WO2023026361A1 - Septa - Google Patents

Septa Download PDF

Info

Publication number
WO2023026361A1
WO2023026361A1 PCT/JP2021/030988 JP2021030988W WO2023026361A1 WO 2023026361 A1 WO2023026361 A1 WO 2023026361A1 JP 2021030988 W JP2021030988 W JP 2021030988W WO 2023026361 A1 WO2023026361 A1 WO 2023026361A1
Authority
WO
WIPO (PCT)
Prior art keywords
septa
cylindrical
container
main body
microplate
Prior art date
Application number
PCT/JP2021/030988
Other languages
French (fr)
Japanese (ja)
Inventor
隆介 木村
基博 山崎
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2021/030988 priority Critical patent/WO2023026361A1/en
Publication of WO2023026361A1 publication Critical patent/WO2023026361A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the present invention relates to a septa that seals containers such as wells of microplates and microtubes in a state in which thin tubes such as capillaries and needle nozzles can be inserted and extracted.
  • electrophoresis is used to analyze DNA, proteins, etc.
  • a capillary electrophoresis device having capillaries is widely used.
  • a capillary is a thin tube with a hollow structure, and an inner layer is formed of silica or the like to which charged functional groups are bonded. Liquid samples dispensed into microplates or microtubes are analyzed qualitatively or quantitatively in capillary electrophoresis devices.
  • the tip of the capillary When analyzing a liquid sample, the tip of the capillary is inserted into the well of the microplate or the liquid sample in the microtube.
  • a capillary is used in a state in which the inside is filled with a migration medium.
  • a voltage is applied across the capillary, an electroosmotic flow is formed within the capillary.
  • the components in the liquid sample are drawn into the capillary by electroosmotic flow, and are separated by their migration speed based on their charge and size while flowing through the capillary.
  • the separated components are optically detected by a downstream detector in the capillary.
  • capillary electrophoresis equipment is equipped with an autosampler that automatically performs analysis operations such as sampling.
  • the capillary is fixed in the device so that the tip opens downward.
  • a microplate or microtube containing the liquid sample is prepared on the moving stage.
  • the moving stage is provided so as to be able to move three-dimensionally with respect to the tip of the capillary.
  • a microplate or microtube containing a liquid sample is transported horizontally to below the tip of the capillary by the moving stage, and then vertically moved up and down with respect to the tip of the capillary.
  • the container rises from below with respect to the tip of the capillary that is open downward, the tip of the capillary is inserted into the well of the microplate or the microtube, and the liquid sample can be sucked.
  • the liquid sample placed in the container may evaporate or be exposed to suspended matter in the air after preparation or during automatic analysis. If the amount of the liquid sample is as small as several hundred ⁇ L to 1.5 mL, evaporation of the components will greatly affect the analysis results. In addition, contamination occurs when suspended matter in the air is mixed. To prevent such evaporation and contamination problems, containers containing liquid samples are fitted with septa.
  • a septum has the function of sealing a container containing a sample, etc., in such a way that a thin tube such as a capillary can be inserted and extracted.
  • a septa having a structure for sealing a plurality of arranged containers is used in a microplate in which a plurality of wells are formed and a multiple microtube in which a plurality of microtubes are connected.
  • a septa is provided as a sheet-like cover with an elastic elastomer.
  • a general septa is composed of a sheet-like main body indicated by reference numeral 10, a hole indicated by reference numeral 20, and a bottomed tubular shape indicated by reference numeral 30. and The tubular portion is provided so as to elastically fit inside openings of a plurality of arranged containers, such as a plurality of wells provided on a microplate and a plurality of microtubes connected to each other.
  • the hole part and the cylindrical part form a penetrating structure that allows a thin tube such as a capillary to pass through toward the inside of the container.
  • a slit is provided in the bottom of the tubular portion. The slit is provided so that when a thin tube such as a capillary is inserted, it is elastically deformed and opened by pressure from the thin tube, and closed by an elastic restoring force when the thin tube is pulled out. The elastically opened and closed slit allows the narrow tube to be inserted into the container while suppressing the opening of the container.
  • a divided structure container in which a plurality of container parts are integrally formed and provided so as to be divided into individual container parts.
  • a container having a split structure is formed with a mechanically weak region so that it can be easily split by hand.
  • Patent Literature 1 describes a multi-well sample testing device that includes a sample tray in which a plurality of wells are formed. Connecting members are integrally formed between portions of the sample tray. The connecting member is supposed to be breakable or destroyable. The parts of the sample tray can be separated from each other by breaking or breaking the connection member (see paragraphs 0085 to 0089).
  • Patent Document 2 describes an easily separable container that can be separated when used.
  • the easily separable container has a container material in which a separating portion is formed at a position for separating the container.
  • the separation is formed as a half cut between the containers.
  • the separation section includes a cut section formed by completely cutting only the container material in the thickness direction at a position that will be the edge when separating the container (see paragraphs 0015, 0031, 0038, etc.).
  • Patent Document 3 describes a connected container in which a plurality of unit containers having storage portions for storing contents are connected via breakable weakened portions.
  • the connecting container is configured such that the unit container can be cut off from the connecting container by breaking the weakened portion (see paragraphs 0007, 0009, 0015, etc.).
  • a septa for a microplate has holes and cylindrical parts arranged in a matrix on a sheet-like main body.
  • the hole portion and the tubular portion form a structural unit that seals a well provided on the microplate in such a manner that a thin tube such as a capillary can be inserted and removed.
  • a single sheet-like septa is attached to the upper surface of the microplate.
  • a single sheet-like septa covers all the wells provided on the microplate.
  • a well that does not contain a sample or the like does not need to be sealed with a septa, but a conventional septa has a structure that uniformly covers all the wells. As a result, conventional septa are functionally wasteful and cost unnecessary. A conventional septa can be cut with scissors, a cutter, or the like, but this is troublesome for the user.
  • Patent Documents 1 to 3 disclose containers with split structures.
  • a septa with a split structure is not known.
  • Microplates to which septa are attached may have any number of wells, from several to several tens, for various analyzes, tests, experiments, and the like.
  • a septa is provided as a highly flexible sheet. It is desirable to have a divided structure that can easily secure the connection between the two parts by resin molding.
  • an object of the present invention is to provide a septa that can be used individually by dividing a plurality of structural units that seal a thin tube such as a capillary in an insertable and removable state.
  • the septa according to the present invention comprises a plurality of cylindrical portions that can be fitted inside openings of a plurality of arranged containers, and slits formed in the bottoms of the respective cylindrical portions.
  • a plurality of structural units for sealing thin tubes such as capillaries in an insertable and removable state can be divided and used individually.
  • FIG. 1 is a perspective view showing a septa and a microplate according to an embodiment of the invention
  • FIG. FIG. 4 is a cross-sectional view showing a state in which the septa according to the embodiment of the present invention are attached to the microplate
  • FIG. 4 is a top view of a septa showing a structural example of a parting line
  • FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line
  • FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line
  • FIG. 4 is a top view of a septa showing a structural example of a parting line
  • FIG. 4 is a top view of a septa showing a structural example of a parting line
  • FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line
  • FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line
  • FIG. 4 is a top view of a septa showing a structural example of a parting line
  • FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line
  • FIG. 4 is a top view of a septa showing a structural example of an end portion of a parting line
  • FIG. 4 is a top view of a septa showing a structural example of an end portion of a parting line
  • FIG. 4 is a top view of a septa showing a structural example of an end portion of a parting line
  • FIG. 4 is a top view of a septa showing a structural example of an end portion of a parting line;
  • FIG. 4 is a top view of the septa showing a structural example of the main body and the parting line;
  • 1 is a perspective view showing a septa and multiple microtubes according to an embodiment of the present invention;
  • FIG. 1 is a perspective view showing a septa and a microplate according to an embodiment of the invention.
  • FIG. 2 is a cross-sectional view showing a state in which the septa according to the embodiment of the present invention are attached to the microplate.
  • 1 and 2 show a septa 1 for a microplate and a microplate 200 to which the septa 1 is attached as an example of the septa according to this embodiment.
  • the microplate 200 is used as a container for analyses, inspections, experiments, and the like.
  • the microplate 200 is provided in a substantially rectangular plate shape with resin or the like having high rigidity.
  • resin or the like having high rigidity.
  • polystyrene or polyolefin such as polypropylene is used.
  • the microplate 200 is generally made of resin, but may be made of glass or the like.
  • a concave portion 210 is formed on the top surface of the microplate 200 .
  • the concave portion 210 has a rectangular shape in a plan view of the microplate 200 and is formed over substantially the entire upper surface.
  • the recess 210 is surrounded by a thin plate-like outer frame 220 .
  • the upper surface side of the microplate 200 forms a dish-shaped concave portion 210 by thinning with a substantially uniform thickness while leaving the outer frame 220 around.
  • a plurality of wells 230 are formed in the recess 210 of the microplate 200 .
  • the well 230 has a circular shape in a plan view of the microplate 200 and is provided as a tapered, substantially cylindrical depression.
  • Well 230 opens to the bottom surface of recess 210 .
  • the wells 230 are arranged in a matrix on the bottom surface of the recess 210 at intervals.
  • the well 230 is composed of a cylindrical upper portion 231 and a bottomed cylindrical lower portion 232 tapering downward in diameter.
  • a cylindrical space is formed inside the upper portion 231 .
  • the space inside the well 230 functions as a container, and is filled with a desired liquid or the like.
  • liquids include liquid samples, solutions in which solid samples are dissolved, dispersions in which solid samples such as powders are dispersed, buffers, standard samples, and the like.
  • the liquid itself to be analyzed dispensed into the well 230, the solution or dispersion liquid containing the component to be analyzed, the liquid reactant, the liquid culture, etc., can be used for various analyses, inspections, experiments, and the like. be done.
  • the microplate 200 is a 96-well microplate in which a total of 96 wells 230 are formed in 8 rows ⁇ 12 columns.
  • the well 230 has a capacity of 100 to 400 ⁇ L, an inner diameter of 5 to 8 mm, and a depth of 6 to 20 mm.
  • the capacity, inner diameter, outer diameter, depth, mutual spacing, etc. of the wells 230 differ according to the number of wells in the microplate 200, the arrangement of the wells, and the like.
  • the recess 210 is provided on the upper surface side of the microplate 200, and the well 230 is provided as a tapered, substantially cylindrical depression. is not particularly limited as long as it corresponds to the septa 1 .
  • well 230 may be provided as a substantially cylindrical depression.
  • the bottom of well 230 may be flat-bottomed, round-bottomed, U-bottomed, V-bottomed, or the like.
  • the microplate 200 is used as a container for setting samples in an automatic analyzer equipped with an autosampler.
  • automatic analysis devices include capillary electrophoresis devices, high performance liquid chromatography (HPLC) devices, biochemical analysis devices that perform other component analysis, reaction analysis, etc., chemical analysis devices, An optical analysis device and the like can be mentioned.
  • the autoanalyzer as a device that constitutes an autosampler, includes thin tubes for aspirating or discharging liquid into containers such as the wells 230 of the microplate 200, microtubes, and microvials, wells 230 of the microplate 200, microtubes, A moving stage or the like is provided for relatively moving the container such as a micro vial and the tip of the thin tube.
  • the tubule is inserted into the container like nozzle 400 shown in FIG. 4A.
  • a thin tube that aspirates or discharges liquid is installed in the automatic analyzer so that the tip opens downward.
  • the capillaries may have only the function of sucking liquid from containers such as the wells 230 of the microplate 200, microtubes, and microvials, or may only have the function of discharging liquid into these containers. , may have both functions.
  • capillary tubes include long and flexible capillaries used for separation operations such as electrophoresis, metal needles that have the function of aspirating or ejecting liquid, and capillaries that have the function of aspirating or ejecting liquid.
  • the moving stage may move containers such as the wells 230 of the microplate 200, microtubes, and microvials relative to the tips of the capillaries fixed in the device, or may move the containers fixed in the device. On the other hand, the tip of the capillary or the entire capillary may be relatively moved. Relative movement by the moving stage is performed in horizontal and vertical directions.
  • the septa 1 includes a main body portion 10 formed in a sheet shape, a plurality of holes 20 penetrating vertically through the main body portion 10, and a lower surface of the main body portion 10.
  • a bottomed tubular portion 30 formed so as to protrude downward from the periphery of each of the side holes 20 , and slits 40 formed in the bottom portions of the tubular portions 30 .
  • the septa 1 is provided in a split structure that can be split into split units constituted by one or more holes 20 and cylindrical parts 30 .
  • parting lines 100 are formed between the holes 20 .
  • the parting line 100 forms a structure that facilitates the separation of the divisional units constituted by the hole portion 20 and the tubular portion 30 .
  • the septa 1 is provided for a 96-well microplate.
  • a septa 1 for a 96-well microplate has a total of 96 holes 20 and tubular parts 30 in 8 rows ⁇ 12 columns at positions corresponding to wells 230 of a microplate 200 .
  • slits 40 are provided at the bottom of each cylindrical portion 30 .
  • the septa 1 have the function of sealing the wells 230 of the microplate 200 in such a manner that thin tubes 400 (see FIG. 4A) such as capillaries, needles and nozzles of the automatic analyzer can be inserted and extracted.
  • the septa 1 are attached to the upper surface of the microplate 200 as shown in FIG. 2 after the samples are placed in the wells 230 of the microplate 200 and before the microplate 200 is set in the automatic analyzer.
  • the body portion 10, the hole portion 20 and the cylindrical portion 30 of the septa 1 are integrally resin-molded with an elastic elastomer.
  • Materials for the septa 1 include silicone rubber, fluororubber, ethylene-propylene-diene rubber (EPDM), and the like.
  • the tubular portion 30 is provided with an elastic modulus to the extent that it is easily elastically deformed against pressure when it is inserted into the well 230 and pressure from a thin tube of an automatic analyzer.
  • Compression molding, transfer molding, or the like is used as a method of resin-molding the septa 1 .
  • Compression molding is a method in which a resin material is placed in a molding die and pressed under heat for molding.
  • Transfer molding is a method in which a heated resin material is injected into a molding die and pressurized to perform molding.
  • Compression molding is preferable as a resin molding method because the structure of the molding die is simple and productivity is high.
  • the body part 10 can be provided with a size that can be accommodated in the recess 210 of the microplate 200, as shown in FIGS.
  • the length and width of body portion 10 can be provided to be smaller than the length and width of recess 210 .
  • the thickness of the body portion 10 can be set equal to or smaller than the depth of the recess 210 .
  • the holes 20 and the cylindrical parts 30 are arranged in a matrix on the main body 10 at intervals so as to correspond to the wells 230 of the microplate 200 .
  • the hole portion 20 and the tubular portion 30 form a penetrating structure penetrating the septa 1 vertically.
  • the hole portion 20 has a circular shape in a plan view of the main body portion 10, and is provided as a substantially inverted truncated cone-shaped through hole that penetrates the main body portion 10 vertically.
  • One end of the hole portion 20 is open to the upper surface of the body portion 10 .
  • the other end of the hole portion 20 opens inside the cylindrical portion 30 on the lower surface side of the main body portion 10 .
  • the inner diameter of the hole 20 is equal to or smaller than the inner diameter of the well 230 .
  • the hole portion 20 may be provided as a substantially columnar through hole penetrating vertically through the main body portion 10 .
  • the cylindrical portion 30 has a circular shape in plan view of the body portion 10 and protrudes downward from the periphery of the hole portion 20 on the lower surface side of the body portion 10 in a cylindrical shape with a bottom.
  • the tubular portion 30 is arranged concentrically with the hole portion 20 .
  • the inner peripheral wall of the cylindrical portion 30 continues downward from the lower end of the inner peripheral wall of the hole portion 20 .
  • the hole portion 20 and the cylindrical portion 30 form a recess-like penetrating structure that vertically penetrates the septa 1 .
  • the tubular portion 30 is provided so as to be fitted inside the opening of the well 230 provided on the microplate 200 .
  • each tube 30 is inserted into each well 230 .
  • the outer diameter of the tubular portion 30 is equal to or slightly larger than the inner diameter of the well 230 .
  • the cylindrical portion 30 is provided so as to be easily elastically deformed by pressure from the inner wall of the well 230 and to be pressed against the inner wall of the well 230 by elastic restoring force.
  • the tubular portion 30 when the tubular portion 30 is inserted into the well 230, the tubular portion 30 is pressed from the inner wall of the opening of the well 230 toward the central axis of the tubular portion 30, and is slightly elastically deformed so as to be crushed in the radial direction. to fit into the opening of well 230 .
  • the tubular portion 30 After being inserted into the well 230 , the tubular portion 30 is pressed against the inner wall of the well 230 by an elastic restoring force, and frictional force is generated against the pulling force of the tubular portion 30 from the well 230 .
  • the septa 1 is detachably fixed to the microplate 200 .
  • a slit 40 is formed in the bottom of the cylindrical portion 30.
  • the slit 40 forms a through hole penetrating vertically through the bottom of the tubular portion 30 .
  • thin tubes such as the capillaries, needles, and nozzles 400 of the automatic analyzer are passed through the inside of the hole 20 and the tubular portion 30 and inserted into the slit 40 .
  • the septa 1 is in an inserted state in which fine tubes such as capillaries, needles, and nozzles 400 of an automatic analyzer are inserted through the cylindrical portion 30 into the wells 230 of the microplate 200, like conventional general septa. and an extracted state in which the tubules are extracted from the wells 230 of the microplate 200 to the outside of the tubular portion 30 .
  • a slit 40 formed in the bottom of the cylindrical portion 30 is structured to open and close by elastic deformation.
  • the relative movement between the predetermined wells 230 of the microplate 200 and the tips of the fine tubes is driven. First, horizontal relative motion is driven until a given well 230 is located below the tip of the capillary tube. A relative vertical movement is then driven.
  • the tip of the capillary In the extracted state, when the well 230 and the tip of the capillary tube are driven to move vertically relative to each other, the tip of the capillary penetrates the hole 20 and the tubular part 30 in the axial direction, It is inserted into well 230 through slit 40 .
  • the tip portion of the capillary tube moves out of the well 230 from the cylindrical portion 30 and the hole portion 20 . pulled out to the outside.
  • the septa 1 similarly to a conventional general septa, when the septa 1 shifts from the extracted state to the inserted state, the slit 40 is opened by elastic deformation of the cylindrical portion 30 due to the pressure from the thin tube, and the thin tube is inserted. are provided to allow the insertion of On the other hand, when transitioning from the inserted state to the extracted state or in the extracted state before insertion, the elastic force of the cylindrical portion 30 closes the slit 40 to seal the well 230 . .
  • the well 230 in which the sample is placed can be sealed by the slit 40 that opens and closes elastically in such a manner that the thin tube can be inserted and removed. Therefore, it is possible to suppress the evaporation of components from the well 230 and the entry of contaminants into the well 230 while permitting insertion of the capillary into the well 230 and removal of the capillary from the well 230 . Since the amount of sample placed in the well 230 is often small, if evaporation progresses before or during analysis, the tip of the capillary tube may be exposed to the gas phase, or the concentration of the sample may change. In addition, there is a risk of contamination due to contamination by suspended matter in the air. However, sealing the well 230 with the septa 1 enables accurate and stable analysis.
  • the holes 20 and the tubular portions 30 are each capable of inserting and removing a capillary, needle, nozzle 400 or the like of the automatic analyzer through wells 230 provided on the microplate 200. It forms a structural unit that seals in a state.
  • the septa 1 has a plurality of such structural units corresponding to the plurality of wells 230 provided on the microplate 200 .
  • a plurality of hole portions 20 and cylindrical portions 30 formed on the main body portion 10 are provided so as to be divisible from each other in division units constituted by one or more hole portions 20 and cylindrical portions 30 .
  • the septa 1 is provided so that a plurality of structural units formed by the hole portion 20 and the cylindrical portion 30 can be divided and used separately.
  • a parting line 100 is formed on the body portion 10 of the septa 1 .
  • the parting line 100 is formed between the dividing units composed of the hole portion 20 and the cylindrical portion 30 .
  • the dividing line 100 is provided as a mechanically fragile structure that easily breaks the main body 10 in order to facilitate the separation of the division units.
  • the division unit constituted by the hole portion 20 and the tubular portion 30 constitutes a part of the single sheet-like body portion 10 in which the hole portion 20 and the tubular portion 30 are formed.
  • the septa 1 shown in FIGS. 1 and 2 has a total of 96 holes 20 and cylindrical portions 30 in 8 rows and 12 columns, which can be divided into 4 rows and 12 columns and can be divided into each column. is provided.
  • the minimum division unit is 4 rows ⁇ 1 column, and has a total of 4 structural units that seal the wells 230 provided on the microplate 200 in such a manner that the fine tubes of the automatic analyzer can be inserted and removed. ing.
  • the division units constituted by the hole portion 20 and the tubular portion 30 can be separated at any section of the division line 100 formed on the main body portion 10 . From the entire septa 1, one minimum division unit can be separated, or a set of connected minimum division units can be separated. A portion configured by one or more division units can be separated from the entire septa 1 to cover a portion of the plurality of wells 230 provided on the microplate 200 .
  • the septa 1 is provided so that the hole portion 20 and the cylindrical portion 30 can be divided into 4 rows ⁇ 12 columns and can be divided into each column.
  • the number of holes 20 and cylindrical portions 30 that form the smallest division unit and the pattern of the division lines 100 that divide the division units are appropriately provided according to the number of wells of the microplate 200, the arrangement of the wells, and the like. be able to.
  • the minimum division unit is 4 rows ⁇ 2 columns, 4 rows ⁇ 3 columns, 4 rows ⁇ 4 columns, 8 rows ⁇ 1 column, 8 rows ⁇ 2 columns, 8 rows ⁇ 3 columns, 8 rows ⁇ 4 columns.
  • it may be 2 rows ⁇ 1 column, 2 rows ⁇ 2 columns, 2 rows ⁇ 3 columns, 2 rows ⁇ 4 columns, or the like.
  • the divided units may be configured with the same number of holes 20 and cylindrical parts 30 or different numbers of holes 20 and cylindrical parts 30 .
  • the split units constituted by the hole portion 20 and the cylindrical portion 30 are joined together with a tension that allows manual splitting. If both sides sandwiching the parting line 100 are joined with such tension, the split units can be easily separated by manual pulling or the like.
  • the tension as the maximum allowable load for joining the split units is, for example, 50 N or less, preferably set to 30 N or less, more preferably set to 10 N or less from the viewpoint of easy manual division.
  • the divided unit composed of the hole portion 20 and the cylindrical portion 30 constitutes a part of the single sheet-like main body portion 10 .
  • the dividing line 100 for facilitating the separation of the dividing units can be provided between the dividing units as an appropriate structure such as a perforation, groove, or notch.
  • FIG. 3 is a top view of a septa showing a structural example of a dividing line.
  • FIG. 4A is a cross-sectional view of a septa showing a structural example of a dividing line.
  • FIG. 4B is a cross-sectional view of a septa showing a structural example of a dividing line. 4A and 4B correspond to the cross-sectional view taken along line II of FIG. As shown in FIG. 3, the dividing lines 100 that facilitate separation of the dividing units can be provided as intermittent linear perforations 101 .
  • the perforations 101 can be formed in the vertical or horizontal direction so as to pass between the holes 20 on the main body 10 in a plan view of the main body 10 .
  • the perforations 101 can be formed as an array of perforations 101a penetrating vertically through the main body 10, as shown in FIG. 4A.
  • FIG. 4B it is possible to form an array of recessed recesses 101b that do not penetrate vertically through the main body 10 .
  • FIG. 4A shows a nozzle 400 as an example of a thin tube with a dashed line.
  • recesses 101b are provided on both the upper surface side and the lower surface side of main body 10.
  • the concave portion 101b on the upper surface side and the concave portion 101b on the lower surface side are provided at the same position so as to overlap each other when the main body portion 10 is viewed from above.
  • the recessed portion 101b may be provided only on the upper surface side of the main body portion 10 or may be provided only on the lower surface side of the main body portion 10 .
  • the perforations 101 can be formed by an appropriate method such as punching or resin molding using a molding die.
  • the perforations 101 are formed in a rectangular shape in plan view of the main body 10, but may be provided in an appropriate shape such as a circular shape, an elliptical shape, an oval shape, a diamond shape, a polygonal shape, or the like.
  • the length, width, depth, and pitch of the perforations 101a and the recesses 101b can be appropriately set as long as the division units are properly connected and easily separated when necessary.
  • the parting line 100 is provided as the perforation 101, even if the intermediate part of the parting line 100 is used as the starting point, it is possible to break the space between the perforations 101a or between the recesses 101b with a small force. Units can be easily separated from each other. Moreover, even if there is a place where the dividing lines 100 intersect each other, it is possible to accurately separate the desired dividing unit up to the place where it is separated.
  • FIG. 5 is a top view of a septa showing a structural example of a dividing line.
  • FIG. 6A is a cross-sectional view of a septa showing a structural example of a parting line.
  • FIG. 6B is a cross-sectional view of a septa showing a structural example of a dividing line. 6A and 6B correspond to cross-sectional views taken along line II-II in FIG. As shown in FIG. 5, the dividing line 100 that facilitates separation of the divisional units can be provided as a continuous linear groove 102 .
  • the grooves 102 can be formed vertically or horizontally so as to pass between the holes 20 on the main body 10 in a plan view of the main body 10 .
  • the groove 102 can be formed as a V-shaped triangular groove 102a in a cross-sectional view of the main body 10.
  • the body portion 10 can be formed as a thin portion 102b that is thinned.
  • the triangular groove 102a and the thin portion 102b are provided on both the upper surface side and the lower surface side of the body portion 10.
  • the triangular groove 102a and the thin portion 102b on the upper surface side and the triangular groove 102a and the thin portion 102b on the lower surface side are provided at the same position so as to overlap each other when the main body portion 10 is viewed from above.
  • the triangular groove 102a and the thin portion 102b may be provided only on the upper surface side of the main body portion 10, or may be provided only on the lower surface side of the main body portion 10.
  • the grooves 102 can be formed by an appropriate method such as cutting or resin molding using a molding die.
  • the thin portion 102b is thinned into a rectangular shape in a cross-sectional view of the main body portion 10, but may be formed in an appropriate shape such as a trapezoidal shape, a semicircular shape, a semielliptical shape, a semielliptical shape, a semipolygonal shape, or the like. can be reduced to The width and depth of the triangular groove 102a and the thin portion 102b can be appropriately set as long as the division units are appropriately combined and easily separated when necessary.
  • the main body part 10 formed in a sheet shape can be continuously torn along the parting line 100 with a small force, so that the divided units can be easily separated. . Also, even when cutting along the dividing line 100 with scissors, a cutter, or the like, the cutting edge is guided linearly, so that the desired dividing unit can be cut off accurately.
  • FIG. 7 is a top view of a septa showing a structural example of a dividing line.
  • FIG. 8 is a cross-sectional view of a septa showing a structural example of a dividing line.
  • FIG. 8 corresponds to a cross-sectional view taken along line III-III of FIG.
  • the dividing line 100 that facilitates the separation of the divisional units can be provided as a continuous linear cut 103 .
  • the cuts 103 can be formed in the vertical or horizontal direction so as to pass between the holes 20 on the main body 10 in a plan view of the main body 10 . As shown in FIG. 7, the cut 103 can be formed in a linear shape in which the inner walls are substantially in contact with each other. Moreover, as shown in FIG. 8, it is provided at a depth that does not penetrate the main body portion 10 .
  • the notch 103 is provided only on the upper surface side of the main body 10, but may be provided only on the lower surface side of the main body portion 10, or may be provided on both the upper surface side and the lower surface side of the main body portion 10. may be The notch 103 on the upper surface side and the notch 103 on the lower surface side are provided at the same position so as to overlap when the main body 10 is viewed from above.
  • the cut 103 can be formed by an appropriate method such as cutting or grooving.
  • the depth of the incision 103 can be any appropriate condition as long as the division units are appropriately combined and easily separated when necessary.
  • the cuts 103 are provided in a continuous line, but they may be provided in an intermittent line like perforations 101 .
  • the sheet-shaped body portion 10 can be continuously torn along the dividing line 100 with a small force, so that the divided units can be easily separated. Also, even with the method of pulling the divisional units to both outer sides with respect to the division line 100, the divisional units can be easily separated from each other because the ends of the cuts 103 are easily torn.
  • FIG. 9A is a top view of the septa showing a structural example of the end of the parting line.
  • FIG. 9B is a top view of the septa showing a structural example of the end of the dividing line.
  • FIG. 9C is a top view of a septa showing an example of the structure of the ends of the parting line.
  • a sheet-like main body in which a hole 20 and a tubular portion 30 are formed. 10 may be provided with a notch 105 at the end of the main body 10 that intersects the parting line 100 .
  • the notch 105 can be formed at the end of the main body 10 that intersects the perforation 101 so as to cut inward along the perforation 101 of the main body 10 .
  • the end of the main body 10 that intersects the groove 102 may be cut out along the groove 102 toward the inner side of the main body 10 .
  • the end portion of the main body 10 that intersects the cut 103 may be cut out along the cut 103 toward the inner side of the main body 10 .
  • the notch 105 can be formed by an appropriate method such as punching, cutting, or resin molding using a mold.
  • the notch 105 is cut in a V-shape in plan view of the main body 10, but has a rectangular shape, a trapezoidal shape, a semicircular shape, a semi-elliptical shape, and a semi-oval shape. It can be cut out in an appropriate shape such as a shape, a semi-polygonal shape, a cut shape, or the like.
  • the main body part 10 formed in a sheet shape can be easily torn along the parting line 100 with the notch 105 as a starting point. Also, even when cutting along the dividing line 100 with scissors, a cutter, or the like, the cutting edge is guided along the dividing line 100, so that the desired division unit can be cut off accurately.
  • FIG. 10 is a top view of the septa showing an example of the structure of the main body and the parting line.
  • the main body 10 of the septa 1 can also be provided in the form of a connecting sheet in which island-shaped portions 10a each having a hole 20 and a cylindrical portion 30 are connected to each other via a connecting portion 10b.
  • the divided unit constituted by the hole portion 20 and the cylindrical portion 30 constitutes a part of the single sheet-like main body portion 10, but a connecting sheet-like unit as shown in FIG. It may form part of the main body.
  • a structural unit that seals a container such as a well 230 provided on a microplate 200 in such a manner that a narrow tube such as a nozzle 400 of an automatic analyzer can be inserted and removed is separated by island-shaped portions 10a constituting a connecting sheet. can also
  • the body portion 10 of the septa 1 is formed by connecting island-shaped portions 10a each having a hole portion 20 and a cylindrical portion 30 formed therein.
  • the island-shaped portion 10 a is provided in a rectangular shape having a length and a width larger than the outer diameters of the hole portion 20 and the cylindrical portion 30 when the main body portion 10 is viewed from above.
  • the island-shaped portions 10a are connected to each other in a matrix through strip-shaped connecting portions 10b.
  • the connecting portion 10b is provided in a rectangular shape with a width smaller than that of the island-shaped portion 10a in plan view of the main body portion 10 .
  • Rectangular gaps larger than the perforations 101 shown in FIG. 3 are formed between the island-shaped parts 10a so as to be arranged in the vertical and horizontal directions.
  • a connecting portion 10b spans the space between the island-shaped portions 10a. If the connecting portion 10b is provided with a small tension as the maximum allowable load, it can be easily broken by manual pulling or the like. Therefore, such a gap functions as a dividing line 100 that facilitates separation between division units.
  • a connection sheet in which the island-shaped portions 10a are connected to each other can be formed by punching or resin molding using a mold.
  • the island-shaped portion 10a is provided in a rectangular shape in plan view of the main body portion 10 in FIG. 10, it may be provided in an appropriate shape such as a circular shape, a diamond shape, a polygonal shape, or the like.
  • the island-shaped portion 10a has one structural unit for sealing the wells 230 provided on the microplate 200 in such a manner that the fine tubes of the automatic analyzer can be inserted and removed. may
  • the length, width, and thickness of the island-shaped portion 10a can be set appropriately as long as the strength and flexibility of the body portion 10 are ensured.
  • connecting portion 10b is provided in a rectangular shape in plan view of the main body portion 10 in FIG. 10, it can be provided in an appropriate shape. Although one connecting portion 10b connects the island-shaped portions 10a in FIG. 10, a plurality of connecting portions 10b may be used.
  • the thickness of the connecting portion 10b can be equal to or smaller than the thickness of the island-shaped portion 10a.
  • the length, width, and pitch of the connecting portion 10b can be appropriately set as long as the division units are properly connected to each other and can be easily separated when necessary.
  • a perforation 101 is provided as a parting line 100 when the division unit constituted by the hole portion 20 and the cylindrical portion 30 forms a part of the connecting sheet-like body portion in which the island-shaped portions 10a are connected to each other.
  • the division units can be easily separated from each other as compared with the case. Even if the starting point is the intermediate portion of the gap between the island-shaped portions 10a, the space between the island-shaped portions 10a can be broken with a small force. Moreover, division into the smallest division units becomes easy.
  • the microplate 200 is a 96-well microplate
  • the septa 1 is for a 96-well microplate
  • 230 may be provided for microplates formed thereon. For example, it may be provided for a 24-well microplate, a 48-well microplate, a 384-well microplate, or the like.
  • the septa 1 is for microplates, but the septa 1 with a split structure is for a multiple container having a plurality of arranged container parts, for example, for multiple microtubes. Alternatively, it may be provided for multiple microvials, multiple electrophoresis medium containers of a capillary electrophoresis apparatus, or the like.
  • FIG. 11 is a perspective view showing a septa and multiple microtubes according to an embodiment of the present invention.
  • FIG. 11 shows a septa 2 for multiple microtube and a multiple microtube 300 to which the septa 2 is attached as an example of the septa according to this embodiment.
  • the multiple microtube 300 is used as a container for analyses, inspections, experiments, and the like.
  • the multiple microtube 300 is provided in a structure in which a plurality of microtubes 310 are connected in parallel.
  • Polyolefin such as polypropylene, polyethylene, and polystyrene is used as the material of the multiple microtube 300 .
  • the microtube 310 has a circular shape in a plan view, and is provided as a tapered, substantially cylindrical container. The upper portion of the microtube 310 is circularly opened upward. Inside the microtube 310, a cylindrical space is formed that tapers downward in diameter. The space inside the microtube 310 functions as a container, similar to the wells 230 of the microplate 200, and is filled with a desired liquid or the like.
  • the multiple microtube 300 is an octet microtube in which a total of eight microtubes 310 are connected.
  • the microtubes 310 are connected to each other via belt-shaped portions that are connected to the upper portions.
  • the number of connections, capacity, inner diameter, outer diameter, connection structure, etc. of the multiple microtube 300 may be any appropriate conditions.
  • the microtube 310 is provided as a tapered, substantially cylindrical container, but the shape of the microtube 310 is not particularly limited.
  • the microtube 310 may be provided as a substantially cylindrical microvial type or the like.
  • the multiple microtube 300 is used as a container for setting a sample in an automatic analyzer equipped with an autosampler.
  • the multiple microtube 300 can be supported by a rack or the like provided with a support hole for inserting the microtube 310 and set in an automatic analyzer.
  • the septa 2 As shown in FIG. 11, the septa 2 according to the present embodiment, like the septa 1 for microplates, has a sheet-like main body 10 and a plurality of holes penetrating vertically through the main body 10 . 20, bottomed tubular portion 30 formed so as to protrude downward from the periphery of each of hole portion 20 on the lower surface side of main body portion 10, and slits formed in the respective bottom portions of tubular portion 30 40 and .
  • the microtubes 310 of the multiple microtube 300 can be inserted and removed from the microtubes such as the capillaries, needles, and nozzles 400 of the automatic analyzer. It has the function of sealing in a state where it can be released.
  • the septa 2 is attached to the upper side of the multiple microtube 300 after a sample is placed in the microtube 310 of the multiple microtube 300 and before the multiple microtube 300 is set in an automatic analyzer.
  • the body portion 10, the hole portion 20, and the cylindrical portion 30 of the septa 2 can be integrally resin-molded with an elastic elastomer in the same manner as the microplate septa 1 described above.
  • Materials for the septa 2 include silicone rubber, fluororubber, ethylene-propylene-diene rubber (EPDM), and the like.
  • the main body 10 can have a width approximately equal to the outer diameter of the microtube 310 and a length approximately equal to the outer dimension of the microtube 310 in the connection direction.
  • the structural unit that seals the microtube 310 of the multiple microtube 300 in such a manner that the capillaries, needles, nozzles 400, etc. of the automatic analyzer can be inserted and extracted is the microplate unit.
  • the microplate unit can be provided in the same manner as the septa 1 of .
  • the septa 1 according to the present embodiment is provided with a slit 40 in the bottom of the tubular portion 30 that is opened in advance, similarly to the microplate septa 1 described above.
  • a projection 35 is provided on the side surface of the tubular portion 30 .
  • Other configurations can be provided as structures similar to the septa 1 for microplates described above.
  • septa 2 As in the septa 1 for the microplate described above, thin tubes such as the capillary, needle, and nozzle 400 of the automatic analyzer pass through the tubular portion 30 to the microtubes 310 of the multiple microtube 300. It is configured to adopt an insertion state in which the tubule is inserted and an extraction state in which the tubule is pulled out from the microtube 310 of the multiple microtube 300 to the outside of the cylindrical portion 30 .
  • a slit formed in the bottom of the cylindrical portion 30 is configured to open and close by elastic deformation.
  • the slits are opened by elastic deformation of the cylindrical portion 30 due to pressure from the narrow tube when the septa 2 shifts from the extracted state to the inserted state. Provided to allow insertion of tubules.
  • the elastic force of the cylindrical portion 30 closes the slit to seal the container such as the well 230 . .
  • the microtube 310 containing the sample can be sealed in a state in which the thin tube can be inserted and removed by the slit that opens and closes elastically. Therefore, while permitting the insertion of the capillary into the microtube 310 and the withdrawal of the capillary from the microtube 310, the evaporation of the components from the microtube 310 and the entry of contaminants into the microtube 310 are prevented. can be suppressed. Sealing the microtube 310 with the septa 2 enables accurate and stable analysis.
  • the hole portion 20 and the cylindrical portion 30 are in a state in which the microtube 310 of the multiple microtube 300 can be inserted and removed, and the capillary, needle, nozzle 400, etc. of the automatic analyzer can be inserted and removed. to form a structural unit to be sealed.
  • the septa 2 has a plurality of such structural units corresponding to the plurality of microtubes 310 connected to each other.
  • a plurality of hole portions 20 and cylindrical portions 30 formed on the main body portion 10 are provided so as to be divisible from each other in division units constituted by one or more hole portions 20 and cylindrical portions 30 .
  • the septa 2 is provided so that a plurality of structural units formed by the hole portion 20 and the cylindrical portion 30 can be divided and used separately.
  • a dividing line 100 is formed on the main body portion 10 of the septa 2 in the same manner as the septa 1 for microplates.
  • the division unit constituted by the hole portion 20 and the tubular portion 30 constitutes a part of the single sheet-like body portion 10 in which the hole portion 20 and the tubular portion 30 are formed.
  • the septa 2 shown in FIG. 11 is provided with a total of eight hole portions 20 and cylindrical portions 30 that can be divided one by one.
  • the septa 2 is provided with the hole portion 20 and the cylindrical portion 30 that can be divided into pieces. Also, the pattern of the division lines 100 that divide the division units can be appropriately provided according to the number of connections of the multiple microtubes 300 and the like.
  • the divided unit constituted by the hole portion 20 and the cylindrical portion 30 constitutes a part of the single sheet-like main body portion 10 .
  • dividing lines 100 for facilitating the separation of the dividing units are formed by perforations 101, grooves 102, notches 103, etc. , can be provided as an appropriate structure.
  • a notch 105 may be provided at the end of the main body 10 that intersects the parting line 100, as in the septa 1 for the microplate described above.
  • the divided unit constituted by the hole portion 20 and the cylindrical portion 30 constitutes a part of the single sheet-like main body portion 10, but the connecting sheet-like main body portion as shown in FIG. may be part of it.
  • the structural unit that seals the microtube 310 of the multiple microtube 300 in such a manner that the narrow tube of the automatic analyzer can be inserted and removed can also be separated by the island-shaped portion 10a that constitutes the connection sheet.
  • a structural unit is formed that seals containers such as wells and microtubes provided on a microplate in a state in which thin tubes such as capillaries, needles, and nozzles of automatic analyzers can be inserted and removed. Since the hole portion and the cylindrical portion are provided so as to be divisible from each other in divisional units composed of one or more hole portions and cylindrical portions, it is possible to divide these plural structural units and use them individually. can be done. Separable septa have a mechanically fragile structure that allows the main body to be easily broken. can be separated.
  • the division unit constituted by the hole portion and the cylindrical portion may be a form that constitutes a part of the single sheet-like main body or a form that constitutes a part of the connected sheet-like main body. Separability to the extent that units can be easily separated by manual pulling, etc., and connectivity to the extent that mutually connected divided units can be easily attached to a microplate can be achieved without combining different materials or members. , can be easily secured.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible without departing from the scope of the present invention.
  • the present invention is not necessarily limited to having all the configurations included in the above embodiments. Replacing part of the configuration of one embodiment with another configuration, adding part of the configuration of one embodiment to another form, or omitting part of the configuration of one embodiment can be done.
  • the septa according to the above embodiments are for microplates and multiple microtubes.
  • the present invention can be applied to a container or a multiple container integrally provided with a plurality of arranged container parts.
  • the capacity of the container is not limited to the micro order, and can be applied to a container or container portion having an appropriate capacity.
  • septa 1 septa 2 septa 10 main body 10a island-shaped portion 10b connecting portion 20 hole 30 cylindrical portion 40 slit 100 parting line 101 perforation 102 groove 103 notch 105 notch 200 microplate 210 concave portion 220 outer frame 230 well (container) 231 upper part 232 lower part 300 multiple microtube 310 microtube (container) 400 Nozzle (Tube)

Abstract

A septa (1) comprises: a plurality of cylindrical parts (30) which can be fitted into the openings of a plurality of containers (230) which have been arrayed; and a slit (40) formed in a bottom part of each cylindrical part (30). In a state in which the cylindrical parts (30) are fitted into the openings of the containers (230), the septa is configured to be in an inserted state in which a thin tube for suctioning a liquid into the container (230) or discharging the liquid from the same is inserted into the container (230) through the cylindrical part (30), or a withdrawn state in which the thin tube is withdrawn from within the container (230) to the outside beyond the cylindrical part (30). The septa (1) being such that when transitioning from the withdrawn state to the inserted state, the slit (40) is made to open by an elastic deformation of the cylindrical part (30) caused by pressure from the thin tube, and thereby the insertion of the thin tube is permitted; and when transitioning from the inserted state to the withdrawn state, the slit (40) is made to close by an elastic force of the cylindrical part (30), and thereby the container (230) is sealed. The plurality of cylindrical parts (30) are provided such that the cylindrical parts can be separated from each other in a separation unit configured by one or more cylindrical parts (30) by means of a separation line (100).

Description

セプタSepta
 本発明は、マイクロプレートのウェル、マイクロチューブ等の容器を、キャピラリ、ニードルノズル等の細管を挿入可能且つ抜出可能な状態で封止するセプタに関する。 The present invention relates to a septa that seals containers such as wells of microplates and microtubes in a state in which thin tubes such as capillaries and needle nozzles can be inserted and extracted.
 生化学や医療診断等の分野では、DNA、タンパク質等の分析に、電気泳動が利用されている。電気泳動を行う装置としては、キャピラリを備えたキャピラリ電気泳動装置が広く用いられている。キャピラリは、中空構造の細管であり、電荷を持つ官能基が結合したシリカ等で内層が形成されている。キャピラリ電気泳動装置では、マイクロプレートやマイクロチューブに分注された液体試料が、定性的ないし定量的に分析されている。 In fields such as biochemistry and medical diagnostics, electrophoresis is used to analyze DNA, proteins, etc. As a device for electrophoresis, a capillary electrophoresis device having capillaries is widely used. A capillary is a thin tube with a hollow structure, and an inner layer is formed of silica or the like to which charged functional groups are bonded. Liquid samples dispensed into microplates or microtubes are analyzed qualitatively or quantitatively in capillary electrophoresis devices.
 液体試料の分析時には、キャピラリの先端部が、マイクロプレートのウェル内やマイクロチューブ内の液体試料中に挿入される。キャピラリは、内部に泳動媒体が満たされた状態で用いられる。キャピラリの両端に電圧が印加されると、キャピラリ内に電気浸透流が形成される。液体試料中の成分は、電気浸透流によってキャピラリ内に吸引され、キャピラリ内を流れる間に電荷やサイズに基づく移動速度で分離される。分離された成分は、キャピラリ内の下流の検出部で光学的に検出される。 When analyzing a liquid sample, the tip of the capillary is inserted into the well of the microplate or the liquid sample in the microtube. A capillary is used in a state in which the inside is filled with a migration medium. When a voltage is applied across the capillary, an electroosmotic flow is formed within the capillary. The components in the liquid sample are drawn into the capillary by electroosmotic flow, and are separated by their migration speed based on their charge and size while flowing through the capillary. The separated components are optically detected by a downstream detector in the capillary.
 一般に、キャピラリ電気泳動装置は、サンプリング等の分析操作を自動で行うオートサンプラを備えている。キャピラリは、先端部が下方に向けて開口するように装置内に固定されている。液体試料の分析時には、液体試料を入れたマイクロプレートやマイクロチューブが、移動ステージ上に用意される。移動ステージは、キャピラリの先端部に対して3次元的に移動可能に設けられている。 In general, capillary electrophoresis equipment is equipped with an autosampler that automatically performs analysis operations such as sampling. The capillary is fixed in the device so that the tip opens downward. When analyzing a liquid sample, a microplate or microtube containing the liquid sample is prepared on the moving stage. The moving stage is provided so as to be able to move three-dimensionally with respect to the tip of the capillary.
 液体試料を入れたマイクロプレートやマイクロチューブは、移動ステージによって、キャピラリの先端部の下方まで水平方向に搬送された後に、キャピラリの先端部に対して鉛直方向に昇降される。下方に向けて開口したキャピラリの先端部に対して、容器が下方から上昇すると、キャピラリの先端部がマイクロプレートのウェル内やマイクロチューブ内に挿入されて、液体試料の吸引が可能になる。 A microplate or microtube containing a liquid sample is transported horizontally to below the tip of the capillary by the moving stage, and then vertically moved up and down with respect to the tip of the capillary. When the container rises from below with respect to the tip of the capillary that is open downward, the tip of the capillary is inserted into the well of the microplate or the microtube, and the liquid sample can be sucked.
 容器内に入れられた液体試料は、調製後や自動分析中等に、蒸発したり、空気中の浮遊物等に晒されたりする。液体試料が数百μL~1.5mL程度の微量である場合、成分の蒸発が起こると、分析結果に大きく影響する。また、空気中の浮遊物等が混入すると、コンタミネーションが起こる。このような蒸発や汚染の問題を防ぐために、液体試料を入れる容器には、セプタムが取り付けられている。 The liquid sample placed in the container may evaporate or be exposed to suspended matter in the air after preparation or during automatic analysis. If the amount of the liquid sample is as small as several hundred μL to 1.5 mL, evaporation of the components will greatly affect the analysis results. In addition, contamination occurs when suspended matter in the air is mixed. To prevent such evaporation and contamination problems, containers containing liquid samples are fitted with septa.
 セプタムは、試料等を入れた容器をキャピラリ等の細管を挿入可能且つ抜出可能な状態で封止する機能を有している。複数のウェルが形成されたマイクロプレートや、複数のマイクロチューブが連結された多連マイクロチューブには、配列した複数の容器を封止する構造を備えたセプタが用いられている。 A septum has the function of sealing a container containing a sample, etc., in such a way that a thin tube such as a capillary can be inserted and extracted. A septa having a structure for sealing a plurality of arranged containers is used in a microplate in which a plurality of wells are formed and a multiple microtube in which a plurality of microtubes are connected.
 一般に、セプタは、弾性を有するエラストマによって、シート状のカバーとして設けられている。図1に示すように、一般的なセプタは、符号10で示されるようなシート状の本体部と、符号20で示されるような孔部と、符号30で示されるような有底の筒状部と、を備えている。筒状部は、マイクロプレート上に設けられた複数のウェルや、互いに連結された複数のマイクロチューブをはじめ、配列した複数の容器の開口部の内側に弾性的に嵌合するように設けられている。 Generally, a septa is provided as a sheet-like cover with an elastic elastomer. As shown in FIG. 1, a general septa is composed of a sheet-like main body indicated by reference numeral 10, a hole indicated by reference numeral 20, and a bottomed tubular shape indicated by reference numeral 30. and The tubular portion is provided so as to elastically fit inside openings of a plurality of arranged containers, such as a plurality of wells provided on a microplate and a plurality of microtubes connected to each other. there is
 孔部および筒状部は、キャピラリ等の細管を容器内に向けて貫通させる貫通構造を形成している。筒状部の底部には、スリットが設けられている。スリットは、キャピラリ等の細管が挿入されると細管からの押圧で弾性変形して開口し、細管が抜き出されると弾性的な復元力で閉塞するように設けられている。弾性的に開閉するスリットによって、容器内への細管の挿入を許容しつつ、容器の開口を小さく抑制する構造とされている。 The hole part and the cylindrical part form a penetrating structure that allows a thin tube such as a capillary to pass through toward the inside of the container. A slit is provided in the bottom of the tubular portion. The slit is provided so that when a thin tube such as a capillary is inserted, it is elastically deformed and opened by pressure from the thin tube, and closed by an elastic restoring force when the thin tube is pulled out. The elastically opened and closed slit allows the narrow tube to be inserted into the container while suppressing the opening of the container.
 従来、合成樹脂製の容器の分野において、複数の容器部が一体的に形成されており、個々の容器部に分割可能に設けられている分割構造の容器が開発されている。分割構造の容器には、人手によって容易に分割可能とするために、機械的に脆弱な領域が形成されている。 Conventionally, in the field of synthetic resin containers, a divided structure container has been developed in which a plurality of container parts are integrally formed and provided so as to be divided into individual container parts. A container having a split structure is formed with a mechanically weak region so that it can be easily split by hand.
 特許文献1には、複数のウェルが形成された試料トレーを備えるマルチウェル試料試験装置が記載されている。試料トレーの部分同士の間には、接続部材が一体形成されている。接続部材は、折損または破壊することができるものとされている。接続部材の折損または破壊によって、試料トレーの部分同士を分離できる構成とされている(段落0085~0089参照)。 Patent Literature 1 describes a multi-well sample testing device that includes a sample tray in which a plurality of wells are formed. Connecting members are integrally formed between portions of the sample tray. The connecting member is supposed to be breakable or destroyable. The parts of the sample tray can be separated from each other by breaking or breaking the connection member (see paragraphs 0085 to 0089).
 特許文献2には、使用時に容器を分離可能とする易分離性容器が記載されている。易分離性容器は、容器を分離する位置に切り離し部が形成されている容器材を有している。切り離し部は、容器間においては、ハーフカットとして形成されている。切り離し部は、容器を分離する際に辺縁となる位置に、容器材のみを厚さ方向に完全に切り込んでなる切込部を含んでいる(段落0015、0031、0038等参照)。 Patent Document 2 describes an easily separable container that can be separated when used. The easily separable container has a container material in which a separating portion is formed at a position for separating the container. The separation is formed as a half cut between the containers. The separation section includes a cut section formed by completely cutting only the container material in the thickness direction at a position that will be the edge when separating the container (see paragraphs 0015, 0031, 0038, etc.).
 特許文献3には、内容物を収容する収容部を有する複数の単位容器が破断可能な弱化部を介して連結された連結容器が記載されている。連結容器は、弱化部を破断させて連結容器から単位容器を切り取れるように構成されている(段落0007、0009、0015等参照)。 Patent Document 3 describes a connected container in which a plurality of unit containers having storage portions for storing contents are connected via breakable weakened portions. The connecting container is configured such that the unit container can be cut off from the connecting container by breaking the weakened portion (see paragraphs 0007, 0009, 0015, etc.).
特表2017-526362号公報Japanese Patent Publication No. 2017-526362 特開2001-097345号公報JP-A-2001-097345 特開2012-030863号公報JP 2012-030863 A
 マイクロプレート用のセプタは、シート状に形成された本体部上に、行列状に配列した孔部および筒状部を備えている。孔部および筒状部は、マイクロプレート上に設けられたウェルをキャピラリ等の細管を挿抜可能な状態で封止する構造単位を形成している。従来、試料を入れたウェルを封止する際には、マイクロプレートの上面側に、一枚のシート状のセプタが取り付けられている。一枚のシート状のセプタによって、マイクロプレート上に設けられた全ウェルが覆われている。 A septa for a microplate has holes and cylindrical parts arranged in a matrix on a sheet-like main body. The hole portion and the tubular portion form a structural unit that seals a well provided on the microplate in such a manner that a thin tube such as a capillary can be inserted and removed. Conventionally, when sealing wells containing samples, a single sheet-like septa is attached to the upper surface of the microplate. A single sheet-like septa covers all the wells provided on the microplate.
 しかし、各種の分析、検査、実験等に際しては、マイクロプレート上に設けられた複数のウェルのうち、一部のウェルしか使用されない場合がある。試料等を入れていないウェルについては、セプタで封止する必要はないが、従来のセプタは、全ウェルを一律に覆う構造とされている。そのため、従来のセプタでは、機能的な無駄が生じており、無用なコストがかかっている。従来のセプタは、はさみ、カッタ等で裁断して用いることも可能であるが、使用者にとっては手間がかかる。 However, in various analyses, inspections, experiments, etc., only some of the multiple wells provided on the microplate may be used. A well that does not contain a sample or the like does not need to be sealed with a septa, but a conventional septa has a structure that uniformly covers all the wells. As a result, conventional septa are functionally wasteful and cost unnecessary. A conventional septa can be cut with scissors, a cutter, or the like, but this is troublesome for the user.
 特許文献1~3には、分割構造の容器が開示されている。しかし、従来、分割構造のセプタは知られていない。セプタが取り付けられるマイクロプレートは、各種の分析、検査、実験等に際して、数個程度から数十個程度まで、任意の個数のウェルが使用され得る。分割構造の容器を個別に封止するのではなく、複数の容器部が配列した容器に対して、分割自在に取り付けることができるセプタが望まれる。 Patent Documents 1 to 3 disclose containers with split structures. However, conventionally, a septa with a split structure is not known. Microplates to which septa are attached may have any number of wells, from several to several tens, for various analyzes, tests, experiments, and the like. There is a demand for a septa that can be attached to a container in which a plurality of container parts are arranged in a splittable manner, instead of individually sealing the divided containers.
 一般に、セプタは、柔軟性が高いシートとして設けられるが、分割単位同士を人手による引っ張り等によって容易に分離できる程度の分離性と、分割単位の集合を容器に対して容易に取り付けることができる程度の結合性とを、樹脂成形によって容易に確保できる分割構造が望まれる。 In general, a septa is provided as a highly flexible sheet. It is desirable to have a divided structure that can easily secure the connection between the two parts by resin molding.
 そこで、本発明は、キャピラリ等の細管を挿抜可能な状態で封止する複数の構造単位を分割して個別に使用することができるセプタを提供することを目的とする。 Therefore, an object of the present invention is to provide a septa that can be used individually by dividing a plurality of structural units that seal a thin tube such as a capillary in an insertable and removable state.
 前記課題を解決するために本発明に係るセプタは、配列した複数の容器の開口部の内側に嵌合可能な複数の筒状部と、前記筒状部のそれぞれの底部に形成されたスリットと、を備え、前記筒状部が前記開口部に嵌合した状態において、前記容器内に対して液体を吸引または吐出する細管が前記筒状部を通じて前記容器内に挿入された挿入状態と、前記細管が前記容器内から前記筒状部よりも外側に抜き出された抜出状態と、を採るように構成されており、前記抜出状態から前記挿入状態に移行するときには、前記細管からの押圧による前記筒状部の弾性変形で前記スリットを開口させて前記細管の挿入を許容し、前記挿入状態から前記抜出状態に移行するときには、前記筒状部の弾性力で前記スリットを閉塞させて前記容器を封止するセプタであって、前記複数の筒状部は、一以上の前記筒状部によって構成される分割単位で互いに分割可能に設けられているセプタ。 In order to solve the above problems, the septa according to the present invention comprises a plurality of cylindrical portions that can be fitted inside openings of a plurality of arranged containers, and slits formed in the bottoms of the respective cylindrical portions. an inserted state in which a thin tube for sucking or discharging a liquid into or from the container is inserted into the container through the cylindrical portion in a state in which the cylindrical portion is fitted in the opening; and a pulled-out state in which the thin tube is pulled out of the container to the outside of the tubular portion. The slit is opened by the elastic deformation of the cylindrical portion due to the elastic deformation of the cylindrical portion to allow the insertion of the thin tube. A septa for sealing the container, wherein the plurality of cylindrical portions are provided so as to be divided into division units constituted by one or more of the cylindrical portions.
 本発明に係るセプタによると、キャピラリ等の細管を挿抜可能な状態で封止する複数の構造単位を分割して個別に使用することができる。 According to the septa according to the present invention, a plurality of structural units for sealing thin tubes such as capillaries in an insertable and removable state can be divided and used individually.
本発明の実施形態に係るセプタとマイクロプレートを示す斜視図である。1 is a perspective view showing a septa and a microplate according to an embodiment of the invention; FIG. 本発明の実施形態に係るセプタをマイクロプレートに取り付けた状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which the septa according to the embodiment of the present invention are attached to the microplate; 分割線の構造例を示すセプタの上面図である。FIG. 4 is a top view of a septa showing a structural example of a parting line; 分割線の構造例を示すセプタの断面図である。FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line; 分割線の構造例を示すセプタの断面図である。FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line; 分割線の構造例を示すセプタの上面図である。FIG. 4 is a top view of a septa showing a structural example of a parting line; 分割線の構造例を示すセプタの断面図である。FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line; 分割線の構造例を示すセプタの断面図である。FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line; 分割線の構造例を示すセプタの上面図である。FIG. 4 is a top view of a septa showing a structural example of a parting line; 分割線の構造例を示すセプタの断面図である。FIG. 4 is a cross-sectional view of a septa showing a structural example of a parting line; 分割線の端部の構造例を示すセプタの上面図である。FIG. 4 is a top view of a septa showing a structural example of an end portion of a parting line; 分割線の端部の構造例を示すセプタの上面図である。FIG. 4 is a top view of a septa showing a structural example of an end portion of a parting line; 分割線の端部の構造例を示すセプタの上面図である。FIG. 4 is a top view of a septa showing a structural example of an end portion of a parting line; 本体部および分割線の構造例を示すセプタの上面図である。FIG. 4 is a top view of the septa showing a structural example of the main body and the parting line; 本発明の実施形態に係るセプタと多連マイクロチューブを示す斜視図である。1 is a perspective view showing a septa and multiple microtubes according to an embodiment of the present invention; FIG.
 以下、本発明の一実施形態に係るセプタについて、図を参照しながら説明する。なお、以下の各図において共通する構成については同一の符号を付し、重複した説明を省略する。 A septa according to an embodiment of the present invention will be described below with reference to the drawings. In addition, the same code|symbol is attached|subjected about the structure which is common in each following figure, and the overlapping description is abbreviate|omitted.
 図1は、本発明の実施形態に係るセプタとマイクロプレートを示す斜視図である。図2は、本発明の実施形態に係るセプタをマイクロプレートに取り付けた状態を示す断面図である。
 図1および図2には、本実施形態に係るセプタの一例として、マイクロプレート用のセプタ1と、セプタ1が取り付けられるマイクロプレート200を図示している。
FIG. 1 is a perspective view showing a septa and a microplate according to an embodiment of the invention. FIG. 2 is a cross-sectional view showing a state in which the septa according to the embodiment of the present invention are attached to the microplate.
1 and 2 show a septa 1 for a microplate and a microplate 200 to which the septa 1 is attached as an example of the septa according to this embodiment.
 マイクロプレート200は、分析、検査、実験等に際して、容器として用いられている。マイクロプレート200は、剛性が高い樹脂等で略矩形状の板状に設けられている。マイクロプレート200の材料としては、ポリスチレンや、ポリプロピレン等のポリオレフィンが用いられている。マイクロプレート200は、一般に樹脂で形成されるが、ガラス等で形成されてもよい。 The microplate 200 is used as a container for analyses, inspections, experiments, and the like. The microplate 200 is provided in a substantially rectangular plate shape with resin or the like having high rigidity. As a material of the microplate 200, polystyrene or polyolefin such as polypropylene is used. The microplate 200 is generally made of resin, but may be made of glass or the like.
 図1において、マイクロプレート200の上面には、凹部210が形成されている。凹部210は、マイクロプレート200の平面視で矩形状を呈しており、上面の略全体にわたって形成されている。凹部210の周囲は、薄板状の外枠220によって囲まれている。マイクロプレート200の上面側は、周囲に外枠220を残して略一様な厚さで減肉されることにより、ディッシュ状の凹部210を形成している。 In FIG. 1, a concave portion 210 is formed on the top surface of the microplate 200 . The concave portion 210 has a rectangular shape in a plan view of the microplate 200 and is formed over substantially the entire upper surface. The recess 210 is surrounded by a thin plate-like outer frame 220 . The upper surface side of the microplate 200 forms a dish-shaped concave portion 210 by thinning with a substantially uniform thickness while leaving the outer frame 220 around.
 マイクロプレート200の凹部210には、複数のウェル230が形成されている。ウェル230は、マイクロプレート200の平面視で円形状を呈しており、先細りの略円柱状の窪みとして設けられている。ウェル230は、凹部210の底面に開口している。ウェル230は、凹部210の底面上に、互いに間隔を空けて行列状に配列している。 A plurality of wells 230 are formed in the recess 210 of the microplate 200 . The well 230 has a circular shape in a plan view of the microplate 200 and is provided as a tapered, substantially cylindrical depression. Well 230 opens to the bottom surface of recess 210 . The wells 230 are arranged in a matrix on the bottom surface of the recess 210 at intervals.
 図2に示すように、ウェル230は、円筒形状に設けられた上部231と、下方に向かうに連れてテーパ状に縮径する有底の円筒形状に設けられた下部232と、によって構成されている。上部231の内側には、円柱形状の空間が形成されている。下部232の内側には、下方に向かうに連れてテーパ状に縮径する略逆円錐台形状の空間が形成されている。 As shown in FIG. 2, the well 230 is composed of a cylindrical upper portion 231 and a bottomed cylindrical lower portion 232 tapering downward in diameter. there is A cylindrical space is formed inside the upper portion 231 . Inside the lower part 232, there is formed a substantially inverted truncated cone-shaped space that tapers downward in diameter.
 ウェル230の内部の空間は、容器として機能し、所望の液体等が入れられる。液体としては、液体の試料、固体の試料を溶解させた溶液、粉末等の固体の試料を分散させた分散液、バッファ、標準試料等が挙げられる。ウェル230に分注された分析対象の液体自体や、分析対象の成分を含む溶液や分散液や、液体状の反応物、液体状の培養物等が、各種の分析、検査、実験等に供される。 The space inside the well 230 functions as a container, and is filled with a desired liquid or the like. Examples of liquids include liquid samples, solutions in which solid samples are dissolved, dispersions in which solid samples such as powders are dispersed, buffers, standard samples, and the like. The liquid itself to be analyzed dispensed into the well 230, the solution or dispersion liquid containing the component to be analyzed, the liquid reactant, the liquid culture, etc., can be used for various analyses, inspections, experiments, and the like. be done.
 図1および図2において、マイクロプレート200は、8行×12列で計96個のウェル230が形成された96ウェルマイクロプレートとされている。例えば、ウェル230の容量は100~400μL、内径は5~8mm、深さは6~20mm等に設けられる。但し、ウェル230の容量、内径、外径、深さ、相互の間隔等は、マイクロプレート200のウェル数やウェル配列等に応じて異なる。 In FIGS. 1 and 2, the microplate 200 is a 96-well microplate in which a total of 96 wells 230 are formed in 8 rows×12 columns. For example, the well 230 has a capacity of 100 to 400 μL, an inner diameter of 5 to 8 mm, and a depth of 6 to 20 mm. However, the capacity, inner diameter, outer diameter, depth, mutual spacing, etc. of the wells 230 differ according to the number of wells in the microplate 200, the arrangement of the wells, and the like.
 なお、図1および図2において、マイクロプレート200の上面側には、凹部210が設けられており、ウェル230は、先細りの略円柱状の窪みとして設けられているが、マイクロプレート200やウェル230の形状は、セプタ1と対応している限り、特に限定されない。例えば、ウェル230は、略円柱状の窪みとして設けられてもよい。ウェル230の底部は、平底、丸底、U字底、V字底等のいずれであってもよい。 1 and 2, the recess 210 is provided on the upper surface side of the microplate 200, and the well 230 is provided as a tapered, substantially cylindrical depression. is not particularly limited as long as it corresponds to the septa 1 . For example, well 230 may be provided as a substantially cylindrical depression. The bottom of well 230 may be flat-bottomed, round-bottomed, U-bottomed, V-bottomed, or the like.
 マイクロプレート200には、オートサンプラを備えた自動分析装置に試料をセットする容器としての用途がある。自動分析装置の具体例としては、キャピラリ電気泳動装置や、高速液体クロマトグラフィ(High Performance Liquid Chromatography:HPLC)装置や、その他の成分分析、反応分析等を行う生化学的分析装置、化学的分析装置、光学的分析装置等が挙げられる。 The microplate 200 is used as a container for setting samples in an automatic analyzer equipped with an autosampler. Specific examples of automatic analysis devices include capillary electrophoresis devices, high performance liquid chromatography (HPLC) devices, biochemical analysis devices that perform other component analysis, reaction analysis, etc., chemical analysis devices, An optical analysis device and the like can be mentioned.
 自動分析装置は、オートサンプラを構成する機器として、マイクロプレート200のウェル230、マイクロチューブ、マイクロバイアル等の容器に対して液体を吸引または吐出する細管や、マイクロプレート200のウェル230、マイクロチューブ、マイクロバイアル等の容器と細管の先端部とを互いに相対移動させる移動ステージ等を備えている。細管は、図4Aに示すノズル400のように容器内に挿入される。 The autoanalyzer, as a device that constitutes an autosampler, includes thin tubes for aspirating or discharging liquid into containers such as the wells 230 of the microplate 200, microtubes, and microvials, wells 230 of the microplate 200, microtubes, A moving stage or the like is provided for relatively moving the container such as a micro vial and the tip of the thin tube. The tubule is inserted into the container like nozzle 400 shown in FIG. 4A.
 液体を吸引または吐出する細管は、先端部が下方に向けて開口するように自動分析装置内に設置される。細管は、マイクロプレート200のウェル230、マイクロチューブ、マイクロバイアル等の容器内から液体を吸引する機能のみを備えてもよいし、これらの容器内に液体を吐出する機能のみを備えてもよいし、これらの両方の機能を備えてもよい。 A thin tube that aspirates or discharges liquid is installed in the automatic analyzer so that the tip opens downward. The capillaries may have only the function of sucking liquid from containers such as the wells 230 of the microplate 200, microtubes, and microvials, or may only have the function of discharging liquid into these containers. , may have both functions.
 細管の具体例としては、電気泳動等の分離操作に用いられる長尺で可撓性を有するキャピラリや、液体を吸引ないし吐出する機能を有する金属製のニードルや、液体を吸引ないし吐出する機能を有する可撓性または高剛性の樹脂製のノズルや、液体を吸引ないし吐出する機能を有する金属製のノズル等が挙げられる。 Specific examples of capillary tubes include long and flexible capillaries used for separation operations such as electrophoresis, metal needles that have the function of aspirating or ejecting liquid, and capillaries that have the function of aspirating or ejecting liquid. flexible or highly rigid resin nozzles, metal nozzles having a function of sucking or discharging liquid, and the like.
 移動ステージは、装置内に固定された細管の先端部に対して、マイクロプレート200のウェル230、マイクロチューブ、マイクロバイアル等の容器を相対移動させてもよいし、装置内に固定された容器に対して、細管の先端部や細管の全体を相対移動させてもよい。移動ステージによる相対移動は、水平方向および鉛直方向に行われる。 The moving stage may move containers such as the wells 230 of the microplate 200, microtubes, and microvials relative to the tips of the capillaries fixed in the device, or may move the containers fixed in the device. On the other hand, the tip of the capillary or the entire capillary may be relatively moved. Relative movement by the moving stage is performed in horizontal and vertical directions.
 図1および図2に示すように、本実施形態に係るセプタ1は、シート状に形成された本体部10と、本体部10を上下に貫通する複数の孔部20と、本体部10の下面側の孔部20のそれぞれの周囲から下方に突出するように形成された有底の筒状部30と、筒状部30のそれぞれの底部に形成されたスリット40と、を備えている。 As shown in FIGS. 1 and 2, the septa 1 according to the present embodiment includes a main body portion 10 formed in a sheet shape, a plurality of holes 20 penetrating vertically through the main body portion 10, and a lower surface of the main body portion 10. A bottomed tubular portion 30 formed so as to protrude downward from the periphery of each of the side holes 20 , and slits 40 formed in the bottom portions of the tubular portions 30 .
 本実施形態に係るセプタ1は、後記するように、一以上の孔部20および筒状部30によって構成される分割単位で分割可能な分割構造に設けられている。図1および図2に示すように、孔部20同士の間には、分割線100が形成されている。分割線100は、孔部20および筒状部30によって構成される分割単位同士の分離を容易にする構造を形成している。 As will be described later, the septa 1 according to the present embodiment is provided in a split structure that can be split into split units constituted by one or more holes 20 and cylindrical parts 30 . As shown in FIGS. 1 and 2, parting lines 100 are formed between the holes 20 . The parting line 100 forms a structure that facilitates the separation of the divisional units constituted by the hole portion 20 and the tubular portion 30 .
 図1および図2において、セプタ1は、96ウェルマイクロプレート用として設けられている。96ウェルマイクロプレート用のセプタ1は、マイクロプレート200のウェル230に対応する位置に、8行×12列で計96個の孔部20および筒状部30を備えている。また、筒状部30のそれぞれの底部にスリット40を備えている。  In Figures 1 and 2, the septa 1 is provided for a 96-well microplate. A septa 1 for a 96-well microplate has a total of 96 holes 20 and tubular parts 30 in 8 rows×12 columns at positions corresponding to wells 230 of a microplate 200 . In addition, slits 40 are provided at the bottom of each cylindrical portion 30 .
 セプタ1は、マイクロプレート200のウェル230を、自動分析装置のキャピラリ、ニードル、ノズル等の細管400(図4A参照)を挿入可能且つ抜出可能な状態で封止する機能を有している。セプタ1は、マイクロプレート200のウェル230に試料を入れた後、且つ、マイクロプレート200を自動分析装置にセットする前等に、図2に示すように、マイクロプレート200の上面側に取り付けられる。 The septa 1 have the function of sealing the wells 230 of the microplate 200 in such a manner that thin tubes 400 (see FIG. 4A) such as capillaries, needles and nozzles of the automatic analyzer can be inserted and extracted. The septa 1 are attached to the upper surface of the microplate 200 as shown in FIG. 2 after the samples are placed in the wells 230 of the microplate 200 and before the microplate 200 is set in the automatic analyzer.
 セプタ1の本体部10、孔部20および筒状部30は、弾性を示すエラストマによって一体的に樹脂成形されている。セプタ1の材料としては、シリコーンゴム、フッ素ゴム、エチレン・プロピレン・ジエンゴム(EPDM)等が挙げられる。筒状部30は、ウェル230に挿入されるときの押圧や、自動分析装置の細管からの押圧に対して、容易に弾性変形する程度の弾性率に設けられる。 The body portion 10, the hole portion 20 and the cylindrical portion 30 of the septa 1 are integrally resin-molded with an elastic elastomer. Materials for the septa 1 include silicone rubber, fluororubber, ethylene-propylene-diene rubber (EPDM), and the like. The tubular portion 30 is provided with an elastic modulus to the extent that it is easily elastically deformed against pressure when it is inserted into the well 230 and pressure from a thin tube of an automatic analyzer.
 セプタ1を樹脂成形する方法としては、コンプレッション成形や、トランスファ成形等が用いられる。コンプレッション成形は、樹脂材料を成形型に入れて加熱下でプレスして成形を行う方法である。トランスファ成形は、加熱された樹脂材料を成形型に注入して加圧して成形を行う方法である。樹脂成形の方法としては、成形型の構造が単純である点や生産性が高い点で、コンプレッション成形が好ましい。 Compression molding, transfer molding, or the like is used as a method of resin-molding the septa 1 . Compression molding is a method in which a resin material is placed in a molding die and pressed under heat for molding. Transfer molding is a method in which a heated resin material is injected into a molding die and pressurized to perform molding. Compression molding is preferable as a resin molding method because the structure of the molding die is simple and productivity is high.
 本体部10は、図1および図2に示すように、マイクロプレート200の凹部210に収容可能な大きさに設けることができる。本体部10の長さおよび幅は、凹部210の長さや幅よりも小さく設けることができる。本体部10の厚さは、凹部210の深さと同等や、凹部210の深さよりも小さく設けることができる。 The body part 10 can be provided with a size that can be accommodated in the recess 210 of the microplate 200, as shown in FIGS. The length and width of body portion 10 can be provided to be smaller than the length and width of recess 210 . The thickness of the body portion 10 can be set equal to or smaller than the depth of the recess 210 .
 このような本体部10を設けると、マイクロプレート200の凹部210へのセプタ1の取り付けや、凹部210からのセプタ1の取り外しを、凹部210の周辺の空間を利用して容易に行うことができる。また、マイクロプレート200の凹部210に取り付けたセプタ1の上方に、必要に応じて蓋やリテーナを装着するのが容易になる。 By providing such a body portion 10, it is possible to easily attach the septa 1 to the concave portion 210 of the microplate 200 and remove the septa 1 from the concave portion 210 using the space around the concave portion 210. . Moreover, it becomes easy to attach a lid or a retainer above the septa 1 attached to the concave portion 210 of the microplate 200 as required.
 孔部20および筒状部30は、図1および図2に示すように、マイクロプレート200のウェル230に対応するように、本体部10上に互いに間隔を空けて行列状に設けられている。孔部20および筒状部30は、セプタ1を上下に貫通する貫通構造を形成している。 As shown in FIGS. 1 and 2, the holes 20 and the cylindrical parts 30 are arranged in a matrix on the main body 10 at intervals so as to correspond to the wells 230 of the microplate 200 . The hole portion 20 and the tubular portion 30 form a penetrating structure penetrating the septa 1 vertically.
 孔部20は、本体部10の平面視で円形状を呈しており、本体部10を上下に貫通する略逆円錐台状の貫通孔として設けられている。孔部20の一端は、本体部10の上面に開口している。孔部20の他端は、本体部10の下面側であって筒状部30の内側に開口している。孔部20の内径は、ウェル230の内径と同等や、ウェル230の内径よりも小さく設けられる。孔部20は、本体部10を上下に貫通する略円柱状の貫通孔として設けられてもよい。 The hole portion 20 has a circular shape in a plan view of the main body portion 10, and is provided as a substantially inverted truncated cone-shaped through hole that penetrates the main body portion 10 vertically. One end of the hole portion 20 is open to the upper surface of the body portion 10 . The other end of the hole portion 20 opens inside the cylindrical portion 30 on the lower surface side of the main body portion 10 . The inner diameter of the hole 20 is equal to or smaller than the inner diameter of the well 230 . The hole portion 20 may be provided as a substantially columnar through hole penetrating vertically through the main body portion 10 .
 筒状部30は、本体部10の平面視で円形状を呈しており、本体部10の下面側の孔部20の周囲から下方に向けて有底の円筒状に突出している。筒状部30は、孔部20と同心に配置されている。筒状部30の内周壁は、孔部20の内周壁の下端から下方に連続している。孔部20および筒状部30によって、セプタ1を上下に貫通する窪み状の貫通構造が形成されている。 The cylindrical portion 30 has a circular shape in plan view of the body portion 10 and protrudes downward from the periphery of the hole portion 20 on the lower surface side of the body portion 10 in a cylindrical shape with a bottom. The tubular portion 30 is arranged concentrically with the hole portion 20 . The inner peripheral wall of the cylindrical portion 30 continues downward from the lower end of the inner peripheral wall of the hole portion 20 . The hole portion 20 and the cylindrical portion 30 form a recess-like penetrating structure that vertically penetrates the septa 1 .
 筒状部30は、マイクロプレート200上に設けられたウェル230の開口部の内側に嵌合可能に設けられている。セプタ1をマイクロプレート200に取り付けるとき、各筒状部30は、各ウェル230内に挿入される。筒状部30の外径は、ウェル230の内径と同等や、ウェル230の内径よりも僅かに大きく設けられる。また、筒状部30は、ウェル230の内壁からの押圧で容易に弾性変形し、弾性的な復元力でウェル230の内壁に押し付けられるように設けられる。 The tubular portion 30 is provided so as to be fitted inside the opening of the well 230 provided on the microplate 200 . When attaching the septa 1 to the microplate 200 , each tube 30 is inserted into each well 230 . The outer diameter of the tubular portion 30 is equal to or slightly larger than the inner diameter of the well 230 . Further, the cylindrical portion 30 is provided so as to be easily elastically deformed by pressure from the inner wall of the well 230 and to be pressed against the inner wall of the well 230 by elastic restoring force.
 そのため、筒状部30は、ウェル230内に挿入されるとき、ウェル230の開口部の内壁から筒状部30の中心軸側に向けて押圧を受け、径方向に潰れるように僅かに弾性変形して、ウェル230の開口部に嵌まる。筒状部30は、ウェル230内に挿入された後には、弾性的な復元力でウェル230の内壁に押し付けられ、筒状部30をウェル230内から引き抜く力に対して摩擦力を生じる。このように筒状部30が弾性的に嵌合することにより、マイクロプレート200に対してセプタ1が着脱自在に固定される。 Therefore, when the tubular portion 30 is inserted into the well 230, the tubular portion 30 is pressed from the inner wall of the opening of the well 230 toward the central axis of the tubular portion 30, and is slightly elastically deformed so as to be crushed in the radial direction. to fit into the opening of well 230 . After being inserted into the well 230 , the tubular portion 30 is pressed against the inner wall of the well 230 by an elastic restoring force, and frictional force is generated against the pulling force of the tubular portion 30 from the well 230 . By elastically fitting the cylindrical portion 30 in this way, the septa 1 is detachably fixed to the microplate 200 .
 図2に示すように、筒状部30の底部には、スリット40が形成されている。スリット40は、筒状部30の底部を上下に貫通する貫通孔を形成している。筒状部30の内側には、下方に向かうに連れてテーパ状に幅が狭くなる空間が形成されている。セプタ1がマイクロプレート200に取り付けられた状態において、自動分析装置のキャピラリ、ニードル、ノズル400等の細管は、孔部20および筒状部30の内側を通り、スリット40に挿通される。 As shown in FIG. 2, a slit 40 is formed in the bottom of the cylindrical portion 30. As shown in FIG. The slit 40 forms a through hole penetrating vertically through the bottom of the tubular portion 30 . Inside the cylindrical portion 30, there is formed a space whose width is tapered downward. With the septa 1 attached to the microplate 200 , thin tubes such as the capillaries, needles, and nozzles 400 of the automatic analyzer are passed through the inside of the hole 20 and the tubular portion 30 and inserted into the slit 40 .
 本実施形態に係るセプタ1は、従来の一般的なセプタと同様に、自動分析装置のキャピラリ、ニードル、ノズル400等の細管が筒状部30を通じてマイクロプレート200のウェル230に挿入された挿入状態と、細管がマイクロプレート200のウェル230から筒状部30よりも外側に抜き出された抜出状態と、を採るように構成されている。筒状部30の底部に形成されたスリット40は、弾性変形によって開閉する構造とされている。 The septa 1 according to this embodiment is in an inserted state in which fine tubes such as capillaries, needles, and nozzles 400 of an automatic analyzer are inserted through the cylindrical portion 30 into the wells 230 of the microplate 200, like conventional general septa. and an extracted state in which the tubules are extracted from the wells 230 of the microplate 200 to the outside of the tubular portion 30 . A slit 40 formed in the bottom of the cylindrical portion 30 is structured to open and close by elastic deformation.
 自動分析装置において、細管でウェル230内の液体を吸引したり、細管でウェル230内に液体を吐出したりする際には、マイクロプレート200の所定のウェル230と細管の先端部との相対移動が駆動される。はじめに、所定のウェル230が細管の先端部の下方に位置するまで、水平方向の相対移動が駆動される。その後、鉛直方向の相対移動が駆動される。 In the automatic analyzer, when the liquid in the wells 230 is sucked by the fine tubes or the liquid is discharged into the wells 230 by the fine tubes, the relative movement between the predetermined wells 230 of the microplate 200 and the tips of the fine tubes is driven. First, horizontal relative motion is driven until a given well 230 is located below the tip of the capillary tube. A relative vertical movement is then driven.
 抜出状態において、ウェル230と細管の先端部が互いに近接する方向に鉛直方向の相対移動が駆動されると、細管の先端部は、孔部20および筒状部30を軸方向に貫通し、スリット40を通じてウェル230内に挿入される。一方、挿入状態において、ウェル230と細管の先端部が互いに離隔する方向に鉛直方向の相対移動が駆動されると、細管の先端部は、ウェル230内から筒状部30および孔部20よりも外側に抜き出される。 In the extracted state, when the well 230 and the tip of the capillary tube are driven to move vertically relative to each other, the tip of the capillary penetrates the hole 20 and the tubular part 30 in the axial direction, It is inserted into well 230 through slit 40 . On the other hand, in the inserted state, when the well 230 and the tip portion of the capillary tube are driven to move vertically relative to each other, the tip portion of the capillary tube moves out of the well 230 from the cylindrical portion 30 and the hole portion 20 . pulled out to the outside.
 本実施形態に係るセプタ1は、従来の一般的なセプタと同様に、抜出状態から挿入状態に移行するときには、細管からの押圧による筒状部30の弾性変形でスリット40を開口させて細管の挿入を許容するように設けられている。一方、挿入状態から抜出状態に移行するときや、挿入前の抜出状態であるときには、筒状部30の弾性力でスリット40を閉塞させてウェル230を封止するように設けられている。 In the septa 1 according to the present embodiment, similarly to a conventional general septa, when the septa 1 shifts from the extracted state to the inserted state, the slit 40 is opened by elastic deformation of the cylindrical portion 30 due to the pressure from the thin tube, and the thin tube is inserted. are provided to allow the insertion of On the other hand, when transitioning from the inserted state to the extracted state or in the extracted state before insertion, the elastic force of the cylindrical portion 30 closes the slit 40 to seal the well 230 . .
 スリット40は、自動分析装置の細管が挿入されてなく、細管からの押圧による荷重が加わっていない非荷重状態では、スリット40の内壁同士が密着して略完全に閉塞している。一方、細管が挿入されると、細管からの押圧によってスリット40の内壁が押し退けられ、筒状部30の底部の弾性変形によって細管が挿通される程度に僅かに開口する。細管が引き抜かれると、筒状部30の底部の弾性的な復元力で略完全に閉塞した状態に戻る。 In a non-loaded state in which the thin tube of the automatic analyzer is not inserted into the slit 40 and no load is applied by pressure from the thin tube, the inner walls of the slit 40 are in close contact with each other and are almost completely closed. On the other hand, when the thin tube is inserted, the inner wall of the slit 40 is pushed away by the pressure from the thin tube, and the elastic deformation of the bottom portion of the cylindrical portion 30 opens the slit 40 slightly so that the thin tube can be inserted. When the tubule is pulled out, the elastic restoring force of the bottom portion of the cylindrical portion 30 restores the almost completely closed state.
 このようなセプタ1によると、弾性的に開閉するスリット40によって、試料が入れられたウェル230を、細管を挿抜可能な状態で封止することができる。そのため、ウェル230内への細管の挿入や、ウェル230内からの細管の抜出を許容しつつ、ウェル230内からの成分の蒸発や、ウェル230内への汚染物の侵入を抑制できる。ウェル230に入れられる試料は、少量であることが多いため、分析前や分析中に蒸発が進むと、細管の先端部が気相に露出したり、試料の濃度が変わったりする虞がある。また、空気中の浮遊物等が混入して、コンタミネーションを生じる虞がある。しかし、セプタ1でウェル230を封止すると、正確で安定的な分析が可能となる。 According to such a septa 1, the well 230 in which the sample is placed can be sealed by the slit 40 that opens and closes elastically in such a manner that the thin tube can be inserted and removed. Therefore, it is possible to suppress the evaporation of components from the well 230 and the entry of contaminants into the well 230 while permitting insertion of the capillary into the well 230 and removal of the capillary from the well 230 . Since the amount of sample placed in the well 230 is often small, if evaporation progresses before or during analysis, the tip of the capillary tube may be exposed to the gas phase, or the concentration of the sample may change. In addition, there is a risk of contamination due to contamination by suspended matter in the air. However, sealing the well 230 with the septa 1 enables accurate and stable analysis.
 本実施形態に係るセプタ1において、孔部20および筒状部30は、それぞれ、マイクロプレート200上に設けられたウェル230を、自動分析装置のキャピラリ、ニードル、ノズル400等の細管を挿抜可能な状態で封止する構造単位を形成している。セプタ1は、このような構造単位を、マイクロプレート200上に設けられた複数のウェル230に対応するように複数備えている。 In the septa 1 according to the present embodiment, the holes 20 and the tubular portions 30 are each capable of inserting and removing a capillary, needle, nozzle 400 or the like of the automatic analyzer through wells 230 provided on the microplate 200. It forms a structural unit that seals in a state. The septa 1 has a plurality of such structural units corresponding to the plurality of wells 230 provided on the microplate 200 .
 本体部10上に形成された複数の孔部20および筒状部30は、一以上の孔部20および筒状部30によって構成される分割単位で互いに分割可能に設けられている。セプタ1は、孔部20および筒状部30によって形成された複数の構造単位を分割して各別に使用できるように設けられている。 A plurality of hole portions 20 and cylindrical portions 30 formed on the main body portion 10 are provided so as to be divisible from each other in division units constituted by one or more hole portions 20 and cylindrical portions 30 . The septa 1 is provided so that a plurality of structural units formed by the hole portion 20 and the cylindrical portion 30 can be divided and used separately.
 図1および図2に示すように、セプタ1の本体部10上には、分割線100が形成されている。分割線100は、孔部20および筒状部30によって構成される分割単位同士の間に形成されている。分割線100は、分割単位同士の分離を容易にするために、本体部10を容易に破断させる機械的に脆弱な構造として設けられる。 As shown in FIGS. 1 and 2, a parting line 100 is formed on the body portion 10 of the septa 1 . The parting line 100 is formed between the dividing units composed of the hole portion 20 and the cylindrical portion 30 . The dividing line 100 is provided as a mechanically fragile structure that easily breaks the main body 10 in order to facilitate the separation of the division units.
 図1および図2において、孔部20および筒状部30によって構成される分割単位は、それぞれ、孔部20および筒状部30が形成された単シート状の本体部10の一部を構成している。図1および図2に示すセプタ1は、8行×12列で計96個の孔部20および筒状部30が、4行×12列に二分割可能、且つ、1列毎に分割可能に設けられている。最小の分割単位は、4行×1列とされており、マイクロプレート200上に設けられたウェル230を自動分析装置の細管を挿抜可能な状態で封止する計4個の構造単位を有している。 In FIGS. 1 and 2, the division unit constituted by the hole portion 20 and the tubular portion 30 constitutes a part of the single sheet-like body portion 10 in which the hole portion 20 and the tubular portion 30 are formed. ing. The septa 1 shown in FIGS. 1 and 2 has a total of 96 holes 20 and cylindrical portions 30 in 8 rows and 12 columns, which can be divided into 4 rows and 12 columns and can be divided into each column. is provided. The minimum division unit is 4 rows×1 column, and has a total of 4 structural units that seal the wells 230 provided on the microplate 200 in such a manner that the fine tubes of the automatic analyzer can be inserted and removed. ing.
 孔部20および筒状部30によって構成される分割単位同士は、本体部10上に形成された分割線100のうちの任意の区間で切り離すことができる。セプタ1の全体から、一つの最小の分割単位を分離したり、複数の最小の分割単位が連結した集合を分離したりすることができる。セプタ1の全体から、一以上の分割単位で構成される部分を分離して、マイクロプレート200上に設けられた複数のウェル230のうちの一部を覆うことができる。 The division units constituted by the hole portion 20 and the tubular portion 30 can be separated at any section of the division line 100 formed on the main body portion 10 . From the entire septa 1, one minimum division unit can be separated, or a set of connected minimum division units can be separated. A portion configured by one or more division units can be separated from the entire septa 1 to cover a portion of the plurality of wells 230 provided on the microplate 200 .
 なお、図1および図2において、セプタ1は、孔部20および筒状部30が、4行×12列となるように二分割可能、且つ、1列毎に分割可能に設けられているが、最小の分割単位を構成する孔部20および筒状部30の個数や、分割単位同士を区画する分割線100のパターンは、マイクロプレート200のウェル数やウェル配列等に応じて、適宜に設けることができる。 In FIGS. 1 and 2, the septa 1 is provided so that the hole portion 20 and the cylindrical portion 30 can be divided into 4 rows×12 columns and can be divided into each column. The number of holes 20 and cylindrical portions 30 that form the smallest division unit and the pattern of the division lines 100 that divide the division units are appropriately provided according to the number of wells of the microplate 200, the arrangement of the wells, and the like. be able to.
 例えば、最小の分割単位は、4行×2列、4行×3列、4行×4列や、8行×1列、8行×2列、8行×3列、8行×4列や、2行×1列、2行×2列、2行×3列、2行×4列等とされてもよい。また、分割単位同士は、互いに同じ個数の孔部20および筒状部30で構成されてもよいし、互いに異なる個数の孔部20および筒状部30で構成されてもよい。 For example, the minimum division unit is 4 rows×2 columns, 4 rows×3 columns, 4 rows×4 columns, 8 rows×1 column, 8 rows×2 columns, 8 rows×3 columns, 8 rows×4 columns. Alternatively, it may be 2 rows×1 column, 2 rows×2 columns, 2 rows×3 columns, 2 rows×4 columns, or the like. Further, the divided units may be configured with the same number of holes 20 and cylindrical parts 30 or different numbers of holes 20 and cylindrical parts 30 .
 孔部20および筒状部30によって構成される分割単位同士は、人手で分割可能な張力をもって互いに結合されていることが好ましい。このような張力で分割線100を挟む両側が結合されていると、分割単位同士を人手による引っ張り等によって容易に分離できる。分割単位同士を結合する最大許容荷重としての張力は、例えば、50N以下であり、人手で容易に分割可能とする観点からは、30N以下に設けることが好ましく、10N以下に設けることがより好ましい。 It is preferable that the split units constituted by the hole portion 20 and the cylindrical portion 30 are joined together with a tension that allows manual splitting. If both sides sandwiching the parting line 100 are joined with such tension, the split units can be easily separated by manual pulling or the like. The tension as the maximum allowable load for joining the split units is, for example, 50 N or less, preferably set to 30 N or less, more preferably set to 10 N or less from the viewpoint of easy manual division.
 マイクロプレート用のセプタ1では、孔部20および筒状部30によって構成される分割単位が、単シート状の本体部10の一部を構成している。このような形態において、分割単位同士の分離を容易にする分割線100は、分割単位同士の間に、ミシン目状、条溝状、切込み状等、適宜の構造として設けることができる。 In the septa 1 for microplates, the divided unit composed of the hole portion 20 and the cylindrical portion 30 constitutes a part of the single sheet-like main body portion 10 . In such a form, the dividing line 100 for facilitating the separation of the dividing units can be provided between the dividing units as an appropriate structure such as a perforation, groove, or notch.
 図3は、分割線の構造例を示すセプタの上面図である。図4Aは、分割線の構造例を示すセプタの断面図である。図4Bは、分割線の構造例を示すセプタの断面図である。図4Aおよび図4Bは、図3のI-I線断面図に相当する。
 図3に示すように、分割単位同士の分離を容易にする分割線100は、間欠的な線状のミシン目101として設けることができる。
FIG. 3 is a top view of a septa showing a structural example of a dividing line. FIG. 4A is a cross-sectional view of a septa showing a structural example of a dividing line. FIG. 4B is a cross-sectional view of a septa showing a structural example of a dividing line. 4A and 4B correspond to the cross-sectional view taken along line II of FIG.
As shown in FIG. 3, the dividing lines 100 that facilitate separation of the dividing units can be provided as intermittent linear perforations 101 .
 ミシン目101は、本体部10の平面視で、本体部10上の孔部20同士の間を通るように縦方向ないし横方向に形成できる。ミシン目101は、図4Aに示すように、本体部10を上下に貫通する穿孔101aの配列として形成することができる。また、図4Bに示すように、本体部10を上下に貫通しない窪み状の凹部101bの配列として形成することができる。なお、図4Aには細管の一例としてのノズル400を破線で示している。 The perforations 101 can be formed in the vertical or horizontal direction so as to pass between the holes 20 on the main body 10 in a plan view of the main body 10 . The perforations 101 can be formed as an array of perforations 101a penetrating vertically through the main body 10, as shown in FIG. 4A. In addition, as shown in FIG. 4B, it is possible to form an array of recessed recesses 101b that do not penetrate vertically through the main body 10 . Note that FIG. 4A shows a nozzle 400 as an example of a thin tube with a dashed line.
 図4Bにおいて、凹部101bは、本体部10の上面側および下面側の両方に設けられている。上面側の凹部101bと下面側の凹部101bとは、本体部10の平面視で重なるように同じ位置に設けられる。但し、凹部101bは、本体部10の上面側のみに設けられてもよいし、本体部10の下面側のみに設けられてもよい。 In FIG. 4B, recesses 101b are provided on both the upper surface side and the lower surface side of main body 10. In FIG. The concave portion 101b on the upper surface side and the concave portion 101b on the lower surface side are provided at the same position so as to overlap each other when the main body portion 10 is viewed from above. However, the recessed portion 101b may be provided only on the upper surface side of the main body portion 10 or may be provided only on the lower surface side of the main body portion 10 .
 ミシン目101は、パンチング加工、成形型を用いた樹脂成形等の適宜の方法で形成することができる。図3において、ミシン目101は、本体部10の平面視で矩形状に形成されているが、円形状、楕円形状、長円形状、菱形形状、多角形状等、適宜の形状に設けることができる。穿孔101aや凹部101bの長さ、幅、深さ、ピッチは、分割単位同士が適切に結合し、必要時に容易に分離される限り、適宜の条件とすることができる。 The perforations 101 can be formed by an appropriate method such as punching or resin molding using a molding die. In FIG. 3, the perforations 101 are formed in a rectangular shape in plan view of the main body 10, but may be provided in an appropriate shape such as a circular shape, an elliptical shape, an oval shape, a diamond shape, a polygonal shape, or the like. . The length, width, depth, and pitch of the perforations 101a and the recesses 101b can be appropriately set as long as the division units are properly connected and easily separated when necessary.
 分割線100をミシン目101として設けると、分割線100の中間部を始点とする場合であっても、穿孔101a同士の間や凹部101b同士の間を小さい力で破断させることができるため、分割単位同士を容易に分離することができる。また、分割線100同士が交差する箇所があっても、所望の分割単位が分離される箇所まで正確に切り離すことができる。 If the parting line 100 is provided as the perforation 101, even if the intermediate part of the parting line 100 is used as the starting point, it is possible to break the space between the perforations 101a or between the recesses 101b with a small force. Units can be easily separated from each other. Moreover, even if there is a place where the dividing lines 100 intersect each other, it is possible to accurately separate the desired dividing unit up to the place where it is separated.
 図5は、分割線の構造例を示すセプタの上面図である。図6Aは、分割線の構造例を示すセプタの断面図である。図6Bは、分割線の構造例を示すセプタの断面図である。図6Aおよび図6Bは、図5のII-II線断面図に相当する。
 図5に示すように、分割単位同士の分離を容易にする分割線100は、連続的な線状の条溝102として設けることができる。
FIG. 5 is a top view of a septa showing a structural example of a dividing line. FIG. 6A is a cross-sectional view of a septa showing a structural example of a parting line. FIG. 6B is a cross-sectional view of a septa showing a structural example of a dividing line. 6A and 6B correspond to cross-sectional views taken along line II-II in FIG.
As shown in FIG. 5, the dividing line 100 that facilitates separation of the divisional units can be provided as a continuous linear groove 102 .
 条溝102は、本体部10の平面視で、本体部10上の孔部20同士の間を通るように縦方向ないし横方向に形成できる。条溝102は、図6Aに示すように、本体部10の断面視でV字状の三角溝102aとして形成することができる。また、図6Bに示すように、本体部10を薄肉となるように減肉させた薄肉部102bとして形成することができる。 The grooves 102 can be formed vertically or horizontally so as to pass between the holes 20 on the main body 10 in a plan view of the main body 10 . As shown in FIG. 6A, the groove 102 can be formed as a V-shaped triangular groove 102a in a cross-sectional view of the main body 10. As shown in FIG. Moreover, as shown in FIG. 6B, the body portion 10 can be formed as a thin portion 102b that is thinned.
 図6Aおよび図6Bにおいて、三角溝102aや薄肉部102bは、本体部10の上面側および下面側の両方に設けられている。上面側の三角溝102aや薄肉部102bと下面側の三角溝102aや薄肉部102bとは、本体部10の平面視で重なるように同じ位置に設けられる。但し、三角溝102aや薄肉部102bは、本体部10の上面側のみに設けられてもよいし、本体部10の下面側のみに設けられてもよい。 6A and 6B, the triangular groove 102a and the thin portion 102b are provided on both the upper surface side and the lower surface side of the body portion 10. In FIGS. The triangular groove 102a and the thin portion 102b on the upper surface side and the triangular groove 102a and the thin portion 102b on the lower surface side are provided at the same position so as to overlap each other when the main body portion 10 is viewed from above. However, the triangular groove 102a and the thin portion 102b may be provided only on the upper surface side of the main body portion 10, or may be provided only on the lower surface side of the main body portion 10. FIG.
 条溝102は、切削加工、成形型を用いた樹脂成形等の適宜の方法で形成することができる。図6Bにおいて、薄肉部102bは、本体部10の断面視で長方形状に減肉されているが、台形状、半円形状、半楕円形状、半長円形状、半多角形状等、適宜の形状に減肉することができる。三角溝102aや薄肉部102bの幅、深さは、分割単位同士が適切に結合し、必要時に容易に分離される限り、適宜の条件とすることができる。 The grooves 102 can be formed by an appropriate method such as cutting or resin molding using a molding die. In FIG. 6B, the thin portion 102b is thinned into a rectangular shape in a cross-sectional view of the main body portion 10, but may be formed in an appropriate shape such as a trapezoidal shape, a semicircular shape, a semielliptical shape, a semielliptical shape, a semipolygonal shape, or the like. can be reduced to The width and depth of the triangular groove 102a and the thin portion 102b can be appropriately set as long as the division units are appropriately combined and easily separated when necessary.
 分割線100を条溝102として設けると、シート状に形成された本体部10を分割線100に沿って小さい力で連続的に引き裂くことができるため、分割単位同士を容易に分離することができる。また、分割線100に沿って、はさみ、カッタ等で裁断する場合であっても、刃先が直線状に案内されるため、所望の分割単位を正確に切り離すことができる。 When the parting line 100 is provided as the groove 102, the main body part 10 formed in a sheet shape can be continuously torn along the parting line 100 with a small force, so that the divided units can be easily separated. . Also, even when cutting along the dividing line 100 with scissors, a cutter, or the like, the cutting edge is guided linearly, so that the desired dividing unit can be cut off accurately.
 図7は、分割線の構造例を示すセプタの上面図である。図8は、分割線の構造例を示すセプタの断面図である。図8は、図7のIII-III線断面図に相当する。
 図7に示すように、分割単位同士の分離を容易にする分割線100は、連続的な線状の切込み103として設けることができる。
FIG. 7 is a top view of a septa showing a structural example of a dividing line. FIG. 8 is a cross-sectional view of a septa showing a structural example of a dividing line. FIG. 8 corresponds to a cross-sectional view taken along line III-III of FIG.
As shown in FIG. 7, the dividing line 100 that facilitates the separation of the divisional units can be provided as a continuous linear cut 103 .
 切込み103は、本体部10の平面視で、本体部10上の孔部20同士の間を通るように縦方向ないし横方向に形成できる。切込み103は、図7に示すように、内壁同士が略当接する線状に形成することができる。また、図8に示すように、本体部10を貫通しない深さに設けられる。 The cuts 103 can be formed in the vertical or horizontal direction so as to pass between the holes 20 on the main body 10 in a plan view of the main body 10 . As shown in FIG. 7, the cut 103 can be formed in a linear shape in which the inner walls are substantially in contact with each other. Moreover, as shown in FIG. 8, it is provided at a depth that does not penetrate the main body portion 10 .
 図8において、切込み103は、本体部10の上面側のみに設けられているが、本体部10の下面側のみに設けられてもよいし、本体部10の上面側および下面側の両方に設けられてもよい。上面側の切込み103と下面側の切込み103とは、本体部10の平面視で重なるように同じ位置に設けられる。 In FIG. 8, the notch 103 is provided only on the upper surface side of the main body 10, but may be provided only on the lower surface side of the main body portion 10, or may be provided on both the upper surface side and the lower surface side of the main body portion 10. may be The notch 103 on the upper surface side and the notch 103 on the lower surface side are provided at the same position so as to overlap when the main body 10 is viewed from above.
 切込み103は、切削加工、溝切り加工等の適宜の方法で形成することができる。切込み103の深さは、分割単位同士が適切に結合し、必要時に容易に分離される限り、適宜の条件とすることができる。なお、図7において、切込み103は、連続的な線状に設けられているが、ミシン目101のように間欠的な線状に設けられてもよい。 The cut 103 can be formed by an appropriate method such as cutting or grooving. The depth of the incision 103 can be any appropriate condition as long as the division units are appropriately combined and easily separated when necessary. In addition, in FIG. 7 , the cuts 103 are provided in a continuous line, but they may be provided in an intermittent line like perforations 101 .
 分割線100を切込み103として設けると、シート状に形成された本体部10を分割線100に沿って小さい力で連続的に引き裂くことができるため、分割単位同士を容易に分離することができる。また、分割単位同士を分割線100に対する両外側に引っ張る方法であっても、切込み103の端部が裂け易いため、分割単位同士を容易に分離することができる。 When the dividing line 100 is provided as the notch 103, the sheet-shaped body portion 10 can be continuously torn along the dividing line 100 with a small force, so that the divided units can be easily separated. Also, even with the method of pulling the divisional units to both outer sides with respect to the division line 100, the divisional units can be easily separated from each other because the ends of the cuts 103 are easily torn.
 図9Aは、分割線の端部の構造例を示すセプタの上面図である。図9Bは、分割線の端部の構造例を示すセプタの上面図である。図9Cは、分割線の端部の構造例を示すセプタの上面図である
 図9A、図9Bおよび図9Cに示すように、孔部20および筒状部30が形成されたシート状の本体部10は、分割線100と交差する本体部10の端部に切欠き105が設けられてもよい。
FIG. 9A is a top view of the septa showing a structural example of the end of the parting line. FIG. 9B is a top view of the septa showing a structural example of the end of the dividing line. FIG. 9C is a top view of a septa showing an example of the structure of the ends of the parting line. As shown in FIGS. 9A, 9B and 9C, a sheet-like main body in which a hole 20 and a tubular portion 30 are formed. 10 may be provided with a notch 105 at the end of the main body 10 that intersects the parting line 100 .
 切欠き105は、図9Aに示すように、ミシン目101と交差する本体部10の端部に、本体部10の内側に向けてミシン目101に沿って切り欠くように形成できる。また、図9Bに示すように、条溝102と交差する本体部10の端部に、本体部10の内側に向けて条溝102に沿って切り欠くように形成できる。また、図9Cに示すように、切込み103と交差する本体部10の端部に、本体部10の内側に向けて切込み103に沿って切り欠くように形成できる。 As shown in FIG. 9A, the notch 105 can be formed at the end of the main body 10 that intersects the perforation 101 so as to cut inward along the perforation 101 of the main body 10 . Further, as shown in FIG. 9B , the end of the main body 10 that intersects the groove 102 may be cut out along the groove 102 toward the inner side of the main body 10 . Further, as shown in FIG. 9C , the end portion of the main body 10 that intersects the cut 103 may be cut out along the cut 103 toward the inner side of the main body 10 .
 切欠き105は、パンチング加工、切削加工、成形型を用いた樹脂成形等の適宜の方法で形成することができる。図9A、図9Bおよび図9Cにおいて、切欠き105は、本体部10の平面視でV字状に切り欠かれているが、長方形状、台形状、半円形状、半楕円形状、半長円形状、半多角形状、切込み状等、適宜の形状に切り欠くことができる。 The notch 105 can be formed by an appropriate method such as punching, cutting, or resin molding using a mold. In FIGS. 9A, 9B and 9C, the notch 105 is cut in a V-shape in plan view of the main body 10, but has a rectangular shape, a trapezoidal shape, a semicircular shape, a semi-elliptical shape, and a semi-oval shape. It can be cut out in an appropriate shape such as a shape, a semi-polygonal shape, a cut shape, or the like.
 分割線100の端部に切欠き105を設けると、シート状に形成された本体部10を切欠き105を起点として分割線100に沿って容易に引き裂くことができる。また、分割線100に沿って、はさみ、カッタ等で裁断する場合であっても、刃先が分割線100に沿って案内されるため、所望の分割単位を正確に切り離すことができる。 When the notch 105 is provided at the end of the parting line 100, the main body part 10 formed in a sheet shape can be easily torn along the parting line 100 with the notch 105 as a starting point. Also, even when cutting along the dividing line 100 with scissors, a cutter, or the like, the cutting edge is guided along the dividing line 100, so that the desired division unit can be cut off accurately.
 図10は、本体部および分割線の構造例を示すセプタの上面図である。
 図10に示すように、セプタ1の本体部10は、孔部20および筒状部30が形成された島状部10a同士が連結部10bを介して連結した連結シート状に設けることもできる。
FIG. 10 is a top view of the septa showing an example of the structure of the main body and the parting line.
As shown in FIG. 10, the main body 10 of the septa 1 can also be provided in the form of a connecting sheet in which island-shaped portions 10a each having a hole 20 and a cylindrical portion 30 are connected to each other via a connecting portion 10b.
 図1~図9において、孔部20および筒状部30によって構成される分割単位は、単シート状の本体部10の一部を構成しているが、図10に示すような連結シート状の本体部の一部を構成してもよい。マイクロプレート200上に設けられたウェル230等の容器を、自動分析装置のノズル400等の細管を挿抜可能な状態で封止する構造単位は、連結シートを構成する島状部10a単位で分離することもできる。 1 to 9, the divided unit constituted by the hole portion 20 and the cylindrical portion 30 constitutes a part of the single sheet-like main body portion 10, but a connecting sheet-like unit as shown in FIG. It may form part of the main body. A structural unit that seals a container such as a well 230 provided on a microplate 200 in such a manner that a narrow tube such as a nozzle 400 of an automatic analyzer can be inserted and removed is separated by island-shaped portions 10a constituting a connecting sheet. can also
 図10において、セプタ1の本体部10は、孔部20および筒状部30が形成された島状部10a同士の連結によって形成されている。島状部10aは、本体部10の平面視で、孔部20や筒状部30の外径よりも長さおよび幅が大きい矩形状に設けられている。島状部10a同士は、帯状の連結部10bを介して互いに行列状に連結されている。連結部10bは、本体部10の平面視で、島状部10aよりも小さい幅の矩形状に設けられている。 In FIG. 10, the body portion 10 of the septa 1 is formed by connecting island-shaped portions 10a each having a hole portion 20 and a cylindrical portion 30 formed therein. The island-shaped portion 10 a is provided in a rectangular shape having a length and a width larger than the outer diameters of the hole portion 20 and the cylindrical portion 30 when the main body portion 10 is viewed from above. The island-shaped portions 10a are connected to each other in a matrix through strip-shaped connecting portions 10b. The connecting portion 10b is provided in a rectangular shape with a width smaller than that of the island-shaped portion 10a in plan view of the main body portion 10 .
 島状部10a同士の間には、図3に示すミシン目101よりも大きい矩形状の空隙が、縦方向および横方向に配列するように形成されている。島状部10a同士の間の空隙には、連結部10bが架されている。連結部10bは、最大許容荷重としての張力を小さく設けると、人手による引っ張り等によって容易に破断させることができる。そのため、このような空隙が、分割単位同士の分離を容易にする分割線100として機能する。 Rectangular gaps larger than the perforations 101 shown in FIG. 3 are formed between the island-shaped parts 10a so as to be arranged in the vertical and horizontal directions. A connecting portion 10b spans the space between the island-shaped portions 10a. If the connecting portion 10b is provided with a small tension as the maximum allowable load, it can be easily broken by manual pulling or the like. Therefore, such a gap functions as a dividing line 100 that facilitates separation between division units.
 島状部10a同士が連結した連結シートは、パンチング加工や、成形型を用いた樹脂成形で形成することができる。島状部10aは、図10において、本体部10の平面視で矩形状に設けられているが、円形状、菱形形状、多角形状等、適宜の形状に設けることができる。島状部10aは、図10において、マイクロプレート200上に設けられたウェル230を自動分析装置の細管を挿抜可能な状態で封止する構造単位を1個ずつ備えているが、複数個ずつ備えてもよい。島状部10aの長さ、幅、厚さは、本体部10の強度や柔軟性が確保される限り、適宜の条件とすることができる。 A connection sheet in which the island-shaped portions 10a are connected to each other can be formed by punching or resin molding using a mold. Although the island-shaped portion 10a is provided in a rectangular shape in plan view of the main body portion 10 in FIG. 10, it may be provided in an appropriate shape such as a circular shape, a diamond shape, a polygonal shape, or the like. In FIG. 10, the island-shaped portion 10a has one structural unit for sealing the wells 230 provided on the microplate 200 in such a manner that the fine tubes of the automatic analyzer can be inserted and removed. may The length, width, and thickness of the island-shaped portion 10a can be set appropriately as long as the strength and flexibility of the body portion 10 are ensured.
 連結部10bは、図10において、本体部10の平面視で矩形状に設けられているが、適宜の形状に設けることができる。連結部10bは、図10において、島状部10a同士を一本で連結しているが、複数本で連結してもよい。連結部10bの厚さは、島状部10aの厚さと同等や、島状部10aの厚さよりも小さく設けることができる。連結部10bの長さ、幅、ピッチは、分割単位同士が適切に結合し、必要時に容易に分離される限り、適宜の条件とすることができる。 Although the connecting portion 10b is provided in a rectangular shape in plan view of the main body portion 10 in FIG. 10, it can be provided in an appropriate shape. Although one connecting portion 10b connects the island-shaped portions 10a in FIG. 10, a plurality of connecting portions 10b may be used. The thickness of the connecting portion 10b can be equal to or smaller than the thickness of the island-shaped portion 10a. The length, width, and pitch of the connecting portion 10b can be appropriately set as long as the division units are properly connected to each other and can be easily separated when necessary.
 孔部20および筒状部30によって構成される分割単位が、島状部10a同士が連結した連結シート状の本体部の一部を構成する形態であると、分割線100としてミシン目101を設ける場合と比較して、分割単位同士を容易に分離することができる。島状部10a同士の間の空隙の中間部を始点とする場合であっても、島状部10a同士の間を小さい力で破断させることができる。また、最小の分割単位への分割が容易になる。 A perforation 101 is provided as a parting line 100 when the division unit constituted by the hole portion 20 and the cylindrical portion 30 forms a part of the connecting sheet-like body portion in which the island-shaped portions 10a are connected to each other. The division units can be easily separated from each other as compared with the case. Even if the starting point is the intermediate portion of the gap between the island-shaped portions 10a, the space between the island-shaped portions 10a can be broken with a small force. Moreover, division into the smallest division units becomes easy.
 なお、図1および図2において、マイクロプレート200は、96ウェルマイクロプレートとされており、セプタ1は、96ウェルマイクロプレート用とされているが、分割構造のセプタ1は、任意の個数のウェル230が形成されたマイクロプレート用として設けられてもよい。例えば、24ウェルマイクロプレート用、48ウェルマイクロプレート用、384ウェルマイクロプレート用等として設けられてもよい。 In FIGS. 1 and 2, the microplate 200 is a 96-well microplate, and the septa 1 is for a 96-well microplate. 230 may be provided for microplates formed thereon. For example, it may be provided for a 24-well microplate, a 48-well microplate, a 384-well microplate, or the like.
 また、図1および図2において、セプタ1は、マイクロプレート用とされているが、分割構造のセプタ1は、配列した複数の容器部を備える多連式の容器、例えば、多連マイクロチューブ用や、多連マイクロバイアル用や、キャピラリ電気泳動装置の多連式の泳動媒体容器用等として設けられてもよい。 In FIGS. 1 and 2, the septa 1 is for microplates, but the septa 1 with a split structure is for a multiple container having a plurality of arranged container parts, for example, for multiple microtubes. Alternatively, it may be provided for multiple microvials, multiple electrophoresis medium containers of a capillary electrophoresis apparatus, or the like.
 図11は、本発明の実施形態に係るセプタと多連マイクロチューブを示す斜視図である。
 図11には、本実施形態に係るセプタの一例として、多連マイクロチューブ用のセプタ2と、セプタ2が取り付けられる多連マイクロチューブ300を図示している。
FIG. 11 is a perspective view showing a septa and multiple microtubes according to an embodiment of the present invention.
FIG. 11 shows a septa 2 for multiple microtube and a multiple microtube 300 to which the septa 2 is attached as an example of the septa according to this embodiment.
 多連マイクロチューブ300は、分析、検査、実験等に際して、容器として用いられている。多連マイクロチューブ300は、複数のマイクロチューブ310が並列状に連結された構造に設けられている。多連マイクロチューブ300の材料としては、ポリプロピレン、ポリエチレン、ポリスチレン等のポリオレフィンが用いられている。 The multiple microtube 300 is used as a container for analyses, inspections, experiments, and the like. The multiple microtube 300 is provided in a structure in which a plurality of microtubes 310 are connected in parallel. Polyolefin such as polypropylene, polyethylene, and polystyrene is used as the material of the multiple microtube 300 .
 マイクロチューブ310は、平面視で円形状を呈しており、先細りの略円柱状の容器として設けられている。マイクロチューブ310の上部は、上方に向けて円形状に開口している。マイクロチューブ310の内側には、下方に向かうに連れてテーパ状に縮径する円柱形状の空間が形成されている。マイクロチューブ310の内側の空間は、マイクロプレート200のウェル230と同様に、容器として機能し、所望の液体等が入れられる。 The microtube 310 has a circular shape in a plan view, and is provided as a tapered, substantially cylindrical container. The upper portion of the microtube 310 is circularly opened upward. Inside the microtube 310, a cylindrical space is formed that tapers downward in diameter. The space inside the microtube 310 functions as a container, similar to the wells 230 of the microplate 200, and is filled with a desired liquid or the like.
 図11において、多連マイクロチューブ300は、計8個のマイクロチューブ310が連結された8連マイクロチューブとされている。マイクロチューブ310同士は、上部に結合した帯状部を介して、互いに連結されている。但し、多連マイクロチューブ300の連結数、容量、内径、外径、連結構造等は、適宜の条件であってよい。 In FIG. 11, the multiple microtube 300 is an octet microtube in which a total of eight microtubes 310 are connected. The microtubes 310 are connected to each other via belt-shaped portions that are connected to the upper portions. However, the number of connections, capacity, inner diameter, outer diameter, connection structure, etc. of the multiple microtube 300 may be any appropriate conditions.
 図11において、マイクロチューブ310は、先細りの略円柱状の容器として設けられているが、マイクロチューブ310の形状は、特に限定されるものではない。例えば、マイクロチューブ310は、略円柱状のマイクロバイアル型等として設けられてもよい。 In FIG. 11, the microtube 310 is provided as a tapered, substantially cylindrical container, but the shape of the microtube 310 is not particularly limited. For example, the microtube 310 may be provided as a substantially cylindrical microvial type or the like.
 多連マイクロチューブ300には、マイクロプレート200と同様に、オートサンプラを備えた自動分析装置に試料をセットする容器としての用途がある。多連マイクロチューブ300は、マイクロチューブ310を挿入する支持孔が設けられたラック等に支持させて、自動分析装置にセットすることができる。 Like the microplate 200, the multiple microtube 300 is used as a container for setting a sample in an automatic analyzer equipped with an autosampler. The multiple microtube 300 can be supported by a rack or the like provided with a support hole for inserting the microtube 310 and set in an automatic analyzer.
 図11に示すように、本実施形態に係るセプタ2は、前記のマイクロプレート用のセプタ1と同様に、シート状に形成された本体部10と、本体部10を上下に貫通する複数の孔部20と、本体部10の下面側の孔部20のそれぞれの周囲から下方に突出するように形成された有底の筒状部30と、筒状部30のそれぞれの底部に形成されたスリット40と、を備えている。 As shown in FIG. 11, the septa 2 according to the present embodiment, like the septa 1 for microplates, has a sheet-like main body 10 and a plurality of holes penetrating vertically through the main body 10 . 20, bottomed tubular portion 30 formed so as to protrude downward from the periphery of each of hole portion 20 on the lower surface side of main body portion 10, and slits formed in the respective bottom portions of tubular portion 30 40 and .
 本実施形態に係るセプタ2は、前記のマイクロプレート用のセプタ1と同様に、多連マイクロチューブ300のマイクロチューブ310を、自動分析装置のキャピラリ、ニードル、ノズル400等の細管を挿入可能且つ抜出可能な状態で封止する機能を有している。セプタ2は、多連マイクロチューブ300のマイクロチューブ310に試料を入れた後、且つ、多連マイクロチューブ300を自動分析装置にセットする前等に、多連マイクロチューブ300の上部側に取り付けられる。 In the septa 2 according to the present embodiment, similar to the septa 1 for the microplate described above, the microtubes 310 of the multiple microtube 300 can be inserted and removed from the microtubes such as the capillaries, needles, and nozzles 400 of the automatic analyzer. It has the function of sealing in a state where it can be released. The septa 2 is attached to the upper side of the multiple microtube 300 after a sample is placed in the microtube 310 of the multiple microtube 300 and before the multiple microtube 300 is set in an automatic analyzer.
 セプタ2の本体部10、孔部20および筒状部30は、前記のマイクロプレート用のセプタ1と同様に、弾性を示すエラストマによって一体的に樹脂成形できる。セプタ2の材料としては、シリコーンゴム、フッ素ゴム、エチレン・プロピレン・ジエンゴム(EPDM)等が挙げられる。本体部10は、マイクロチューブ310の外径と同程度の幅や、マイクロチューブ310の連結方向の外寸と同程度の長さに設けることができる。 The body portion 10, the hole portion 20, and the cylindrical portion 30 of the septa 2 can be integrally resin-molded with an elastic elastomer in the same manner as the microplate septa 1 described above. Materials for the septa 2 include silicone rubber, fluororubber, ethylene-propylene-diene rubber (EPDM), and the like. The main body 10 can have a width approximately equal to the outer diameter of the microtube 310 and a length approximately equal to the outer dimension of the microtube 310 in the connection direction.
 セプタ2では、多連マイクロチューブ300のマイクロチューブ310を、自動分析装置のキャピラリ、ニードル、ノズル400等の細管を挿入可能且つ抜出可能な状態で封止する構造単位を、前記のマイクロプレート用のセプタ1と同様に設けることができる。 In the septa 2, the structural unit that seals the microtube 310 of the multiple microtube 300 in such a manner that the capillaries, needles, nozzles 400, etc. of the automatic analyzer can be inserted and extracted is the microplate unit. can be provided in the same manner as the septa 1 of .
 本実施形態に係るセプタ1は、前記のマイクロプレート用のセプタ1と同様に、筒状部30の底部のスリット40が予め開口した形状に設けられる。また、筒状部30の側面に突起35が設けられる。その他の構成は、前記のマイクロプレート用のセプタ1と同様の構造として設けることができる。 The septa 1 according to the present embodiment is provided with a slit 40 in the bottom of the tubular portion 30 that is opened in advance, similarly to the microplate septa 1 described above. A projection 35 is provided on the side surface of the tubular portion 30 . Other configurations can be provided as structures similar to the septa 1 for microplates described above.
 本実施形態に係るセプタ2は、前記のマイクロプレート用のセプタ1と同様に、自動分析装置のキャピラリ、ニードル、ノズル400等の細管が筒状部30を通じて多連マイクロチューブ300のマイクロチューブ310に挿入された挿入状態と、細管が多連マイクロチューブ300のマイクロチューブ310から筒状部30よりも外側に抜き出された抜出状態と、を採るように構成される。筒状部30の底部に形成されたスリットは、弾性変形によって開閉する構造とされる。 In the septa 2 according to the present embodiment, as in the septa 1 for the microplate described above, thin tubes such as the capillary, needle, and nozzle 400 of the automatic analyzer pass through the tubular portion 30 to the microtubes 310 of the multiple microtube 300. It is configured to adopt an insertion state in which the tubule is inserted and an extraction state in which the tubule is pulled out from the microtube 310 of the multiple microtube 300 to the outside of the cylindrical portion 30 . A slit formed in the bottom of the cylindrical portion 30 is configured to open and close by elastic deformation.
 本実施形態に係るセプタ2は、前記のマイクロプレート用のセプタ1と同様に、抜出状態から挿入状態に移行するときには、細管からの押圧による筒状部30の弾性変形でスリットを開口させて細管の挿入を許容するように設けられる。一方、挿入状態から抜出状態に移行するときや、挿入前の抜出状態であるときには、筒状部30の弾性力でスリットを閉塞させてウェル230等の容器を封止するように設けられる。 In the septa 2 according to the present embodiment, similarly to the septa 1 for microplates, the slits are opened by elastic deformation of the cylindrical portion 30 due to pressure from the narrow tube when the septa 2 shifts from the extracted state to the inserted state. Provided to allow insertion of tubules. On the other hand, when transitioning from the inserted state to the extracted state or in the extracted state before insertion, the elastic force of the cylindrical portion 30 closes the slit to seal the container such as the well 230 . .
 このようなセプタ2によると、弾性的に開閉するスリットによって、試料が入れられたマイクロチューブ310を、細管を挿抜可能な状態で封止することができる。そのため、マイクロチューブ310内への細管の挿入や、マイクロチューブ310内からの細管の抜出を許容しつつ、マイクロチューブ310内からの成分の蒸発や、マイクロチューブ310内への汚染物の侵入を抑制できる。セプタ2でマイクロチューブ310を封止すると、正確で安定的な分析が可能となる。 According to such a septa 2, the microtube 310 containing the sample can be sealed in a state in which the thin tube can be inserted and removed by the slit that opens and closes elastically. Therefore, while permitting the insertion of the capillary into the microtube 310 and the withdrawal of the capillary from the microtube 310, the evaporation of the components from the microtube 310 and the entry of contaminants into the microtube 310 are prevented. can be suppressed. Sealing the microtube 310 with the septa 2 enables accurate and stable analysis.
 本実施形態に係るセプタ2において、孔部20および筒状部30は、それぞれ、多連マイクロチューブ300のマイクロチューブ310を、自動分析装置のキャピラリ、ニードル、ノズル400等の細管を挿抜可能な状態で封止する構造単位を形成している。セプタ2は、このような構造単位を、互いに連結された複数のマイクロチューブ310に対応するように複数備えている。 In the septa 2 according to the present embodiment, the hole portion 20 and the cylindrical portion 30 are in a state in which the microtube 310 of the multiple microtube 300 can be inserted and removed, and the capillary, needle, nozzle 400, etc. of the automatic analyzer can be inserted and removed. to form a structural unit to be sealed. The septa 2 has a plurality of such structural units corresponding to the plurality of microtubes 310 connected to each other.
 本体部10上に形成された複数の孔部20および筒状部30は、一以上の孔部20および筒状部30によって構成される分割単位で互いに分割可能に設けられている。セプタ2は、孔部20および筒状部30によって形成された複数の構造単位を分割して各別に使用できるように設けられている。 A plurality of hole portions 20 and cylindrical portions 30 formed on the main body portion 10 are provided so as to be divisible from each other in division units constituted by one or more hole portions 20 and cylindrical portions 30 . The septa 2 is provided so that a plurality of structural units formed by the hole portion 20 and the cylindrical portion 30 can be divided and used separately.
 図11に示すように、セプタ2の本体部10上には、前記のマイクロプレート用のセプタ1と同様に、分割線100が形成されている。図11において、孔部20および筒状部30によって構成される分割単位は、それぞれ、孔部20および筒状部30が形成された単シート状の本体部10の一部を構成している。図11に示すセプタ2は、計8個の孔部20および筒状部30が、1個毎に分割可能に設けられている。 As shown in FIG. 11, a dividing line 100 is formed on the main body portion 10 of the septa 2 in the same manner as the septa 1 for microplates. In FIG. 11, the division unit constituted by the hole portion 20 and the tubular portion 30 constitutes a part of the single sheet-like body portion 10 in which the hole portion 20 and the tubular portion 30 are formed. The septa 2 shown in FIG. 11 is provided with a total of eight hole portions 20 and cylindrical portions 30 that can be divided one by one.
 なお、図11において、セプタ2は、孔部20および筒状部30が、1個毎に分割可能に設けられているが、最小の分割単位を構成する孔部20および筒状部30の個数や、分割単位同士を区画する分割線100のパターンは、多連マイクロチューブ300の連結数等に応じて、適宜に設けることができる。 In FIG. 11, the septa 2 is provided with the hole portion 20 and the cylindrical portion 30 that can be divided into pieces. Also, the pattern of the division lines 100 that divide the division units can be appropriately provided according to the number of connections of the multiple microtubes 300 and the like.
 図11に示す多連マイクロチューブ用のセプタ2では、孔部20および筒状部30によって構成される分割単位が、単シート状の本体部10の一部を構成している。このような形態において、分割単位同士の分離を容易にする分割線100は、前記のマイクロプレート用のセプタ1と同様に、分割単位同士の間に、ミシン目101、条溝102、切込み103等、適宜の構造として設けることができる。また、分割線100と交差する本体部10の端部には、前記のマイクロプレート用のセプタ1と同様に、切欠き105が設けられてもよい。 In the septa 2 for multiple microtube shown in FIG. 11, the divided unit constituted by the hole portion 20 and the cylindrical portion 30 constitutes a part of the single sheet-like main body portion 10 . In such a form, dividing lines 100 for facilitating the separation of the dividing units are formed by perforations 101, grooves 102, notches 103, etc. , can be provided as an appropriate structure. In addition, a notch 105 may be provided at the end of the main body 10 that intersects the parting line 100, as in the septa 1 for the microplate described above.
 図11において、孔部20および筒状部30によって構成される分割単位は、単シート状の本体部10の一部を構成しているが、図10に示すような連結シート状の本体部の一部を構成してもよい。多連マイクロチューブ300のマイクロチューブ310を、自動分析装置の細管を挿抜可能な状態で封止する構造単位は、連結シートを構成する島状部10a単位で分離することもできる。 In FIG. 11, the divided unit constituted by the hole portion 20 and the cylindrical portion 30 constitutes a part of the single sheet-like main body portion 10, but the connecting sheet-like main body portion as shown in FIG. may be part of it. The structural unit that seals the microtube 310 of the multiple microtube 300 in such a manner that the narrow tube of the automatic analyzer can be inserted and removed can also be separated by the island-shaped portion 10a that constitutes the connection sheet.
 以上の分割構造のセプタによると、マイクロプレート上に設けられたウェル、マイクロチューブ等の容器を、自動分析装置のキャピラリ、ニードル、ノズル等の細管を挿抜可能な状態で封止する構造単位を形成する孔部および筒状部が、一以上の孔部および筒状部によって構成される分割単位で互いに分割可能に設けられているため、これらの複数の構造単位を分割して個別に使用することができる。分割構造のセプタには、本体部を容易に破断させる機械的に脆弱な構造が設けられているため、はさみ、カッタ等の刃物を用いなくとも、人手による引っ張り等によって、分割単位同士を容易に分離することができる。また、孔部および筒状部によって構成される分割単位は、単シート状の本体部の一部を構成する形態や、連結シート状の本体部の一部を構成する形態とされるため、分割単位同士を人手による引っ張り等によって容易に分離できる程度の分離性と、相互に連結した分割単位を容易にマイクロプレートに取り付けることができる程度の結合性とを、異種材料や異種部材を組み合わせなくとも、容易に確保することができる。 According to the septa of the divided structure described above, a structural unit is formed that seals containers such as wells and microtubes provided on a microplate in a state in which thin tubes such as capillaries, needles, and nozzles of automatic analyzers can be inserted and removed. Since the hole portion and the cylindrical portion are provided so as to be divisible from each other in divisional units composed of one or more hole portions and cylindrical portions, it is possible to divide these plural structural units and use them individually. can be done. Separable septa have a mechanically fragile structure that allows the main body to be easily broken. can be separated. In addition, the division unit constituted by the hole portion and the cylindrical portion may be a form that constitutes a part of the single sheet-like main body or a form that constitutes a part of the connected sheet-like main body. Separability to the extent that units can be easily separated by manual pulling, etc., and connectivity to the extent that mutually connected divided units can be easily attached to a microplate can be achieved without combining different materials or members. , can be easily secured.
 以上、本発明について説明したが、本発明は、前記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、本発明は、必ずしも前記の実施形態が備える全ての構成を備えるものに限定されない。或る実施形態の構成の一部を他の構成に置き換えたり、或る実施形態の構成の一部を他の形態に追加したり、或る実施形態の構成の一部を省略したりすることができる。 Although the present invention has been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible without departing from the scope of the present invention. For example, the present invention is not necessarily limited to having all the configurations included in the above embodiments. Replacing part of the configuration of one embodiment with another configuration, adding part of the configuration of one embodiment to another form, or omitting part of the configuration of one embodiment can be done.
 前記の実施形態に係るセプタは、マイクロプレート用や、多連マイクロチューブ用とされているが、前記の実施形態に係るセプタは、マイクロプレートや、多連マイクロチューブの他に、配列した複数の容器や、配列した複数の容器部を一体的に備える多連式の容器に適用することができる。容器の容量は、マイクロオーダに限定されるものではなく、適宜の容量の容器や容器部に適用できる。 The septa according to the above embodiments are for microplates and multiple microtubes. The present invention can be applied to a container or a multiple container integrally provided with a plurality of arranged container parts. The capacity of the container is not limited to the micro order, and can be applied to a container or container portion having an appropriate capacity.
1   セプタ
2   セプタ
10  本体部
10a 島状部
10b 連結部
20  孔部
30  筒状部
40  スリット
100 分割線
101 ミシン目
102 条溝
103 切込み
105 切欠き
200 マイクロプレート
210 凹部
220 外枠
230 ウェル(容器)
231 上部
232 下部
300 多連マイクロチューブ
310 マイクロチューブ(容器)
400 ノズル(細管)
1 septa 2 septa 10 main body 10a island-shaped portion 10b connecting portion 20 hole 30 cylindrical portion 40 slit 100 parting line 101 perforation 102 groove 103 notch 105 notch 200 microplate 210 concave portion 220 outer frame 230 well (container)
231 upper part 232 lower part 300 multiple microtube 310 microtube (container)
400 Nozzle (Tube)

Claims (9)

  1.  配列した複数の容器の開口部の内側に嵌合可能な複数の筒状部と、前記筒状部のそれぞれの底部に形成されたスリットと、を備え、
     前記筒状部が前記開口部に嵌合した状態において、前記容器内に対して液体を吸引または吐出する細管が前記筒状部を通じて前記容器内に挿入された挿入状態と、前記細管が前記容器内から前記筒状部よりも外側に抜き出された抜出状態と、を採るように構成されており、
     前記抜出状態から前記挿入状態に移行するときには、前記細管からの押圧による前記筒状部の弾性変形で前記スリットを開口させて前記細管の挿入を許容し、
     前記挿入状態から前記抜出状態に移行するときには、前記筒状部の弾性力で前記スリットを閉塞させて前記容器を封止するセプタであって、
     前記複数の筒状部は、一以上の前記筒状部によって構成される分割単位で互いに分割可能に設けられているセプタ。
    A plurality of cylindrical parts that can be fitted inside openings of a plurality of arranged containers, and a slit formed in each bottom of the cylindrical part,
    an insertion state in which a thin tube for sucking or discharging a liquid into or from the container is inserted into the container through the cylindrical portion in a state in which the cylindrical portion is fitted in the opening; and an extracted state in which the tubular portion is extracted from the inside to the outside of the cylindrical portion,
    when shifting from the extracted state to the inserted state, the slit is opened by elastic deformation of the cylindrical portion due to pressure from the thin tube to allow insertion of the thin tube;
    A septa that seals the container by closing the slit with an elastic force of the tubular portion when the insertion state is shifted to the extraction state, wherein
    The septa, wherein the plurality of cylindrical portions are provided so as to be divided into division units constituted by one or more of the cylindrical portions.
  2.  請求項1に記載のセプタであって、
     前記分割単位同士は、人手で分割可能な張力をもって互いに結合されているセプタ。
    The septa of claim 1, wherein
    A septa in which the split units are joined to each other with a tension that allows them to be split manually.
  3.  請求項1に記載のセプタであって、
     前記容器は、マイクロプレート上に設けられたウェルであり、
     前記セプタは、マイクロプレート用であるセプタ。
    The septa of claim 1, wherein
    The container is a well provided on a microplate,
    The septa are for microplates.
  4.  請求項1に記載のセプタであって、
     前記容器は、互いに連結された複数のマイクロチューブであり、
     前記セプタは、複数のマイクロチューブが互いに連結された多連マイクロチューブ用であるセプタ。
    The septa of claim 1, wherein
    the container is a plurality of microtubes connected to each other;
    The septa is for multiple microtubes in which a plurality of microtubes are connected to each other.
  5.  請求項3または請求項4に記載のセプタであって、
     前記分割単位は、前記筒状部が形成された単シート状の本体部の一部を構成しているセプタ。
    The septa according to claim 3 or claim 4,
    The divided unit is a septa that constitutes a part of a single sheet-like main body in which the tubular portion is formed.
  6.  請求項5に記載のセプタであって、
     前記本体部は、前記分割単位同士の間に、分割を容易にする分割線を有し、
     前記分割線は、穿孔が線状に配列したミシン目、凹部が線状に配列したミシン目、線状の条溝、または、線状の切込みとして設けられているセプタ。
    A septa according to claim 5,
    The main body has a dividing line that facilitates division between the division units,
    The parting line is provided as a perforation line in which perforations are linearly arranged, a perforation line in which recesses are arranged linearly, a linear groove, or a linear notch.
  7.  請求項6に記載のセプタであって、
     前記本体部は、前記分割線と交差する端部に切欠きを有するセプタ。
    A septa according to claim 6,
    The main body has a notch at an end crossing the parting line.
  8.  請求項3に記載のセプタであって、
     前記分割単位は、前記筒状部が形成された島状部同士が連結した連結シート状の本体部の一部を構成しているセプタ。
    A septa according to claim 3,
    The divided unit is a septa that constitutes a part of a connecting sheet-like body portion in which the island-shaped portions on which the cylindrical portions are formed are connected to each other.
  9.  請求項1に記載のセプタであって、
     前記細管は、自動分析装置が備えるキャピラリ、ニードルまたはノズルであるセプタ。
    The septa of claim 1, wherein
    The narrow tube is a septa which is a capillary, needle or nozzle provided in an automatic analyzer.
PCT/JP2021/030988 2021-08-24 2021-08-24 Septa WO2023026361A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030988 WO2023026361A1 (en) 2021-08-24 2021-08-24 Septa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030988 WO2023026361A1 (en) 2021-08-24 2021-08-24 Septa

Publications (1)

Publication Number Publication Date
WO2023026361A1 true WO2023026361A1 (en) 2023-03-02

Family

ID=85321830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030988 WO2023026361A1 (en) 2021-08-24 2021-08-24 Septa

Country Status (1)

Country Link
WO (1) WO2023026361A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910349A (en) * 1982-06-18 1984-01-19 フエルナンド・サラバデ−ル・ミラマンダ Cock of analytical container
JPH07500048A (en) * 1991-05-20 1995-01-05 クロシュアー・テクノロジーズ・インコーポレーテッド Sealing cap with one-way valve
JPH10132713A (en) * 1996-10-21 1998-05-22 Boehringer Mannheim Gmbh Contamination-free operation system for thermochemical reaction process
JP2001097345A (en) * 1999-09-27 2001-04-10 Sumitomo Pharmaceut Co Ltd Easily separable container and its manufacturing method
JP2001324474A (en) * 2000-05-15 2001-11-22 Hitachi Ltd Electrophoresis apparatus using capillary array and sample plate assembly used therein
US6500390B1 (en) * 1996-10-17 2002-12-31 David A. Boulton Method for sealing and venting a microplate assembly
JP2012030863A (en) * 2010-07-30 2012-02-16 Yoshino Kogyosho Co Ltd Connecting container
JP2017526362A (en) * 2014-08-25 2017-09-14 アイデックス ラボラトリーズ インコーポレイテッドIDEXX Laboratories, Inc. Multi-well sample test apparatus and sample test method using the same
JP2020519440A (en) * 2017-05-10 2020-07-02 イー・エム・デイー・ミリポア・コーポレイシヨン Multiwell plate with variable compression seal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910349A (en) * 1982-06-18 1984-01-19 フエルナンド・サラバデ−ル・ミラマンダ Cock of analytical container
JPH07500048A (en) * 1991-05-20 1995-01-05 クロシュアー・テクノロジーズ・インコーポレーテッド Sealing cap with one-way valve
US6500390B1 (en) * 1996-10-17 2002-12-31 David A. Boulton Method for sealing and venting a microplate assembly
JPH10132713A (en) * 1996-10-21 1998-05-22 Boehringer Mannheim Gmbh Contamination-free operation system for thermochemical reaction process
JP2001097345A (en) * 1999-09-27 2001-04-10 Sumitomo Pharmaceut Co Ltd Easily separable container and its manufacturing method
JP2001324474A (en) * 2000-05-15 2001-11-22 Hitachi Ltd Electrophoresis apparatus using capillary array and sample plate assembly used therein
JP2012030863A (en) * 2010-07-30 2012-02-16 Yoshino Kogyosho Co Ltd Connecting container
JP2017526362A (en) * 2014-08-25 2017-09-14 アイデックス ラボラトリーズ インコーポレイテッドIDEXX Laboratories, Inc. Multi-well sample test apparatus and sample test method using the same
JP2020519440A (en) * 2017-05-10 2020-07-02 イー・エム・デイー・ミリポア・コーポレイシヨン Multiwell plate with variable compression seal

Similar Documents

Publication Publication Date Title
EP1972945B1 (en) Bellows type dispensing apparatus and method
EP3011302B1 (en) Microfluidic system with fluid pickups
US9435765B2 (en) Cartridge and system for manipulating samples in liquid droplets
WO2016078340A1 (en) Apparatus, system, and method for dispensing/mixing a small quantity of liquid
US20060032746A1 (en) Method and device for contacting a microfluidic structure
WO2016011134A1 (en) Microfluidics cartridge with pipetting guide
JP2004532099A (en) Multi-well device
US11779925B2 (en) System, method, and device for forming an array of emulsions
EP2178639A1 (en) Apparatus for delivering pipettable substances
CN109746059B (en) Micro-droplet generation system
WO2006138743A2 (en) Fluid transfer device
KR20090007692A (en) Filter-carrying micro plate
EP2999778B1 (en) Common port emulsion generation article, system and method
EP1103304A2 (en) Self-venting reagent vessel and method of delivering a reagent to an analyzing instrument or other apparatus
WO2023026361A1 (en) Septa
CN113649098A (en) Microfluidic detection assembly, sample mixing device and application thereof
WO2009129397A2 (en) High throughput dispenser
CA2130129A1 (en) Closure having an array of piercable places
JP2006208373A (en) Liquid sampling utilizing ribbed pipette tip for barrier penetration
WO2023026359A1 (en) Septum
US9829416B2 (en) Closure with septum strip
JP2021500586A (en) Microdroplet generator
US20190255524A1 (en) Transfer arrays for simultaneously transferring multiple aliquots of fluid
US20220055028A1 (en) Fluid handling system
US20220193668A1 (en) Integrated microfluidic device with pipette adaptation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE