WO2023022368A1 - Antibacterial film having antibacterial, antiviral, and deodorizing effects and manufacturing method therefor - Google Patents

Antibacterial film having antibacterial, antiviral, and deodorizing effects and manufacturing method therefor Download PDF

Info

Publication number
WO2023022368A1
WO2023022368A1 PCT/KR2022/009906 KR2022009906W WO2023022368A1 WO 2023022368 A1 WO2023022368 A1 WO 2023022368A1 KR 2022009906 W KR2022009906 W KR 2022009906W WO 2023022368 A1 WO2023022368 A1 WO 2023022368A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
antiviral
layer
deodorizing effects
film
Prior art date
Application number
PCT/KR2022/009906
Other languages
French (fr)
Korean (ko)
Inventor
최관영
정도규
이태영
김은교
고민규
Original Assignee
주식회사 퀀텀바이오닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 퀀텀바이오닉스 filed Critical 주식회사 퀀텀바이오닉스
Publication of WO2023022368A1 publication Critical patent/WO2023022368A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates

Definitions

  • the present invention relates to a membrane having antibacterial, antiviral, and deodorizing functions, and more specifically, generates an electromagnetic field to maximize antibacterial, antiviral, and deodorizing effects, and improves transmittance and heat rejection through surface plasmons generated by the electromagnetic field. It relates to an antimicrobial membrane having and a method for manufacturing the same.
  • closed spaces such as vehicles and homes, spaces that need to be kept more pleasant and clean, such as bedding, students' study rooms, nurseries, academies, offices, hospitals, nursing facilities, accommodations, and PC rooms
  • antibacterial and deodorizing agents that prevent the propagation of bacteria such as viruses and molds may be more important.
  • antibacterial films with antibacterial properties resistant to germs and bacteria have been developed and released, and are attached to almost all objects or spaces that come into contact with the human body in daily life.
  • generally distributed films contain copper or silver as a main component, but questions remain about the actual antibacterial function of these antibacterial films. Since the place where the antibacterial film is attached is a place where many people come into contact with it, it should be able to quickly achieve strong antibacterial and antiviral effects.
  • generally used films containing copper or silver have been reported only for 24 hours of antibacterial activity against common pathogens, and there has been no report on whether antibacterial or antiviral effects can be achieved within a shorter period of time. .
  • the problem to be solved by the present invention is to solve the above problems, to maximize antibacterial, antiviral and deodorizing effects, and to provide an antibacterial film having improved transmittance and thermal barrier rate through surface plasmons generated by electromagnetic fields. .
  • the method includes forming an adhesive layer, forming a substrate layer on one surface of the adhesive layer, depositing a nanoalloy composition that generates an electromagnetic field on one surface of the substrate layer to form a thin film layer, and forming a thin film layer on one surface of the thin film layer.
  • a step of forming a coating layer may be included.
  • the nanoalloy composition may be characterized as comprising at least one of an alloy of a diamagnetic material and a ferromagnetic material or an alloy of a diamagnetic material and a paramagnetic material.
  • the nanoalloy composition is a nanopowder obtained through grinding of at least one of an alloy of the diamagnetic material and the ferromagnetic material or an alloy of the diamagnetic material and the paramagnetic material, wherein the nanopowder is dispersed. It relates to a liquid, and includes a solvent composed of polyethylene glycol, salicylic acid, glycolic acid, lower alcohol and purified water, and a surfactant composed of polyvinyl alcohol and polyvinylpyrrolidone, wherein the diamagnetic material comprises a trace amount It may be characterized as generating an oligodynamic action.
  • the nanoalloy composition reflects near-infrared rays through surface plasmons caused by the electromagnetic field and transmits visible rays, so that it has improved transmittance and thermal insulation rate.
  • the thin film layer may be deposited on one surface of the base layer by sputtering or evaporation.
  • the coating layer is composed of 5 to 500 parts by weight of a photocatalytic element relative to 100 parts by weight of the nanoalloy composition, and the photocatalytic element prevents a photocatalytic reaction from occurring by an electromagnetic field generated from the nanoalloy composition.
  • the nanoalloy composition included in the coating layer may be characterized in that the concentration of the solute relative to the total solution is 0.01 to 2wt%.
  • the coating layer is coated on one surface of the thin film layer through wet coating, and may be characterized in that it is configured through a predetermined thickness and surface hardness.
  • each of the predetermined thickness and surface hardness of the coating layer may be characterized in that 1 to 10um and B to 5H.
  • the adhesive layer may be formed through a wet coating method in which a liquid adhesive is applied to a support surface.
  • the substrate layer, for supporting or fixing the thin film layer may be characterized in that it is configured through a material having elasticity.
  • the base layer may include at least one of polyethyleneterephthalate (PET), polyimide (PI), polypropylene (PP), polyethylene (PE), polyester, polycarbonate (PC), or poly-methylmethacrylate (PMMA).
  • PET polyethyleneterephthalate
  • PI polyimide
  • PP polypropylene
  • PE polyethylene
  • PE polyethylene
  • PC polycarbonate
  • PMMA poly-methylmethacrylate
  • the antibacterial film may include an adhesive layer, a substrate layer formed on one surface of the adhesive layer, a thin film layer formed by depositing a nanoalloy composition generating an electromagnetic field on one surface of the substrate layer, and a coating layer formed on one surface of the thin film layer.
  • the nanoalloy composition may be characterized as comprising at least one of an alloy of a diamagnetic material and a ferromagnetic material or an alloy of a diamagnetic material and a paramagnetic material.
  • the nanoalloy composition is a nanopowder obtained through grinding of at least one of an alloy of the diamagnetic material and the ferromagnetic material or an alloy of the diamagnetic material and the paramagnetic material, wherein the nanopowder is dispersed. It relates to a liquid, and includes a solvent composed of polyethylene glycol, salicylic acid, glycolic acid, lower alcohol and purified water, and a surfactant composed of polyvinyl alcohol and polyvinylpyrrolidone, wherein the diamagnetic material comprises a trace amount It may be characterized as generating an oligodynamic action.
  • the nanoalloy composition reflects near-infrared rays through surface plasmons caused by the electromagnetic field and transmits visible rays, so that it has improved transmittance and thermal cutoff. Characterized in that,
  • the thin film layer may be deposited on one surface of the base layer by sputtering or evaporation.
  • the coating layer is composed of 5 to 500 parts by weight of a photocatalytic element relative to 100 parts by weight of the nanoalloy composition, and the photocatalytic element prevents a photocatalytic reaction from occurring by an electromagnetic field generated from the nanoalloy composition.
  • the nanoalloy composition included in the coating layer may be characterized in that the concentration of the solute relative to the total solution is 0.01 to 2wt%.
  • the coating layer is coated on one surface of the thin film layer through wet coating, and may be characterized in that it is configured through a predetermined thickness and surface hardness.
  • each of the predetermined thickness and surface hardness of the coating layer may be characterized in that 1 to 10um and B to 5H.
  • the adhesive layer may be formed through a wet coating method in which a liquid adhesive is applied to a support surface.
  • the substrate layer, for supporting or fixing the thin film layer may be characterized in that it is configured through a material having elasticity.
  • the base layer may include at least one of polyethyleneterephthalate (PET), polyimide (PI), polypropylene (PP), polyethylene (PE), polyester, polycarbonate (PC), or poly-methylmethacrylate (PMMA).
  • PET polyethyleneterephthalate
  • PI polyimide
  • PP polypropylene
  • PE polyethylene
  • PE polyethylene
  • PC polycarbonate
  • PMMA poly-methylmethacrylate
  • an antibacterial film that provides antibacterial, antiviral, and deodorizing effects, and has improved transmittance and heat rejection through surface plasmons generated by electromagnetic fields.
  • FIG. 1 is a view exemplarily showing a cross-sectional view of an antibacterial film having antibacterial, antiviral and deodorizing effects related to an embodiment of the present invention.
  • Figure 2 is an exemplary diagram showing various uses of an antibacterial film having antibacterial, antiviral and deodorizing effects related to an embodiment of the present invention by way of example.
  • Figure 3 illustratively shows a flow chart of a method for manufacturing an antibacterial film having antibacterial, antiviral and deodorizing effects related to an embodiment of the present invention.
  • FIG. 4 is a diagram exemplarily shown to explain an antibacterial action performed through copper related to an embodiment of the present invention.
  • Figure 5 shows an example of the antibacterial and antiviral action generated in the antimicrobial film related to an embodiment of the present invention.
  • FIG. 6 is a diagram exemplarily illustrating various effects generated through a photocatalytic device related to an embodiment of the present invention.
  • FIG. 7 is a diagram showing various effects caused by an antimicrobial membrane related to an embodiment of the present invention by way of example.
  • FIG. 8 is a view showing exemplarily cross-sectional views of each of a conventional general window film and an antibacterial film related to an embodiment of the present invention.
  • FIG. 9 shows an exemplary diagram for explaining energy efficiency related to each of a conventional general window film and an antibacterial film related to an embodiment of the present invention.
  • first, second, etc. are used to describe various elements or components, these elements or components are not limited by these terms, of course. These terms are only used to distinguish one element or component from another. Accordingly, it goes without saying that the first element or component mentioned below may also be the second element or component within the technical spirit of the present invention.
  • the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless otherwise specified or clear from the context, “X employs A or B” is intended to mean one of the natural inclusive substitutions. That is, X uses A; X uses B; Or, if X uses both A and B, "X uses either A or B" may apply to either of these cases. Also, the term “and/or” as used herein should be understood to refer to and include all possible combinations of one or more of the listed related items.
  • the antibacterial film 100 having antibacterial, antiviral and deodorizing effects may be provided including an adhesive layer 110, a substrate layer 120, a thin film layer 130, and a coating layer 140.
  • an antibacterial film 100 may be provided by being bound to various objects or spaces that may come into contact with the body in daily life.
  • the antibacterial film 100 is attached to various areas such as handles of railways, subways, buses, cars, etc., doorknobs, walls, chairs, bed rails, etc. of many facilities such as hospitals and schools through the adhesive layer 110. and can be provided.
  • the antimicrobial membrane 100 may be implemented in various forms and provided to be utilized in various fields.
  • the antimicrobial membrane 100 may perform antiviral, antibacterial and deodorizing actions through the thin film layer 130 or the coating layer 140 including the nanoalloy composition.
  • the nanoalloy composition included in the thin film layer 130 and the coating layer 140 may be a composition that generates an electromagnetic field by itself.
  • the nanoalloy composition is generated based on an alloy of a diamagnetic component material selected from copper, gold, silver, and bismuth, and a ferromagnetic substance such as iron, Nitel, cobalt, and neodymium, or a paramagnetic component material such as platinum, and generates an electromagnetic field by itself. It can be characterized by doing.
  • the nanoalloy composition may be a composition including an alloy of diamagnetic copper and ferromagnetic iron, that is, a copper-iron alloy.
  • a composition including an alloy of diamagnetic copper and ferromagnetic iron that is, a copper-iron alloy.
  • the specific description of the above-described nanoalloy composition is only an example, and the present invention is not limited thereto.
  • the magnetic field can be changed by the change in the electric field due to the oxidation-reduction of a conductive metal material (ie, the diamagnetic component) such as copper, gold, silver, or bismuth.
  • a conductive metal material ie, the diamagnetic component
  • an electromagnetic field is generated by itself according to the principle that the electric field is changed by the change of the magnetic field of ferromagnetic components such as iron, nickel, and cobalt (based on Faraday's law related to the induction of the electric field and the magnetic field between corals).
  • each of the diamagnetic component and the paramagnetic component has a two-dimensional stacked structure in which layers are separated, and an electromagnetic field can be generated based on Faraday's law.
  • additional additives such as Zn, Mg, K, P, Cl, Ca, I, Si, Ti, Al, etc. to cause a change in dielectric constant, the electromagnetic field generated from the antimicrobial membrane 100 can be changed or adjusted.
  • the antibacterial membrane 100 of the present invention can perform antibacterial and antiviral actions. Specifically, the antimicrobial membrane 100 may perform antibacterial action through metal ions and antiviral action based on electromagnetic fields.
  • the antimicrobial membrane 100 may include metal ions.
  • the metal ion may mean, for example, a diamagnetic component constituting the nanoalloy composition included in the thin film layer 130 and the coating layer 140 .
  • the metal ion included in the antimicrobial membrane 100 may mean copper.
  • Metal ions (eg, copper) included in the antimicrobial membrane 100 may perform an antibacterial function.
  • copper may perform an antibacterial action based on microcosmic action.
  • Microbial action is to sterilize viruses, microorganisms, fungi, etc. by disturbing the metabolism of microorganisms by copper atoms, and can provide the effect of completely removing not only mutations but also resistance as the nucleic acids of bacteria are completely destroyed.
  • antibacterial action can be performed as the activity of bacteria is hindered through the action of copper ions (or metal ions) in small amounts.
  • the antimicrobial film 100 is configured to include metal ions (eg, copper ions) related to the diamagnetic material, an antibacterial action may be performed.
  • metal ions eg, copper ions
  • an antibacterial action may be performed.
  • the virus since the virus does not undergo metabolic activity outside the host, it may not be killed by the action of copper in trace amounts.
  • antibacterial action can be performed through metal ions, but antiviral action cannot be performed.
  • the antibacterial membrane 100 may perform an antiviral action through an electromagnetic field.
  • the antimicrobial membrane 100 may generate an electromagnetic field by itself.
  • the antimicrobial membrane 100 may include a nanoalloy composition related to an alloy of a diamagnetic component and a paramagnetic component or a ferromagnetic component.
  • the nanoalloy composition is formed through a two-dimensional laminated structure separated between each component, and an electromagnetic field is generated based on the Faraday effect.
  • an electromagnetic field is generated in the antimicrobial film 100 through the nanoalloy composition related to the alloy composition of the diamagnetic and paramagnetic or diamagnetic and ferromagnetic substances, and the virus can be killed through the resulting electrostatic force. That is, antiviral action can be performed as the virus is blocked by the electromagnetic field.
  • the antibacterial film 100 may perform a deodorizing action.
  • the coating layer 140 of the antibacterial film 100 may include a photocatalytic element, and a deodorizing effect may be generated through the photocatalytic element included in the corresponding coating layer 140 .
  • the photocatalytic device may refer to a device having semiconductor properties that generates active oxygen and receiver radicals in response to light or wavelengths having more than appropriate energy. Odor substances can be decomposed by the strong oxidation and reduction action of active oxygen and receiver radicals generated through the photocatalytic device.
  • the antibacterial film 100 of the present invention can provide an antibacterial effect against bacteria and mold, an antiviral effect against various viruses, and a deodorizing effect based on decomposition of malodorous substances.
  • the antimicrobial membrane 100 may be provided to be utilized in various fields depending on the material constituting the base layer 120 .
  • the base layer 120 is made of a material having elasticity, and may serve to support or fix the thin film layer 130 and the coating layer 140 that perform antibacterial and antiviral actions.
  • the base layer 120 may be configured through a material related to a film, nonwoven fabric, plastic, and the like, and thus, the antimicrobial membrane 100 may be implemented through more various aspects.
  • Various materials constituting the substrate layer 120 include, for example, polyethyleneterephthalate (PET), polyimide (PI), polypropylene (PP), polyethylene (PE), polyester, polycarbonate (PC), poly-methylmethacrylate (PMMA), and the like. It may include, but is not limited to.
  • the antimicrobial membrane 100 may be implemented in the form of a film.
  • the film refers to a film (or plate) having a certain level of transparency or more, and may be provided by being attached to an object or region that can directly contact the user's body.
  • the antibacterial membrane 100 may be implemented in the form of a filter or clothing.
  • the filter is for filtering out foreign substances in the gas, and may refer to a membrane, layer, surface, or the like that cleanly filters intake air from an indoor ventilation system or an engine.
  • the antimicrobial membrane 100 of the present disclosure may be provided to be utilized in various fields depending on the material constituting the base layer 120.
  • the antibacterial membrane 100 may be provided in the form of a film, and is attached to various areas where a large number of non-characteristics are frequently moved (eg, rails, subways, buses, car handles, etc.), or to the windows of buildings or automobiles. It can be used as a window film.
  • the antibacterial membrane 100 may be provided in the form of a filter, and may be used as a filter for a combined air conditioner (eg, air conditioner, heater, total heat exchanger, humidifier, air purifier, etc.) or a filter for a mask worn by a user.
  • a combined air conditioner eg, air conditioner, heater, total heat exchanger, humidifier, air purifier, etc.
  • the antibacterial membrane 100 having antibacterial, antiviral and deodorizing effects can be used as a filter that can become a source and habitat of bacteria and become a secondary pollutant in the indoor space.
  • the antibacterial film 100 may be provided in the form of a product in contact with the user's skin.
  • the antibacterial membrane 100 may be configured in a form in contact with human skin, such as a diaper, wet tissue, cleansing tissue, sanitary napkin, or insole.
  • Conventional skin contact products may contain preservatives to prevent mold or bacteria from occurring. These preservatives are alcohol-based chemicals with volatility and may generate a characteristic odor. Therefore, a separate artificial fragrance is used to remove the peculiar smell of the preservative, and in this case, it may adversely affect the user's body.
  • the antimicrobial film 100 does not contain a separate chemical substance, it is effective for the user's physical health and can provide antibacterial, antiviral and deodorizing effects.
  • the antimicrobial membrane 100 may be provided in the form of a non-woven fabric.
  • the antibacterial film 100 as it is provided in the form of a non-woven fabric, it can be used as packaging paper related to meat, fruits, vegetables, and the like.
  • the antibacterial film 100 sterilizes viruses, microorganisms, fungi, etc. by the action of a small amount of copper, thereby preventing decay and extending shelf life, thereby providing an effect of improving freshness.
  • the antimicrobial membrane 100 can be utilized through various implementations, it is possible to block viruses and prevent the propagation of bacteria in a space shared by a number of users, and deodorize by removing odors. effects can also be provided.
  • the antibacterial film 100 can be provided in contact with or adjacent to various spaces to perform antibacterial, antiviral, and deodorizing actions, it can be used as an environmental vaccine concept for space disinfection.
  • Figure 3 illustratively shows a flow chart of a method for manufacturing an antibacterial film having antiviral and deodorizing effects related to an embodiment of the present invention.
  • the antibacterial film manufacturing method having antiviral and deodorizing effects may be composed of the following steps.
  • the order of the steps shown in FIG. 3 may be changed as needed, and at least one or more steps may be omitted or added. That is, the above steps are only one embodiment of the present invention, and the scope of the present invention is not limited thereto.
  • the method for manufacturing an antibacterial film having antiviral and deodorizing effects may include forming an adhesive layer 110 (S110).
  • the adhesive layer 110 may be a part related to adhesion with various objects or spaces. For example, as the adhesive layer 110 comes into contact with various areas such as handles of railways, subways, buses, cars, doorknobs, walls, chairs, and bed rails of many facilities such as hospitals and schools, the antibacterial film 100 is applied to the corresponding area. It can be provided for each.
  • the adhesive layer 110 may be used as a window film through adhesion to the window.
  • the adhesive layer 110 may be characterized in that it is formed through wet coating using an adhesive.
  • the adhesive layer 110 may be formed through a wet coating method in which a liquid adhesive is applied to a support surface.
  • the support surface is provided to temporarily support the adhesive during the formation of the adhesive layer 110, and may be separated after the adhesive layer 110 is formed.
  • the pressure-sensitive adhesive may include a material having excellent heat resistance, sea resistance, re-peelability, electrical insulation, and excellent adhesion to various adherends.
  • the pressure-sensitive adhesive of the present invention may relate to at least one of a silicone-based pressure-sensitive adhesive, an acryl-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, or a hot-melt-based pressure-sensitive adhesive.
  • the adhesive layer 110 may be formed through adhesive coating using an adhesive.
  • An adhesive coating using an adhesive is a coating (eg, wet coating) in which a liquid adhesive is applied, and may include at least one of gravure coating, micro gravure coating, and comma coating.
  • Gravure coating may be a coating method in which an adhesive is directly transferred to a substrate by putting an adhesive in a concavely carved (ie, intaglio) drawing line.
  • the gravure coating may be a method of transferring the adhesive liquid by contacting the back-up roll (pressure roll or rubber roll) and the gravure (mesh).
  • Micro gravure coating may be a precision coating method that uniformly applies a thin film of paint by minimizing the radius of the coating roll to minimize the contact angle of the coating roll and minimizing the contact range with the roll surface.
  • comma coating is a method of applying an adhesive liquid (ie, liquid-state adhesive) using a comba-shaped bar, and may be a coating method used when the viscosity of the adhesive liquid is high or the coating thickness is increased.
  • the adhesive layer 110 may be formed through adhesive coating (or wet coating) of the liquid adhesive, and the antimicrobial film 100 can contact various areas through the generated adhesive layer 110. may be provided.
  • the method for manufacturing an antibacterial film having antibacterial, antiviral and deodorizing effects may include forming a substrate layer 120 on one surface of the adhesive layer 110 (S120).
  • the base layer 120 is for supporting or fixing the thin film layer 130 and may be characterized in that it is made of a material having elasticity.
  • the base layer 120 may be composed of various elastic materials related to films, non-woven fabrics, and plastics.
  • various elastic materials constituting the base layer 120 include polyethyleneterephthalate (PET), polyimide (PI), polypropylene (PP), polyethylene (PE), polyester, polycarbonate (PC), and poly-methylmethacrylate (PMMA). ), etc., but are not limited thereto.
  • the antimicrobial membrane 100 of the present invention may be implemented in various aspects depending on the material constituting the base layer 120 .
  • the antimicrobial membrane 100 may be implemented in the form of a film.
  • the antimicrobial membrane 100 may be implemented in the form of a filter or clothing.
  • the antimicrobial membrane 100 may be provided through various implementations. Accordingly, through the antibacterial film 100, it is possible to block viruses and prevent the propagation of bacteria in a space shared by a plurality of users, and also provide a deodorizing effect that removes odors.
  • a method for manufacturing an antimicrobial film having antibacterial, antiviral and deodorizing effects includes forming a thin film layer 130 by depositing a nanoalloy composition that generates an electromagnetic field on one surface of a substrate layer 120. (S130) may be included.
  • the thin film layer 130 may be formed of a nanoalloy composition including at least one of an alloy of a diamagnetic material and a ferromagnetic material or an alloy of a diamagnetic material and a paramagnetic material to generate an electromagnetic field.
  • the nanoalloy composition forming the thin film layer 130 may be obtained by grinding at least one of an alloy of a diamagnetic component material and a ferromagnetic component material or an alloy of a diamagnetic component material and a paramagnetic component material. there is.
  • the nanoalloy composition may be produced based on an alloy of a diamagnetic component selected from copper, gold, silver, bismuth, and the like, and a ferromagnetic component such as iron, Nitel, cobalt, and neodymium, or a paramagnetic component such as platinum.
  • the nanoalloy composition may be a composition including nanopowder related to an alloy of diamagnetic copper and ferromagnetic iron, that is, a copper-iron alloy.
  • a composition including nanopowder related to an alloy of diamagnetic copper and ferromagnetic iron, that is, a copper-iron alloy that is, a copper-iron alloy.
  • the specific description of the above-described nanoalloy composition is only an example, and the present invention is not limited thereto.
  • the electric field change due to the oxidation-reduction of conductive metal materials such as copper, gold, silver, and bismuth (ie, the diamagnetic component)
  • the magnetic field can be changed by
  • an electromagnetic field is generated by itself according to the principle that the electric field is changed by the change of the magnetic field of ferromagnetic components such as iron, nickel, and cobalt (based on Faraday's law related to the induction of the electric field and the magnetic field between corals).
  • each of the diamagnetic component and the paramagnetic component has a two-dimensional stacked structure in which layers are separated, and an electromagnetic field can be generated based on Faraday's law.
  • the nanoalloy composition including the diamagnetic component and the paramagnetic component (or ferromagnetic component) may generate an electromagnetic field by itself.
  • the thin film layer 130 formed by deposition through the nanoalloy composition may itself generate an electromagnetic field.
  • the nanoalloy composition is in the form of a dispersion solution in which the nanopowder of the copper-iron alloy is dispersed in a solvent, and the dispersibility and dispersion stability of the nanopowder of the copper-iron alloy in the solvent may be excellent. Accordingly, Significantly improved antiviral and antibacterial effects can be realized.
  • the nanoalloy composition may refer to a composition created based on copper as a material of a diamagnetic component and iron as a material of a ferromagnetic component, that is, a copper-iron alloy.
  • the nanoalloy composition may include a nanopowder, a solvent, and a surfactant.
  • the nanopowder may relate to an alloy of at least one of a diamagnetic material and a ferromagnetic material or a diamagnetic material and a paramagnetic material.
  • the nanopowder relates to a copper-iron alloy, and may refer to an alloy containing copper and iron in a ratio of 9:1.
  • the copper ratio decreases (eg, when the copper ratio is 80% or less in the total ratio) or significantly increases (eg, when the copper ratio is 99% or more in the total ratio)
  • the nanopowder Antiviral and antibacterial effects of the nanoalloy composition implemented through may be reduced.
  • the nanopowder may refer to a nanopowder having a particle size equal to or less than a predetermined size.
  • the nanopowder may mean a powdered copper-iron alloy to a size of 1 to 100 nanometers.
  • the specific numerical description related to the size of the nanopowder described above is only an example, and the present invention is not limited thereto.
  • the nanoalloy composition may be in the form of a dispersion in which the nanopowder is dispersed, and the nanopowder may be provided in a solvent at a concentration of 200 to 800 ppm.
  • the material of the diamagnetic component may be characterized in that it generates a microcosmic action.
  • the diamagnetic component included in the thin film layer 130 of the present invention may mean copper.
  • Microbial action is to sterilize viruses, microorganisms, fungi, etc. by disturbing the metabolism of microorganisms by copper atoms.
  • the thin film layer 130 of the present invention is composed of copper (ie, composed of copper-iron nanopowder), it can perform an antibacterial action through a micro copper action.
  • 4 is a diagram exemplarily shown to explain an antibacterial action performed through copper related to an embodiment of the present invention.
  • the bacterial cells 200 may recognize the copper ions 210 on the copper surface as essential nutrients and absorb the copper ions 210 into the body. That is, the copper ions 210 pass through the bacterial cells 200 and penetrate into the inside (S210). The copper ions 210 penetrating into the body of the bacterial cell 200 unstablely disturb the potential difference between the inside and outside of the cell membrane, and thus the bacterial cell loses important nutrients and moisture inside, gradually destroying the cell membrane ( S220). In addition, copper ions 210 may attract external reactive oxygen species 220 to accelerate damage to bacterial cells (S230).
  • the active oxygen species refers to chemical substances that are chemically active, that is, include unstable oxygen, for example, peroxides such as hydrogen peroxide, superoxides, hydroxyl radicals, singlet oxygen ( singlet oxygen), etc., but is not limited thereto.
  • the reactive oxygen species 220 may include various types of reactive molecules and free radicals derived from oxygen molecules. Oxygen compounds associated with radicals can be dangerous to oxygen-breathing organisms. That is, the copper ions 210 penetrating the bacterial cells 200 can attract the reactive oxygen species 220, and various imbalances caused by these reactive oxygen species 220 cause damage to the bacterial cells 200. can accelerate In addition, copper ions can degrade genomic and plasmid DNA, block cell replication and self-propagation, and interfere with cellular respiration and metabolism of bacterial cells (S240).
  • an antibacterial action can be performed by interfering with the activity of bacteria through the action of copper ions (or metal ions) in small amounts.
  • bacteria include copper ions internally due to metabolism, which can cause destruction of cell membranes and destruction of DNA and lipids by generation of active oxygen. That is, as the thin film layer 130 includes copper ions (that is, includes copper-iron nanopowder), it can perform an antibacterial action through a micro copper action.
  • the nanoalloy composition may include a solvent.
  • the solvent may mean a liquid in which the nanopowder is dispersed.
  • the solvent may be formed in the form of a dispersed liquid, and may include polyethylene glycol, salicylic acid, glycolic acid, lower alcohol, and purified water.
  • the nanoalloy composition of the present invention may be characterized by improving the dispersibility of the nanopowder in a solvent by using a mixture of all five materials.
  • polyethylene glycol may be included in 25 to 45% by weight
  • salicylic acid may be included in 3 to 7% by weight
  • glycolic acid may be included in 2 to 3% by weight
  • lower alcohol may be included in 15 It may be included in ⁇ 17% by weight, and may be composed of the remaining amount of purified water.
  • the lower alcohol may be ethanol, but is not limited thereto.
  • the lower alcohol may be constituted via methanol.
  • the nanoalloy composition may include a surfactant.
  • the surfactant is for improving dispersion stability, and may include polyvinyl alcohol and polyvinyl pyrrolidone.
  • the surfactant may include polyvinyl alcohol and polyvinylpyrrolidone in a weight ratio of 1:9 to 10.
  • the surfactant of the present invention is implemented through a combination of polyvinyl alcohol and polyvinylpyrrolidone, and as it can improve dispersion stability, it provides excellent dispersibility and dispersion stability for nanopowder, thereby providing antiviral and antibacterial effects. can be maximized.
  • the nanoalloy composition may further include additional additives.
  • the additional additive may include, but is not limited to, at least one of physiological saline, a buffer, an antioxidant, a chelating agent, a dispersion stabilizer, a pigment, a dye, an anti-aging agent, and a preservative.
  • additional additives may include Zn, Mg, K, P, Cl, Ca, I, Si, Ti, Al, and the like. These additional additives can change or adjust the electromagnetic field generated in the antimicrobial membrane 100 by causing a change in the dielectric constant of the nanoalloy composition. In other words, it may be possible to adjust the electromagnetic field generated from the antimicrobial membrane 100 through the additional additive.
  • the nanoalloy composition may have improved transmittance and thermal insulation rate.
  • the antimicrobial membrane 100 including the nanoalloy composition may also have improved transmittance and thermal barrier rate.
  • the antibacterial membrane 100 may be provided in the form of, for example, a film and attached to a window of a building or vehicle to provide an effect of improving energy efficiency through improved transmittance and thermal insulation rate.
  • the nanoalloy composition has improved transmittance (VLT, Visible Light Transmittance) and thermal rejection (TESR, Total Sola Energy Rejection) by reflecting near-infrared rays and transmitting visible rays through surface plasmons caused by electromagnetic fields.
  • VLT Visible Light Transmittance
  • TSR Total Sola Energy Rejection
  • Surface plasmons refer to pseudo-particles in which free electrons in a metal oscillate collectively.
  • surface plasmon is formed by the electromagnetic field of the thin film layer, and surface plasmon resonance (SPR) can be formed when the near-infrared electromagnetic field of light meets. Due to the surface plasmon resonance, a highly increased electric field is generated locally.
  • the thin film layer 130 composed of the nanoalloy composition can perform an antibacterial action as it is composed of a material of a diamagnetic component (ie, copper), generates an electromagnetic field by itself to perform an antiviral action, and It can provide improved transmittance and thermal insulation rate.
  • the thin film layer 130 may be characterized in that the transmittance can be adjusted according to the thickness of the thin film layer 130 . For example, as the thickness of the thin film layer 130 increases, transmittance may be further improved.
  • the thin film layer 130 may be characterized in that it is deposited on one surface of the base layer 120 by sputtering or evaporation.
  • the thin film layer 130 is composed of a metal-related nanoalloy composition and may be deposited through a sputtering process.
  • the sputtering process is a deposition process performed in a vacuum state. An electric field is applied to the material to be deposited (i.e., the nanoalloy composition) and the portion to be coated (i.e., the substrate layer), and plasma, a fourth material state, is generated between them.
  • Argon ions Ar+
  • an inert gas move toward the target (i.e., the nanoalloy composition) connected to the (-) pole, collide with the metal, and cause the metal particles to bounce off and accumulate on the substrate layer on the opposite side, thereby forming the nanoalloy composition in the substrate layer.
  • It may be a process of depositing on one side of (120).
  • a nanoalloy composition is deposited on one surface of the base layer 120 through the sputtering process, so that the thin film layer 130 may be formed in a single layer form.
  • the antibacterial film manufacturing method having antibacterial, antiviral and deodorizing effects may include forming a coating layer 140 on one surface of the thin film layer 130 (S140).
  • the coating layer 140 may include a nanoalloy composition and a photocatalytic device.
  • the nanoalloy composition included in the coating layer 140 may be a composition including nanopowder related to an alloy of a diamagnetic component material and a ferromagnetic component material (or diamagnetic component material).
  • the nanoalloy composition can perform an antibacterial action through a trace copper action through a material of a diamagnetic component (ie, copper), an antiviral action through a self-generated electromagnetic field, and provide improved transmittance and thermal insulation rate. .
  • the photocatalytic device may promote a chemical reaction (eg, oxidation or reduction reaction) through an electromagnetic field generated through the nanoalloy composition.
  • a chemical reaction eg, oxidation or reduction reaction
  • electromagnetic field generated through the nanoalloy composition.
  • the photocatalytic device can maximize antibacterial, antiviral, and deodorizing functions by inducing a photocatalytic reaction activity by an electromagnetic field.
  • the photocatalytic device generates active oxygen and hydroxyl radicals when receiving light having more than appropriate energy, and decomposes odorous substances and has an antibacterial action through their strong oxidation and reduction actions. It may refer to a material having semiconductor properties that can be generated. Semiconductors are excited from the valence band to the conduction band when a certain range of energy is applied. At this time, electrons (e ⁇ ) 20 are formed in the conduction band and holes (h+) 30 are formed in the electron band. The electrons 20 and holes 30 thus formed cause a reaction to decompose harmful substances by a strong oxidation or reduction action.
  • elements having photocatalytic properties may include titanium dioxide (TiO 2 ) and zinc oxide (ZnO), but are not limited thereto.
  • Titanium dioxide or zinc oxide may have chemical stability and excellent advantages as a semiconductor.
  • titanium dioxide may function as a photocatalyst based on energy above about 3.0 eV.
  • titanium dioxide a photocatalytic element, generates electrons 20 and holes 30 by the electromagnetic field 10 generated through the nanoalloy composition, and each of the electrons and holes reacts with O 2 and H 2 O in the air.
  • the hydroxyl radical (31) Since the hydroxyl radical (31) has a high oxidation and reduction potential, it can be excellent in purifying NOx, volatile organic compounds (VOCs) and various odors, and it can be excellent for livestock wastewater, sewage, factory wastewater BOD, color and recalcitrance pollution Substances, environmental hormones, etc. can be completely removed. In addition, hydroxyl radicals can oxidize all target substances, such as sterilizing over 99% of various pathogens and bacteria such as pathogenic Escherichia coli, Staphylococcus aureus, and O-157.
  • Such a photocatalytic device can be economical because it reacts even with solar energy or fluorescent light, and exhibits a permanent function through a cycle of “fixation on an object, photolysis, and regeneration”.
  • the by-products after the reaction are water and CO 2 that are harmless to the human body and the environment, they can be applied to various fields.
  • the coating layer 140 may include a nanoalloy composition having a solute concentration of 0.01 to 2 wt% relative to the total solution.
  • the coating layer 140 may be characterized by comprising 5 to 500 parts by weight of the photocatalytic element based on 100 parts by weight of the nanoalloy composition. That is, the coating layer 140 is composed of a nanoalloy composition having a concentration of solute (eg, nanopowder related to a copper-iron alloy) of 0.01 to 2wt%, and the ratio of the photocatalytic element to the nanoalloy composition is 1:0.2 to 1:0.2. may be 500.
  • solute eg, nanopowder related to a copper-iron alloy
  • the concentration of the solute in the nanoalloy composition constituting the coating layer 140 and the ratio of the photocatalytic element to the nanoalloy composition are optimal for improving deodorization, transmittance, and thermal insulation rate by maximizing the photocatalytic function.
  • the coating layer 140 is coated on one surface of the thin film layer 130 through wet coating, and may be configured through a predetermined thickness and surface hardness.
  • the predetermined thickness may be 1 to 10 ⁇ m
  • the predetermined surface hardness may be 2 to 5H (Hardness).
  • the predetermined thickness and surface hardness may be optimal values for maximizing the photocatalytic function and improving the surface protection function by the surface plasmon phenomenon.
  • the specific numerical description of the thickness and surface hardness of the above-described coating layer is only an example, and the present invention is not limited thereto.
  • the coating layer 140 is a combination of a liquid state (ie, a combination of a nanoalloy composition and a photocatalytic element (eg, titanium dioxide)) using the thin film layer 130 as a base in a roll-to-roll form. It can be created as it is applied and progressed.
  • the coating layer 140 is formed through processes such as unwinding (unwinding) of the thin film layer, pre-treatment of the surface of the thin film layer, coating, drying, and winding (rewinding). It can be.
  • the wet coating may include at least one of gravure coating, micro gravure coating, or comma coating, but is not limited thereto.
  • the formed coating layer 140 is produced by mixing the nanoalloy composition and the photocatalytic element, and may have excellent surface strength because it includes a metal material.
  • the coating layer 140 formed on the epidermis of the antimicrobial membrane 100 may have a surface protection function.
  • the photocatalytic element of the coating layer 140 promotes a chemical reaction through an electromagnetic field generated through the nanoalloy composition, antibacterial, antiviral, and deodorizing functions can be maximized.
  • the band gap is reduced compared to the photocatalytic device without copper doping. That is, when the photocatalytic element is doped through the nanoalloy composition (ie, copper-doped titanium dioxide), the photocatalytic element (ie, TiO 2 ), that is, the band gap 311 of the photocatalytic element 310 that is not doped with copper. ) may have a reduced band gap 301.
  • a decrease in band gap may mean that electrical conductivity is increased, and thus antiviral and deodorizing effects may be maximized.
  • the mixture between the photocatalytic element and the nanoalloy composition ie, titanium dioxide doped with copper
  • improves efficiency using multiple electron transfer phenomena TiO2, Cu, Cu+, Cu2+.
  • can cause As enough electrons can be generated for multiple electron transfer in the visible light region due to the reduced band gap, visible light can be relatively effectively absorbed to cause rapid organic oxidation and reduction reactions.
  • the reduction reaction of electrons in the valence band may be promoted by Interfacial Charge Transfer (IFCT) under visible light irradiation.
  • IFCT Interfacial Charge Transfer
  • the coating layer 140 may maximize antibacterial, antiviral, and deodorizing effects by serving as a photocatalyst that induces an optical action through an electromagnetic field generated even under conditions where there is no light such as UV.
  • the antimicrobial membrane 100 may provide antibacterial, antiviral and deodorizing effects.
  • the antimicrobial membrane 100 is based on the high oxidation and reduction potential of hydroxyl radicals, volatile organic compounds (VOCs) nitrogen oxides (NOx), sulfur oxides (SOx) and formaldehyde It can provide an air purification effect through the removal of harmful substances such as
  • the antibacterial membrane 100 may provide a deodorizing effect by adsorbing and decomposing odors such as acetaldehyde, ammonia, and hydrogen sulfide.
  • the antimicrobial film 100 can provide an antibacterial effect related to sterilization or anti-corruption of Salmonella, 0157, Staphylococcus aureus, Escherichia coli, mold, etc. .
  • the antibacterial film 100 may provide a hydrophilic effect such as providing a self-cleaning effect by utilizing a property of attracting water upon receiving light.
  • the antimicrobial film 100 may provide an effect of preventing contamination on the surface through decomposition of organic substances.
  • the antibacterial film 100 may implement antiviral and antibacterial effects by forming a partial layer by applying, adhering, or binding to a target member.
  • the target member may mean all articles.
  • the target member may include non-woven fabric, fiber sheet, liquid crystal, display, monitor, keyboard, paper, metal, etc., but is not limited thereto.
  • the antibacterial film 100 may be provided by being adhered to a product in contact with the user's skin as a target member.
  • the antibacterial membrane 100 may be configured by contacting a target member such as a diaper, wet tissue, cleansing tissue, sanitary napkin, or insole that comes in contact with human skin.
  • Conventional skin contact products may contain preservatives to prevent mold or bacteria from occurring. These preservatives are alcohol-based chemicals with volatility and may generate a characteristic odor. Therefore, a separate artificial fragrance is used to remove the peculiar smell of the preservative, and in this case, it may adversely affect the user's body.
  • the antimicrobial film 100 does not contain a separate chemical substance, it is effective for the user's physical health and can provide antibacterial, antiviral and deodorizing effects.
  • the antimicrobial membrane 100 may be provided by being adhered to a filter as a target member. That is, the antibacterial film 100 may be provided by being attached to one surface of a filter of a combined air conditioner (eg, air conditioner, total heat exchanger, humidifier, air purifier, etc.) or a filter of a mask worn by a user.
  • a combined air conditioner eg, air conditioner, total heat exchanger, humidifier, air purifier, etc.
  • antibacterial, antiviral, and deodorizing effects can be provided to the filter, which can become a source and habitat of bacteria and become a secondary pollutant in the indoor space.
  • the antimicrobial film 100 may be provided by being adhered to a window of a building or vehicle as a target member.
  • adhesion to the window may be achieved through the adhesive layer 110 .
  • the antimicrobial membrane 100 may have improved transmittance and thermal barrier rate.
  • the antimicrobial membrane 100 comprising the nanoalloy composition is provided in the form of a film and is attached to a window of a building or vehicle to improve energy efficiency. .
  • the antimicrobial membrane 100 including the nanoalloy composition when configured in the form of a window film, it is possible to improve visible light transmittance and heat shielding rate, provide convenience in the manufacturing process of the film, and reduce the thickness of the film. It can provide a minimizing effect.
  • a description of various effects that can be provided as the antimicrobial membrane 100 is provided in the form of a window film will be described below with reference to FIGS. 8 and 9 .
  • Figure 8 (a) shows an exemplary cross-sectional view of a conventional general window film
  • Figure 8 (b) shows an exemplary cross-sectional view of the antimicrobial film 100 of the present invention
  • Figure 9 shows an exemplary diagram for explaining the energy efficiency related to each of the antimicrobial membranes of the conventional general window film of the present invention.
  • the conventional window film 101 includes a first adhesive layer 111, a first substrate layer 121, a first thin film layer 131, and a first coating layer 141.
  • the first adhesive layer 111 corresponds to the adhesive layer 110 of the present invention and may be formed through wet coating using an adhesive.
  • the first base layer 121 of the conventional window film and the base layer of the antimicrobial membrane 100 may be made of the same material.
  • the base layer of each film may be composed of PET, but this is not essential.
  • the base layer 120 of the present invention may be characterized in that it is configured through 1PLY (ie, one layer).
  • 1PLY ie, one layer
  • the antimicrobial membrane of the present invention can be configured through 1PLY as it has improved transmittance and thermal barrier rate. This has the advantage of not only providing convenience in construction, but also minimizing the overall thickness of the film or film.
  • the antimicrobial film 100 of the present invention may be characterized by forming a thin film layer thinner than the conventional general window film 101.
  • the thin film layer 130 of the antimicrobial film 100 since the thin film layer 130 of the antimicrobial film 100 is composed of a single layer, it may be provided through a thickness thinner than that of the first thin film layer 131 of the conventional general window film 101.
  • the thin film layer 130 may be formed in a single layer form on one side of the base layer 120 through a sputtering process of a nano-alloy composition in a liquid state.
  • the nanoalloy composition may be characterized as having improved transmittance and heat rejection as it reflects near infrared rays and transmits visible rays through surface plasmons caused by electromagnetic fields.
  • Surface plasmons refer to pseudo-particles in which free electrons in a metal oscillate collectively.
  • surface plasmon is formed by the electromagnetic field of the thin film layer, and surface plasmon resonance (SPR) can be formed when the near-infrared electromagnetic field of light meets. Due to the surface plasmon resonance, a highly increased electric field is generated locally. This means that light energy is converted into surface plasmons and accumulated on the surface of metal nanoparticles, and light can be controlled in a region smaller than the diffraction limit of light. That is, near-infrared rays that generate heat may be reflected through the surface plasmon resonance, and as visible rays are transmitted, transmittance and heat rejection may be improved.
  • SPR surface plasmon resonance
  • the antimicrobial membrane 100 of the present invention can constitute the base layer 120 by forming one layer through the nanoalloy composition due to the characteristics of the nanoalloy composition caused by the alloy of the diamagnetic component and the ferromagnetic component. Therefore, it may be advantageous in terms of thickness.
  • the coating layer 140 of the antimicrobial membrane 100 of the present invention is a combination of a liquid state (ie, a combination of a nanoalloy composition and a photocatalytic element (eg, titanium dioxide)) in a roll-to-roll form. It can be formed through a wet coating applied with. That is, unlike the general first coating layer 141, the coating layer 140 is configured to include a nanoalloy composition and a photocatalytic element, thereby generating an electromagnetic field and inducing an optical action through the electromagnetic field, such as antibacterial, antiviral, and deodorizing. effect can be maximized. In other words, the coating layer 140 can maximize antibacterial, antiviral, and deodorizing effects by serving as a photocatalyst that induces an optical action even in the absence of light such as UV.
  • a liquid state ie, a combination of a nanoalloy composition and a photocatalytic element (eg, titanium dioxide)
  • the coating layer 140 is configured to include a nanoalloy
  • the antibacterial film 100 of the present invention may have significant improvements over the conventional general window film 101.
  • the conventional general window film 101 absorbs heat, but the antibacterial film 100 of the present invention can reflect heat through surface plasmon resonance.
  • the antibacterial film 100 of the present invention can reflect heat through surface plasmon resonance.
  • unlike conventional films that absorb and re-radiate heat it minimizes internal temperature changes through UV blocking and external heat reflection, and improves cooling and heating efficiency by reducing internal heat loss through improved thermal insulation. can make it
  • the conventional general window film 101 causes discoloration and deterioration over time, but the antimicrobial film 100 of the present invention may have a low degree of deterioration through a heat reflection mechanism.
  • the conventional general window film 101 does not provide additional functions such as antibacterial, antiviral, and deodorizing
  • the antibacterial film 100 of the present invention has an antiviral effect through an electromagnetic field
  • a material of a diamagnetic component such as , copper
  • the present invention can be utilized in the field of providing an antibacterial film having antibacterial and antiviral functions.

Abstract

Disclosed is a method for manufacturing an antibacterial film having antibacterial, antiviral, and deodorizing effects according to various embodiments of the present invention to achieve the above-described subject. The method may comprise the steps of: forming an adhesive layer: forming a base layer on one surface of the adhesive layer; depositing a nano-alloy composition, generating an electromagnetic field, on one surface of the base layer to form a thin film layer; and forming a coating layer on one surface of the thin film layer.

Description

항균, 항바이러스 및 탈취 효과를 가진 항균막 및 그 제조방법Antibacterial film having antibacterial, antiviral and deodorizing effects and its manufacturing method
본 발명은 항균, 항바이러스 및 탈취 기능을 갖는 막에 관한 것으로, 보다 구체적으로, 전자기장을 발생시켜 항균, 항바이러스 및 탈취효과를 극대화시키며, 전자기장에 의해 발생되는 표면 플라즈몬을 통해 향상된 투과율 및 열차단율을 갖는 항균막 및 그 제조방법에 관한 것이다. The present invention relates to a membrane having antibacterial, antiviral, and deodorizing functions, and more specifically, generates an electromagnetic field to maximize antibacterial, antiviral, and deodorizing effects, and improves transmittance and heat rejection through surface plasmons generated by the electromagnetic field. It relates to an antimicrobial membrane having and a method for manufacturing the same.
최근에 들어 국민들의 건강보건의식이 높아짐에 따라 다양한 용도로 사용될 수 있는 항균성을 가지고 있는 소재에 대한 수요가 증대되고 있다. 특히, 대중이 다수 이용할 수 있는 공용물품이나 사용자의 손에 자주 접촉될 수 있는 핸드폰과 같은 소형전자기기의 경우에는 항균성을 가지는 재료를 이용하여 만들어지는 것이 최근의 추세이다.In recent years, as people's health awareness has increased, the demand for materials having antibacterial properties that can be used for various purposes is increasing. In particular, in the case of public goods that can be used by many people or small electronic devices such as mobile phones that can frequently come into contact with the user's hands, it is a recent trend to use materials having antibacterial properties.
또한, COVID-19, 신종인플루엔자와 같이 전염성 높은 유행성 질병이 급속히 전파됨에 따라 공포감으로 인하여 개인위생 의식이 더욱 강화되고 있을 뿐만 아니라 이를 충족시킬 수 있는 항균성 및 항바이러스성 소재에 대한 수요가 급증하고 있다.In addition, as highly contagious epidemic diseases such as COVID-19 and swine flu spread rapidly, not only personal hygiene awareness is being strengthened due to fear, but also the demand for antibacterial and antiviral materials that can meet this is rapidly increasing. .
구체적으로, 차량, 가정 등의 실내 등의 폐쇄된 공간이나, 침구, 학생들의 공부방, 아기방 등 보다 쾌적하고 깨끗하 게 유지되어야 하는 공간이나, 학원, 사무실, 병원, 요양시설, 숙박시설, PC방 등 많은 사람이 함께 쓰는 공간에는 바이러스, 곰팡이 등의 세균이 번식하는 것을 방지하는 항균 및 탈취가 보다 중요할 수 있다.Specifically, closed spaces such as vehicles and homes, spaces that need to be kept more pleasant and clean, such as bedding, students' study rooms, nurseries, academies, offices, hospitals, nursing facilities, accommodations, and PC rooms In a space shared by many people, antibacterial and deodorizing agents that prevent the propagation of bacteria such as viruses and molds may be more important.
이러한 환경적 요인에 따라 항균력을 가진 소재들이 일상 생활 많은 부분에서 활용되고 있다. 예컨대, 세균, 박테리아에 내성을 가진 항균성이 부여된 항균 필름들이 개발되어 출시되고 있으며, 일상 생활에서 인체와 접촉하는 거의 대부분의 물체나 공간에 부착된다. 현재 일반적으로 보급되는 필름은 구리나 은을 주 성분으로 하고 있으나, 이러한 항균 필름의 실질적인 항균 기능에 대해서는 여전히 의문이 남아 있다. 항균 필름을 부착하는 곳은 그만큼 여러 사람의 접촉이 잦은 위치이므로 빠르게 강력한 항균 및 항바이러스 효과를 달성할 수 있어야 한다. 그러나, 일반적으로 이용되는 구리나 은을 함유하는 필름은 일반적인 병원 균에 대해 24 시간 동안의 항균성만 보고되고 있으며, 그보다 더 빠른 시간 내 항균이나 항바이러스 효과를 달성할 수 있는지에 대해 보고된 바가 없다. 더욱이 이러한 필름들이 COVID-19 바이러스에 대해서는 99%에 달하는 항바이러스 효과를 달성할 수 있는지 충분히 검증된 바가 없다. 추가적으로, 구리를 이용한 다양한 형태의 항바이러스 및 항균용 조성물에 대한 개발이 시도되고 있으나, 조성물을 구성하는 용매 내에서 구리의 분산성 및 분상안정성이 낮다는 문제가 있었다. 용매 내에서 구리의 분산성 및 분산 안정성이 낮을 경우, 층분리 또는 침전물 형성의 문제가 발생되며, 이에 따라 항바이러스 및 항균 효과가 저하된다는 우려가 존재한다.According to these environmental factors, materials with antibacterial activity are being used in many parts of daily life. For example, antibacterial films with antibacterial properties resistant to germs and bacteria have been developed and released, and are attached to almost all objects or spaces that come into contact with the human body in daily life. Currently, generally distributed films contain copper or silver as a main component, but questions remain about the actual antibacterial function of these antibacterial films. Since the place where the antibacterial film is attached is a place where many people come into contact with it, it should be able to quickly achieve strong antibacterial and antiviral effects. However, generally used films containing copper or silver have been reported only for 24 hours of antibacterial activity against common pathogens, and there has been no report on whether antibacterial or antiviral effects can be achieved within a shorter period of time. . Moreover, it has not been sufficiently verified that these films can achieve an antiviral effect of up to 99% against the COVID-19 virus. Additionally, although development of various types of antiviral and antibacterial compositions using copper has been attempted, there has been a problem in that dispersibility and phase stability of copper in the solvent constituting the composition are low. When the dispersibility and dispersion stability of copper in the solvent are low, a problem of layer separation or precipitate formation occurs, and accordingly, there is a concern that antiviral and antibacterial effects are lowered.
이에, 다양한 물품에 부착 가능하여 항균, 항바이러스 및 탈취 효과를 발생시키는 항균막을 구현하기 위한 지속적인 연구 개발이 요구되고 있다.Accordingly, there is a demand for continuous research and development to implement an antibacterial film that can be attached to various articles and generates antibacterial, antiviral, and deodorizing effects.
(선행기술문헌)(Prior art literature)
(특허문헌)(patent literature)
대한민국 공개특허공보 제2012-0063998호Republic of Korea Patent Publication No. 2012-0063998
본 발명이 해결하고자 하는 과제는 상술한 문제점을 해결하기 위한 것으로서, 항균, 항바이러스 및 탈취효과를 극대화시키며, 전자기장에 의해 발생되는 표면 플라즈몬을 통해 향상된 투과율 및 열차단율을 갖는 항균막을 제공하기 위함이다.The problem to be solved by the present invention is to solve the above problems, to maximize antibacterial, antiviral and deodorizing effects, and to provide an antibacterial film having improved transmittance and thermal barrier rate through surface plasmons generated by electromagnetic fields. .
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법이 개시된다. 상기 방법은 점착층을 형성하는 단계, 상기 점착층의 일면에 기재층을 형성하는 단계, 상기 기재층의 일면에 전자기장을 발생시키는 나노합금 조성물을 증착시켜 박막층을 형성하는 단계 및 상기 박막층의 일면에 코팅층을 형성하는 단계를 포함할 수 있다.Disclosed is an antibacterial film manufacturing method having antibacterial, antiviral and deodorizing effects according to an embodiment of the present invention for solving the above problems. The method includes forming an adhesive layer, forming a substrate layer on one surface of the adhesive layer, depositing a nanoalloy composition that generates an electromagnetic field on one surface of the substrate layer to form a thin film layer, and forming a thin film layer on one surface of the thin film layer. A step of forming a coating layer may be included.
대안적인 실시예에서, 상기 나노합금 조성물은, 반자성체 재료와 강자성체 재료의 합금 또는 반자성체 재료와 상자성체 재료의 합금 중 적어도 하나를 포함하여 구성되는 것을 특징으로 할 수 있다. In an alternative embodiment, the nanoalloy composition may be characterized as comprising at least one of an alloy of a diamagnetic material and a ferromagnetic material or an alloy of a diamagnetic material and a paramagnetic material.
대안적인 실시예에서, 상기 나노합금 조성물은, 상기 반자성체 재료와 상기 강자성체 재료의 합금 또는 상기 반자성체 재료와 상기 상자성체 재료의 합금 중 적어도 하나에 대한 분쇄를 통해 획득되는 나노분말, 상기 나노분말이 분산되는 액체에 관한 것으로, 폴리에틸렌글리콜, 살리실산, 글리콜릭산, 저급 알코올 및 정제수를 포함하여 구성되는 용매 및 폴리비닐알코올 및 폴리비닐피롤리돈을 포함하여 구성되는 계면활성제를 포함하며, 상기 반자성체 재료는, 미량동(oligodynamic) 작용을 발생시키는 것을 특징으로 할 수 있다. In an alternative embodiment, the nanoalloy composition is a nanopowder obtained through grinding of at least one of an alloy of the diamagnetic material and the ferromagnetic material or an alloy of the diamagnetic material and the paramagnetic material, wherein the nanopowder is dispersed. It relates to a liquid, and includes a solvent composed of polyethylene glycol, salicylic acid, glycolic acid, lower alcohol and purified water, and a surfactant composed of polyvinyl alcohol and polyvinylpyrrolidone, wherein the diamagnetic material comprises a trace amount It may be characterized as generating an oligodynamic action.
대안적인 실시예에서, 상기 나노합금 조성물은, 상기 전자기장에 의해 야기되는 표면 플라즈몬(plasmon)을 통해 근적외선을 반사시키고, 가시광선은 투과시킴에 따라 향상된 투과율 및 열차단율을 갖는 것을 특징으로 할 수 있다.In an alternative embodiment, the nanoalloy composition reflects near-infrared rays through surface plasmons caused by the electromagnetic field and transmits visible rays, so that it has improved transmittance and thermal insulation rate. .
대안적인 실시예에서, 상기 박막층은, 스퍼터링(sputtering) 또는 증착(evaporation) 방식으로 상기 기재층의 일면에 증착되는 것을 특징으로 할 수 있다.In an alternative embodiment, the thin film layer may be deposited on one surface of the base layer by sputtering or evaporation.
대안적인 실시예에서, 상기 코팅층은, 나노합금 조성물 100 중량부 대비 광촉매소자를 5 내지 500 중량부로 포함하여 구성되며, 상기 광촉매소자는, 상기 나노합금 조성물에서 발생되는 전자기장에 의해 광촉매 반응이 일어나는 것을 특징으로 할 수 있다.In an alternative embodiment, the coating layer is composed of 5 to 500 parts by weight of a photocatalytic element relative to 100 parts by weight of the nanoalloy composition, and the photocatalytic element prevents a photocatalytic reaction from occurring by an electromagnetic field generated from the nanoalloy composition. can be characterized.
대안적인 실시예에서, 상기 코팅층에 포함된 상기 나노합금 조성물은, 전체 용액 대비 용질의 농도가 0.01 내지 2wt%인 것을 특징으로 할 수 있다.In an alternative embodiment, the nanoalloy composition included in the coating layer may be characterized in that the concentration of the solute relative to the total solution is 0.01 to 2wt%.
대안적인 실시예에서, 상기 코팅층은, 습식 코팅을 통해 상기 박막층의 일면에 코팅되며, 미리 정해진 두께 및 표면경도를 통해 구성되는 것을 특징으로 할 수 있다. In an alternative embodiment, the coating layer is coated on one surface of the thin film layer through wet coating, and may be characterized in that it is configured through a predetermined thickness and surface hardness.
대안적인 실시예에서, 상기 코팅층의 미리 정해진 두께 및 표면경도 각각은, 1 내지 10um 및 B 내지 5H인 것을 특징으로 할 수 있다. In an alternative embodiment, each of the predetermined thickness and surface hardness of the coating layer may be characterized in that 1 to 10um and B to 5H.
대안적인 실시예에서, 상기 점착층은, 액체 상태의 점착제를 지지면에 도포하는 습식코팅 방식을 통해 형성되는 것을 특징으로 할 수 있다. In an alternative embodiment, the adhesive layer may be formed through a wet coating method in which a liquid adhesive is applied to a support surface.
대안적인 실시예에서, 상기 기재층은, 상기 박막층을 지지 또는 고정하기 위한 것으로, 탄성을 가진 소재를 통해 구성되는 것을 특징으로 할 수 있다. In an alternative embodiment, the substrate layer, for supporting or fixing the thin film layer, may be characterized in that it is configured through a material having elasticity.
대안적인 실시예에서, 상기 기재층은, PET(polyethyleneterephthalate), PI(Polyimide), PP(Polypropyelen), PE(Polyethylene), Polyester, PC(polycarbonate) 또는 PMMA(poly-methylmethacrylate) 중 적어도 하나를 포함할 수 있다. In an alternative embodiment, the base layer may include at least one of polyethyleneterephthalate (PET), polyimide (PI), polypropylene (PP), polyethylene (PE), polyester, polycarbonate (PC), or poly-methylmethacrylate (PMMA). can
본 발명의 일 실시예에 따른 항균, 항바이러스 및 탈취효과를 가진 항균막 이 개시된다. 상기 항균막은, 점착층, 상기 점착층의 일면에 형성되는 기재층, 상기 기재층의 일면에 전자기장을 발생시키는 나노합금 조성물이 증착되어 형성되는 박막층 및 상기 박막층의 일면에 형성되는 코팅층을 포함할 수 있다.An antibacterial film having antibacterial, antiviral and deodorizing effects according to an embodiment of the present invention is disclosed. The antibacterial film may include an adhesive layer, a substrate layer formed on one surface of the adhesive layer, a thin film layer formed by depositing a nanoalloy composition generating an electromagnetic field on one surface of the substrate layer, and a coating layer formed on one surface of the thin film layer. there is.
대안적인 실시예에서, 상기 나노합금 조성물은, 반자성체 재료와 강자성체 재료의 합금 또는 반자성체 재료와 상자성체 재료의 합금 중 적어도 하나를 포함하여 구성되는 것을 특징으로 할 수 있다. In an alternative embodiment, the nanoalloy composition may be characterized as comprising at least one of an alloy of a diamagnetic material and a ferromagnetic material or an alloy of a diamagnetic material and a paramagnetic material.
대안적인 실시예에서, 상기 나노합금 조성물은, 상기 반자성체 재료와 상기 강자성체 재료의 합금 또는 상기 반자성체 재료와 상기 상자성체 재료의 합금 중 적어도 하나에 대한 분쇄를 통해 획득되는 나노분말, 상기 나노분말이 분산되는 액체에 관한 것으로, 폴리에틸렌글리콜, 살리실산, 글리콜릭산, 저급 알코올 및 정제수를 포함하여 구성되는 용매 및 폴리비닐알코올 및 폴리비닐피롤리돈을 포함하여 구성되는 계면활성제를 포함하며, 상기 반자성체 재료는, 미량동(oligodynamic) 작용을 발생시키는 것을 특징으로 할 수 있다. In an alternative embodiment, the nanoalloy composition is a nanopowder obtained through grinding of at least one of an alloy of the diamagnetic material and the ferromagnetic material or an alloy of the diamagnetic material and the paramagnetic material, wherein the nanopowder is dispersed. It relates to a liquid, and includes a solvent composed of polyethylene glycol, salicylic acid, glycolic acid, lower alcohol and purified water, and a surfactant composed of polyvinyl alcohol and polyvinylpyrrolidone, wherein the diamagnetic material comprises a trace amount It may be characterized as generating an oligodynamic action.
대안적인 실시예에서, 상기 나노합금 조성물은, 상기 전자기장에 의해 야기되는 표면 플라즈몬(plasmon)을 통해 근적외선을 반사시키고, 가시광선은 투과시킴에 따라 향상된 투과율 및 열차단율을 갖는 것을 특징으로 하는,In an alternative embodiment, the nanoalloy composition reflects near-infrared rays through surface plasmons caused by the electromagnetic field and transmits visible rays, so that it has improved transmittance and thermal cutoff. Characterized in that,
대안적인 실시예에서, 상기 박막층은, 스퍼터링(sputtering) 또는 증착(evaporation) 방식으로 상기 기재층의 일면에 증착되는 것을 특징으로 할 수 있다. In an alternative embodiment, the thin film layer may be deposited on one surface of the base layer by sputtering or evaporation.
대안적인 실시예에서, 상기 코팅층은, 나노합금 조성물 100 중량부 대비 광촉매소자를 5 내지 500 중량부로 포함하여 구성되며, 상기 광촉매소자는, 상기 나노합금 조성물에서 발생되는 전자기장에 의해 광촉매 반응이 일어나는 것을 특징으로 할 수 있다.In an alternative embodiment, the coating layer is composed of 5 to 500 parts by weight of a photocatalytic element relative to 100 parts by weight of the nanoalloy composition, and the photocatalytic element prevents a photocatalytic reaction from occurring by an electromagnetic field generated from the nanoalloy composition. can be characterized.
대안적인 실시예에서, 상기 코팅층에 포함된 상기 나노합금 조성물은, 전체 용액 대비 용질의 농도가 0.01 내지 2wt%인 것을 특징으로 할 수 있다. In an alternative embodiment, the nanoalloy composition included in the coating layer may be characterized in that the concentration of the solute relative to the total solution is 0.01 to 2wt%.
대안적인 실시예에서, 상기 코팅층은, 습식 코팅을 통해 상기 박막층의 일면에 코팅되며, 미리 정해진 두께 및 표면경도를 통해 구성되는 것을 특징으로 할 수 있다. In an alternative embodiment, the coating layer is coated on one surface of the thin film layer through wet coating, and may be characterized in that it is configured through a predetermined thickness and surface hardness.
대안적인 실시예에서, 상기 코팅층의 미리 정해진 두께 및 표면경도 각각은, 1 내지 10um 및 B 내지 5H인 것을 특징으로 할 수 있다.In an alternative embodiment, each of the predetermined thickness and surface hardness of the coating layer may be characterized in that 1 to 10um and B to 5H.
대안적인 실시예에서, 상기 점착층은, 액체 상태의 점착제를 지지면에 도포하는 습식코팅 방식을 통해 형성되는 것을 특징으로 할 수 있다.In an alternative embodiment, the adhesive layer may be formed through a wet coating method in which a liquid adhesive is applied to a support surface.
대안적인 실시예에서, 상기 기재층은, 상기 박막층을 지지 또는 고정하기 위한 것으로, 탄성을 가진 소재를 통해 구성되는 것을 특징으로 할 수 있다.In an alternative embodiment, the substrate layer, for supporting or fixing the thin film layer, may be characterized in that it is configured through a material having elasticity.
대안적인 실시예에서, 상기 기재층은, PET(polyethyleneterephthalate), PI(Polyimide), PP(Polypropyelen), PE(Polyethylene), Polyester, PC(polycarbonate) 또는 PMMA(poly-methylmethacrylate) 중 적어도 하나를 포함할 수 있다.In an alternative embodiment, the base layer may include at least one of polyethyleneterephthalate (PET), polyimide (PI), polypropylene (PP), polyethylene (PE), polyester, polycarbonate (PC), or poly-methylmethacrylate (PMMA). can
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other specific details of the invention are included in the detailed description and drawings.
본 발명의 다양한 실시예에 따르면, 항균, 항바이러스 및 탈취효과를 제공하며, 전자기장에 의해 발생되는 표면 플라즈몬을 통해 향상된 투과율 및 열차단율을 갖는 항균막을 제공할 수 있다.According to various embodiments of the present invention, it is possible to provide an antibacterial film that provides antibacterial, antiviral, and deodorizing effects, and has improved transmittance and heat rejection through surface plasmons generated by electromagnetic fields.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
다양한 양상들이 이제 도면들을 참조로 기재되며, 여기서 유사한 참조 번호들은 총괄적으로 유사한 구성요소들을 지칭하는데 이용된다. 이하의 실시예에서, 설명 목적을 위해, 다수의 특정 세부사항들이 하나 이상의 양상들의 총체적 이해를 제공하기 위해 제시된다. 그러나, 그러한 양상(들)이 이러한 구체적인 세부사항들 없이 실시될 수 있음은 명백할 것이다.Various aspects are now described with reference to the drawings, wherein like reference numbers are used to collectively refer to like elements. In the following embodiments, for explanation purposes, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. However, it will be apparent that such aspect(s) may be practiced without these specific details.
도 1은 본 발명의 일 실시예와 관련된 항균, 항바이러스 및 탈취효과를 가진 항균막의 단면도를 예시적으로 도시한 도면이다.1 is a view exemplarily showing a cross-sectional view of an antibacterial film having antibacterial, antiviral and deodorizing effects related to an embodiment of the present invention.
도 2는 본 발명의 일 실시예와 관련된 항균, 항바이러스 및 탈취효과를 가진 항균막의 다양한 활용을 예시적으로 도시한 예시도이다.Figure 2 is an exemplary diagram showing various uses of an antibacterial film having antibacterial, antiviral and deodorizing effects related to an embodiment of the present invention by way of example.
도 3은 본 발명의 일 실시예와 관련된 항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법의 순서도를 예시적으로 도시한다.Figure 3 illustratively shows a flow chart of a method for manufacturing an antibacterial film having antibacterial, antiviral and deodorizing effects related to an embodiment of the present invention.
도 4는 본 발명의 일 실시예와 관련된 구리를 통해 수행되는 항균 작용을 설명하기 위하여 예시적으로 도시한 도면이다.4 is a diagram exemplarily shown to explain an antibacterial action performed through copper related to an embodiment of the present invention.
도 5는 본 발명의 일 실시예와 관련된 항균막에서 발생되는 항균 및 항바이러스 작용에 관한 예시도를 도시한다.Figure 5 shows an example of the antibacterial and antiviral action generated in the antimicrobial film related to an embodiment of the present invention.
도 6은 본 발명의 일 실시예와 관련된 광촉매소자를 통해 발생하는 다양한 효과를 예시적으로 도시한 도면이다.6 is a diagram exemplarily illustrating various effects generated through a photocatalytic device related to an embodiment of the present invention.
도 7은 본 발명의 일 실시예와 관련된 항균막에서 야기되는 다양한 효과를 예시적으로 도시한 도면이다.7 is a diagram showing various effects caused by an antimicrobial membrane related to an embodiment of the present invention by way of example.
도 8은 본 발명의 일 실시예와 관련된 종래의 일반적인 윈도우 필름과 항균막 각각의 단면도를 예시적으로 나타낸 도면이다.8 is a view showing exemplarily cross-sectional views of each of a conventional general window film and an antibacterial film related to an embodiment of the present invention.
도 9는 본 발명의 일 실시예와 관련된 종래의 일반적인 윈도우 필름과 항균막 각각에 관련한 에너지 효율을 설명하기 위한 예시도를 도시한다.FIG. 9 shows an exemplary diagram for explaining energy efficiency related to each of a conventional general window film and an antibacterial film related to an embodiment of the present invention.
다양한 실시예들 및/또는 양상들이 이제 도면들을 참조하여 개시된다. 하기 설명에서는 설명을 목적으로, 하나 이상의 양상들의 전반적 이해를 돕기 위해 다수의 구체적인 세부사항들이 개시된다. 그러나, 이러한 양상(들)은 이러한 구체적인 세부사항들 없이도 실행될 수 있다는 점 또한 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 감지될 수 있을 것이다. 이후의 기재 및 첨부된 도면들은 하나 이상의 양상들의 특정한 예시적인 양상들을 상세하게 기술한다. 하지만, 이러한 양상들은 예시적인 것이고 다양한 양상들의 원리들에서의 다양한 방법들 중 일부가 이용될 수 있으며, 기술되는 설명들은 그러한 양상들 및 그들의 균등물들을 모두 포함하고자 하는 의도이다. 구체적으로, 본 명세서에서 사용되는 "실시예", "예", "양상", "예시" 등은 기술되는 임의의 양상 또는 설계가 다른 양상 또는 설계들보다 양호하다거나, 이점이 있는 것으로 해석되지 않을 수도 있다.Various embodiments and/or aspects are now disclosed with reference to the drawings. In the following description, for purposes of explanation, numerous specific details are set forth in order to facilitate a general understanding of one or more aspects. However, it will also be appreciated by those skilled in the art that such aspect(s) may be practiced without these specific details. The following description and accompanying drawings describe in detail certain illustrative aspects of one or more aspects. However, these aspects are exemplary and some of the various methods in principle of the various aspects may be used, and the described descriptions are intended to include all such aspects and their equivalents. Specifically, “embodiment,” “example,” “aspect,” “exemplary,” etc., as used herein, is not to be construed as indicating that any aspect or design described is superior to or advantageous over other aspects or designs. Maybe not.
이하, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략한다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않는다.Hereinafter, the same reference numerals are given to the same or similar components regardless of reference numerals, and overlapping descriptions thereof will be omitted. In addition, in describing the embodiments disclosed in this specification, if it is determined that a detailed description of a related known technology may obscure the gist of the embodiment disclosed in this specification, the detailed description thereof will be omitted. In addition, the accompanying drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical ideas disclosed in this specification are not limited by the accompanying drawings.
비록 제 1, 제 2 등이 다양한 소자나 구성요소들을 서술하기 위해서 사용되나, 이들 소자나 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 소자나 구성요소를 다른 소자나 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제 1 소자나 구성요소는 본 발명의 기술적 사상 내에서 제 2 소자나 구성요소 일 수도 있음은 물론이다.Although first, second, etc. are used to describe various elements or components, these elements or components are not limited by these terms, of course. These terms are only used to distinguish one element or component from another. Accordingly, it goes without saying that the first element or component mentioned below may also be the second element or component within the technical spirit of the present invention.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used in a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless explicitly specifically defined.
더불어, 용어 "또는"은 배타적 "또는"이 아니라 내포적 "또는"을 의미하는 것으로 의도된다. 즉, 달리 특정되지 않거나 문맥상 명확하지 않은 경우에, "X는 A 또는 B를 이용한다"는 자연적인 내포적 치환 중 하나를 의미하는 것으로 의도된다. 즉, X가 A를 이용하거나; X가 B를 이용하거나; 또는 X가 A 및 B 모두를 이용하는 경우, "X는 A 또는 B를 이용한다"가 이들 경우들 어느 것으로도 적용될 수 있다. 또한, 본 명세서에 사용된 "및/또는"이라는 용어는 열거된 관련 아이템들 중 하나 이상의 아이템의 가능한 모든 조합을 지칭하고 포함하는 것으로 이해되어야 한다.In addition, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless otherwise specified or clear from the context, “X employs A or B” is intended to mean one of the natural inclusive substitutions. That is, X uses A; X uses B; Or, if X uses both A and B, "X uses either A or B" may apply to either of these cases. Also, the term "and/or" as used herein should be understood to refer to and include all possible combinations of one or more of the listed related items.
또한, "포함한다" 및/또는 "포함하는"이라는 용어는, 해당 특징 및/또는 구성요소가 존재함을 의미하지만, 하나 이상의 다른 특징, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는 것으로 이해되어야 한다. 또한, 달리 특정되지 않거나 단수 형태를 지시하는 것으로 문맥상 명확하지 않은 경우에, 본 명세서와 청구범위에서 단수는 일반적으로 "하나 또는 그 이상"을 의미하는 것으로 해석되어야 한다.Also, the terms "comprises" and/or "comprising" mean that the feature and/or element is present, but excludes the presence or addition of one or more other features, elements and/or groups thereof. It should be understood that it does not. Also, unless otherwise specified or where the context clearly indicates that a singular form is indicated, the singular in this specification and claims should generally be construed to mean "one or more".
어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 “직접 연결되어” 있다거나 “직접 접속되어”있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.It is understood that when a component is referred to as being “connected” or “connected” to another component, it may be directly connected or connected to the other component, but other components may exist in the middle. It should be. On the other hand, when a component is referred to as “directly connected” or “directly connected” to another component, it should be understood that no other component exists in the middle.
이하의 설명에서 사용되는 구성 요소에 대한 접미사 “모듈” 및 “부”는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.The suffixes "module" and "unit" for the components used in the following description are given or used interchangeably in consideration of ease of writing the specification, and do not have meanings or roles that are distinct from each other by themselves.
구성 요소(elements) 또는 층이 다른 구성 요소 또는 층의 "위(on)" 또는 "상(on)"으로 지칭되는 것은 다른 구성 요소 또는 층의 바로 위뿐만 아니라 중간에 다른 층 또는 다른 구성 요소를 개재한 경우를 모두 포함한다. 반면, 구성 요소가 "직접 위(directly on)" 또는 "바로 위"로 지칭되는 것은 중간에 다른 구성 요소 또는 층을 개재하지 않은 것을 나타낸다.When an element or layer is referred to as being "on" or "on" another element or layer, it means that the other element or layer is directly on, as well as intervening, the other layer or other component. Including all intervening cases. On the other hand, when a component is referred to as “directly on” or “directly on”, it indicates that no other component or layer is intervening.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소 또는 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다.The spatially relative terms "below", "beneath", "lower", "above", "upper", etc. It can be used to easily describe a component or its correlation with other components. Spatially relative terms should be understood as encompassing different orientations of elements in use or operation in addition to the orientations shown in the figures.
예를 들면, 도면에 도시되어 있는 구성 요소를 뒤집을 경우, 다른 구성 요소의 "아래(below)" 또는 "아래(beneath)"로 기술된 구성 요소는 다른 구성 요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성 요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.For example, if you flip a component that is shown in a drawing, a component described as "below" or "beneath" another component will be placed "above" the other component. can Thus, the exemplary term “below” may include directions of both below and above. Elements may also be oriented in other orientations, and thus spatially relative terms may be interpreted according to orientation.
본 발명의 목적 및 효과, 그리고 그것들을 달성하기 위한 기술적 구성들은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 본 발명을 설명하는데 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다.Objects and effects of the present invention, and technical configurations for achieving them will become clear with reference to the embodiments described later in detail in conjunction with the accompanying drawings. In describing the present invention, if it is determined that a detailed description of a known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or operator.
그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시예들은 본 발명이 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.However, the present invention is not limited to the embodiments disclosed below and may be implemented in a variety of different forms. These embodiments are provided only to make the present invention complete and to completely inform those skilled in the art of the scope of the disclosure to which the present invention belongs, and the present invention is only defined by the scope of the claims. . Therefore, the definition should be made based on the contents throughout this specification.
도 1은 본 발명의 일 실시예와 관련된 항균, 항바이러스 및 탈취효과를 가진 항균막의 단면도를 예시적으로 도시한 도면이다. 도 1에 도시된 바와 같이, 항균, 항바이러스 및 탈취 효과를 가진 항균막(100)은, 점착층(110), 기재층(120), 박막층(130) 및 코팅층(140)을 포함하여 구비될 수 있다. 이러한 항균막(100)은 일상 생활에서 신체와 접촉 가능한 다양한 물체나 공간에 결속되어 구비될 수 있다. 예를 들어, 항균막(100)은, 점착층(110)을 통해 철도, 지하철, 버스, 자동차 등의 손잡이 및 병원, 학교 등 다수 이용 시설물의 문고리, 벽면, 의자, 침대 난간 등에 다양한 영역에 부착되어 구비될 수 있다. 다시 말해, 항균막(100)은 다양한 형태로 구현되어 다양한 분야에 활용 가능하도록 구비될 수 있다. 1 is a view exemplarily showing a cross-sectional view of an antibacterial film having antibacterial, antiviral and deodorizing effects related to an embodiment of the present invention. As shown in FIG. 1, the antibacterial film 100 having antibacterial, antiviral and deodorizing effects may be provided including an adhesive layer 110, a substrate layer 120, a thin film layer 130, and a coating layer 140. can Such an antibacterial film 100 may be provided by being bound to various objects or spaces that may come into contact with the body in daily life. For example, the antibacterial film 100 is attached to various areas such as handles of railways, subways, buses, cars, etc., doorknobs, walls, chairs, bed rails, etc. of many facilities such as hospitals and schools through the adhesive layer 110. and can be provided. In other words, the antimicrobial membrane 100 may be implemented in various forms and provided to be utilized in various fields.
항균막(100)은, 나노합금 조성물을 포함하여 구성되는 박막층(130) 또는, 코팅층(140)을 통해 항바이러스, 항균 및 탈취 작용을 수행할 수 있다. 구체적으로, 박막층(130)과 코팅층(140)에 포함된 나노합금 조성물은, 스스로 전자기장을 발생시키는 조성물일 수 있다. 나노합금 조성물은, 구리, 금, 은, 비스무트 등에서 선택된 반자성체 성분의 재료와, 철, 니텔, 코발트, 네오디뮴 등 강자성체 또는, 백금 등 상자성체 성분의 재료와의 합금에 기반하여 생성되는 것으로 스스로 전자기장을 발생시키는 것을 특징으로 할 수 있다. 예를 들어, 나노합금 조성물은, 반자성체인 구리와 강자성체인 철의 합금 즉, 구리-철 합금을 포함하는 조성물일 수 있다. 전술한 나노합금 조성물에 대한 구체적인 기재는 예시일 뿐, 본 발명은 이에 제한되지 않는다.The antimicrobial membrane 100 may perform antiviral, antibacterial and deodorizing actions through the thin film layer 130 or the coating layer 140 including the nanoalloy composition. Specifically, the nanoalloy composition included in the thin film layer 130 and the coating layer 140 may be a composition that generates an electromagnetic field by itself. The nanoalloy composition is generated based on an alloy of a diamagnetic component material selected from copper, gold, silver, and bismuth, and a ferromagnetic substance such as iron, Nitel, cobalt, and neodymium, or a paramagnetic component material such as platinum, and generates an electromagnetic field by itself. It can be characterized by doing. For example, the nanoalloy composition may be a composition including an alloy of diamagnetic copper and ferromagnetic iron, that is, a copper-iron alloy. The specific description of the above-described nanoalloy composition is only an example, and the present invention is not limited thereto.
구체적인 예를 들어, 반자성체 성분과 상자성체 성분을 합금 조성물로 구성하는 경우, 구리, 금, 은, 비스무트 등 전도성 금속물질(즉, 반자성체 성분)의 산화환원에 의한 전기장 변화에 의해 자기장이 변화되게 될 수 있다. 이 경우, 철, 니켈, 코발트 등 강자성체 성분의 자기장의 변화에 의해 전기장이 변화하는 원리(전기장과 자기장의 산호간 유도현상에 관련한 패러데이 법칙에 의거)에 의해 스스로 전자기장을 발생시키게 된다. 예컨대, 반자성체 성분과 상자성체 성분 각각이 층이 분리된 2차원 적층구조를 가지며, 패러데이 법칙에 의거하여 전자기장을 발생시킬 수 있다. 일 실시예에서, Zn, Mg, K, P, Cl, Ca, I, Si, Ti, Al 등 추가 첨가제를 첨가하여 유전율 변화를 야기시킴으로써, 항균막(100)에서 발생되는 전자기장을 변화 또는 조정시킬 수 있다.For example, when the diamagnetic component and the paramagnetic component are composed of an alloy composition, the magnetic field can be changed by the change in the electric field due to the oxidation-reduction of a conductive metal material (ie, the diamagnetic component) such as copper, gold, silver, or bismuth. there is. In this case, an electromagnetic field is generated by itself according to the principle that the electric field is changed by the change of the magnetic field of ferromagnetic components such as iron, nickel, and cobalt (based on Faraday's law related to the induction of the electric field and the magnetic field between corals). For example, each of the diamagnetic component and the paramagnetic component has a two-dimensional stacked structure in which layers are separated, and an electromagnetic field can be generated based on Faraday's law. In one embodiment, by adding additional additives such as Zn, Mg, K, P, Cl, Ca, I, Si, Ti, Al, etc. to cause a change in dielectric constant, the electromagnetic field generated from the antimicrobial membrane 100 can be changed or adjusted. can
본 발명의 항균막(100)은 항균 및 항바이러스 작용을 수행할 수 있다. 구체적으로, 항균막(100)은 금속 이온을 통한 항균 작용 및 전자기장에 기반한 항바이러스 작용을 수행할 수 있다.The antibacterial membrane 100 of the present invention can perform antibacterial and antiviral actions. Specifically, the antimicrobial membrane 100 may perform antibacterial action through metal ions and antiviral action based on electromagnetic fields.
구체적으로, 항균막(100)은 금속 이온을 포함하여 구성될 수 있다. 여기서 금속 이온은, 예컨대, 박막층(130) 및 코팅층(140)에 포함된 나노합금 조성물을 구성하는 반자성체 성분을 의미할 수 있다. 일 실시예에서, 항균막(100)에 포함된 금속 이온은, 구리를 의미할 수 있다. 항균막(100)에 포함된 금속 이온(예컨대, 구리)은 항균 기능을 수행할 수 있다.Specifically, the antimicrobial membrane 100 may include metal ions. Here, the metal ion may mean, for example, a diamagnetic component constituting the nanoalloy composition included in the thin film layer 130 and the coating layer 140 . In one embodiment, the metal ion included in the antimicrobial membrane 100 may mean copper. Metal ions (eg, copper) included in the antimicrobial membrane 100 may perform an antibacterial function.
일 실시예에 따르면, 구리는 미량동 작용에 기반한 항균 작용을 수행할 수 있다. 미량동 작용은 구리원자가 미생물의 대사작용을 교란시켜 바이러스나 미생물, 곰팡이 등을 살균하는 것으로, 박테리아의 핵산이 완전히 파괴되면서 돌연변이 뿐만 아니라 저항성 조차 완전히 제거하는 효과를 제공할 수 있다. 다시 말해, 구리 이온(또는 금속 이온)의 미량동 작용을 통해 균의 활성이 방해됨에 따라 항균 작용이 수행될 수 있다. According to one embodiment, copper may perform an antibacterial action based on microcosmic action. Microbial action is to sterilize viruses, microorganisms, fungi, etc. by disturbing the metabolism of microorganisms by copper atoms, and can provide the effect of completely removing not only mutations but also resistance as the nucleic acids of bacteria are completely destroyed. In other words, antibacterial action can be performed as the activity of bacteria is hindered through the action of copper ions (or metal ions) in small amounts.
전술한 바와 같이, 항균막(100)이 반자성체에 관련한 금속 이온(예컨대, 구리이온)을 포함하여 구성됨에 따라 항균 작용을 수행할 수 있다. 다만, 바이러스는 숙주 외부에서는 대사활동하지 않으므로, 구리의 미량동 작용에 의해서는 사멸되지 않을 수 있다. 다시 말해, 금속 이온을 통해 항균 작용은 수행될 수 있으나, 항바이러스 작용은 수행될 수 없다.As described above, as the antimicrobial film 100 is configured to include metal ions (eg, copper ions) related to the diamagnetic material, an antibacterial action may be performed. However, since the virus does not undergo metabolic activity outside the host, it may not be killed by the action of copper in trace amounts. In other words, antibacterial action can be performed through metal ions, but antiviral action cannot be performed.
일 실시예에 따르면, 항균막(100)은 전자기장을 통해 항바이러스 작용을 수행할 수 있다. 구체적으로, 항균막(100)은 스스로 전자기장을 발생시킬 수 있다. 항균막(100)은 반자성체 성분과 상자성체 성분 또는 강자성체 성분의 합금에 관련한 나노합금 조성물을 포함할 수 있다. 이 경우, 나노합금 조성물은 각 성분 간의 분리된 2차원 적층구조를 통해 구성되며, 패러데이 효과에 의거하여 전자기장을 발생시키게 된다. 다시 말해, 반자성체와 상자성체 또는 반자성체와 강자성체의 합금 조성에 관련한 나노합금 조성물을 통해 항균막(100)에 전자기장이 발생되며, 이에 의한 정전기력을 통해 바이러스가 사멸될 수 있다. 즉, 전자기장에 의해 바이러스가 차단됨에 따라 항바이러스 작용이 수행될 수 있다.According to one embodiment, the antibacterial membrane 100 may perform an antiviral action through an electromagnetic field. Specifically, the antimicrobial membrane 100 may generate an electromagnetic field by itself. The antimicrobial membrane 100 may include a nanoalloy composition related to an alloy of a diamagnetic component and a paramagnetic component or a ferromagnetic component. In this case, the nanoalloy composition is formed through a two-dimensional laminated structure separated between each component, and an electromagnetic field is generated based on the Faraday effect. In other words, an electromagnetic field is generated in the antimicrobial film 100 through the nanoalloy composition related to the alloy composition of the diamagnetic and paramagnetic or diamagnetic and ferromagnetic substances, and the virus can be killed through the resulting electrostatic force. That is, antiviral action can be performed as the virus is blocked by the electromagnetic field.
또한, 항균막(100)은 탈취 작용을 수행할 수 있다. 구체적으로, 항균막(100)의 코팅층(140)은 광촉매소자를 포함하여 구비될 수 있으며, 해당 코팅층(140)에 포함된 광촉매소자를 통해 탈취 효과를 발생시킬 수 있다. 광촉매 소자는 적정 에너지 이상을 갖는 빛 또는 파장에 대응하여 활성산소, 수신기 라디칼을 발생시키는 반도체적 성질을 갖는 소자를 의미할 수 있다. 광촉매 소자를 통해 발생된 활선산소와 수신기 라디칼의 강한 산화, 환원 작용에 의해 악취물질의 분해될 수 있다.In addition, the antibacterial film 100 may perform a deodorizing action. Specifically, the coating layer 140 of the antibacterial film 100 may include a photocatalytic element, and a deodorizing effect may be generated through the photocatalytic element included in the corresponding coating layer 140 . The photocatalytic device may refer to a device having semiconductor properties that generates active oxygen and receiver radicals in response to light or wavelengths having more than appropriate energy. Odor substances can be decomposed by the strong oxidation and reduction action of active oxygen and receiver radicals generated through the photocatalytic device.
전술한 바와 같이, 본 발명의 항균막(100)은 세균, 곰팡이 등에 관한 항균 효과, 각종 바이러스에 관련한 항바이러스 효과 및 악취물질의 분해에 기반한 탈취 효과를 제공할 수 있다.As described above, the antibacterial film 100 of the present invention can provide an antibacterial effect against bacteria and mold, an antiviral effect against various viruses, and a deodorizing effect based on decomposition of malodorous substances.
일 실시예에 따르면, 항균막(100)은 기재층(120)을 구성하는 소재에 따라 다양한 분야에서 활용 가능하도록 구비될 수 있다. 예컨대, 기재층(120)은 탄성을 가진 소재를 통해 구성되며, 항균 및 항바이러스 작용을 수행하는 박막층(130) 및 코팅층(140)을 지지 또는 고정하는 역할을 수행할 수 있다.According to one embodiment, the antimicrobial membrane 100 may be provided to be utilized in various fields depending on the material constituting the base layer 120 . For example, the base layer 120 is made of a material having elasticity, and may serve to support or fix the thin film layer 130 and the coating layer 140 that perform antibacterial and antiviral actions.
일 실시예에서, 기재층(120)은 필름, 부직포, 플라스틱 등에 관련한 소재를 통해 구성될 수 있으며, 이에 따라, 항균막(100)을 보다 다양한 양태를 통해 구현될 수 있다. 기재층(120)을 구성하는 다양한 재료는 예를 들어, PET (polyethyleneterephthalate), PI(Polyimide), PP(Polypropyelen), PE(Polyethylene), Polyester, PC(polycarbonate), PMMA(poly-methylmethacrylate) 등을 포함할 수 있으나, 이에 제한되진 않는다.In one embodiment, the base layer 120 may be configured through a material related to a film, nonwoven fabric, plastic, and the like, and thus, the antimicrobial membrane 100 may be implemented through more various aspects. Various materials constituting the substrate layer 120 include, for example, polyethyleneterephthalate (PET), polyimide (PI), polypropylene (PP), polyethylene (PE), polyester, polycarbonate (PC), poly-methylmethacrylate (PMMA), and the like. It may include, but is not limited to.
구체적인 예를 들어, 기재층(120)이 PET 또는 PI로 구성됨에 따라, 항균막(100)은 필름 형태를 통해 구현될 수 있다. 여기서 필름은, 일정 이상의 투명도를 가진 막(또는 판)을 의미하는 것으로, 예컨대, 사용자의 신체와 직접적으로 접촉가능한 물체 또는 영역에 부착되어 구비될 수 있다. 또한, 예를 들어, 기재층(120)이 PP 또는 Polyester로 구성됨에 따라, 항균막(100)은 필터 또는, 의류의 형태를 통해 구현될 수 있다. 여기서 필터는, 기체 속의 이물질을 걸러내기 위한 것으로, 실내 환기 장치 또는 엔진의 흡기를 깨끗하게 필터링하는 막, 층, 면 등을 의미할 수 있다.For example, as the substrate layer 120 is composed of PET or PI, the antimicrobial membrane 100 may be implemented in the form of a film. Here, the film refers to a film (or plate) having a certain level of transparency or more, and may be provided by being attached to an object or region that can directly contact the user's body. Also, for example, as the base layer 120 is composed of PP or Polyester, the antibacterial membrane 100 may be implemented in the form of a filter or clothing. Here, the filter is for filtering out foreign substances in the gas, and may refer to a membrane, layer, surface, or the like that cleanly filters intake air from an indoor ventilation system or an engine.
즉, 도 2에 도시된 바와 같이, 본 개시의 항균막(100)은 기재층(120)을 구성하는 소재에 따라, 다양한 분야에서 활용 가능하도록 구비될 수 있다. 예를 들어, 항균막(100)은 필름의 형태로 구비될 수 있으며, 불특성 다수의 이동이 빈번한 다양한 영역(예컨대, 철도, 지하철, 버스, 자동차 등의 손잡이)에 부착되거나 또는 건물 또는 자동차 창의 윈도우 필름으로 활용될 수 있다.That is, as shown in FIG. 2, the antimicrobial membrane 100 of the present disclosure may be provided to be utilized in various fields depending on the material constituting the base layer 120. For example, the antibacterial membrane 100 may be provided in the form of a film, and is attached to various areas where a large number of non-characteristics are frequently moved (eg, rails, subways, buses, car handles, etc.), or to the windows of buildings or automobiles. It can be used as a window film.
다른 예를 들어, 항균막(100)은 필터의 형태로 구비될 수 있으며, 복합공조기(예컨대, 냉난방기, 전열교환기, 가습기, 공기청정기 등)의 필터 또는 사용자가 착용하는 마스크의 필터로 활용될 수 있다. 즉, 세균의 발생처와 서식처가 되어 실내 공간의 2차 오염원이 될 수 있는 필터를 항균, 항바이러스 및 탈취 효과를 가진 항균막(100)으로 구성할 수 있다.For another example, the antibacterial membrane 100 may be provided in the form of a filter, and may be used as a filter for a combined air conditioner (eg, air conditioner, heater, total heat exchanger, humidifier, air purifier, etc.) or a filter for a mask worn by a user. there is. That is, the antibacterial membrane 100 having antibacterial, antiviral and deodorizing effects can be used as a filter that can become a source and habitat of bacteria and become a secondary pollutant in the indoor space.
또 다른 예를 들어, 항균막(100)은 사용자의 피부와 접하는 제품의 형태를 통해 구비될 수도 있다. 예컨대, 항균막(100)은 기저귀, 물티슈, 크린징 티슈, 생리대, 깔창 등의 사람 피부와 접하는 형태로 구성될 수 있다. 종래의 피부와 접하는 제품은, 곰팡이 또는 세균이 발생하는 것을 방지하기 위하여 방부제가 포함될 수 있다. 이러한 방부제는 휘발성을 가진 알코올계 화학물질이며 특유의 냄새가 발생할 수 있다. 따라서 상기 방부제 특유의 냄새를 제거하기 위한 별도의 인공향을 사용하고 있으며, 이 경우 사용자의 신체에도 좋지 않은 영향을 미칠 수 있다. 다만, 항균막(100)은 별도의 화학물질을 포함하지 않으므로, 사용자의 신체 건강에도 효과적이며, 항균, 항바이러스 및 탈취 효과를 제공할 수 있다. As another example, the antibacterial film 100 may be provided in the form of a product in contact with the user's skin. For example, the antibacterial membrane 100 may be configured in a form in contact with human skin, such as a diaper, wet tissue, cleansing tissue, sanitary napkin, or insole. Conventional skin contact products may contain preservatives to prevent mold or bacteria from occurring. These preservatives are alcohol-based chemicals with volatility and may generate a characteristic odor. Therefore, a separate artificial fragrance is used to remove the peculiar smell of the preservative, and in this case, it may adversely affect the user's body. However, since the antimicrobial film 100 does not contain a separate chemical substance, it is effective for the user's physical health and can provide antibacterial, antiviral and deodorizing effects.
뿐만 아니라, 항균막(100)은 부직포의 형태를 통해 구비될 수도 있다. 예컨대, 항균막(100)이 부직포 형태를 통해 구비됨에 따라, 육류, 과일, 야채 등에 관련한 포장 용지로 활용될 수 있다. 이 경우, 항균막(100)은 미량동 작용에 의해 바이러스나, 미생물, 곰팡이 등을 살균함으로써, 부패를 방지하여 유통기한을 늘리며, 이에 따라, 신선도를 향상시키는 효과를 제공할 수 있다. In addition, the antimicrobial membrane 100 may be provided in the form of a non-woven fabric. For example, as the antibacterial film 100 is provided in the form of a non-woven fabric, it can be used as packaging paper related to meat, fruits, vegetables, and the like. In this case, the antibacterial film 100 sterilizes viruses, microorganisms, fungi, etc. by the action of a small amount of copper, thereby preventing decay and extending shelf life, thereby providing an effect of improving freshness.
전술한 바와 같이, 항균막(100)은 다양한 구현 양태를 통해 활용될 수 있음에 따라, 다수의 사용자들이 함께 사용하는 공간에서 바이러스의 차단과 균의 번식을 방지할 수 있으며, 냄새를 제거하는 탈취 효과 또한 제공할 수 있다. 다시 말해, 항균막(100)은 다양한 공간 상에서 접촉 또는 인접하게 구비되어 항균, 항바이러스 및 탈취 작용을 수행할 수 있으므로, 공간방역을 위한 환경 백신 개념으로 활용될 수 있다. As described above, as the antimicrobial membrane 100 can be utilized through various implementations, it is possible to block viruses and prevent the propagation of bacteria in a space shared by a number of users, and deodorize by removing odors. effects can also be provided. In other words, since the antibacterial film 100 can be provided in contact with or adjacent to various spaces to perform antibacterial, antiviral, and deodorizing actions, it can be used as an environmental vaccine concept for space disinfection.
본 발명의 항균막에 대한 보다 구체적인 제조 방법, 구조적 특징 및 이에 따른 효과들은, 이하의 도 3 및 도 9를 참조하여 후술하도록 한다. A more specific manufacturing method, structural characteristics, and effects thereof for the antimicrobial membrane of the present invention will be described later with reference to FIGS. 3 and 9 below.
도 3은 본 발명의 일 실시예와 관련된 항바이러스 및 탈취효과를 가진 항균막 제조방법의 순서도를 예시적으로 도시한다. 일 실시예에 따르면, 항바이러스 및 탈취효과를 가진 항균막 제조방법은 하기와 같은 단계로 구성될 수 있다. 도 3에 도시된 단계들은 필요에 의해 순서가 변경될 수 있으며, 적어도 하나 이상의 단계가 생략 또는 추가될 수 있다. 즉, 전술한 단계는 본 발명의 일 실시예에 불과할 뿐, 본 발명의 권리 범위는 이에 제한되지 않는다.Figure 3 illustratively shows a flow chart of a method for manufacturing an antibacterial film having antiviral and deodorizing effects related to an embodiment of the present invention. According to one embodiment, the antibacterial film manufacturing method having antiviral and deodorizing effects may be composed of the following steps. The order of the steps shown in FIG. 3 may be changed as needed, and at least one or more steps may be omitted or added. That is, the above steps are only one embodiment of the present invention, and the scope of the present invention is not limited thereto.
본 발명의 일 실시예에 따르면, 항바이러스 및 탈취효과를 가진 항균막 제조방법은, 점착층(110)을 형성하는 단계(S110)를 포함할 수 있다. 점착층(110)은 다양한 물체 또는 공간과의 접착에 관련한 부분일 수 있다. 예컨대, 점착층(110)은 철도, 지하철, 버스, 자동차 등의 손잡이 및 병원, 학교 등 다수 이용 시설물의 문고리, 벽면, 의자, 침대 난간 등에 다양한 영역 접촉됨에 따라, 항균막(100)이 해당 영역 각각에 구비되도록 할 수 있다. 예를 들어, 항균막(100)이 필름 형태로 구성되는 경우, 점착층(110)은 창문과의 점착을 통해 해당 항균막(100)을 윈도우 필름으로써 활용되도록 할 수 있다.According to one embodiment of the present invention, the method for manufacturing an antibacterial film having antiviral and deodorizing effects may include forming an adhesive layer 110 (S110). The adhesive layer 110 may be a part related to adhesion with various objects or spaces. For example, as the adhesive layer 110 comes into contact with various areas such as handles of railways, subways, buses, cars, doorknobs, walls, chairs, and bed rails of many facilities such as hospitals and schools, the antibacterial film 100 is applied to the corresponding area. It can be provided for each. For example, when the antimicrobial membrane 100 is configured in the form of a film, the adhesive layer 110 may be used as a window film through adhesion to the window.
이러한, 점착층(110)은 점착제를 활용한 습식코팅을 통해 형성되는 것을 특징으로 할 수 있다. 구체적으로, 점착층(110)은 액체 상태의 점착제를 지지면에 도포하는 습식코팅 방식을 통해 형성될 수 있다. 여기서 지지면은 점착층(110)의 형성 과정에서 점착제를 일시적으로 지지하기 위해 구비되며, 점착층(110)의 형성 이후 이탈될 수 있다. The adhesive layer 110 may be characterized in that it is formed through wet coating using an adhesive. Specifically, the adhesive layer 110 may be formed through a wet coating method in which a liquid adhesive is applied to a support surface. Here, the support surface is provided to temporarily support the adhesive during the formation of the adhesive layer 110, and may be separated after the adhesive layer 110 is formed.
일 실시예에서, 점착제는, 내열성, 내항성, 재박리성, 전기 절연성이 뛰어나며, 다양한 피착제에 대해 우수한 점착성을 가진 소재를 포함할 수 있다. 예컨대, 본 발명의 점착제는, 실리콘계 점착제, 아그릴계 점착제, 고무계 점착제 또는 핫멜트계 점착제 중 적어도 하나에 관련한 것일 수 있다. In one embodiment, the pressure-sensitive adhesive may include a material having excellent heat resistance, sea resistance, re-peelability, electrical insulation, and excellent adhesion to various adherends. For example, the pressure-sensitive adhesive of the present invention may relate to at least one of a silicone-based pressure-sensitive adhesive, an acryl-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, or a hot-melt-based pressure-sensitive adhesive.
일 실시예에서, 점착층(110)은 점착제를 통한 점착 코팅을 통해 형성될 수 있다. 점착제를 활용한 점착 코팅은, 액체 상태의 점착제를 도포하는 방식의 코팅(예컨대, 습식 코팅)으로, 그라비아 코팅, 마이크로 그라비아 코팅 또는 콤마 코팅 중 적어도 하나를 포함할 수 있다. 그라비아 코팅은 오목하게 조각된(즉, 음각) 화선부에 점착제를 담아 기재에 직접 전이시키는 코팅 방식일 수 있다. 그라비아 코팅은, Back-up Roll(압동롤 또는 고무롤)과 그라비아(메쉬)를 접촉시켜 점착액을 전이시키는 방식일 수 있다.In one embodiment, the adhesive layer 110 may be formed through adhesive coating using an adhesive. An adhesive coating using an adhesive is a coating (eg, wet coating) in which a liquid adhesive is applied, and may include at least one of gravure coating, micro gravure coating, and comma coating. Gravure coating may be a coating method in which an adhesive is directly transferred to a substrate by putting an adhesive in a concavely carved (ie, intaglio) drawing line. The gravure coating may be a method of transferring the adhesive liquid by contacting the back-up roll (pressure roll or rubber roll) and the gravure (mesh).
마이크로 그라비아 코팅은, 코팅롤의 접촉각을 최소화하기 위하여 코팅롤의 반경을 소형화하여 롤 표면과의 접촉범위를 극소화 함으로 박막의 도료를 균일하게 도포하는 정밀 코팅 방식일 수 있다. 또한, 콤마 코팅은, 콤바 형태의 바를 이용하여 점착액(즉, 액체 상태의 점착제)을 도포하는 방식으로, 점착액의 점도가 높거나 도포 두께를 높일 때 활용되는 코팅 방식일 수 있다.Micro gravure coating may be a precision coating method that uniformly applies a thin film of paint by minimizing the radius of the coating roll to minimize the contact angle of the coating roll and minimizing the contact range with the roll surface. In addition, comma coating is a method of applying an adhesive liquid (ie, liquid-state adhesive) using a comba-shaped bar, and may be a coating method used when the viscosity of the adhesive liquid is high or the coating thickness is increased.
즉, 점착층(110)은 액체 상태의 점착제에 대한 점착 코팅(또는, 습식 코팅)을 통해 형성될 수 있으며, 생성된 점착층(110)을 통해 항균막(100)이 다양한 영역에 접촉 가능하게 구비될 수 있다.That is, the adhesive layer 110 may be formed through adhesive coating (or wet coating) of the liquid adhesive, and the antimicrobial film 100 can contact various areas through the generated adhesive layer 110. may be provided.
본 발명의 일 실시예에 따르면, 항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법은, 점착층(110)을 일면에 기재층(120)을 형성하는 단계(S120)를 포함할 수 있다. 기재층(120)은, 박막층(130)을 지지 또는 고정하기 위한 것으로, 탄성을 가진 소재를 통해 구성되는 것을 특징으로 할 수 있다. 예컨대, 기재층(120)은 필름, 부직포, 플라스틱 등에 관련한 다양한 탄성 소재를 통해 구성될 수 있다. 예를 들어, 기재층(120)을 구성하는 다양항 탄성 소재는, PET (polyethyleneterephthalate), PI(Polyimide), PP(Polypropyelen), PE(Polyethylene), Polyester, PC(polycarbonate), PMMA(poly-methylmethacrylate) 등을 포함할 수 있으나, 이에 제한되진 않는다.According to one embodiment of the present invention, the method for manufacturing an antibacterial film having antibacterial, antiviral and deodorizing effects may include forming a substrate layer 120 on one surface of the adhesive layer 110 (S120). The base layer 120 is for supporting or fixing the thin film layer 130 and may be characterized in that it is made of a material having elasticity. For example, the base layer 120 may be composed of various elastic materials related to films, non-woven fabrics, and plastics. For example, various elastic materials constituting the base layer 120 include polyethyleneterephthalate (PET), polyimide (PI), polypropylene (PP), polyethylene (PE), polyester, polycarbonate (PC), and poly-methylmethacrylate (PMMA). ), etc., but are not limited thereto.
본 발명의 항균막(100)은, 기재층(120)을 구성하는 소재에 따라 다양한 양태를 통해 구현될 수 있다. 예컨대, 기재층(120)이 PET 또는 PI로 구성됨에 따라, 항균막(100)은 필름 형태를 통해 구현될 수 있다. 또한, 예를 들어, 기재층(120)인 PP 또는 Polyester로 구성됨에 따라, 항균막(100)은 필터 또는, 의류의 형태를 통해 구현될 수 있다. 기재층(120)을 구성하는 소재에 따라 항균막(100)은 다양한 구현 양태를 통해 구비될 수 있다. 이에 따라, 항균막(100)을 통해 다수의 사용자들이 함께 사용하는 공간에서 바이러스의 차단과 균의 번식을 방지할 수 있으며, 냄새를 제거하는 탈취 효과 또한 제공할 수 있다.The antimicrobial membrane 100 of the present invention may be implemented in various aspects depending on the material constituting the base layer 120 . For example, as the substrate layer 120 is composed of PET or PI, the antimicrobial membrane 100 may be implemented in the form of a film. In addition, for example, as the base layer 120 is composed of PP or Polyester, the antimicrobial membrane 100 may be implemented in the form of a filter or clothing. Depending on the material constituting the base layer 120, the antimicrobial membrane 100 may be provided through various implementations. Accordingly, through the antibacterial film 100, it is possible to block viruses and prevent the propagation of bacteria in a space shared by a plurality of users, and also provide a deodorizing effect that removes odors.
본 발명의 일 실시예에 따르면, 항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법은, 기재층(120)의 일면에 전자기장을 발생시키는 나노합금 조성물을 증착시켜 박막층(130)을 형성하는 단계(S130)를 포함할 수 있다. 박막층(130)은 반자성체 재료와 강자성체 재료의 합금 또는 반자성체 재료와 상자성체 재료의 합금 중 적어도 하나를 포함하는 나노합금 조성물을 통해 구성되어 전자기장을 발생시키는 것을 특징으로 할 수 있다.According to one embodiment of the present invention, a method for manufacturing an antimicrobial film having antibacterial, antiviral and deodorizing effects includes forming a thin film layer 130 by depositing a nanoalloy composition that generates an electromagnetic field on one surface of a substrate layer 120. (S130) may be included. The thin film layer 130 may be formed of a nanoalloy composition including at least one of an alloy of a diamagnetic material and a ferromagnetic material or an alloy of a diamagnetic material and a paramagnetic material to generate an electromagnetic field.
자세히 설명하면, 박막층(130)을 형성하는 나노합금 조성물은, 반자성체 성분의 재료와 강자성체 성분의 재료의 합금 또는 반자성체 성분의 재료와 상자성체 성분의 재료의 합금 중 적어도 하나에 대한 분쇄를 통해 획득될 수 있다. 나노합금 조성물은, 구리, 금, 은, 비스무트 등에서 선택된 반자성체 성분과, 철, 니텔, 코발트, 네오디뮴 등 강자성체 또는, 백금 등 상자성체 성분 과의 합금에 기반하여 생성될 수 있다. 예를 들어, 나노합금 조성물은, 반자성체인 구리와 강자성체인 철의 합금 즉, 구리-철 합금에 관련한 나노분말을 포함하는 조성물일 수 있다. 전술한 나노합금 조성물에 대한 구체적인 기재는 예시일 뿐, 본 발명은 이에 제한되지 않는다.In detail, the nanoalloy composition forming the thin film layer 130 may be obtained by grinding at least one of an alloy of a diamagnetic component material and a ferromagnetic component material or an alloy of a diamagnetic component material and a paramagnetic component material. there is. The nanoalloy composition may be produced based on an alloy of a diamagnetic component selected from copper, gold, silver, bismuth, and the like, and a ferromagnetic component such as iron, Nitel, cobalt, and neodymium, or a paramagnetic component such as platinum. For example, the nanoalloy composition may be a composition including nanopowder related to an alloy of diamagnetic copper and ferromagnetic iron, that is, a copper-iron alloy. The specific description of the above-described nanoalloy composition is only an example, and the present invention is not limited thereto.
반자성체 성분의 재료와 상자성체 성분의 재료(또는 강자성체 성분의 재료)를 통해 합금 조성물로 구성하는 경우, 구리, 금, 은, 비스무트 등 전도성 금속물질(즉, 반자성체 성분)의 산화환원에 의한 전기장 변화에 의해 자기장이 변화되게 될 수 있다. 이 경우, 철, 니켈, 코발트 등 강자성체 성분의 자기장의 변화에 의해 전기장이 변화하는 원리(전기장과 자기장의 산호간 유도현상에 관련한 패러데이 법칙에 의거)에 의해 스스로 전자기장을 발생시키게 된다. 예컨대, 반자성체 성분과 상자성체 성분 각각이 층이 분리된 2차원 적층구조를 가지며, 패러데이 법칙에 의거하여 전자기장을 발생시킬 수 있다.When composed of an alloy composition through a material of a diamagnetic component and a material of a paramagnetic component (or a material of a ferromagnetic component), the electric field change due to the oxidation-reduction of conductive metal materials such as copper, gold, silver, and bismuth (ie, the diamagnetic component) The magnetic field can be changed by In this case, an electromagnetic field is generated by itself according to the principle that the electric field is changed by the change of the magnetic field of ferromagnetic components such as iron, nickel, and cobalt (based on Faraday's law related to the induction of the electric field and the magnetic field between corals). For example, each of the diamagnetic component and the paramagnetic component has a two-dimensional stacked structure in which layers are separated, and an electromagnetic field can be generated based on Faraday's law.
즉, 반자성체 성분과 상자성체 성분(또는 강자성체 성분)을 포함하여 구성되는 나노합금 조성물은, 스스로 전자기장을 발생시킬 수 있다. 다시 말해, 나노합금 조성물을 통한 증착으로 형성되는 박막층(130)은 스스로 전자기장을 발생시킬 수 있다.That is, the nanoalloy composition including the diamagnetic component and the paramagnetic component (or ferromagnetic component) may generate an electromagnetic field by itself. In other words, the thin film layer 130 formed by deposition through the nanoalloy composition may itself generate an electromagnetic field.
실시예에서, 나노합금 조성물은 용매 내에 구리-철 합금의 나노분말이 분산된 분삭액 형태로서, 용매 내에서 구리-철 합금의 나노분말의 분산성 및 분산안정성이 우수할 수 있으며, 이에 따라, 현저히 향상된 항바이러스 및 항균 효과를 구현할 수 있다. 구체적인 예를 들어, 나노합금 조성물은, 반자성체 성분의 재료인 구리와 강자성체 성분의 재료인 철 즉, 구리-철 합금에 기반하여 생성된 조성물을 의미할 수 있다.In an embodiment, the nanoalloy composition is in the form of a dispersion solution in which the nanopowder of the copper-iron alloy is dispersed in a solvent, and the dispersibility and dispersion stability of the nanopowder of the copper-iron alloy in the solvent may be excellent. Accordingly, Significantly improved antiviral and antibacterial effects can be realized. For example, the nanoalloy composition may refer to a composition created based on copper as a material of a diamagnetic component and iron as a material of a ferromagnetic component, that is, a copper-iron alloy.
보다 구체적으로, 나노합금 조성물은 나노분말, 용매 및 계면활성제를 포함할 수 있다.More specifically, the nanoalloy composition may include a nanopowder, a solvent, and a surfactant.
나노분말은, 반자성체 재료와 강자성체 재료 또는 반자성체 재료와 상자성체 재료 중 적어도 하나의 합금에 관련한 것일 수 있다. 예를 들어, 나노분말은, 구리-철 합금에 관련한 것으로, 구리와 철이 9 대 1 비율로 포함된 합금을 의미할 수 있다. 일 실시예에서, 구리의 비율이 적어지거나(예컨대, 구리의 비율이 전체 비율에서 80% 이하인 경우) 또는 현저하게 커지는 경우(예컨대, 구리의 비율이 전체 비율에서 99% 이상인 경우), 해당 나노분말을 통해 구현되는 나노합금 조성물의 항바이러스 및 항균 효과가 저하될 수 있다.The nanopowder may relate to an alloy of at least one of a diamagnetic material and a ferromagnetic material or a diamagnetic material and a paramagnetic material. For example, the nanopowder relates to a copper-iron alloy, and may refer to an alloy containing copper and iron in a ratio of 9:1. In one embodiment, when the copper ratio decreases (eg, when the copper ratio is 80% or less in the total ratio) or significantly increases (eg, when the copper ratio is 99% or more in the total ratio), the nanopowder Antiviral and antibacterial effects of the nanoalloy composition implemented through may be reduced.
나노분말은, 입자 크기가 미리 정해진 크기 이하인 나노분말을 의미할 수 있다. 예컨대, 나노분말은, 구리-철 합금을 1~100 나노미터의 크기로 분말화한 것을 의미할 수 있다. 전술한 나노분말의 크기에 관련한 구체적인 수치적 기재는 예시일 뿐, 본 발명은 이에 제한되지 않는다. 추가적인 실시예에 따르면, 나노합금 조성물은 나노분말이 분산된 분산액 형태이되, 용매에 나노분말이 200 내지 800 ppm의 농도를 통해 구비될 수 있다.The nanopowder may refer to a nanopowder having a particle size equal to or less than a predetermined size. For example, the nanopowder may mean a powdered copper-iron alloy to a size of 1 to 100 nanometers. The specific numerical description related to the size of the nanopowder described above is only an example, and the present invention is not limited thereto. According to a further embodiment, the nanoalloy composition may be in the form of a dispersion in which the nanopowder is dispersed, and the nanopowder may be provided in a solvent at a concentration of 200 to 800 ppm.
일 실시예에 따르면, 반자성체 성분의 재료는, 미량동 작용을 발생시키는 것을 특징으로 할 수 있다. 예컨대, 본 발명의 박막층(130)에 포함된 반자성체 성분은 구리를 의미할 수 있다.According to one embodiment, the material of the diamagnetic component may be characterized in that it generates a microcosmic action. For example, the diamagnetic component included in the thin film layer 130 of the present invention may mean copper.
미량동 작용은, 구리원자가 미생물의 대사작용을 교란시켜 바이러스나 미생물, 곰팡이 등을 살균하는 것으로, 박테리아의 핵산이 완전히 파괴되면서 돌연변이 뿐만 아니라 저항성 조차 완전히 제거하는 효과를 발생시킬 수 있다. 다시 말해, 본 발명의 박막층(130)은 구리를 포함하여 구성(즉, 구리-철 나노분말을 포함하여 구성)됨에 따라 미량동 작용을 통한 항균 작용을 수행할 수 있다. 도 4는 본 발명의 일 실시예와 관련된 구리를 통해 수행되는 항균 작용을 설명하기 위하여 예시적으로 도시한 도면이다.Microbial action is to sterilize viruses, microorganisms, fungi, etc. by disturbing the metabolism of microorganisms by copper atoms. As the nucleic acids of bacteria are completely destroyed, not only mutations but also resistance can be completely eliminated. In other words, as the thin film layer 130 of the present invention is composed of copper (ie, composed of copper-iron nanopowder), it can perform an antibacterial action through a micro copper action. 4 is a diagram exemplarily shown to explain an antibacterial action performed through copper related to an embodiment of the present invention.
구체적으로, 도 4를 참조하면, 박테리아 세포(200)는 구리 표면의 구리 이온(210)을 꼭 필요한 영양소로 인식하여, 구리 이온(210)을 체내로 흡수할 수 있다. 즉, 구리 이온(210)이 박테리아 세포(200)를 뚫고 내부로 침투하게 된다(S210). 박테리아 세포(200)의 체내로 침투한 구리 이온(210)은 세포막의 내부 및 외부 간의 전위차를 불안정하게 교란시키며, 이에 따라 박테리아 세포는 내부의 중요한 영양분과 수분을 잃게되어 점차 세포막이 파괴되게 된다(S220). 또한, 구리 이온(210)이 외부의 활성산소종(220)을 유인하여 박테리아 세포의 손상을 가속화시킬 수 있다(S230). 여기서 활성산소종은 화학적으로 활성화된 즉, 불안정한 산소를 포함하는 화학물질을 의미하는 것으로, 예컨대, 과산화수소와 같은 과산화물(peroxide), 초과산화물(superoxide), 수산화 라디칼(hydroxyl radical), 단일항 산소(singlet oxygen) 등을 포함할 수 있으나, 이에 제한되지 않는다. 활성산소종(220)은 산소분자로부터 유래된 여러 종류의 반응 분자와 자유라티칼을 포함할 수 있다. 라디칼과 연관된 산소 화합물들은 산소 호흡을 하는 생명체들에게 위험한 요인일 수 있다. 즉, 박테리아 세포(200)에 침투한 구리 이온(210)이 활성산소종(220)을 유인할 수 있으며, 이러한 활성산소종(220)에 의한 여러 불균형이 초래되어 박테리아 세포(200)의 손상을 가속화시킬 수 있다. 또한, 구리 이온은 게놈 및 플라스미드 DNA 분해를 수행하며, 세포 복제와 자가 증식을 차단하여 박테리아 세포의 세포 호흡과 신진대사를 방해할 수 있다(S240).Specifically, referring to FIG. 4 , the bacterial cells 200 may recognize the copper ions 210 on the copper surface as essential nutrients and absorb the copper ions 210 into the body. That is, the copper ions 210 pass through the bacterial cells 200 and penetrate into the inside (S210). The copper ions 210 penetrating into the body of the bacterial cell 200 unstablely disturb the potential difference between the inside and outside of the cell membrane, and thus the bacterial cell loses important nutrients and moisture inside, gradually destroying the cell membrane ( S220). In addition, copper ions 210 may attract external reactive oxygen species 220 to accelerate damage to bacterial cells (S230). Here, the active oxygen species refers to chemical substances that are chemically active, that is, include unstable oxygen, for example, peroxides such as hydrogen peroxide, superoxides, hydroxyl radicals, singlet oxygen ( singlet oxygen), etc., but is not limited thereto. The reactive oxygen species 220 may include various types of reactive molecules and free radicals derived from oxygen molecules. Oxygen compounds associated with radicals can be dangerous to oxygen-breathing organisms. That is, the copper ions 210 penetrating the bacterial cells 200 can attract the reactive oxygen species 220, and various imbalances caused by these reactive oxygen species 220 cause damage to the bacterial cells 200. can accelerate In addition, copper ions can degrade genomic and plasmid DNA, block cell replication and self-propagation, and interfere with cellular respiration and metabolism of bacterial cells (S240).
전술한 바와 같이, 구리 이온(또는 금속 이온)의 미량동 작용을 통해 균의 활성을 방해하여 항균 작용을 수행할 수 있다. 다시 말해, 세균이 대사작용으로 인해 구리 이온을 내부로 포함시키며, 이에 따라 세포막 파괴, 활성산소 발생에 의한 DNA, lipid 등의 파괴가 야기될 수 있다. 즉, 박막층(130)은 구리 이온을 포함하여 구성(즉, 구리-철 나노분말을 포함하여 구성)됨에 따라 미량동 작용을 통한 항균 작용을 수행할 수 있다.As described above, an antibacterial action can be performed by interfering with the activity of bacteria through the action of copper ions (or metal ions) in small amounts. In other words, bacteria include copper ions internally due to metabolism, which can cause destruction of cell membranes and destruction of DNA and lipids by generation of active oxygen. That is, as the thin film layer 130 includes copper ions (that is, includes copper-iron nanopowder), it can perform an antibacterial action through a micro copper action.
또한, 나노합금 조성물은 용매를 포함할 수 있다. 여기서 용매는, 나노분말이 분산되어지는 액을 의미할 수 있다. 용매는 분산된 분산액 형태로 형성될 수 있으며, 폴리에틸렌글리콜, 살리실산, 글리콜릭산, 저급 알코올 및 정제수를 포함할 수 있다. 일 실시예에서, 본 발명은 나노합금 조성물은 상기한 다섯 개의 물질을 모두 혼합하여 사용함으로서, 용매 내에서 나노분말의 분산성을 향상시키는 것을 특징으로 할 수 있다. 예를 들어, 총 용량을 기준으로 폴리에틸렌글리콜 25 ~ 45 중량%로 포함될 수 있으며, 살리실산이 3 ~ 7 중량%로 포함될 수 있으며, 글리콜릭산이 2 ~ 3 중량%로 포함될 수 있으며, 저급 알코올이 15 ~ 17 중량%로 포함될 수 있고, 그리고 잔량의 정제수를 포함하여 구성될 수 있다. 일 실시예에서, 저급 알코올은 에탄올일 수 있으나, 이에 제한되지 않는다. 추가적인 예를 들어, 저급 알코올은 메탄올을 통해 구성될 수도 있다.In addition, the nanoalloy composition may include a solvent. Here, the solvent may mean a liquid in which the nanopowder is dispersed. The solvent may be formed in the form of a dispersed liquid, and may include polyethylene glycol, salicylic acid, glycolic acid, lower alcohol, and purified water. In one embodiment, the nanoalloy composition of the present invention may be characterized by improving the dispersibility of the nanopowder in a solvent by using a mixture of all five materials. For example, based on the total capacity, polyethylene glycol may be included in 25 to 45% by weight, salicylic acid may be included in 3 to 7% by weight, glycolic acid may be included in 2 to 3% by weight, and lower alcohol may be included in 15 It may be included in ~ 17% by weight, and may be composed of the remaining amount of purified water. In one embodiment, the lower alcohol may be ethanol, but is not limited thereto. For a further example, the lower alcohol may be constituted via methanol.
또한, 나노합금 조성물은 계면활성제를 포함할 수 있다. 계면활성제는 분산안정성을 향상시키기 위한 것으로, 폴리비닐알코올(Poly vinylalcohol) 및 폴리비닐피롤리돈(Polyvinyl pyrrolidone)을 포함할 수 있다. 예컨대, 조성물을 구성하는 용매 내에서 구리의 분산성 및 분상안정성이 구리의 분산성 및 분산 안정성이 낮을 경우, 층분리 또는 침전물 형성의 문제가 발생되며, 이에 따라 항바이러스 및 항균 효과가 저하될 수 있다. 일 실시예에서, 계면활성제는, 폴리비닐알코올 및 폴리비닐피롤리돈을 1:9~10 중량비로 포함할 수 있다. In addition, the nanoalloy composition may include a surfactant. The surfactant is for improving dispersion stability, and may include polyvinyl alcohol and polyvinyl pyrrolidone. For example, if the dispersibility and dispersion stability of copper are low in the solvent constituting the composition, the problem of layer separation or precipitate formation may occur, and thus the antiviral and antibacterial effects may be lowered. there is. In one embodiment, the surfactant may include polyvinyl alcohol and polyvinylpyrrolidone in a weight ratio of 1:9 to 10.
본 발명의 계면활성제는 폴리비닐알코올 및 폴리비닐피롤리돈의 조합을 통해 구현되며, 분산안정성을 향상시킬 수 있음에 따라, 나노 분말에 대한 우수한 분산성과 분산안정성을 제공하여 항바이러스 및 항균성 효과를 극대화할 수 있다.The surfactant of the present invention is implemented through a combination of polyvinyl alcohol and polyvinylpyrrolidone, and as it can improve dispersion stability, it provides excellent dispersibility and dispersion stability for nanopowder, thereby providing antiviral and antibacterial effects. can be maximized.
추가적인 실시예에 따르면, 나노합금 조성물은 추가 첨가제를 더 포함할 수 있다. 구체적으로, 추가 첨가제는, 생리식염수, 완충제, 항상화제, 킬레이트제, 분산안정제, 안료, 염료, 노화방지제 및 방부제 중 적어도 하나를 포함할 수 있으나, 이에 제한되진 않는다. 구체적인 예를 들어, 추가 첨가제들은, Zn, Mg, K, P, Cl, Ca, I, Si, Ti, Al 등을 포함할 수 있다. 이러한 추가 첨가제는 나노합금 조성물의 유전율 변화를 야기킴으로써, 항균막(100)에서 발생되는 전자기장을 변환 또는 조정시킬 수 있다. 다시 말해, 추가첨가제를 통해 항균막(100)에서 발생되는 전자기장에 대한 조정이 가능해질 수 있다.According to a further embodiment, the nanoalloy composition may further include additional additives. Specifically, the additional additive may include, but is not limited to, at least one of physiological saline, a buffer, an antioxidant, a chelating agent, a dispersion stabilizer, a pigment, a dye, an anti-aging agent, and a preservative. For specific examples, additional additives may include Zn, Mg, K, P, Cl, Ca, I, Si, Ti, Al, and the like. These additional additives can change or adjust the electromagnetic field generated in the antimicrobial membrane 100 by causing a change in the dielectric constant of the nanoalloy composition. In other words, it may be possible to adjust the electromagnetic field generated from the antimicrobial membrane 100 through the additional additive.
일 실시예에 따르면, 나노합금 조성물은 향상된 투과율 및 열차단율을 가질 수 있다. 나노합금 조성물이 향상된 투과율 및 열차단율을 가짐에 따라, 해당 나노합금 조성물을 포함하여 구성되는 항균막(100) 또한 향상된 투과율 및 열차단율을 가질 수 있다. 항균막(100)은 예컨대, 필름의 형태로 구비되어 건물 또는 차량의 창문에 부착되어 향상된 투과율 및 열차단율을 통해 에너지 효율을 향상시키는 효과를 제공할 수 있다.According to one embodiment, the nanoalloy composition may have improved transmittance and thermal insulation rate. As the nanoalloy composition has improved transmittance and thermal barrier rate, the antimicrobial membrane 100 including the nanoalloy composition may also have improved transmittance and thermal barrier rate. The antibacterial membrane 100 may be provided in the form of, for example, a film and attached to a window of a building or vehicle to provide an effect of improving energy efficiency through improved transmittance and thermal insulation rate.
구체적으로, 나노합금 조성물은 전자기장에 의해 야기되는 표면 플라즈몬을 통해 근적외선을 반사시키고 가시광선을 투과시킴에 따라 향상된 투과율(VLT, Visible Light Transmittance) 및 열차단율(TESR, Total Sola Energy Rejection)을 갖는 것을 특징으로 할 수 있다. 표면 플라즈몬은, 금속 내의 자유전자가 집단적으로 진동하는 유사 입자를 의미한다. 자세히 설명하면, 박막층의 전자기장에 의한 표면 플라즈몬을 형성시켜 빛의 근적외선대 전자기장이 만나 표면 플라즈몬 공명(SPR, surface plasmon resonance)이 형성될 수 있다. 표면 플라즈몬 공명의 영향으로 국소적으로 매우 증가된 전기장을 발생시키게 된다. 이는 빛 에너지가 표면 플라스몬에 변환되어 금속의 나노 입자 표면에 축적된 것을 의미하며, 빛의 회절 한계보다 작은 영역에서 광 제어가 가능하도록 할 수 있다. 즉, 이러한 표면 플라즈몬 공명을 통해 열을 발생시키는 근적외선을 반사될 수 있으며, 가시광선은 투과됨에 따라, 투과율 및 열차단율을 향상될 수 있다.Specifically, the nanoalloy composition has improved transmittance (VLT, Visible Light Transmittance) and thermal rejection (TESR, Total Sola Energy Rejection) by reflecting near-infrared rays and transmitting visible rays through surface plasmons caused by electromagnetic fields. can be characterized. Surface plasmons refer to pseudo-particles in which free electrons in a metal oscillate collectively. In detail, surface plasmon is formed by the electromagnetic field of the thin film layer, and surface plasmon resonance (SPR) can be formed when the near-infrared electromagnetic field of light meets. Due to the surface plasmon resonance, a highly increased electric field is generated locally. This means that light energy is converted into surface plasmons and accumulated on the surface of metal nanoparticles, and light can be controlled in a region smaller than the diffraction limit of light. That is, near-infrared rays that generate heat may be reflected through the surface plasmon resonance, and as visible rays are transmitted, transmittance and heat rejection may be improved.
즉, 나노합금 조성물을 통해 구성되는 박막층(130)은 반자성체 성분(즉, 구리)의 재료를 포함하여 구성됨에 따라 항균 작용을 수행할 수 있으며, 스스로 전자기장을 발생시켜 항바이러스 작용을 수행하고, 그리고 향상된 투과율 및 열차단율을 제공할 수 있다. 일 실시예에서, 박막층(130)은, 구비 두께에 따라 투과율의 조정이 가능한 것을 특징으로 할 수 있다. 예컨대, 박막층(130)의 구비 두께에 클수록 투과율을 더욱 향상될 수 있다. That is, the thin film layer 130 composed of the nanoalloy composition can perform an antibacterial action as it is composed of a material of a diamagnetic component (ie, copper), generates an electromagnetic field by itself to perform an antiviral action, and It can provide improved transmittance and thermal insulation rate. In one embodiment, the thin film layer 130 may be characterized in that the transmittance can be adjusted according to the thickness of the thin film layer 130 . For example, as the thickness of the thin film layer 130 increases, transmittance may be further improved.
일 실시예에 따르면, 박막층(130)은 스퍼터링(sputtering) 또는 증착(evaporation) 방식으로 기재층(120)의 일면에 증착되는 것을 특징으로 할 수 있다. 박막층(130)은 금속에 관련한 나노합금 조성물을 통해 구성되는 것으로, 스퍼터링 공정을 통해 증착될 수 있다. 스퍼터링 공정은 진공상태에서 수행되는 증착 공정으로, 증착하고자 하는 물질(즉, 나노합금 조성물)과 막을 입힐 부분(즉, 기재층)에 전계를 가하고, 사이에 제4의 물질 상태인 플라즈마를 발생시켜 비활성 기체인 아르곤이온(Ar+)이 (-)극과 연결된 타겟(즉, 나노합금 조성물)쪽으로 이동하면서, 금속과 부딪쳐서 금속 입자가 튕겨서 나와 반대편에 있는 기재층에 쌓이게 유도하여 나노합금 조성물을 기재층(120)의 일면에 증착시키는 공정일 수 있다. 이러한 스퍼터링 방식의 공정을 통해 기재층(120)의 일면에 나노합금 조성물이 증착되어 박막층(130)이 단일 레이어 형태를 통해 형성될 수 있다.According to one embodiment, the thin film layer 130 may be characterized in that it is deposited on one surface of the base layer 120 by sputtering or evaporation. The thin film layer 130 is composed of a metal-related nanoalloy composition and may be deposited through a sputtering process. The sputtering process is a deposition process performed in a vacuum state. An electric field is applied to the material to be deposited (i.e., the nanoalloy composition) and the portion to be coated (i.e., the substrate layer), and plasma, a fourth material state, is generated between them. Argon ions (Ar+), an inert gas, move toward the target (i.e., the nanoalloy composition) connected to the (-) pole, collide with the metal, and cause the metal particles to bounce off and accumulate on the substrate layer on the opposite side, thereby forming the nanoalloy composition in the substrate layer. It may be a process of depositing on one side of (120). A nanoalloy composition is deposited on one surface of the base layer 120 through the sputtering process, so that the thin film layer 130 may be formed in a single layer form.
본 발명의 일 실시예에 따르면, 항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법은, 박막층(130)을 일면에 코팅층(140)을 형성하는 단계(S140)를 포함할 수 있다. 코팅층(140)은 나노합금 조성물 및 광촉매소자를 포함하여 구성될 수 있다. 코팅층(140)에 포함된 나노합금 조성물은 전술한 바와 같이, 반자성체 성분의 재료와 강자성체 성분의 재료(또는 반자성체 성분의 재료)의 합금에 관련한 나노 분말을 포함하는 조성물일 수 있다. 나노합금 조성물은 반자성체 성분의 재료(즉, 구리)를 통한 미량동 작용을 통해 항균 작용을 수행하고, 스스로 발생시키는 전자기장을 통해 항바이러스 작용을 수행하고, 그리고 향상된 투과율 및 열차단율을 제공할 수 있다.According to one embodiment of the present invention, the antibacterial film manufacturing method having antibacterial, antiviral and deodorizing effects may include forming a coating layer 140 on one surface of the thin film layer 130 (S140). The coating layer 140 may include a nanoalloy composition and a photocatalytic device. As described above, the nanoalloy composition included in the coating layer 140 may be a composition including nanopowder related to an alloy of a diamagnetic component material and a ferromagnetic component material (or diamagnetic component material). The nanoalloy composition can perform an antibacterial action through a trace copper action through a material of a diamagnetic component (ie, copper), an antiviral action through a self-generated electromagnetic field, and provide improved transmittance and thermal insulation rate. .
일 실시예에서 광촉매소자는, 나노합금 조성물을 통해 발생되는 전자기장을 통해 화학 반응(예컨대, 산화, 환원 반응)을 촉진시키는 것을 특징으로 할 수 있다. 다시 말해, UV 등 빛이 없는 조건에서도 광학 작용을 유도하는 광촉매역할을 수행할 수 있다. 광촉매소자는 전자기장에 의해 광촉매 반응 활성을 유도하여 항균, 항바이러스, 탈취 기능을 극대화시킬 수 있다.In one embodiment, the photocatalytic device may promote a chemical reaction (eg, oxidation or reduction reaction) through an electromagnetic field generated through the nanoalloy composition. In other words, it can act as a photocatalyst that induces an optical action even under conditions where there is no light such as UV. The photocatalytic device can maximize antibacterial, antiviral, and deodorizing functions by inducing a photocatalytic reaction activity by an electromagnetic field.
보다 구체적으로, 도 5를 참조하면, 광촉매소자란 적정 에너지 이상의 갖는 빛을 받게되면 활성산소, 수산기 라디칼(Hydroxyl Radical)을 발생시켜서 이들의 강한 산화, 환원 작용에 의해 악취물질의 분해 및 항균 작용을 발생시킬 수 있는 반도체적 성질을 갖는 물질을 의미할 수 있다. 반도체는 일정한 영역의 에너지가 가해지면 원자가 전자대(valence band)에서 전도대(conduction band)로 여기된다. 이때 전도대에서는 전자(e-)(20)들이 형성되게 되고 전자대에는 정공(h+)(30)이 형성되게 된다. 이렇게 형성된 전자(20)와 정공(30)은 강한 산화 또는 환원 작용에 의해 유해물질을 분해시키기 위한 반응을 일으키게 된다. 이와 같이, 광촉매의 특성을 갖는 소자로 이산화티탄(TiO2) 및 산화아연(ZnO)을 포함할 수 있으나, 이에 제한되진 않는다. 이산화티탄 또는 산화아연은 화학적 안정성과 반도체로서의 우수한 장점을 가질 수 있다. 예컨대, 이산화티탄은 약 3.0eV에서 이상의 에너지를 기반으로 광촉매로서의 기능을 수행할 수 있다.More specifically, referring to FIG. 5, the photocatalytic device generates active oxygen and hydroxyl radicals when receiving light having more than appropriate energy, and decomposes odorous substances and has an antibacterial action through their strong oxidation and reduction actions. It may refer to a material having semiconductor properties that can be generated. Semiconductors are excited from the valence band to the conduction band when a certain range of energy is applied. At this time, electrons (e−) 20 are formed in the conduction band and holes (h+) 30 are formed in the electron band. The electrons 20 and holes 30 thus formed cause a reaction to decompose harmful substances by a strong oxidation or reduction action. As such, elements having photocatalytic properties may include titanium dioxide (TiO 2 ) and zinc oxide (ZnO), but are not limited thereto. Titanium dioxide or zinc oxide may have chemical stability and excellent advantages as a semiconductor. For example, titanium dioxide may function as a photocatalyst based on energy above about 3.0 eV.
예컨대, 광촉매 소자인 이산화티탄은, 나노합금 조성물을 통해 발생되는 전자기장(10)에 의해 전자(20)와 정공(30)을 발생시키며, 전자와 정공 각각은 공기 중의 O2, H2O와 반응을 일으켜 표면에 수퍼옥사이드 음이온(O2-)(21)과 하이드록실기 라디칼(-OH)(31)로 된 2종 활성산소를 생성할 수 있다.For example, titanium dioxide, a photocatalytic element, generates electrons 20 and holes 30 by the electromagnetic field 10 generated through the nanoalloy composition, and each of the electrons and holes reacts with O 2 and H 2 O in the air. can generate superoxide anion (O 2 -) (21) and two types of active oxygen consisting of a hydroxyl radical (-OH) (31) on the surface.
하이드록실기 라디칼(31)은 높은 산화, 환원 전위를 가지고 있기 때문에 NOx, 휘발성 유기화합물(VOCs) 및 각종 악취 정화에 탁월할 수 있으며, 축산폐수, 오수, 공장폐수의 BOD, 색도 및 난분해성 오염물질, 환경 호르몬 등을 완벽히 제거할 수 있다. 뿐만 아니라, 하이드록실기 라디칼은 병원성 대장균, 황색포도상구균, O-157 등 각종 병원균과 박테리아를 99% 이상 살균하는 등 모든 대상물질을 산화시킬 수 있다.Since the hydroxyl radical (31) has a high oxidation and reduction potential, it can be excellent in purifying NOx, volatile organic compounds (VOCs) and various odors, and it can be excellent for livestock wastewater, sewage, factory wastewater BOD, color and recalcitrance pollution Substances, environmental hormones, etc. can be completely removed. In addition, hydroxyl radicals can oxidize all target substances, such as sterilizing over 99% of various pathogens and bacteria such as pathogenic Escherichia coli, Staphylococcus aureus, and O-157.
이러한 광촉매 소자는 태양에너지 또는 형광 빛에 의해서도 반응이 일어나며, "물체에 정착, 광분해, 재생"의 사이클에 의해 영속적인 기능을 발휘하므로 경제적일 수 있다. 또한, 반응 후의 부산물은 물과 CO2로 인체 및 환경에 무해한 물질이기 때문에 다양한 분야에 적용이 가능할 수 있다.Such a photocatalytic device can be economical because it reacts even with solar energy or fluorescent light, and exhibits a permanent function through a cycle of “fixation on an object, photolysis, and regeneration”. In addition, since the by-products after the reaction are water and CO 2 that are harmless to the human body and the environment, they can be applied to various fields.
일 실시예에 따르면, 코팅층(140)은 전체 용액 대비 용질의 농도가 0.01 내지 2wt%인 나노합금 조성물을 포함하여 구성될 수 있다. 이 경우, 코팅층(140)은 나노합금 조성물 100 중량부 대비 광촉매소자를 5 내지 500 중량부로 포함하여 구성되는 것을 특징으로 할 수 있다. 즉, 코팅층(140)은 용질(예컨대, 구리-철 합금에 관련한 나노분말)의 농도가 0.01 내지 2wt%인 나노합금 조성물을 통해 구성되며, 나노합금 조성물 대비 광촉매소자의 구비 비율은 1 : 0.2~500일 수 있다. 상술한 바와 같은, 코팅층(140)을 구성하는 나노합금 조성물 내에서의 용질의 농도 및 나노합금 조성물 대비 광촉매소자의 구비 비율은, 광촉매 기능을 극대화함으로써, 탈취, 투과율, 열차단율을 향상시키는 위한 최적의 비율일 수 있다.According to one embodiment, the coating layer 140 may include a nanoalloy composition having a solute concentration of 0.01 to 2 wt% relative to the total solution. In this case, the coating layer 140 may be characterized by comprising 5 to 500 parts by weight of the photocatalytic element based on 100 parts by weight of the nanoalloy composition. That is, the coating layer 140 is composed of a nanoalloy composition having a concentration of solute (eg, nanopowder related to a copper-iron alloy) of 0.01 to 2wt%, and the ratio of the photocatalytic element to the nanoalloy composition is 1:0.2 to 1:0.2. may be 500. As described above, the concentration of the solute in the nanoalloy composition constituting the coating layer 140 and the ratio of the photocatalytic element to the nanoalloy composition are optimal for improving deodorization, transmittance, and thermal insulation rate by maximizing the photocatalytic function. may be a ratio of
일 실시예에서, 코팅층(140)은 습식 코팅을 통해 박막층(130)의 일면에 코팅되며, 미리 정해진 두께 및 표면경도를 통해 구성될 수 있다. 예를 들어, 미리 정해진 두께는 1~10㎛일 수 있으며, 미리 정해진 표면 경도는 2~5H(Hardness)일 수 있다. 이 경우, 미리 정해진 두께 및 표면경도는 표면 플라즈몬 현상에 의해 광촉매 기능을 극대화시킴과 동시에, 표면 보호기능을 향상시키기 위한 최적 값일 수 있다. 전술한 코팅층의 두께 및 표면 경도에 대한 구체적인 수치적 기재는 예시일 뿐, 본 발명은 이에 제한되지 않는다. 구체적으로, 코팅층(140)은 박막층(130)을 기재로 하여 액체 상태의 조합물(즉, 나노합금 조성물과 광촉매 소자(예컨대, 이산화티탄)의 조합)을 롤투롤(Roll-to-Roll) 형태로 도포하여 진행함에 따라 생성될 수 있다. 예컨대, 박막층의 권출(언와인딩, Unwinding), 박막층의 표면전처리(Pre-treatment), 코팅(Coating), 건조(Drying), 권취(리와인딩, Rewinding) 등의 과정을 통해 코팅층(140)이 형성될 수 있다. 이 경우, 습식 코팅은, 그라비아 코팅, 마이크로 그라비아 코팅 또는 콤마 코팅 중 적어도 하나를 포함할 수 있으나, 이에 제한되지 않는다. 형성된 코팅층(140)은 나노합금 조성물과 광촉매 소자의 혼합에 의해 생성된 것으로, 금속의 재질을 포함하고 있어, 표면 강도가 우수할 수 있다. 다시 말해, 항균막(100)의 표피에 형성되는 코팅층(140)은 표면 보호 기능을 가질 수 있다.In one embodiment, the coating layer 140 is coated on one surface of the thin film layer 130 through wet coating, and may be configured through a predetermined thickness and surface hardness. For example, the predetermined thickness may be 1 to 10 μm, and the predetermined surface hardness may be 2 to 5H (Hardness). In this case, the predetermined thickness and surface hardness may be optimal values for maximizing the photocatalytic function and improving the surface protection function by the surface plasmon phenomenon. The specific numerical description of the thickness and surface hardness of the above-described coating layer is only an example, and the present invention is not limited thereto. Specifically, the coating layer 140 is a combination of a liquid state (ie, a combination of a nanoalloy composition and a photocatalytic element (eg, titanium dioxide)) using the thin film layer 130 as a base in a roll-to-roll form. It can be created as it is applied and progressed. For example, the coating layer 140 is formed through processes such as unwinding (unwinding) of the thin film layer, pre-treatment of the surface of the thin film layer, coating, drying, and winding (rewinding). It can be. In this case, the wet coating may include at least one of gravure coating, micro gravure coating, or comma coating, but is not limited thereto. The formed coating layer 140 is produced by mixing the nanoalloy composition and the photocatalytic element, and may have excellent surface strength because it includes a metal material. In other words, the coating layer 140 formed on the epidermis of the antimicrobial membrane 100 may have a surface protection function.
또한, 코팅층(140)의 광촉매 소자는 나노합금 조성물을 통해 야기되는 전자기장을 통해 화학 반응을 촉진시킴에 따라, 항균, 항바이러스, 탈취 기능을 극대화시킬 수 있다. 예컨대, 도 6의 (a) 도시된 바와 같이, 구리가 도핑(doping)된 광촉매소자(300)의 경우, 구리가 도핑되지 않은 광촉매 소자 보다 밴드갭이 감소함을 확인할 수 있다. 즉, 나노합금 조성물을 통해 광촉매 소자를 도핑하는 경우(즉, 구리가 dope된 이산화티탄)은, 광촉매 소자(즉, TiO2) 즉, 구리가 도핑되지 않은 광촉매 소자(310)의 밴드갭(311) 보다 감소된 밴드갭(301)을 가질 수 있다. 밴드갭 감소는 결과적으로, 전기적으로 전도성이 더 커짐을 의미할 수 있으며, 이에 따라 항바이러스 및 탈취 효과가 극대화될 수 있다. 또한, 도 6의 (b) 도시된 바와 같이, 광촉매 소자와 나노합금 조성물 간의 혼합물(즉, 구리가 도핑된 이산화티탄)은, 다중전자전달 현상(TiO2, Cu, Cu+, Cu2+) 이용한 효율 향상을 야기시킬 수 있다. 감소된 밴드갭으로 인해 가시광(visible light) 영역의 다중전자 전달을 위한 충분한 전자 생성이 가능함에 따라, 가시광을 비교적 효과적으로 흡수하여 빠르고 유기적인 산화(organic oxidation), 환원 반응을 야기시킬 수 있다. 다시 말해, 가시광 조사 하에서 계면전하이동전이(IFCT, Interfacial Charge Transfer)에 의하여 가전자대역에 있는 전자의 환원 반응이 촉진될 수 있다. 이에 따라, 가전자대역의 정공을 광촉매반응에 활용할 수 있다. 이러한, 코팅층(140)은 UV 등 빛이 없는 조건에서도 발생되는 전자기장을 통해 광학 작용을 유도하는 광촉매 역할을 수행하여 항균, 항바이러스 및 탈취 효과를 극대화시킬 수 있다.In addition, as the photocatalytic element of the coating layer 140 promotes a chemical reaction through an electromagnetic field generated through the nanoalloy composition, antibacterial, antiviral, and deodorizing functions can be maximized. For example, as shown in (a) of FIG. 6 , in the case of the photocatalytic device 300 doped with copper, it can be confirmed that the band gap is reduced compared to the photocatalytic device without copper doping. That is, when the photocatalytic element is doped through the nanoalloy composition (ie, copper-doped titanium dioxide), the photocatalytic element (ie, TiO 2 ), that is, the band gap 311 of the photocatalytic element 310 that is not doped with copper. ) may have a reduced band gap 301. As a result, a decrease in band gap may mean that electrical conductivity is increased, and thus antiviral and deodorizing effects may be maximized. In addition, as shown in (b) of FIG. 6, the mixture between the photocatalytic element and the nanoalloy composition (ie, titanium dioxide doped with copper) improves efficiency using multiple electron transfer phenomena (TiO2, Cu, Cu+, Cu2+). can cause As enough electrons can be generated for multiple electron transfer in the visible light region due to the reduced band gap, visible light can be relatively effectively absorbed to cause rapid organic oxidation and reduction reactions. In other words, the reduction reaction of electrons in the valence band may be promoted by Interfacial Charge Transfer (IFCT) under visible light irradiation. Accordingly, holes in the valence band can be utilized for the photocatalytic reaction. The coating layer 140 may maximize antibacterial, antiviral, and deodorizing effects by serving as a photocatalyst that induces an optical action through an electromagnetic field generated even under conditions where there is no light such as UV.
전술한 바와 같이, 항균막(100)은 항균, 항바이러스 및 탈취 효과를 제공할 수 있다. 정리하면, 도 7에 도시된 바와 같이, 항균막(100)은 하이드록실기 라디칼의 높은 산화, 환원 전위에 기반한, 휘발성 유기화합물(VOCs) 질소산화물(NOx), 황산화물(SOx) 및 포름알데히드와 같은 유해물질 제거를 통해 공기정화 효과를 제공할 수 있다. 또한, 항균막(100)은 아세트알데히드, 암모니아, 황화수소 등의 악취를 흡착분해여 탈취 효과를 제공할 수 있다. 또한, 항균막(100)은 반자성체 성분의 재료(즉, 구리)를 통해 미량동 작용을 통해 살모넬라, 0157, 황색포도사상균, 대장균, 곰팡이 등의 살균 또는 부패방지에 관한 항균 효과를 제공할 수 있다. 또한, 항균막(100)은 빛을 받으면 물을 끌어당기는 성질을 활용하여 self-cleaning 효과를 제공하는 등 친수 효과를 제공할 수 있다. 또한, 항균막(100)은 유기물질 분해를 통해 표면에 오염의 방지하는 효과를 제공할 수 있다.As described above, the antimicrobial membrane 100 may provide antibacterial, antiviral and deodorizing effects. In summary, as shown in FIG. 7, the antimicrobial membrane 100 is based on the high oxidation and reduction potential of hydroxyl radicals, volatile organic compounds (VOCs) nitrogen oxides (NOx), sulfur oxides (SOx) and formaldehyde It can provide an air purification effect through the removal of harmful substances such as In addition, the antibacterial membrane 100 may provide a deodorizing effect by adsorbing and decomposing odors such as acetaldehyde, ammonia, and hydrogen sulfide. In addition, the antimicrobial film 100 can provide an antibacterial effect related to sterilization or anti-corruption of Salmonella, 0157, Staphylococcus aureus, Escherichia coli, mold, etc. . In addition, the antibacterial film 100 may provide a hydrophilic effect such as providing a self-cleaning effect by utilizing a property of attracting water upon receiving light. In addition, the antimicrobial film 100 may provide an effect of preventing contamination on the surface through decomposition of organic substances.
이러한 항균막(100)은 대상 부재에 도포, 접착 또는 결속되어 일부 층을 형성함으로써, 항바이러스 및 항균 효과를 구현할 수 있다. 이 경우, 대상 부재는 모든 물품을 의미할 수 있다. 예를 들어, 대상 부재는, 부직포, 섬유시트, 액정, 디스플레이, 모니터, 키보드, 종이, 금속 등을 포함할 수 있으나, 이에 제한되지 않는다.The antibacterial film 100 may implement antiviral and antibacterial effects by forming a partial layer by applying, adhering, or binding to a target member. In this case, the target member may mean all articles. For example, the target member may include non-woven fabric, fiber sheet, liquid crystal, display, monitor, keyboard, paper, metal, etc., but is not limited thereto.
예를 들어, 항균막(100)은 사용자의 피부와 접하는 제품을 대상 부재로 하여 접착되어 구비될 수 있다. 구체적인 예를 들어, 항균막(100)은 기저귀, 물티슈, 크린징 티슈, 생리대, 깔창 등의 사람 피부와 접하는 대상 부재에 접촉하여 구성될 수 있다. 종래의 피부와 접하는 제품은, 곰팡이 또는 세균이 발생하는 것을 방지하기 위하여 방부제가 포함될 수 있다. 이러한 방부제는 휘발성을 가진 알코올계 화학물질이며 특유의 냄새가 발생할 수 있다. 따라서 상기 방부제 특유의 냄새를 제거하기 위한 별도의 인공향을 사용하고 있으며, 이 경우 사용자의 신체에도 좋지 않은 영향을 미칠 수 있다. 다만, 항균막(100)은 별도의 화학물질을 포함하지 않으므로, 사용자의 신체 건강에도 효과적이며, 항균, 항바이러스 및 탈취 효과를 제공할 수 있다.For example, the antibacterial film 100 may be provided by being adhered to a product in contact with the user's skin as a target member. For example, the antibacterial membrane 100 may be configured by contacting a target member such as a diaper, wet tissue, cleansing tissue, sanitary napkin, or insole that comes in contact with human skin. Conventional skin contact products may contain preservatives to prevent mold or bacteria from occurring. These preservatives are alcohol-based chemicals with volatility and may generate a characteristic odor. Therefore, a separate artificial fragrance is used to remove the peculiar smell of the preservative, and in this case, it may adversely affect the user's body. However, since the antimicrobial film 100 does not contain a separate chemical substance, it is effective for the user's physical health and can provide antibacterial, antiviral and deodorizing effects.
다른 예를 들어, 항균막(100)은 필터를 대상 부재로 하여 접착되어 구비될 수 있다. 즉, 항균막(100)은 복합공조기(예컨대, 냉난방기, 전열교환기, 가습기, 공기청정기 등)의 필터 또는 사용자가 착용하는 마스크의 필터의 일면에 부착되어 구비될 수 있다. 이 경우, 세균의 발생처와 서식처가 되어 실내 공간의 2차 오염원이 될 수 있는 필터에 대하여 항균, 항바이러스 및 탈취 효과를 제공할 수 있다.For another example, the antimicrobial membrane 100 may be provided by being adhered to a filter as a target member. That is, the antibacterial film 100 may be provided by being attached to one surface of a filter of a combined air conditioner (eg, air conditioner, total heat exchanger, humidifier, air purifier, etc.) or a filter of a mask worn by a user. In this case, antibacterial, antiviral, and deodorizing effects can be provided to the filter, which can become a source and habitat of bacteria and become a secondary pollutant in the indoor space.
또 다른 예를 들어, 항균막(100)은 건물 또는 차량의 창문을 대상 부재로 하여 접착되어 구비될 수 있다. 이 경우, 창문에 대한 점착은 점착층(110)을 통해 이뤄질 수 있다. For another example, the antimicrobial film 100 may be provided by being adhered to a window of a building or vehicle as a target member. In this case, adhesion to the window may be achieved through the adhesive layer 110 .
일 실시예에 따르면, 항균막(100)은 향상된 투과율 및 열차단율을 가질 수 있다. 나노합금 조성물이 향상된 투과율 및 열차단율을 갖는 경우, 해당 나노합금 조성물을 포함하여 구성되는 항균막(100)은 필름의 형태로 구비되어 건물 또는 차량의 창문에 부착되어 에너지의 효율을 향상시킬 수 있다.According to one embodiment, the antimicrobial membrane 100 may have improved transmittance and thermal barrier rate. When the nanoalloy composition has improved transmittance and thermal insulation rate, the antimicrobial membrane 100 comprising the nanoalloy composition is provided in the form of a film and is attached to a window of a building or vehicle to improve energy efficiency. .
구체적으로, 나노합금 조성물을 포함하는 항균막(100)이 윈도우 필름 형태로 구성되는 경우, 가시광선 투과율 및 열차단율을 향상시킬 수 있으며, 필름의 제조 공정상의 편의성을 제공하고 그리고, 필름의 두께를 최소화하는 효과를 제공할 수 있다. 항균막(100)이 윈도우 필름 형태로 구비됨에 따라 제공될 수 있는 다양한 효과에 대한 설명은, 도 8 및 도 9를 참조하여 이하에서 후술하도록 한다.Specifically, when the antimicrobial membrane 100 including the nanoalloy composition is configured in the form of a window film, it is possible to improve visible light transmittance and heat shielding rate, provide convenience in the manufacturing process of the film, and reduce the thickness of the film. It can provide a minimizing effect. A description of various effects that can be provided as the antimicrobial membrane 100 is provided in the form of a window film will be described below with reference to FIGS. 8 and 9 .
도 8의 (a)는 종래의 일반적인 윈도우 필름의 예시적인 단면도를 도시하며, 도 8의 (b)는 본 발명의 항균막(100)의 예시적인 단면도를 도시한다. 또한, 도 9는 종래의 일반적인 윈도우 필름 본 발명의 항균막 각각에 관련한 에너지 효율을 설명하기 위한 예시도를 도시한다.Figure 8 (a) shows an exemplary cross-sectional view of a conventional general window film, Figure 8 (b) shows an exemplary cross-sectional view of the antimicrobial film 100 of the present invention. In addition, Figure 9 shows an exemplary diagram for explaining the energy efficiency related to each of the antimicrobial membranes of the conventional general window film of the present invention.
종래의 윈도우 필름(101)은, 도 8의 (a)에 도시된 바와 같이, 제1점착층(111), 제1기재층(121), 제1박막층(131) 및 제1코팅층(141)을 포함할 수 있다. 이 경우, 제1점착층(111)은 본원 발명의 점착층(110)에 대응하는 하는 것으로, 점착제를 통한 습식 코팅을 통해 구성될 수 있다.As shown in (a) of FIG. 8, the conventional window film 101 includes a first adhesive layer 111, a first substrate layer 121, a first thin film layer 131, and a first coating layer 141. can include In this case, the first adhesive layer 111 corresponds to the adhesive layer 110 of the present invention and may be formed through wet coating using an adhesive.
또한, 일 실시예에 따르면, 종래의 윈도우 필름의 제1기재층(121)과 항균막(100)의 기재층은 동일한 소재를 통해 구성될 수 있다. 예컨대, 각 필름의 기재층은 PET로 구성될 수 있으나, 필수적인 것은 아니다.Also, according to one embodiment, the first base layer 121 of the conventional window film and the base layer of the antimicrobial membrane 100 may be made of the same material. For example, the base layer of each film may be composed of PET, but this is not essential.
다만, 이 경우, 본 발명의 기재층(120)은 1PLY(즉, 한 겹)을 통해 구성되는 것을 특징으로 할 수 있다. 일반적인 윈도우 필름의 기재층(즉, 제1기재층)의 경우, 열을 견디기 위해 2PLY(즉, 두 겹) 이상으로 구성될 수 있다. 반면, 본 발명의 항균막은 향상된 투과율 및 열차단율을 가짐에 따라 1PLY를 통해 구성될 수 있다. 이는, 시공 상의 편의성을 제공할 뿐만 아니라, 전반적인 막 또는 필름의 두께를 최소화한다는 장점이 있다.However, in this case, the base layer 120 of the present invention may be characterized in that it is configured through 1PLY (ie, one layer). In the case of a base layer (ie, the first base layer) of a general window film, it may be composed of 2PLY (ie, two layers) or more to withstand heat. On the other hand, the antimicrobial membrane of the present invention can be configured through 1PLY as it has improved transmittance and thermal barrier rate. This has the advantage of not only providing convenience in construction, but also minimizing the overall thickness of the film or film.
또한, 본 발명의 항균막(100)은 종래의 일반적인 윈도우 필름(101) 보다 얇은 박막층 형성하는 것을 특징으로 할 수 있다. 구체적으로, 항균막(100)의 박막층(130)은 단일 레이어로 구성됨에 따라 종래의 일반적인 윈도우 필름(101)의 제1박막층(131) 보다 얇은 두께를 통해 구비될 수 있다.In addition, the antimicrobial film 100 of the present invention may be characterized by forming a thin film layer thinner than the conventional general window film 101. Specifically, since the thin film layer 130 of the antimicrobial film 100 is composed of a single layer, it may be provided through a thickness thinner than that of the first thin film layer 131 of the conventional general window film 101.
종래의 일반적인 윈도우 필름(101)의 제1박막층(131)은 복수의 소재를 통한 증착을 기반으로 다중 레이어(Multi layer)를 형성하는 것을 특징으로 하는 반면, 본 발명의 항균막(100)은, 기재층(120)의 일면에 액체 상태의 나노합금 조성물이 스퍼터링 방식의 공정을 통해 단일 레이어 형태로 박막층(130)을 형성될 수 있다. 나노합금 조성물은 전자기장에 의해 야기되는 표면 플라즈몬을 통해 근적외선을 반사시키고 가시광선을 투과시킴에 따라 향상된 투과율 및 열차단율을 갖는 것을 특징으로 할 수 있다. 표면 플라즈몬은, 금속 내의 자유전자가 집단적으로 진동하는 유사 입자를 의미한다. 자세히 설명하면, 박막층의 전자기장에 의한 표면 플라즈몬을 형성시켜 빛의 근적외선대 전자기장이 만나 표면 플라즈몬 공명(SPR, surface plasmon resonance)이 형성될 수 있다. 표면 플라즈몬 공명의 영향으로 국소적으로 매우 증가된 전기장을 발생시키게 된다. 이는 빛 에너지가 표면 플라스몬에 변환되어 금속의 나노 입자 표면에 축적된 것을 의미하며, 빛의 회절 한계보다 작은 영역에서 광 제어가 가능하도록 할 수 있다. 즉, 이러한 표면 플라즈몬 공명을 통해 열을 발생시키는 근적외선을 반사될 수 있으며, 가시광선은 투과됨에 따라, 투과율 및 열차단율을 향상될 수 있다.While the first thin film layer 131 of the conventional general window film 101 is characterized by forming multi-layers based on deposition through a plurality of materials, the antimicrobial film 100 of the present invention, The thin film layer 130 may be formed in a single layer form on one side of the base layer 120 through a sputtering process of a nano-alloy composition in a liquid state. The nanoalloy composition may be characterized as having improved transmittance and heat rejection as it reflects near infrared rays and transmits visible rays through surface plasmons caused by electromagnetic fields. Surface plasmons refer to pseudo-particles in which free electrons in a metal oscillate collectively. In detail, surface plasmon is formed by the electromagnetic field of the thin film layer, and surface plasmon resonance (SPR) can be formed when the near-infrared electromagnetic field of light meets. Due to the surface plasmon resonance, a highly increased electric field is generated locally. This means that light energy is converted into surface plasmons and accumulated on the surface of metal nanoparticles, and light can be controlled in a region smaller than the diffraction limit of light. That is, near-infrared rays that generate heat may be reflected through the surface plasmon resonance, and as visible rays are transmitted, transmittance and heat rejection may be improved.
예컨대, 종래의 윈도우 필름(101)의 경우, 단열성 또는 내구성을 위하여 TiO2를 증착시켜 하나의 레이어를 형성하고, SiO2를 통해 다음 레이어를 증착시키고, Ag를 통해 또 다음 레이어를 증착하는 등 복수의 소재를 순차적으로 증착하여 다중 레이어를 형성할 수 있다. 반면, 본 발명의 항균막(100)은 반자성체 성분과 강자성체 성분의 합금을 통해 야기되는 나노합금 조성물의 특성으로 인해 해당 나노합금 조성물을 통해 하나의 레이어 형성함으로써, 기재층(120)을 구성할 수 있으므로, 두께 측면에서 유리할 수 있다.For example, in the case of the conventional window film 101, TiO 2 is deposited to form one layer, SiO 2 is deposited on the next layer, Ag is deposited on the next layer, and a plurality of materials are deposited for insulation or durability. may be sequentially deposited to form multiple layers. On the other hand, the antimicrobial membrane 100 of the present invention can constitute the base layer 120 by forming one layer through the nanoalloy composition due to the characteristics of the nanoalloy composition caused by the alloy of the diamagnetic component and the ferromagnetic component. Therefore, it may be advantageous in terms of thickness.
또한, 본 발명의 항균막(100)의 코팅층(140)은 액체 상태의 조합물(즉, 나노합금 조성물과 광촉매 소자(예컨대, 이산화티탄)의 조합)을 롤투롤(Roll-to-Roll) 형태로 도포되는 습식 코팅을 통해 형성될 수 있다. 즉, 코팅층(140)은 일반적인 제1코팅층(141)과 달리 나노합금 조성물과 광촉매 소자를 포함하여 구성됨에 따라, 전자기장을 발생시키고, 해당 전자기장을 통해 광학 작용을 유도하는 등 항균, 항바이러스 및 탈취 효과를 극대화시킬 수 있다. 다시 말해, 코팅층(140)은 UV 등 빛이 없는 조건에서도 광학 작용을 유도하는 광촉매 역할을 수행하여 항균, 항바이러스 및 탈취 효과를 극대화시킬 수 있다.In addition, the coating layer 140 of the antimicrobial membrane 100 of the present invention is a combination of a liquid state (ie, a combination of a nanoalloy composition and a photocatalytic element (eg, titanium dioxide)) in a roll-to-roll form. It can be formed through a wet coating applied with. That is, unlike the general first coating layer 141, the coating layer 140 is configured to include a nanoalloy composition and a photocatalytic element, thereby generating an electromagnetic field and inducing an optical action through the electromagnetic field, such as antibacterial, antiviral, and deodorizing. effect can be maximized. In other words, the coating layer 140 can maximize antibacterial, antiviral, and deodorizing effects by serving as a photocatalyst that induces an optical action even in the absence of light such as UV.
정리하면, 본 발명의 항균막(100)은 종래의 일반적인 윈도우 필름(101) 보다 현저한 개선점을 가질 수 있다. 먼저, 종래의 일반적인 윈도우 필름(101)은 열을 흡수하나 본 발명의 항균막(100)은 표면 플라즈몬 공명을 통해 열을 반사시킬 수 있다. 다시 말해, 열을 흡수하고, 재방출하는 기존 필름과 달린, 자외선 차단과 외부 열 반사를 통해, 내부의 온도 변화를 최소화시키고, 향상된 열차단성을 통해 내부 열 손실을 감소시켜 냉,난방 효율을 향상시킬 수 있다.In summary, the antibacterial film 100 of the present invention may have significant improvements over the conventional general window film 101. First, the conventional general window film 101 absorbs heat, but the antibacterial film 100 of the present invention can reflect heat through surface plasmon resonance. In other words, unlike conventional films that absorb and re-radiate heat, it minimizes internal temperature changes through UV blocking and external heat reflection, and improves cooling and heating efficiency by reducing internal heat loss through improved thermal insulation. can make it
또한, 종래의 일반적인 윈도우 필름(101)은 시간 경과에 따른 탈색과 열화가 발생하나, 본 발명의 항균막(100)은 열 반사 메커니즘을 통해 적은 열화도를 가질 수 있다. In addition, the conventional general window film 101 causes discoloration and deterioration over time, but the antimicrobial film 100 of the present invention may have a low degree of deterioration through a heat reflection mechanism.
또한, 종래의 일반적인 윈도우 필름(101)은 항균, 항바이러스 및 탈취 등 별도의 추가적 기능을 제공하지 못하는 반면, 본 발명의 항균막(100)은 전자기장을 통한 항바이러스 효과, 반자성체 성분의 재료(예컨대, 구리)를 통한 항균 효과 및 높은 산화, 환원 전위에 기반한 탈취 효과 등을 추가적으로 제공할 수 있다.In addition, the conventional general window film 101 does not provide additional functions such as antibacterial, antiviral, and deodorizing, whereas the antibacterial film 100 of the present invention has an antiviral effect through an electromagnetic field, a material of a diamagnetic component (such as , copper) can provide additional antibacterial effects and deodorizing effects based on high oxidation and reduction potentials.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described with reference to the accompanying drawings, those skilled in the art to which the present invention pertains can be implemented in other specific forms without changing the technical spirit or essential features of the present invention. you will be able to understand Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
본 발명에서 설명하는 특정 실행들은 일 실시 예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.Specific implementations described in the present invention are examples and do not limit the scope of the present invention in any way. For brevity of the specification, description of conventional electronic components, control systems, software, and other functional aspects of the systems may be omitted. In addition, the connection of lines or connecting members between the components shown in the drawings are examples of functional connections and / or physical or circuit connections, which can be replaced in actual devices or additional various functional connections, physical connection, or circuit connections. In addition, if there is no specific reference such as "essential" or "important", it may not necessarily be a component necessary for the application of the present invention.
제시된 프로세스들에 있는 단계들의 특정한 순서 또는 계층 구조는 예시적인 접근들의 일례임을 이해하도록 한다. 설계 우선순위들에 기반하여, 본 발명의 범위 내에서 프로세스들에 있는 단계들의 특정한 순서 또는 계층 구조가 재배열될 수 있다는 것을 이해하도록 한다. 첨부된 방법 청구항들은 샘플 순서로 다양한 단계들의 엘리먼트들을 제공하지만 제시된 특정한 순서 또는 계층 구조에 한정되는 것을 의미하지는 않는다.It is to be understood that the specific order or hierarchy of steps in the processes presented is an example of exemplary approaches. Based upon design priorities, it is to be understood that the specific order or hierarchy of steps in the processes may be rearranged while remaining within the scope of the present invention. The accompanying method claims present elements of the various steps in a sample order, but are not meant to be limited to the specific order or hierarchy presented.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the presented embodiments is provided to enable any person skilled in the art to use or practice the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the scope of the present invention. Thus, the present invention is not to be limited to the embodiments presented herein, but is to be construed in the widest scope consistent with the principles and novel features presented herein.
상기와 같은 발명의 실시를 위한 최선의 형태에서 관련 내용을 기술하였다.The related contents have been described in the best mode for carrying out the invention as described above.
본 발명은 항균 및 항바이러스 기능을 가진 항균막을 제공하는 분야에서 활용될 수 있다. The present invention can be utilized in the field of providing an antibacterial film having antibacterial and antiviral functions.

Claims (24)

  1. 점착층을 형성하는 단계;Forming an adhesive layer;
    상기 점착층의 일면에 기재층을 형성하는 단계;Forming a base layer on one side of the adhesive layer;
    상기 기재층의 일면에 전자기장을 발생시키는 나노합금 조성물을 증착시켜 박막층을 형성하는 단계; 및forming a thin film layer by depositing a nanoalloy composition that generates an electromagnetic field on one side of the substrate layer; and
    상기 박막층의 일면에 코팅층을 형성하는 단계;Forming a coating layer on one surface of the thin film layer;
    를 포함하는,including,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  2. 제1항에 있어서,According to claim 1,
    상기 나노합금 조성물은,The nanoalloy composition,
    반자성체 재료와 강자성체 재료의 합금 또는 반자성체 재료와 상자성체 재료의 합금 중 적어도 하나를 포함하여 구성되는 것을 특징으로 하는,Characterized in that it comprises at least one of an alloy of a diamagnetic material and a ferromagnetic material or an alloy of a diamagnetic material and a paramagnetic material,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  3. 제2항에 있어서,According to claim 2,
    상기 나노합금 조성물은,The nanoalloy composition,
    상기 반자성체 재료와 상기 강자성체 재료의 합금 또는 상기 반자성체 재료와 상기 상자성체 재료의 합금 중 적어도 하나에 대한 분쇄를 통해 획득되는 나노분말;nanopowder obtained through grinding of at least one of an alloy of the diamagnetic material and the ferromagnetic material or an alloy of the diamagnetic material and the paramagnetic material;
    상기 나노분말이 분산되는 액체에 관한 것으로, 폴리에틸렌글리콜, 살리실산, 글리콜릭산, 저급 알코올 및 정제수를 포함하여 구성되는 용매; 및It relates to a liquid in which the nanopowder is dispersed, and includes a solvent including polyethylene glycol, salicylic acid, glycolic acid, lower alcohol, and purified water; and
    폴리비닐알코올 및 폴리비닐피롤리돈을 포함하여 구성되는 계면활성제;Surfactants composed of polyvinyl alcohol and polyvinylpyrrolidone;
    를 포함하며,Including,
    상기 반자성체 재료는,The diamagnetic material,
    미량동(oligodynamic) 작용을 발생시키는 것을 특징으로 하는,Characterized in that it generates an oligodynamic action,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  4. 제1항에 있어서,According to claim 1,
    상기 나노합금 조성물은,The nanoalloy composition,
    상기 전자기장에 의해 야기되는 표면 플라즈몬(plasmon)을 통해 근적외선을 반사시키고, 가시광선은 투과시킴에 따라 향상된 투과율 및 열차단율을 갖는 것을 특징으로 하는,Characterized in that it has improved transmittance and heat rejection by reflecting near-infrared rays through surface plasmons caused by the electromagnetic field and transmitting visible rays,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  5. 제1항에 있어서,According to claim 1,
    상기 박막층은,The thin film layer,
    스퍼터링(sputtering) 또는 증착(evaporation) 방식으로 상기 기재층의 일면에 증착되는 것을 특징으로 하는,Characterized in that it is deposited on one side of the base layer by sputtering or evaporation,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  6. 제1항에 있어서,According to claim 1,
    상기 코팅층은,The coating layer,
    나노합금 조성물 100 중량부 대비 광촉매소자를 5 내지 500 중량부로 포함하여 구성되며,It is composed of including 5 to 500 parts by weight of the photocatalytic element relative to 100 parts by weight of the nanoalloy composition,
    상기 광촉매소자는,The photocatalytic device,
    상기 나노합금 조성물에서 발생되는 전자기장에 의해 광촉매 반응이 일어나는 것을 특징으로 하는,Characterized in that the photocatalytic reaction occurs by the electromagnetic field generated from the nanoalloy composition,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  7. 제6항에 있어서,According to claim 6,
    상기 코팅층에 포함된 상기 나노합금 조성물은,The nanoalloy composition included in the coating layer,
    전체 용액 대비 용질의 농도가 0.01 내지 2wt%인 것을 특징으로 하는,Characterized in that the concentration of the solute relative to the total solution is 0.01 to 2 wt%,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  8. 제1항에 있어서,According to claim 1,
    상기 코팅층은,The coating layer,
    습식 코팅을 통해 상기 박막층의 일면에 코팅되며, 미리 정해진 두께 및 표면경도를 통해 구성되는 것을 특징으로 하는,Characterized in that it is coated on one side of the thin film layer through wet coating and configured through a predetermined thickness and surface hardness,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  9. 제8항에 있어서,According to claim 8,
    상기 코팅층의 미리 정해진 두께 및 표면경도 각각은,Each of the predetermined thickness and surface hardness of the coating layer,
    1 내지 10㎛ 및 B 내지 5H인 것을 특징으로 하는,Characterized in that 1 to 10 μm and B to 5H,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  10. 제1항에 있어서,According to claim 1,
    상기 점착층은,The adhesive layer is
    액체 상태의 점착제를 지지면에 도포하는 습식코팅 방식을 통해 형성되는 것을 특징으로 하는,Characterized in that it is formed through a wet coating method of applying a liquid adhesive to the support surface,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  11. 제1항에 있어서,According to claim 1,
    상기 기재층은,The base layer,
    상기 박막층을 지지 또는 고정하기 위한 것으로, 탄성을 가진 소재를 통해 구성되는 것을 특징으로 하는,For supporting or fixing the thin film layer, characterized in that it is composed of a material having elasticity,
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  12. 제1항에 있어서,According to claim 1,
    상기 기재층은, The base layer,
    PET(polyethyleneterephthalate), PI(Polyimide), PP(Polypropyelen), PE(Polyethylene), Polyester, PC(polycarbonate) 또는 PMMA(poly-methylmethacrylate) 중 적어도 하나를 포함하는,At least one of polyethyleneterephthalate (PET), polyimide (PI), polypropyelen (PP), polyethylene (PE), polyester, polycarbonate (PC), or poly-methylmethacrylate (PMMA),
    항균, 항바이러스 및 탈취효과를 가진 항균막 제조방법.Antibacterial membrane manufacturing method with antibacterial, antiviral and deodorizing effects.
  13. 점착층;adhesive layer;
    상기 점착층의 일면에 형성되는 기재층;a substrate layer formed on one surface of the adhesive layer;
    상기 기재층의 일면에 전자기장을 발생시키는 나노합금 조성물이 증착되어 형성되는 박막층; 및a thin film layer formed by depositing a nanoalloy composition that generates an electromagnetic field on one side of the substrate layer; and
    상기 박막층의 일면에 형성되는 코팅층;a coating layer formed on one surface of the thin film layer;
    을 포함하는,including,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  14. 제13항에 있어서,According to claim 13,
    상기 나노합금 조성물은,The nanoalloy composition,
    반자성체 재료와 강자성체 재료의 합금 또는 반자성체 재료와 상자성체 재료의 합금 중 적어도 하나를 포함하여 구성되는 것을 특징으로 하는,Characterized in that it comprises at least one of an alloy of a diamagnetic material and a ferromagnetic material or an alloy of a diamagnetic material and a paramagnetic material,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  15. 제14항에 있어서,According to claim 14,
    상기 나노합금 조성물은,The nanoalloy composition,
    상기 반자성체 재료와 상기 강자성체 재료의 합금 또는 상기 반자성체 재료와 상기 상자성체 재료의 합금 중 적어도 하나에 대한 분쇄를 통해 획득되는 나노분말;nanopowder obtained through grinding of at least one of an alloy of the diamagnetic material and the ferromagnetic material or an alloy of the diamagnetic material and the paramagnetic material;
    상기 나노분말이 분산되는 액체에 관한 것으로, 폴리에틸렌글리콜, 살리실산, 글리콜릭산, 저급 알코올 및 정제수를 포함하여 구성되는 용매; 및It relates to a liquid in which the nanopowder is dispersed, and includes a solvent including polyethylene glycol, salicylic acid, glycolic acid, lower alcohol, and purified water; and
    폴리비닐알코올 및 폴리비닐피롤리돈을 포함하여 구성되는 계면활성제;Surfactants composed of polyvinyl alcohol and polyvinylpyrrolidone;
    를 포함하며,Including,
    상기 반자성체 재료는,The diamagnetic material,
    미량동(oligodynamic) 작용을 발생시키는 것을 특징으로 하는,Characterized in that it generates an oligodynamic action,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  16. 제13항에 있어서,According to claim 13,
    상기 나노합금 조성물은,The nanoalloy composition,
    상기 전자기장에 의해 야기되는 표면 플라즈몬(plasmon)을 통해 근적외선을 반사시키고, 가시광선은 투과시킴에 따라 향상된 투과율 및 열차단율을 갖는 것을 특징으로 하는,Characterized in that it has improved transmittance and heat rejection by reflecting near-infrared rays through surface plasmons caused by the electromagnetic field and transmitting visible rays,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  17. 제13항에 있어서,According to claim 13,
    상기 박막층은,The thin film layer,
    스퍼터링(sputtering) 또는 증착(evaporation) 방식으로 상기 기재층의 일면에 증착되는 것을 특징으로 하는,Characterized in that it is deposited on one side of the base layer by sputtering or evaporation,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  18. 제13항에 있어서,According to claim 13,
    상기 코팅층은,The coating layer,
    나노합금 조성물 100 중량부 대비 광촉매소자를 5 내지 500 중량부로 포함하여 구성되며,It is composed of including 5 to 500 parts by weight of the photocatalytic element relative to 100 parts by weight of the nanoalloy composition,
    상기 광촉매소자는,The photocatalytic device,
    상기 나노합금 조성물에서 발생되는 전자기장에 의해 광촉매 반응이 일어나는 것을 특징으로 하는,Characterized in that the photocatalytic reaction occurs by the electromagnetic field generated from the nanoalloy composition,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  19. 제18항에 있어서,According to claim 18,
    상기 코팅층에 포함된 상기 나노합금 조성물은,The nanoalloy composition included in the coating layer,
    전체 용액 대비 용질의 농도가 0.01 내지 2wt%인 것을 특징으로 하는,Characterized in that the concentration of the solute relative to the total solution is 0.01 to 2 wt%,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  20. 제13항에 있어서,According to claim 13,
    상기 코팅층은,The coating layer,
    습식 코팅을 통해 상기 박막층의 일면에 코팅되며, 미리 정해진 두께 및 표면경도를 통해 구성되는 것을 특징으로 하는,Characterized in that it is coated on one side of the thin film layer through wet coating and configured through a predetermined thickness and surface hardness,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  21. 제20항에 있어서,According to claim 20,
    상기 코팅층의 미리 정해진 두께 및 표면경도 각각은,Each of the predetermined thickness and surface hardness of the coating layer,
    1 내지 10㎛ 및 B 내지 5H인 것을 특징으로 하는,Characterized in that 1 to 10 μm and B to 5H,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  22. 제13항에 있어서,According to claim 13,
    상기 점착층은,The adhesive layer is
    액체 상태의 점착제를 지지면에 도포하는 습식코팅 방식을 통해 형성되는 것을 특징으로 하는,Characterized in that it is formed through a wet coating method of applying a liquid adhesive to the support surface,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  23. 제13항에 있어서,According to claim 13,
    상기 기재층은,The base layer,
    상기 박막층을 지지 또는 고정하기 위한 것으로, 탄성을 가진 소재를 통해 구성되는 것을 특징으로 하는,For supporting or fixing the thin film layer, characterized in that it is composed of a material having elasticity,
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
  24. 제13항에 있어서,According to claim 13,
    상기 기재층은, The base layer,
    PET(polyethyleneterephthalate), PI(Polyimide), PP(Polypropyelen), PE(Polyethylene), Polyester, PC(polycarbonate) 또는 PMMA(poly-methylmethacrylate) 중 적어도 하나를 포함하는,At least one of polyethyleneterephthalate (PET), polyimide (PI), polypropyelen (PP), polyethylene (PE), polyester, polycarbonate (PC), or poly-methylmethacrylate (PMMA),
    항균, 항바이러스 및 탈취효과를 가진 항균막.Antibacterial film with antibacterial, antiviral and deodorizing effects.
PCT/KR2022/009906 2021-08-17 2022-07-08 Antibacterial film having antibacterial, antiviral, and deodorizing effects and manufacturing method therefor WO2023022368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210108234A KR102368574B1 (en) 2021-08-17 2021-08-17 Antibacterial film with antibacterial, antiviral and deodorizing effect and manufacturing method thereof
KR10-2021-0108234 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023022368A1 true WO2023022368A1 (en) 2023-02-23

Family

ID=80497554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009906 WO2023022368A1 (en) 2021-08-17 2022-07-08 Antibacterial film having antibacterial, antiviral, and deodorizing effects and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102368574B1 (en)
WO (1) WO2023022368A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102368574B1 (en) * 2021-08-17 2022-02-28 주식회사 퀀텀바이오닉스 Antibacterial film with antibacterial, antiviral and deodorizing effect and manufacturing method thereof
KR102593999B1 (en) * 2022-12-23 2023-10-26 주식회사 퀀텀바이오닉스 Window film for heat control including nano-alloy layer and nano-insulation layer and method of preparing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038878A (en) * 2010-10-14 2012-04-24 가부시끼가이샤 도시바 Metal nanoparticles dispersion
KR20180126557A (en) * 2016-03-28 2018-11-27 도요세이칸 그룹 홀딩스 가부시키가이샤 Dispersion liquid and its preparation method, and copper compound particle
KR20190092534A (en) * 2016-12-15 2019-08-07 도요세이칸 그룹 홀딩스 가부시키가이샤 Antiviral Dispersion
KR20200143714A (en) * 2018-04-12 2020-12-24 신에쓰 가가꾸 고교 가부시끼가이샤 Photocatalytic transfer film and manufacturing method thereof
KR102198915B1 (en) * 2020-04-22 2021-01-06 주식회사 퀀텀바이오닉스 Composition for antivirus and antibacterial containing iron-copper alloy nano powder
KR102368574B1 (en) * 2021-08-17 2022-02-28 주식회사 퀀텀바이오닉스 Antibacterial film with antibacterial, antiviral and deodorizing effect and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120063998A (en) 2010-12-08 2012-06-18 박인수 Antimicrobial composite film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038878A (en) * 2010-10-14 2012-04-24 가부시끼가이샤 도시바 Metal nanoparticles dispersion
KR20180126557A (en) * 2016-03-28 2018-11-27 도요세이칸 그룹 홀딩스 가부시키가이샤 Dispersion liquid and its preparation method, and copper compound particle
KR20190092534A (en) * 2016-12-15 2019-08-07 도요세이칸 그룹 홀딩스 가부시키가이샤 Antiviral Dispersion
KR20200143714A (en) * 2018-04-12 2020-12-24 신에쓰 가가꾸 고교 가부시끼가이샤 Photocatalytic transfer film and manufacturing method thereof
KR102198915B1 (en) * 2020-04-22 2021-01-06 주식회사 퀀텀바이오닉스 Composition for antivirus and antibacterial containing iron-copper alloy nano powder
KR102368574B1 (en) * 2021-08-17 2022-02-28 주식회사 퀀텀바이오닉스 Antibacterial film with antibacterial, antiviral and deodorizing effect and manufacturing method thereof

Also Published As

Publication number Publication date
KR102368574B1 (en) 2022-02-28

Similar Documents

Publication Publication Date Title
WO2023022368A1 (en) Antibacterial film having antibacterial, antiviral, and deodorizing effects and manufacturing method therefor
KR100687560B1 (en) Cleaning agent and cleaning method
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
ES2719655T3 (en) Procedure to form a self-decontaminating surface
US9724440B2 (en) Environmental cleaning and antimicrobial lighting component and fixture
CA2972923C (en) Anti-microbial coating and method to form same
CN105660696A (en) Preparation method of visible light excitation antibacterial coating layer containing nano cuprous oxide
CN201551608U (en) Bus disinfection and sterilization system
Paschoalino et al. Indoor air disinfection using a polyester supported TiO 2 photo-reactor.
Ramsden Photocatalytic antimicrobial coatings
JP5022561B2 (en) Environmental purification materials
JP3914982B2 (en) Antibacterial material and antibacterial product using the same
JP2010065372A (en) Method of production element having antibacterial property
JP2003213565A (en) Flame-retardant antimicrobial textile product and method for producing the same
CN111040221B (en) Antibacterial self-cleaning film and preparation method and application thereof
Salleh et al. Strategies to improve the antimicrobial properties of metal-oxide based photocatalytic coating: A review
KR102368575B1 (en) Culture vessel providing anti-mycoplasma function and manufacturing method thereof
JPH06154592A (en) Adsorptive composition and manufacture of the same
JP2000014607A (en) Vacuum cleaner and its manufacture
CN214903994U (en) Antiviral and antibacterial disposable protective mask
JP3771227B2 (en) Cloth and mask
Salleh et al. Photocatalytic Antimicrobial Coating as Self-Disinfecting Surface for Defeating Various Contagious Diseases: A Review
CN210612576U (en) Disinfection piece
Umpo et al. Antimicrobial Efficacy of Titanium Dioxide Coating in Operating Theaters at A Tertiary Care Hospital in Arunachal Pradesh
KR20070106347A (en) Nano complex sol, preparation method and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE