 parts by mass
  • Liquid crystal compound 3 2.48 parts by mass
  • Optically active compound 1 2.17 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal compound 4 14.56 parts by mass
  • Liquid crystal compound 5 14.56 parts by mass
  • Liquid crystal compound 3 1.86 parts by mass
  • Optically active compound 1 2.17 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal layer forming coating liquid 7A having the following composition was prepared.
  • Liquid crystal compound 4 14.87 parts by mass
  • Liquid crystal compound 5 14.87 parts by mass
  • Liquid crystal compound 3 1.24 parts by mass
  • Optically active compound 1 2.17 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal layer forming coating liquid 8A having the following composition was prepared.
  • Liquid crystal compound 4 14.17 parts by mass
  • Liquid crystal compound 5 14.17 parts by mass
  • Liquid crystal compound 3 1.81 parts by mass
  • Optically active compound 1 3.02 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal layer forming coating liquid 9A having the following composition was prepared.
  • Liquid crystal compound 4 14.84 parts by mass
  • Liquid crystal compound 5 14.84 parts by mass
  • Liquid crystal compound 3 1.89 parts by mass
  • Optically active compound 1 1.58 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.016 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal compound 1 15.85 parts by mass
  • Liquid crystal compound 2 15.85 parts by mass
  • Optically active compound 2 1.46 parts by mass
  • Photopolymerization initiator diethylthioxanthone, FUJIFILM Wako Pure Chemical Industries, Ltd.
  • Photopolymerization initiator diethylthioxanthone, FUJIFILM Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.016 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl alcohol (solvent): 10.64 parts by mass
  • Liquid crystal compound 6 13.7 parts by mass
  • Optically active compound 3 0.48 parts by mass
  • Photopolymerization initiator (Omnirad 379EG, IGM Resins B.V.): 0.4 parts by mass
  • Surfactant 3 0 .03 parts by mass
  • Cyclopentanone (solvent) 85.5 parts by mass
  • Liquid crystal compound 1 15.16 parts by mass
  • Liquid crystal compound 2 15.16 parts by mass
  • Optically active compound 3 0.97 parts by mass
  • Optically active compound 4 0.97 parts by mass
  • Photopolymerization initiator diethylthioxanthone , Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Full Furyl alcohol (solvent): 10.64 parts by mass
  • Liquid crystal compound 3 30.32 parts by mass Optically active compound 3: 0.97 parts by mass Optically active compound 4: 0.97 parts by mass Photopolymerization initiator (diethylthioxanthone, FUJIFILM Wako Pure Chemical Industries, Ltd.): 1.21 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl alcohol (solvent): 10.64 parts by mass Department
  • Liquid crystal compound 1 14.72 parts by mass
  • Liquid crystal compound 2 14.72 parts by mass
  • Liquid crystal compound 3 1.55 parts by mass
  • Optically active compound 1 2.17 parts by mass
  • Photopolymerization initiator diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
  • Liquid crystal compound 1 15.49 parts by mass
  • Liquid crystal compound 2 15.49 parts by mass
  • Optically active compound 2 2.17 parts by mass
  • Photopolymerization initiator diethylthioxanthone, FUJIFILM Wako Pure Chemical Industries, Ltd.
  • Surfactant 1 0.015 parts by mass
  • Surfactant 2 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl alcohol (solvent): 10.64 parts by mass
  • Example 1 (Laminate 1A)
  • the liquid crystal layer forming coating liquid 1A was applied to the rubbed surface of the peelable substrate using a wire bar #8.
  • the liquid crystal layer forming coating liquid 1A was dried at 85° C. for 2 minutes to form a liquid crystal layer.
  • the liquid crystal layer was cured by performing a curing treatment on the liquid crystal layer. Specifically, in a low oxygen atmosphere (oxygen concentration: 1,000 ppm or less), on a hot plate at 85 ° C., the liquid crystal layer was irradiated with light from a metal halide lamp (MAL625NAL, GS Yuasa Co., Ltd.). was cured. The irradiation amount of light was 1,000 mJ/cm 2 .
  • a metal halide lamp MAL625NAL, GS Yuasa Co., Ltd.
  • the reflected wavelength color of the cured liquid crystal layer visually observed was bluish green.
  • an adhesive-containing layer was formed on the cured liquid crystal layer using a pressure-sensitive adhesive (G25, Nichiei Shinka Co., Ltd.), which is a type of adhesive according to the present disclosure.
  • the laminate 1A obtained by the above procedure includes an adhesive-containing layer, a cured liquid crystal layer (cholesteric liquid crystal layer), and a peelable substrate in this order.
  • the obtained laminate 1B includes a PET substrate, an adhesive-containing layer, a cured liquid crystal layer (cholesteric liquid crystal layer), a peelable substrate, an adhesive-containing layer, and glass in this order.
  • Technoloy C000 (Sumika Acrylic Sales Co., Ltd.) was prepared as the base material.
  • the surface of the base material was subjected to corona treatment under conditions of 75 W, 0.5 m/min, and a distance of 1 mm between the base material and the electrode.
  • the alignment layer coating liquid was applied to the corona-treated surface of the substrate and dried at 85° C. for 2 minutes to form an alignment layer.
  • the liquid crystal layer forming coating liquid 1A was applied onto the alignment layer using a wire bar #8 to form a liquid crystal layer.
  • the liquid crystal layer was subjected to a curing treatment according to the method described in "Laminate 1A" above. The reflected wavelength color of the cured liquid crystal layer visually observed was bluish green.
  • the obtained laminate 1C includes a substrate, an alignment layer, and a cured liquid crystal layer (cholesteric liquid crystal layer) in this order.
  • Example 2 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 2A.
  • the reflected wavelength color of the cured liquid crystal layer visually observed was bluish green.
  • Example 3 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 3A. The reflected wavelength color of the cured liquid crystal layer visually observed was bluish green.
  • Example 4 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 4A. The reflected wavelength color of the cured liquid crystal layer visually observed was bluish green.
  • Example 5 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 5A. The reflected wavelength tint of the cured liquid crystal layer visually observed was green.
  • Example 6 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 6A. The reflected wavelength tint of the cured liquid crystal layer visually observed was green.
  • Example 7 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 7A. The reflected wavelength tint of the cured liquid crystal layer visually observed was green.
  • Example 8> Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 8A.
  • the reflected wavelength tint of the cured liquid crystal layer visually observed was blue.
  • Example 9 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 9A. The reflected wavelength tint of the cured liquid crystal layer visually observed was red.
  • Example 10 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 10A. The reflected wavelength tint of the cured liquid crystal layer visually observed was red.
  • Example 1 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 1B. The reflected wavelength tint of the cured liquid crystal layer visually observed was red.
  • Example 2 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 2B. The reflected wavelength tint of the cured liquid crystal layer visually observed was blue.
  • Example 3 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 3B. The reflected wavelength tint of the cured liquid crystal layer visually observed was blue.
  • Example 4 Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 4B. The reflected wavelength tint of the cured liquid crystal layer visually observed was green.
  • Example 5 Each laminate was obtained in the same manner as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 5B. The reflected wavelength tint of the cured liquid crystal layer visually observed was blue.
  • a target laminate was cut into a size of 1 cm ⁇ 5 cm to prepare a sample. Grasp the upper end 1 cm and lower end 1 cm of the sample with jigs, and use a thermal tensilon (RTF-1310 manufactured by A&D Co., Ltd. and constant temperature tester TKC) at a speed of 300 mm / sec in an atmosphere of 150 ° C. A tensile test was performed to observe the state of the liquid crystal layer in the sample and to measure the elongation at break of the liquid crystal layer based on the following formula. In the following formula, the "gauge length at break" means the gauge length when the liquid crystal layer in the sample is broken. Table 1 shows the measurement results.
  • Breaking elongation (%) ⁇ (distance between gauges at break - distance between gauges before test) / (distance between gauges before test) ⁇ x 100
  • Table 1 shows that the stretchability and heat resistance of Examples 1-10 are superior to those of Comparative Examples 1-5.
  • the breaking elongation of the adhesive-containing layer is equal to or higher than the breaking elongation of the cholesteric liquid crystal layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

Provided are a decorative material and an application for the same, the decorative material including a cholesteric liquid crystal layer, the elongation at break of the cholesteric liquid crystal layer being 80% or greater, and the content of compounds in the cholesteric liquid crystal layer that have a molecular weight of 10,000 or less per unit volume of the cholesteric liquid crystal layer being less than 50 mg/cm3.

Description

加飾用材料、加飾用材料の製造方法、成型物、加飾用パネル及び電子デバイスDecorative material, manufacturing method of decorative material, molding, decorative panel and electronic device
 本開示は、加飾用材料、加飾用材料の製造方法、成型物、加飾用パネル及び電子デバイスに関する。 The present disclosure relates to decorative materials, methods of manufacturing decorative materials, moldings, decorative panels, and electronic devices.
 コレステリック液晶を利用した加飾用材料に関する技術として、例えば、次のような技術が知られている。国際公開第2017/018468号は、基材、中間層、及びコレステリック樹脂層をこの順に備えるコレステリック樹脂積層体であって、積層体を130℃において8時間加熱した前後におけるコレステリック樹脂層の反射帯域中心波長の差が50nm以下であるコレステリック樹脂積層体を開示している。国際公開第2020/122235号は、基材上に、コレステリック液晶化合物及び光異性化化合物を含む液晶層を硬化してなる硬化液晶層を有し、硬化液晶層において、光異性化化合物の光異性化割合が互いに異なる複数の領域を有する、成型用加飾フィルムを開示している。 For example, the following technologies are known as technologies related to decorative materials using cholesteric liquid crystals. WO 2017/018468 discloses a cholesteric resin laminate comprising a substrate, an intermediate layer, and a cholesteric resin layer in this order, and the center of the reflection band of the cholesteric resin layer before and after heating the laminate at 130°C for 8 hours. A cholesteric resin laminate having a wavelength difference of 50 nm or less is disclosed. International Publication No. 2020/122235 has a cured liquid crystal layer obtained by curing a liquid crystal layer containing a cholesteric liquid crystal compound and a photoisomerizable compound on a substrate, and in the cured liquid crystal layer, photoisomerization of the photoisomerizable compound Disclosed is a decorative film for molding that has a plurality of regions with different conversion ratios.
 液晶層を含む加飾用材料の特性として、延伸性及び耐熱性(熱環境下で液晶の反射色味が変化しにくい性質をいう。以下同じ。)が求められている。加飾用材料の構成要素の中でも特に液晶層の延伸性の改善が求められているものの、液晶層の延伸性が向上すると、液晶層の耐熱性が低下する傾向がある。一方、例えば、液晶層の製造過程において架橋構造の形成を促進する方法は液晶層の耐熱性の向上に貢献できると考えられるものの、液晶層の延伸性が低下する可能性がある。このため、延伸性及び耐熱性の両立が求められている。 Stretchability and heat resistance (meaning the property that the reflected color of the liquid crystal does not easily change in a thermal environment; the same shall apply hereinafter) are required as properties of decorative materials including liquid crystal layers. Improvement of the stretchability of the liquid crystal layer is particularly desired among the constituent elements of the decorative material. However, when the stretchability of the liquid crystal layer is improved, the heat resistance of the liquid crystal layer tends to decrease. On the other hand, for example, a method of promoting the formation of a crosslinked structure in the manufacturing process of the liquid crystal layer is thought to contribute to improving the heat resistance of the liquid crystal layer, but the stretchability of the liquid crystal layer may decrease. Therefore, it is required to have both stretchability and heat resistance.
 本開示の一実施形態によれば、優れた延伸性及び熱環境下で液晶の反射色味が変化しにくい性質を有する液晶層を含む加飾用材料が提供される。
 本開示の他の一実施形態によれば、上記加飾用材料の製造方法が提供される。
 本開示の他の一実施形態によれば、上記加飾用材料の成型物が提供される。
 本開示の他の一実施形態によれば、上記加飾用材料の成型物を含む加飾用パネルを提供することが提供される。
 本開示の他の一実施形態によれば、上記加飾用材料の成型物を含む電子デバイスが提供される。
According to one embodiment of the present disclosure, a decorative material is provided that includes a liquid crystal layer that has excellent stretchability and properties that the reflected color of the liquid crystal does not easily change in a heat environment.
According to another embodiment of the present disclosure, there is provided a method for manufacturing the decorative material.
According to another embodiment of the present disclosure, there is provided a molding of the decorating material.
According to another embodiment of the present disclosure, it is provided to provide a decorating panel including moldings of the above decorating material.
According to another embodiment of the present disclosure, there is provided an electronic device including a molding of the decorating material.
 本開示は、以下の態様を含む。
<1> コレステリック液晶層を含み、上記コレステリック液晶層の破断伸度が、80%以上であり、上記コレステリック液晶層において上記コレステリック液晶層の単位体積あたりの10,000以下の分子量を有する化合物の含有量が、50mg/cm未満である、加飾用材料。
<2> 上記コレステリック液晶層が、コレステリック液晶化合物及び光学活性化合物を含む組成物の硬化物である、<1>に記載の加飾用材料。
<3> 上記光学活性化合物が、1つの重合性基を有する光学活性化合物を含む、<2>に記載の加飾用材料。
<4> 上記コレステリック液晶層の架橋密度が、0.02mol/L~0.06mol/Lである、<1>~<3>のいずれか1つに記載の加飾用材料。
<5> 上記コレステリック液晶層に隣接する接着剤含有層を含み、上記接着剤含有層の破断伸度が、上記コレステリック液晶層の破断伸度以上である、<1>~<4>のいずれか1つに記載の加飾用材料。
<6> <1>~<5>のいずれか1つに記載の加飾用材料の成型物。
<7> <1>~<5>のいずれか1つに記載の加飾用材料の成型物を含む、加飾用パネル。
<8> <1>~<5>のいずれか1つに記載の加飾用材料の成型物を含む、電子デバイス。
<9> 重合性基を有するコレステリック液晶化合物と、重合性基を有する光学活性化合物と、光重合開始剤と、を含む組成物を準備することと、剥離性基材の上に上記組成物を塗布することと、上記組成物を光により硬化させ、0.02mol/L~0.06mol/Lの架橋密度を有するコレステリック液晶層を形成することと、上記コレステリック液晶層の上に接着剤含有層を形成することと、をこの順に含み、上記光学活性化合物が、1つの重合性基を有する光学活性化合物を含む、加飾用材料の製造方法。
The present disclosure includes the following aspects.
<1> The cholesteric liquid crystal layer contains a compound having a breaking elongation of 80% or more and a molecular weight of 10,000 or less per unit volume of the cholesteric liquid crystal layer. A decorative material whose amount is less than 50 mg/cm 3 .
<2> The decorating material according to <1>, wherein the cholesteric liquid crystal layer is a cured product of a composition containing a cholesteric liquid crystal compound and an optically active compound.
<3> The decorating material according to <2>, wherein the optically active compound contains an optically active compound having one polymerizable group.
<4> The decorating material according to any one of <1> to <3>, wherein the cholesteric liquid crystal layer has a crosslink density of 0.02 mol/L to 0.06 mol/L.
<5> Any one of <1> to <4>, including an adhesive-containing layer adjacent to the cholesteric liquid crystal layer, wherein the breaking elongation of the adhesive-containing layer is equal to or higher than the breaking elongation of the cholesteric liquid crystal layer 1. Decorative material according to 1.
<6> A molding of the decorative material according to any one of <1> to <5>.
<7> A decorative panel comprising a molding of the decorative material according to any one of <1> to <5>.
<8> An electronic device comprising a molding of the decorative material according to any one of <1> to <5>.
<9> Preparing a composition containing a cholesteric liquid crystal compound having a polymerizable group, an optically active compound having a polymerizable group, and a photopolymerization initiator, and applying the composition on a peelable substrate. curing the composition with light to form a cholesteric liquid crystal layer having a crosslink density of 0.02 mol/L to 0.06 mol/L; and forming an adhesive-containing layer on the cholesteric liquid crystal layer. and, in this order, the optically active compound comprising an optically active compound having one polymerizable group.
 本開示の一実施形態によれば、優れた延伸性及び熱環境下で液晶の反射色味が変化しにくい性質を有する液晶層を含む加飾用材料が提供される。
 本開示の他の一実施形態によれば、上記加飾用材料の製造方法が提供される。
 本開示の他の一実施形態によれば、上記加飾用材料の成型物が提供される。
 本開示の他の一実施形態によれば、上記加飾用材料の成型物を含む加飾用パネルが提供される。
 本開示の他の一実施形態によれば、上記加飾用材料の成型物を含む電子デバイスが提供される。
According to one embodiment of the present disclosure, a decorative material is provided that includes a liquid crystal layer that has excellent stretchability and properties that the reflected color of the liquid crystal does not easily change in a heat environment.
According to another embodiment of the present disclosure, there is provided a method for manufacturing the decorative material.
According to another embodiment of the present disclosure, there is provided a molding of the decorating material.
According to another embodiment of the present disclosure, there is provided a decorating panel including moldings of the above decorating material.
According to another embodiment of the present disclosure, there is provided an electronic device including a molding of the decorating material.
 以下、本開示の実施形態について詳細に説明する。本開示は、以下の実施形態に何ら制限されない。以下の実施形態は、本開示の目的の範囲内において適宜変更されてもよい。 Hereinafter, embodiments of the present disclosure will be described in detail. The present disclosure is by no means limited to the following embodiments. The following embodiments may be modified as appropriate within the scope of the purpose of the present disclosure.
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 In the present disclosure, a numerical range represented using "~" means a range that includes the numerical values described before and after "~" as lower and upper limits.
 本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値は、他の段階的な記載の数値範囲の上限値に置き換えられてもよく、ある数値範囲で記載された下限値は、他の段階的な記載の数値範囲の下限値に置き換えられてもよい。本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えられてもよい。 In the numerical ranges described step by step in the present disclosure, the upper limit value described in a certain numerical range may be replaced with the upper limit value of another numerical range described step by step, and is described in a certain numerical range Any given lower limit may be replaced by the lower limit of any other numerical range recited. In the numerical ranges described step by step in this disclosure, the upper or lower limit values described in a certain numerical range may be replaced with the values shown in the examples.
 本開示において、組成物中に各成分に該当する物質が複数存在する場合、特に断りのない限り、組成物中の各成分の量は、組成物中に存在する上記複数の物質の合計量を意味する。 In the present disclosure, when there are multiple substances corresponding to each component in the composition, unless otherwise specified, the amount of each component in the composition is the total amount of the above multiple substances present in the composition. means.
 本開示において「工程」との用語は、独立した工程だけでなく、所期の目的が達成されれば、他の工程と明確に区別できない工程を包含する。 In the present disclosure, the term "step" includes not only independent steps but also steps that cannot be clearly distinguished from other steps once the intended purpose is achieved.
 本開示において「固形分」とは、溶剤を除く成分を意味する。例えば、溶剤に該当しない液体の成分は、固形分に含まれる。 "Solid content" in the present disclosure means components excluding solvent. For example, liquid components that do not correspond to solvents are included in the solid content.
 本開示において「置換」及び「無置換」を記していない基(原子団)は、置換基を有しない基及び置換基を有する基を包含する。例えば「アルキル基」は、置換基を有しないアルキル基(すなわち、無置換アルキル基)のみならず、置換基を有するアルキル基(すなわち、置換アルキル基)を包含する。 Groups (atomic groups) for which "substituted" and "unsubstituted" are not described in the present disclosure include groups having no substituents and groups having substituents. For example, "alkyl group" includes not only alkyl groups without substituents (ie, unsubstituted alkyl groups) but also alkyl groups with substituents (ie, substituted alkyl groups).
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。 In the present disclosure, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous.
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。 In the present disclosure, a combination of two or more preferred aspects is a more preferred aspect.
 本開示における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、東ソー株式会社製のカラム(具体的には、TSKgel GMHxL、TSKgel G4000HxL及びTSKgel G2000HxL)を用いるゲルパーミエーションクロマトグラフィ(GPC)分析装置、溶剤としてテトラヒドロフラン(THF)、示差屈折計及び標準物質としてポリスチレンを用いて測定される。 Unless otherwise specified, the weight average molecular weight (Mw) and number average molecular weight (Mn) in the present disclosure are obtained by gel permeation using columns manufactured by Tosoh Corporation (specifically, TSKgel GMHxL, TSKgel G4000HxL and TSKgel G2000HxL). It is measured using a chromatography (GPC) analyzer, tetrahydrofuran (THF) as a solvent, a differential refractometer and polystyrene as a standard substance.
<加飾用材料>
 以下、本開示に係る加飾用材料について説明する。一実施形態において、加飾用材料は、コレステリック液晶層を含む。さらに、コレステリック液晶層の破断伸度は、80%以上である。さらに、コレステリック液晶層においてコレステリック液晶層の単位体積あたりの10,000以下の分子量を有する化合物の含有量は、50mg/cm未満である。上記のような実施形態によれば、優れた延伸性及び熱環境下で液晶の反射色味が変化しにくい性質を有する液晶層を含む加飾用材料が提供される。
<Decoration materials>
The decorating material according to the present disclosure will be described below. In one embodiment, the decorative material includes a cholesteric liquid crystal layer. Furthermore, the elongation at break of the cholesteric liquid crystal layer is 80% or more. Furthermore, the content of compounds having a molecular weight of 10,000 or less per unit volume of the cholesteric liquid crystal layer in the cholesteric liquid crystal layer is less than 50 mg/cm 3 . According to the above-described embodiments, a decorative material is provided that includes a liquid crystal layer that has excellent stretchability and properties that the reflected color of the liquid crystal does not easily change in a hot environment.
 延伸性及び耐熱性が向上する理由は、次のように推定される。熱環境下で液晶の反射色味が変化する要因の1つとして、加熱によってコレステリック液晶のらせんピッチが変化することが考えられる。らせんピッチが変化すると、液晶層で反射される光の波長が変化し、色味が変化してしまう。例えば、加熱によって液晶層に含まれる低分子化合物の流出量が多くなると、らせんピッチが変化しやすい。一方、本開示の一実施形態では、コレステリック液晶層においてコレステリック液晶層の単位体積あたりの10,000以下の分子量を有する化合物の含有量が50mg/cm未満に設定されている。コレステリック液晶層において10,000以下の分子量を有する化合物の含有量が50mg/cm未満であると、熱環境下にコレステリック液晶層が曝されても、らせんピッチの変化が起こらない、又はらせんピッチの変化量が小さい。さらに、本開示の一実施形態では、コレステリック液晶層の破断伸度が80%以上に設定されている。コレステリック液晶層の破断伸度が80%以上であると、コレステリック液晶層の延伸性が向上する。したがって、本開示の一実施形態によれば、優れた延伸性及び熱環境下で液晶の反射色味が変化しにくい性質を有する液晶層を含む加飾用材料が提供される。 The reason why stretchability and heat resistance are improved is presumed as follows. One of the factors that change the reflected color of liquid crystals in a hot environment is thought to be that the helical pitch of cholesteric liquid crystals changes due to heating. When the helical pitch changes, the wavelength of light reflected by the liquid crystal layer changes, resulting in a change in color. For example, when the flow rate of low-molecular-weight compounds contained in the liquid crystal layer increases due to heating, the helical pitch tends to change. On the other hand, in one embodiment of the present disclosure, the content of the compound having a molecular weight of 10,000 or less per unit volume of the cholesteric liquid crystal layer is set to less than 50 mg/cm 3 in the cholesteric liquid crystal layer. When the content of the compound having a molecular weight of 10,000 or less in the cholesteric liquid crystal layer is less than 50 mg/cm 3 , even if the cholesteric liquid crystal layer is exposed to a heat environment, the helical pitch does not change or the helical pitch changes. change amount is small. Furthermore, in one embodiment of the present disclosure, the elongation at break of the cholesteric liquid crystal layer is set to 80% or more. When the elongation at break of the cholesteric liquid crystal layer is 80% or more, the stretchability of the cholesteric liquid crystal layer is improved. Therefore, according to one embodiment of the present disclosure, a decorative material is provided that includes a liquid crystal layer that has excellent stretchability and properties that the reflected color of the liquid crystal does not easily change in a heat environment.
[コレステリック液晶層]
 本開示の一実施形態に係る加飾用材料は、コレステリック液晶層(以下、単に「液晶層」という場合がある。)を含む。「コレステリック液晶層」とは、コレステリック液晶に特有な分子の配向状態を有する層である。以下、「コレステリック液晶に特有な分子の配向状態」を「コレステリック配向状態」又は単に「配向状態」という場合がある。配向状態は、右円偏光を反射する配向状態、左円偏光を反射する配向状態又はこれらの両方を含んでいてもよい。配向状態は、重合及び架橋といった方法によって固定されていてもよい。液晶層は、コレステリック液晶化合物をコレステリック配向状態で固定した液晶層であってもよい。
[Cholesteric liquid crystal layer]
A decorating material according to an embodiment of the present disclosure includes a cholesteric liquid crystal layer (hereinafter sometimes simply referred to as "liquid crystal layer"). A “cholesteric liquid crystal layer” is a layer having a molecular alignment state unique to cholesteric liquid crystals. Hereinafter, the "orientation state of molecules peculiar to cholesteric liquid crystal" may be referred to as "cholesteric orientation state" or simply "orientation state". The alignment state may include an alignment state that reflects right-handed circularly polarized light, an alignment state that reflects left-handed circularly polarized light, or both. The orientation state may be fixed by methods such as polymerization and cross-linking. The liquid crystal layer may be a liquid crystal layer in which a cholesteric liquid crystal compound is fixed in a cholesteric alignment state.
 液晶層の破断伸度は、80%以上である。液晶層の破断伸度が80%以上であると、液晶層の延伸性が向上する。例えば、液晶層の延伸性が向上すると、曲面に対する液晶層の追随性が向上できる。延伸性の観点から、液晶層の破断伸度は、85%以上であることが好ましく、90%以上であることがより好ましく、110%以上であることが更に好ましい。さらに、液晶層の破断伸度は、110%以上であることが好ましく、120%以上であることがより好ましく、130%以上であることが更に好ましい。さらに、液晶層の破断伸度は、140%以上であることが好ましく、150%以上であることがより好ましい。延伸前の液晶層の厚さ及びコレステリック配向状態の発現性の観点から、液晶層の破断伸度は、400%以下であることが好ましく、300%以下であることがより好ましく、250%以下であることが更に好ましい。例えば、液晶層の破断伸度の増大は、大きな延伸を伴う使用又は加工への加飾用材料の応用を可能にし、延伸前の液晶層の厚さは、延伸に伴う液晶層の厚さの減少を考慮して大きめに設定されることがある。そして、延伸前の液晶層の厚さは、コレステリック配向状態の発現性に影響を及ぼすことがある。このため、液晶層の破断伸度は、延伸性に加えて、延伸前の液晶層の厚さ及びコレステリック配向状態の発現性を考慮して設定されてもよい。 The breaking elongation of the liquid crystal layer is 80% or more. When the elongation at break of the liquid crystal layer is 80% or more, the stretchability of the liquid crystal layer is improved. For example, if the stretchability of the liquid crystal layer is improved, the conformability of the liquid crystal layer to a curved surface can be improved. From the viewpoint of stretchability, the elongation at break of the liquid crystal layer is preferably 85% or more, more preferably 90% or more, and even more preferably 110% or more. Furthermore, the elongation at break of the liquid crystal layer is preferably 110% or more, more preferably 120% or more, and even more preferably 130% or more. Furthermore, the elongation at break of the liquid crystal layer is preferably 140% or more, more preferably 150% or more. From the viewpoint of the thickness of the liquid crystal layer before stretching and the development of the cholesteric alignment state, the elongation at break of the liquid crystal layer is preferably 400% or less, more preferably 300% or less, and 250% or less. It is even more preferable to have For example, an increase in the breaking elongation of the liquid crystal layer enables application of the decorative material to use or processing involving a large amount of stretching, and the thickness of the liquid crystal layer before stretching is equal to the thickness of the liquid crystal layer following stretching. It may be set larger in consideration of the decrease. The thickness of the liquid crystal layer before stretching may affect the development of the cholesteric alignment state. For this reason, the elongation at break of the liquid crystal layer may be set in consideration of the thickness of the liquid crystal layer before stretching and the development of the cholesteric alignment state, in addition to the stretchability.
 破断伸度は、以下の方法によって測定される。試料として、1cm×5cmの寸法を有する加飾用材料を準備する。加飾用材料が複数の構成要素を含む場合、試料の準備において測定対象物以外の構成要素をできる限り除く。試料の上端1cm及び下端1cmをそれぞれ治具でつかみ、熱テンシロン(株式会社エー・アンド・デイ製RTF-1310及び恒温試験装置TKC)を用いて、150℃の雰囲気中で300mm/秒の速度で引張試験を行う。試料中の測定対象物の状態の観察及び以下の式に基づいて、測定対象物の破断伸度を算出する。以下の式における「破断時の標点間距離」とは、試料中の測定対象物が破断した時の標点間距離を意味する。
 式:破断伸度(%)={(破断時の標点間距離-試験前の標点間距離)/(試験前の標点間距離)}×100
Breaking elongation is measured by the following method. As a sample, a decorative material having dimensions of 1 cm×5 cm is prepared. If the decorative material contains multiple constituent elements, remove constituent elements other than the object to be measured as much as possible in preparing the sample. Grasp the upper end 1 cm and lower end 1 cm of the sample with jigs, and use a thermal tensilon (RTF-1310 manufactured by A&D Co., Ltd. and constant temperature tester TKC) at a speed of 300 mm / sec in an atmosphere of 150 ° C. Perform a tensile test. The breaking elongation of the object to be measured is calculated based on observation of the state of the object to be measured in the sample and the following formula. In the following formula, the "gauge length at break" means the gauge length when the object to be measured in the sample is broken.
Formula: Breaking elongation (%) = {(distance between gauges at break - distance between gauges before test) / (distance between gauges before test)} x 100
 液晶層の破断伸度の調整方法は、制限されない。液晶層の破断伸度は、例えば、液晶層の原材料及び液晶層の製造条件によって調整される。例えば、液晶層の製造過程で形成される高分子同士の架橋点の数が少ないと、液晶層の破断伸度が大きくなりやすい。例えば、架橋点の数は、液晶層の原材料として使用される化合物に含まれる反応性基(例えば、重合性基)の数及び反応条件によって調整される。液晶層の原材料及び液晶層の製造条件を決定するための具体的な指針としては、例えば、後述の架橋密度が挙げられる。 The method of adjusting the breaking elongation of the liquid crystal layer is not limited. The breaking elongation of the liquid crystal layer is adjusted, for example, by the raw material of the liquid crystal layer and the manufacturing conditions of the liquid crystal layer. For example, if the number of cross-linking points between polymers formed during the manufacturing process of the liquid crystal layer is small, the elongation at break of the liquid crystal layer tends to increase. For example, the number of cross-linking points is adjusted by the number of reactive groups (eg, polymerizable groups) contained in the compound used as the raw material of the liquid crystal layer and the reaction conditions. Specific guidelines for determining the raw material of the liquid crystal layer and the manufacturing conditions of the liquid crystal layer include, for example, the crosslink density described below.
 液晶層の架橋密度は、0.02mol/L~0.06mol/Lであることが好ましく、0.02mol/L~0.05mol/Lであることがより好ましく、0.02mol/L~0.04mol/Lであることが更に好ましい。液晶層の架橋密度が0.02mol/L~0.06mol/Lであると、液晶層の破断伸度が大きくなり、延伸性が向上する。 The crosslink density of the liquid crystal layer is preferably 0.02 mol/L to 0.06 mol/L, more preferably 0.02 mol/L to 0.05 mol/L, and 0.02 mol/L to 0.05 mol/L. 04 mol/L is more preferred. When the cross-linking density of the liquid crystal layer is 0.02 mol/L to 0.06 mol/L, the elongation at break of the liquid crystal layer increases and the stretchability improves.
 液晶層の架橋密度は、以下の方法によって測定される。架橋密度の測定では、日本分光株式会社製FT/IR-4000及びこれに準ずる測定装置が使用される。
 (1)C=C二重結合(すなわち、エチレン性不飽和結合)の反応消費率を下記の計算式を用いて算出する。
 式:反応消費率={(硬化前のC=C二重結合由来のピーク強度)-(硬化後のC=C二重結合由来のピーク強度)}/(硬化前のC=C二重結合由来のピーク強度)
 (2)処方添加量から液晶層における「2つ以上の重合性基を有する化合物のC=C二重結合当量(mol/L)/全ての化合物の合計C=C二重結合当量(mol/L)」を算出する。
 (3)上記(2)で得られた値に上記(1)で得られた値を乗じることによって得られた値を架橋密度として採用する。
The crosslink density of the liquid crystal layer is measured by the following method. In the measurement of crosslink density, FT/IR-4000 manufactured by JASCO Corporation and a measuring device based on this are used.
(1) Calculate the reaction consumption rate of C=C double bond (that is, ethylenically unsaturated bond) using the following formula.
Formula: Reaction consumption rate = {(Peak intensity derived from C = C double bond before curing) - (Peak intensity derived from C = C double bond after curing)} / (C = C double bond before curing derived peak intensity)
(2) From the prescription addition amount in the liquid crystal layer "C = C double bond equivalent of compound having two or more polymerizable groups (mol / L) / total C = C double bond equivalent of all compounds (mol / L)” is calculated.
(3) The value obtained by multiplying the value obtained in (2) above by the value obtained in (1) above is employed as the crosslink density.
 液晶層において液晶層の単位体積あたりの10,000以下の分子量を有する化合物の含有量は、50mg/cm未満である。以下、「10,000以下の分子量を有する化合物」を「低分子化合物」という場合がある。液晶層における低分子化合物の含有量が50mg/cm未満であると、熱環境下で液晶の反射色味が変化しにくい。耐熱性(すなわち、熱環境下で液晶の反射色味が変化しにくい性質)の観点から、低分子化合物の含有量が少ないほど好ましい。低分子化合物の含有量は、40mg/cm以下であることが好ましく、30mg/cm以下であることがより好ましく、20mg/cm以下であることが更に好ましく、10mg/cm以下であることが特に好ましい。耐熱性の観点において、低分子化合物の含有量の下限は制限されない。低分子化合物の含有量は、0mg/cmであってもよい。 The content of the compound having a molecular weight of 10,000 or less per unit volume of the liquid crystal layer in the liquid crystal layer is less than 50 mg/cm 3 . Hereinafter, "a compound having a molecular weight of 10,000 or less" may be referred to as a "low molecular weight compound". If the content of the low-molecular compound in the liquid crystal layer is less than 50 mg/cm 3 , the reflected color of the liquid crystal is less likely to change in a hot environment. From the viewpoint of heat resistance (that is, the property that the reflected color of the liquid crystal does not easily change in a hot environment), the smaller the content of the low-molecular-weight compound, the better. The content of the low molecular compound is preferably 40 mg/cm 3 or less, more preferably 30 mg/cm 3 or less, even more preferably 20 mg/cm 3 or less, and 10 mg/cm 3 or less. is particularly preferred. From the viewpoint of heat resistance, the lower limit of the content of the low-molecular compound is not limited. The content of low-molecular-weight compounds may be 0 mg/cm 3 .
 液晶層において含有量が規制される低分子化合物の種類は、制限されない。低分子化合物としては、例えば、コレステリック液晶化合物、光学活性化合物、重合開始剤、重合性モノマー、多官能重合性化合物、光異性化化合物、架橋剤、溶剤及び他の添加剤が挙げられる。各成分の態様は、後述の組成物の成分の説明に記載されている。 The type of low-molecular compound whose content in the liquid crystal layer is regulated is not limited. Low-molecular-weight compounds include, for example, cholesteric liquid crystal compounds, optically active compounds, polymerization initiators, polymerizable monomers, polyfunctional polymerizable compounds, photoisomerizable compounds, cross-linking agents, solvents and other additives. Aspects of each component are described in the component descriptions of the compositions below.
 液晶層における低分子化合物の含有量を低減する方法は、制限されない。液晶層における低分子化合物の含有量は、例えば、液晶層の原材料及び液晶層の製造条件によって調整される。液晶層における低分子化合物の含有量を低減する方法としては、例えば、液晶層の原材料として重合性又は架橋性を有する化合物を用いる方法が挙げられる。例えば、液晶層の原材料に低分子化合物が多く含まれていたとしても、液晶層の製造過程において重合性又は架橋性を有する化合物が高分子を形成することで、液晶層における低分子化合物の含有量が減少する。例えば、液晶層の原材料として使用される化合物に含まれる反応性基(例えば、重合性基)の数は、液晶層の破断伸度だけでなく、液晶層における低分子化合物の含有量にも影響を与えることができる。 The method for reducing the content of low-molecular-weight compounds in the liquid crystal layer is not limited. The content of the low-molecular compound in the liquid crystal layer is adjusted, for example, by the raw material of the liquid crystal layer and the manufacturing conditions of the liquid crystal layer. Methods for reducing the content of low-molecular-weight compounds in the liquid crystal layer include, for example, a method using a polymerizable or crosslinkable compound as a raw material for the liquid crystal layer. For example, even if the raw material of the liquid crystal layer contains a large amount of low-molecular-weight compounds, the content of the low-molecular-weight compounds in the liquid crystal layer can be reduced by forming polymers with polymerizable or crosslinkable compounds during the manufacturing process of the liquid crystal layer. decrease in volume. For example, the number of reactive groups (e.g., polymerizable groups) contained in the compound used as the raw material for the liquid crystal layer affects not only the elongation at break of the liquid crystal layer, but also the content of low-molecular-weight compounds in the liquid crystal layer. can give
 液晶層は、選択反射性を有することが好ましい。「選択反射性」とは、特定の波長域に選択反射波長が存在することを意味する。「選択反射波長」とは、対象物における透過率の極小値をTmin(%)とした場合、下記式で表される半値透過率(T1/2、単位:%)を示す2つの波長の平均値を意味する。液晶層の選択反射波長は、例えば、可視光(380nm~780nm)及び近赤外光(780nmを超え2,000nm以下)の範囲で設定されてもよい。液晶層は、380nm~1,200nmの少なくとも一部の波長域に選択反射性を有することが好ましい。
 式:半値透過率T1/2=100-(100-Tmin)÷2
The liquid crystal layer preferably has selective reflectivity. "Selectively reflective" means that a selective reflection wavelength exists in a specific wavelength range. "Selective reflection wavelength" is the average of two wavelengths showing the half-value transmittance (T1/2, unit: %) represented by the following formula, where Tmin (%) is the minimum transmittance of the object. means value. The selective reflection wavelength of the liquid crystal layer may be set, for example, within the range of visible light (380 nm to 780 nm) and near-infrared light (over 780 nm and 2,000 nm or less). The liquid crystal layer preferably has selective reflectivity in at least part of the wavelength range from 380 nm to 1,200 nm.
Formula: half-value transmittance T1/2 = 100-(100-Tmin)/2
 液晶層の成分としては、例えば、コレステリック液晶化合物、光学活性化合物、重合開始剤、重合性モノマー、多官能重合性化合物、光異性化化合物、架橋剤、溶剤及び他の添加剤が挙げられる。各成分の態様は、後述の組成物の成分の説明に記載されている。液晶層の好ましい成分としては、例えば、重合性基を有するコレステリック液晶化合物に由来の構成単位を有する重合体、重合性基を有する光学活性化合物に由来の構成単位を有する重合体及び重合性基を有するコレステリック液晶化合物に由来の構成単位と重合性基を有する光学活性化合物に由来の構成単位とを有する重合体が挙げられる。 Components of the liquid crystal layer include, for example, cholesteric liquid crystal compounds, optically active compounds, polymerization initiators, polymerizable monomers, polyfunctional polymerizable compounds, photoisomerizable compounds, cross-linking agents, solvents and other additives. Aspects of each component are described in the component descriptions of the compositions below. Preferred components of the liquid crystal layer include, for example, a polymer having a structural unit derived from a cholesteric liquid crystal compound having a polymerizable group, a polymer having a structural unit derived from an optically active compound having a polymerizable group, and a polymerizable group. and a polymer having a structural unit derived from a cholesteric liquid crystal compound and a structural unit derived from an optically active compound having a polymerizable group.
 液晶層は、コレステリック液晶化合物及び光学活性化合物を含む組成物の硬化物であることが好ましい。組成物は、例えば、光又は熱によって硬化される。組成物の好ましい硬化方法は、後述の加飾用材料の製造方法の説明に記載されている。硬化物は、液晶性を有する化合物を含んでいなくてもよい。例えば、硬化物は、反応性基を有するコレステリック液晶化合物の重合又は架橋によって形成された液晶性を有しない化合物を含んでいてもよい。組成物の成分としては、例えば、コレステリック液晶化合物、光学活性化合物、重合開始剤、重合性モノマー、多官能重合性化合物、光異性化化合物、架橋剤、溶剤及び他の添加剤が挙げられる。組成物は、コレステリック液晶化合物と、光学活性化合物と、を含むことが好ましい。組成物は、コレステリック液晶化合物と、光学活性化合物と、重合開始剤と、を含むことがより好ましい。以下、各成分の具体的な態様について説明する。 The liquid crystal layer is preferably a cured product of a composition containing a cholesteric liquid crystal compound and an optically active compound. The composition is cured, for example, by light or heat. A preferred method for curing the composition is described in the explanation of the method for producing the decorative material below. The cured product may not contain a compound having liquid crystallinity. For example, the cured product may contain a compound having no liquid crystallinity formed by polymerization or crosslinking of a cholesteric liquid crystal compound having a reactive group. Components of the composition include, for example, cholesteric liquid crystal compounds, optically active compounds, polymerization initiators, polymerizable monomers, polyfunctional polymerizable compounds, photoisomerizable compounds, cross-linking agents, solvents and other additives. The composition preferably contains a cholesteric liquid crystal compound and an optically active compound. More preferably, the composition contains a cholesteric liquid crystal compound, an optically active compound, and a polymerization initiator. Specific aspects of each component are described below.
(コレステリック液晶化合物)
 組成物は、コレステリック液晶化合物を含むことが好ましい。コレステリック液晶化合物の種類は、制限されない。コレステリック液晶化合物は、公知のコレステリック液晶化合物であってもよい。
(cholesteric liquid crystal compound)
The composition preferably contains a cholesteric liquid crystal compound. The type of cholesteric liquid crystal compound is not limited. The cholesteric liquid crystal compound may be a known cholesteric liquid crystal compound.
 コレステリック液晶化合物は、反応性基を有することが好ましい。反応性基は、重合性基であることが好ましい。重合性基としては、例えば、ラジカル重合性基及びカチオン重合性基が挙げられる。反応性、及び、らせんピッチの固定容易性の観点から、コレステリック液晶化合物は、ラジカル重合性基を有することが好ましい。ラジカル重合性基は、ビニル基、アクリロイル基及びメタクリロイル基からなる群より選択される少なくとも1種の重合性基であることが好ましく、アクリロイル基及びメタクリロイル基からなる群より選択される少なくとも1種の重合性基であることがより好ましい。 The cholesteric liquid crystal compound preferably has a reactive group. The reactive group is preferably a polymerizable group. Polymerizable groups include, for example, radically polymerizable groups and cationic polymerizable groups. From the viewpoint of reactivity and ease of fixation of the helical pitch, the cholesteric liquid crystal compound preferably has a radically polymerizable group. The radical polymerizable group is preferably at least one polymerizable group selected from the group consisting of a vinyl group, an acryloyl group and a methacryloyl group, and at least one polymerizable group selected from the group consisting of an acryloyl group and a methacryloyl group. More preferably, it is a polymerizable group.
 コレステリック液晶化合物は、2つ以上の反応性基を有していてもよい。コレステリック液晶化合物は、2種類以上の反応性基を有していてもよい。 The cholesteric liquid crystal compound may have two or more reactive groups. The cholesteric liquid crystal compound may have two or more reactive groups.
 コレステリック液晶化合物は、架橋機構の異なる2種類以上の反応性基を有するコレステリック液晶化合物であってもよい。架橋機構は、縮合反応、水素結合又は重合であってもよい。2種類以上の反応性基の架橋機構の少なくとも1つは、重合であることが好ましい。架橋機構は、2種類以上の重合を含むことが好ましい。上記のような架橋機構に利用される反応性基としては、例えば、ビニル基、(メタ)アクリル基、エポキシ基、オキセタニル基、ビニルエーテル基、ヒドロキシ基、カルボキシ基及びアミノ基が挙げられる。 The cholesteric liquid crystal compound may be a cholesteric liquid crystal compound having two or more reactive groups with different crosslinking mechanisms. The cross-linking mechanism may be a condensation reaction, hydrogen bonding or polymerization. At least one of the cross-linking mechanisms of the two or more reactive groups is preferably polymerization. The cross-linking mechanism preferably involves two or more types of polymerization. Examples of reactive groups utilized in the above-described crosslinking mechanism include vinyl groups, (meth)acryl groups, epoxy groups, oxetanyl groups, vinyl ether groups, hydroxy groups, carboxy groups and amino groups.
 架橋機構の異なる2種類以上の反応性基を有するコレステリック液晶化合物は、段階的に架橋可能な化合物であってもよい。各段階では、各段階の架橋機構に応じた反応性基が反応する。
 2種類以上の反応性基を段階的に架橋させるための方法としては、例えば、各段階における反応条件を変更する方法が挙げられる。反応条件の変更点としては、例えば、温度、光(照射線)の波長及び重合機構が挙げられる。反応を分離しやすい点から重合機構の違いの利用が好ましい。重合機構は、例えば、重合開始剤の種類によって制御される。
The cholesteric liquid crystal compound having two or more reactive groups with different cross-linking mechanisms may be a compound that can be cross-linked step by step. At each stage, the reactive groups react according to the cross-linking mechanism of each stage.
Methods for stepwise crosslinking of two or more reactive groups include, for example, a method of changing the reaction conditions in each step. Changes in reaction conditions include, for example, temperature, wavelength of light (irradiation), and polymerization mechanism. Utilization of a difference in polymerization mechanism is preferable because the reaction can be easily separated. The polymerization mechanism is controlled, for example, by the type of polymerization initiator.
 重合性基の組み合わせとしては、ラジカル重合性基とカチオン重合性基との組み合わせが好ましい。反応性が制御しやすいという観点から、重合性基の組み合わせとしては、ラジカル重合性基がビニル基又は(メタ)アクリル基であり、かつ、カチオン重合性基がエポキシ基、オキセタニル基又はビニルエーテル基であることが好ましい。 As a combination of polymerizable groups, a combination of a radically polymerizable group and a cationic polymerizable group is preferable. From the viewpoint of easy control of reactivity, the combination of polymerizable groups includes a radical polymerizable group of vinyl group or (meth)acrylic group, and a cationically polymerizable group of epoxy group, oxetanyl group or vinyl ether group. Preferably.
 延伸性及び耐熱性の観点から、コレステリック液晶化合物は、1つの反応性基(好ましくは重合性基)を有するコレステリック液晶化合物を含むことが好ましい。延伸性及び耐熱性の観点から、コレステリック液晶化合物の含有量に対する1つの反応性基を有するコレステリック液晶化合物の含有量の割合は、96質量%~100質量%であることが好ましく、97質量%~100質量%であることがより好ましく、98質量%~100質量%であることが好ましい。 From the viewpoint of stretchability and heat resistance, the cholesteric liquid crystal compound preferably contains a cholesteric liquid crystal compound having one reactive group (preferably a polymerizable group). From the viewpoint of stretchability and heat resistance, the ratio of the content of the cholesteric liquid crystal compound having one reactive group to the content of the cholesteric liquid crystal compound is preferably from 96% by mass to 100% by mass, and from 97% by mass to It is more preferably 100% by mass, preferably 98% by mass to 100% by mass.
 延伸性及び耐熱性の観点から、コレステリック液晶化合物は、1つの反応性基を有するコレステリック液晶化合物と、2つ以上の反応性基を有するコレステリック液晶化合物と、を含むことが好ましい。コレステリック液晶化合物は、1つの反応性基を有するコレステリック液晶化合物と、2つの反応性基を有するコレステリック液晶化合物と、を含むことがより好ましい。延伸性及び耐熱性の観点から、1つの反応性基を有するコレステリック液晶化合物の含有量に対する2つ以上の反応性基を有するコレステリック液晶化合物の含有量との比は、質量基準で、0~0.05であることが好ましく、0~0.04であることがより好ましく、0~0.02であることが好ましい。 From the viewpoint of stretchability and heat resistance, the cholesteric liquid crystal compound preferably contains a cholesteric liquid crystal compound having one reactive group and a cholesteric liquid crystal compound having two or more reactive groups. More preferably, the cholesteric liquid crystal compound includes a cholesteric liquid crystal compound having one reactive group and a cholesteric liquid crystal compound having two reactive groups. From the viewpoint of stretchability and heat resistance, the ratio of the content of the cholesteric liquid crystal compound having two or more reactive groups to the content of the cholesteric liquid crystal compound having one reactive group is 0 to 0 on a mass basis. 0.05 is preferred, 0 to 0.04 is more preferred, and 0 to 0.02 is preferred.
 反応性基の具体例を以下に示す。ただし、反応性基は以下の具体例に制限されない。以下の具体例において、Etはエチル基を表し、n-Prはn-プロピル基を表す。 Specific examples of reactive groups are shown below. However, the reactive group is not limited to the specific examples below. In the specific examples below, Et represents an ethyl group and n-Pr represents an n-propyl group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 コレステリック液晶化合物としては、例えば、棒状コレステリック液晶化合物及び円盤状コレステリック液晶化合物が挙げられる。棒状コレステリック液晶化合物は、低分子型又は高分子型の化合物であってもよい。円盤状コレステリック液晶化合物は、低分子型又は高分子型の化合物であってもよい。本開示において、コレステリック液晶化合物に関して使用される用語「高分子」とは、重合度が100以上である化合物を意味する(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。2種類以上の棒状コレステリック液晶化合物、2種類以上の円盤状液晶性化合物又は棒状コレステリック液晶化合物と円盤状コレステリック液晶化合物との混合物が使用されてもよい。2種類以上のコレステリック液晶化合物において、少なくとも1種類のコレステリック液晶化合物は反応性基を有することが好ましい。 Cholesteric liquid crystal compounds include, for example, rod-shaped cholesteric liquid crystal compounds and disk-shaped cholesteric liquid crystal compounds. The rod-shaped cholesteric liquid crystal compound may be a low-molecular-weight or high-molecular-weight compound. The discotic cholesteric liquid crystal compounds may be low-molecular-weight or high-molecular-weight compounds. In the present disclosure, the term "polymer" used with respect to cholesteric liquid crystal compounds means compounds having a degree of polymerization of 100 or more (Polymer Physics, Phase Transition Dynamics, Masao Doi, p.2, Iwanami Shoten, 1992 ). Two or more types of rod-shaped cholesteric liquid crystal compounds, two or more types of discotic liquid crystal compounds, or mixtures of rod-shaped cholesteric liquid crystal compounds and discotic liquid crystal compounds may be used. At least one of the two or more cholesteric liquid crystal compounds preferably has a reactive group.
 コレステリック液晶化合物は、棒状コレステリック液晶化合物であることが好ましい。棒状コレステリック液晶化合物としては、例えば、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が挙げられる。棒状コレステリック液晶化合物としては、例えば、反応性基を有する棒状コレステリック液晶化合物の重合体も挙げられる。棒状コレステリック液晶化合物としては、例えば、特開2008-281989号公報、特表平11-513019号公報又は特表2006-526165号公報に記載された化合物も挙げられる。 The cholesteric liquid crystal compound is preferably a rod-shaped cholesteric liquid crystal compound. Rod-shaped cholesteric liquid crystal compounds include, for example, azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenyl Included are pyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles. Rod-shaped cholesteric liquid crystal compounds also include, for example, polymers of rod-shaped cholesteric liquid crystal compounds having reactive groups. Examples of rod-shaped cholesteric liquid crystal compounds include compounds described in JP-A-2008-281989, JP-A-11-513019 and JP-A-2006-526165.
 棒状コレステリック液晶化合物の具体例を以下に示す。ただし、棒状コレステリック液晶化合物は以下の具体例に制限されない。下記に示される化合物は、例えば、特表平11-513019号公報に記載された方法によって合成される。 Specific examples of rod-shaped cholesteric liquid crystal compounds are shown below. However, the rod-shaped cholesteric liquid crystal compound is not limited to the following specific examples. The compounds shown below are synthesized, for example, by the method described in Japanese Patent Publication No. 11-513019.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 1つの重合性基を有する棒状コレステリック液晶化合物としては、例えば、次のような化合物が挙げられる。以下の化学式に示される「Me」は、メチル基を意味する。 Examples of rod-shaped cholesteric liquid crystal compounds having one polymerizable group include the following compounds. "Me" shown in the following chemical formula means a methyl group.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 円盤状コレステリック液晶化合物としては、例えば、次のような化合物が挙げられる。
 (1)C.Destradeらの研究報告、例えば、Mol.Cryst.71巻、111頁(1981年)に記載されたベンゼン誘導体
 (2)C.Destradeらの研究報告、例えば、Mol.Cryst.122巻、141頁(1985年)及びPhysicslett,A,78巻、82頁(1990)に記載されたトルキセン誘導体
 (3)B.Kohneらの研究報告、例えば、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体
 (4)J.M.Lehnらの研究報告(J.Chem.Commun.,1794頁(1985年)及びJ.Zhangらの研究報告(J.Am.Chem.Soc.116巻、2655頁(1994年))に記載されたアザクラウン系又はフェニルアセチレン系マクロサイクル
Examples of discotic cholesteric liquid crystal compounds include the following compounds.
(1) C.I. Destrade et al., see, for example, Mol. Cryst. 71, 111 (1981) benzene derivatives (2) C.I. Destrade et al., see, for example, Mol. Cryst. 122, 141 (1985) and Physicslett, A, 78, 82 (1990) truxene derivatives (3)B. Kohne et al., see, for example, Angew. Chem. 96, 70 (1984) (4) J. Am. M. Lehn et al.'s research report (J. Chem. Commun., 1794 (1985) and J. Zhang et al.'s research report (J. Am. Chem. Soc. 116, 2655 (1994)) Azacrown-based or phenylacetylene-based macrocycles
 円盤状コレステリック液晶化合物には、上記の各種構造を分子中心の円盤状の母核とし、直鎖のアルキル基、アルコキシ基及び置換ベンゾイルオキシ基といった基が放射線状に配置された構造を有し、液晶性を示し、一般的に円盤状液晶とよばれる液晶化合物が含まれる。このような化合物の集合体が一様に配向すると負の一軸性が現れる。 The discotic cholesteric liquid crystal compound has a structure in which the various structures described above are used as a discotic mother nucleus at the center of the molecule, and groups such as linear alkyl groups, alkoxy groups and substituted benzoyloxy groups are arranged radially, Liquid crystal compounds that exhibit liquid crystallinity and are generally called discotic liquid crystals are included. Negative uniaxiality appears when aggregates of such compounds are uniformly oriented.
 円盤状コレステリック液晶化合物としては、例えば、特開2008-281989号公報の段落0061~段落0075に記載された化合物も挙げられる。 Examples of discotic cholesteric liquid crystal compounds include compounds described in paragraphs 0061 to 0075 of JP-A-2008-281989.
 液晶層において、反応性基を有する円盤状コレステリック液晶化合物は、水平配向、垂直配向、傾斜配向及びねじれ配向といった配向状態で固定されていてもよい。 In the liquid crystal layer, the discotic cholesteric liquid crystal compound having a reactive group may be fixed in an alignment state such as horizontal alignment, vertical alignment, tilt alignment and twist alignment.
 組成物は、1種又は2種以上のコレステリック液晶化合物を含んでいてもよい。 The composition may contain one or more cholesteric liquid crystal compounds.
 組成物の固形分の全質量に対するコレステリック液晶化合物の含有量の割合は、30質量%~99質量%であることが好ましく、40質量%~99質量%であることがより好ましく、60質量%~99質量%であることが更に好ましく、70質量%~98質量%であることが特に好ましい。 The ratio of the content of the cholesteric liquid crystal compound to the total mass of the solid content of the composition is preferably 30% by mass to 99% by mass, more preferably 40% by mass to 99% by mass, and 60% by mass to More preferably 99% by mass, particularly preferably 70% to 98% by mass.
(光学活性化合物)
 組成物は、光学活性化合物を含むことが好ましい。光学活性化合物は、コレステリック液晶のらせん構造を誘起できる。例えば、光学活性化合物は、らせんピッチを調整できる。
(Optically active compound)
The composition preferably contains an optically active compound. An optically active compound can induce a helical structure of cholesteric liquid crystals. For example, an optically active compound can modulate helical pitch.
 光学活性化合物の種類は、制限されない。光学活性化合物は、公知の光学活性化合物であってもよい。光学活性化合物は、目的のらせん構造に応じて選択されてもよい。光学活性化合物としては、例えば、液晶デバイスハンドブック(第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989)、特開2003-287623号公報、特開2002-302487号公報、特開2002-80478号公報、特開2002-80851号公報、特開2010-181852号公報及び特開2014-034581号公報に記載された化合物が挙げられる。 The type of optically active compound is not limited. The optically active compound may be a known optically active compound. The optically active compound may be selected according to the desired helical structure. Examples of optically active compounds include Liquid Crystal Device Handbook (Chapter 3, Section 4-3, Chiral Agents for TN and STN, p. 199, Japan Society for the Promotion of Science, 142nd Committee, 1989), and JP-A-2003-287623. , JP-A-2002-302487, JP-A-2002-80478, JP-A-2002-80851, JP-A-2010-181852 and JP-A-2014-034581.
 光学活性化合物は、シンナモイル基を有することが好ましい。 The optically active compound preferably has a cinnamoyl group.
 光学活性化合物は、不斉炭素原子を含むことが好ましい。ただし、光学活性化合物は、不斉炭素原子を含まない軸性不斉化合物又は面性不斉化合物であってもよい。軸性不斉化合物及び面性不斉化合物としては、例えば、ビナフチル、ヘリセン、パラシクロファン及びこれらの誘導体が挙げられる。 The optically active compound preferably contains an asymmetric carbon atom. However, the optically active compound may be an axially asymmetric compound or planar asymmetric compound containing no asymmetric carbon atoms. Examples of axially chiral compounds and planar chiral compounds include binaphthyl, helicene, paracyclophane, and derivatives thereof.
 光学活性化合物は、反応性基を有していてもよい。反応性基は、重合性基であることが好ましい。重合性基は、エチレン性不飽和基、エポキシ基及びアジリジニル基からなる群より選択される少なくとも1種の重合性基であることが好ましく、エチレン性不飽和基であることがより好ましく、アクリロイル基及びメタクリロイル基からなる群より選択される少なくとも1種の重合性基であることが更に好ましい。光学活性化合物は、2つ以上の反応性基を有していてもよい。光学活性化合物は、2種類以上の反応性基を有していてもよい。 The optically active compound may have a reactive group. The reactive group is preferably a polymerizable group. The polymerizable group is preferably at least one polymerizable group selected from the group consisting of an ethylenically unsaturated group, an epoxy group and an aziridinyl group, more preferably an ethylenically unsaturated group, an acryloyl group and at least one polymerizable group selected from the group consisting of methacryloyl groups. The optically active compound may have two or more reactive groups. The optically active compound may have two or more reactive groups.
 延伸性及び耐熱性の観点から、光学活性化合物は、1つの重合性基を有する光学活性化合物を含むことが好ましい。光学活性化合物が1つの重合性基を有する光学活性化合物を含む場合、延伸性及び耐熱性の観点から、光学活性化合物の含有量に対する1つの重合性基を有する光学活性化合物の含有量の割合は、0質量%超であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。上限は、100質量%であってもよい。光学活性化合物の含有量に対する1つの重合性基を有する光学活性化合物の含有量の割合は、0質量%~100質量%であってもよい。 From the viewpoint of stretchability and heat resistance, the optically active compound preferably contains an optically active compound having one polymerizable group. When the optically active compound contains an optically active compound having one polymerizable group, from the viewpoint of stretchability and heat resistance, the ratio of the content of the optically active compound having one polymerizable group to the content of the optically active compound is , preferably more than 0% by mass, more preferably 50% by mass or more, and even more preferably 70% by mass or more. The upper limit may be 100% by mass. The ratio of the content of the optically active compound having one polymerizable group to the content of the optically active compound may be 0% by mass to 100% by mass.
 組成物は、重合性基を有するコレステリック液晶化合物と、重合性基を有する光学活性化合物と、を含むことが好ましい。例えば、重合性基を有する光学活性化合物と、重合性基を有するコレステリック液晶化合物との反応は、重合性基を有するコレステリック液晶化合物に由来の構成単位と、重合性基を有する光学活性化合物に由来の構成単位とを有する重合体を形成できる。光学活性化合物における重合性基の種類は、コレステリック液晶化合物における重合性基の種類と同じであることが好ましい。 The composition preferably contains a cholesteric liquid crystal compound having a polymerizable group and an optically active compound having a polymerizable group. For example, the reaction between an optically active compound having a polymerizable group and a cholesteric liquid crystal compound having a polymerizable group is derived from structural units derived from the cholesteric liquid crystal compound having a polymerizable group and an optically active compound having a polymerizable group. can form a polymer having a constitutional unit of The type of polymerizable group in the optically active compound is preferably the same as the type of polymerizable group in the cholesteric liquid crystal compound.
 光学活性化合物は、コレステック液晶化合物であってもよい。 The optically active compound may be a cholestech liquid crystal compound.
 液晶層形成の容易性、らせんピッチの調整容易性及び成型後における反射率変化抑制の観点から、光学活性化合物は、光学活性化合物としても作用する光異性化化合物であってもよい。光学活性化合物としても作用する光異性化化合物としては、例えば、後述の式(CH1)で表される化合物が挙げられる。 The optically active compound may be a photoisomerizable compound that also acts as an optically active compound, from the viewpoints of easiness in forming the liquid crystal layer, easiness in adjusting the helical pitch, and suppression of change in reflectance after molding. Examples of photoisomerizable compounds that also act as optically active compounds include compounds represented by formula (CH1) described below.
 好ましい光学活性化合物としては、例えば、イソソルビド誘導体、イソマンニド誘導体及びビナフチル誘導体が挙げられる。 Preferred optically active compounds include, for example, isosorbide derivatives, isomannide derivatives and binaphthyl derivatives.
 光学活性化合物の具体例を以下に示す。ただし、光学活性化合物は以下の具体例に制限されない。 Specific examples of optically active compounds are shown below. However, the optically active compound is not limited to the specific examples below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記化学式におけるnは、2~12の整数を表す。合成コストの観点から、nは、2又は4であることが好ましい。  In the above chemical formula, n represents an integer of 2 to 12. From the viewpoint of synthesis cost, n is preferably 2 or 4.
 組成物は、1種又は2種以上の光学活性化合物を含んでいてもよい。 The composition may contain one or more optically active compounds.
 液晶層形成の容易性、らせんピッチの調整容易性及び成型後における反射率変化抑制の観点から、組成物の固形分の全質量に対する光学活性化合物の含有量の割合は、1質量%~20質量%であることが好ましく、2質量%~10質量%であることがより好ましく、3質量%~9質量%であることが更に好ましく、4質量%~8質量%であることが特に好ましい。 From the viewpoints of easiness of liquid crystal layer formation, easiness of adjustment of helical pitch, and suppression of change in reflectance after molding, the ratio of the content of the optically active compound to the total mass of the solid content of the composition is 1% by mass to 20% by mass. %, more preferably 2% by mass to 10% by mass, even more preferably 3% by mass to 9% by mass, and particularly preferably 4% by mass to 8% by mass.
 成型後における反射率変化抑制の観点から、組成物の固形分の全質量に対する重合性基を有する光学活性化合物の含有量の割合は、0.2質量%~15質量%であることが好ましく、0.5質量%~10質量%であることがより好ましく、1質量%~8質量%であることが更に好ましく、1.5質量%~5質量%であることが特に好ましい。 From the viewpoint of suppressing change in reflectance after molding, the content ratio of the optically active compound having a polymerizable group to the total mass of the solid content of the composition is preferably 0.2% by mass to 15% by mass. It is more preferably 0.5% to 10% by mass, even more preferably 1% to 8% by mass, and particularly preferably 1.5% to 5% by mass.
 成型後における反射率変化抑制の観点から、組成物の固形分の全質量に対する重合性基を有しない光学活性化合物の含有量の割合は、0.2質量%~20質量%であることが好ましく、0.5質量%~10質量%であることがより好ましく、2質量%~8質量%であることが特に好ましい。 From the viewpoint of suppressing change in reflectance after molding, the ratio of the content of the optically active compound having no polymerizable group to the total mass of the solid content of the composition is preferably 0.2% by mass to 20% by mass. , more preferably 0.5% by mass to 10% by mass, and particularly preferably 2% by mass to 8% by mass.
 らせんピッチ並びに後述の選択反射波長及びその範囲は、例えば、コレステリック液晶化合物の種類だけでなく、光学活性化合物の含有量に応じて調整される。例えば、液晶層における光学活性化合物の含有量が2倍になると、らせんピッチが1/2となり、選択反射波長の中心値も1/2となる。 The helical pitch and the selective reflection wavelength and its range, which will be described later, are adjusted, for example, not only according to the type of cholesteric liquid crystal compound but also according to the content of the optically active compound. For example, when the content of the optically active compound in the liquid crystal layer is doubled, the helical pitch is halved and the central value of the selective reflection wavelength is also halved.
(重合開始剤)
 組成物は、重合開始剤を含むことが好ましい。
(Polymerization initiator)
The composition preferably contains a polymerization initiator.
 重合開始剤の種類は、制限されない。重合開始剤は、公知の重合開始剤であってもよい。重合開始剤は、光重合開始剤であることが好ましい。光重合開始剤としては、例えば、α-カルボニル化合物(例えば、米国特許第2367661号明細書及び米国特許第2367670号明細書参照)、アシロインエーテル化合物(例えば、米国特許第2448828号明細書参照)、α-炭化水素置換芳香族アシロイン化合物(例えば、米国特許第2722512号明細書参照)、多核キノン化合物(例えば、米国特許第3046127号明細書及び米国特許第2951758号明細書参照)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(例えば、米国特許第3549367号明細書参照)、アクリジン化合物及びフェナジン化合物(例えば、特開昭60-105667号公報及び米国特許第4239850号明細書参照)、オキサジアゾール化合物(例えば、米国特許第4212970号明細書参照)が挙げられる。 The type of polymerization initiator is not limited. The polymerization initiator may be a known polymerization initiator. The polymerization initiator is preferably a photopolymerization initiator. Examples of photopolymerization initiators include α-carbonyl compounds (see, for example, US Pat. Nos. 2,367,661 and 2,367,670) and acyloin ether compounds (see, for example, US Pat. No. 2,448,828). , α-hydrocarbon-substituted aromatic acyloin compounds (see, for example, US Pat. No. 2,722,512), polynuclear quinone compounds (see, for example, US Pat. Nos. 3,046,127 and 2,951,758), triarylimidazoles Combinations of dimers and p-aminophenyl ketones (see, for example, US Pat. No. 3,549,367), acridine compounds and phenazine compounds (see, for example, JP-A-60-105667 and US Pat. No. 4,239,850), Oxadiazole compounds (see, for example, US Pat. No. 4,212,970).
 光重合開始剤としては、例えば、光ラジカル重合開始剤及び光カチオン重合開始剤が挙げられる。好ましい光ラジカル重合開始剤としては、例えば、α-ヒドロキシアルキルフェノン化合物、α-アミノアルキルフェノン化合物、アシルホスフィンオキサイド化合物、チオキサントン化合物及びオキシムエステル化合物が挙げられる。好ましい光カチオン重合開始剤としては、ヨードニウム塩化合物及びスルホニウム塩化合物が挙げられる。 Examples of photopolymerization initiators include photoradical polymerization initiators and photocationic polymerization initiators. Preferred radical photopolymerization initiators include, for example, α-hydroxyalkylphenone compounds, α-aminoalkylphenone compounds, acylphosphine oxide compounds, thioxanthone compounds and oxime ester compounds. Preferred photocationic polymerization initiators include iodonium salt compounds and sulfonium salt compounds.
 組成物は、1種又は2種以上の重合開始剤を含んでいてもよい。 The composition may contain one or more polymerization initiators.
 らせんピッチの調整容易性、重合速度及び硬化後の液晶層の強度の観点から、組成物の固形分の全質量に対する重合開始剤の含有量の割合は、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%であることがより好ましく、0.1質量%~4質量%であることが更に好ましく、0.2質量%~3質量%であることが特に好ましい。 From the viewpoint of ease of adjustment of the helical pitch, polymerization speed and strength of the liquid crystal layer after curing, the content of the polymerization initiator relative to the total mass of the solid content of the composition is 0.05% by mass to 10% by mass. It is preferably 0.05% by mass to 5% by mass, more preferably 0.1% by mass to 4% by mass, and 0.2% by mass to 3% by mass. Especially preferred.
(重合性モノマー)
 組成物は、重合性モノマーを含んでいてもよい。重合性モノマーは、コレステリック液晶化合物の架橋を促進できる。
(Polymerizable monomer)
The composition may contain a polymerizable monomer. Polymerizable monomers can promote cross-linking of cholesteric liquid crystal compounds.
 重合性モノマーとしては、例えば、2つ以上のエチレン性不飽和結合を有し、光の照射によって付加重合するモノマー又はオリゴマーが挙げられる。 Examples of polymerizable monomers include monomers or oligomers that have two or more ethylenically unsaturated bonds and undergo addition polymerization upon irradiation with light.
 重合性モノマーとしては、例えば、付加重合可能なエチレン性不飽和基を有する化合物が挙げられる。 Examples of polymerizable monomers include compounds having an addition-polymerizable ethylenically unsaturated group.
 重合性モノマーとしては、単官能アクリレート、単官能メタクリレート、多官能アクリレート及び多官能メタクリレートが挙げられる。 Polymerizable monomers include monofunctional acrylates, monofunctional methacrylates, polyfunctional acrylates and polyfunctional methacrylates.
 重合性モノマーとしては、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート及びフェノキシエチル(メタ)アクリレートが挙げられる。 Examples of polymerizable monomers include polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate and phenoxyethyl (meth)acrylate.
 重合性モノマーとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート及びグリセリントリ(メタ)アクリレートが挙げられる。 Examples of polymerizable monomers include polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, trimethylolethane triacrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane diacrylate, neopentyl glycol di( meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, hexanediol di(meth)acrylate, trimethylolpropane tri (acryloyloxypropyl)ether, tri(acryloyloxyethyl)isocyanurate, tri(acryloyloxyethyl)cyanurate and glycerin tri(meth)acrylate.
 重合性モノマーとしては、例えば、トリメチロールプロパン、グリセリン等の多官能アルコールにエチレンオキシド又はプロピレンオキシドを付加した後に(メタ)アクリレート化して形成される化合物が挙げられる。 Examples of polymerizable monomers include compounds formed by adding ethylene oxide or propylene oxide to polyfunctional alcohols such as trimethylolpropane and glycerin, followed by (meth)acrylate.
 重合性モノマーとしては、例えば、特公昭48-41708号公報、特公昭50-6034号公報及び特開昭51-37193号公報に記載されたウレタンアクリレート類が挙げられる。 Examples of polymerizable monomers include urethane acrylates described in JP-B-48-41708, JP-B-50-6034 and JP-A-51-37193.
 重合性モノマーとしては、例えば、特開昭48-64183号公報、特公昭49-43191号公報及び特公昭52-30490号公報に記載されたポリエステルアクリレート類が挙げられる。 Examples of polymerizable monomers include polyester acrylates described in JP-A-48-64183, JP-B-49-43191 and JP-B-52-30490.
 重合性モノマーとしては、例えば、エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類が挙げられる。 Examples of polymerizable monomers include epoxy acrylates, which are reaction products of epoxy resin and (meth)acrylic acid.
 好ましい重合性モノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジぺンタエリスリトールヘキサ(メタ)アクリレート及びジぺンタエリスリトールペンタ(メタ)アクリレートが挙げられる。 Preferred polymerizable monomers include trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate and dipentaerythritol penta(meth)acrylate.
 好ましい重合性モノマーとしては、例えば、特開平11-133600号公報に記載の「重合性化合物B」が挙げられる。 Examples of preferred polymerizable monomers include "polymerizable compound B" described in JP-A-11-133600.
 重合性モノマーは、カチオン重合性モノマーであってもよい。カチオン重合性モノマーとしては、例えば、特開平6-9714号公報、特開2001-31892号公報、特開2001-40068号公報、特開2001-55507号公報、特開2001-310938号公報、特開2001-310937号公報及び特開2001-220526号公報に記載されたエポキシ化合物、ビニルエーテル化合物及びオキセタン化合物が挙げられる。 The polymerizable monomer may be a cationically polymerizable monomer. Examples of cationic polymerizable monomers include, for example, JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, Examples include epoxy compounds, vinyl ether compounds and oxetane compounds described in JP-A-2001-310937 and JP-A-2001-220526.
 エポキシ化合物としては、例えば、芳香族エポキシド、脂環式エポキシド及び脂肪族エポキシドが挙げられる。 Epoxy compounds include, for example, aromatic epoxides, alicyclic epoxides and aliphatic epoxides.
 芳香族エポキシドとしては、ビスフェノールAのジグリシジルエーテル又はポリグリシジルエーテル、ビスフェノールAのアルキレンオキサイド付加物のジグリシジルエーテル又はポリグリシジルエーテル、水素添加ビスフェノールAのジグリシジルエーテル又はポリグリシジルエーテル、水素添加ビスフェノールAのアルキレンオキサイド付加物のジグリシジルエーテル又はポリグリシジルエーテル及びノボラック型エポキシ樹脂が挙げられる。アルキレンオキサイドとしては、例えば、エチレンオキサイド及びプロピレンオキサイドが挙げられる。 Aromatic epoxides include diglycidyl ether or polyglycidyl ether of bisphenol A, diglycidyl ether or polyglycidyl ether of alkylene oxide adduct of bisphenol A, diglycidyl ether or polyglycidyl ether of hydrogenated bisphenol A, hydrogenated bisphenol A and diglycidyl ethers or polyglycidyl ethers of alkylene oxide adducts of and novolac type epoxy resins. Alkylene oxides include, for example, ethylene oxide and propylene oxide.
 脂環式エポキシドとしては、例えば、シクロアルカン環(例えば、シクロへキセン及びシクロペンテン環)を有する化合物を酸化剤(例えば、過酸化水素及び過酸)でエポキシ化することによって得られるシクロヘキセンオキサイド含有化合物又はシクロペンテンオキサイド含有化合物が挙げられる。 Alicyclic epoxides include, for example, cyclohexene oxide-containing compounds obtained by epoxidizing compounds having a cycloalkane ring (e.g., cyclohexene and cyclopentene rings) with an oxidizing agent (e.g., hydrogen peroxide and peracid). or a cyclopentene oxide-containing compound.
 脂肪族エポキシドとしては、例えば、脂肪族多価アルコールのジグリシジルエーテル又はポリグリシジルエーテル及び脂肪族多価アルコールのアルキレンオキサイド付加物のジグリシジルエーテル又はポリグリシジルエーテルが挙げられる。脂肪族エポキシドとしては、例えば、アルキレングリコールのジグリシジルエーテル(例えば、エチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル及び1,6-ヘキサンジオールのジグリシジルエーテル)が挙げられる。脂肪族エポキシドとしては、例えば、多価アルコールのポリグリシジルエーテル(例えば、グリセリンのジグリシジルエーテル又はポリグリシジルエーテル及びグリセリンのアルキレンオキサイド付加物のジグリシジルエーテル又はポリグリシジルエーテル)が挙げられる。脂肪族エポキシドとしては、例えば、ポリアルキレングリコールのジグリシジルエーテル(例えば、ポリエチレングリコール又はそのアルキレンオキサイド付加物のジグリシジルエーテル及びポリプロピレングリコール又はそのアルキレンオキサイド付加物のジグリシジルエーテル)が挙げられる。アルキレンオキサイドとしては、例えば、エチレンオキサイド及びプロピレンオキサイドが挙げられる。 Aliphatic epoxides include, for example, diglycidyl ethers or polyglycidyl ethers of aliphatic polyhydric alcohols and diglycidyl ethers or polyglycidyl ethers of alkylene oxide adducts of aliphatic polyhydric alcohols. Aliphatic epoxides include, for example, diglycidyl ethers of alkylene glycols (eg, diglycidyl ethers of ethylene glycol, diglycidyl ethers of propylene glycol, and diglycidyl ethers of 1,6-hexanediol). Aliphatic epoxides include, for example, polyglycidyl ethers of polyhydric alcohols (eg, diglycidyl ethers or polyglycidyl ethers of glycerin and diglycidyl ethers or polyglycidyl ethers of alkylene oxide adducts of glycerin). Aliphatic epoxides include, for example, diglycidyl ethers of polyalkylene glycols (eg, diglycidyl ethers of polyethylene glycol or its alkylene oxide adducts and diglycidyl ethers of polypropylene glycol or its alkylene oxide adducts). Alkylene oxides include, for example, ethylene oxide and propylene oxide.
 カチオン重合性モノマーとして、例えば、単官能又は2官能のオキセタンモノマーが挙げられる。例えば、3-エチル-3-ヒドロキシメチルオキセタン(例えば、東亞合成株式会社製OXT101)、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン(例えば、東亞合成株式会社製OXT121)、3-エチル-3-(フェノキシメチル)オキセタン(例えば、東亞合成株式会社製OXT211)、ジ(1-エチル-3-オキセタニル)メチルエーテル(例えば、東亞合成株式会社製OXT221)、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(例えば、東亞合成株式会社製OXT212)が好ましく使用される。特に、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン及びジ(1-エチル-3-オキセタニル)メチルエーテルが好ましい。特開2001-220526号公報及び特開2001-310937号公報に記載された単官能又は多官能オキセタン化合物が使用されてもよい。 Examples of cationic polymerizable monomers include monofunctional or bifunctional oxetane monomers. For example, 3-ethyl-3-hydroxymethyloxetane (eg, OXT101 manufactured by Toagosei Co., Ltd.), 1,4-bis[(3-ethyl-3-oxetanyl)methoxymethyl]benzene (eg, OXT121 manufactured by Toagosei Co., Ltd.) ), 3-ethyl-3-(phenoxymethyl) oxetane (eg, OXT211 manufactured by Toagosei Co., Ltd.), di(1-ethyl-3-oxetanyl) methyl ether (eg, OXT221 manufactured by Toagosei Co., Ltd.), 3-ethyl -3-(2-ethylhexyloxymethyl)oxetane (eg, OXT212 manufactured by Toagosei Co., Ltd.) is preferably used. Especially preferred are 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3-(phenoxymethyl)oxetane and di(1-ethyl-3-oxetanyl)methyl ether. Monofunctional or polyfunctional oxetane compounds described in JP-A-2001-220526 and JP-A-2001-310937 may also be used.
(多官能重合性化合物)
 組成物は、多官能重合性化合物を含んでいてもよい。多官能重合性化合物は、成型後における反射率変化の抑制に寄与できる。
(Polyfunctional polymerizable compound)
The composition may contain a polyfunctional polymerizable compound. The polyfunctional polymerizable compound can contribute to suppression of change in reflectance after molding.
 多官能重合性化合物としては、例えば、2つ以上のエチレン性不飽和基を有し、かつ、環状エーテル基を有しないコレステリック液晶化合物、2つ以上の環状エーテル基を有し、かつ、エチレン性不飽和基を有しないコレステリック液晶化合物、2つ以上のエチレン性不飽和基と2つ以上の環状エーテル基とを有するコレステリック液晶化合物、2つ以上の重合性基を有する光学活性化合物及び架橋剤が挙げられる。 As the polyfunctional polymerizable compound, for example, a cholesteric liquid crystal compound having two or more ethylenically unsaturated groups and no cyclic ether group, a cholesteric liquid crystal compound having two or more cyclic ether groups and an ethylenic A cholesteric liquid crystal compound having no unsaturated groups, a cholesteric liquid crystal compound having two or more ethylenically unsaturated groups and two or more cyclic ether groups, an optically active compound having two or more polymerizable groups, and a cross-linking agent. mentioned.
 好ましいエチレン性不飽和基としては、例えば、(メタ)アクリル基が挙げられる。より好ましいエチレン性不飽和基としては、例えば、(メタ)アクリロキシ基が挙げられる。 Preferred ethylenically unsaturated groups include, for example, (meth)acrylic groups. More preferred ethylenically unsaturated groups include, for example, (meth)acryloxy groups.
 好ましい環状エーテル基としては、例えば、エポキシ基及びオキセタニル基が挙げられる。より好ましい環状エーテル基としては、例えば、オキセタニル基が挙げられる。 Preferred cyclic ether groups include, for example, epoxy groups and oxetanyl groups. More preferred cyclic ether groups include, for example, oxetanyl groups.
 多官能重合性化合物は、2つ以上のエチレン性不飽和基を有し、かつ、環状エーテル基を有しないコレステリック液晶化合物、2つ以上の環状エーテル基を有し、かつ、エチレン性不飽和基を有しないコレステリック液晶化合物及び2つ以上の重合性基を有する光学活性化合物からなる群より選択される少なくとも1種の化合物を含むことが好ましく、2つ以上の重合性基を有する光学活性化合物を含むことがより好ましい。 The polyfunctional polymerizable compound has two or more ethylenically unsaturated groups and has no cyclic ether group, a cholesteric liquid crystal compound, two or more cyclic ether groups and an ethylenically unsaturated group It preferably contains at least one compound selected from the group consisting of a cholesteric liquid crystal compound having no and an optically active compound having two or more polymerizable groups, and an optically active compound having two or more polymerizable groups It is more preferable to include
 組成物は、1種又は2種以上の多官能重合性化合物を含んでいてもよい。 The composition may contain one or more polyfunctional polymerizable compounds.
 成型後における反射率変化抑制の観点から、組成物の固形分の全質量に対する多官能重合性化合物の含有量の割合は、0.5質量%~70質量%であることが好ましく、1質量%~50質量%であることがより好ましく、1.5質量%~20質量%であることが更に好ましく、2質量%~10質量%であることが特に好ましい。 From the viewpoint of suppressing reflectance change after molding, the content ratio of the polyfunctional polymerizable compound to the total mass of the solid content of the composition is preferably 0.5% by mass to 70% by mass, and 1% by mass. It is more preferably from 1 to 50 mass %, still more preferably from 1.5 mass % to 20 mass %, and particularly preferably from 2 mass % to 10 mass %.
(光異性化化合物)
 組成物は、光異性化化合物を含んでいてもよい。
(Photoisomerizable compound)
The composition may contain a photoisomerizable compound.
 光異性化化合物の種類は、制限されない。光異性化化合物は、公知の光異性化化合物であってもよい。成型後における反射率変化抑制及び異性化構造の維持性の観点から、露光により立体構造が変化する化合物が好ましい。 The type of photoisomerizable compound is not limited. The photoisomerizable compound may be a known photoisomerizable compound. From the viewpoint of suppression of change in reflectance after molding and maintenance of the isomerized structure, a compound whose steric structure changes upon exposure is preferred.
 光異性化化合物は、光異性化構造を有する。成型後における反射率変化抑制、光異性化容易性及び異性化構造の維持性の観点から、光異性化化合物は、露光により立体構造が変化する構造を有することが好ましく、露光によりEZ配置が異性化する2置換以上のエチレン性不飽和結合を有することがより好ましく、露光によりEZ配置が異性化する2置換のエチレン性不飽和結合を有することが特に好ましい。EZ配置の異性化は、cis-trans異性化を含む。2置換のエチレン性不飽和結合は、芳香族基とエステル結合とによって置換されたエチレン性不飽和結合であることが好ましい。 A photoisomerizable compound has a photoisomerizable structure. From the viewpoints of suppression of change in reflectance after molding, ease of photoisomerization, and maintenance of the isomerized structure, the photoisomerizable compound preferably has a structure whose steric structure changes upon exposure, and the EZ configuration is isomerized upon exposure. It is more preferable to have a disubstituted or more ethylenically unsaturated bond that isomerizes, and it is particularly preferable to have a disubstituted ethylenically unsaturated bond whose EZ configuration is isomerized by exposure. Isomerization of the EZ configuration includes cis-trans isomerization. The disubstituted ethylenically unsaturated bond is preferably an ethylenically unsaturated bond substituted with an aromatic group and an ester bond.
 成型後における反射率変化抑制、光異性化容易性及び異性化構造の維持性の観点から、光異性化化合物は、2つ以上の光異性化構造を有することが好ましい。光異性化化合物における光異性化構造の数は、2つ~4つであることが好ましく、2つであることがより好ましい。 From the viewpoints of suppression of change in reflectance after molding, ease of photoisomerization, and maintenance of the isomerization structure, the photoisomerization compound preferably has two or more photoisomerization structures. The number of photoisomerizable structures in the photoisomerizable compound is preferably two to four, more preferably two.
 光異性化化合物は、既述の光学活性化合物としても作用する光異性化化合物であることが好ましい。光学活性化合物としても作用する光異性化化合物は、波長313nmにおけるモル吸光係数が30,000以上の光学活性化合物であることが好ましい。 The photoisomerizable compound is preferably a photoisomerizable compound that also acts as the optically active compound described above. The photoisomerizable compound that also acts as an optically active compound is preferably an optically active compound having a molar extinction coefficient of 30,000 or more at a wavelength of 313 nm.
 光学活性化合物としても作用する光異性化化合物としては、例えば、下記式(CH1)で表される化合物が挙げられる。式(CH1)で表される化合物は、光照射時の光量に応じてらせんピッチ(ねじれ力、らせんのねじれ角)といった配向構造を変化できる。また、式(CH1)で表される化合物は、2つのエチレン性不飽和結合におけるEZ配置が露光により異性化可能な化合物である。 Examples of photoisomerizable compounds that also act as optically active compounds include compounds represented by the following formula (CH1). The compound represented by the formula (CH1) can change its orientation structure such as helical pitch (twisting force, helical twist angle) depending on the amount of light irradiated. In addition, the compound represented by the formula (CH1) is a compound in which the EZ configuration of two ethylenically unsaturated bonds can be isomerized by exposure.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(CH1)中、ArCH1及びArCH2はそれぞれ独立に、アリール基又は複素芳香環基を表し、RCH1及びRCH2はそれぞれ独立に、水素原子又はシアノ基を表す。 In formula (CH1), Ar CH1 and Ar CH2 each independently represent an aryl group or a heteroaromatic ring group, and R CH1 and R CH2 each independently represent a hydrogen atom or a cyano group.
 式(CH1)におけるArCH1及びArCH2はそれぞれ独立に、アリール基であることが好ましい。アリール基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、ヒドロキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、カルボキシ基、シアノ基又は複素環基が好ましく、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、ヒドロキシ基、アシルオキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基がより好ましい。アリール基の総炭素数は、6~40であることが好ましく、6~30であることがより好ましい。 Ar 4 CH1 and Ar 4 CH2 in formula (CH1) are each independently preferably an aryl group. The aryl group may have a substituent. Examples of substituents include halogen atoms, alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, hydroxy groups, acyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, acyloxy groups, carboxy groups, cyano groups and heterocyclic groups. A halogen atom, an alkyl group, an alkenyl group, an alkoxy group, a hydroxy group, an acyloxy group, an alkoxycarbonyl group, or an aryloxycarbonyl group is more preferred. The total carbon number of the aryl group is preferably 6-40, more preferably 6-30.
 ArCH1及びArCH2はそれぞれ独立に、下記式(CH2)又は下記式(CH3)で表されるアリール基であることが好ましい。 Ar CH1 and Ar CH2 are each independently preferably an aryl group represented by the following formula (CH2) or the following formula (CH3).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(CH2)及び式(CH3)中、RCH3及びRCH4はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、アルコキシ基、ヒドロキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、カルボキシ基、又は、シアノ基を表し、LCH1及びLCH2はそれぞれ独立に、ハロゲン原子、アルキル基、アルコキシ基、又は、ヒドロキシ基を表し、nCH1は0~4の整数を表し、nCH2は0~6の整数を表し、*は式(CH1)におけるエチレン性不飽和結合との結合位置を表す。 In formula (CH2) and formula (CH3), R CH3 and R CH4 are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an alkoxy group, a hydroxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, a carboxy group, or a cyano group, L CH1 and L CH2 each independently represent a halogen atom, an alkyl group, an alkoxy group, or a hydroxy group, nCH1 represents an integer of 0 to 4, nCH2 represents an integer of 0 to 6, and * represents a bonding position with an ethylenically unsaturated bond in formula (CH1).
 式(CH2)及び式(CH3)におけるRCH3及びRCH4はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、アルコキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、又は、アシルオキシ基であることが好ましく、アルコキシ基、ヒドロキシ基、又は、アシルオキシ基であることがより好ましく、アルコキシ基であることが特に好ましい。 R CH3 and R CH4 in formula (CH2) and formula (CH3) are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, Alternatively, it is preferably an acyloxy group, more preferably an alkoxy group, a hydroxy group, or an acyloxy group, and particularly preferably an alkoxy group.
 式(CH2)及び式(CH3)におけるLCH1及びLCH2はそれぞれ独立に、炭素数1~10のアルコキシ基、又は、ヒドロキシ基であることが好ましい。 L CH1 and L CH2 in the formulas (CH2) and (CH3) are each independently preferably an alkoxy group having 1 to 10 carbon atoms or a hydroxy group.
 式(CH2)におけるnCH1は、0又は1であることが好ましい。 nCH1 in formula (CH2) is preferably 0 or 1.
 式(CH3)におけるnCH2は、0又は1であることが好ましい。 nCH2 in formula (CH3) is preferably 0 or 1.
 式(CH1)のArCH1及びArCH2における複素芳香環基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、ヒドロキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、又は、シアノ基が好ましく、ハロゲン原子、アルキル基、アルケニル基、アリール基、アルコキシ基、又は、アシルオキシ基がより好ましい。複素芳香環基の総炭素数は、4~40であることが好ましく、4~30であることがより好ましい。複素芳香環基としては、ピリジル基、ピリミジニル基、フリル基、又は、ベンゾフラニル基が好ましく、ピリジル基、又は、ピリミジニル基がより好ましい。 The heteroaromatic ring groups in Ar 2 CH1 and Ar 2 CH2 of formula (CH1) may have a substituent. Preferred substituents include, for example, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, a hydroxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, or a cyano group. Halogen atoms, alkyl groups, alkenyl groups, aryl groups, alkoxy groups, or acyloxy groups are more preferred. The total carbon number of the heteroaromatic ring group is preferably 4-40, more preferably 4-30. The heteroaromatic ring group is preferably a pyridyl group, a pyrimidinyl group, a furyl group or a benzofuranyl group, more preferably a pyridyl group or a pyrimidinyl group.
 式(CH1)におけるRCH1及びRCH2はそれぞれ独立に、水素原子であることが好ましい。 R CH1 and R CH2 in formula (CH1) are preferably each independently a hydrogen atom.
 好ましい光異性化化合物の具体例を以下に示す。以下の具体例においてBuはn-ブチル基を表す。以下の化合物において各エチレン性不飽和結合の立体配置は、E体(trans体)であり、露光によりZ体(cis体)に変化する。 Specific examples of preferred photoisomerizable compounds are shown below. In the specific examples below, Bu represents an n-butyl group. The steric configuration of each ethylenically unsaturated bond in the following compounds is E-form (trans-form), and changes to Z-form (cis-form) upon exposure.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 組成物は、1種又は2種以上の光異性化化合物を含んでいてもよい。 The composition may contain one or more photoisomerizable compounds.
 成型後における反射率変化抑制の観点から、組成物の固形分の全質量に対する光異性化化合物の含有量の割合は、1質量%~20質量%であることが好ましく、2質量%~10質量%であることがより好ましく、3質量%~9質量%であることが更に好ましく、4質量%~8質量%であることが特に好ましい。 From the viewpoint of suppressing changes in reflectance after molding, the content of the photoisomerizable compound relative to the total mass of solids in the composition is preferably 1% by mass to 20% by mass, and 2% by mass to 10% by mass. %, more preferably 3% to 9% by mass, and particularly preferably 4% to 8% by mass.
(架橋剤)
 組成物は、架橋剤を含んでいてもよい。架橋剤は、硬化後の液晶層の強度及び耐久性を向上できる。
(crosslinking agent)
The composition may contain a cross-linking agent. The cross-linking agent can improve the strength and durability of the liquid crystal layer after curing.
 架橋剤の種類は、制限されない。架橋剤は、公知の架橋剤であってもよい。架橋剤は、紫外線、熱又は湿気で硬化する化合物が好ましい。 The type of cross-linking agent is not limited. The cross-linking agent may be a known cross-linking agent. The cross-linking agent is preferably a compound that cures with ultraviolet light, heat or moisture.
 架橋剤としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル、3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート等のエポキシ化合物;2-エチルヘキシルオキセタン、キシリレンビスオキセタン等のオキセタン化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物が挙げられる。また、架橋剤の反応性に応じて公知の触媒が使用されてもよい。触媒の使用は、液晶層の強度及び耐久性向上に加えて生産性を向上できる。 Examples of cross-linking agents include polyfunctional acrylate compounds such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate; glycidyl (meth)acrylate, ethylene glycol diglycidyl ether, 3′,4′-epoxycyclohexyl Epoxy compounds such as methyl 3,4-epoxycyclohexanecarboxylate; Oxetane compounds such as 2-ethylhexyloxetane and xylylene bisoxetane; 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate], 4 , 4-bis(ethyleneiminocarbonylamino)diphenylmethane and other aziridine compounds; hexamethylene diisocyanate, biuret isocyanate and other isocyanate compounds; polyoxazoline compounds having oxazoline groups in side chains; vinyltrimethoxysilane, N-(2-amino and alkoxysilane compounds such as ethyl)3-aminopropyltrimethoxysilane. Also, a known catalyst may be used depending on the reactivity of the cross-linking agent. The use of a catalyst can improve productivity in addition to improving the strength and durability of the liquid crystal layer.
 組成物は、1種又は2種以上の架橋剤を含んでいてもよい。 The composition may contain one or more cross-linking agents.
 液晶層の強度及び耐久性の観点から、組成物の固形分の全質量に対する架橋剤の含有量の割合は、1質量%~20質量%であることが好ましく、3質量%~15質量%であることがより好ましい。 From the viewpoint of the strength and durability of the liquid crystal layer, the content ratio of the cross-linking agent to the total solid content of the composition is preferably 1% by mass to 20% by mass, and 3% by mass to 15% by mass. It is more preferable to have
(溶剤)
 組成物は、溶剤を含んでいてもよい。
(solvent)
The composition may contain a solvent.
 溶剤としては、例えば、有機溶剤が挙げられる。有機溶剤としては、例えば、ケトン化合物(例えば、メチルエチルケトン及びメチルイソブチルケトン)、アルキルハライド化合物、アミド化合物、スルホキシド化合物、ヘテロ環化合物、炭化水素化合物、エステル化合物、エーテル化合物及びアルコール化合物が挙げられる。環境への負荷を考慮した場合にはケトン化合物が好ましい。 Examples of solvents include organic solvents. Examples of organic solvents include ketone compounds (e.g., methyl ethyl ketone and methyl isobutyl ketone), alkyl halide compounds, amide compounds, sulfoxide compounds, heterocyclic compounds, hydrocarbon compounds, ester compounds, ether compounds and alcohol compounds. A ketone compound is preferred in consideration of the load on the environment.
 溶剤としては、例えば、高沸点溶剤が挙げられる。組成物が高沸点溶剤を含むと、乾燥中の液晶の粘度が低下し、液晶の配向性が向上する。高沸点溶剤の沸点は、150℃以上であることが好ましく、160℃以上であることがより好ましい。高沸点溶剤としては、例えば、フルフリルアルコール、2-チオフェンメタノール、ベンジルアルコール、テトラヒドロフルフリルアルコール、γ-ブチロラクトン、N-メチル-2-ピロリドン、アセト酢酸エチル、安息香酸メチル、安息香酸エチル及びo-トルイル酸メチルが挙げられる。 Examples of solvents include high-boiling solvents. When the composition contains a solvent with a high boiling point, the viscosity of the liquid crystal during drying is lowered, and the orientation of the liquid crystal is improved. The boiling point of the high boiling point solvent is preferably 150° C. or higher, more preferably 160° C. or higher. Examples of high-boiling solvents include furfuryl alcohol, 2-thiophene methanol, benzyl alcohol, tetrahydrofurfuryl alcohol, γ-butyrolactone, N-methyl-2-pyrrolidone, ethyl acetoacetate, methyl benzoate, ethyl benzoate and o - methyl toluate.
 組成物は、1種又は2種以上の溶剤を含んでいてもよい。 The composition may contain one or more solvents.
 組成物の全質量に対する溶剤の含有量の割合は、50質量%~85質量%であることが好ましく、60質量%~80質量%であることがより好ましく、65質量%~75質量%であることが更に好ましい。液晶の配向性の観点から、溶剤の含有量に対する高沸点溶剤の含有量の割合は、2質量%~30質量%であることが好ましく、4質量%~25質量%であることがより好ましく、6質量%~20質量%であることが更に好ましい。 The ratio of the solvent content to the total mass of the composition is preferably 50% by mass to 85% by mass, more preferably 60% by mass to 80% by mass, and 65% by mass to 75% by mass. is more preferred. From the viewpoint of liquid crystal orientation, the ratio of the content of the high-boiling solvent to the content of the solvent is preferably 2% by mass to 30% by mass, more preferably 4% by mass to 25% by mass. More preferably, it is 6% by mass to 20% by mass.
(他の添加剤)
 組成物は、他の添加剤を含んでいてもよい。他の添加剤としては、例えば、界面活性剤、重合禁止剤、酸化防止剤、水平配向剤、紫外線吸収剤、光安定化剤、着色剤及び金属酸化物粒子が挙げられる。
(other additives)
The composition may contain other additives. Other additives include, for example, surfactants, polymerization inhibitors, antioxidants, horizontal alignment agents, UV absorbers, light stabilizers, colorants and metal oxide particles.
 加飾用材料は、1つ又は2つ以上の液晶層を含んでいてもよい。加飾用材料が2つ以上の液晶層を含む場合、ある液晶層は、他の液晶層に直接接触していてもよい。加飾用材料が2つ以上の液晶層を含む場合、ある液晶層は、他の層(例えば、接着剤含有層)を介して他の液晶層に接触していてもよい。加飾用材料が2つ以上の液晶層を含む場合、ある液晶層の色味は、他の液晶層の色味と同じであっても異なっていてもよい。ある液晶層の色味が他の液晶層の色味と異なると、加法混色によって意匠性が向上する。2つ以上の液晶層の組成は、同じであっても互いに異なっていてもよい。コレステリック液晶化合物の全てが棒状コレステリック液晶化合物である層の積層体、円盤状コレステリック液晶化合物を含む層と棒状コレステリック液晶化合物を含む層との積層体又はコレステリック液晶化合物の全てが円盤状コレステリック液晶化合物である層の積層体であってもよい。液晶層の配向状態の組み合わせも制限されない。同じ配向状態の液晶層が積層されてもよい。異なる配向状態の液晶層が積層されてもよい。反射率の向上の観点から、加飾用材料は、時計回りのらせん構造を有する液晶層と、反時計回りのらせん構造を有する液晶層と、を含んでいてもよい。「らせん構造」とは、コレステリック液晶のらせん構造を意味する。 The decorative material may contain one or more liquid crystal layers. When the decorative material contains two or more liquid crystal layers, one liquid crystal layer may be in direct contact with another liquid crystal layer. When the decorating material includes two or more liquid crystal layers, one liquid crystal layer may be in contact with another liquid crystal layer via another layer (for example, an adhesive-containing layer). When the decorating material includes two or more liquid crystal layers, the color of one liquid crystal layer may be the same as or different from the color of the other liquid crystal layers. If the color of one liquid crystal layer is different from that of another liquid crystal layer, the design is improved by additive color mixture. The compositions of two or more liquid crystal layers may be the same or different from each other. A laminate of layers in which all of the cholesteric liquid crystal compounds are rod-shaped cholesteric liquid crystal compounds, a laminate of a layer containing a disk-shaped cholesteric liquid crystal compound and a layer containing a rod-shaped cholesteric liquid crystal compound, or all of the cholesteric liquid crystal compounds are disk-shaped cholesteric liquid crystal compounds. It may be a laminate of layers. The combination of alignment states of the liquid crystal layer is not limited either. Liquid crystal layers with the same orientation may be stacked. Liquid crystal layers with different alignment states may be stacked. From the viewpoint of improving the reflectance, the decorating material may include a liquid crystal layer having a clockwise spiral structure and a liquid crystal layer having a counterclockwise spiral structure. A "helical structure" means a helical structure of a cholesteric liquid crystal.
 成型後における反射率変化抑制の観点から、液晶層の厚さは、10μm未満であることが好ましく、5μm以下であることがより好ましく、0.05μm~5μmであることが更に好ましく、0.1μm~4μmであることが特に好ましい。加飾用材料が2つ以上の液晶層を含む場合、2つ以上の液晶層は、それぞれ独立に、上記の範囲に調整されることが好ましい。 From the viewpoint of suppressing change in reflectance after molding, the thickness of the liquid crystal layer is preferably less than 10 μm, more preferably 5 μm or less, even more preferably 0.05 μm to 5 μm, further preferably 0.1 μm. ~4 μm is particularly preferred. When the decorating material contains two or more liquid crystal layers, it is preferable that the two or more liquid crystal layers are independently adjusted within the above range.
 液晶層の破断伸度及び液晶層における低分子化合物の含有量が既述の範囲内である限り、液晶層の製造方法は制限されない。液晶層は、例えば、既述の組成物を用いて製造される。例えば、組成物の塗布及び硬化によって液晶層が製造される。組成物の塗布及び硬化に関する好ましい方法は、後述の加飾用材料の製造方法の説明に記載されている。 As long as the elongation at break of the liquid crystal layer and the content of the low-molecular compound in the liquid crystal layer are within the ranges described above, the method for producing the liquid crystal layer is not limited. A liquid crystal layer is manufactured, for example, using the composition described above. For example, a liquid crystal layer is produced by applying and curing the composition. A preferred method for applying and curing the composition is described in the description of the manufacturing method of the decorative material below.
 液晶層の色及び観察角度に応じた色の変化は、例えば、らせんピッチ、屈折率及び厚さからなる群より選択される少なくとも1つによって調整される。らせんピッチは、例えば、光学活性化合物(カイラル剤ともいう。以下同じ。)の添加量によって調整される。詳細は、例えば、「富士フイルム研究報告No.50(2005年)p.60-63」に記載されている。らせんピッチは、コレステリック配向状態を固定するときの温度、照度及び照射時間といった条件によって調整されてもよい。 The color of the liquid crystal layer and the change in color depending on the viewing angle are adjusted, for example, by at least one selected from the group consisting of helical pitch, refractive index and thickness. The helical pitch is adjusted, for example, by the amount of an optically active compound (also referred to as a chiral agent, hereinafter the same) added. Details are described, for example, in "Fuji Film Research Report No. 50 (2005) pp. 60-63". The helical pitch may be adjusted by the conditions such as temperature, illuminance and irradiation time when fixing the cholesteric alignment state.
 本開示における各層の厚さ及び屈折率は、例えば、分光光度計を用いて、無アルカリガラスOA-10G上に形成された測定対象の層の単独膜の透過スペクトルを測定し、そして、透過スペクトルの測定によって得られた透過率と、光干渉法によって算出された透過率とを用いるフィッティング解析を行うことによって測定される。屈折率は、カルニュー精密屈折計(KPR-3000、株式会社島津製作所)を用いて測定されてもよい。 The thickness and refractive index of each layer in the present disclosure are measured, for example, by using a spectrophotometer to measure the transmission spectrum of a single film of the layer to be measured formed on the alkali-free glass OA-10G, and the transmission spectrum and the transmittance calculated by the optical interferometry. The refractive index may be measured using a Carnew precision refractometer (KPR-3000, Shimadzu Corporation).
[接着剤含有層]
 加飾用材料は、接着剤含有層を含むことが好ましい。接着剤含有層は、例えば、対象物への加飾用材料の貼り付けを容易にできる。接着剤含有層は、例えば、層間の密着性を向上できる。接着剤含有層は、接着剤以外の成分を更に含んでいてもよい。
[Adhesive-containing layer]
The decorative material preferably contains an adhesive-containing layer. The adhesive-containing layer can facilitate attachment of the decorative material to the object, for example. The adhesive-containing layer can improve adhesion between layers, for example. The adhesive-containing layer may further contain components other than the adhesive.
 曲面に対する液晶層の追随性の観点から、接着剤含有層は、液晶層に隣接することが好ましい。曲面に対する液晶層の追随性の観点から、接着剤含有層の破断伸度は、液晶層の破断伸度以上であることが好ましい。液晶層の破断伸度に対する接着剤含有層の破断伸度の比は、1.0~2.0であることが好ましく、1.5~2.0であることがより好ましく、1.75~2.0であることが更に好ましい。 From the viewpoint of the conformability of the liquid crystal layer to curved surfaces, the adhesive-containing layer is preferably adjacent to the liquid crystal layer. From the viewpoint of the ability of the liquid crystal layer to follow a curved surface, the elongation at break of the adhesive-containing layer is preferably equal to or higher than the elongation at break of the liquid crystal layer. The ratio of the breaking elongation of the adhesive-containing layer to the breaking elongation of the liquid crystal layer is preferably 1.0 to 2.0, more preferably 1.5 to 2.0, and 1.75 to 1.75. 2.0 is more preferred.
 接着剤の種類は、制限されない、接着剤は、永久的な接着に用いられる公知の接着剤であってもよい。接着剤は、一時的な接着に用いられる公知の接着剤であってもよい。接着剤は、成型において液晶層に追随して延伸する成分であることが好ましい。 The type of adhesive is not limited, and the adhesive may be any known adhesive used for permanent adhesion. The adhesive may be any known adhesive used for temporary bonding. The adhesive is preferably a component that stretches along with the liquid crystal layer during molding.
 接着剤としては、例えば、ウレタン樹脂接着剤、ポリエステル接着剤、アクリル樹脂接着剤、エチレン酢酸ビニル樹脂接着剤、ポリビニルアルコール接着剤、ポリアミド接着剤及びシリコーン接着剤が挙げられる。接着強度が高いという観点から、ウレタン樹脂接着剤又はシリコーン接着剤が好ましい。接着剤は、熱硬化性の接着剤であってもよい。接着剤は、紫外線硬化性の接着剤であってもよい。 Examples of adhesives include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, and silicone adhesives. A urethane resin adhesive or a silicone adhesive is preferable from the viewpoint of high adhesive strength. The adhesive may be a thermosetting adhesive. The adhesive may be a UV curable adhesive.
 接着剤としては、例えば、粘着剤が挙げられる。つまり、接着剤含有層は、接着剤として粘着剤を含んでいてもよい。粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤及びシリコーン系粘着剤が挙げられる。粘着剤としては、例えば、「剥離紙・剥離フィルムおよび粘着テープの特性評価とその制御技術、情報機構、2004年、第2章」に記載されたアクリル系粘着剤、紫外線(UV)硬化型粘着剤及びシリコーン粘着剤が挙げられる。アクリル系粘着剤とは、(メタ)アクリルモノマーの重合体を含む粘着剤をいう。接着剤含有層は、粘着剤に加えて粘着付与剤を含んでいてもよい。 Adhesives include, for example, adhesives. That is, the adhesive-containing layer may contain a pressure-sensitive adhesive as an adhesive. Examples of adhesives include acrylic adhesives, rubber adhesives, and silicone adhesives. Examples of adhesives include acrylic adhesives and ultraviolet (UV) curable adhesives described in "Release Paper/Release Film and Adhesive Tape Characteristic Evaluation and Control Technology, Information Organization, 2004, Chapter 2". agents and silicone adhesives. An acrylic pressure-sensitive adhesive refers to a pressure-sensitive adhesive containing a polymer of (meth)acrylic monomers. The adhesive-containing layer may contain a tackifier in addition to the adhesive.
 粘着力及びハンドリング性の両立の点で、接着剤含有層の厚さは、4μm~100μmであることが好ましい。 The thickness of the adhesive-containing layer is preferably 4 μm to 100 μm in terms of both adhesive strength and handling properties.
 接着剤含有層の形成方法は、制限されない。接着剤含有層の形成方法としては、例えば、接着剤含有層を有するフィルムと液晶層とを貼り合わせる方法、単独の接着剤含有層と液晶層とを貼り合わせる方法及び接着剤を含む組成物を液晶層の上に塗布する方法が挙げられる。 The method of forming the adhesive-containing layer is not limited. Examples of the method for forming the adhesive-containing layer include a method of bonding a film having an adhesive-containing layer and a liquid crystal layer together, a method of bonding a single adhesive-containing layer and a liquid crystal layer together, and a composition containing an adhesive. A method of coating on the liquid crystal layer is mentioned.
[基材]
 加飾用材料は、基材を含んでいてもよい。
[Base material]
The decorating material may contain a base material.
 基材としては、例えば、立体成型及びインサート成型といった成型に用いられる基材が挙げられる。成型容易性及びチッピング耐性の観点から、基材は、樹脂基材であることが好ましく、樹脂フィルムであることが好ましい。 Examples of base materials include base materials used for molding such as three-dimensional molding and insert molding. From the viewpoint of moldability and chipping resistance, the substrate is preferably a resin substrate, and preferably a resin film.
 樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、アクリル樹脂、ウレタン樹脂、ウレタン-アクリル樹脂、ポリカーボネート(PC)、アクリル-ポリカーボネート、ポリオレフィン、トリアセチルセルロース(TAC)、シクロオレフィンポリマー(COP)及びアクリロニトリル/ブタジエン/スチレン共重合(ABS樹脂)が挙げられる。 Examples of resins include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), acrylic resin, urethane resin, urethane-acrylic resin, polycarbonate (PC), acrylic-polycarbonate, polyolefin, triacetylcellulose (TAC), cycloolefin. Polymers (COP) and acrylonitrile/butadiene/styrene copolymers (ABS resin) are included.
 成型加工性及び強度の観点から、基材は、ポリエチレンテレフタレート、アクリル樹脂、ウレタン樹脂、ウレタン-アクリル樹脂、ポリカーボネート及びアクリル-ポリカーボネート及びポリプロピレンからなる群より選択される少なくとも1種の樹脂を含む樹脂フィルムであることが好ましく、アクリル樹脂、ポリカーボネート及びアクリル-ポリカーボネート樹脂からなる群より選択される少なくとも1種の樹脂を含む樹脂フィルムであることがより好ましい。 From the viewpoint of moldability and strength, the substrate is a resin film containing at least one resin selected from the group consisting of polyethylene terephthalate, acrylic resin, urethane resin, urethane-acrylic resin, polycarbonate, acrylic-polycarbonate and polypropylene. and more preferably a resin film containing at least one resin selected from the group consisting of acrylic resins, polycarbonates and acrylic-polycarbonate resins.
 基材は、単層構造又は複層構造を有していてもよい。好ましい積層フィルムとしては、例えば、アクリル樹脂/ポリカーボネート樹脂の積層フィルムが挙げられる。 The base material may have a single layer structure or a multilayer structure. A preferred laminated film is, for example, a laminated film of acrylic resin/polycarbonate resin.
 基材は、必要に応じ、添加物を含んでいてもよい。添加物としては、例えば、鉱油、炭化水素、脂肪酸、アルコール、脂肪酸エステル、脂肪酸アミド、金属石けん、天然ワックス、シリコーンなどの潤滑剤、水酸化マグネシウム、水酸化アルミニウム等の無機難燃剤、ハロゲン系、リン系等の有機難燃剤、金属粉、タルク、炭酸カルシウム、チタン酸カリウム、ガラス繊維、カーボン繊維、木粉等の有機又は無機の充填剤、酸化防止剤、紫外線防止剤、滑剤、分散剤、カップリング剤、発泡剤、着色剤等の添加剤、ポリオレフィン、ポリエステル、ポリアセタール、ポリアミド、ポリフェニレンエーテル樹脂等であって、上述した樹脂以外のエンジニアリングプラスチックなどが挙げられる。 The base material may contain additives as necessary. Additives include, for example, mineral oils, hydrocarbons, fatty acids, alcohols, fatty acid esters, fatty acid amides, metallic soaps, natural waxes, lubricants such as silicone, inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide, halogen-based Organic flame retardants such as phosphorus, organic or inorganic fillers such as metal powder, talc, calcium carbonate, potassium titanate, glass fiber, carbon fiber, wood powder, antioxidants, UV inhibitors, lubricants, dispersants, Coupling agents, foaming agents, additives such as coloring agents, polyolefins, polyesters, polyacetals, polyamides, polyphenylene ether resins, and engineering plastics other than the resins described above may be mentioned.
 基材は、市販品であってもよい。市販品としては、例えば、テクノロイ(登録商標)シリーズ(アクリル樹脂フィルム又はアクリル樹脂/ポリカーボネート樹脂積層フィルム、住友化学株式会社)ABSフィルム(オカモト株式会社)、ABSシート(積水成型工業株式会社)、テフレックス(登録商標)シリーズ(PETフィルム、帝人フィルムソリューション株式会社)、ルミラー(登録商標)易成型タイプ(PETフィルム、東レ株式会社)及びピュアサーモ(ポリプロピレンフィルム、出光ユニテック株式会社)が挙げられる。 The base material may be a commercially available product. Commercially available products include, for example, Technolloy (registered trademark) series (acrylic resin film or acrylic resin/polycarbonate resin laminated film, Sumitomo Chemical Co., Ltd.) ABS film (Okamoto Co., Ltd.), ABS sheet (Sekisui Seisei Co., Ltd.), Te Flex (registered trademark) series (PET film, Teijin Film Solution Co., Ltd.), Lumirror (registered trademark) easy molding type (PET film, Toray Industries, Inc.) and Pure Thermo (polypropylene film, Idemitsu Unitech Co., Ltd.).
 基材の厚さは、1μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることが更に好ましく、50μm以上であることが特に好ましい。基材の厚さは、500μm以下であることが好ましく、450μm以下であることがより好ましく、200μm以下であることが特に好ましい。 The thickness of the substrate is preferably 1 µm or more, more preferably 10 µm or more, still more preferably 20 µm or more, and particularly preferably 50 µm or more. The thickness of the substrate is preferably 500 μm or less, more preferably 450 μm or less, and particularly preferably 200 μm or less.
[配向層]
 加飾用材料は、液晶層に隣接する配向層を含んでいてもよい。配向層は、液晶層の製造過程においてコレステリック液晶化合物の分子を配向することができる。
[Orientation layer]
The decorative material may include an alignment layer adjacent to the liquid crystal layer. The alignment layer can orient the molecules of the cholesteric liquid crystal compound during the manufacturing process of the liquid crystal layer.
 配向層は、例えば、有機化合物(好ましくはポリマー)のラビング処理、SiOなどの無機化合物の斜方蒸着又はマイクログルーブを有する層の形成といった方法により設けられる。配向層としては、電場の付与、磁場の付与又は光照射により配向機能が生じる配向層も知られている。 The alignment layer is provided, for example, by rubbing an organic compound (preferably polymer), oblique vapor deposition of an inorganic compound such as SiO, or formation of a layer having microgrooves. As the orientation layer, an orientation layer is also known in which an orientation function is produced by application of an electric field, application of a magnetic field, or light irradiation.
 配向層としては、例えば、ラビング処理配向層及び光配向層が挙げられる。ラビング処理配向層は、例えば、ラビング処理によって形成される。光配向層は、例えば、光照射により形成される。 The alignment layer includes, for example, a rubbing alignment layer and a photo-alignment layer. The rubbing treatment alignment layer is formed by, for example, rubbing treatment. A photo-alignment layer is formed by light irradiation, for example.
 ラビング処理配向層に用いられるポリマーとしては、例えば、特開平8-338913号公報の段落0022に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース及びポリカーボネートが挙げられる。ラビング処理配向層に用いられるポリマーとしては、例えば、シランカップリング剤が挙げられる。ラビング処理配向層に用いられるポリマーとしては、例えば、水溶性ポリマー(例えば、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール又は変性ポリビニルアルコールがより好ましく、ポリビニルアルコール又は変性ポリビニルアルコールが特に好ましい。 Examples of the polymer used for the rubbing alignment layer include methacrylate copolymers, styrene copolymers, polyolefins, polyvinyl alcohols, modified polyvinyl alcohols, poly(N -methylolacrylamide), polyesters, polyimides, vinyl acetate copolymers, carboxymethylcellulose and polycarbonates. Examples of polymers used in the rubbing alignment layer include silane coupling agents. The polymer used for the rubbing treatment alignment layer is preferably, for example, a water-soluble polymer (eg, poly(N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol and modified polyvinyl alcohol), gelatin, polyvinyl alcohol or modified polyvinyl alcohol. is more preferred, and polyvinyl alcohol or modified polyvinyl alcohol is particularly preferred.
 ラビング処理は、例えば、ポリマーを主成分とする膜の表面を紙又は布で一定方向に擦ることにより実施される。ラビング処理の一般的な方法は、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。 The rubbing treatment is performed, for example, by rubbing the surface of the film containing a polymer as a main component with paper or cloth in a certain direction. A general rubbing method is described, for example, in "Liquid Crystal Handbook" (published by Maruzen Co., Ltd., Oct. 30, 2000).
 ラビング密度を変える方法としては、例えば、「液晶便覧」(丸善社発行)に記載されている方法が挙げられる。ラビング密度(L)は、下記式(A)で定量化される。
  式(A):L=Nl(1+2πrn/60v)
 式(A)中、Nはラビング回数を表し、lはラビングローラーの接触長を表し、rはローラーの半径を表し、nはローラーの回転数(rpm:revolutions per minute)を表し、vはステージ移動速度(秒速)を表す。
As a method for changing the rubbing density, for example, there is a method described in "Liquid Crystal Handbook" (published by Maruzen Co., Ltd.). The rubbing density (L) is quantified by the following formula (A).
Formula (A): L=Nl(1+2πrn/60v)
In formula (A), N represents the number of rubbing times, l represents the contact length of the rubbing roller, r represents the radius of the roller, n represents the revolutions per minute (rpm) of the roller, and v represents the stage Represents movement speed (seconds).
 ラビング密度を高くする方法としては、例えば、ラビング回数を増やす方法、ラビングローラーの接触長を長くする方法、ローラーの半径を大きくする方法、ローラーの回転数を大きくする方法及びステージ移動速度を遅くする方法が挙げられる。上記の方法の反対の条件は、ラビング密度を低くできる。 Methods for increasing the rubbing density include, for example, increasing the number of times of rubbing, increasing the contact length of the rubbing roller, increasing the radius of the roller, increasing the number of rotations of the roller, and slowing down the stage movement speed. method. The opposite condition of the above method can lower the rubbing density.
 ラビング処理の条件としては、特許第4052558号公報の記載が参照されてもよい。 The description in Japanese Patent No. 4052558 may be referred to as conditions for the rubbing treatment.
 光配向層に用いられる光配向材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号公報及び特許第4151746号公報に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報及び特開2002-317013号公報に記載の光配向性単位を有するマレイミド及び/又はアルケニル置換ナジイミド化合物、特許第4205195号及び特許第4205198号公報に記載の光架橋性シラン誘導体並びに特表2003-520878号公報、特表2004-529220号公報及び特許第4162850号公報に記載の光架橋性ポリイミド、ポリアミド又はエステルが挙げられる。アゾ化合物、光架橋性ポリイミド、ポリアミド又はエステルが好ましい。 As the photo-alignment material used in the photo-alignment layer, for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, JP-A-2007- 121721, JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, JP-A-3883848 and JP-A-4151746. Azo compounds, aromatic ester compounds described in JP-A-2002-229039, maleimide and/or alkenyl-substituted nadimide compounds having photoalignable units described in JP-A-2002-265541 and JP-A-2002-317013 , Photocrosslinkable silane derivatives described in Patent Nos. 4205195 and 4205198, and photocrosslinkable polyimides and polyamides described in JP 2003-520878, JP 2004-529220 and JP 4162850. or an ester. Azo compounds, photocrosslinkable polyimides, polyamides or esters are preferred.
 光配向層は、例えば、上記のような材料から形成された層に直線偏光照射又は非偏光照射を施すことによって形成される。「直線偏光照射」とは、光配向材料に光反応を生じせしめるための操作である。 The photo-alignment layer is formed, for example, by applying linearly polarized light or non-polarized light to a layer formed of the above materials. "Linearly polarized light irradiation" is an operation for causing a photoreaction in the photoalignment material.
 光照射に用いられる光は、好ましくは、ピーク波長が200nm~700nmの光であり、より好ましくは、ピーク波長が400nm以下の紫外光である。 The light used for light irradiation is preferably light with a peak wavelength of 200 nm to 700 nm, more preferably ultraviolet light with a peak wavelength of 400 nm or less.
 光照射に用いられる光源としては、例えば、ランプ(例えば、タングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプ及びカーボンアークランプ)、レーザー(例えば、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザー及びYAGレーザー)、発光ダイオード及び陰極線管が挙げられる。 Examples of light sources used for light irradiation include lamps (e.g., tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps and carbon arc lamps), lasers (e.g., semiconductor lasers, helium neon lasers). , argon ion lasers, helium cadmium lasers and YAG lasers), light emitting diodes and cathode ray tubes.
 直線偏光を得る方法としては、例えば、偏光板(例えば、ヨウ素偏光板、二色色素偏光板及びワイヤーグリッド偏光板)を用いる方法、プリズム系素子(例えば、グラントムソンプリズム)又はブリュースター角を利用した反射型偏光子を用いる方法及び偏光を有するレーザー光源から出射される光を用いる方法が挙げられる。また、フィルター又は波長変換素子を用いて必要とする波長の光のみを選択的に照射してもよい。 Methods for obtaining linearly polarized light include, for example, a method using a polarizing plate (e.g., an iodine polarizing plate, a dichroic dye polarizing plate, and a wire grid polarizing plate), a prism-based element (e.g., a Glan-Thompson prism), or a Brewster angle. a method using a reflective polarizer and a method using light emitted from a laser light source having polarized light. Alternatively, a filter or a wavelength conversion element may be used to selectively irradiate only light of a required wavelength.
 直線偏光照射では、配向層の上面又は下面に対して、垂直又は斜めに光が照射されてもよい。配向層に対する光の入射角度は、好ましくは0°~90°であり、より好ましくは40°~90°である。 In linearly polarized light irradiation, light may be irradiated perpendicularly or obliquely to the upper or lower surface of the alignment layer. The angle of incidence of light on the alignment layer is preferably 0° to 90°, more preferably 40° to 90°.
 非偏光照射では、配向層の上面又は下面に対して斜めに非偏光を照射する。入射角度は、好ましくは10°~80°であり、より好ましくは20°~60°であり、特に好ましくは30°~50°である。 In the non-polarized irradiation, the upper or lower surface of the alignment layer is obliquely irradiated with non-polarized light. The incident angle is preferably 10° to 80°, more preferably 20° to 60°, particularly preferably 30° to 50°.
 照射時間は、好ましくは1分~60分であり、より好ましくは1分~10分である。 The irradiation time is preferably 1 minute to 60 minutes, more preferably 1 minute to 10 minutes.
 配向層の厚さは、0.01μm~10μmであることが好ましい。 The thickness of the orientation layer is preferably 0.01 μm to 10 μm.
 液晶層の下層の材料によっては、配向層が設けられなくても、下層に直接配向処理(例えば、ラビング処理)を行うことで、下層を配向層として機能させることもできる。上記のような下層としては、例えば、ポリエチレンテレフタレート(PET)が挙げられる。 Depending on the material of the lower layer of the liquid crystal layer, even if no orientation layer is provided, the lower layer can be made to function as an orientation layer by directly performing an orientation treatment (for example, rubbing treatment) on the lower layer. Examples of the lower layer as described above include polyethylene terephthalate (PET).
 2つ以上の液晶層が積層される場合、下層の液晶層が配向層として振る舞い、下層の液晶層に接する上層の液晶層の製造過程でコレステリック液晶化合物が配向されることがある。上記のような態様では、配向層が設けられなくても、又は配向処理(例えば、ラビング処理)が実施されなくても、上層の液晶層の製造過程でコレステリック液晶化合物が配向される。 When two or more liquid crystal layers are laminated, the lower liquid crystal layer acts as an alignment layer, and the cholesteric liquid crystal compound may be oriented during the manufacturing process of the upper liquid crystal layer in contact with the lower liquid crystal layer. In the embodiment as described above, the cholesteric liquid crystal compound is aligned during the manufacturing process of the upper liquid crystal layer without providing an alignment layer or performing alignment treatment (for example, rubbing treatment).
[着色層]
 加飾用材料は、着色層を含んでいてもよい。着色層は、加飾用材料の意匠性を向上できる。
[Colored layer]
The decorating material may contain a colored layer. The colored layer can improve the design of the decorative material.
 加飾用材料における着色層の位置は、制限されない。意匠性の観点から、加飾用材料は、基材と、着色層と、液晶層と、をこの順に含むことが好ましい。すなわち、着色層は、基材と液晶層との間に配置されることが好ましい。意匠性、成型加工性及び耐久性の観点から、加飾用材料は、基材と、液晶層と、着色層と、を含むことが好ましい。 The position of the colored layer in the decorative material is not restricted. From the viewpoint of designability, it is preferable that the decorating material includes a substrate, a colored layer, and a liquid crystal layer in this order. That is, the colored layer is preferably arranged between the substrate and the liquid crystal layer. From the viewpoint of designability, molding processability and durability, the decorative material preferably includes a substrate, a liquid crystal layer, and a colored layer.
 加飾用材料は、2つ以上の着色層を含んでいてもよい。加飾用材料における少なくとも1つの着色層は、液晶層を介して視認される層であることが好ましい。少なくとも1つの着色層が液晶層を介して視認される層であると、液晶層に入射する光の角度に応じた異方性に基づき、着色層の視認角度に応じて色の変化が生じ、特殊な意匠性が発現すると考えられる。加飾用材料が2つ以上の着色層を含む場合、少なくとも1つの着色層が液晶層を介して視認される層であり、かつ、他の着色層のうち少なくとも1つが液晶層よりも観察者に近い層(「カラーフィルター層」ともいう。)であることが好ましい。カラーフィルター層は、特定の波長の光に対して高い透過性を有する層であってもよい。カラーフィルター層は、単色のカラーフィルター層であってもよい。カラーフィルター層は、2色以上のカラーフィルター構造及び必要に応じブラックマトリックス等を有するカラーフィルター層であってもよい。カラーフィルター層によれば、例えば、優れた意匠性を有し、特定の波長範囲で視認可能な加飾用材料が得られる。 The decorative material may contain two or more colored layers. At least one colored layer in the decorative material is preferably a layer visible through the liquid crystal layer. When at least one colored layer is a layer visible through the liquid crystal layer, the color changes according to the viewing angle of the colored layer based on the anisotropy according to the angle of light incident on the liquid crystal layer, It is thought that a special design property will be expressed. When the decorative material contains two or more colored layers, at least one colored layer is a layer that is visible through the liquid crystal layer, and at least one of the other colored layers is more visible to the observer than the liquid crystal layer. It is preferably a layer close to (also referred to as a "color filter layer"). The color filter layer may be a layer that is highly transmissive to light of specific wavelengths. The color filter layer may be a monochromatic color filter layer. The color filter layer may be a color filter layer having a color filter structure of two or more colors and, if necessary, a black matrix or the like. According to the color filter layer, for example, it is possible to obtain a decorative material that has excellent design properties and is visible in a specific wavelength range.
 視認性の観点から、少なくとも1つの着色層(好ましくは液晶層を介して視認される着色層)の全光透過率は、10%以下であることが好ましい。 From the viewpoint of visibility, the total light transmittance of at least one colored layer (preferably the colored layer visible through the liquid crystal layer) is preferably 10% or less.
 着色層の色としては、例えば、黒、灰、白、赤、橙、黄、緑、青及び紫が挙げられる。着色層の色は、金属調の色であってもよい。 The colors of the colored layer include, for example, black, gray, white, red, orange, yellow, green, blue and purple. The color of the colored layer may be a metallic color.
 着色層の成分としては、例えば、着色剤、樹脂(例えば、バインダー樹脂)、分散剤及び他の添加剤が挙げられる。着色層は、重合性化合物及び重合開始剤を含んでいてもよい。 The components of the colored layer include, for example, colorants, resins (eg, binder resins), dispersants and other additives. The colored layer may contain a polymerizable compound and a polymerization initiator.
 着色層は、着色剤を含むことが好ましい。着色剤としては、例えば、顔料及び染料が挙げられる。耐久性の観点から、顔料が好ましい。金属調の着色層は、金属粒子及びパール顔料といった成分を含んでいてもよい。金属調の着色層の形成において、蒸着及びメッキといった方法が適用されてもよい。 The colored layer preferably contains a coloring agent. Colorants include, for example, pigments and dyes. From the viewpoint of durability, pigments are preferred. The metallic colored layer may contain components such as metallic particles and pearl pigments. Methods such as vapor deposition and plating may be applied to form the metallic colored layer.
 顔料としては、例えば、無機顔料及び有機顔料が挙げられる。 Examples of pigments include inorganic pigments and organic pigments.
 無機顔料としては、例えば、白色顔料(例えば、二酸化チタン、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム及び硫酸バリウム)、黒色顔料(例えば、カーボンブラック、チタンブラック、チタンカーボン、酸化鉄及び黒鉛)、酸化鉄、バリウムイエロー、カドミウムレッド及びクロムイエローが挙げられる。無機顔料として、例えば、特開2005-7765号公報の段落0015及び段落0114に記載の無機顔料が適用されてもよい。 Examples of inorganic pigments include white pigments (e.g., titanium dioxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide and barium sulfate), black pigments (e.g., carbon black, titanium black, titanium carbon, iron oxide and graphite), iron oxide, barium yellow, cadmium red and chrome yellow. As the inorganic pigment, for example, the inorganic pigments described in paragraphs 0015 and 0114 of JP-A-2005-7765 may be applied.
 有機顔料としては、例えば、フタロシアニンブルー、フタロシアニングリーン等のフタロシアニン系顔料、アゾレッド、アゾイエロー、アゾオレンジ等のアゾ系顔料、キナクリドンレッド、シンカシャレッド、シンカシャマゼンタ等のキナクリドン系顔料、ペリレンレッド、ペリレンマルーン等のペリレン系顔料、カルバゾールバイオレット、アントラピリジン、フラバンスロンイエロー、イソインドリンイエロー、インダスロンブルー、ジブロムアンザスロンレッド、アントラキノンレッド及びジケトピロロピロールが挙げられる。有機顔料の具体例としては、C.I.Pigment Red 177、179、224、242、254、255、264等の赤色顔料、C.I.Pigment Yellow 138、139、150、180、185等の黄色顔料、C.I.Pigment Orange 36、38、71等の橙色顔料、C.I.Pigment Green 7、36、58等の緑色顔料、C.I.Pigment Blue 15:6等の青色顔料及びC.I.Pigment Violet 23等の紫色顔料が挙げられる。有機顔料として、特開2009-256572号公報の段落0093に記載の有機顔料が適用されてもよい。 Examples of organic pigments include phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green; azo pigments such as azo red, azo yellow and azo orange; quinacridone pigments such as quinacridone red, syncash red and syncash magenta; Perylene pigments such as perylene maroon, carbazole violet, anthrapyridine, flavanthrone yellow, isoindoline yellow, indathrone blue, dibromoanzathrone red, anthraquinone red and diketopyrrolopyrrole. Specific examples of organic pigments include C.I. I. Pigment Red 177, 179, 224, 242, 254, 255, 264 and other red pigments, C.I. I. Pigment Yellow 138, 139, 150, 180, 185 and other yellow pigments, C.I. I. Pigment Orange 36, 38, 71 and other orange pigments, C.I. I. Pigment Green 7, 36, 58 and other green pigments, C.I. I. Pigment Blue 15:6 and other blue pigments and C.I. I. Purple pigments such as Pigment Violet 23 can be mentioned. As the organic pigment, an organic pigment described in paragraph 0093 of JP-A-2009-256572 may be applied.
 顔料は、光透過性及び光反射性を有する顔料(いわゆる、光輝性顔料)であってもよい。光輝性顔料としては、例えば、アルミニウム、銅、亜鉛、鉄、ニッケル、スズ、酸化アルミニウム及びこれらの合金等の金属製光輝性顔料、干渉マイカ顔料、ホワイトマイカ顔料、グラファイト顔料及びガラスフレーク顔料が挙げられる。光輝性顔料は、無着色の光輝性顔料であってもよい。光輝性顔料は、着色された光輝性顔料であってもよい。加飾用材料の成型において露光が行われる場合、光輝性顔料は、露光による硬化を妨げない範囲において用いられることが好ましい。 The pigment may be a pigment having light transmittance and light reflectivity (so-called luster pigment). Luster pigments include, for example, metallic luster pigments such as aluminum, copper, zinc, iron, nickel, tin, aluminum oxide and alloys thereof, interference mica pigments, white mica pigments, graphite pigments and glass flake pigments. be done. The bright pigment may be a colorless bright pigment. The glitter pigment may be a colored glitter pigment. When exposure is performed in molding the decorative material, the bright pigment is preferably used within a range that does not interfere with curing by exposure.
 着色層は、1種又は2種以上の着色剤を含んでいてもよい。無機顔料と有機顔料との組み合わせが適用されてもよい。 The colored layer may contain one or more colorants. A combination of inorganic and organic pigments may be applied.
 目的とする色の発現及び成型加工適性の観点から、着色層の全質量に対する着色剤の含有量の割合は、1質量%~50質量%であることが好ましく、5質量%~50質量%であることがより好ましく、10質量%~40質量%であることが特に好ましい。 From the viewpoint of desired color expression and molding processability, the content of the coloring agent in the total weight of the colored layer is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 50% by mass. more preferably 10% by mass to 40% by mass.
 成型加工適性、強度及び耐傷性の観点から、着色層は、バインダー樹脂を更に含むことが好ましい。バインダー樹脂は、透明な樹脂であることが好ましい。全光透過率が80%以上の樹脂であることが好ましい。全光透過率は、分光光度計(例えば、株式会社島津製作所製、分光光度計UV-2100)により測定される。 From the viewpoint of moldability, strength and scratch resistance, the colored layer preferably further contains a binder resin. The binder resin is preferably a transparent resin. A resin having a total light transmittance of 80% or more is preferable. The total light transmittance is measured with a spectrophotometer (eg, spectrophotometer UV-2100 manufactured by Shimadzu Corporation).
 バインダー樹脂としては、例えば、アクリル樹脂、シリコーン樹脂、ポリエステル、ポリウレタン及びポリオレフィンが挙げられる。バインダー樹脂は、単独重合体又は共重合体であってもよい。 Examples of binder resins include acrylic resins, silicone resins, polyesters, polyurethanes and polyolefins. The binder resin may be a homopolymer or a copolymer.
 着色層は、1種又は2種以上の。バインダー樹脂を含んでいてもよい。 The colored layer is one or two or more. It may contain a binder resin.
 成型加工性の観点から、着色層の全質量に対するバインダー樹脂の含有量の割合は、5質量%~70質量%であることが好ましく、10質量%~60質量%であることがより好ましく、20質量%~60質量%であることが特に好ましい。 From the viewpoint of molding processability, the ratio of the content of the binder resin to the total mass of the colored layer is preferably 5% by mass to 70% by mass, more preferably 10% by mass to 60% by mass, and 20% by mass. % to 60% by weight is particularly preferred.
 着色層は、分散剤を更に含んでいてもよい。分散剤は、着色層における着色剤(特に顔料)の分散性を向上させ、色の均一性を向上できる。 The colored layer may further contain a dispersant. The dispersant can improve the dispersibility of the colorant (especially pigment) in the colored layer and improve the uniformity of color.
 分散剤は、高分子分散剤であることが好ましい。高分子分散剤としては、例えば、シリコーンポリマー、アクリルポリマー及びポリエステルポリマーが挙げられる。耐熱性の観点から、分散剤は、グラフト型シリコーンポリマー等のシリコーンポリマーであることが好ましい。 The dispersant is preferably a polymer dispersant. Polymeric dispersants include, for example, silicone polymers, acrylic polymers and polyester polymers. From the viewpoint of heat resistance, the dispersant is preferably a silicone polymer such as a grafted silicone polymer.
 分散剤の重量平均分子量は、1,000~5,000,000であることが好ましく、2,000~3,000,000であることがより好ましく、2,500~3,000,000であることが特に好ましい。重量平均分子量が1,000以上であると、着色剤の分散性がより向上する。 The weight average molecular weight of the dispersant is preferably 1,000 to 5,000,000, more preferably 2,000 to 3,000,000, and 2,500 to 3,000,000. is particularly preferred. When the weight average molecular weight is 1,000 or more, the dispersibility of the colorant is further improved.
 分散剤は、市販品であってもよい。市販品としては、BASFジャパン株式会社から入手可能なEFKA 4300(アクリル系高分子分散剤)、花王株式会社から入手可能なホモゲノールL-18、ホモゲノールL-95及びホモゲノールL-100、日本ルーブリゾール株式会社から入手可能なソルスパース20000及びソルスパース24000、ビックケミー・ジャパン株式会社から入手可能なDISPERBYK-110、DISPERBYK-164、DISPERBYK-180及びDISPERBYK-182が挙げられる。「ホモゲノール」、「ソルスパース」及び「DISPERBYK」はいずれも登録商標である。 The dispersant may be a commercially available product. Commercially available products include EFKA 4300 (acrylic polymer dispersant) available from BASF Japan Ltd., Homogenol L-18, Homogenol L-95 and Homogenol L-100 available from Kao Corporation, Lubrizol Japan Co., Ltd. Solsperse 20000 and Solsperse 24000 available from the company, DISPERBYK-110, DISPERBYK-164, DISPERBYK-180 and DISPERBYK-182 available from BYK-Chemie Japan. "Homogenol", "Solsperse" and "DISPERBYK" are all registered trademarks.
 着色層は、1種又は2種以上の分散剤を含んでいてもよい。 The colored layer may contain one or more dispersants.
 100質量部の着色剤に対する分散剤の含有量は、1質量部~30質量部であることが好ましい。 The content of the dispersant with respect to 100 parts by mass of the colorant is preferably 1 to 30 parts by mass.
 着色層は、他の添加剤を更に含んでいてもよい。添加剤としては、例えば、特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤、特許第4502784号公報の段落0018に記載の熱重合防止剤(重合禁止剤ともいう。好ましくはフェノチアジンが挙げられる。)及び特開2000-310706号公報の段落0058~0071に記載の添加剤が挙げられる。 The colored layer may further contain other additives. Examples of additives include, for example, paragraph 0017 of Japanese Patent No. 4502784, surfactants described in Japanese Patent Application Laid-Open No. 2009-237362, paragraphs 0060 to 0071, and thermal polymerization inhibitors described in Japanese Patent No. 4502784, paragraph 0018. (Also referred to as a polymerization inhibitor. Preferred is phenothiazine.) and additives described in paragraphs 0058 to 0071 of JP-A-2000-310706.
 視認性及び立体成型性の観点から、着色層の厚さは、0.5μm以上であることが好ましく、3μm以上であることがより好ましく、3μm~50μmであることが更に好ましく、3μm~20μmであることが特に好ましい。加飾用材料が2つ以上の着色層を含む場合、2つ以上の着色層は、それぞれ独立に、上記の範囲に調整されることが好ましい。 From the viewpoint of visibility and three-dimensional moldability, the thickness of the colored layer is preferably 0.5 μm or more, more preferably 3 μm or more, even more preferably 3 μm to 50 μm, even more preferably 3 μm to 20 μm. It is particularly preferred to have When the decorative material contains two or more colored layers, it is preferable that the two or more colored layers are independently adjusted within the above ranges.
 着色層の形成方法としては、例えば、着色層形成用組成物を用いる方法及び着色されたフィルムを貼り合せる方法が挙げられる。着色層の形成方法としては、着色層形成用組成物を用いる方法が好ましい。naxレアルシリーズ、naxアドミラシリーズ、naxマルチシリーズ(日本ペイント株式会社)、レタンPGシリーズ(関西ペイント株式会社)等の市販の塗料を用いて着色層が形成されてもよい。 Examples of methods for forming the colored layer include a method using a colored layer-forming composition and a method of bonding colored films. As a method for forming the colored layer, a method using a composition for forming a colored layer is preferable. The colored layer may be formed using commercially available paints such as nax Real series, nax Admira series, nax Multi series (Nippon Paint Co., Ltd.), and Retan PG series (Kansai Paint Co., Ltd.).
 着色層形成用組成物を用いる方法としては、例えば、着色層形成用組成物を塗布して着色層を形成する方法及び着色層形成用組成物を印刷して着色層を形成する方法が挙げられる。印刷方法としては、例えば、スクリーン印刷、インクジェット印刷、フレキソ印刷、グラビア印刷及びオフセット印刷が挙げられる。 Examples of the method using the colored layer-forming composition include a method of forming a colored layer by applying the colored layer-forming composition and a method of printing the colored layer-forming composition to form a colored layer. . Printing methods include, for example, screen printing, inkjet printing, flexographic printing, gravure printing and offset printing.
 着色層形成用組成物の成分としては、例えば、既述の着色層の成分が挙げられる。着色層形成用組成物の各成分の含有量は、例えば、既述の着色層の各成分の含有量に関する説明に記載された「着色層の全質量」を「着色層形成用組成物の固形分の全質量」に読み替えた範囲で調整される。 The components of the composition for forming the colored layer include, for example, the components of the colored layer described above. The content of each component of the composition for forming a colored layer is, for example, the “total mass of the colored layer” described in the description of the content of each component of the colored layer described above, and the “solid content of the composition for forming a colored layer”. It is adjusted within the range read as "total mass of minutes".
 着色層形成用組成物は、有機溶剤を更に含むことが好ましい。有機溶剤としては、例えば、アルコール化合物、エステル化合物、エーテル化合物、ケトン化合物及び芳香族炭化水素化合物が挙げられる。 The colored layer-forming composition preferably further contains an organic solvent. Examples of organic solvents include alcohol compounds, ester compounds, ether compounds, ketone compounds and aromatic hydrocarbon compounds.
 着色層形成用組成物は、1種又は2種以上の有機溶剤を含んでいてもよい。 The colored layer-forming composition may contain one or more organic solvents.
 着色層形成用組成物の全質量に対する有機溶剤の含有量の割合は、5質量%~90質量%であることが好ましく、30質量%~70質量%であることがより好ましい。 The ratio of the content of the organic solvent to the total mass of the colored layer-forming composition is preferably 5% by mass to 90% by mass, more preferably 30% by mass to 70% by mass.
 着色層形成用組成物の調製方法としては、例えば、有機溶剤と、着色剤等の着色層に導入される成分とを混合する方法が挙げられる。着色層形成用組成物が着色剤として顔料を含む場合、顔料の均一分散性及び分散安定性をより高める観点から、顔料と分散剤とを含む顔料分散液を用いて、着色層形成用組成物を調製する方法が好ましい。 Examples of the method for preparing the colored layer-forming composition include a method of mixing an organic solvent and a component to be introduced into the colored layer, such as a colorant. When the composition for forming a colored layer contains a pigment as a coloring agent, from the viewpoint of further enhancing the uniform dispersibility and dispersion stability of the pigment, the composition for forming a colored layer is prepared using a pigment dispersion containing a pigment and a dispersant. is preferred.
[紫外線吸収層]
 加飾用材料は、紫外線吸収層を含んでいてもよい。紫外線吸収層は、耐光性を向上できる。
[Ultraviolet absorption layer]
The decorative material may contain an ultraviolet absorbing layer. The ultraviolet absorption layer can improve light resistance.
 紫外線吸収層の位置は、制限されない。紫外線吸収層は、液晶層よりも観察者に近い位置にあることが好ましい。つまり、紫外線吸収層を介して液晶層が視認されるように紫外線吸収層が配置されることが好ましい。 The position of the ultraviolet absorption layer is not limited. It is preferable that the ultraviolet absorption layer be located closer to the viewer than the liquid crystal layer. In other words, it is preferable that the ultraviolet absorbing layer be arranged so that the liquid crystal layer can be seen through the ultraviolet absorbing layer.
 紫外線吸収層は、紫外線吸収剤を含む層であることが好ましく、紫外線吸収剤及びバインダーポリマーを含む層であることがより好ましい。 The ultraviolet absorption layer is preferably a layer containing an ultraviolet absorber, more preferably a layer containing an ultraviolet absorber and a binder polymer.
 紫外線吸収剤は、有機化合物又は無機化合物であってもよい。紫外線吸収剤としては、例えば、トリアジン化合物、ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリチル酸化合物及び金属酸化物粒子が挙げられる。紫外線吸収剤は、紫外線吸収構造を含むポリマーであってもよい。紫外線吸収構造を含むポリマーとしては、例えば、トリアジン化合物、ベンゾトリアゾール化合物、ベンゾフェノン化合物及びサリチル酸化合物といった化合物の少なくとも一部を含むアクリル酸エステル化合物に由来する単量体単位を含むアクリル樹脂が挙げられる。金属酸化物粒子としては、例えば、酸化チタン粒子、酸化亜鉛粒子及び酸化セリウム粒子が挙げられる。 The ultraviolet absorber may be an organic compound or an inorganic compound. Examples of UV absorbers include triazine compounds, benzotriazole compounds, benzophenone compounds, salicylic acid compounds, and metal oxide particles. The UV absorber may be a polymer containing UV absorbing structures. Examples of the polymer containing an ultraviolet absorbing structure include acrylic resins containing monomer units derived from acrylic acid ester compounds containing at least part of compounds such as triazine compounds, benzotriazole compounds, benzophenone compounds and salicylic acid compounds. Metal oxide particles include, for example, titanium oxide particles, zinc oxide particles and cerium oxide particles.
 バインダーポリマーとしては、例えば、ポリオレフィン、アクリル樹脂、ポリエステル、フッ素樹脂、シロキサン樹脂及びポリウレタンが挙げられる。 Examples of binder polymers include polyolefins, acrylic resins, polyesters, fluororesins, siloxane resins, and polyurethanes.
 紫外線吸収層は、例えば、紫外線吸収層形成用組成物を用いて形成される。紫外線吸収層は、紫外線吸収層形成用組成物の塗布及び必要に応じて乾燥を経て形成されてもよい。紫外線吸収層形成用組成物は、既述の紫外線吸収層の成分と、必要に応じて溶剤と、を含む。 The ultraviolet absorbing layer is formed, for example, using a composition for forming an ultraviolet absorbing layer. The ultraviolet absorbing layer may be formed by applying a composition for forming an ultraviolet absorbing layer and, if necessary, drying the composition. The composition for forming an ultraviolet absorbing layer contains the components of the ultraviolet absorbing layer described above and, if necessary, a solvent.
 耐光性及び立体成型性の観点から、紫外線吸収層の厚さは、0.01μm~100μmであることが好ましく、0.1μm~50μmであることがより好ましく、0.5μm~20μmであることが特に好ましい。 From the viewpoint of light resistance and three-dimensional moldability, the thickness of the ultraviolet absorbing layer is preferably 0.01 μm to 100 μm, more preferably 0.1 μm to 50 μm, and more preferably 0.5 μm to 20 μm. Especially preferred.
[保護層]
 加飾用材料は、保護層を含んでいてもよい。
[Protective layer]
The decorative material may contain a protective layer.
 保護層は、液晶層といった層を保護する十分な強度を有し、優れた耐候性を有することが好ましい。耐候性としては、例えば、紫外線及び湿熱といった環境要因に対する耐久性が挙げられる。視認性及び光の映り込み(例えば、蛍光灯の映り込み)の抑制の観点から、保護層は、反射防止能を有していてもよい。 The protective layer preferably has sufficient strength to protect a layer such as the liquid crystal layer and has excellent weather resistance. Weather resistance includes, for example, durability against environmental factors such as ultraviolet rays and moist heat. From the viewpoint of visibility and suppression of reflection of light (for example, reflection of fluorescent light), the protective layer may have antireflection ability.
 強度及び耐候性の観点から、保護層は、樹脂を含むことが好ましく、シロキサン樹脂、フッ素樹脂、アクリル樹脂、メラミン樹脂、ポリオレフィン、ポリエステル、ポリカーボネート及びウレタン樹脂からなる群より選択される少なくとも1種の樹脂を含むことがより好ましく、空隙を有するシロキサン樹脂、フッ素樹脂、アクリル樹脂及びウレタン樹脂からなる群より選択される少なくとも1種の樹脂を含むことが更に好ましい。保護層がシロキサン樹脂又はフッ素樹脂を含むと、保護層の屈折率が1.5以下(好ましくは1.4以下)になりやすく、優れた反射防止能を有する保護層が容易に得られる。保護層が低屈折率粒子を含むと、保護層の屈折率を1.5以下に下げても同様の反射防止効果が得られる。 From the viewpoint of strength and weather resistance, the protective layer preferably contains a resin, at least one selected from the group consisting of siloxane resin, fluororesin, acrylic resin, melamine resin, polyolefin, polyester, polycarbonate and urethane resin. It more preferably contains a resin, and more preferably contains at least one resin selected from the group consisting of siloxane resins, fluororesins, acrylic resins, and urethane resins having voids. When the protective layer contains a siloxane resin or a fluororesin, the refractive index of the protective layer tends to be 1.5 or less (preferably 1.4 or less), and a protective layer having excellent antireflection performance can be easily obtained. When the protective layer contains low refractive index particles, the same antireflection effect can be obtained even if the refractive index of the protective layer is lowered to 1.5 or less.
 シロキサン樹脂は、例えば、シロキサン化合物の加水分解縮合によって得られる。シロキサン化合物は、下記式1で表されるシロキサン化合物及び下記式1で表されるシロキサン化合物の加水分解縮合物からなる群より選択される少なくとも1種の化合物(以下、特定シロキサン化合物ともいう。)であることが好ましい。 A siloxane resin is obtained, for example, by hydrolytic condensation of a siloxane compound. The siloxane compound is at least one compound selected from the group consisting of a siloxane compound represented by the following formula 1 and a hydrolysis condensate of the siloxane compound represented by the following formula 1 (hereinafter also referred to as a specific siloxane compound). is preferably
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式1中、R、R及びRはそれぞれ独立に、炭素数1~6のアルキル基、又は、アルケニル基を表し、Rは複数の場合はそれぞれ独立に、アルキル基、ビニル基、又は、ビニル基、エポキシ基、ビニルフェニル基、(メタ)アクリロキシ基、(メタ)アクリルアミド基、アミノ基、イソシアヌレート基、ウレイド基、メルカプト基、スルフィド基、ポリオキシアルキル基、カルボキシ基及び第四級アンモニウム基よりなる群から選ばれる基を有するアルキル基を表し、mは、0~2の整数を表し、nは1~20の整数を表す。 In Formula 1, R 1 , R 2 and R 3 each independently represent an alkyl group having 1 to 6 carbon atoms or an alkenyl group, and R 4 is each independently an alkyl group, vinyl group, Alternatively, vinyl group, epoxy group, vinylphenyl group, (meth)acryloxy group, (meth)acrylamide group, amino group, isocyanurate group, ureido group, mercapto group, sulfide group, polyoxyalkyl group, carboxy group and quaternary represents an alkyl group having a group selected from the group consisting of an ammonium group, m represents an integer of 0-2, and n represents an integer of 1-20.
 式1で表されるシロキサン化合物の加水分解縮合物とは、式1で表されるシロキサン化合物と、式1で表されるシロキサン化合物におけるケイ素原子上の置換基の少なくとも一部が加水分解して、シラノール基となっている化合物とが縮合した化合物をいう。 The hydrolytic condensate of the siloxane compound represented by Formula 1 is obtained by hydrolyzing at least a part of the siloxane compound represented by Formula 1 and the substituents on the silicon atoms in the siloxane compound represented by Formula 1. , and a compound having a silanol group are condensed.
 式1におけるR、R及びRにおける炭素数1~6のアルキル基、又は、アルケニル基は、直鎖状であっても、分岐を有していても、環構造を有していてもよい。炭素数1~6のアルキル基、又は、アルケニル基としては、保護層の強度、光透過性及びヘーズの観点から、アルキル基であることが好ましい。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられ、メチル基又はエチル基であることが好ましく、メチル基であることがより好ましい。 The alkyl group or alkenyl group having 1 to 6 carbon atoms in R 1 , R 2 and R 3 in Formula 1 may be linear, branched, or have a ring structure. good too. The alkyl group or alkenyl group having 1 to 6 carbon atoms is preferably an alkyl group from the viewpoint of strength, light transmittance and haze of the protective layer. Examples of alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and cyclohexyl group. is preferably a methyl group or an ethyl group, more preferably a methyl group.
 式1におけるRが複数である場合、保護層の強度、光透過性及びヘーズの観点から、複数のRはそれぞれ独立に、アルキル基であることが好ましく、炭素数1~8のアルキル基であることがより好ましい。 When there are a plurality of R 4 in formula 1, from the viewpoint of the strength, light transmittance and haze of the protective layer, each of the plurality of R 4 is preferably an alkyl group, preferably an alkyl group having 1 to 8 carbon atoms. is more preferable.
 式1におけるRの炭素数は、1~40であることが好ましく、1~20であることがより好ましく、1~8であることが特に好ましい。 The number of carbon atoms in R 4 in Formula 1 is preferably 1-40, more preferably 1-20, and particularly preferably 1-8.
 式1におけるmは、保護層の強度、光透過性及びヘーズの観点から、1又は2であることが好ましく、2であることがより好ましい。 m in Formula 1 is preferably 1 or 2, more preferably 2, from the viewpoint of the strength, light transmittance and haze of the protective layer.
 式1におけるnは、保護層の強度、光透過性及びヘーズの観点から、2~20の整数であることが好ましい。 n in Formula 1 is preferably an integer of 2 to 20 from the viewpoint of the strength, light transmittance and haze of the protective layer.
 特定シロキサン化合物としては、例えば、信越化学工業株式会社製のKBE-04、KBE-13、KBE-22、KBE-1003、KBM-303、KBE-403、KBM-1403、KBE-503、KBM-5103、KBE-903、KBE-9103P、KBE-585、KBE-803、KBE-846、KR-500、KR-515、KR-516、KR-517、KR-518、X-12-1135、X-12-1126、X-12-1131;エボニックジャパン株式会社製のDynasylan4150;三菱ケミカル株式会社製のMKCシリケートMS51、MS56、MS57、MS56S;コルコート株式会社製のエチルシリケート28、N-プロピルシリケート、N-ブチルシリケート、SS-101が挙げられる。 Specific siloxane compounds include, for example, Shin-Etsu Chemical Co., Ltd. KBE-04, KBE-13, KBE-22, KBE-1003, KBM-303, KBE-403, KBM-1403, KBE-503, KBM-5103 , KBE-903, KBE-9103P, KBE-585, KBE-803, KBE-846, KR-500, KR-515, KR-516, KR-517, KR-518, X-12-1135, X-12 -1126, X-12-1131; Dynasylan 4150 manufactured by Evonik Japan Co., Ltd.; MKC silicate MS51, MS56, MS57, MS56S manufactured by Mitsubishi Chemical Corporation; Ethyl silicate 28, N-propyl silicate, N-butyl manufactured by Colcoat Co., Ltd. Silicate, SS-101.
 シロキサン化合物を含む保護層形成用組成物が保護層の原材料として使用される場合、保護層形成用組成物は、シロキサン化合物の縮合を促進する縮合触媒を含んでいてもよい。保護層形成用組成物が縮合触媒を含むと、より耐久性に優れた保護層が形成される。縮合触媒は、公知の縮合触媒であってもよい。 When a protective layer-forming composition containing a siloxane compound is used as a raw material for the protective layer, the protective layer-forming composition may contain a condensation catalyst that promotes condensation of the siloxane compound. When the protective layer-forming composition contains a condensation catalyst, a protective layer with more excellent durability is formed. The condensation catalyst may be any known condensation catalyst.
 フッ素樹脂としては、例えば、特開2009-217258号公報の段落0076~段落0106及び特開2007-229999号公報の段落0083~段落0127に記載された樹脂が挙げられる。 Examples of fluororesins include resins described in paragraphs 0076 to 0106 of JP-A-2009-217258 and paragraphs 0083-0127 of JP-A-2007-229999.
 フッ素樹脂としては、例えば、フッ化アルキル樹脂が挙げられる。 Examples of fluororesins include fluorinated alkyl resins.
 フッ素樹脂としては、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペン及びエチレンテトラフルオロエチレンが挙げられる。 Examples of fluororesins include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxyalkane, perfluoroethylenepropene, and ethylenetetrafluoroethylene.
 フッ素樹脂の供給源としては、例えば、乳化剤又は水との親和性を高める成分と共重合体化して水分散化したフッ素樹脂ディスパージョンが挙げられる。 Examples of the fluororesin supply source include a fluororesin dispersion that is dispersed in water by copolymerization with an emulsifier or a component that increases affinity with water.
 フッ素樹脂の原材料としては、例えば、重合性官能基及び架橋性官能基のうちの少なくとも1つの基を有し、かつ、フッ素原子を含む化合物が挙げられる。フッ素樹脂の原材料としては、例えば、パーフルオロアルキル(メタ)アクリレート、フッ化ビニルモノマー及びフッ化ビニリデンモノマーといったラジカル重合性モノマーが挙げられる。フッ素樹脂の原材料としては、例えば、パーフルオロオキセタンといったカチオン重合性モノマーが挙げられる。 Examples of raw materials for the fluororesin include compounds having at least one of a polymerizable functional group and a crosslinkable functional group and containing fluorine atoms. Raw materials for the fluororesin include, for example, radically polymerizable monomers such as perfluoroalkyl (meth)acrylates, vinyl fluoride monomers, and vinylidene fluoride monomers. Raw materials for the fluororesin include, for example, cationic polymerizable monomers such as perfluorooxetane.
 フッ素樹脂又はフッ素樹脂の原材料の市販品としては、例えば、AGC株式会社製ルミフロン及びオブリガート、ダイキン工業株式会社製ゼッフル及びネオフロン、デュポン社製テフロン(登録商標)、アルケマ社製カイナー、共栄社化学株式会社製LINC3A、ダイキン工業株式会社製オプツール、荒川化学工業株式会社製オプスター及びダイキン工業株式会社製テトラフルオロオキセタンが挙げられる。 Examples of commercially available fluororesins or raw materials for fluororesins include Lumiflon and Obbligato manufactured by AGC Corporation, ZEFFLE and NEOFLON manufactured by Daikin Industries, Ltd., Teflon (registered trademark) manufactured by DuPont, Kynar manufactured by Arkema, and Kyoeisha Chemical Co., Ltd. LINC3A manufactured by Daikin Industries, Ltd., Optool manufactured by Daikin Industries, Ltd., Opstar manufactured by Arakawa Chemical Industries, Ltd., and Tetrafluorooxetane manufactured by Daikin Industries, Ltd. can be mentioned.
 低屈折率粒子(好ましくは1.45以下の屈折率を有する粒子)としては、例えば、特開2009-217258号公報の段落0075~段落0103に記載された粒子が挙げられる。 Examples of low refractive index particles (preferably particles having a refractive index of 1.45 or less) include particles described in paragraphs 0075 to 0103 of JP-A-2009-217258.
 低屈折率粒子としては、シリカといった無機酸化物粒子を用いた中空粒子、アクリル樹脂粒子といった樹脂粒子を用いた中空粒子、粒子表面に多孔質構造を有する多孔質粒子及び素材自体の屈折率が低いフッ化物粒子が挙げられる。中空粒子の市販品としては、例えば、日揮触媒化成株式会社製スルーリア、日鉄鉱業株式会社製シリナックス並びに積水化成品工業株式会社製テクポリマーMBX、SBX及びNHが挙げられる。多孔質粒子の市販品としては、例えば、日産化学工業株式会社製ライトスターが挙げられる。フッ化物粒子の市販品としては、例えば、株式会社希少金属材料研究所製フッ化マグネシウムナノ粒子が挙げられる。コアシェル粒子を用いて、樹脂を含むマトリックス中に閉鎖空隙が形成されてもよい。中空粒子を含む組成物を塗布して保護層を形成する方法としては、例えば、特開2009-103808号公報の段落0028~段落0029に記載の方法、特開2008-262187号公報の段落0030~段落0031又は特開2017-500384号公報の段落0018に記載の方法が適用されてもよい。 The low refractive index particles include hollow particles using inorganic oxide particles such as silica, hollow particles using resin particles such as acrylic resin particles, porous particles having a porous structure on the particle surface, and materials themselves having a low refractive index. Fluoride particles may be mentioned. Commercially available hollow particles include Sururia manufactured by Nikki Shokubai Kasei Co., Ltd., Silinax manufactured by Nittetsu Mining Co., Ltd., and Techpolymer MBX, SBX and NH manufactured by Sekisui Plastics Co., Ltd. Commercial products of the porous particles include, for example, Light Star manufactured by Nissan Chemical Industries, Ltd. Commercially available fluoride particles include, for example, magnesium fluoride nanoparticles manufactured by Rare Metals Laboratory Co., Ltd. Core-shell particles may be used to form closed voids in a resin-containing matrix. Examples of the method of forming a protective layer by applying a composition containing hollow particles include, for example, the method described in paragraphs 0028 to 0029 of JP-A-2009-103808, and paragraphs 0030 to 0030 of JP-A-2008-262187. The method described in paragraph 0031 or paragraph 0018 of JP-A-2017-500384 may be applied.
 ウレタン樹脂は、例えば、ジイソシアネート化合物とポリオールとの反応又はウレタン(メタ)アクリレート化合物の重合反応によって得られる。 A urethane resin can be obtained, for example, by a reaction between a diisocyanate compound and a polyol or a polymerization reaction of a urethane (meth)acrylate compound.
 ジイソシアネート化合物としては、例えば、芳香族ジイソシアネート(例えば、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフタレンジイソシアネート、p-又はm-フェニレンジイソシアネート、キシリレンジイソシアネート及びm-テトラメチルキシリレンジイソシアネートが挙げられる。ジイソシアネート化合物としては、例えば、脂環式ジ-イソシアネート(例えば、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキシレンジイソシアネート及び水素化トリレンジイソシアネート)が挙げられる。ジイソシアネート化合物としては、例えば、脂肪族ジイソシアネート(例えば、ヘキサメチレンジイソシアネート)が挙げられる。褪色への抵抗性の観点から、脂環式ジイソシアネートが好ましい。1種又は2種以上のジイソシアネート化合物が使用されてもよい。 Diisocyanate compounds include, for example, aromatic diisocyanates (e.g., 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,5-naphthalene diisocyanate, p- or m-phenylene diisocyanate, xylylene diisocyanate and m-tetramethylxylylene diisocyanate Diisocyanate compounds include, for example, alicyclic diisocyanates (e.g., isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate and hydrogenated tolylene diisocyanate).Examples of diisocyanate compounds include aliphatic diisocyanates (eg, hexamethylene diisocyanate).From the viewpoint of resistance to fading, alicyclic diisocyanates are preferred. One or more diisocyanate compounds may be used.
 ポリオールとしては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール及びポリアクリルポリオールが挙げられる。耐衝撃性の観点か
ら、ポリエステルポリオール又はポリアクリルポリオールが好ましい。
Polyols include, for example, polyester polyols, polyether polyols, polycarbonate polyols and polyacrylic polyols. From the viewpoint of impact resistance, polyester polyols or polyacrylic polyols are preferred.
 ポリエステルポリオールは、例えば、多塩基酸及び多価アルコールを使用するエステル化反応を用いた公知の方法によって得られる。 A polyester polyol can be obtained, for example, by a known method using an esterification reaction using a polybasic acid and a polyhydric alcohol.
 多塩基酸としては、例えば、ポリカルボン酸が挙げられる。必要に応じて、一塩基脂肪酸も併用されてもよい。ポリカルボン酸としては、例えば、芳香族ポリカルボン酸(例えば、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロイソフタル酸、ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、トリメリット酸及びピロメリット酸)が挙げられる。ポリカルボン酸としては、例えば、脂肪族ポリカルボン酸(例えば、アジピン酸、セバシン酸、コハク酸、アゼライン酸、フマル酸、マレイン酸及びイタコン酸)が挙げられる。ポリカルボン酸は、既述の化合物の無水物であってもよい。1種又は2種以上の多塩基酸が使用されてもよい。 Polybasic acids include, for example, polycarboxylic acids. A monobasic fatty acid may also be used in combination, if desired. Examples of polycarboxylic acids include aromatic polycarboxylic acids (e.g., phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydroisophthalic acid, hexahydrophthalic acid, hexahydroterephthalic acid, trimellitic acid and pyromellitic acid). ). Polycarboxylic acids include, for example, aliphatic polycarboxylic acids such as adipic acid, sebacic acid, succinic acid, azelaic acid, fumaric acid, maleic acid and itaconic acid. Polycarboxylic acids may also be anhydrides of the previously mentioned compounds. One or more polybasic acids may be used.
 多価アルコールとしては、例えば、グリコール及び三価以上の多価アルコールが挙げられる。グリコールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、ヘキシレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、メチルプロパンジオール、シクロヘキサンジメタノール及び3,3-ジエチル-1,5-ペンタンジオールが挙げられる。三価以上の多価アルコールとしては、例えば、グリセロール、トリメチロールエタン、トリメチロールプロパン、ペンタエリトリトール及びジペンタエリトリトールが挙げられる。1種又は2種以上の多価アルコールが使用されてもよい。 Polyhydric alcohols include, for example, glycols and trihydric or higher polyhydric alcohols. Glycols include, for example, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, hexylene glycol, 1,3-butanediol, 1,4 -butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, methylpropanediol, cyclohexanedimethanol and 3,3-diethyl-1,5 - Pentanediol. Examples of trihydric or higher polyhydric alcohols include glycerol, trimethylolethane, trimethylolpropane, pentaerythritol and dipentaerythritol. One or more polyhydric alcohols may be used.
 ポリアクリルポリオールとしては、例えば、イソシアネート基と反応可能なヒドロキシ基を有する公知のポリアクリルポリオールが挙げられる。ポリアクリルポリオールのモノマーとしては、例えば、(メタ)アクリル酸、ヒドロキシ基が付加された(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリルアミド及びその誘導体、ビニルアルコールのカルボン酸エステル、不飽和カルボン酸及び鎖状不飽和アルキル部分を有する炭化水素が挙げられる。 Examples of polyacrylic polyols include known polyacrylic polyols having hydroxyl groups capable of reacting with isocyanate groups. Monomers for polyacrylic polyol include, for example, (meth)acrylic acid, (meth)acrylic acid to which a hydroxyl group is added, (meth)acrylic acid alkyl esters, (meth)acrylamide and derivatives thereof, and carboxylic acid esters of vinyl alcohol. , unsaturated carboxylic acids and hydrocarbons with linear unsaturated alkyl moieties.
 ウレタン(メタ)アクリレート化合物は、例えば、ヒドロキシ基及び(メタ)アクリロイル基を有する化合物とポリイソシアネート化合物とをウレタン化反応させることによって得られる。 A urethane (meth)acrylate compound is obtained, for example, by urethanizing a compound having a hydroxy group and a (meth)acryloyl group and a polyisocyanate compound.
 ヒドロキシ基及び(メタ)アクリロイル基を有する化合物としては、例えば、ヒドロキシ基を有する単官能(メタ)アクリレート及びヒドロキシ基を有する多官能(メタ)アクリレートが挙げられる。ヒドロキシ基を有する単官能(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシ-n-ブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-n-ブチル(メタ)アクリレート、3-ヒドロキシ-n-ブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタレート及び末端にヒドロキシ基を有するラクトン変性(メタ)アクリレートが挙げられる。ヒドロキシ基を有する多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパンジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド(EO)変性ジアクリレート、ペンタエリスリトールトリ(メタ)アクリレート及びジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。保護層の耐擦傷性の観点から、ペンタエリスリトールトリアクリレート又はジペンタエリスリトールペンタアクリレートが好ましい。1種又は2種以上の、ヒドロキシ基及び(メタ)アクリロイル基を有する化合物が使用されてもよい。 Examples of compounds having a hydroxy group and a (meth)acryloyl group include monofunctional (meth)acrylates having a hydroxy group and polyfunctional (meth)acrylates having a hydroxy group. Monofunctional (meth)acrylates having a hydroxy group include, for example, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxy-n-butyl (meth)acrylate, 2-hydroxypropyl ( meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, N-(2-hydroxyethyl) ( meth)acrylamide, glycerin mono(meth)acrylate, polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, 2-hydroxy-3-phenoxypropyl(meth)acrylate, 2-(meth)acryloyloxyethyl-2 -Hydroxyethyl phthalate and lactone-modified (meth)acrylates having terminal hydroxy groups. Polyfunctional (meth)acrylates having a hydroxy group include, for example, trimethylolpropane di(meth)acrylate, isocyanurate ethylene oxide (EO)-modified diacrylate, pentaerythritol tri(meth)acrylate and dipentaerythritol penta(meth) Acrylates are mentioned. From the viewpoint of scratch resistance of the protective layer, pentaerythritol triacrylate or dipentaerythritol pentaacrylate is preferred. One or more compounds having a hydroxy group and a (meth)acryloyl group may be used.
 ポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、m-キシリレンジイソシアネート、m-フェニレンビス(ジメチルメチレン)ジイソシアネート等の芳香族ジイソシアネート化合物が挙げられる。ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、2-メチル-1,3-ジイソシアナトシクロヘキサン、2-メチル-1,5-ジイソシアナトシクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族又は脂環式ジイソシアネート化合物が挙げられる。 Examples of polyisocyanate compounds include aromatic diisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, m-xylylene diisocyanate, and m-phenylenebis(dimethylmethylene) diisocyanate. Examples of polyisocyanate compounds include hexamethylene diisocyanate, lysine diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 2-methyl-1,3-diisocyanatocyclohexane, 2-methyl-1,5-diisocyanate. Aliphatic or alicyclic diisocyanate compounds such as natocyclohexane, 4,4'-dicyclohexylmethane diisocyanate and isophorone diisocyanate can be mentioned.
 ウレタン(メタ)アクリレートは、例えば、活性光線の照射によって硬化される。活性光線とは、紫外線、電子線、α線、β線、γ線等の電離放射線をいう。成型後に、紫外線の照射によって保護層が硬化される場合、硬化性の観点から、保護層は光重合開始剤を含むことが好ましい。硬化性の観点から、保護層は、必要に応じて光増感剤を更に含んでいてもよい。 Urethane (meth)acrylate is cured, for example, by irradiation with actinic rays. Actinic rays refer to ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When the protective layer is cured by irradiation with ultraviolet rays after molding, the protective layer preferably contains a photopolymerization initiator from the viewpoint of curability. From the viewpoint of curability, the protective layer may further contain a photosensitizer as needed.
 視認性及び反射防止性の観点から、保護層の屈折率は、1.05~1.6であることが好ましく、1.2~1.5であることがより好ましく、1.2~1.4であることが更に好ましい。屈折率は、25℃における550nmの波長の光に対する屈折率である。加飾用材料が自動車の外装に利用される場合、ワックス及びガソリンによる汚れが目立つことを防止するため、ワックス及びガソリンの屈折率に近い範囲(例えば、1.4~1.5)で保護層の屈折率が設定されることが好ましい。 From the viewpoint of visibility and antireflection properties, the protective layer preferably has a refractive index of 1.05 to 1.6, more preferably 1.2 to 1.5, and 1.2 to 1.5. 4 is more preferred. The refractive index is the refractive index for light with a wavelength of 550 nm at 25°C. When the decorative material is used for the exterior of an automobile, a protective layer having a refractive index close to that of wax and gasoline (for example, 1.4 to 1.5) is used to prevent stains caused by wax and gasoline from becoming conspicuous. is preferably set.
 耐傷性及び立体成型性の観点から、保護層の厚さは2μm以上であることが好ましく、4μm以上であることがより好ましく、4μm~50μmであることが更に好ましく、4μm~20μmであることが特に好ましい。 From the viewpoints of scratch resistance and three-dimensional moldability, the thickness of the protective layer is preferably 2 μm or more, more preferably 4 μm or more, still more preferably 4 μm to 50 μm, even more preferably 4 μm to 20 μm. Especially preferred.
 保護層は、例えば、保護層形成用組成物の塗布及び必要に応じて乾燥を経て形成される。保護層は、例えば、フィルム化された保護層の貼り合わせによって形成される。 The protective layer is formed, for example, by applying a protective layer-forming composition and, if necessary, drying. The protective layer is formed, for example, by laminating film-formed protective layers.
 塗布方法としては、スプレー塗布、刷毛塗布、ローラー塗布、バー塗布及びディップ塗布が挙げられる。 Application methods include spray coating, brush coating, roller coating, bar coating and dip coating.
 保護層形成用組成物の塗布前に、保護層形成用組成物が塗布される対象物に対して表面処理が施されてもよい。表面処理としては、例えば、コロナ放電処理、グロー処理、大気圧プラズマ処理、火炎処理及び紫外線照射処理が挙げられる。 Before applying the composition for forming a protective layer, the object to which the composition for forming a protective layer is applied may be surface-treated. Surface treatments include, for example, corona discharge treatment, glow treatment, atmospheric pressure plasma treatment, flame treatment and ultraviolet irradiation treatment.
 保護層形成用組成物の乾燥は、室温(25℃)で行われてもよい。保護層形成用組成物の乾燥は、加熱によって行われてもよい。保護層形成用組成物に含まれる溶剤の揮発性、保護層の光透過性、保護層の着色抑制及び樹脂基材の分解抑制の観点から、保護層形成用組成物の乾燥は、40℃~200℃の加熱によって行われることが好ましい。樹脂基材の熱変形を抑制する観点から、保護層形成用組成物の乾燥は、40℃~120℃の加熱によって行われることが好ましい。加熱時間は、1分~30分であることが好ましい。 The drying of the protective layer-forming composition may be performed at room temperature (25°C). The protective layer-forming composition may be dried by heating. From the viewpoint of the volatility of the solvent contained in the protective layer-forming composition, the light transmittance of the protective layer, the suppression of coloration of the protective layer, and the suppression of decomposition of the resin substrate, the drying of the protective layer-forming composition should be carried out at 40° C. or higher. It is preferably carried out by heating at 200°C. From the viewpoint of suppressing thermal deformation of the resin substrate, it is preferable to dry the protective layer-forming composition by heating at 40°C to 120°C. The heating time is preferably 1 minute to 30 minutes.
 保護層形成用組成物の製造方法は、制限されない。保護層形成用組成物は、例えば、有機溶剤、界面活性剤及び水を混合して有機溶剤を水中に分散させ、次に、分散液に特定シロキサン化合物を添加して分散した有機溶剤の表面にシェル層を形成してコアシェル粒子を形成することによって製造される。保護層形成用組成物は、例えば、有機溶剤、界面活性剤、樹脂及びモノマーを混合することによって製造される。 The manufacturing method of the protective layer-forming composition is not limited. The composition for forming a protective layer can be prepared, for example, by mixing an organic solvent, a surfactant and water to disperse the organic solvent in water, then adding a specific siloxane compound to the dispersion and applying it to the surface of the dispersed organic solvent. It is manufactured by forming a shell layer to form a core-shell particle. A composition for forming a protective layer is produced by, for example, mixing an organic solvent, a surfactant, a resin and a monomer.
 保護層形成用組成物は、界面活性剤を含むことが好ましい。界面活性剤としては、例えば、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤及び両性界面活性剤が挙げられる。 The protective layer-forming composition preferably contains a surfactant. Surfactants include, for example, nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants.
 保護層形成用組成物は、既述の成分に加え、目的に応じて他の成分を含んでいてもよい。他の成分としては、例えば、帯電防止剤及び防腐剤が挙げられる。 The protective layer-forming composition may contain other components in addition to the components described above, depending on the purpose. Other ingredients include, for example, antistatic agents and preservatives.
 保護層形成用組成物は、帯電防止剤を含んでいてもよい。帯電防止剤は、保護層に帯電防止性を付与し、汚染物質の付着を抑制できる。 The protective layer-forming composition may contain an antistatic agent. The antistatic agent imparts antistatic properties to the protective layer and can suppress adhesion of contaminants.
 帯電防止剤は、金属酸化物粒子、金属ナノ粒子、導電性高分子及びイオン液体からなる群より選択される少なくとも1種の帯電防止剤が好ましい。 The antistatic agent is preferably at least one antistatic agent selected from the group consisting of metal oxide particles, metal nanoparticles, conductive polymers and ionic liquids.
 帯電防止性の付与のために、比較的多量の金属酸化物粒子が使用されることがある。もっとも、保護層が金属酸化物粒子を含むと、保護層の防汚性が向上できる。 A relatively large amount of metal oxide particles are sometimes used to impart antistatic properties. However, if the protective layer contains metal oxide particles, the antifouling property of the protective layer can be improved.
 金属酸化物粒子としては、例えば、酸化スズ粒子、アンチモンドープ酸化スズ粒子、スズドープ酸化インジウム粒子、酸化亜鉛粒子及びシリカ粒子が挙げられる。 Examples of metal oxide particles include tin oxide particles, antimony-doped tin oxide particles, tin-doped indium oxide particles, zinc oxide particles, and silica particles.
 光透過性の観点から、金属酸化物粒子の平均一次粒子径は、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることが特に好ましい。金属酸化物粒子の平均一次粒子径は、2nm以上であることが好ましい。 From the viewpoint of light transmittance, the average primary particle size of the metal oxide particles is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. The average primary particle size of the metal oxide particles is preferably 2 nm or more.
 金属酸化物粒子の平均一次粒子径は、透過型電子顕微鏡を用いて観察される300個以上の粒子の画像から算出される。画像から粒子の投影面積を求め、投影面積に基づいて円相当径を求めることで、平均粒子径(平均一次粒子径)が算出される。なお、金属酸化物粒子の形状が球状ではない場合、平均一次粒子径は、他の方法(例えば、動的光散乱法)によって算出されてもよい。 The average primary particle size of metal oxide particles is calculated from images of 300 or more particles observed using a transmission electron microscope. The average particle size (average primary particle size) is calculated by determining the projected area of the particles from the image and determining the equivalent circle diameter based on the projected area. When the shape of the metal oxide particles is not spherical, the average primary particle size may be calculated by another method (for example, dynamic light scattering method).
 金属酸化物粒子の形状は、球状、板状又は針状であってもよい。 The shape of the metal oxide particles may be spherical, plate-like or needle-like.
 保護層形成用組成物は、1種又は2種以上の帯電防止剤を含んでいてもよい。互いに異なる組成を有する2種以上の帯電防止剤が使用されてもよい。互いに異なる平均一次粒子径を有する2種以上の帯電防止剤が使用されてもよい。互いに異なる形状を有する2種以上の帯電防止剤が使用されてもよい。 The protective layer-forming composition may contain one or more antistatic agents. Two or more antistatic agents having different compositions from each other may be used. Two or more antistatic agents having different average primary particle sizes may be used. Two or more antistatic agents having different shapes may be used.
 製膜性を低下させることなく保護層に効果的に帯電防止性を付与する観点から、保護層形成用組成物の固形分の全質量に対する帯電防止剤の含有量の割合は、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが特に好ましい。帯電防止剤として金属酸化物粒子が使用される場合、保護層形成用組成物の固形分の全質量に対する金属酸化物粒子の含有量の割合は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。 From the viewpoint of effectively imparting antistatic properties to the protective layer without degrading the film-forming properties, the content of the antistatic agent relative to the total mass of the solid content of the protective layer-forming composition is 40% by mass or less. is preferably 30% by mass or less, and particularly preferably 20% by mass or less. When metal oxide particles are used as the antistatic agent, the ratio of the content of the metal oxide particles to the total mass of the solid content of the protective layer-forming composition is preferably 30% by mass or less, and 20% by mass. % or less, and particularly preferably 10 mass % or less.
[樹脂層]
 液晶層の平面性を確保するために、加飾用材料は、液晶層と着色層との間に、樹脂層を含んでいてもよい。
[Resin layer]
In order to ensure the flatness of the liquid crystal layer, the decorating material may contain a resin layer between the liquid crystal layer and the colored layer.
 樹脂層は、保護層に含まれる樹脂とは異なる種類の樹脂を含むことが好ましい。 The resin layer preferably contains a different kind of resin from the resin contained in the protective layer.
 視認性の観点から、樹脂層は、透明樹脂層であることが好ましく、透明フィルムからなる層であることがより好ましい。透明フィルムに関して使用される用語「透明」とは、全光透過率が85%以上であることを意味する。透明フィルムの全光透過率は、既述の方法によって測定される。 From the viewpoint of visibility, the resin layer is preferably a transparent resin layer, more preferably a layer made of a transparent film. The term "transparent" as used in reference to transparent films means having a total light transmission of 85% or greater. The total light transmittance of the transparent film is measured by the method described above.
 透明フィルムは、透明な樹脂を製膜して得られたフィルムであることが好ましい。透明フィルムとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、アクリル樹脂、ポリカーボネート(PC)、トリアセチルセルロース(TAC)及びシクロオレフィンポリマー(COP)からなる群より選択される少なくとも1種の樹脂を含む樹脂フィルムが挙げられる。 The transparent film is preferably a film obtained by forming a transparent resin. As the transparent film, at least one selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), acrylic resin, polycarbonate (PC), triacetyl cellulose (TAC) and cycloolefin polymer (COP). A resin film containing a resin is mentioned.
 金型に対する形状追随性の点から、透明フィルムに含まれる樹脂の全質量に対して60質量%以上(より好ましくは80質量%以上、更に好ましくは100質量%)のアクリル樹脂、ポリカーボネート樹脂又はポリエチレンテレフタレート樹脂を含む樹脂フィルムが好ましい。透明フィルムに含まれる樹脂の全質量に対して60質量%以上(より好ましくは80質量%以上、更に好ましくは100質量%)のアクリル樹脂を含む樹脂フィルムがより好ましい。 60% by mass or more (more preferably 80% by mass or more, still more preferably 100% by mass) of an acrylic resin, a polycarbonate resin or polyethylene relative to the total mass of the resin contained in the transparent film from the viewpoint of conformability to the mold. A resin film containing a terephthalate resin is preferred. A resin film containing an acrylic resin in an amount of 60% by mass or more (more preferably 80% by mass or more, still more preferably 100% by mass) relative to the total mass of resins contained in the transparent film is more preferable.
 透明フィルムの市販品としては、例えば、アクリプレン(登録商標)HBS010(アクリル樹脂フィルム、三菱ケミカル株式会社製)、テクノロイ(登録商標)S001G(アクリル樹脂フィルム、住友化学株式会社製)、C000(ポリカーボネート樹脂フィルム、住友化学株式会社製)及びC001(アクリル樹脂/ポリカーボネート樹脂積層フィルム、住友化学株式会社製)が挙げられる。 Examples of commercially available transparent films include Acryprene (registered trademark) HBS010 (acrylic resin film, manufactured by Mitsubishi Chemical Corporation), Technoloy (registered trademark) S001G (acrylic resin film, manufactured by Sumitomo Chemical Co., Ltd.), C000 (polycarbonate resin film, manufactured by Sumitomo Chemical Co., Ltd.) and C001 (acrylic resin/polycarbonate resin laminated film, manufactured by Sumitomo Chemical Co., Ltd.).
 樹脂層の厚さは、50μm~150μmであることが好ましい。 The thickness of the resin layer is preferably 50 μm to 150 μm.
 樹脂層の形成方法としては、例えば、透明フィルムと液晶層又は着色層とを貼り合わせる方法が挙げられる。貼り合わせ工程に装置としては、例えば、ラミネーター、真空ラミネーター及びオートカットラミネーターが挙げられる。ラミネーターは、ゴムローラーといった加熱可能なローラーを備え、加圧及び加熱可能な機能を有することが好ましい。ラミネーターを用いる加熱は、透明フィルム及び液晶層の少なくとも一方を一部溶融し、液晶層と透明フィルムとの間の密着性を高めることができる。加熱温度は、例えば、透明フィルムの材質及び液晶層の溶融温度に応じて決定される。透明フィルムの温度を60℃~150℃にする加熱温度が好ましい。透明フィルムの温度を65℃~130℃にする加熱温度がより好ましい。透明フィルムの温度を70℃~100℃にする加熱温度が更に好ましい。貼り合わせ工程における線圧は、60N/cm~200N/cmであることが好ましく、70N/cm~160N/cmであることがより好ましく、80N/cm~120N/cmであることが更に好ましい。 Examples of methods for forming the resin layer include a method of bonding a transparent film and a liquid crystal layer or a colored layer together. Apparatus for the bonding process includes, for example, a laminator, a vacuum laminator and an autocut laminator. The laminator preferably has a heatable roller, such as a rubber roller, and has pressure and heat capability. Heating using a laminator partially melts at least one of the transparent film and the liquid crystal layer, and can enhance adhesion between the liquid crystal layer and the transparent film. The heating temperature is determined, for example, according to the material of the transparent film and the melting temperature of the liquid crystal layer. A heating temperature that makes the temperature of the transparent film 60° C. to 150° C. is preferred. A heating temperature that makes the temperature of the transparent film 65° C. to 130° C. is more preferable. A heating temperature that makes the temperature of the transparent film 70° C. to 100° C. is more preferable. The linear pressure in the bonding step is preferably 60 N/cm to 200 N/cm, more preferably 70 N/cm to 160 N/cm, even more preferably 80 N/cm to 120 N/cm.
[カバーフィルム]
 汚れ防止の観点から、加飾用材料は、最外層としてカバーフィルムを含んでいてもよい。カバーフィルムとしては、例えば、可撓性を有し、剥離性を有するフィルムが挙げられる。カバーフィルムとしては、例えば、ポリエチレンフィルムといった樹脂フィルムが挙げられる。カバーフィルムは、例えば、カバーフィルムと保護層との貼り合わせによって加飾用材料に導入される。
[Cover film]
From the viewpoint of stain prevention, the decorative material may contain a cover film as the outermost layer. The cover film includes, for example, a film having flexibility and peelability. Examples of cover films include resin films such as polyethylene films. The cover film is introduced into the decorative material by laminating the cover film and the protective layer, for example.
[他の層]
 加飾用材料は、他の層を含んでいてもよい。他の層としては、例えば、反射層、自己修復層、帯電防止層、防汚層、防電磁波層及び導電性層が挙げられる。他の層としては、例えば、公知の加飾用材料に含まれる層が挙げられる。他の層は、例えば、他の層の成分を含む組成物の塗布及び必要に応じて乾燥を経て形成される。
[Other layers]
The decorative material may contain other layers. Other layers include, for example, a reflective layer, a self-healing layer, an antistatic layer, an antifouling layer, an anti-electromagnetic layer, and a conductive layer. Other layers include, for example, layers contained in known decorative materials. The other layer is formed, for example, through application of a composition containing components of the other layer and, if necessary, drying.
[層構成]
 加飾用材料の層構成の具体例を以下に示す。ただし、加飾用材料の層構成は、以下の具体例に制限されない。
 (1)液晶層/基材
 (2)液晶層/接着剤含有層/基材
[Layer structure]
Specific examples of the layer structure of the decorative material are shown below. However, the layer structure of the decorative material is not limited to the specific examples below.
(1) Liquid crystal layer/substrate (2) Liquid crystal layer/adhesive-containing layer/substrate
[加飾用材料の製造方法]
 目的の加飾用材料が得られる限り、加飾用材料の製造方法は制限されない。以下、加飾用材料の製造方法の好ましい実施形態について説明する。一実施形態において、加飾用材料の製造方法は、重合性基を有するコレステリック液晶化合物と、重合性基を有する光学活性化合物と、光重合開始剤と、を含む組成物を準備すること(以下、「準備工程」という。)と、剥離性基材の上に上記組成物を塗布すること(以下、「塗布工程」という。)と、上記組成物を光により硬化させ、0.02mol/L~0.06mol/Lの架橋密度を有するコレステリック液晶層を形成すること(以下、「硬化工程」という。)と、上記コレステリック液晶層の上に接着剤含有層を形成すること(以下、「接着剤含有層の形成工程」という。)と、をこの順に含む。さらに、重合性基を有する光学活性化合物は、1つの重合性基を有する光学活性化合物を含む。
[Method for producing decorative material]
The manufacturing method of the decorative material is not limited as long as the desired decorative material can be obtained. A preferred embodiment of the method for manufacturing the decorative material will be described below. In one embodiment, a method for producing a decorative material comprises preparing a composition containing a cholesteric liquid crystal compound having a polymerizable group, an optically active compound having a polymerizable group, and a photopolymerization initiator (hereinafter , referred to as a “preparation step”), applying the composition on a release substrate (hereinafter referred to as a “coating step”), curing the composition with light, and obtaining 0.02 mol / L Forming a cholesteric liquid crystal layer having a cross-linking density of ~0.06 mol/L (hereinafter referred to as “curing step”) and forming an adhesive-containing layer on the cholesteric liquid crystal layer (hereinafter referred to as “adhesion (referred to as "agent-containing layer forming step") in this order. Furthermore, optically active compounds having a polymerizable group include optically active compounds having one polymerizable group.
(準備工程)
 準備工程では、重合性基を有するコレステリック液晶化合物と、重合性基を有する光学活性化合物と、光重合開始剤と、を含む組成物を準備する。さらに、重合性基を有する光学活性化合物は、1つの重合性基を有する光学活性化合物を含む。
(Preparation process)
In the preparation step, a composition containing a cholesteric liquid crystal compound having a polymerizable group, an optically active compound having a polymerizable group, and a photopolymerization initiator is prepared. Furthermore, optically active compounds having a polymerizable group include optically active compounds having one polymerizable group.
 1つの重合性基を有する光学活性化合物(以下、本段落において「単官能光学活性化合物」という。)は、重合性基を有するコレステリック液晶化合物又はその重合体との反応によって高分子鎖に導入されると考えられる。一方、単官能光学活性化合物は、高分子同士を架橋できないと考えられる。この結果、硬化工程を経て形成される液晶層における低分子化合物の含有量が減少するだけでなく、硬化工程を経て優れた延伸性を有する液晶層が形成される。 An optically active compound having one polymerizable group (hereinafter referred to as a "monofunctional optically active compound" in this paragraph) is introduced into a polymer chain by reaction with a cholesteric liquid crystal compound having a polymerizable group or a polymer thereof. It is thought that On the other hand, monofunctional optically active compounds are considered to be incapable of cross-linking macromolecules. As a result, the content of the low-molecular compound in the liquid crystal layer formed through the curing process is reduced, and the liquid crystal layer having excellent stretchability is formed through the curing process.
 組成物の態様及び組成物に含まれる各成分の態様は、既述のとおりである。例えば、架橋密度の制御の観点から、重合性基を有するコレステリック液晶化合物は、1つの重合性基を有するコレステリック液晶化合物を含むことが好ましい。また、重合性基を有するコレステリック液晶化合物は、1つの重合性基を有するコレステリック液晶化合物と、2つ以上の重合性基を有するコレステリック液晶化合物と、を含むことも好ましい。 The aspect of the composition and the aspect of each component contained in the composition are as described above. For example, from the viewpoint of controlling the crosslink density, the cholesteric liquid crystal compound having a polymerizable group preferably contains a cholesteric liquid crystal compound having one polymerizable group. Moreover, the cholesteric liquid crystal compound having a polymerizable group preferably includes a cholesteric liquid crystal compound having one polymerizable group and a cholesteric liquid crystal compound having two or more polymerizable groups.
(塗布工程)
 塗布工程では、剥離性基材の上に組成物を塗布する。塗布工程は、剥離性基材に組成物を塗布してもよい。塗布工程は、剥離性基材の上に他の層を介して組成物を塗布してもよい。塗布工程は、剥離性基材に組成物を塗布することが好ましい。
(Coating process)
In the application step, the composition is applied onto the release substrate. The application step may apply the composition to the peelable substrate. In the coating step, the composition may be coated on the peelable substrate via another layer. In the coating step, it is preferable to apply the composition to the peelable substrate.
 剥離性基材としては、例えば、基材と、易接着層と、を含む積層体が挙げられる。基材としては、例えば、上記「基材」の項に記載された基材が挙げられる。剥離性基材の市販品としては、例えば、コスモシャインA4160(東洋紡株式会社)が挙げられる。剥離性基材(好ましくは剥離性基材に含まれる基材)に対して配向処理が施されていてもよい。 Examples of peelable substrates include laminates containing a substrate and an easy-adhesion layer. The substrate includes, for example, the substrates described in the "Substrate" section above. Examples of commercially available release substrates include COSMOSHINE A4160 (Toyobo Co., Ltd.). Orientation treatment may be applied to the release substrate (preferably the substrate included in the release substrate).
 塗布工程において、組成物の状態は、溶剤を含む溶液であってもよい。塗布工程において、組成物の状態は、溶融による液状物であってもよい。 In the coating step, the state of the composition may be a solution containing a solvent. In the coating step, the state of the composition may be a melted liquid.
 組成物の塗布は、ロールコーティング方式、グラビア印刷方式又はスピンコート方式によって行われてもよい。組成物の塗布は、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法又はダイコーティング法によって行われてもよい。組成物の塗布は、インクジェット装置を用いて行われてもよい。インクジェット装置を用いる塗布方法において、組成物はノズルから吐出されてもよい。 The composition may be applied by a roll coating method, a gravure printing method, or a spin coating method. Application of the composition may be done by wire bar coating, extrusion coating, direct gravure coating, reverse gravure coating or die coating. Application of the composition may be performed using an inkjet device. In the coating method using an inkjet device, the composition may be discharged from a nozzle.
 剥離性基材の上に塗布された組成物は、公知の方法によって乾燥されてもよい。組成物は、放置によって乾燥されてもよい。組成物は、風乾によって乾燥されてもよい。組成物は、加熱によって乾燥されてもよい。塗布及び乾燥を経た組成物では、コレステリック液晶化合物が配向していることが好ましい。 The composition applied on the release substrate may be dried by a known method. The composition may be dried by standing. The composition may be dried by air drying. The composition may be dried by heating. It is preferable that the cholesteric liquid crystal compound is oriented in the composition after application and drying.
(硬化工程)
 硬化工程では、組成物を光により硬化させ、0.02mol/L~0.06mol/Lの架橋密度を有するコレステリック液晶層を形成する。硬化工程において架橋密度が0.02mol/L~0.06mol/Lの範囲内に調整されると、優れた延伸性を有するコレステリック液晶層が形成される。硬化工程は、コレステリック液晶化合物の分子の配向状態を維持して固定できる。露光工程では、組成物だけでなく、組成物以外の構成要素が硬化されてもよい。
(Curing process)
In the curing step, the composition is cured by light to form a cholesteric liquid crystal layer having a crosslink density of 0.02 mol/L to 0.06 mol/L. When the cross-linking density is adjusted within the range of 0.02 mol/L to 0.06 mol/L in the curing step, a cholesteric liquid crystal layer having excellent stretchability is formed. The curing process can maintain and fix the alignment state of the molecules of the cholesteric liquid crystal compound. In the exposure step, not only the composition but also the constituent elements other than the composition may be cured.
 光源は、光重合開始剤の種類及び特性に応じて選択されてもよい。285nm、365nm及び405nmからなる群より選択される少なくとも1種の波長を含む光を照射できる光源が好ましい。光源としては、例えば、紫外線を放出する発光ダイオード(UV-LED)、超高圧水銀灯、高圧水銀灯及びメタルハライドランプが挙げられる。 The light source may be selected according to the type and properties of the photopolymerization initiator. A light source capable of emitting light having at least one wavelength selected from the group consisting of 285 nm, 365 nm and 405 nm is preferred. Light sources include, for example, light-emitting diodes (UV-LEDs) that emit ultraviolet rays, ultrahigh-pressure mercury lamps, high-pressure mercury lamps, and metal halide lamps.
 露光量は、5mJ/cm~2,000mJ/cmであることが好ましく、10mJ/cm~1,000mJ/cmであることがより好ましい。 The exposure dose is preferably 5 mJ/cm 2 to 2,000 mJ/cm 2 and more preferably 10 mJ/cm 2 to 1,000 mJ/cm 2 .
 露光工程は、加熱条件下で組成物を光により硬化させることを含んでいてもよい。露光工程における加熱は、液晶化合物の配列を容易にできる。加熱温度は、組成物の組成に応じて決定されてもよい。加熱温度は、30℃~120℃であってもよい。 The exposure step may include curing the composition with light under heating conditions. Heating in the exposure process can facilitate alignment of liquid crystal compounds. The heating temperature may be determined according to the composition of the composition. The heating temperature may be 30°C to 120°C.
 硬化工程における酸素濃度は、制限されない。硬化工程は、酸素雰囲気下で行われてもよい。硬化工程は、大気下で行われてもよい。硬化工程は、低酸素雰囲気下(好ましくは、1,000ppm以下の酸素濃度)で行われてもよい。酸素濃度は、0ppmであってもよい。酸素濃度は、0ppm超1,000ppm以下であってもよい。硬化の促進の観点から、硬化工程は、低酸素雰囲気下で行われることが好ましく、加熱下かつ低酸素雰囲気下で行われることがより好ましい。 The oxygen concentration in the curing process is not limited. The curing step may be performed under an oxygen atmosphere. The curing step may be performed under air. The curing step may be performed in a low-oxygen atmosphere (preferably with an oxygen concentration of 1,000 ppm or less). The oxygen concentration may be 0 ppm. The oxygen concentration may be greater than 0 ppm and less than or equal to 1,000 ppm. From the viewpoint of accelerating curing, the curing step is preferably performed in a low-oxygen atmosphere, more preferably under heating and in a low-oxygen atmosphere.
 露光方法として、例えば、特開2006-23696号公報の段落0035~0051に記載された方法が適用されてもよい。 As the exposure method, for example, the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 may be applied.
(接着剤含有層の形成工程)
 接着剤含有層の形成工程では、コレステリック液晶層の上に接着剤含有層を形成する。接着剤含有層の形成工程は、コレステリック液晶層に隣接する接着剤含有層を形成してもよい。接着剤含有層の形成工程は、コレステリック液晶層の上に他の層を介して接着剤含有層を形成してもよい。接着剤含有層の形成工程は、コレステリック液晶層に隣接する接着剤含有層を形成することが好ましい。接着剤含有層の形成方法は、既述のとおりである。
(Step of forming adhesive-containing layer)
In the adhesive-containing layer forming step, an adhesive-containing layer is formed on the cholesteric liquid crystal layer. The adhesive-containing layer forming step may form an adhesive-containing layer adjacent to the cholesteric liquid crystal layer. In the step of forming the adhesive-containing layer, the adhesive-containing layer may be formed on the cholesteric liquid crystal layer via another layer. The step of forming the adhesive-containing layer preferably forms an adhesive-containing layer adjacent to the cholesteric liquid crystal layer. The method for forming the adhesive-containing layer is as described above.
(他の工程)
 加飾用材料の製造方法は、他の工程を含んでいてもよい。加飾用材料の層構成に応じて、加飾用材料の製造方法は、液晶層及び接着剤含有層以外の層を形成することを含んでいてもよい。加飾用材料の製造方法は、液晶層を光異性化すること(以下、「光異性化工程」という。)を含んでいてもよい。
(Other processes)
The method for manufacturing the decorative material may include other steps. Depending on the layer structure of the decorating material, the method of manufacturing the decorating material may include forming layers other than the liquid crystal layer and the adhesive-containing layer. The method for producing the decorative material may include photoisomerization of the liquid crystal layer (hereinafter referred to as "photoisomerization step").
 光異性化工程は、液晶層に含まれる光異性化化合物を光異性化することを含むことが好ましい。成型後における反射率変化抑制の観点から、液晶層内において領域毎の光異性化割合の差が生じるように異性化することが好ましく、成型を行う形状に応じて液晶層における領域毎の光異性化割合の差が生じるように異性化することがより好ましい。光異性化工程は、液晶層の一部を異性化してもよく、成型を行う形状に応じて液晶層の一部を異性化してもよい。光異性化工程は、成型を行う形状に応じ、光異性化化合物の異性化割合を変化させてもよい。光異性化工程は、液晶層に異性化割合が0%である部分と異性化割合が100%である部分とを形成してもよい。光異性化工程は、液晶層に異性化割合が10%である部分と異性化割合が80%である部分とを形成してもよい。光異性化工程は、液晶層に異性化割合が0%から100%へ変化する部分を形成してもよい。光異性化工程は、液晶層に異性化割合が0%である部分と異性化割合が50%から100%へ変化する部分とを形成してもよい。特に、成型を行う形状に応じ、成型時に加飾用材料の延伸率が大きくなる部分ほど、異性化割合が大きいことが好ましい。光異性化の進行は、異性化部の反射率の極大波長を測定すること確認される。光異性化割合は、対象とする光異性化化合物の総分子数に対する、光異性化した光異性化化合物分子数の割合を表し、同様に、反射率の極大波長を測定することで求められる。 The photoisomerization step preferably includes photoisomerization of the photoisomerizable compound contained in the liquid crystal layer. From the viewpoint of suppressing changes in reflectance after molding, it is preferable to isomerize the liquid crystal layer so that the photoisomerization rate differs between regions. It is more preferable to isomerize so that the difference in isomerization ratio occurs. In the photoisomerization step, part of the liquid crystal layer may be isomerized, or part of the liquid crystal layer may be isomerized depending on the shape to be molded. In the photoisomerization step, the isomerization ratio of the photoisomerization compound may be changed according to the shape to be molded. The photoisomerization step may form a portion with an isomerization rate of 0% and a portion with an isomerization rate of 100% in the liquid crystal layer. The photoisomerization step may form a portion with an isomerization rate of 10% and a portion with an isomerization rate of 80% in the liquid crystal layer. The photoisomerization step may form a portion in the liquid crystal layer where the isomerization rate varies from 0% to 100%. The photoisomerization step may form a portion where the isomerization ratio is 0% and a portion where the isomerization ratio changes from 50% to 100% in the liquid crystal layer. In particular, depending on the shape to be molded, it is preferable that the isomerization ratio is higher in a portion where the stretch ratio of the decorative material is increased during molding. The progress of photoisomerization is confirmed by measuring the maximum wavelength of the reflectance of the isomerization part. The photoisomerization ratio represents the ratio of the number of photoisomerized photoisomerized compound molecules to the total number of molecules of the target photoisomerizable compound, and is similarly determined by measuring the maximum wavelength of reflectance.
 光異性化工程においては、液晶層に対する露光強度を領域によって変化させることにより異性化させることが好ましい。例えば、液晶層に対する露光強度に複数段階の差、又は無段階の連続差を設けて露光することにより、異性化させてもよい。液晶層の一部のみを露光することにより、異性化させることが好ましい。露光強度に応じて、異性化割合が制御されてもよい。 In the photoisomerization step, it is preferable to isomerize the liquid crystal layer by changing the intensity of exposure to the liquid crystal layer depending on the region. For example, the isomerization may be performed by exposing the liquid crystal layer to light with a plurality of steps of difference in exposure intensity or a stepless continuous difference. Isomerization is preferably achieved by exposing only a portion of the liquid crystal layer. The isomerization rate may be controlled according to the exposure intensity.
 液晶層に照射される光の波長は、光異性化化合物に応じて決定されてもよい。光異性化工程では、400nm以下の波長範囲の光が使用されることが好ましく、380nm以下の波長範囲の光が使用されることがより好ましく、300nm以上380nm以下の波長範囲の光が使用されることが更に好ましい。 The wavelength of light with which the liquid crystal layer is irradiated may be determined according to the photoisomerizable compound. In the photoisomerization step, light with a wavelength range of 400 nm or less is preferably used, more preferably light with a wavelength range of 380 nm or less is used, and light with a wavelength range of 300 nm or more and 380 nm or less is used. is more preferred.
 光の波長の調整は、公知の手段及び公知の方法によって行われてもよい。光の波長を調整する方法としては、例えば、光学フィルターを用いる方法、2種以上の光学フィルターを用いる方法及び特定波長の光源を用いる方法が挙げられる。 The adjustment of the wavelength of light may be performed by known means and methods. Methods for adjusting the wavelength of light include, for example, a method using an optical filter, a method using two or more types of optical filters, and a method using a light source with a specific wavelength.
 光異性化工程においては、光重合開始剤から重合開始種が発生しない波長域の光が液晶層に照射されることが好ましい。例えば、光異性化合物の光異性化が生じる波長域の光を透過し、光重合開始剤から重合開始種が発生する波長域の光を遮光するマスクが好ましく使用される。マスクは、公知のマスクであってもよい。マスクは、グラビア印刷、スクリーン印刷又はクロムのスパッタ膜をフォトレジストでパターニングする方法によって作製されるマスクであってもよい。マスクは、レーザープリンター又はインクジェットプリンターを用いて作製されるマスクであってもよい。1種又は2種以上のマスクが使用されてもよい。例えば、液晶層の光異性化する部分と光異性化しない部分とで異なるマスクが使用されてもよい。液晶層の光異性化する部分においては、透過光の量が一定でなく、透過光の量が変化するマスクが使用されてもよい。 In the photoisomerization step, the liquid crystal layer is preferably irradiated with light in a wavelength range that does not generate polymerization initiation species from the photopolymerization initiator. For example, a mask is preferably used that transmits light in the wavelength range that causes photoisomerization of the photoisomeric compound and blocks light in the wavelength range that causes polymerization initiation species to be generated from the photopolymerization initiator. The mask may be a known mask. The mask may be a mask made by gravure printing, screen printing, or a method of patterning a sputtered chromium film with a photoresist. The mask may be a mask made using a laser printer or an inkjet printer. One or more masks may be used. For example, different masks may be used for the portions of the liquid crystal layer that are photoisomerizable and the portions that are not photoisomerizable. In the photoisomerizable portion of the liquid crystal layer, a mask may be used in which the amount of transmitted light is not constant but varies.
 光源としては、例えば、超高圧水銀灯、高圧水銀灯及びメタルハライドランプが挙げられる。光源としては、波長域の狭い光を照射可能な発光ダイオードが挙げられる。波長域の狭い光を照射可能な光源の使用において、マスクは使用されても使用されなくてもよい。 Examples of light sources include ultra-high pressure mercury lamps, high pressure mercury lamps, and metal halide lamps. Light sources include light-emitting diodes capable of emitting light with a narrow wavelength range. A mask may or may not be used when using a light source capable of emitting light with a narrow wavelength band.
 光異性化工程における露光量は、5mJ/cm~2,000mJ/cmであることが好ましく、10mJ/cm~1,000mJ/cmであることがより好ましい。目的の異性化割合に応じ、液晶層の各部において露光量を変化させてもよい。 The exposure dose in the photoisomerization step is preferably 5 mJ/cm 2 to 2,000 mJ/cm 2 , more preferably 10 mJ/cm 2 to 1,000 mJ/cm 2 . Depending on the desired isomerization ratio, the amount of exposure may be changed in each part of the liquid crystal layer.
 露光による異性化は、加熱条件下で実施されることが好ましい。加熱温度は、例えば、30℃~100℃である。 Isomerization by exposure is preferably carried out under heating conditions. The heating temperature is, for example, 30.degree. C. to 100.degree.
 光異性化工程における露光方法として、例えば、特開2006-23696号公報の段落0035~段落0051に記載の方法が適用されてもよい。 As the exposure method in the photoisomerization step, for example, the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 may be applied.
[用途]
 加飾用材料は、例えば、種々の物品に装飾を加えるために使用される。加飾用材料の用途としては、例えば、自動車の内外装、電気製品の内外装及び包装容器が挙げられる。電気製品の外装としては、例えば、電子デバイスの筐体パネルが挙げられる。電子デバイスとしては、例えば、スマートフォン、携帯電話及びタブレットが挙げられる。加飾用材料の好ましい用途としては、例えば、自動車の外装及び電子デバイスの筐体パネルが挙げられる。加飾用材料は、成型物として使用されてもよい。
[Use]
Decorative materials are used, for example, to decorate various articles. Applications of the decorative material include, for example, the interior and exterior of automobiles, the interior and exterior of electrical appliances, and packaging containers. Exteriors of electric products include, for example, housing panels of electronic devices. Electronic devices include, for example, smart phones, mobile phones and tablets. Preferable applications of the decorative material include, for example, automobile exteriors and housing panels for electronic devices. The decorative material may be used as a molding.
<成型物>
 以下、本開示に係る成型物について説明する。一実施形態において、成型物は、本開示に係る加飾用材料の成型物である。加飾用材料の具体的な態様は、既述のとおりである。
<Molded product>
A molded article according to the present disclosure will be described below. In one embodiment, the molding is a molding of the decorative material according to the present disclosure. Specific aspects of the decorative material are as described above.
 成型物は、例えば、加飾用材料を成型することによって製造される。成型方法は、制限されない。成型方法は、公知の成型方法であってもよい。成型方法としては、例えば、インサート成型及び立体成型が挙げられる。 A molded product is manufactured, for example, by molding a decorative material. A molding method is not limited. The molding method may be a known molding method. Examples of molding methods include insert molding and three-dimensional molding.
 例えば、インサート成型において、成型物は、金型内に加飾用材料を配置し、金型内に樹脂を射出成型することにより得られる。インサート成型により、樹脂成型物の表面に加飾用材料が一体化された成型物が得られる。 For example, in insert molding, a molded product is obtained by placing a decorative material in a mold and injecting resin into the mold. By insert molding, a molded article in which the decorative material is integrated with the surface of the resin molded article is obtained.
 インサート成型による成型物の製造方法は、射出成型用の金型内に加飾用材料を配置して型閉めを行う工程と、溶融樹脂を金型内に射出する工程と、加飾用材料と樹脂との成型物を取り出す工程と、を含んでいてもよい。 The method of manufacturing a molded product by insert molding includes the steps of placing a decorative material in an injection mold and closing the mold, injecting molten resin into the mold, and adding the decorative material. and a step of taking out the molded product with the resin.
 射出成型用の金型(すなわち、成型金型)は、凸形状を有する金型(すなわち、雄型)及び凸形状に対応する凹形状を有する金型(すなわち、雌型)を備えている。雌型の内周面となる成型面に加飾用材料が配置された後に型閉めが行われる。 A mold for injection molding (that is, a molding mold) includes a mold that has a convex shape (that is, a male mold) and a mold that has a concave shape that corresponds to the convex shape (that is, a female mold). The mold is closed after the decorative material is placed on the molding surface that will be the inner peripheral surface of the female mold.
 成型金型内に加飾用材料を配置する前に、成型金型を用いて加飾用材料を成型(プレフォーム)することにより、加飾用材料に予め三次元形状を付与してもよい。そして、三次元形状が付与された加飾用材料を成型金型に供給してもよい。 A three-dimensional shape may be imparted to the decorative material in advance by molding (preforming) the decorative material using the molding die before placing the decorative material in the molding die. . Then, the decorative material imparted with the three-dimensional shape may be supplied to the molding die.
 成型金型内に加飾用材料を配置する際には、成型金型へ加飾用材料を挿入した状態で、加飾用材料と成型金型との位置合わせが必要になる。加飾用材料と成型金型との位置合わせを行う方法としては、例えば、雌型が有する位置合わせ穴へ、雄型が有する固定ピンを挿入して保持する方法が挙げられる。位置合わせ穴は、雌型において、加飾用材料の端部(成型後に三次元形状が付与されない位置)が予め形成されている。固定ピンは、雄型において、位置合わせ穴と嵌合する位置に、予め形成されている。 When placing the decorative material in the molding die, it is necessary to align the decorative material and the molding die with the decorative material inserted into the molding die. As a method of aligning the decorative material and the molding die, for example, a method of inserting and holding a fixing pin of the male mold into an alignment hole of the female mold can be used. The positioning hole is formed in advance in the female mold at the end of the decorative material (the position where the three-dimensional shape is not given after molding). The fixing pin is preliminarily formed in the male mold at a position to be fitted in the alignment hole.
 加飾用材料と成型金型との位置合わせを行う方法は、位置合わせ穴へ固定ピンを挿入する方法以外の方法であってもよい。例えば、加飾用材料のうち成型後に三次元形状が付与されない位置に予め付した位置合わせマークに目標として、加飾用材料の搬送装置側の駆動により微調整して合わせ込む方法が挙げられる。射出成型品の製品部分から見て、対角2点以上で位置合わせマークを認識することが好ましい。 The method of aligning the decorative material and the molding die may be a method other than inserting a fixing pin into the alignment hole. For example, there is a method of finely adjusting and aligning the decorative material by driving the conveying device side of the decorative material, with alignment marks preliminarily attached to positions of the decorative material that are not given a three-dimensional shape after molding. It is preferable to recognize the alignment marks at two or more diagonal points when viewed from the product portion of the injection molded product.
 加飾用材料と成型金型との位置合わせを行い、成型金型を型閉じした後に、加飾用材料を挿入した成型金型内に溶融樹脂を射出する。成型金型内に射出される溶融樹脂の温度は、使用する樹脂の物性等に応じて設定される。例えば、樹脂がアクリル樹脂であれば、溶融樹脂の温度は、240℃以上260℃以下の範囲内であることが好ましい。 After aligning the decorative material with the molding die and closing the molding die, the molten resin is injected into the molding die into which the decorative material is inserted. The temperature of the molten resin injected into the molding die is set according to the physical properties of the resin used. For example, if the resin is an acrylic resin, the temperature of the molten resin is preferably in the range of 240°C or higher and 260°C or lower.
 溶融樹脂を成型金型内へ射出する際に発生する熱及びガスにより、加飾用材料が異常に変形することを抑制する目的で、雄型が有する注入口(射出口)の位置を、成型金型の形状又は溶融樹脂の種類に合わせて設定してもよい。 For the purpose of suppressing abnormal deformation of the decorative material due to the heat and gas generated when the molten resin is injected into the mold, the position of the injection port (injection port) of the male mold is You may set according to the shape of a metal mold|die or the kind of molten resin.
 加飾用材料を挿入した成型金型内に射出した溶融樹脂が固化した後、成型金型を型開きして、成型金型から、固化した溶融樹脂である成型基材に加飾用材料が固定化された中間成型物を取り出す。中間成型物は、最終的に製品(成型物)となる加飾部の周囲に、バリと、成型物のダミー部分が一体化している。ダミー部分には、上述した位置合わせにおいて、固定ピンが挿通されて形成された挿通孔が存在している。仕上げ加工前の中間成型物から、バリとダミー部分とを取り除く仕上げ加工を施すことにより、成型物を得ることができる。 After the molten resin injected into the molding die into which the decorative material is inserted is solidified, the molding die is opened, and the decorative material is poured from the molding die into the molding base material, which is the solidified molten resin. The immobilized intermediate molding is taken out. In the intermediate molding, the burr and the dummy portion of the molded product are integrated around the decorative portion that will be the final product (molded product). The dummy portion has an insertion hole formed by inserting a fixing pin in the alignment described above. A molded product can be obtained by subjecting the intermediate molded product before finishing processing to finishing processing for removing burrs and dummy portions.
 立体成型としては、例えば、熱成型、真空成型、圧空成型及び真空圧空成型が挙げられる。以下、立体成型の一種である真空成型について説明する。  Three-dimensional molding includes, for example, thermoforming, vacuum molding, pressure molding, and vacuum pressure molding. Vacuum molding, which is a type of three-dimensional molding, will be described below.
 真空成型の方法は、制限されない。真空成型では、真空下の加熱条件で立体成型を行う方法が好ましい。真空とは、室内を真空引きし、100Pa以下の真空度とした状態を指す。 The method of vacuum forming is not limited. In vacuum molding, a method of performing three-dimensional molding under vacuum heating conditions is preferred. Vacuum refers to a state in which the inside of the chamber is evacuated to a degree of vacuum of 100 Pa or less.
 立体成型における温度は、60℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることが更に好ましい。立体成型における温度の上限は、200℃であることが好ましい。立体成型における温度とは、立体成型に供される物品の温度を指し、立体成型に供される物品の表面に熱電対を付すことで測定される。 The temperature in three-dimensional molding is preferably 60°C or higher, more preferably 80°C or higher, and even more preferably 100°C or higher. The upper limit of the temperature in three-dimensional molding is preferably 200°C. The temperature in three-dimensional molding refers to the temperature of the article to be three-dimensionally molded, and is measured by attaching a thermocouple to the surface of the article to be three-dimensionally molded.
 真空成型は、成型分野で広く知られている真空成型技術を利用して行われてもよい。例えば、日本製図器工業株式会社製のFormech508FSを用いて真空成型が行われてもよい。 Vacuum forming may be performed using vacuum forming techniques that are widely known in the molding field. For example, vacuum molding may be performed using Formech 508FS manufactured by Nippon Seiki Kogyo Co., Ltd.
 加飾用材料の成型物は、例えば、種々の物品に装飾を加えるために使用される。成型物の用途としては、例えば、自動車の内外装、電気製品の内外装及び包装容器が挙げられる。電気製品の外装としては、例えば、電子デバイスの筐体パネルが挙げられる。電子デバイスとしては、例えば、スマートフォン、携帯電話及びタブレットが挙げられる。成型物の好ましい用途としては、例えば、自動車の外装及び電子デバイスの筐体パネルが挙げられる。 Molded products of decorative materials are used, for example, to add decorations to various articles. Applications of molded products include, for example, interiors and exteriors of automobiles, interiors and exteriors of electric appliances, and packaging containers. Exteriors of electric products include, for example, housing panels of electronic devices. Electronic devices include, for example, smart phones, mobile phones and tablets. Preferred applications for moldings include, for example, automotive exteriors and electronic device housing panels.
<加飾用パネル>
 以下、本開示に係る加飾用パネルについて説明する。一実施形態において、加飾用パネルは、本開示に係る加飾用材料の成型物を含む。加飾用材料の具体的な態様及び加飾用材料の成型物の具体的な態様は、既述のとおりである。加飾用パネルは、加飾用材料の成型物以外の構成要素を更に含んでいてもよい。
<Decoration panel>
The decorative panel according to the present disclosure will be described below. In one embodiment, the decorative panel includes moldings of the decorative material of the present disclosure. Specific aspects of the decorative material and specific aspects of the molding of the decorative material are as described above. The decorative panel may further include components other than the molding of the decorative material.
 加飾用パネルは、例えば、種々の物品に装飾を加えるために使用される。加飾用パネルの用途としては、例えば、自動車の内外装、電気製品の内外装及び包装容器が挙げられる。電気製品の外装としては、例えば、電子デバイスの筐体パネルが挙げられる。電子デバイスとしては、例えば、スマートフォン、携帯電話及びタブレットが挙げられる。加飾用パネルの好ましい用途としては、例えば、自動車の外装及び電子デバイスの筐体パネルが挙げられる。 Decorative panels are used, for example, to add decorations to various articles. Applications of decorative panels include, for example, the interior and exterior of automobiles, the interior and exterior of electrical appliances, and packaging containers. Exteriors of electric products include, for example, housing panels of electronic devices. Electronic devices include, for example, smart phones, mobile phones and tablets. Preferred applications of the decorative panel include, for example, automobile exteriors and housing panels for electronic devices.
<電子デバイス>
 以下、本開示に係る電子デバイスについて説明する。一実施形態において、電子デバイスは、本開示に係る加飾用材料の成型物を含む。加飾用材料の具体的な態様及び加飾用材料の成型物の具体的な態様は、既述のとおりである。電子デバイスにおいて、加飾用材料の成型物は、電子デバイスの筐体として利用されることが好ましい。電子デバイスの種類は、制限されない。電子デバイスとしては、例えば、スマートフォン、携帯電話及びタブレットが挙げられる。
<Electronic device>
An electronic device according to the present disclosure will be described below. In one embodiment, an electronic device includes a molding of the decorative material according to the present disclosure. Specific aspects of the decorative material and specific aspects of the molding of the decorative material are as described above. Electronic device WHEREIN: It is preferable that the molding of a decorative material is utilized as a housing|casing of an electronic device. The type of electronic device is not limited. Electronic devices include, for example, smart phones, mobile phones and tablets.
 以下、実施例に基づいて本開示を詳細に説明する。ただし、本開示は以下の実施例に制限されず、以下の実施例に記載された内容(例えば、原材料、条件及び方法)は本開示の目的の範囲内において適宜変更されてもよい。以下の説明において特に断りのない限り、「%」は「質量%」を意味する。 The present disclosure will be described in detail below based on examples. However, the present disclosure is not limited to the following examples, and the contents described in the following examples (eg, raw materials, conditions and methods) may be appropriately changed within the scope of the purpose of the present disclosure. In the following description, "%" means "% by mass" unless otherwise specified.
<剥離性基材>
 剥離性基材として、片面に易接着層を有するポリエチレンテレフタレートフィルム(コスモシャインA4160、東洋紡株式会社、膜厚:100μm)を準備した。剥離性基材の両面のうち易接着層が形成されていない面に、ラビング処理(レーヨン布、圧力:0.1kgf、回転数:1000rpm(revolutions per minute)、搬送速度:10m/分、回数:1回)を実施した。
<Peelable substrate>
A polyethylene terephthalate film (Cosmoshine A4160, Toyobo Co., Ltd., film thickness: 100 μm) having an easy-adhesion layer on one side was prepared as a peelable substrate. Rubbing treatment (rayon cloth, pressure: 0.1 kgf, rotation speed: 1000 rpm (revolutions per minute), conveying speed: 10 m / min, number of times: 1 time) was performed.
<原材料の略称>
 後述の液晶層形成用塗布液の原材料に使用される次の略称は、それぞれ、以下の意味を有する。
<Abbreviation of raw materials>
The following abbreviations used for the raw materials of the liquid crystal layer forming coating liquid described later have the following meanings.
(液晶化合物1)
 液晶化合物1は、以下の化学式により表される。
(Liquid crystal compound 1)
Liquid crystal compound 1 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(液晶化合物2)
 液晶化合物2は、以下の化学式により表される。
(Liquid crystal compound 2)
Liquid crystal compound 2 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(液晶化合物3)
 液晶化合物3は、以下の化学式により表される。
(Liquid crystal compound 3)
Liquid crystal compound 3 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(液晶化合物4)
 液晶化合物4は、以下の化学式により表される。
(Liquid crystal compound 4)
The liquid crystal compound 4 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(液晶化合物5)
 液晶化合物5は、以下の化学式により表される。
(Liquid crystal compound 5)
Liquid crystal compound 5 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(液晶化合物6)
 液晶化合物6は、BASF社製のLC242である。
(Liquid crystal compound 6)
The liquid crystal compound 6 is LC242 manufactured by BASF.
(光学活性化合物1)
 光学活性化合物1は、以下の化学式により表される。
(Optically active compound 1)
Optically active compound 1 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(光学活性化合物2)
 光学活性化合物2は、以下の化学式により表される。
(Optical active compound 2)
Optically active compound 2 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(光学活性化合物3)
 光学活性化合物3は、BASF社製のLC756である。光学活性化合物3は、2つの重合性基を有する。
(Optical active compound 3)
Optically active compound 3 is LC756 manufactured by BASF. Optically active compound 3 has two polymerizable groups.
(光学活性化合物4)
 光学活性化合物4は、以下の化学式により表される。
(Optical active compound 4)
Optically active compound 4 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(界面活性剤1)
 界面活性剤1は、以下の化学式により表される。
(Surfactant 1)
Surfactant 1 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(界面活性剤2)
 界面活性剤2は、以下の化学式により表される。
(Surfactant 2)
Surfactant 2 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(界面活性剤3)
 界面活性剤3は、AGCセイミケミカル株式会社製のKH40である。
(Surfactant 3)
Surfactant 3 is KH40 manufactured by AGC Seimi Chemical Co., Ltd.
<液晶層形成用塗布液1A>
 下記組成を有する液晶層形成用塗布液1Aを調製した。
 ・液晶化合物1:14.8質量部
 ・液晶化合物2:14.8質量部
 ・液晶化合物3:1.39質量部
 ・光学活性化合物1:2.17質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.31質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 1A>
A liquid crystal layer forming coating liquid 1A having the following composition was prepared.
Liquid crystal compound 1: 14.8 parts by mass Liquid crystal compound 2: 14.8 parts by mass Liquid crystal compound 3: 1.39 parts by mass Optically active compound 1: 2.17 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.31 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液2A>
 下記組成を有する液晶層形成用塗布液2Aを調製した。
 ・液晶化合物1:14.87質量部
 ・液晶化合物2:14.87質量部
 ・液晶化合物3:1.24質量部
 ・光学活性化合物1:2.17質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.31質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 2A>
A liquid crystal layer forming coating liquid 2A having the following composition was prepared.
Liquid crystal compound 1: 14.87 parts by mass Liquid crystal compound 2: 14.87 parts by mass Liquid crystal compound 3: 1.24 parts by mass Optically active compound 1: 2.17 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.31 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液3A>
 下記組成を有する液晶層形成用塗布液3Aを調製した。
 ・液晶化合物1:15.03質量部
 ・液晶化合物2:15.03質量部
 ・液晶化合物3:0.93質量部
 ・光学活性化合物1:2.17質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.31質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 3A>
A liquid crystal layer forming coating liquid 3A having the following composition was prepared.
Liquid crystal compound 1: 15.03 parts by mass Liquid crystal compound 2: 15.03 parts by mass Liquid crystal compound 3: 0.93 parts by mass Optically active compound 1: 2.17 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.31 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液4A>
 下記組成を有する液晶層形成用塗布液4Aを調製した。
 ・液晶化合物1:15.18質量部
 ・液晶化合物2:15.18質量部
 ・液晶化合物3:0.62質量部
 ・光学活性化合物1:2.17質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.31質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 4A>
A liquid crystal layer forming coating liquid 4A having the following composition was prepared.
Liquid crystal compound 1: 15.18 parts by mass Liquid crystal compound 2: 15.18 parts by mass Liquid crystal compound 3: 0.62 parts by mass Optically active compound 1: 2.17 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.31 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液5A>
 下記組成を有する液晶層形成用塗布液5Aを調製した。
 ・液晶化合物4:14.25質量部
 ・液晶化合物5:14.25質量部
 ・液晶化合物3:2.48質量部
 ・光学活性化合物1:2.17質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.31質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 5A>
Liquid crystal layer forming coating liquid 5A having the following composition was prepared.
Liquid crystal compound 4: 14.25 parts by mass Liquid crystal compound 5: 14.25 parts by mass Liquid crystal compound 3: 2.48 parts by mass Optically active compound 1: 2.17 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.31 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液6A>
 下記組成を有する液晶層形成用塗布液6Aを調製した。
 ・液晶化合物4:14.56質量部
 ・液晶化合物5:14.56質量部
 ・液晶化合物3:1.86質量部
 ・光学活性化合物1:2.17質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.31質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 6A>
A liquid crystal layer forming coating liquid 6A having the following composition was prepared.
Liquid crystal compound 4: 14.56 parts by mass Liquid crystal compound 5: 14.56 parts by mass Liquid crystal compound 3: 1.86 parts by mass Optically active compound 1: 2.17 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.31 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液7A>
 下記組成を有する液晶層形成用塗布液7Aを調製した。
 ・液晶化合物4:14.87質量部
 ・液晶化合物5:14.87質量部
 ・液晶化合物3:1.24質量部
 ・光学活性化合物1:2.17質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.31質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 7A>
Liquid crystal layer forming coating liquid 7A having the following composition was prepared.
Liquid crystal compound 4: 14.87 parts by mass Liquid crystal compound 5: 14.87 parts by mass Liquid crystal compound 3: 1.24 parts by mass Optically active compound 1: 2.17 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.31 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液8A>
 下記組成を有する液晶層形成用塗布液8Aを調製した。
 ・液晶化合物4:14.17質量部
 ・液晶化合物5:14.17質量部
 ・液晶化合物3:1.81質量部
 ・光学活性化合物1:3.02質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.30質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 8A>
Liquid crystal layer forming coating liquid 8A having the following composition was prepared.
Liquid crystal compound 4: 14.17 parts by mass Liquid crystal compound 5: 14.17 parts by mass Liquid crystal compound 3: 1.81 parts by mass Optically active compound 1: 3.02 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.30 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液9A>
 下記組成を有する液晶層形成用塗布液9Aを調製した。
 ・液晶化合物4:14.84質量部
 ・液晶化合物5:14.84質量部
 ・液晶化合物3:1.89質量部
 ・光学活性化合物1:1.58質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.32質量部
 ・界面活性剤1:0.016質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 9A>
Liquid crystal layer forming coating liquid 9A having the following composition was prepared.
Liquid crystal compound 4: 14.84 parts by mass Liquid crystal compound 5: 14.84 parts by mass Liquid crystal compound 3: 1.89 parts by mass Optically active compound 1: 1.58 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.32 parts by mass Surfactant 1: 0.016 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液10A>
 下記組成を有する液晶層形成用塗布液10Aを調製した。
 ・液晶化合物1:15.85質量部
 ・液晶化合物2:15.85質量部
 ・光学活性化合物2:1.46質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.32質量部
 ・界面活性剤1:0.016質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 10A>
A liquid crystal layer forming coating liquid 10A having the following composition was prepared.
Liquid crystal compound 1: 15.85 parts by mass Liquid crystal compound 2: 15.85 parts by mass Optically active compound 2: 1.46 parts by mass Photopolymerization initiator (diethylthioxanthone, FUJIFILM Wako Pure Chemical Industries, Ltd.): 0 .32 parts by mass Surfactant 1: 0.016 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液1B>
 下記組成を有する液晶層形成用塗布液1Bを調製した。
 ・液晶化合物6:13.7質量部
 ・光学活性化合物3:0.48質量部
 ・光重合開始剤(Omnirad 379EG、IGM Resins B.V.):0.4質量部
 ・界面活性剤3:0.03質量部
 ・シクロペンタノン(溶剤):85.5質量部
<Liquid crystal layer forming coating liquid 1B>
A liquid crystal layer forming coating liquid 1B having the following composition was prepared.
Liquid crystal compound 6: 13.7 parts by mass Optically active compound 3: 0.48 parts by mass Photopolymerization initiator (Omnirad 379EG, IGM Resins B.V.): 0.4 parts by mass Surfactant 3:0 .03 parts by mass Cyclopentanone (solvent): 85.5 parts by mass
<液晶層形成用塗布液2B>
 下記組成を有する液晶層形成用塗布液2Bを調製した。
 ・液晶化合物1:15.16質量部
 ・液晶化合物2:15.16質量部
 ・光学活性化合物3:0.97質量部
 ・光学活性化合物4:0.97質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):1.21質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 2B>
A liquid crystal layer forming coating liquid 2B having the following composition was prepared.
Liquid crystal compound 1: 15.16 parts by mass Liquid crystal compound 2: 15.16 parts by mass Optically active compound 3: 0.97 parts by mass Optically active compound 4: 0.97 parts by mass Photopolymerization initiator (diethylthioxanthone , Fujifilm Wako Pure Chemical Industries, Ltd.): 1.21 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Full Furyl alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液3B>
 下記組成を有する液晶層形成用塗布液3Bを調製した。
 ・液晶化合物3:30.32質量部
 ・光学活性化合物3:0.97質量部
 ・光学活性化合物4:0.97質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):1.21質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid Crystal Layer Forming Liquid 3B>
A liquid crystal layer forming coating liquid 3B having the following composition was prepared.
Liquid crystal compound 3: 30.32 parts by mass Optically active compound 3: 0.97 parts by mass Optically active compound 4: 0.97 parts by mass Photopolymerization initiator (diethylthioxanthone, FUJIFILM Wako Pure Chemical Industries, Ltd.): 1.21 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl alcohol (solvent): 10.64 parts by mass Department
<液晶層形成用塗布液4B>
 下記組成を有する液晶層形成用塗布液4Bを調製した。
 ・液晶化合物1:14.72質量部
 ・液晶化合物2:14.72質量部
 ・液晶化合物3:1.55質量部
 ・光学活性化合物1:2.17質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.31質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 4B>
A liquid crystal layer forming coating liquid 4B having the following composition was prepared.
Liquid crystal compound 1: 14.72 parts by mass Liquid crystal compound 2: 14.72 parts by mass Liquid crystal compound 3: 1.55 parts by mass Optically active compound 1: 2.17 parts by mass Photopolymerization initiator (diethylthioxanthone, Fujifilm Wako Pure Chemical Industries, Ltd.): 0.31 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl Alcohol (solvent): 10.64 parts by mass
<液晶層形成用塗布液5B>
 下記組成を有する液晶層形成用塗布液5Bを調製した。
 ・液晶化合物1:15.49質量部
 ・液晶化合物2:15.49質量部
 ・光学活性化合物2:2.17質量部
 ・光重合開始剤(ジエチルチオキサントン、富士フイルム和光純薬株式会社):0.31質量部
 ・界面活性剤1:0.015質量部
 ・界面活性剤2:0.017質量部
 ・メチルエチルケトン(溶剤):55.86質量部
 ・フルフリルアルコール(溶剤):10.64質量部
<Liquid crystal layer forming coating liquid 5B>
A liquid crystal layer forming coating liquid 5B having the following composition was prepared.
Liquid crystal compound 1: 15.49 parts by mass Liquid crystal compound 2: 15.49 parts by mass Optically active compound 2: 2.17 parts by mass Photopolymerization initiator (diethylthioxanthone, FUJIFILM Wako Pure Chemical Industries, Ltd.): 0 .31 parts by mass Surfactant 1: 0.015 parts by mass Surfactant 2: 0.017 parts by mass Methyl ethyl ketone (solvent): 55.86 parts by mass Furfuryl alcohol (solvent): 10.64 parts by mass
<実施例1>
(積層体1A)
 剥離性基材のラビング処理された表面に、ワイヤーバー#8を用いて液晶層形成用塗布液1Aを塗布した。液晶層形成用塗布液1Aを85℃で2分間乾燥させ、液晶層を形成した。次に、液晶層に対して硬化処理を行い、液晶層を硬化させた。具体的に、低酸素雰囲気下(酸素濃度:1,000ppm以下)、85℃のホットプレートの上で、メタルハライドランプ(MAL625NAL、株式会社GSユアサ)の光を液晶層に照射することで、液晶層を硬化させた。光の照射量は、1,000mJ/cmであった。目視で観察される硬化液晶層の反射波長色味は、青緑であった。次に、硬化液晶層の上に、本開示における接着剤の一種である粘着剤(G25、日榮新化株式会社)を用いて接着剤含有層を形成した。以上の手順によって得られる積層体1Aは、接着剤含有層と、硬化液晶層(コレステリック液晶層)と、剥離性基材と、をこの順に含む。
<Example 1>
(Laminate 1A)
The liquid crystal layer forming coating liquid 1A was applied to the rubbed surface of the peelable substrate using a wire bar #8. The liquid crystal layer forming coating liquid 1A was dried at 85° C. for 2 minutes to form a liquid crystal layer. Next, the liquid crystal layer was cured by performing a curing treatment on the liquid crystal layer. Specifically, in a low oxygen atmosphere (oxygen concentration: 1,000 ppm or less), on a hot plate at 85 ° C., the liquid crystal layer was irradiated with light from a metal halide lamp (MAL625NAL, GS Yuasa Co., Ltd.). was cured. The irradiation amount of light was 1,000 mJ/cm 2 . The reflected wavelength color of the cured liquid crystal layer visually observed was bluish green. Next, an adhesive-containing layer was formed on the cured liquid crystal layer using a pressure-sensitive adhesive (G25, Nichiei Shinka Co., Ltd.), which is a type of adhesive according to the present disclosure. The laminate 1A obtained by the above procedure includes an adhesive-containing layer, a cured liquid crystal layer (cholesteric liquid crystal layer), and a peelable substrate in this order.
(耐久性評価用積層体1B)
 積層体1Aの接着剤含有層の上に、PET基材(ポリエチレンテレフタレートフィルム、コスモシャインA4360、東洋紡株式会社)を設けた。次に、積層体1Aの剥離性基材の上に、本開示における接着剤の一種である粘着剤(G25、日榮新化株式会社)を用いて形成された接着剤含有層を介してガラス(OA-10G、日本電気硝子株式会社)を設けた。得られた積層体1Bは、PET基材と、接着剤含有層と、硬化液晶層(コレステリック液晶層)と、剥離性基材と、接着剤含有層と、ガラスと、をこの順に含む。
(Laminate 1B for durability evaluation)
A PET substrate (polyethylene terephthalate film, Cosmoshine A4360, Toyobo Co., Ltd.) was provided on the adhesive-containing layer of the laminate 1A. Next, on the peelable base material of the laminate 1A, glass via an adhesive-containing layer formed using a pressure-sensitive adhesive (G25, Nichiei Shinka Co., Ltd.), which is a type of adhesive in the present disclosure. (OA-10G, Nippon Electric Glass Co., Ltd.) was provided. The obtained laminate 1B includes a PET substrate, an adhesive-containing layer, a cured liquid crystal layer (cholesteric liquid crystal layer), a peelable substrate, an adhesive-containing layer, and glass in this order.
(延伸性評価用積層体1C)
 下記組成を有する配向層用塗布液を調製した。
 ・水:55.00質量部
 ・メタノール:35.00質量部
 ・変性ポリビニルアルコール(各構成単位の右下の数字はモル比を表す。):10.00質量部
(Laminate 1C for stretchability evaluation)
An alignment layer coating solution having the following composition was prepared.
・Water: 55.00 parts by mass ・Methanol: 35.00 parts by mass ・Modified polyvinyl alcohol (the number on the lower right of each structural unit represents the molar ratio.): 10.00 parts by mass
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 基材として、テクノロイC000(住化アクリル販売株式会社)を準備した。基材の表面に対して、75W、0.5m/分、基材と電極との距離を1mmに設定した条件でコロナ処理を行った。ワイヤーバー#10を用いて、基材のコロナ処理された表面に配向層用塗布液を塗布し、85℃で2分間乾燥させることによって、配向層を形成した。次に、配向層の上に、液晶層形成用塗布液1Aをワイヤーバー#8を用いて塗布し、液晶層を形成した。次に、上記「積層体1A」に記載された方法に準じて、液晶層に対して硬化処理を行った。目視で観察される硬化液晶層の反射波長色味は、青緑であった。得られた積層体1Cは、基材と、配向層と、硬化液晶層(コレステリック液晶層)と、をこの順に含む。 Technoloy C000 (Sumika Acrylic Sales Co., Ltd.) was prepared as the base material. The surface of the base material was subjected to corona treatment under conditions of 75 W, 0.5 m/min, and a distance of 1 mm between the base material and the electrode. Using a wire bar #10, the alignment layer coating liquid was applied to the corona-treated surface of the substrate and dried at 85° C. for 2 minutes to form an alignment layer. Next, the liquid crystal layer forming coating liquid 1A was applied onto the alignment layer using a wire bar #8 to form a liquid crystal layer. Next, the liquid crystal layer was subjected to a curing treatment according to the method described in "Laminate 1A" above. The reflected wavelength color of the cured liquid crystal layer visually observed was bluish green. The obtained laminate 1C includes a substrate, an alignment layer, and a cured liquid crystal layer (cholesteric liquid crystal layer) in this order.
<実施例2>
 液晶層形成用塗布液1Aを液晶層形成用塗布液2Aに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、青緑であった。
<Example 2>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 2A. The reflected wavelength color of the cured liquid crystal layer visually observed was bluish green.
<実施例3>
 液晶層形成用塗布液1Aを液晶層形成用塗布液3Aに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、青緑であった。
<Example 3>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 3A. The reflected wavelength color of the cured liquid crystal layer visually observed was bluish green.
<実施例4>
 液晶層形成用塗布液1Aを液晶層形成用塗布液4Aに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、青緑であった。
<Example 4>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 4A. The reflected wavelength color of the cured liquid crystal layer visually observed was bluish green.
<実施例5>
 液晶層形成用塗布液1Aを液晶層形成用塗布液5Aに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、緑であった。
<Example 5>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 5A. The reflected wavelength tint of the cured liquid crystal layer visually observed was green.
<実施例6>
 液晶層形成用塗布液1Aを液晶層形成用塗布液6Aに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、緑であった。
<Example 6>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 6A. The reflected wavelength tint of the cured liquid crystal layer visually observed was green.
<実施例7>
 液晶層形成用塗布液1Aを液晶層形成用塗布液7Aに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、緑であった。
<Example 7>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 7A. The reflected wavelength tint of the cured liquid crystal layer visually observed was green.
<実施例8>
 液晶層形成用塗布液1Aを液晶層形成用塗布液8Aに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、青であった。
<Example 8>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 8A. The reflected wavelength tint of the cured liquid crystal layer visually observed was blue.
<実施例9>
 液晶層形成用塗布液1Aを液晶層形成用塗布液9Aに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、赤であった。
<Example 9>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 9A. The reflected wavelength tint of the cured liquid crystal layer visually observed was red.
<実施例10>
 液晶層形成用塗布液1Aを液晶層形成用塗布液10Aに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、赤であった。
<Example 10>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 10A. The reflected wavelength tint of the cured liquid crystal layer visually observed was red.
<比較例1>
 液晶層形成用塗布液1Aを液晶層形成用塗布液1Bに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、赤であった。
<Comparative Example 1>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 1B. The reflected wavelength tint of the cured liquid crystal layer visually observed was red.
<比較例2>
 液晶層形成用塗布液1Aを液晶層形成用塗布液2Bに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、青であった。
<Comparative Example 2>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 2B. The reflected wavelength tint of the cured liquid crystal layer visually observed was blue.
<比較例3>
 液晶層形成用塗布液1Aを液晶層形成用塗布液3Bに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、青であった。
<Comparative Example 3>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 3B. The reflected wavelength tint of the cured liquid crystal layer visually observed was blue.
<比較例4>
 液晶層形成用塗布液1Aを液晶層形成用塗布液4Bに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、緑であった。
<Comparative Example 4>
Each laminate was obtained by the same procedure as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 4B. The reflected wavelength tint of the cured liquid crystal layer visually observed was green.
<比較例5>
 液晶層形成用塗布液1Aを液晶層形成用塗布液5Bに変更したこと以外は、実施例1と同じ手順によって各積層体を得た。目視で観察される硬化液晶層の反射波長色味は、青であった。
<Comparative Example 5>
Each laminate was obtained in the same manner as in Example 1, except that the liquid crystal layer forming coating liquid 1A was changed to the liquid crystal layer forming coating liquid 5B. The reflected wavelength tint of the cured liquid crystal layer visually observed was blue.
<評価>
 実施例及び比較例で得られた各積層体を用いて、次の評価を行った。延伸性では、延伸性評価用積層体が使用され、耐久性では、耐久性評価用積層体が使用された。
<Evaluation>
The following evaluation was performed using each laminate obtained in Examples and Comparative Examples. For stretchability, a laminate for stretchability evaluation was used, and for durability, a laminate for durability evaluation was used.
(延伸性)
 対象の積層体を1cm×5cmの大きさに裁断し、試料を準備した。試料の上端1cm及び下端1cmをそれぞれ治具でつかみ、熱テンシロン(株式会社エー・アンド・デイ製RTF-1310及び恒温試験装置TKC)を用いて、150℃の雰囲気中で300mm/秒の速度で引張試験を行い、試料中の液晶層の状態の観察及び以下の式に基づいて液晶層の破断伸度を測定した。以下の式における「破断時の標点間距離」とは、試料中の液晶層が破断した時の標点間距離を意味する。測定結果を表1に示す。液晶層の破断伸度が大きくなるにつれて、液晶層の延伸性は高くなる。なお、延伸性の評価では、液晶層の破断伸度を測定しやすくするため、積層体の構成要素として優れた延伸性を有する基材(テクノロイC000)が使用されている。
 式:破断伸度(%)={(破断時の標点間距離-試験前の標点間距離)/(試験前の標点間距離)}×100
(stretchability)
A target laminate was cut into a size of 1 cm×5 cm to prepare a sample. Grasp the upper end 1 cm and lower end 1 cm of the sample with jigs, and use a thermal tensilon (RTF-1310 manufactured by A&D Co., Ltd. and constant temperature tester TKC) at a speed of 300 mm / sec in an atmosphere of 150 ° C. A tensile test was performed to observe the state of the liquid crystal layer in the sample and to measure the elongation at break of the liquid crystal layer based on the following formula. In the following formula, the "gauge length at break" means the gauge length when the liquid crystal layer in the sample is broken. Table 1 shows the measurement results. As the breaking elongation of the liquid crystal layer increases, the stretchability of the liquid crystal layer increases. In the evaluation of stretchability, a base material (Technolloy C000) having excellent stretchability is used as a constituent element of the laminate in order to facilitate measurement of the breaking elongation of the liquid crystal layer.
Formula: Breaking elongation (%) = {(distance between gauges at break - distance between gauges before test) / (distance between gauges before test)} x 100
(耐久性)
 耐久性の評価では、分光光度計としてV670(日本分光株式会社)を用いた。まず、対象の積層体の透過率を測定した。次に、積層体を80℃のオーブン中で240時間静置し、分光光度計を用いて、240時間経過後の積層体の透過率を測定した。加熱前に測定された透過率に基づいて算出された可視光の反射帯域中心波長と、加熱後に測定された透過率に基づいて算出された可視光の反射帯域中心波長との差Δλsを求めた。反射帯域中心波長は、分光光度計を用いて得られた透過率グラフを反転させ、反射率Rの30%の反射率を示す2つの波長のうちの短波長側の波長λ1及び長波長側の波長λ2に基づいて、λs=(λ1+λ2)/2で表される式により求められた。以下の基準に従って、耐久性を評価した。Δλsが小さいほど、熱環境下での色味の変化が小さい。A及びBが合格レベルである。Δλsと共に評価結果を表1に示す。
 A:Δλs≦10nm
 B:10nm<Δλs<20nm
 C:20nm≦Δλs
(durability)
V670 (JASCO Corp.) was used as a spectrophotometer for evaluation of durability. First, the transmittance of the target laminate was measured. Next, the laminate was allowed to stand in an oven at 80° C. for 240 hours, and the transmittance of the laminate after 240 hours was measured using a spectrophotometer. The difference Δλs between the center wavelength of the visible light reflection band calculated based on the transmittance measured before heating and the center wavelength of the visible light reflection band calculated based on the transmittance measured after heating was obtained. . Reflection band center wavelengths are obtained by inverting the transmittance graph obtained using a spectrophotometer, and of the two wavelengths showing a reflectance of 30% of the reflectance R, the short wavelength λ1 and the long wavelength λ1 Based on the wavelength λ2, it was obtained by the formula λs=(λ1+λ2)/2. Durability was evaluated according to the following criteria. The smaller the Δλs, the smaller the change in color under the heat environment. A and B are passing levels. Table 1 shows the evaluation results together with Δλs.
A: Δλs ≤ 10 nm
B: 10 nm<Δλs<20 nm
C: 20 nm ≤ Δλs
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表1は、比較例1~5に比べて、実施例1~10の延伸性及び耐熱性が優れていることを示す。なお、実施例1~10において、接着剤含有層の破断伸度はコレステリック液晶層の破断伸度以上である。 Table 1 shows that the stretchability and heat resistance of Examples 1-10 are superior to those of Comparative Examples 1-5. In Examples 1 to 10, the breaking elongation of the adhesive-containing layer is equal to or higher than the breaking elongation of the cholesteric liquid crystal layer.
 なお、2021年8月26日に出願された日本国特許出願2021-138012号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-138012 filed on August 26, 2021 is incorporated herein by reference in its entirety. In addition, all publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. , incorporated herein by reference.

Claims (9)

  1.  コレステリック液晶層を含み、
     前記コレステリック液晶層の破断伸度が、80%以上であり、
     前記コレステリック液晶層において前記コレステリック液晶層の単位体積あたりの10,000以下の分子量を有する化合物の含有量が、50mg/cm未満である、
     加飾用材料。
    comprising a cholesteric liquid crystal layer,
    The breaking elongation of the cholesteric liquid crystal layer is 80% or more,
    The content of a compound having a molecular weight of 10,000 or less per unit volume of the cholesteric liquid crystal layer in the cholesteric liquid crystal layer is less than 50 mg/ cm3 .
    decoration material.
  2.  前記コレステリック液晶層が、コレステリック液晶化合物及び光学活性化合物を含む組成物の硬化物である、請求項1に記載の加飾用材料。 The decorative material according to claim 1, wherein the cholesteric liquid crystal layer is a cured product of a composition containing a cholesteric liquid crystal compound and an optically active compound.
  3.  前記光学活性化合物が、1つの重合性基を有する光学活性化合物を含む、請求項2に記載の加飾用材料。 The decorating material according to claim 2, wherein the optically active compound contains an optically active compound having one polymerizable group.
  4.  前記コレステリック液晶層の架橋密度が、0.02mol/L~0.06mol/Lである、請求項1~請求項3のいずれか1項に記載の加飾用材料。 The decorative material according to any one of claims 1 to 3, wherein the cholesteric liquid crystal layer has a cross-linking density of 0.02 mol/L to 0.06 mol/L.
  5.  前記コレステリック液晶層に隣接する接着剤含有層を含み、前記接着剤含有層の破断伸度が、前記コレステリック液晶層の破断伸度以上である、請求項1~請求項4のいずれか1項に記載の加飾用材料。 5. The adhesive-containing layer according to any one of claims 1 to 4, comprising an adhesive-containing layer adjacent to the cholesteric liquid crystal layer, wherein the breaking elongation of the adhesive-containing layer is equal to or higher than the breaking elongation of the cholesteric liquid crystal layer. Decorative materials as described.
  6.  請求項1~請求項5のいずれか1項に記載の加飾用材料の成型物。 A molding of the decorative material according to any one of claims 1 to 5.
  7.  請求項1~請求項5のいずれか1項に記載の加飾用材料の成型物を含む、加飾用パネル。 A decorative panel comprising a molding of the decorative material according to any one of claims 1 to 5.
  8.  請求項1~請求項5のいずれか1項に記載の加飾用材料の成型物を含む、電子デバイス。 An electronic device comprising a molding of the decorative material according to any one of claims 1 to 5.
  9.  重合性基を有するコレステリック液晶化合物と、重合性基を有する光学活性化合物と、光重合開始剤と、を含む組成物を準備することと、
     剥離性基材の上に前記組成物を塗布することと、
     前記組成物を光により硬化させ、0.02mol/L~0.06mol/Lの架橋密度を有するコレステリック液晶層を形成することと、
     前記コレステリック液晶層の上に接着剤含有層を形成することと、をこの順に含み、
     前記光学活性化合物が、1つの重合性基を有する光学活性化合物を含む、
     加飾用材料の製造方法。
    preparing a composition containing a cholesteric liquid crystal compound having a polymerizable group, an optically active compound having a polymerizable group, and a photopolymerization initiator;
    applying the composition onto a release substrate;
    curing the composition with light to form a cholesteric liquid crystal layer having a crosslink density of 0.02 mol/L to 0.06 mol/L;
    forming an adhesive-containing layer on the cholesteric liquid crystal layer, in this order;
    wherein the optically active compound comprises an optically active compound having one polymerizable group;
    A method for producing a decorative material.
PCT/JP2022/025383 2021-08-26 2022-06-24 Decorative material, method for manufacturing decorative material, molded article, decorative panel, and electronic device WO2023026671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-138012 2021-08-26
JP2021138012 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023026671A1 true WO2023026671A1 (en) 2023-03-02

Family

ID=85322737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025383 WO2023026671A1 (en) 2021-08-26 2022-06-24 Decorative material, method for manufacturing decorative material, molded article, decorative panel, and electronic device

Country Status (1)

Country Link
WO (1) WO2023026671A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133810A (en) * 1995-09-05 1997-05-20 Nitto Denko Corp Circular polarization dichromatic optical element and apparatus therefor and liquid crystal polymer
JP2003294948A (en) * 2002-04-08 2003-10-15 Nitto Denko Corp Band filter and surface light source device using the same
JP2005116980A (en) * 2003-10-10 2005-04-28 Nippon Oil Corp Laser oscillating element
JP2010159345A (en) * 2009-01-08 2010-07-22 Lintec Corp Polymer cross-linked product and method for producing polymer cross-linked product
JP2011033791A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Method of producing patterned birefringent product and birefringent pattern building material
WO2015030176A1 (en) * 2013-08-30 2015-03-05 富士フイルム株式会社 Stress display member and strain measurement method using stress display member
WO2019059308A1 (en) * 2017-09-22 2019-03-28 Dic株式会社 Light conversion film and image display element using same
JP2019151029A (en) * 2018-03-05 2019-09-12 東レ株式会社 Multilayer laminate film
WO2020122245A1 (en) * 2018-12-14 2020-06-18 富士フイルム株式会社 Method for manufacturing decorative film for molding, molding method, decorative film for molding, molded product, automobile exterior plate, and electronic device
WO2020230806A1 (en) * 2019-05-16 2020-11-19 ユニチカ株式会社 Semiaromatic polyamide film and method for producing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133810A (en) * 1995-09-05 1997-05-20 Nitto Denko Corp Circular polarization dichromatic optical element and apparatus therefor and liquid crystal polymer
JP2003294948A (en) * 2002-04-08 2003-10-15 Nitto Denko Corp Band filter and surface light source device using the same
JP2005116980A (en) * 2003-10-10 2005-04-28 Nippon Oil Corp Laser oscillating element
JP2010159345A (en) * 2009-01-08 2010-07-22 Lintec Corp Polymer cross-linked product and method for producing polymer cross-linked product
JP2011033791A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Method of producing patterned birefringent product and birefringent pattern building material
WO2015030176A1 (en) * 2013-08-30 2015-03-05 富士フイルム株式会社 Stress display member and strain measurement method using stress display member
WO2019059308A1 (en) * 2017-09-22 2019-03-28 Dic株式会社 Light conversion film and image display element using same
JP2019151029A (en) * 2018-03-05 2019-09-12 東レ株式会社 Multilayer laminate film
WO2020122245A1 (en) * 2018-12-14 2020-06-18 富士フイルム株式会社 Method for manufacturing decorative film for molding, molding method, decorative film for molding, molded product, automobile exterior plate, and electronic device
WO2020230806A1 (en) * 2019-05-16 2020-11-19 ユニチカ株式会社 Semiaromatic polyamide film and method for producing same

Similar Documents

Publication Publication Date Title
JP7191120B2 (en) Manufacturing method of decorative film for molding, molding method, decorative film for molding, molding, automobile exterior plate, and electronic device
KR102533901B1 (en) Decorative film for molding, manufacturing method thereof, molded product, and molding method
JP7177273B2 (en) DECORATIVE MOLDED PRODUCT, METHOD FOR MANUFACTURING DECORATIVE MOLDED BODY, DECORATIVE PANEL, AND ELECTRONIC DEVICE
JP7262587B2 (en) Decorative film, decorative panel, method for manufacturing decorative panel, electronic device, wearable device, and smartphone
US20220091310A1 (en) Decorative film for molding, molded product, and display
US20230158771A1 (en) Decorative film, decorative molded article, decorative panel, and electronic device
WO2023026671A1 (en) Decorative material, method for manufacturing decorative material, molded article, decorative panel, and electronic device
WO2022059292A1 (en) Decorative film, method for manufacturing decorative film, molded object, electronic device, and automobile exterior plate
JP7309919B2 (en) LAMINATED PRODUCT AND MANUFACTURING METHOD THEREOF, MOLDED PRODUCT AND MANUFACTURING METHOD THEREOF, ELECTRONIC DEVICE CASE PANEL, AND ELECTRONIC DEVICE
WO2023163072A1 (en) Laminate, production method for same, decorative film, article, decorative panel, and display device
KR102670751B1 (en) Manufacturing method of stretched decorative film, molding method, stretched decorative film, molded article, automobile exterior plate, and electronic device
JP2024033561A (en) Film, molded product, decorative panel, electronic device, film manufacturing method, and molded product manufacturing method
EP3932665A1 (en) Layered body
US20230203377A1 (en) Decorative film, decorative molded article, decorative panel, and electronic device
WO2024053437A1 (en) Display device
JP7483026B2 (en) Decorative film and its manufacturing method, molded body and article
WO2022196327A1 (en) Decorative material, decorative panel, electronic device, and method for producing decorative material
JP2023020959A (en) Decorative sheet, molded body, decorative panel, electronic device, and method for manufacturing decorative sheet
WO2023176857A1 (en) Laminate, decorative film, article, decorative panel, and display device
JP2023129105A (en) Decorative film and method for manufacturing the same, molded body, article, and display
WO2024071343A1 (en) Composition, liquid crystal film, film, display device, and dispersant
JP2022054887A (en) Manufacturing method of molded body, decorative film, decorative body, electronic device, and automobile component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE