WO2023026432A1 - Robot power transmission mechanism for transmitting rotative force, and robot drive unit - Google Patents

Robot power transmission mechanism for transmitting rotative force, and robot drive unit Download PDF

Info

Publication number
WO2023026432A1
WO2023026432A1 PCT/JP2021/031368 JP2021031368W WO2023026432A1 WO 2023026432 A1 WO2023026432 A1 WO 2023026432A1 JP 2021031368 W JP2021031368 W JP 2021031368W WO 2023026432 A1 WO2023026432 A1 WO 2023026432A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
transmission mechanism
rotating member
shaft
base material
Prior art date
Application number
PCT/JP2021/031368
Other languages
French (fr)
Japanese (ja)
Inventor
一隆 中山
秀俊 植松
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/031368 priority Critical patent/WO2023026432A1/en
Priority to JP2023543577A priority patent/JPWO2023026432A1/ja
Priority to TW111129152A priority patent/TW202310990A/en
Publication of WO2023026432A1 publication Critical patent/WO2023026432A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints

Definitions

  • the present invention relates to a robot power transmission mechanism and a robot driving device that transmit rotational force.
  • the robot can change the position and posture of the work tool by driving its constituent members such as arms.
  • a drive system including an electric motor is arranged on the robot to move the component.
  • a drive may be arranged at the joint to move the component.
  • the drive includes a power transmission mechanism for transmitting rotational force from one member to another member.
  • a power transmission mechanism that transmits torque from the output shaft of the electric motor to the input of the speed reducer.
  • a method for transmitting the rotational force of the shaft to another member for example, there is a method of forming a female thread on the end face of the shaft and fixing the other member with a bolt.
  • a method of fixing another member by shrink fitting at the end of the shaft In this method, another member is placed at the end of the shaft when heated and expanded. The other member is then fixed to the shaft by cooling and shrinking the other member.
  • spline connection or key connection may be used in order to reliably transmit the rotational force of the shaft.
  • the inside of the drive includes parts whose performance deteriorates or deteriorates over time as the drive is driven. It is preferable that such parts have a structure in which they can be replaced when deteriorated. For example, it is preferable to replace the speed reducer every predetermined operating period.
  • a mechanism in which the end of the shaft and another member are splined or keyed can make the diameter of the shaft smaller than a mechanism in which another member is fixed to the end face of the shaft with a bolt. As a result, an increase in size of the device can be suppressed.
  • the shaft is cylindrical (hollow shaft)
  • the spline connection or key connection cannot be performed due to the thinness of the shaft.
  • spline coupling causes backlash in the rotational direction.
  • key coupling a method of fixing the shaft and other members with bolts or set screws is common.
  • key coupling there is a problem that it is difficult to completely avoid backlash in the rotational direction.
  • the spline connection cannot prevent movement of other members in the direction in which the rotation axis extends.
  • a load is generated in the direction of the rotation axis while the input section is rotating.
  • a problem with the spline connection is that it is difficult to prevent movement in the rotational axis direction (one direction parallel to the rotational axis and the direction opposite to the one direction) when this load is applied.
  • the shaft and other members can be fixed to each other by arranging an adhesive on the spline joint portion or the key joint portion.
  • an adhesive on the spline joint portion or the key joint portion.
  • a power transmission mechanism for a robot includes a base material having a recess extending along the rotation axis of the first rotating member and having a hole through which the first rotating member is inserted.
  • the power transmission mechanism is provided with a ring member disposed in the recess and having a substantially wedge-shaped cross-section when cut along a plane perpendicular to the circumferential direction.
  • the power transmission mechanism has a hole through which the first rotating member is inserted, and includes a pressure flange having a tip portion for pressing the ring member.
  • the power transmission mechanism includes a fastening member for applying force to the substrate and the pressure flange in a direction that the substrate and the pressure flange approach each other.
  • the substrate has a mounting portion that secures the second rotating member.
  • the ring member is fixed to the first rotating member by being pressed in the direction of the rotating shaft at its distal end to generate a force to reduce the diameter.
  • the substrate and pressure flange are fixed relative to the ring member. The rotational force of one of the first rotating member and the second rotating member is transmitted to the other rotating member via the base material.
  • FIG. 1 is a perspective view of a robot in an embodiment;
  • FIG. 1 is a cross-sectional view of a first driving device including a first power transmission mechanism in an embodiment;
  • FIG. 4 is an enlarged sectional view of the first power transmission mechanism;
  • FIG. 4 is an enlarged cross-sectional view of a power transmission mechanism of a first comparative example;
  • FIG. 6 is a schematic partial cross-sectional view of a power transmission mechanism of a second comparative example;
  • 4 is an enlarged cross-sectional view of the first power transmission mechanism including another base material in the embodiment;
  • FIG. FIG. 10 is an enlarged perspective view of a protruding portion of another base material in the embodiment; It is a sectional view of the 2nd drive including the 2nd power transmission mechanism in an embodiment.
  • 4 is an enlarged cross-sectional view of a second power transmission mechanism;
  • FIG. 8 is an enlarged cross-sectional view of a third power transmission mechanism;
  • FIG. A power transmission mechanism for a robot and a drive device for a robot including the power transmission mechanism according to an embodiment will be described with reference to FIGS. 1 to 10.
  • FIG. A power transmission mechanism transmits rotational force from one rotating member to another rotating member.
  • FIG. 1 is a perspective view of the robot according to this embodiment.
  • the robot 1 of this embodiment is an articulated robot including a plurality of joints.
  • the robot 1 includes a plurality of rotatable components. Each component is formed to rotate around drive shafts J1 to J6.
  • the power transmission mechanism of this embodiment is arranged at the joint of the robot in order to drive the constituent members of the robot.
  • the robot 1 includes a base portion 14 fixed to an installation surface and a swivel base 13 supported by the base portion 14 .
  • the swivel base 13 rotates around the drive axis J1 with respect to the base portion 14 .
  • the robot 1 includes a forearm arm 11 and an upper arm 12 .
  • Upper arm 12 is supported by swivel base 13 .
  • the upper arm 12 rotates about the drive axis J2 with respect to the swivel base 13 .
  • the forearm arm 11 is supported by the upper arm 12 .
  • the forearm arm 11 rotates relative to the upper arm 12 around the drive axis J3. Further, the forearm arm 11 rotates around the drive axis J4.
  • Robot 1 includes a wrist 15 supported by forearm arm 11 .
  • the wrist 15 rotates around the drive axis J5.
  • Wrist 15 also includes a flange 16 that rotates about drive axis J6.
  • a work tool is fixed to the
  • the robot 1 of this embodiment includes a base portion 14, a swivel base 13, an upper arm 12, a forearm arm 11, and a wrist 15 as constituent members.
  • the robot of this embodiment has six drive shafts, it is not limited to this form. A robot that changes its position and orientation with any mechanism can be employed.
  • FIG. 2 shows a cross-sectional view of the first driving device in this embodiment. 1 and 2, the first drive device 2 is a device for rotating the forearm arm 11 around the drive axis J4.
  • the driving device 2 is arranged, for example, at the end of the forearm arm 11 opposite to the side where the wrist 15 is arranged so that the direction indicated by the arrow 131 is the direction where the wrist 15 is arranged.
  • the first driving device 2 includes an electric motor 45 including a rotor 45a and a stator 45b.
  • the rotor 45 a is fixed to the shaft 21 .
  • Shaft 21 functions as an output shaft of electric motor 45 .
  • the shaft 21 is formed elongated.
  • the shaft 21 of this embodiment is a cylindrical member having a hollow hole. The shaft 21 rotates about the drive shaft J4 as a rotation axis.
  • the rotational force of the shaft 21 is transmitted to the flange 25 via the reduction gear 31.
  • the flanges 25 and 26 are fixed to each other with bolts 56 .
  • the flanges 26 and 27 are fixed to each other with bolts 57 .
  • the flanges 25, 26, 27 rotate together.
  • the drive device 2 includes a housing 22 in which an electric motor 45 is arranged.
  • the shaft 21 is rotatably supported by bearings 51 and 52 .
  • the bearing 51 is fixed by the housing 22 .
  • the driving device 2 includes a housing 23 in which an electromagnetic brake 46 is arranged, and a housing 24 in which an encoder 47 as a rotational position detector is arranged.
  • Electromagnetic brake 46 brakes shaft 21 .
  • Encoder 47 detects the rotational position of electric motor 45 .
  • the housing 22, housing 23, and housing 24 are fixed to each other by fastening members such as bolts.
  • a bearing fixing member 28 for fixing the bearing 52 is arranged between the housing 22 and the housing 23 .
  • the bearing fixing member 28 is fixed to the housing 23 with a fastening member such as a bolt. By removing the fastening member, the housings 24 , 23 , 22 and the bearing fixing member 28 can be removed from the side opposite to the arrow 131 .
  • a protective tube 66 made of resin is arranged inside the shaft 21 .
  • the protective tube 66 is cylindrically formed along the inner surface of the shaft 21 .
  • a wire such as an electric wire, an air tube, or an optical communication cable is inserted through the protective tube 66 .
  • the protective tube 66 is fixed by sandwiching the sandwiching portion 66 a between the flanges 26 and 27 . By arranging the protective tube 66 , the striatum can be arranged inside the joint of the robot 1 .
  • FIG. 3 shows an enlarged cross-sectional view of the first power transmission mechanism of the first drive device in this embodiment. 2 and 3, the first power transmission mechanism 5 includes a fixing device 32. As shown in FIG. The first power transmission mechanism 5 transmits the rotational force of the shaft 21 output by the electric motor 45 to the speed reducer 31 .
  • the reduction gear 31 of the first driving device 2 is a strain wave gearing.
  • the speed reducer 31 has a wave generator 31a.
  • the wave generator 31a is also called a wave generator.
  • the wave generator 31a includes a cam having an elliptical shape when viewed from the direction of the rotation axis and a ball bearing arranged on the outer peripheral surface of the cam.
  • the inner ring of the ball bearing is fixed to an elliptical cam.
  • the outer race of the ball bearing is formed so as to be elastically deformed via a plurality of balls.
  • the cam of the wave generating section 31a functions as the input section of the speed reducer 31.
  • the speed reducer 31 has an elastic cylindrical member 31b that is elastically deformable.
  • the elastic tubular member 31b is an external gear and is also called a flexspline.
  • the elastic tubular member 31b is formed to deform as the cam rotates.
  • the elastic cylindrical member 31b has teeth 31bb formed on the outer peripheral surface.
  • the elastic cylindrical member 31b is fixed to the housing 22 with bolts 55. As shown in FIG. While the wave generator 31a rotates, the elastic cylindrical member 31b is fixed so as not to rotate.
  • the speed reducer 31 has an annular member 31c.
  • the annular member 31c is an internal gear and is also called a circular spline.
  • a tooth portion that engages with the tooth portion 31bb of the elastic cylindrical member 31b is formed on the inner surface of the annular member 31c.
  • the number of teeth of the elastic tubular member 31b is smaller than the number of teeth of the annular member 31c. Therefore, when the wave generating portion 31a makes one rotation, the annular member 31c rotates at a rotation speed of less than one rotation according to the difference in the number of teeth of the tooth portion.
  • the annular member 31c functions as an output portion of the speed reducer 31.
  • the reduction gear 31 can reduce the speed at a reduction ratio corresponding to the difference between the number of teeth of the elastic cylindrical member 31b and the number of teeth of the annular member 31c.
  • An annular member 31 c as an output portion of the speed reducer 31 is fixed to the flange 25 with bolts 39 .
  • the rotational force of the annular member 31c is transmitted to the flange 27 via the flanges 25,26.
  • the flange 27 is fixed, for example, to the housing of the forearm arm 11 . Rotation of flange 27 relative to housings 22, 23, 24 causes forearm arm 11 to rotate about drive axis J4.
  • the first power transmission mechanism 5 transmits the rotational force of the shaft 21 to the cam of the wave generating section 31a as the input section of the speed reducer 31.
  • the shaft 21 corresponds to the first rotating member
  • the cam of the wave generating section 31a of the speed reducer 31 corresponds to the second rotating member.
  • a fixing device 32 of the power transmission mechanism 5 fixes the wave generating portion 31 a to the shaft 21 .
  • the fixing device 32 includes a base material 33 having a hole through which the shaft 21 is inserted.
  • the base material 33 has a shape surrounding the shaft 21 .
  • Base material 33 in the present embodiment is formed in a cylindrical shape.
  • the base material 33 has a recessed portion 33 a extending along the rotation axis of the shaft 21 .
  • the recessed portion 33 a is formed on the inner surface of the base material 33 .
  • the fixing device 32 has ring members 35 and 36 arranged in the recessed portion 33 a of the base material 33 .
  • Each of the ring members 35 and 36 is formed to have a wedge-shaped cross-section when cut along a plane perpendicular to the circumferential direction.
  • the ring members 35 and 36 are formed to have a triangular cross-sectional shape.
  • Each of the ring members 35 and 36 is formed such that the surface extending in the circumferential direction is a conical surface.
  • the conical surface of the ring member 35 and the conical surface of the ring member 36 are arranged so as to contact each other.
  • the fixing device 32 includes a pressing flange 34 having a hole through which the shaft 21 is inserted.
  • the pressing flange 34 has a shape surrounding the shaft 21 .
  • the pressing flange 34 is formed to have an L-shaped cross section when cut along a plane perpendicular to the circumferential direction.
  • the pressing flange 34 has a tip portion 34 a that presses the ring member 36 .
  • tip portion 34a has a shape corresponding to depression portion 33a.
  • the tip portion 34a is formed so as to fit into the recessed portion 33a.
  • the fixing device 32 includes a bolt 37 as a fastening member for applying force to the base material 33 and the pressing flange 34 so that the base material 33 and the pressing flange 34 approach each other.
  • a bolt 37 as a fastening member for applying force to the base material 33 and the pressing flange 34 so that the base material 33 and the pressing flange 34 approach each other.
  • a gap is formed between the standing portion of the base material 33 and the standing portion of the pressing flange 34 in the cross-sectional shape.
  • a radial force acts on the ring members 35 and 36 due to the action of the conical surfaces of the ring members 35 and 36 .
  • a radially inward force that is, a diameter-contracting force acts on the ring member 36 .
  • a radially outward force acts on the ring member 35 , that is, a radially expanding force.
  • the ring member 36 crimps the shaft 21 , and the ring member 35 , the base material 33 , and the pressing flange 34 are fixed to the ring member 36 . As a result, the base material 33 and the pressing flange 34 are fixed to the shaft 21 .
  • base material 33 of the present embodiment has screw hole 33b as a mounting portion for fixing wave generating portion 31a.
  • the cam of the wave motion generating portion 31a is fixed to the base material 33 by a bolt 38 as a fastening member. Therefore, the wave generator 31a rotates integrally with the fixing device 32. As shown in FIG. Thus, the rotational force of the first rotating member is transmitted to the second rotating member via the base material 33 of the fixing device 32 .
  • a main bearing 41 is arranged on the side of the annular member 31c.
  • the main bearing 41 of this embodiment is a cross roller bearing.
  • the main bearing 41 has an inner ring 41a and an outer ring 41b.
  • the outer ring 41b is fixed to the housing 22 by bolts 55 together with the elastic tubular member 31b.
  • the outer ring 41 b is a member that does not rotate with respect to the housing 22 .
  • the inner ring 41a is fixed by bolts 39 to the flange 25 and the annular member 31c. For this reason, the inner ring 41a, the annular member 31c, the flanges 25, 26, 27, and the protective tube 66 rotate integrally.
  • Oil seals 61 and 62 are arranged on the outer peripheral surface of the shaft 21 to prevent internal lubricating oil from leaking to the outside and to prevent foreign matter from entering from the outside. Further, an oil seal 63 is arranged to prevent the lubricating oil inside the main bearing 41 from leaking to the outside and to prevent foreign matter from entering from the outside.
  • the speed reducer 31 which is a wave gear device, has a limited life. In order to replace the speed reducer 31, it is necessary to pull out the wave generator 31a in the direction of the arrow 131. As shown in FIG. If it is pulled out in the direction opposite to the arrow 131, the wave generating portion 31a and the elastic cylindrical member 31b will be damaged.
  • the flange 27 can be removed from the flange 26 by removing the bolt 57. Also, the fixing of the protective tube 66 is released, and the protective tube 66 can be taken out in the direction indicated by the arrow 131 . Flange 26 can then be removed from flange 25 by removing bolts 56 . Flange 25 can then be removed by removing bolts 39 . By removing the bolt 38, the wave generating portion 31a can be removed.
  • the housings 23 and 24 can be removed from the housing 22 by removing fastening members (not shown). Then, the encoder 47 and the electromagnetic brake 46 can be taken out in the direction opposite to the arrow 131 . Further, the bearing fixing member 28 and the bearing 52 can be removed by removing the fastening member (not shown). The shaft 21 can then be withdrawn in the direction opposite to the arrow 131 together with the rotor 45a. Then, the bearing 51 can be taken out.
  • the drive device 2 can be disassembled and the speed reducer 31 can be replaced. Furthermore, replacement of bearings 51, 52 and oil seals 61, 62, 63 is also possible.
  • the driving device 2 it can be assembled in the reverse order of the disassembling procedure. As described above, the drive device 2 in the present embodiment can be easily disassembled by removing the fastening member, and the parts can be replaced.
  • FIG. 4 shows an enlarged sectional view of the power transmission mechanism of the first comparative example.
  • the wave motion generator 31 a of the speed reducer 31 is fixed to the shaft 71 with bolts 72 . That is, reduction gear 31 is directly fixed to shaft 71 without via fixing device 32 including base material 33 and pressing flange 34 in the present embodiment.
  • the bolt 72 is fixed to the end surface of the shaft 71 .
  • the outer diameter of the shaft 71 is increased because a threaded hole for the bolt 72 is required. For this reason, the inner diameters of the oil seal 63, the bearing 51, etc. become large. As a result, there is a problem that the driving device becomes large.
  • Fig. 5 shows a schematic cross-sectional view of a power transmission mechanism of a second comparative example.
  • a plurality of shafts are coaxially arranged.
  • Shaft 73 is connected to shaft 74 .
  • Shaft 76 is connected to shaft 77 .
  • the shafts 73 and 74 are rod-shaped shafts without hollow holes.
  • Shafts 76 and 77 are cylindrical shafts.
  • Shaft 73 is fixed to shaft 74 by arranging bolts 75 on the flange portion of shaft 73 .
  • the shaft 76 is fixed to the shaft 77 by arranging a bolt 78 on the flange portion of the shaft 76 .
  • the power transmission mechanism 5 of this embodiment is small and can be easily disassembled.
  • the power transmission mechanism 5 is fixed by a fixing device including a ring member having a substantially wedge-shaped cross-section when cut along a plane perpendicular to the circumferential direction, backlash and other looseness do not occur.
  • this force can be received by the fixing device 32 . That is, it is possible to suppress the movement of the input portion of the speed reducer 31 in the axial direction.
  • the ring members 35, 36 of the fixing device 32 in this embodiment each have a conical surface.
  • the conical surfaces come into contact with each other. It is possible to efficiently convert the pressing force in the direction of the rotation axis by the distal end portion 34a into a radial contraction force.
  • the surface with which the ring member contacts is not limited to the conical surface, and the cross-sectional shape when cut along a plane perpendicular to the circumferential direction may be formed in a curved shape.
  • bolts 37 are employed as fastening members that move the base material 33 and the pressing flange 34 toward each other to bias the base material 33 and the pressing flange 34 .
  • this configuration it is possible to apply a force to the base material 33 and the pressing flange 34 in a direction of approaching each other with a strong force of the bolt axial force.
  • the bolt 37 it can be easily removed.
  • the first rotating member in this embodiment is the output shaft of the electric motor 45 .
  • the first rotating member is not limited to this form, and any rotating member can be adopted.
  • the first rotating member may be part of a speed reducer.
  • the shaft 21 in this embodiment is a cylindrical member having a hollow hole.
  • the thickness of the shaft can be reduced.
  • the diameter of the hollow hole inside the shaft can be increased.
  • a filamentous body such as an air pipe or an electric wire may be passed through the interior of the joint.
  • the space inside the protective tube can be increased, and many filaments can be passed through it.
  • shaft 21 of the present embodiment has stepped portion 21a and stepped portion 21b as movement restricting portions that restrict movement of shaft 21 in the direction of the rotation axis.
  • Bearings 51 and 52 are engaged with the stepped portion 21a and the stepped portion 21b.
  • the bearing 51 is fixed by the housing 22
  • the bearing 52 is fixed by the bearing fixing member 28 .
  • the movement restricting portion that restricts the movement of the shaft 21 in the direction of the rotation axis
  • the movement of the shaft 21 in the axial direction is suppressed.
  • the devices arranged around the shaft 21 are stably driven. For example, it is possible to suppress the axial movement of the wave generating portion 31a of the speed reducer 31 and perform stable deceleration.
  • encoder 47 may comprise a disk with a slit through which light passes.
  • the disc is fixed to the shaft 21 .
  • the base material 33 and the second rotating member of the fixing device 32 of this embodiment can be integrally formed.
  • the base material 33 and the frame of the wave generating section 31a can be integrally formed.
  • the base material 33 is deformed, and the deformation is propagated to the wave generating portion 31a, which may cause the reduction gear 31 to malfunction.
  • the base member of the fixing device and the second rotating member are separate members, and that the deformation is less likely to propagate, as in the present embodiment.
  • FIG. 6 shows an enlarged cross-sectional view showing a modification of the base material of the fixing device of the present embodiment.
  • FIG. 7 shows an enlarged perspective view of the portion of the substrate where the screw holes are formed.
  • the modified base material 40 has recesses 40a and screw holes 40b, like the base material 33 described above.
  • the substrate 40 has a protruding portion 40c formed in the area where the screw hole 40b is formed.
  • the projecting portion 40 c is a portion that projects from the surface of the base material 40 .
  • the projecting portion 40c is formed around the threaded hole 40b of the bolt 38.
  • the protrusion 40c has the shape of a truncated cone.
  • the substrate 40 is in contact with the wave generating portion 31a of the speed reducer 31 at the top surface of the projecting portion 40c.
  • the base material 40 When tightening the bolt 37 that biases the base material 40 and the pressing flange 34 in a direction to bring them closer together, the base material 40 may be deformed. If the substrate and the wave generating portion are in contact with each other over a large area, a large amount of deformation of the substrate may be propagated, and the wave generating portion 31a may be easily deformed. As a result, there is a possibility that the meshing of the gear teeth of the speed reducer may be defective. In addition, abnormal noise is generated and the teeth are worn out early. Like the base material 40 of the modified example, the projecting portion 40c is provided so that only the peripheral portion where the bolts 38 are arranged contacts the wave generating portion 31a, and other portions do not contact the wave generating portion 31a. Therefore, the amount of deformation of the base material 40 propagated to the wave generating portion 31a can be minimized.
  • first drive device including the first power transmission mechanism of the present embodiment is arranged at the portion that rotates the forearm arm around the drive shaft J4, it is not limited to this form.
  • a device similar to the first driving device can be applied to other joints.
  • FIG. 8 shows a cross-sectional view of a second driving device having a second power transmission mechanism according to this embodiment.
  • FIG. 8 shows a cross-sectional view of the wrist 15 portion of the robot 1 shown in FIG.
  • a second drive device 3 drives the wrist 15 .
  • a mechanism for rotating the wrist 15 around the drive axis J5 and a mechanism for rotating the flange 16 around the drive axis J6 are arranged on the wrist 15 .
  • the second power transmission mechanism in this embodiment is applied to a mechanism that rotates the flange 16 around the drive shaft J6.
  • the torque output from the electric motor for rotating the flange 16 is transmitted to the pinion shaft 84.
  • the pinion shaft 84 rotates around the rotation axis RA.
  • a hypoid gear is employed to transmit the torque of the electric motor.
  • a toothed portion 84 a at the tip of the pinion shaft 84 engages with a toothed portion 83 a of the link gear 83 .
  • Shaft 81 is supported by bearings 101 and 102 .
  • the shaft 81 rotates together with the link gear 83 around the drive shaft J5.
  • a bevel gear 82 is integrally formed with the shaft 81 .
  • a toothed portion 82 a at the tip of the bevel gear 82 engages with a gear 89 fixed to the flange 16 . Rotation of the bevel gear 82 about the drive axis J5 causes the flange 16 to rotate about the drive axis J6.
  • FIG. 9 shows an enlarged perspective view of the second power transmission mechanism in this embodiment. 8 and 9, the second power transmission mechanism 6 includes a fixing device 92 that fixes the link gear 83 to the shaft 81. As shown in FIG. In the second power transmission mechanism 6, the shaft 81 corresponds to the first rotating member, and the link gear 83 corresponds to the second rotating member. The first rotating member and the second rotating member are part of the speed reducer. In the second power transmission mechanism 6, the torque of the second rotating member is transmitted to the first rotating member.
  • the fixing device 92 includes a base material 93 having a recessed portion 93a and a pressing flange 94 having a tip portion 94a.
  • the tip portion 94a is formed so as to fit into the recessed portion 93a.
  • Ring members 95 and 96 having conical surfaces are arranged in the recessed portion 93a.
  • the fixing device 92 also has a bolt 97 as a fastening member that applies force in a direction to bring the base material 93 and the pressing flange 94 closer together. By tightening the bolt 97, the action of the ring members 95, 96 fixes the base 93 and the shaft 81 to each other.
  • the surface of the substrate 93 facing the pressure flange 94 has an end projecting towards the pressure flange 94 .
  • the protruding end contacts the pressure flange 94 .
  • the base material 93 has a screw hole 93b as a mounting portion for fixing the link gear 83 as the second rotating member.
  • the link gear 83 is fixed to the base material 93 with bolts 98 .
  • the rotational force of the link gear 83 is transmitted to the shaft 81 via the second power transmission mechanism 6 .
  • Rotation of the shaft 81 transmits torque to the flange 26 via the bevel gear 82 .
  • the wrist 15 has a mechanism for rotating the wrist 15 around the drive axis J5 with respect to the forearm arm 11.
  • a pinion shaft (not shown) rotates the link gear 104 .
  • the link gear 104 and the interposed member 105 are fixed to each other by bolts 106 .
  • the intervening member 105 is fixed to the housing 88 by a fastening member (not shown).
  • the link gear 104 and the interposed member 105 are supported by bearings 101 and 102 .
  • the link gear 104 is fixed to the inner ring 103 a of the main bearing 103 .
  • the outer ring 103b of the main bearing 103 is fixed to the housing 86 with bolts 107.
  • a housing 87 functioning as a cover member is fixed to the housing 86 with a fastening member such as a bolt.
  • Housings 86 , 87 and outer ring 103 b are fixed to forearm arm 11 .
  • the housings 86, 87 and the outer ring 103b are parts that do not rotate around the drive shaft J5.
  • the link gear 104 rotates
  • the link gear 104, the intervening member 105, and the housing 88 rotate integrally around the drive shaft J5.
  • the wrist 15 rotates around the drive axis J5.
  • An oil seal 109 is arranged at the portion where the intervening member 105 and the housing 86 face each other to prevent internal lubricating oil from leaking to the outside and to prevent foreign matter from entering from the outside.
  • An oil seal 110 is also arranged for the same purpose at the portion where the flange 16 and the housing 88 face each other.
  • the second driving device 3 including the second power transmission mechanism 6 can also be easily disassembled to replace internal parts.
  • the housing 87 can be removed from the housing 86 by removing a fastening member that fixes the housing 86 and the housing 87 together.
  • the link gear 83 can be removed from the base material 93 by removing the bolt 98 after pulling out the pinion shaft 84 and the pinion shaft that engages with the link gear 104 .
  • the fixing device 92 can be removed from the shaft 81 by loosening the bolt 97 .
  • the link gear 104 can be removed, and the bearing 101 and the main bearing 103 can be taken out.
  • the intervening member 105 can be removed from the housing 88 by removing a fastening member (not shown). Then the bearing 102 can be taken out.
  • the second driving device 3 can be disassembled in detail by removing the fastening member. Parts such as bearings 101 and 102 and oil seal 109 can also be replaced.
  • the shaft and the link gear can be connected by an involute spline connection.
  • the adhesive By arranging the adhesive on the connecting portion, the amount of backlash can be reduced.
  • the hardened adhesive must be completely removed when the drive is disassembled. For this reason, decomposition is difficult or takes a long time.
  • the driving device can be easily disassembled and the parts can be replaced.
  • the rotational force of one of the first rotating member and the second rotating member is transmitted through the base material. is transmitted to the other rotating member.
  • FIG. 10 shows an enlarged view of the third power transmission mechanism in this embodiment.
  • a third power transmission mechanism 7 is a modification of the second power transmission mechanism 6 .
  • the third power transmission mechanism 7 comprises a fixing device 112 including a base 113 and a pressing flange 114 .
  • a ring member 115 is arranged in the recessed portion 113 a of the base material 113 .
  • a single ring member may be arranged on the fixation device.
  • the third power transmission mechanism 7 has a structure in which the ring member 96 of the second power transmission mechanism 6 is integrated with the base material 93 . In the third power transmission mechanism 7 , a diameter-reducing force acts on the ring member 115 .
  • a nut 117 is arranged as a fastening member that urges the base member 113 and the pressing flange 114 to move toward each other.
  • a thread is formed on the outer peripheral surface of the end of the shaft 81 .
  • Nut 117 engages threads formed in shaft 81 .
  • the fastening member is not limited to the bolt, and any member that applies force in a direction to bring the pressing flange and the base material closer to each other can be employed.
  • the driving device including the power transmission mechanism of the present embodiment is arranged in the joint of the robot, it is not limited to this form.
  • the power transmission mechanism of this embodiment can be applied to a mechanism that drives any part of the robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Retarders (AREA)

Abstract

This robot power transmission mechanism comprises: a base member which has formed in the inner surface thereof a recessed part that extends along the rotation axis of a shaft; a ring member which is disposed in the recessed part; and a pressing flange which has an apical end that presses the ring member. The power transmission mechanism is provided with a bolt for applying a force onto the base member and the pressing flange in a direction in which the base member and the pressing flange are brought closer to each other. An input part for a reduction gear is secured to the base member by a bolt. The base member is secured to the shaft by a constricting force of the ring member.

Description

回転力を伝達するロボットの動力伝達機構およびロボットの駆動装置Robot power transmission mechanism and robot driving device for transmitting rotational force
 本発明は、回転力を伝達するロボットの動力伝達機構およびロボットの駆動装置に関する。 The present invention relates to a robot power transmission mechanism and a robot driving device that transmit rotational force.
 ロボットは、アーム等の構成部材を駆動することにより、作業ツールの位置および姿勢を変更することができる。ロボットには、構成部材を動かすための電動機を含む駆動装置が配置される。例えば、ロボットが関節部を有する場合には、関節部において構成部材を動かすための駆動装置が配置される場合が有る。駆動装置は、1つの部材から他の部材に回転力を伝達するための動力伝達機構を含む。特に、電動機の出力シャフトから減速機の入力部に回転力を伝達する動力伝達機構が必要である。 The robot can change the position and posture of the work tool by driving its constituent members such as arms. A drive system including an electric motor is arranged on the robot to move the component. For example, if the robot has a joint, a drive may be arranged at the joint to move the component. The drive includes a power transmission mechanism for transmitting rotational force from one member to another member. In particular, there is a need for a power transmission mechanism that transmits torque from the output shaft of the electric motor to the input of the speed reducer.
 従来から電動機が出力する回転力を他の部材に伝達する装置が知られている。電動機の出力シャフトに、他の部材を所定の方法にて連結することにより、他の部材に回転力を伝達することができる(例えば、特開平9-57667号公報)。 Devices that transmit the rotational force output by an electric motor to other members have been known for some time. By connecting another member to the output shaft of the electric motor in a predetermined manner, the rotational force can be transmitted to the other member (for example, Japanese Patent Application Laid-Open No. 9-57667).
 シャフトの回転力を他の部材に伝達するための方法としては、例えば、シャフトの端面に雌ねじを形成して他の部材をボルトにて固定する方法がある。または、シャフトの端部において、他の部材を焼き嵌めにて固定する方法がある。この方法では、他の部材を加熱して膨張した時にシャフトの端部に配置する。そして他の部材を冷却して収縮させることにより、他の部材をシャフトに固定する。また、シャフトに他の部材を連結する場合に、シャフトの回転力を確実に伝達するために、スプライン結合したり、キー結合したりする場合がある。このように、シャフトに他の部材を連結する機構が知られている。 As a method for transmitting the rotational force of the shaft to another member, for example, there is a method of forming a female thread on the end face of the shaft and fixing the other member with a bolt. Alternatively, there is a method of fixing another member by shrink fitting at the end of the shaft. In this method, another member is placed at the end of the shaft when heated and expanded. The other member is then fixed to the shaft by cooling and shrinking the other member. Also, when connecting other members to the shaft, spline connection or key connection may be used in order to reliably transmit the rotational force of the shaft. Thus, mechanisms for connecting other members to shafts are known.
特開平9-57667号公報JP-A-9-57667
 駆動装置の内部には、駆動装置の駆動に伴って性能が低下したり、経年劣化したりする部品が含まれる。このような部品は、劣化したときに交換出来る構造が好ましい。例えば、減速機は、所定の運転期間ごとに交換することが好ましい。 The inside of the drive includes parts whose performance deteriorates or deteriorates over time as the drive is driven. It is preferable that such parts have a structure in which they can be replaced when deteriorated. For example, it is preferable to replace the speed reducer every predetermined operating period.
 駆動装置の動力伝達機構において、シャフトの端面にボルトにて他の部材を固定する場合には、雌ねじを形成するための領域を確保しなければならず、シャフトの径が大きくなる。特に、駆動装置に含まれるシール部材等を交換できるように設計する場合には、シャフトの端部よりも大きな径の部分にシール部材等を配置しなくてはならない。このために、駆動装置がシャフトの径方向に大きくなるという問題がある。または、シャフトの端部と他の部材とを焼き嵌めまたは接着の方法により固定すると、駆動装置を分解して部品を交換することが困難になるという問題がある。 In the power transmission mechanism of the drive device, when fixing other members to the end face of the shaft with bolts, it is necessary to secure an area for forming an internal thread, which increases the diameter of the shaft. In particular, when designing a seal member or the like included in the driving device to be replaceable, the seal member or the like must be arranged in a portion having a larger diameter than the end of the shaft. For this reason, there is a problem that the driving device becomes large in the radial direction of the shaft. Alternatively, if the end of the shaft and another member are fixed by shrink fitting or adhesion, there is a problem that it becomes difficult to disassemble the drive device and replace the parts.
 シャフトの端部と他の部材とをスプライン結合またはキー結合する機構では、シャフトの端面にボルトにて他の部材を固定する機構よりも、シャフトの径を小さくすることができる。この結果、装置の大型化を抑制することができる。しかしながら、シャフトが筒状の場合(中空シャフト)に、シャフトの厚さが薄いためにスプライン結合またはキー結合を行うことができない場合がある。 A mechanism in which the end of the shaft and another member are splined or keyed can make the diameter of the shaft smaller than a mechanism in which another member is fixed to the end face of the shaft with a bolt. As a result, an increase in size of the device can be suppressed. However, when the shaft is cylindrical (hollow shaft), there are cases where the spline connection or key connection cannot be performed due to the thinness of the shaft.
 また、スプライン結合では、回転方向にバックラッシ(がた)が生じる。キー結合においては、ボルトまたはイモネジによりシャフトと他の部材とを固定する方法が一般的である。しかしながら、キー結合においても、回転方向のバックラッシを完全に回避することが難しいという問題がある。 In addition, spline coupling causes backlash in the rotational direction. In key coupling, a method of fixing the shaft and other members with bolts or set screws is common. However, even in key coupling, there is a problem that it is difficult to completely avoid backlash in the rotational direction.
 更に、スプライン結合では、回転軸の延びる方向において他の部材が移動する。すなわち、スプライン結合では、他の部材の回転軸の延びる方向の移動を阻止することができない。例えば、波動歯車装置では、入力部が回転している期間中に回転軸の方向に荷重が発生する。スプライン結合では、この荷重を受けた際に、回転軸方向(回転軸に平行な一方の方向および一方の方向に反対側の方向)に動かないように規制するのが難しいという問題がある。 Furthermore, in the spline connection, other members move in the direction in which the rotating shaft extends. That is, the spline connection cannot prevent movement of other members in the direction in which the rotation axis extends. For example, in a strain wave gearing, a load is generated in the direction of the rotation axis while the input section is rotating. A problem with the spline connection is that it is difficult to prevent movement in the rotational axis direction (one direction parallel to the rotational axis and the direction opposite to the one direction) when this load is applied.
 スプライン結合の部分またはキー結合の部分に、接着剤を配置することにより、シャフトと他の部材とを互いに固定することができる。この結果、回転方向におけるバックラッシおよび回転軸の方向の移動を阻止することができる。しかしながら、結合部分に接着剤を塗布すると、分解して再組立する際に、接着剤を一旦完全に除去する必要があり、修理のために多くの工数を要することになる。 The shaft and other members can be fixed to each other by arranging an adhesive on the spline joint portion or the key joint portion. As a result, backlash in the direction of rotation and movement in the direction of the axis of rotation can be prevented. However, if the adhesive is applied to the connecting portion, the adhesive must be completely removed once when disassembling and reassembling, requiring many man-hours for repair.
 本開示の一態様のロボットの動力伝達機構は、第1の回転部材を挿通する穴部を有し、第1の回転部材の回転軸に沿って延びる窪み部を内面に有する基材を備える。動力伝達機構は、窪み部に配置され、周方向に垂直な平面で切断した時の断面形状が略くさび形のリング部材を備える。動力伝達機構は、第1の回転部材を挿通する穴部を有し、リング部材を押圧する先端部を有する押圧フランジを備える。動力伝達機構は、基材と押圧フランジとが互いに近づく向きに、基材および押圧フランジに力を加えるための締結部材を備える。基材は、第2の回転部材を固定する取付け部を有する。リング部材は、先端部にて回転軸の方向に押圧されて縮径する力が生じて、第1の回転部材に固定されている。基材および押圧フランジは、リング部材に対して固定されている。第1の回転部材および第2の回転部材のうち、一方の回転部材の回転力が基材を介して他方の回転部材に伝達される。 A power transmission mechanism for a robot according to one aspect of the present disclosure includes a base material having a recess extending along the rotation axis of the first rotating member and having a hole through which the first rotating member is inserted. The power transmission mechanism is provided with a ring member disposed in the recess and having a substantially wedge-shaped cross-section when cut along a plane perpendicular to the circumferential direction. The power transmission mechanism has a hole through which the first rotating member is inserted, and includes a pressure flange having a tip portion for pressing the ring member. The power transmission mechanism includes a fastening member for applying force to the substrate and the pressure flange in a direction that the substrate and the pressure flange approach each other. The substrate has a mounting portion that secures the second rotating member. The ring member is fixed to the first rotating member by being pressed in the direction of the rotating shaft at its distal end to generate a force to reduce the diameter. The substrate and pressure flange are fixed relative to the ring member. The rotational force of one of the first rotating member and the second rotating member is transmitted to the other rotating member via the base material.
 本開示の一態様によれば、小型で分解が容易なロボットの動力伝達機構を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a power transmission mechanism for a robot that is compact and easy to disassemble.
実施の形態におけるロボットの斜視図である。1 is a perspective view of a robot in an embodiment; FIG. 実施の形態における第1の動力伝達機構を含む第1の駆動装置の断面図である。1 is a cross-sectional view of a first driving device including a first power transmission mechanism in an embodiment; FIG. 第1の動力伝達機構の拡大断面図である。4 is an enlarged sectional view of the first power transmission mechanism; FIG. 第1の比較例の動力伝達機構の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a power transmission mechanism of a first comparative example; 第2の比較例の動力伝達機構の概略部分断面図である。FIG. 6 is a schematic partial cross-sectional view of a power transmission mechanism of a second comparative example; 実施の形態における他の基材を含む第1の動力伝達機構の拡大断面図である。4 is an enlarged cross-sectional view of the first power transmission mechanism including another base material in the embodiment; FIG. 実施の形態における他の基材の突出部の拡大斜視図である。FIG. 10 is an enlarged perspective view of a protruding portion of another base material in the embodiment; 実施の形態における第2の動力伝達機構を含む第2の駆動装置の断面図である。It is a sectional view of the 2nd drive including the 2nd power transmission mechanism in an embodiment. 第2の動力伝達機構の拡大断面図である。4 is an enlarged cross-sectional view of a second power transmission mechanism; FIG. 第3の動力伝達機構の拡大断面図である。FIG. 8 is an enlarged cross-sectional view of a third power transmission mechanism;
 図1から図10を参照して、実施の形態におけるロボットの動力伝達機構および動力伝達機構を備えるロボットの駆動装置について説明する。動力伝達機構は、1つの回転部材から他の回転部材に回転力を伝達する。 A power transmission mechanism for a robot and a drive device for a robot including the power transmission mechanism according to an embodiment will be described with reference to FIGS. 1 to 10. FIG. A power transmission mechanism transmits rotational force from one rotating member to another rotating member.
 図1は、本実施の形態におけるロボットの斜視図である。本実施の形態のロボット1は、複数の関節部を含む多関節ロボットである。ロボット1は、回転可能な複数の構成部材を含む。それぞれの構成部材は、駆動軸J1~J6の周りに回転するように形成されている。本実施の形態の動力伝達機構は、ロボットの構成部材を駆動するためにロボットの関節部に配置されている。 FIG. 1 is a perspective view of the robot according to this embodiment. The robot 1 of this embodiment is an articulated robot including a plurality of joints. The robot 1 includes a plurality of rotatable components. Each component is formed to rotate around drive shafts J1 to J6. The power transmission mechanism of this embodiment is arranged at the joint of the robot in order to drive the constituent members of the robot.
 ロボット1は、設置面に固定されたベース部14と、ベース部14に支持された旋回ベース13とを含む。旋回ベース13は、ベース部14に対して駆動軸J1の周りに回転する。ロボット1は、前腕アーム11および上腕アーム12を含む。上腕アーム12は、旋回ベース13に支持されている。上腕アーム12は、旋回ベース13に対して駆動軸J2の周りに回転する。前腕アーム11は、上腕アーム12に支持されている。前腕アーム11は、上腕アーム12に対して駆動軸J3の周りに回転する。更に、前腕アーム11は、駆動軸J4の周りに回転する。ロボット1は、前腕アーム11に支持されている手首15を含む。手首15は駆動軸J5の周りに回転する。また、手首15は、駆動軸J6の周りに回転するフランジ16を含む。フランジ16には、ロボット1を備えるロボット装置が行う作業に応じて、作業ツールが固定される。 The robot 1 includes a base portion 14 fixed to an installation surface and a swivel base 13 supported by the base portion 14 . The swivel base 13 rotates around the drive axis J1 with respect to the base portion 14 . The robot 1 includes a forearm arm 11 and an upper arm 12 . Upper arm 12 is supported by swivel base 13 . The upper arm 12 rotates about the drive axis J2 with respect to the swivel base 13 . The forearm arm 11 is supported by the upper arm 12 . The forearm arm 11 rotates relative to the upper arm 12 around the drive axis J3. Further, the forearm arm 11 rotates around the drive axis J4. Robot 1 includes a wrist 15 supported by forearm arm 11 . The wrist 15 rotates around the drive axis J5. Wrist 15 also includes a flange 16 that rotates about drive axis J6. A work tool is fixed to the flange 16 according to the work performed by the robot device including the robot 1 .
 本実施の形態のロボット1は、構成部材として、ベース部14、旋回ベース13、上腕アーム12、前腕アーム11、および手首15を備える。本実施の形態のロボットは、6個の駆動軸を有するが、この形態に限られない。任意の機構にて位置および姿勢を変更するロボットを採用することができる。 The robot 1 of this embodiment includes a base portion 14, a swivel base 13, an upper arm 12, a forearm arm 11, and a wrist 15 as constituent members. Although the robot of this embodiment has six drive shafts, it is not limited to this form. A robot that changes its position and orientation with any mechanism can be employed.
 図2に、本実施の形態における第1の駆動装置の断面図を示す。図1および図2を参照して、第1の駆動装置2は、駆動軸J4の周りに前腕アーム11を回転するための装置である。駆動装置2は、例えば、矢印131に示す方向が手首15の配置されている方向になるように、前腕アーム11の手首15が配置されている側と反対側の端部に配置される。 FIG. 2 shows a cross-sectional view of the first driving device in this embodiment. 1 and 2, the first drive device 2 is a device for rotating the forearm arm 11 around the drive axis J4. The driving device 2 is arranged, for example, at the end of the forearm arm 11 opposite to the side where the wrist 15 is arranged so that the direction indicated by the arrow 131 is the direction where the wrist 15 is arranged.
 第1の駆動装置2は、ロータ45aおよびステータ45bを含む電動機45を備える。ロータ45aは、シャフト21に固定されている。シャフト21は、電動機45の出力シャフトとして機能する。シャフト21は細長く延びるように形成されている。本実施の形態のシャフト21は、中空穴を有する円筒状の部材である。シャフト21は、駆動軸J4を回転軸として回転する。 The first driving device 2 includes an electric motor 45 including a rotor 45a and a stator 45b. The rotor 45 a is fixed to the shaft 21 . Shaft 21 functions as an output shaft of electric motor 45 . The shaft 21 is formed elongated. The shaft 21 of this embodiment is a cylindrical member having a hollow hole. The shaft 21 rotates about the drive shaft J4 as a rotation axis.
 シャフト21の回転力は、減速機31を介して、フランジ25に伝達される。フランジ25とフランジ26とはボルト56にて互いに固定されている。フランジ26とフランジ27とはボルト57にて互いに固定されている。フランジ25,26,27は、一体的に回転する。 The rotational force of the shaft 21 is transmitted to the flange 25 via the reduction gear 31. The flanges 25 and 26 are fixed to each other with bolts 56 . The flanges 26 and 27 are fixed to each other with bolts 57 . The flanges 25, 26, 27 rotate together.
 駆動装置2は、電動機45が内部に配置された筐体22を備える。シャフト21は、軸受け51,52により回転するように支持されている。軸受け51は、筐体22にて固定されている。駆動装置2は、電磁ブレーキ46が内部に配置された筐体23と、回転位置検出器としてのエンコーダ47が内部に配置された筐体24とを備える。電磁ブレーキ46は、シャフト21を制動する。エンコーダ47は、電動機45の回転位置を検出する。 The drive device 2 includes a housing 22 in which an electric motor 45 is arranged. The shaft 21 is rotatably supported by bearings 51 and 52 . The bearing 51 is fixed by the housing 22 . The driving device 2 includes a housing 23 in which an electromagnetic brake 46 is arranged, and a housing 24 in which an encoder 47 as a rotational position detector is arranged. Electromagnetic brake 46 brakes shaft 21 . Encoder 47 detects the rotational position of electric motor 45 .
 筐体22、筐体23、および筐体24は、ボルト等の締結部材にて互いに固定されている。また、筐体22と筐体23との間には、軸受け52を固定するための軸受け固定部材28が配置されている。軸受け固定部材28は、ボルト等の締結部材により、筐体23に固定されている。締結部材を取り外すことにより、矢印131と反対側から筐体24,23,22および軸受け固定部材28を取り外すことができる。 The housing 22, housing 23, and housing 24 are fixed to each other by fastening members such as bolts. A bearing fixing member 28 for fixing the bearing 52 is arranged between the housing 22 and the housing 23 . The bearing fixing member 28 is fixed to the housing 23 with a fastening member such as a bolt. By removing the fastening member, the housings 24 , 23 , 22 and the bearing fixing member 28 can be removed from the side opposite to the arrow 131 .
 シャフト21の内側には樹脂にて形成された保護管66が配置されている。保護管66は、シャフト21の内面に沿って円筒状に形成されている。保護管66の内部には、電線、空気管、または光通信ケーブル等の線条体が挿通される。保護管66は、挟持部66aがフランジ26とフランジ27とに挟まれることにより固定されている。保護管66が配置されることにより、ロボット1の関節部の内部に線条体を配置することができる。 A protective tube 66 made of resin is arranged inside the shaft 21 . The protective tube 66 is cylindrically formed along the inner surface of the shaft 21 . A wire such as an electric wire, an air tube, or an optical communication cable is inserted through the protective tube 66 . The protective tube 66 is fixed by sandwiching the sandwiching portion 66 a between the flanges 26 and 27 . By arranging the protective tube 66 , the striatum can be arranged inside the joint of the robot 1 .
 図3に、本実施の形態における第1の駆動装置の第1の動力伝達機構の拡大断面図を示す。図2および図3を参照して、第1の動力伝達機構5は、固定装置32を含む。第1の動力伝達機構5は、電動機45にて出力されたシャフト21の回転力を減速機31に伝達する。 FIG. 3 shows an enlarged cross-sectional view of the first power transmission mechanism of the first drive device in this embodiment. 2 and 3, the first power transmission mechanism 5 includes a fixing device 32. As shown in FIG. The first power transmission mechanism 5 transmits the rotational force of the shaft 21 output by the electric motor 45 to the speed reducer 31 .
 第1の駆動装置2の減速機31は、波動歯車装置である。減速機31は、波動発生部31aを有する。波動発生部31aは、ウェーブジェネレータとも称される。波動発生部31aは、回転軸方向から見た形状が楕円形のカムとカムの外周面に配置されたボールベアリングとを含む。ボールベアリングの内輪は楕円形のカムに固定されている。ボールベアリングの外輪は、複数のボールを介して弾性変形するように形成されている。ここでは、波動発生部31aのカムが減速機31の入力部として機能する。減速機31は、弾性変形が可能な弾性筒状部材31bを有する。弾性筒状部材31bは、外歯歯車であり、フレックスプラインとも称される。弾性筒状部材31bは、カムの回転に伴って変形するように形成されている。弾性筒状部材31bは、外周面に形成された歯部31bbを有する。弾性筒状部材31bは、ボルト55により筐体22に固定されている。波動発生部31aが回転するのに対して、弾性筒状部材31bは回転しないように固定されている。 The reduction gear 31 of the first driving device 2 is a strain wave gearing. The speed reducer 31 has a wave generator 31a. The wave generator 31a is also called a wave generator. The wave generator 31a includes a cam having an elliptical shape when viewed from the direction of the rotation axis and a ball bearing arranged on the outer peripheral surface of the cam. The inner ring of the ball bearing is fixed to an elliptical cam. The outer race of the ball bearing is formed so as to be elastically deformed via a plurality of balls. Here, the cam of the wave generating section 31a functions as the input section of the speed reducer 31. As shown in FIG. The speed reducer 31 has an elastic cylindrical member 31b that is elastically deformable. The elastic tubular member 31b is an external gear and is also called a flexspline. The elastic tubular member 31b is formed to deform as the cam rotates. The elastic cylindrical member 31b has teeth 31bb formed on the outer peripheral surface. The elastic cylindrical member 31b is fixed to the housing 22 with bolts 55. As shown in FIG. While the wave generator 31a rotates, the elastic cylindrical member 31b is fixed so as not to rotate.
 減速機31は、環状部材31cを有する。環状部材31cは、内歯歯車であり、サーキュラースプラインとも称される。環状部材31cの内面には、弾性筒状部材31bの歯部31bbに係合する歯部が形成されている。ここで、弾性筒状部材31bの歯数は、環状部材31cの歯数よりも少ない。このために、波動発生部31aが1回転すると、歯部の歯数の差に応じて、環状部材31cが1回転未満の回転数にて回転する。本実施の形態では、環状部材31cが減速機31の出力部として機能する。減速機31は、弾性筒状部材31bの歯数と環状部材31cの歯数の差に応じた減速比にて減速することができる。 The speed reducer 31 has an annular member 31c. The annular member 31c is an internal gear and is also called a circular spline. A tooth portion that engages with the tooth portion 31bb of the elastic cylindrical member 31b is formed on the inner surface of the annular member 31c. Here, the number of teeth of the elastic tubular member 31b is smaller than the number of teeth of the annular member 31c. Therefore, when the wave generating portion 31a makes one rotation, the annular member 31c rotates at a rotation speed of less than one rotation according to the difference in the number of teeth of the tooth portion. In the present embodiment, the annular member 31c functions as an output portion of the speed reducer 31. As shown in FIG. The reduction gear 31 can reduce the speed at a reduction ratio corresponding to the difference between the number of teeth of the elastic cylindrical member 31b and the number of teeth of the annular member 31c.
 減速機31の出力部としての環状部材31cは、ボルト39により、フランジ25に固定されている。環状部材31cの回転力は、フランジ25,26を介して、フランジ27に伝達される。フランジ27は、例えば前腕アーム11の筐体に固定されている。フランジ27が筐体22,23,24に対して回転することにより、前腕アーム11が駆動軸J4の周りに回転する。 An annular member 31 c as an output portion of the speed reducer 31 is fixed to the flange 25 with bolts 39 . The rotational force of the annular member 31c is transmitted to the flange 27 via the flanges 25,26. The flange 27 is fixed, for example, to the housing of the forearm arm 11 . Rotation of flange 27 relative to housings 22, 23, 24 causes forearm arm 11 to rotate about drive axis J4.
 第1の動力伝達機構5は、シャフト21の回転力を減速機31の入力部としての波動発生部31aのカムに伝達する。第1の動力伝達機構5では、シャフト21が第1の回転部材に相当し、減速機31の波動発生部31aのカムが第2の回転部材に相当する。動力伝達機構5の固定装置32は、シャフト21に対して波動発生部31aを固定する。 The first power transmission mechanism 5 transmits the rotational force of the shaft 21 to the cam of the wave generating section 31a as the input section of the speed reducer 31. In the first power transmission mechanism 5, the shaft 21 corresponds to the first rotating member, and the cam of the wave generating section 31a of the speed reducer 31 corresponds to the second rotating member. A fixing device 32 of the power transmission mechanism 5 fixes the wave generating portion 31 a to the shaft 21 .
 固定装置32は、シャフト21を挿通する穴部を有する基材33を備える。基材33は、シャフト21を取り囲む形状を有する。本実施の形態における基材33は、円筒状に形成されている。基材33は、シャフト21の回転軸に沿って延びる窪み部33aを有する。窪み部33aは、基材33の内面に形成されている。 The fixing device 32 includes a base material 33 having a hole through which the shaft 21 is inserted. The base material 33 has a shape surrounding the shaft 21 . Base material 33 in the present embodiment is formed in a cylindrical shape. The base material 33 has a recessed portion 33 a extending along the rotation axis of the shaft 21 . The recessed portion 33 a is formed on the inner surface of the base material 33 .
 固定装置32は、基材33の窪み部33aに配置されたリング部材35,36を有する。それぞれのリング部材35,36は、周方向に垂直な平面で切断した時の断面形状がくさび形になるように形成されている。ここでの例では、リング部材35,36は、断面形状が三角形になるように形成されている。それぞれのリング部材35,36は、周方向に延びる面が円錐面となるように形成されている。そして、リング部材35の円錐面とリング部材36の円錐面とが互いに接触するように配置されている。 The fixing device 32 has ring members 35 and 36 arranged in the recessed portion 33 a of the base material 33 . Each of the ring members 35 and 36 is formed to have a wedge-shaped cross-section when cut along a plane perpendicular to the circumferential direction. In the example here, the ring members 35 and 36 are formed to have a triangular cross-sectional shape. Each of the ring members 35 and 36 is formed such that the surface extending in the circumferential direction is a conical surface. The conical surface of the ring member 35 and the conical surface of the ring member 36 are arranged so as to contact each other.
 固定装置32は、シャフト21を挿通する穴部を有する押圧フランジ34を備える。押圧フランジ34は、シャフト21を取り囲む形状を有する。押圧フランジ34は、周方向に垂直な平面で切断した時の断面形状がL字形になるように形成されている。押圧フランジ34は、リング部材36を押圧する先端部34aを有する。本実施の形態においては、先端部34aは、窪み部33aに対応する形状を有する。先端部34aは、窪み部33aに嵌合するように形成されている。 The fixing device 32 includes a pressing flange 34 having a hole through which the shaft 21 is inserted. The pressing flange 34 has a shape surrounding the shaft 21 . The pressing flange 34 is formed to have an L-shaped cross section when cut along a plane perpendicular to the circumferential direction. The pressing flange 34 has a tip portion 34 a that presses the ring member 36 . In the present embodiment, tip portion 34a has a shape corresponding to depression portion 33a. The tip portion 34a is formed so as to fit into the recessed portion 33a.
 固定装置32は、基材33と押圧フランジ34とが互いに近づく向きに、基材33および押圧フランジ34に力を加えるための締結部材としてのボルト37を備える。ボルト37を締め付けることにより、シャフト21の回転軸に沿う方向に基材33と押圧フランジ34との距離が短くなるように形成されている。リング部材35,36が基材33および先端部34aに接触した後には、ボルト37は、基材33と押圧フランジ34とを互いに近づく向きに付勢する。 The fixing device 32 includes a bolt 37 as a fastening member for applying force to the base material 33 and the pressing flange 34 so that the base material 33 and the pressing flange 34 approach each other. By tightening the bolt 37 , the distance between the base material 33 and the pressing flange 34 is shortened in the direction along the rotation axis of the shaft 21 . After the ring members 35 and 36 contact the base material 33 and the tip portion 34a, the bolt 37 urges the base material 33 and the pressing flange 34 toward each other.
 断面形状において基材33の立設する部分と押圧フランジ34の立設する部分との間には、隙間が形成されている。ボルト37を締め付けることにより、この隙間が小さくなるように基材33と押圧フランジ34とが近づく。押圧フランジ34の先端部34aは、リング部材36を押圧する。ボルト37を締め付けることにより、リング部材35,36は回転軸の方向に沿って押圧される。 A gap is formed between the standing portion of the base material 33 and the standing portion of the pressing flange 34 in the cross-sectional shape. By tightening the bolt 37, the base material 33 and the pressing flange 34 are brought closer together so that this gap becomes smaller. A tip portion 34 a of the pressing flange 34 presses the ring member 36 . By tightening the bolt 37, the ring members 35, 36 are pressed along the direction of the rotation axis.
 リング部材35,36の円錐面の作用により、リング部材35,36には径方向に向かう力が作用する。リング部材36には、径方向の内側に向かう力、すなわち縮径する力が作用する。リング部材35には、径方向の外側に向かう力、すなわち拡径する力が作用する。リング部材36はシャフト21をかしめることとなり、このリング部材36に対して、リング部材35および基材33と、押圧フランジ34とが固定される。この結果、基材33および押圧フランジ34は、シャフト21に固定される。 A radial force acts on the ring members 35 and 36 due to the action of the conical surfaces of the ring members 35 and 36 . A radially inward force, that is, a diameter-contracting force acts on the ring member 36 . A radially outward force acts on the ring member 35 , that is, a radially expanding force. The ring member 36 crimps the shaft 21 , and the ring member 35 , the base material 33 , and the pressing flange 34 are fixed to the ring member 36 . As a result, the base material 33 and the pressing flange 34 are fixed to the shaft 21 .
 図2を参照して、本実施の形態の基材33は、波動発生部31aを固定するための取付け部としてねじ穴33bを有する。波動発生部31aのカムは、締結部材としてのボルト38により基材33に固定されている。このため、波動発生部31aは、固定装置32と共に一体的に回転する。このように、第1の回転部材の回転力は、固定装置32の基材33を介して第2の回転部材に伝達されている。 Referring to FIG. 2, base material 33 of the present embodiment has screw hole 33b as a mounting portion for fixing wave generating portion 31a. The cam of the wave motion generating portion 31a is fixed to the base material 33 by a bolt 38 as a fastening member. Therefore, the wave generator 31a rotates integrally with the fixing device 32. As shown in FIG. Thus, the rotational force of the first rotating member is transmitted to the second rotating member via the base material 33 of the fixing device 32 .
 減速された回転力は、環状部材31cに出力される。環状部材31cの側方には、主軸受け41が配置されている。本実施の形態の主軸受け41は、クロスローラ軸受けである。主軸受け41は、内輪41aと外輪41bとを有する。外輪41bは、ボルト55により、弾性筒状部材31bと共に、筐体22に固定されている。外輪41bは、筐体22に対して回転しない部材である。これに対して、内輪41aは、ボルト39により、フランジ25および環状部材31cに固定されている。このために、内輪41a、環状部材31c、フランジ25,26,27、および保護管66が一体的に回転する。 The decelerated rotational force is output to the annular member 31c. A main bearing 41 is arranged on the side of the annular member 31c. The main bearing 41 of this embodiment is a cross roller bearing. The main bearing 41 has an inner ring 41a and an outer ring 41b. The outer ring 41b is fixed to the housing 22 by bolts 55 together with the elastic tubular member 31b. The outer ring 41 b is a member that does not rotate with respect to the housing 22 . On the other hand, the inner ring 41a is fixed by bolts 39 to the flange 25 and the annular member 31c. For this reason, the inner ring 41a, the annular member 31c, the flanges 25, 26, 27, and the protective tube 66 rotate integrally.
 シャフト21の外周面には内部の潤滑油が外部に漏れ出ないように、また外部からの異物の侵入を防ぐために、オイルシールの61,62が配置されている。また、主軸受け41の内部の潤滑油が外部に漏れ出ないように、また外部からの異物の侵入を防ぐために、オイルシール63が配置されている。 Oil seals 61 and 62 are arranged on the outer peripheral surface of the shaft 21 to prevent internal lubricating oil from leaking to the outside and to prevent foreign matter from entering from the outside. Further, an oil seal 63 is arranged to prevent the lubricating oil inside the main bearing 41 from leaking to the outside and to prevent foreign matter from entering from the outside.
 波動歯車装置である減速機31には寿命がある。減速機31を交換するためには、波動発生部31aを矢印131の方向に抜く必要がある。矢印131と反対方向に抜くと、波動発生部31aおよび弾性筒状部材31bの破損に繋がる。 The speed reducer 31, which is a wave gear device, has a limited life. In order to replace the speed reducer 31, it is necessary to pull out the wave generator 31a in the direction of the arrow 131. As shown in FIG. If it is pulled out in the direction opposite to the arrow 131, the wave generating portion 31a and the elastic cylindrical member 31b will be damaged.
 駆動装置2を分解する場合には、ボルト57を取り外すことにより、フランジ26からフランジ27を取り外すことができる。また、保護管66の固定が解除されて、矢印131に示す方向に保護管66を取り出すことができる。次に、ボルト56を取り外すことにより、フランジ25からフランジ26を取り外すことができる。次に、ボルト39を取り外すことにより、フランジ25を取り外すことができる。そして、ボルト38を取り外すことにより、波動発生部31aを取り外すことが出来る。 When disassembling the driving device 2, the flange 27 can be removed from the flange 26 by removing the bolt 57. Also, the fixing of the protective tube 66 is released, and the protective tube 66 can be taken out in the direction indicated by the arrow 131 . Flange 26 can then be removed from flange 25 by removing bolts 56 . Flange 25 can then be removed by removing bolts 39 . By removing the bolt 38, the wave generating portion 31a can be removed.
 次に、ボルト55を取り外すことにより、減速機31および主軸受け41を取り外すことができる。ボルト37を緩めることにより、固定装置32をシャフト21から取り外すことができる。 Next, by removing the bolt 55, the speed reducer 31 and the main bearing 41 can be removed. By loosening the bolt 37, the fixing device 32 can be removed from the shaft 21. FIG.
 一方で、図示しない締結部材を取り外すことにより、筐体22から筐体23,24を取り外すことができる。そして、矢印131と反対側に向かって、エンコーダ47および電磁ブレーキ46を取り出すことができる。また、図示しない締結部材を取り外すことにより、軸受け固定部材28および軸受け52を取り外すことができる。次に、ロータ45aと共に、シャフト21を矢印131と反対側に引き抜くことができる。そして、軸受け51を取り出すことができる。 On the other hand, the housings 23 and 24 can be removed from the housing 22 by removing fastening members (not shown). Then, the encoder 47 and the electromagnetic brake 46 can be taken out in the direction opposite to the arrow 131 . Further, the bearing fixing member 28 and the bearing 52 can be removed by removing the fastening member (not shown). The shaft 21 can then be withdrawn in the direction opposite to the arrow 131 together with the rotor 45a. Then, the bearing 51 can be taken out.
 このように、駆動装置2を分解して、減速機31を交換することができる。更に、軸受け51,52およびオイルシール61,62,63などの交換も可能である。駆動装置2を組み立てるときには、分解する手順と逆の手順にて組み立てることができる。このように、本実施の形態における駆動装置2は、締結部材を外すことにより、容易に分解することができて、部品を交換することができる。 In this way, the drive device 2 can be disassembled and the speed reducer 31 can be replaced. Furthermore, replacement of bearings 51, 52 and oil seals 61, 62, 63 is also possible. When assembling the driving device 2, it can be assembled in the reverse order of the disassembling procedure. As described above, the drive device 2 in the present embodiment can be easily disassembled by removing the fastening member, and the parts can be replaced.
 図4に、第1の比較例の動力伝達機構の拡大断面図を示す。第1の比較例において、減速機31の波動発生部31aは、ボルト72により、シャフト71に固定されている。すなわち、本実施の形態における基材33および押圧フランジ34を含む固定装置32を介さずに、減速機31が直接的にシャフト71に固定されている。ボルト72は、シャフト71の端面に固定されている。この構造の場合に、ボルト72のねじ穴が必要になるために、シャフト71の外径は大きくなる。このために、オイルシール63および軸受け51等の内径が大きくなってしまう。この結果、駆動装置が大きくなってしまうという問題がある。 FIG. 4 shows an enlarged sectional view of the power transmission mechanism of the first comparative example. In the first comparative example, the wave motion generator 31 a of the speed reducer 31 is fixed to the shaft 71 with bolts 72 . That is, reduction gear 31 is directly fixed to shaft 71 without via fixing device 32 including base material 33 and pressing flange 34 in the present embodiment. The bolt 72 is fixed to the end surface of the shaft 71 . In the case of this structure, the outer diameter of the shaft 71 is increased because a threaded hole for the bolt 72 is required. For this reason, the inner diameters of the oil seal 63, the bearing 51, etc. become large. As a result, there is a problem that the driving device becomes large.
 図5に、第2の比較例の動力伝達機構の概略断面図を示す。第2の比較例の動力伝達機構では、複数のシャフトが同軸状に配置されている。シャフト73がシャフト74に連結されている。シャフト76がシャフト77に連結されている。シャフト73,74は、中空穴を有しない棒状のシャフトである。シャフト76,77は、円筒状のシャフトである。シャフト73のフランジ部にボルト75を配置することにより、シャフト73がシャフト74に固定されている。また、シャフト76のフランジ部に、ボルト78を配置することにより、シャフト76がシャフト77に固定されている。 Fig. 5 shows a schematic cross-sectional view of a power transmission mechanism of a second comparative example. In the power transmission mechanism of the second comparative example, a plurality of shafts are coaxially arranged. Shaft 73 is connected to shaft 74 . Shaft 76 is connected to shaft 77 . The shafts 73 and 74 are rod-shaped shafts without hollow holes. Shafts 76 and 77 are cylindrical shafts. Shaft 73 is fixed to shaft 74 by arranging bolts 75 on the flange portion of shaft 73 . Further, the shaft 76 is fixed to the shaft 77 by arranging a bolt 78 on the flange portion of the shaft 76 .
 このように、シャフト74の端面またはシャフト77の端面に、ボルト75,78にて他のシャフト73,76を固定する場合には、フランジ部を形成する必要がある。この結果、シャフトが径方向に大きくなってしまうという問題がある。第2の比較例においては、同軸状に複数のシャフトが配置されている。このために、それぞれのシャフトの結合部にフランジを形成すると、装置がかなり大きくなってしまうという問題がある。例えば、ロボットの手首構造として、前腕内に同軸状にシャフトが挿入される場合が有る。しかしながら、手首自体が大型になるために、ボルトにてシャフトの端面に他のシャフトを固定する構造を採用し難い。 Thus, when fixing the other shafts 73, 76 to the end face of the shaft 74 or the end face of the shaft 77 with the bolts 75, 78, it is necessary to form a flange portion. As a result, there is a problem that the shaft becomes large in the radial direction. In the second comparative example, a plurality of shafts are arranged coaxially. For this reason, there is a problem that if flanges are formed at the connecting portions of the respective shafts, the device becomes considerably large. For example, as a wrist structure of a robot, a shaft may be coaxially inserted into the forearm. However, since the wrist itself becomes large, it is difficult to employ a structure in which another shaft is fixed to the end face of the shaft with a bolt.
 図2および図3を参照して、本実施の形態の駆動装置2では、第2の回転部材が固定装置32を介してシャフト21に連結されているために、シャフト21の径を小さくすることができる。または、シャフト21の厚さが大きくなることを抑制することができる。このために、軸受けおよびオイルシールの径が大きくなることを抑制することができる。この結果、駆動装置の大型化を抑制することができる。特に、複数のシャフトが同軸状に配置されている場合にも、径方向に装置が大型になることを抑制することができる。または、シャフトが円筒形状の場合には、シャフトの厚さを薄くすることができるために、内部の中空穴の径を大きくすることができる。 2 and 3, in drive device 2 of the present embodiment, since the second rotating member is connected to shaft 21 via fixing device 32, the diameter of shaft 21 can be reduced. can be done. Alternatively, an increase in the thickness of the shaft 21 can be suppressed. Therefore, it is possible to suppress the diameter of the bearing and the oil seal from increasing. As a result, it is possible to suppress an increase in the size of the driving device. In particular, even when a plurality of shafts are arranged coaxially, it is possible to prevent the device from becoming large in the radial direction. Alternatively, if the shaft has a cylindrical shape, the thickness of the shaft can be reduced, so the diameter of the internal hollow hole can be increased.
 このように、本実施の形態の動力伝達機構5は、小型であり、容易に分解することができる。また、動力伝達機構5では、周方向に垂直な平面で切断した時の断面形状が略くさび形のリング部材を含む固定装置にて固定するために、バックラッシなどのがたが生じない。更に、本実施の形態の減速機31では軸方向の力が生じるが、この力を固定装置32にて受けることができる。すなわち、軸方向に減速機31の入力部が移動することを抑制できる。 Thus, the power transmission mechanism 5 of this embodiment is small and can be easily disassembled. In addition, since the power transmission mechanism 5 is fixed by a fixing device including a ring member having a substantially wedge-shaped cross-section when cut along a plane perpendicular to the circumferential direction, backlash and other looseness do not occur. Furthermore, although an axial force is generated in the speed reducer 31 of the present embodiment, this force can be received by the fixing device 32 . That is, it is possible to suppress the movement of the input portion of the speed reducer 31 in the axial direction.
 本実施の形態における固定装置32のリング部材35,36は、それぞれが円錐面を有する。この構成を採用することにより、押圧フランジ34の先端部34aにてリング部材36を押圧した時に、円錐面同士が接触する。先端部34aによる回転軸の方向の押圧力を、効率よく径方向の縮径する力に変換することができる。なお、リング部材が接触する面は、円錐面に限られず、周方向に垂直な平面で切断したときの断面形状が曲線状に形成されていても構わない。 The ring members 35, 36 of the fixing device 32 in this embodiment each have a conical surface. By adopting this configuration, when the ring member 36 is pressed by the tip portion 34a of the pressing flange 34, the conical surfaces come into contact with each other. It is possible to efficiently convert the pressing force in the direction of the rotation axis by the distal end portion 34a into a radial contraction force. In addition, the surface with which the ring member contacts is not limited to the conical surface, and the cross-sectional shape when cut along a plane perpendicular to the circumferential direction may be formed in a curved shape.
 本実施の形態では、基材33と押圧フランジ34とを互いに近づく向きに移動して、基材33および押圧フランジ34を付勢する締結部材として、ボルト37を採用している。この構成を採用することにより、ボルト軸力の強い力で基材33および押圧フランジ34に対して、互いに近づく向きに力を加えることができる。また、ボルト37を採用することにより、容易に取り外すことができる。 In the present embodiment, bolts 37 are employed as fastening members that move the base material 33 and the pressing flange 34 toward each other to bias the base material 33 and the pressing flange 34 . By adopting this configuration, it is possible to apply a force to the base material 33 and the pressing flange 34 in a direction of approaching each other with a strong force of the bolt axial force. Moreover, by adopting the bolt 37, it can be easily removed.
 本実施の形態における第1の回転部材は、電動機45の出力シャフトである。第1の回転部材は、この形態に限られず、任意の回転する部材を採用することができる。例えば、第1の回転部材は、減速機の一部分であっても構わない。 The first rotating member in this embodiment is the output shaft of the electric motor 45 . The first rotating member is not limited to this form, and any rotating member can be adopted. For example, the first rotating member may be part of a speed reducer.
 本実施の形態におけるシャフト21は、中空穴を有する円筒状の部材である。このように、円筒状のシャフトの場合に本実施の形態の動力伝達機構を採用することにより、シャフトの厚さを薄くすることができる。または、シャフトの内部の中空穴の径を大きくすることができる。例えば、空気の配管または電線等の線条体を関節部の内部に通す場合がある。本実施の形態の動力伝達機構では、保護管の内部の空間を大きくすることができて、多くの線条体を通すことができる。 The shaft 21 in this embodiment is a cylindrical member having a hollow hole. Thus, by adopting the power transmission mechanism of the present embodiment in the case of a cylindrical shaft, the thickness of the shaft can be reduced. Alternatively, the diameter of the hollow hole inside the shaft can be increased. For example, a filamentous body such as an air pipe or an electric wire may be passed through the interior of the joint. In the power transmission mechanism of this embodiment, the space inside the protective tube can be increased, and many filaments can be passed through it.
 図2を参照して、本実施の形態のシャフト21は、シャフト21の回転軸の方向の移動を規制する移動規制部としての段差部21aおよび段差部21bを有する。段差部21aおよび段差部21bに軸受け51,52が係合している。軸受け51は、筐体22により固定され、軸受け52は、軸受け固定部材28により固定されている。このように、シャフト21の回転軸の方向の移動を規制する移動規制部を設けることにより、シャフト21の軸方向の移動が抑制される。この結果、シャフト21の周りに配置されている装置が安定して駆動する。例えば、減速機31の波動発生部31aの軸方向の移動を抑制して、安定した減速を行うことができる。または、エンコーダ47は光が通過するスリットを有する円板を備える場合が有る。この場合に、円板はシャフト21に固定されている。移動規制部を形成することにより、エンコーダ47の円板の軸方向の移動を抑制して、精度よく電動機45の回転位置を検出することができる。 Referring to FIG. 2, shaft 21 of the present embodiment has stepped portion 21a and stepped portion 21b as movement restricting portions that restrict movement of shaft 21 in the direction of the rotation axis. Bearings 51 and 52 are engaged with the stepped portion 21a and the stepped portion 21b. The bearing 51 is fixed by the housing 22 , and the bearing 52 is fixed by the bearing fixing member 28 . In this way, by providing the movement restricting portion that restricts the movement of the shaft 21 in the direction of the rotation axis, the movement of the shaft 21 in the axial direction is suppressed. As a result, the devices arranged around the shaft 21 are stably driven. For example, it is possible to suppress the axial movement of the wave generating portion 31a of the speed reducer 31 and perform stable deceleration. Alternatively, encoder 47 may comprise a disk with a slit through which light passes. In this case the disc is fixed to the shaft 21 . By forming the movement restricting portion, the axial movement of the disc of the encoder 47 is suppressed, and the rotational position of the electric motor 45 can be detected with high accuracy.
 本実施の形態の固定装置32の基材33と第2の回転部材とは、一体的に形成することができる。例えば、基材33と波動発生部31aの枠体とを一体的に形成することができる。ところが、ボルト37を締め付けることにより、基材33が変形して波動発生部31aにも変形が伝播してしまい、減速機31が正常に作動しなくなる虞が有る。このために、本実施の形態のように、固定装置の基材と第2の回転部材とは別の部材とし、変形が伝播し難い構造にするのが好ましい。 The base material 33 and the second rotating member of the fixing device 32 of this embodiment can be integrally formed. For example, the base material 33 and the frame of the wave generating section 31a can be integrally formed. However, by tightening the bolt 37, the base material 33 is deformed, and the deformation is propagated to the wave generating portion 31a, which may cause the reduction gear 31 to malfunction. For this reason, it is preferable that the base member of the fixing device and the second rotating member are separate members, and that the deformation is less likely to propagate, as in the present embodiment.
 図6に、本実施の形態の固定装置の基材の変形例を示す拡大断面図を示す。図7に、基材のねじ穴が形成されている部分の拡大斜視図を示す。変形例の基材40は、前述の基材33と同様に、窪み部40aおよびねじ穴40bを有する。基材40は、ねじ穴40bが形成されている領域に形成された突出部40cを有する。突出部40cは、基材40の表面から突出する部分である。突出部40cは、ボルト38のねじ穴40bの周りに形成されている。ここでの例では、突出部40cは円錐台の形状を有する。基材40は、突出部40cの頂面が減速機31の波動発生部31aに接触している。 FIG. 6 shows an enlarged cross-sectional view showing a modification of the base material of the fixing device of the present embodiment. FIG. 7 shows an enlarged perspective view of the portion of the substrate where the screw holes are formed. The modified base material 40 has recesses 40a and screw holes 40b, like the base material 33 described above. The substrate 40 has a protruding portion 40c formed in the area where the screw hole 40b is formed. The projecting portion 40 c is a portion that projects from the surface of the base material 40 . The projecting portion 40c is formed around the threaded hole 40b of the bolt 38. As shown in FIG. In the example here, the protrusion 40c has the shape of a truncated cone. The substrate 40 is in contact with the wave generating portion 31a of the speed reducer 31 at the top surface of the projecting portion 40c.
 基材40と押圧フランジ34とを近づける方向に付勢するボルト37を締め付けると、基材40に変形が生じる場合が有る。基材と波動発生部とが大きな面積にて接触していると、基材の変形量が多く伝播して、波動発生部31aも変形し易くなる虞がある。この結果、減速機の歯部の噛み合いに不良が生じる虞がある。また、異音が生じたり歯部が早期に摩耗したりする。変形例の基材40のように、ボルト38が配置されている周囲部分のみが波動発生部31aに接触して、その他の部分は波動発生部31aに接触しないように、突出部40cを設けることにより、基材40の変形が波動発生部31aに伝播する量を最小に抑制することができる。 When tightening the bolt 37 that biases the base material 40 and the pressing flange 34 in a direction to bring them closer together, the base material 40 may be deformed. If the substrate and the wave generating portion are in contact with each other over a large area, a large amount of deformation of the substrate may be propagated, and the wave generating portion 31a may be easily deformed. As a result, there is a possibility that the meshing of the gear teeth of the speed reducer may be defective. In addition, abnormal noise is generated and the teeth are worn out early. Like the base material 40 of the modified example, the projecting portion 40c is provided so that only the peripheral portion where the bolts 38 are arranged contacts the wave generating portion 31a, and other portions do not contact the wave generating portion 31a. Therefore, the amount of deformation of the base material 40 propagated to the wave generating portion 31a can be minimized.
 本実施の形態の第1の動力伝達機構を備える第1の駆動装置は、前腕アームを駆動軸J4の周りに回転する部分に配置されているが、この形態に限られない。他の関節部にも第1の駆動装置と同様の装置を適用することができる。 Although the first drive device including the first power transmission mechanism of the present embodiment is arranged at the portion that rotates the forearm arm around the drive shaft J4, it is not limited to this form. A device similar to the first driving device can be applied to other joints.
 図8に、本実施の形態における第2の動力伝達機構を備える第2の駆動装置の断面図を示す。図8は、図1に示すロボット1の手首15の部分の断面図を示している。第2の駆動装置3は、手首15を駆動する。手首15には、駆動軸J5の周りに手首15を回転する機構と、駆動軸J6の周りにフランジ16を回転する機構とが配置されている。本実施の形態における第2の動力伝達機構は、駆動軸J6の周りにフランジ16を回転する機構に適用されている。 FIG. 8 shows a cross-sectional view of a second driving device having a second power transmission mechanism according to this embodiment. FIG. 8 shows a cross-sectional view of the wrist 15 portion of the robot 1 shown in FIG. A second drive device 3 drives the wrist 15 . A mechanism for rotating the wrist 15 around the drive axis J5 and a mechanism for rotating the flange 16 around the drive axis J6 are arranged on the wrist 15 . The second power transmission mechanism in this embodiment is applied to a mechanism that rotates the flange 16 around the drive shaft J6.
 フランジ16を回転するための電動機から出力される回転力は、ピニオン軸84に伝達される。ピニオン軸84は、回転軸RAの周りに回転する。ここでは、電動機の回転力を伝達するために、例えばハイポイドギヤが採用されている。ピニオン軸84の先端の歯部84aは、リンクギヤ83の歯部83aと係合する。シャフト81は、軸受け101,102により支持されている。シャフト81は、リンクギヤ83と共に駆動軸J5の周りに回転する。シャフト81には、かさ歯車82が一体的に形成されている。かさ歯車82の先端の歯部82aは、フランジ16に固定された歯車89と係合する。かさ歯車82が駆動軸J5の周りに回転することにより、フランジ16は駆動軸J6の周りに回転する。 The torque output from the electric motor for rotating the flange 16 is transmitted to the pinion shaft 84. The pinion shaft 84 rotates around the rotation axis RA. Here, for example, a hypoid gear is employed to transmit the torque of the electric motor. A toothed portion 84 a at the tip of the pinion shaft 84 engages with a toothed portion 83 a of the link gear 83 . Shaft 81 is supported by bearings 101 and 102 . The shaft 81 rotates together with the link gear 83 around the drive shaft J5. A bevel gear 82 is integrally formed with the shaft 81 . A toothed portion 82 a at the tip of the bevel gear 82 engages with a gear 89 fixed to the flange 16 . Rotation of the bevel gear 82 about the drive axis J5 causes the flange 16 to rotate about the drive axis J6.
 図9に、本実施の形態における第2の動力伝達機構の拡大斜視図を示す。図8および図9を参照して、第2の動力伝達機構6は、シャフト81にリンクギヤ83を固定する固定装置92を含む。第2の動力伝達機構6では、シャフト81が第1の回転部材に相当し、リンクギヤ83が第2の回転部材に相当する。第1の回転部材および第2の回転部材は、減速機の一部分の部材である。第2の動力伝達機構6では、第2の回転部材の回転力が第1の回転部材に伝達される。 FIG. 9 shows an enlarged perspective view of the second power transmission mechanism in this embodiment. 8 and 9, the second power transmission mechanism 6 includes a fixing device 92 that fixes the link gear 83 to the shaft 81. As shown in FIG. In the second power transmission mechanism 6, the shaft 81 corresponds to the first rotating member, and the link gear 83 corresponds to the second rotating member. The first rotating member and the second rotating member are part of the speed reducer. In the second power transmission mechanism 6, the torque of the second rotating member is transmitted to the first rotating member.
 固定装置92は、窪み部93aを有する基材93と、先端部94aを有する押圧フランジ94とを含む。先端部94aは、窪み部93aに嵌合するように形成されている。窪み部93aには、円錐面を有するリング部材95,96が配置されている。また、固定装置92は、基材93と押圧フランジ94とを互いに近づける向きに力を加える締結部材としてボルト97を有する。ボルト97を締め付けることにより、リング部材95,96の作用により、基材93とシャフト81とが互いに固定される。固定装置92の実施例において、基材93の押圧フランジ94側の表面には、押圧フランジ94に向かって端部が突き出している。突き出した端部は、押圧フランジ94に接触している。この構成により、ボルト97の緩み又は疲労折損を回避しつつ、リング部材95の縮径力を確保できる。また、基材93の外径が比較的大きい場合に、外周部の変形を抑制することができる。 The fixing device 92 includes a base material 93 having a recessed portion 93a and a pressing flange 94 having a tip portion 94a. The tip portion 94a is formed so as to fit into the recessed portion 93a. Ring members 95 and 96 having conical surfaces are arranged in the recessed portion 93a. The fixing device 92 also has a bolt 97 as a fastening member that applies force in a direction to bring the base material 93 and the pressing flange 94 closer together. By tightening the bolt 97, the action of the ring members 95, 96 fixes the base 93 and the shaft 81 to each other. In an embodiment of the fixing device 92 , the surface of the substrate 93 facing the pressure flange 94 has an end projecting towards the pressure flange 94 . The protruding end contacts the pressure flange 94 . With this configuration, it is possible to secure the force for reducing the diameter of the ring member 95 while avoiding loosening or fatigue breakage of the bolt 97 . Moreover, when the outer diameter of the base material 93 is relatively large, deformation of the outer peripheral portion can be suppressed.
 基材93は、第2の回転部材としてのリンクギヤ83を固定する取付け部としてのねじ穴93bを有する。リンクギヤ83は、ボルト98により基材93に固定されている。リンクギヤ83の回転力は、第2の動力伝達機構6を介してシャフト81に伝達される。シャフト81が回転することにより、かさ歯車82を介してフランジ26に回転力が伝達される。 The base material 93 has a screw hole 93b as a mounting portion for fixing the link gear 83 as the second rotating member. The link gear 83 is fixed to the base material 93 with bolts 98 . The rotational force of the link gear 83 is transmitted to the shaft 81 via the second power transmission mechanism 6 . Rotation of the shaft 81 transmits torque to the flange 26 via the bevel gear 82 .
 また、手首15には、前腕アーム11に対して手首15を駆動軸J5の周りに回転する機構を有する。この機構では、図示しないピニオン軸により、リンクギヤ104が回転する。リンクギヤ104と介在部材105とは、ボルト106により互いに固定されている。また、介在部材105は、図示しない締結部材により筐体88に固定されている。リンクギヤ104および介在部材105は、軸受け101,102に支持されている。また、リンクギヤ104は、主軸受け103の内輪103aに固定されている。 In addition, the wrist 15 has a mechanism for rotating the wrist 15 around the drive axis J5 with respect to the forearm arm 11. In this mechanism, a pinion shaft (not shown) rotates the link gear 104 . The link gear 104 and the interposed member 105 are fixed to each other by bolts 106 . Also, the intervening member 105 is fixed to the housing 88 by a fastening member (not shown). The link gear 104 and the interposed member 105 are supported by bearings 101 and 102 . Also, the link gear 104 is fixed to the inner ring 103 a of the main bearing 103 .
 主軸受け103の外輪103bは、ボルト107により筐体86に固定されている。筐体86には、蓋部材として機能する筐体87がボルト等の締結部材にて固定されている。筐体86,87および外輪103bは、前腕アーム11に固定されている。筐体86,87および外輪103bは、駆動軸J5の周りに回転しない部分である。これに対して、リンクギヤ104が回転することにより、リンクギヤ104、介在部材105、および筐体88は、駆動軸J5の周りに一体的に回転する。このように、手首15は、駆動軸J5の周りに回転する。 The outer ring 103b of the main bearing 103 is fixed to the housing 86 with bolts 107. A housing 87 functioning as a cover member is fixed to the housing 86 with a fastening member such as a bolt. Housings 86 , 87 and outer ring 103 b are fixed to forearm arm 11 . The housings 86, 87 and the outer ring 103b are parts that do not rotate around the drive shaft J5. On the other hand, when the link gear 104 rotates, the link gear 104, the intervening member 105, and the housing 88 rotate integrally around the drive shaft J5. Thus, the wrist 15 rotates around the drive axis J5.
 介在部材105と筐体86とが対向する部分には、内部の潤滑油が外部に漏れ出ないように、また外部からの異物の侵入を防ぐために、オイルシール109が配置されている。また、フランジ16と筐体88とが対向する部分にも、同様の目的でオイルシール110が配置されている。 An oil seal 109 is arranged at the portion where the intervening member 105 and the housing 86 face each other to prevent internal lubricating oil from leaking to the outside and to prevent foreign matter from entering from the outside. An oil seal 110 is also arranged for the same purpose at the portion where the flange 16 and the housing 88 face each other.
 第2の動力伝達機構6を含む第2の駆動装置3においても、容易に分解して、内部の部品を交換することができる。例えば、筐体86と筐体87とを固定する締結部材を外すことにより筐体87を筐体86から取り外すことができる。ピニオン軸84およびリンクギヤ104に係合するピニオン軸を引き抜いた後にボルト98を取り外すことにより、リンクギヤ83を基材93から取り外ことができる。また、ボルト97を緩めることにより、固定装置92をシャフト81から取り外すことができる。 The second driving device 3 including the second power transmission mechanism 6 can also be easily disassembled to replace internal parts. For example, the housing 87 can be removed from the housing 86 by removing a fastening member that fixes the housing 86 and the housing 87 together. The link gear 83 can be removed from the base material 93 by removing the bolt 98 after pulling out the pinion shaft 84 and the pinion shaft that engages with the link gear 104 . Also, the fixing device 92 can be removed from the shaft 81 by loosening the bolt 97 .
 さらに、ボルト106およびボルト107を取り外すことにより、リンクギヤ104を取り外すことができて、軸受け101および主軸受け103を取り出すことができる。更に、図示しない締結部材を取り外すことにより、介在部材105を筐体88から取り外すことができる。そして、軸受け102を取出すことができる。このように、締結部材を外すことにより第2の駆動装置3を細部まで分解することができる。軸受け101,102およびオイルシール109等の部品を交換することも可能である。 Furthermore, by removing the bolts 106 and 107, the link gear 104 can be removed, and the bearing 101 and the main bearing 103 can be taken out. Furthermore, the intervening member 105 can be removed from the housing 88 by removing a fastening member (not shown). Then the bearing 102 can be taken out. Thus, the second driving device 3 can be disassembled in detail by removing the fastening member. Parts such as bearings 101 and 102 and oil seal 109 can also be replaced.
 第3の比較例としては、固定装置92にてシャフト81とリンクギヤ83とを固定する代わりに、インボリュートスプライン結合にて、シャフトとリンクギヤとを連結することができる。そして、結合部に接着剤を配置することにより、バックラッシ量を低減することができる。しかしながら、この方法では、駆動装置を分解する時に、硬化した接着剤を完全に除去しなくてはならない。このために、分解が困難であったり、分解に時間がかかったりする。これに対して、本実施の形態の第2の動力伝達機構6を採用することにより、容易に駆動装置を分解することができて、部品を取り替えることができる。 As a third comparative example, instead of fixing the shaft 81 and the link gear 83 with the fixing device 92, the shaft and the link gear can be connected by an involute spline connection. By arranging the adhesive on the connecting portion, the amount of backlash can be reduced. However, with this method, the hardened adhesive must be completely removed when the drive is disassembled. For this reason, decomposition is difficult or takes a long time. In contrast, by adopting the second power transmission mechanism 6 of the present embodiment, the driving device can be easily disassembled and the parts can be replaced.
 第2の動力伝達機構のその他の構成、作用および効果については、第1の動力伝達機構と同様であるので、ここでは説明を繰り返さない。第1の動力伝達機構および第2の動力伝達機構を参照して、本実施の形態では、第1の回転部材および第2の回転部材のうち、一方の回転部材の回転力が基材を介して他方の回転部材に伝達される。 Other configurations, actions and effects of the second power transmission mechanism are the same as those of the first power transmission mechanism, so description thereof will not be repeated here. Referring to the first power transmission mechanism and the second power transmission mechanism, in the present embodiment, the rotational force of one of the first rotating member and the second rotating member is transmitted through the base material. is transmitted to the other rotating member.
 図10に、本実施の形態における第3の動力伝達機構の拡大図を示す。第3の動力伝達機構7は、第2の動力伝達機構6の変形例である。第3の動力伝達機構7は、基材113および押圧フランジ114を含む固定装置112を備える。基材113の窪み部113aには、リング部材115が配置されている。このように、単一のリング部材が固定装置に配置されていても構わない。第3の動力伝達機構7は、第2の動力伝達機構6のリング部材96が基材93と一体になった構成を有する。第3の動力伝達機構7では、リング部材115に縮径する力が作用する。 FIG. 10 shows an enlarged view of the third power transmission mechanism in this embodiment. A third power transmission mechanism 7 is a modification of the second power transmission mechanism 6 . The third power transmission mechanism 7 comprises a fixing device 112 including a base 113 and a pressing flange 114 . A ring member 115 is arranged in the recessed portion 113 a of the base material 113 . Thus, a single ring member may be arranged on the fixation device. The third power transmission mechanism 7 has a structure in which the ring member 96 of the second power transmission mechanism 6 is integrated with the base material 93 . In the third power transmission mechanism 7 , a diameter-reducing force acts on the ring member 115 .
 また、第3の動力伝達機構7においては、基材113と押圧フランジ114とが近づく向きに移動するように付勢する締結部材として、ナット117が配置されている。シャフト81の端部の外周面には、ねじが形成されている。ナット117は、シャフト81に形成されたねじに係合する。ナット117を締め付けることにより、押圧フランジ114と基材113とを互いに近づく向きに押圧することができる。このように、締結部材としてはボルトに限られず、押圧フランジと基材とを互いに近づける向きに力を加える任意の部材を採用することができる。 Further, in the third power transmission mechanism 7, a nut 117 is arranged as a fastening member that urges the base member 113 and the pressing flange 114 to move toward each other. A thread is formed on the outer peripheral surface of the end of the shaft 81 . Nut 117 engages threads formed in shaft 81 . By tightening the nut 117, the pressing flange 114 and the base material 113 can be pressed toward each other. As described above, the fastening member is not limited to the bolt, and any member that applies force in a direction to bring the pressing flange and the base material closer to each other can be employed.
 第3の動力伝達機構のその他の構成、作用および効果については、第2の動力伝達機構と同様であるので、ここでは説明を繰り返さない。 Other configurations, actions and effects of the third power transmission mechanism are the same as those of the second power transmission mechanism, so description thereof will not be repeated here.
 本実施の形態の動力伝達機構を含む駆動装置は、ロボットの関節部に配置されているが、この形態に限られない。ロボットの任意の部分を駆動する機構に本実施の形態の動力伝達機構を適用することができる。 Although the driving device including the power transmission mechanism of the present embodiment is arranged in the joint of the robot, it is not limited to this form. The power transmission mechanism of this embodiment can be applied to a mechanism that drives any part of the robot.
 上記の実施の形態は、適宜組み合わせることができる。上述のそれぞれの図において、同一または相等する部分には同一の符号を付している。なお、上記の実施の形態は例示であり発明を限定するものではない。また、実施の形態においては、請求の範囲に示される実施の形態の変更が含まれている。 The above embodiments can be combined as appropriate. In each of the above figures, the same reference numerals are given to the same or equivalent parts. It should be noted that the above embodiment is an example and does not limit the invention. Further, the embodiments include modifications of the embodiments indicated in the claims.
 1 ロボット
 2,3 駆動装置
 5,6,7 動力伝達機構
 16 フランジ
 21 シャフト
 21a,21b 段差部
 31 減速機
 31a 波動発生部
 31c 環状部材
 32,92,112 固定装置
 33,40,93,113 基材
 33a,40a,93a 窪み部
 33b,40b ねじ穴
 40c 突出部
 34,94,114 押圧フランジ
 34a,94a,114a 先端部
 35,36,95,96,115 リング部材
 37,38,97,98 ボルト
 117 ナット
 45 電動機
 81 シャフト
 83 リンクギヤ
Reference Signs List 1 robot 2, 3 drive device 5, 6, 7 power transmission mechanism 16 flange 21 shaft 21a, 21b stepped portion 31 speed reducer 31a wave generator 31c annular member 32, 92, 112 fixing device 33, 40, 93, 113 base material 33a, 40a, 93a recess 33b, 40b screw hole 40c projection 34, 94, 114 pressure flange 34a, 94a, 114a tip 35, 36, 95, 96, 115 ring member 37, 38, 97, 98 bolt 117 nut 45 electric motor 81 shaft 83 link gear

Claims (11)

  1.  第1の回転部材を挿通する穴部を有し、前記第1の回転部材の回転軸に沿って延びる窪み部を内面に有する基材と、
     前記窪み部に配置され、周方向に垂直な平面で切断した時の断面形状が略くさび形のリング部材と、
     前記第1の回転部材を挿通する穴部を有し、前記リング部材を押圧する先端部を有する押圧フランジと、
     前記基材と前記押圧フランジとが互いに近づく向きに、前記基材および前記押圧フランジに力を加えるための締結部材とを備え、
     前記基材は、第2の回転部材を固定する取付け部を有し、
     前記リング部材は、前記先端部にて回転軸の方向に押圧されて縮径する力が生じて、前記第1の回転部材に固定され、
     前記基材および前記押圧フランジは、前記リング部材に対して固定され、
     前記第1の回転部材および前記第2の回転部材のうち、一方の回転部材の回転力が前記基材を介して他方の回転部材に伝達される、ロボットの動力伝達機構。
    a substrate having a hole through which the first rotating member is inserted and having a recess extending along the rotation axis of the first rotating member on the inner surface;
    a ring member disposed in the recess and having a substantially wedge-shaped cross-sectional shape when cut along a plane perpendicular to the circumferential direction;
    a pressing flange having a hole through which the first rotating member is inserted and having a tip portion for pressing the ring member;
    a fastening member for applying force to the base material and the pressure flange in a direction in which the base material and the pressure flange approach each other;
    The base material has a mounting portion for fixing the second rotating member,
    The ring member is fixed to the first rotating member by being pressed in the direction of the rotating shaft at the tip portion to generate a force to reduce the diameter,
    the substrate and the pressure flange are fixed relative to the ring member;
    A power transmission mechanism for a robot, wherein the rotational force of one of the first rotating member and the second rotating member is transmitted to the other rotating member via the base member.
  2.  前記リング部材は、円錐面を有する、請求項1に記載のロボットの動力伝達機構。 The power transmission mechanism for a robot according to claim 1, wherein the ring member has a conical surface.
  3.  前記締結部材は、ボルトである、請求項1または2に記載のロボットの動力伝達機構。 The power transmission mechanism for a robot according to claim 1 or 2, wherein the fastening member is a bolt.
  4.  前記第1の回転部材は、電動機の出力シャフトである、請求項1から3のいずれか一項に記載のロボットの動力伝達機構。 The power transmission mechanism for a robot according to any one of claims 1 to 3, wherein said first rotating member is an output shaft of an electric motor.
  5.  前記第1の回転部材は、中空穴を有する円筒状のシャフトである、請求項1から4のいずれか一項に記載のロボットの動力伝達機構。 The power transmission mechanism for a robot according to any one of claims 1 to 4, wherein said first rotating member is a cylindrical shaft having a hollow hole.
  6.  前記第1の回転部材は、前記第1の回転部材の回転軸方向の移動を規制する移動規制部を有する、請求項1から5のいずれか一項に記載のロボットの動力伝達機構。 The power transmission mechanism for a robot according to any one of claims 1 to 5, wherein the first rotating member has a movement restricting portion that restricts movement of the first rotating member in the rotation axis direction.
  7.  前記第1の回転部材または前記第2の回転部材は、減速機の一部分の部材である、請求項1に記載のロボットの動力伝達機構。 The power transmission mechanism for a robot according to claim 1, wherein said first rotating member or said second rotating member is a part of a speed reducer.
  8.  前記第1の回転部材または前記第2の回転部材は、前記減速機の入力部である、請求項7に記載のロボットの動力伝達機構。 The power transmission mechanism for a robot according to claim 7, wherein said first rotating member or said second rotating member is an input portion of said speed reducer.
  9.  前記減速機は、回転軸方向から見た形状が楕円形のカムを含む波動歯車装置であり、
     前記第2の回転部材は、前記カムである、請求項8に記載のロボットの動力伝達機構。
    The speed reducer is a strain wave gear device including a cam having an elliptical shape when viewed from the direction of the rotation axis,
    9. The power transmission mechanism for a robot according to claim 8, wherein said second rotating member is said cam.
  10.  前記取付け部は、前記基材の表面から突出する突出部を含み、
     前記基材は、前記突出部の頂面が前記第2の回転部材に接触して、前記第2の回転部材に固定されている、請求項1から9のいずれか一項に記載のロボットの動力伝達機構。
    The mounting portion includes a protruding portion protruding from the surface of the base material,
    The robot according to any one of claims 1 to 9, wherein the base material is fixed to the second rotating member with the top surface of the protrusion contacting the second rotating member. power transmission mechanism.
  11.  請求項1に記載のロボットの動力伝達機構と、
     前記第1の回転部材を回転させる電動機と、を備える、ロボットの駆動装置。
    A power transmission mechanism for a robot according to claim 1;
    and an electric motor that rotates the first rotating member.
PCT/JP2021/031368 2021-08-26 2021-08-26 Robot power transmission mechanism for transmitting rotative force, and robot drive unit WO2023026432A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/031368 WO2023026432A1 (en) 2021-08-26 2021-08-26 Robot power transmission mechanism for transmitting rotative force, and robot drive unit
JP2023543577A JPWO2023026432A1 (en) 2021-08-26 2021-08-26
TW111129152A TW202310990A (en) 2021-08-26 2022-08-03 Robot power transmission mechanism for transmitting rotative force, and robot drive unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031368 WO2023026432A1 (en) 2021-08-26 2021-08-26 Robot power transmission mechanism for transmitting rotative force, and robot drive unit

Publications (1)

Publication Number Publication Date
WO2023026432A1 true WO2023026432A1 (en) 2023-03-02

Family

ID=85322912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031368 WO2023026432A1 (en) 2021-08-26 2021-08-26 Robot power transmission mechanism for transmitting rotative force, and robot drive unit

Country Status (3)

Country Link
JP (1) JPWO2023026432A1 (en)
TW (1) TW202310990A (en)
WO (1) WO2023026432A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656785A (en) * 1970-03-14 1972-04-18 Peter Oskar E Hub-to-shaft connection
JPS6386454U (en) * 1986-11-27 1988-06-06
JPH0842582A (en) * 1994-08-02 1996-02-13 Makino Milling Mach Co Ltd Fastening mechanism for shaft
WO2004078423A1 (en) * 2003-03-05 2004-09-16 Mitsubishi Denki Kabushiki Kaisha Swing device of industrial robot
JP2007303561A (en) * 2006-05-11 2007-11-22 Sumitomo Heavy Ind Ltd Internal meshing planetary gear device
WO2014181374A1 (en) * 2013-05-08 2014-11-13 株式会社ハーモニック・ドライブ・システムズ Flexible outer teeth gear, wave gear device, and fastening method for flexible outer teeth gear
CN108253030A (en) * 2018-03-26 2018-07-06 广州市精谷智能科技有限公司 A kind of transmission shaft expansion set for being used to install open type angular encoder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656785A (en) * 1970-03-14 1972-04-18 Peter Oskar E Hub-to-shaft connection
JPS6386454U (en) * 1986-11-27 1988-06-06
JPH0842582A (en) * 1994-08-02 1996-02-13 Makino Milling Mach Co Ltd Fastening mechanism for shaft
WO2004078423A1 (en) * 2003-03-05 2004-09-16 Mitsubishi Denki Kabushiki Kaisha Swing device of industrial robot
JP2007303561A (en) * 2006-05-11 2007-11-22 Sumitomo Heavy Ind Ltd Internal meshing planetary gear device
WO2014181374A1 (en) * 2013-05-08 2014-11-13 株式会社ハーモニック・ドライブ・システムズ Flexible outer teeth gear, wave gear device, and fastening method for flexible outer teeth gear
CN108253030A (en) * 2018-03-26 2018-07-06 广州市精谷智能科技有限公司 A kind of transmission shaft expansion set for being used to install open type angular encoder

Also Published As

Publication number Publication date
JPWO2023026432A1 (en) 2023-03-02
TW202310990A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US10840758B2 (en) Robot drive unit and robot
JP5398506B2 (en) Flexible wire
US20170370445A1 (en) Speed reducer and actuator
WO2020056963A1 (en) Speed reducer and robot
WO2018055752A1 (en) Motor with decelerator and industrial robot
WO2023026432A1 (en) Robot power transmission mechanism for transmitting rotative force, and robot drive unit
JP7344590B2 (en) Shaft joint structure and coaxial gear unit reduction mechanism that is modularized by applying the shaft joint structure.
JP4032019B2 (en) Multi-axis temporary tightening tool
US11312006B2 (en) Robot drive unit and robot
JP2017087374A (en) Hand connection structure of robot
US11732778B2 (en) Speed reducer
JP6271483B2 (en) Gearbox bearing structure
CN113803434B (en) Harmonic speed reducer
JP2013108611A (en) Rotation speed changing device, electric machine apparatus using the same, actuator, robot, and robot hand
CN113631841B (en) Friction fluctuation speed reducer
JP5494383B2 (en) Wave gear device
EP0990819A1 (en) Harmonic drive dual output apparatus
KR20220158757A (en) circular wave drive
US20230347506A1 (en) Gear mechanism and robot
US11878412B2 (en) Robot joint structure
TW202402483A (en) Robot power transmission mechanism for transmitting rotational force and robot drive unit
JP2016013798A (en) Electric power steering device
JP2023009468A (en) Wave gear device and robot
JP7464641B2 (en) Waterproof structure of reducer and rotating device
JP7373919B2 (en) Input shaft and reducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543577

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE