WO2023021967A1 - Stock solution treatment apparatus, stock solution treatment apparatus operating method, and adjuster - Google Patents

Stock solution treatment apparatus, stock solution treatment apparatus operating method, and adjuster Download PDF

Info

Publication number
WO2023021967A1
WO2023021967A1 PCT/JP2022/029393 JP2022029393W WO2023021967A1 WO 2023021967 A1 WO2023021967 A1 WO 2023021967A1 JP 2022029393 W JP2022029393 W JP 2022029393W WO 2023021967 A1 WO2023021967 A1 WO 2023021967A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
tube
filter
filtrate
concentrator
Prior art date
Application number
PCT/JP2022/029393
Other languages
French (fr)
Japanese (ja)
Inventor
正史 福原
徹 村島
祐奈 井關
健人 永矢
康弘 溝上
Original Assignee
株式会社タカトリ
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タカトリ, 株式会社カネカ filed Critical 株式会社タカトリ
Priority to CN202280050017.0A priority Critical patent/CN117642193A/en
Publication of WO2023021967A1 publication Critical patent/WO2023021967A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/28Clamping means for squeezing flexible tubes, e.g. roller clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions

Definitions

  • the present invention relates to an undiluted solution processing device, a method of operating the undiluted solution processing device, and an adjustment tool. More specifically, a stock solution processing device that filters and concentrates a stock solution such as pleural and ascitic fluid that accumulates in the chest and abdomen of patients with carcinomatous pleural peritonitis, cirrhosis of the liver, and plasma waste fluid from plasmapheresis to obtain a treatment solution for intravenous drip infusion.
  • the present invention relates to a method of operating a concentrate processing device and an adjustment tool used in such a concentrate processing device.
  • pleural effusion and ascites may accumulate in the thoracic and abdominal cavities.
  • pleural effusion and ascites may accumulate in the thoracic and abdominal cavities.
  • the pleural and ascitic fluid is removed by puncture.
  • pleural and ascitic fluid contains some or all of the plasma components leaked from the blood, and this plasma contains major proteins (eg, albumin, globulin, etc.).
  • major proteins eg, albumin, globulin, etc.
  • pleural fluid or ascites fluid hereinafter sometimes referred to as undiluted fluid
  • cell-free and concentrated ascites reinfusion method cell-free and concentrated ascites reinfusion method
  • the treatment fluid to be returned to the patient's body is generated by filtering and concentrating the pleural and ascites fluids.
  • a processing apparatus that generates such a treatment liquid, an undiluted liquid such as pleural effusion or ascites is supplied to a filter having a filtering member such as a hollow fiber membrane or a plate-like permeable membrane to obtain a liquid component (hereinafter sometimes referred to as a filtrate). ).
  • a filtering member such as a hollow fiber membrane or a plate-like permeable membrane.
  • the device when using CART at the bedside, it is desirable that the device be as small as possible, but if multiple pumps are provided, the device will become large.
  • the flow of the concentrate in the circuit can be controlled to some extent by increasing the number of pumps, it is necessary to control the operation of multiple pumps in order to achieve appropriate filtration and concentration, making the control of the device difficult. it gets harder.
  • Patent Document 7 discloses a body fluid filtering and concentrating device in which one pump is provided between a filter and a concentrator, and the undiluted liquid can flow only with this one pump.
  • a throttle valve is provided in the passage between the concentrator and the concentrated body fluid recovery container.
  • Patent Document 7 a method is adopted in which the undiluted solution is supplied to the filter by the driving force of the pump. For this reason, when the viscosity of the stock solution is low, the initial treatment is slower than when the stock solution is supplied to the filter using gravity, so the overall treatment time may be longer.
  • Patent Document 7 instead of providing a pump, a throttle valve is provided in the passage between the concentrator and the concentrated body fluid recovery container to adjust the transmembrane pressure difference of the concentrator. Therefore, when the flow rate of the filtrate supplied to the concentrator fluctuates, it is necessary to adjust the transmembrane pressure difference of the concentrator with a throttle valve. Then, as in the case of providing a plurality of pumps, in order to realize appropriate filtration and concentration by the body fluid filtration and concentration device of Patent Document 7, both the pump and the throttle valve must be controlled, and only one pump is required. However, it becomes difficult to control the device.
  • a liquid concentrate processing apparatus is an apparatus for filtering and concentrating a liquid concentrate to form a concentrated liquid, which comprises a filter having a filtering member for filtering the liquid concentrate and a filtrate filtered by the filter. a concentrator for concentrating the filtered liquid to form the concentrated liquid; a raw liquid supply unit arranged above a raw liquid supply port of the filter for supplying the raw liquid to the filter; and a raw liquid for the filter. a filtrate supply channel communicating with the supply port; a filtrate supply channel communicating between the filtrate outlet of the filter and the filtrate supply port of the concentrator; and connected to the concentrate outlet of the concentrator.
  • the undiluted solution processing apparatus of the second invention is characterized in that, in the first invention, the amount of filtrate supplied to the recovery unit after the predetermined state starts the gravity filtration state does not exceed the amount of liquid that can be accommodated in the recovery unit.
  • an undiluted solution processing apparatus according to the first or second aspect, wherein the concentrated liquid flow path is provided with an adjustment section for adjusting the concentrated liquid flow path to a predetermined state.
  • the control section controls the operation of the liquid feeding section to adjust the flow rate of the liquid supplied to the concentrator, and the concentrator membrane of the concentrator It is characterized by controlling differential pressure.
  • an undiluted solution processing apparatus wherein the concentrated liquid flow path is a tube whose cross section is deformable, and the adjusting section is a member having a gap in which the tube is arranged.
  • the gap of the adjustment part is formed to have a length that can maintain the average pressure of water in the tube at 10 mmHg or more and 100 mmHg or less when 50 mL/min of water is flowed into the tube placed in the gap.
  • a concentrate processing apparatus according to the third or fourth aspect, wherein the concentrated liquid channel is a tube whose cross section is deformable, and the adjusting section is a member having a gap in which the tube is arranged.
  • the gap of the adjusting portion is adjusted to be 95% to 110% of the total wall thickness of the tube when the tube is placed in the gap.
  • the undiluted solution processing apparatus of the seventh invention is the concentrate processing apparatus of the third or fourth invention, wherein the concentrated liquid flow path is a tube having a circular cross section made of polyvinyl chloride or silicone rubber, and the adjusting section is configured such that the tube is A member having a gap disposed therein, wherein the tube has an outer diameter of 3.0 to 12.0 mm, an inner diameter of 2.0 to 8.0 mm, and a wall thickness of 0.5 to 2.0 mm, and the adjustment The width of the gap between the parts is 0.95 to 4.40 mm.
  • An eighth aspect of the present invention provides a method for operating an apparatus for treating a liquid concentrate, which is a method for operating an apparatus for filtering and concentrating a liquid concentrate to form a concentrate, the apparatus comprising a filter having a filter member for filtering the liquid, and the filter. a concentrator for concentrating the filtered liquid to form the concentrated liquid; a raw liquid supply unit for supplying the raw liquid to the filter; and a raw liquid supply unit and the filter a filtrate supply channel communicating with the undiluted solution supply port of the device; a filtrate supply channel communicating between the filtrate discharge port of the filter and the filtrate supply port of the concentrator; and a concentrated solution drain of the concentrator.
  • a concentrated liquid flow path connected to an outlet; a waste liquid flow path connected to a waste liquid discharge port for discharging waste liquid separated from the concentrated liquid in the concentrator; and a filter connected to the concentrated liquid flow path.
  • a recovery unit for recovering the concentrated liquid disposed below the filtrate discharge port; a branch channel communicating between the recovery unit and the filtrate supply channel; and the branch channel in the filtrate supply channel and a control unit for controlling the operation of the liquid sending unit provided between the connecting portion and the concentrator, and the filtrate supply channel and the collecting unit.
  • Gravity filtration to supply is started, and when a predetermined state is reached, the liquid sending unit is operated to send the liquid from the filter to the concentrator, or the undiluted liquid is placed above the undiluted liquid supply port of the filter.
  • the method is characterized in that, at the same time as starting gravity filtration in which the undiluted liquid is supplied from the supply unit to the filter by gravity, the liquid supply unit is operated so as to supply the liquid from the filter to the concentrator.
  • a method of operating the undiluted solution processing apparatus of the ninth invention is characterized in that, in the eighth invention, the predetermined state is such that the amount of filtrate supplied to the recovery unit after gravity filtration is started is such that the volume of the filtrate can be accommodated in the recovery unit. It is characterized by being in a state of exceeding quantity.
  • a tenth aspect of the invention is a method for operating a concentrate processing apparatus, in the eighth or ninth aspect of the invention, characterized in that the concentrated liquid flow path is adjusted to a predetermined state.
  • An eleventh aspect of the invention provides a method for operating a liquid concentrate processing apparatus according to the tenth aspect, characterized in that the flow rate of the liquid supplied to the concentrator is adjusted to control the transmembrane pressure difference of the concentrator of the concentrator.
  • a method for operating a concentrate processing apparatus according to a twelfth invention is the method according to the tenth or eleventh invention, wherein the concentrated liquid channel is a tube whose cross section is deformable, and the adjusting section has a gap in which the tube is arranged.
  • the gap of the adjustment part is formed to a length that can maintain the average pressure of water in the tube at 10 mmHg or more and 100 mmHg or less when 50 mL/min of water is flowed into the tube placed in the gap. It is characterized by being A method for operating a concentrate processing apparatus of a thirteenth aspect is the method according to the tenth or eleventh aspect, wherein the concentrated liquid channel is a tube whose cross section is deformable, and the adjusting section has a gap in which the tube is arranged. It is a member, and the gap of the adjusting portion is adjusted to be 95% to 110% of the total wall thickness of the tube when the tube is placed in the gap.
  • a method for operating a concentrate processing apparatus is, in the tenth or eleventh invention, wherein the concentrated liquid channel is a tube having a circular cross section and is made of polyvinyl chloride or silicone rubber, and the adjusting section comprises: A member having a gap in which the tube is arranged, the tube having an outer diameter of 3.0 to 12.0 mm, an inner diameter of 2.0 to 8.0 mm, and a wall thickness of 0.5 to 2.0 mm. , wherein the width of the clearance of the adjusting portion is 0.95 to 4.40 mm.
  • a fifteenth aspect of the invention is a method for operating a concentrate processing apparatus according to any one of the eighth to fourteenth inventions, wherein the filter has two of the concentrate solution supply ports, and one of the two concentrate solution supply ports
  • the liquid supply channel is connected to a raw liquid supply port positioned above during the concentration operation, and when the filter is washed, the washing liquid is supplied from the filtered liquid discharge port of the filter to supply the two raw liquids. It is characterized in that the washing liquid is discharged from the raw solution supply port positioned below or both of the two raw solution supply ports during the filtration and concentration operation.
  • a method for operating a concentrate processing apparatus is characterized in that, in the fifteenth aspect of the invention, the washing liquid is supplied from the waste liquid discharge port of the concentrator, and during the filtration and concentration operation in the filter, the concentrate liquid supply port located below or the two The cleaning liquid is discharged from both of the supply ports.
  • the adjuster of the seventeenth invention comprises two tube holding members forming a gap in which a tube having a deformable cross section is arranged, and the width of the gap formed between the two tube holding members is The length is such that the average pressure of water in the tube can be maintained at 10 mmHg or more and 100 mmHg or less when 50 mL/min of water is flowed into the tube placed in the gap.
  • An adjusting instrument is the adjusting device according to the seventeenth aspect, wherein the tube arranged in the gap between the two tube holding members is a tube with a circular cross section formed of a material whose cross section is deformable, and the two tubes are In the holding member, the width of the gap formed between the two is 95% to 110% of the total wall thickness of the tube when the tube is placed in the gap. It is characterized by being adjusted as follows.
  • a nineteenth aspect of the present invention is an adjustment device according to the eighteenth aspect, wherein the tube arranged in the gap between the two tube holding members is a tube having a circular cross section made of polyvinyl chloride or silicone rubber, and the outer diameter of the tube is is 3.0 to 12.0 mm, the inner diameter is 2.0 to 8.0 mm, and the wall thickness is 0.5 to 2.0 mm. , 0.95 to 4.40 mm.
  • a twentieth invention is an adjusting instrument according to the seventeenth, eighteenth, or nineteenth invention, wherein the two tube holding members have a radius of curvature of 1 to 10 mm at portions that face each other and come into contact with the tube.
  • a 21st aspect of the invention is an adjusting device according to the 17th, 18th, 19th or 20th aspects of the invention, wherein three or more tube holding members are provided, and gaps between adjacent tube holding members for arranging the tubes are respectively and the tube holding members are arranged so that the widths of the gaps are different.
  • An adjusting instrument according to a twenty-second aspect of the invention is characterized in that, in any one of the seventeenth to twenty-first aspects of the invention, it is an instrument used as an adjusting part of the undiluted solution processing apparatus according to the third aspect of the invention.
  • the undiluted liquid can be effectively supplied from the undiluted liquid supply section to the filter, so that the processing efficiency of the undiluted liquid can be enhanced.
  • adjusting the concentrated liquid flow path to a predetermined state by the adjusting section facilitates adjustment of the concentrated state.
  • the transmembrane pressure difference of the concentrator of the concentrator can be adjusted to a predetermined pressure only by controlling the operation of the liquid feeding section, so that the control of the device is facilitated.
  • the configuration of the adjustment section can be simplified, so the configuration of the device can be simplified.
  • the concentration state can be easily adjusted by adjusting the concentrated liquid channel to a predetermined state by the adjusting section.
  • the transmembrane pressure difference of the concentrator of the concentrator can be adjusted to a predetermined pressure only by controlling the operation of the liquid feeding section, so that the control of the device is facilitated.
  • the configuration of the adjustment section can be simplified, so the configuration of the apparatus can be simplified. According to the fifteenth invention, cleaning of the filter can be carried out efficiently.
  • the sixteenth invention cleaning of the entire apparatus can be efficiently carried out.
  • ⁇ Adjustment tool> by adjusting the flow rate supplied to the tube, the pressure inside the tube on the upstream side of the gap can be maintained at an appropriate value.
  • the tube can be arranged in an appropriate gap depending on the tube.
  • the concentrated liquid can be adjusted to a desired concentrated state while reducing the load on the concentrator in the undiluted liquid processing apparatus.
  • FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out the filtration and concentration work.
  • FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for performing preparatory cleaning work.
  • FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out a filtering operation.
  • FIG. 2 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of another circuit diagram for carrying out the filtration and concentration work.
  • FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out filter cleaning work.
  • FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out re-concentration work.
  • FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted liquid processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out the work of recovering the liquid from the filter 10.
  • FIG. FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a circuit diagram for carrying out the work of recovering the liquid from the concentrator 20.
  • FIG. 2 is a schematic explanatory diagram of another circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for performing cleaning work of the filter 10.
  • FIG. It is a circuit diagram of the undiluted solution processing apparatus 1 of this embodiment, and is schematic explanatory drawing of another circuit diagram which implements filter cleaning work.
  • FIG. 3 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of another circuit diagram for performing cleaning work of the entire circuit.
  • FIG. 2 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of the circuit in which the concentrated liquid tube 4 is provided with an adjusting device 50.
  • FIG. 2 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of another circuit diagram for carrying out the filtration and concentration work.
  • FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for performing leak check work.
  • 4 is a schematic explanatory diagram of the adjustment tool 50, in which (A) is a cross-sectional view taken along the line AA of (B), (B) is a view taken along the arrow B of (A), and (C) is a 4 This is an example in which two tube holding members 52 are provided.
  • 1 is a schematic explanatory diagram of a filter 10; FIG.
  • FIG. 2 is a schematic explanatory diagram of a concentrator 20;
  • FIG. (A) is a schematic illustration of an experimental circuit,
  • (B) is a table of experimental results, and
  • (C) is a graph of experimental results.
  • FIG. 10 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of another embodiment, which is a circuit diagram for carrying out the filtration and concentration work. It is a circuit diagram of the undiluted solution processing apparatus 1 of other embodiment, and is a schematic explanatory drawing of the circuit diagram which implements a filter cleaning operation
  • FIG. 3 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of another circuit diagram for performing leak check work.
  • the undiluted solution processing apparatus of this embodiment is an apparatus for obtaining a processed liquid that can be administered to a patient by a method such as intravenous drip infusion or intraperitoneal administration by filtering and concentrating undiluted liquid such as pleural and ascitic fluid.
  • the stock solution to be processed by the stock solution processing apparatus of the present embodiment is not particularly limited, but examples include pleural and ascitic fluid, blood plasma, and blood.
  • Pleural and ascitic fluid is pleural or ascitic fluid that accumulates in the thoracic cavity or peritoneal cavity due to carcinomatous pleural peritonitis, liver cirrhosis, or the like.
  • This pleural and ascitic fluid contains plasma components (proteins, hormones, sugars, lipids, electrolytes, vitamins, bilirubin, amino acids, etc.) leaked from blood vessels and organs, hemoglobin, cancer cells, macrophages, histiocytes, white blood cells, red blood cells, platelets, and bacteria. etc. are included.
  • the undiluted solution processing apparatus of the present invention removes solids such as cancer cells, macrophages, histiocytes, white blood cells, red blood cells, platelets, and bacteria from the pleural and ascitic fluid, and concentrates the water and useful components contained in the pleural and ascitic fluid. can produce liquid.
  • Plasma can include waste plasma from plasma exchange therapy, and blood can include blood collected during surgery.
  • reusable regenerated plasma can be produced by purifying waste plasma, blood collected during surgery, or the like using the undiluted solution processing apparatus of the present invention.
  • a plasma component separator when processing waste plasma of plasma exchange therapy, a plasma component separator is used as a filter, and when processing blood collected during surgery, a plasma separator is used as a filter. You should use a device.
  • the filtering member used in the filter of the undiluted solution processing apparatus of the present invention is not particularly limited.
  • the concentrating member used for concentrating the filtrate in the concentrator is not particularly limited.
  • a member equivalent to the filtering member used in the filter may be used as the concentrating member.
  • Filtration members and concentration members (hereinafter sometimes referred to as filtration members, etc.) used for such filtration and concentration are permeable to plasma, water, and the above-mentioned useful components contained in the pleural and ascitic fluid, but cancer cells, macrophages, etc. are permeable.
  • histocytes, leukocytes, erythrocytes, platelets, bacteria, and other cell components are impermeable.
  • a hollow fiber membrane, a flat membrane, a laminated membrane, or the like can be used as for the shape of the filtering member, etc.
  • the filtering member or the like can be made of a material that exhibits a function of not permeating gas when wetted with a liquid.
  • the gas that does not permeate the filtering member or the like includes an inert gas such as nitrogen, air, oxygen, and the like, and means a gas that is generally used for leak checks and the like.
  • filtering members examples include hollow fiber membranes used in CART ascitic fluid filters, plasma exchange plasma separators, and plasma component separators for plasma exchange.
  • the hollow fiber membranes used in CART's ascites filter, plasma separator for plasmapheresis, plasma component separator for plasmapheresis, etc. are used as the filtering member of the filter of the undiluted solution processing device of the present invention and the concentration of the concentrator. It can be used as a member.
  • the filtering member provided in the filter 10 is a hollow fiber membrane
  • the filtration member is a hollow fiber membrane
  • the undiluted solution supplied to the outside of the hollow fiber membrane is filtered by passing through the wall of the hollow fiber membrane and flowing into the hollow fiber membrane (that is, in the case of external pressure filtration method)
  • Either the case where the undiluted solution supplied to the inside of the hollow fiber membrane is allowed to permeate the wall of the hollow fiber membrane and flow out of the hollow fiber membrane for filtration that is, the internal pressure filtration method
  • the external pressure filtration method is adopted for filtration in the filter 10 will be described.
  • the upstream side of the hollow fiber membrane means the upstream side from the outer surface of the wall of the hollow fiber membrane
  • the downstream side of the hollow fiber membrane means the downstream side from the inner surface of the wall of the hollow fiber membrane.
  • the through channel of the hollow fiber membrane is also included on the downstream side from the inner surface of the wall of the hollow fiber membrane.
  • each channel (supply channel, filtrate supply channel, concentrated liquid channel, waste liquid channel, branch channel) referred to in the claims has flexibility or flexibility.
  • tubes liquid supply tube 2, filtrate supply tube 3, concentrated liquid tube 4, waste liquid tube 5, branch tube 6) will be described.
  • each flow path may be formed of a flexible or inflexible pipe (for example, a hard plastic pipe, a steel pipe, a vinyl chloride pipe, etc.), a resin-molded integrated circuit, or the like.
  • each channel is formed of a tube having flexibility or flexibility
  • a roller pump is used for the liquid feeding part provided in the filtrate supply channel.
  • the liquid sending unit can send the liquid in the filtrate supply channel in both the forward and reverse directions
  • the material of the tube constituting the filtrate supply channel and the liquid flowing in the filtrate supply channel may vary.
  • the liquid feeding section may be appropriately selected.
  • an infusion pump, a diaphragm pump, or the like can also be used as the liquid feeding unit.
  • the symbol UB indicates a stock solution bag that stores the stock solution, that is, the pleural and ascitic fluid extracted from the chest or abdomen.
  • reference numeral CB indicates a concentrated solution bag containing a concentrated solution obtained by filtering and concentrating the stock solution.
  • the symbol DB indicates a waste bag containing the waste liquid (that is, water) separated from the concentrate. Note that the undiluted solution bag UB corresponds to the undiluted solution supply part in the claims, and the concentrated solution bag CB corresponds to the collection part in the claims.
  • the undiluted solution bag UB is connected to the filter 10 via the supply tube 2 .
  • the feed tube 2 is a tube that supplies the concentrate in the concentrate bag UB to the filter 10, and has one end connected to the concentrate bag UB and the other end connected to the concentrate supply port 11a of the filter 10.
  • the filter 10 has two stock solution supply ports 11a and no other tube is connected to the stock solution supply port 11a to which the supply tube 2 is not connected, another The undiluted solution supply port 11a to which no tube is connected may be closed by a filter connector or the like.
  • the liquid supply tube 2 is provided with a flow rate adjusting means 2c such as a clamp or a clip for stopping and releasing the flow of the liquid in the liquid supply tube 2 . Further, the liquid supply tube 2 is provided with a pressure measuring section 2 s for measuring the pressure inside the liquid supply tube 2 .
  • the pressure measuring part 2s may be directly connected to the undiluted solution supply port 11a of the filter 10 to which the liquid supply tube 2 is connected.
  • the filter 10 filters the undiluted liquid to produce filtrate.
  • the filter 10 is configured to filter the undiluted liquid supplied from the undiluted liquid supply port 11a by a hollow fiber membrane, which is a filtering member, and then discharge the filtrate from the filtrate discharge port 11c.
  • the stock solution supplied from the stock solution supply port 11a into the filter 10 passes through the wall of the hollow fiber membrane from the outside of the hollow fiber membrane in the filter 10 and flows into the through channel of the hollow fiber membrane.
  • the filter 10 is configured so that it is filtered when it is filtered.
  • the filter 10 is configured such that the filtrate that has been filtered is discharged to the outside (the filtrate supply tube 3) through the passage of the hollow fiber membrane through the filtrate discharge port 11c.
  • the filter 10 is provided with a pressure measuring section 10s for measuring the pressure in a space separated from the undiluted solution supply port 11a by the hollow fiber membrane in the filter 10 (that is, the passage through the hollow fiber membrane).
  • This pressure measuring section 10s is connected to a port 11b communicating with a space separated from the undiluted solution supply port 11a. Therefore, if the measured value of the pressure measuring part 2s and the measured value of the pressure measuring part 10s are compared, the pressure difference before and after the filtering member, that is, the pressure difference between the inside and outside of the hollow fiber membrane (hereinafter referred to as the filter transmembrane pressure difference) ) can be grasped.
  • the filtering member of the filter 10 is not limited to the hollow fiber membrane described above.
  • the filtering member can filter the undiluted liquid when passing through the filtering member, and can airtightly separate the space in the filter 10 communicating with the undiluted liquid supply port 11a and the space communicating with the filtrate discharge port 11c and the port 11b. If it is
  • the filter 10 is connected to the concentrator 20 via the filtrate supply tube 3.
  • the filtrate supply tube 3 is a tube that supplies the filtrate generated by the filter 10 to the concentrator 20, one end of which is connected to the filtrate discharge port 11c, and the other end of which is connected to the filtrate supply of the concentrator 20. It is connected to port 20a.
  • the filtrate supply tube 3 is provided with a filtrate supply tube liquid-feeding portion 3p for feeding the liquid in the filtrate supply tube 3 .
  • the filtrate supply tube liquid-feeding unit 3p has a function of feeding the liquid in the filtrate supply tube 3 in both forward and reverse directions. Specifically, the filtrate supply tube liquid-feeding unit 3p feeds the liquid in the filtrate supply tube 3 in the direction (positive direction) from the filter 10 to the concentrator 20 by adjusting its operation. Also, the liquid in the filtrate supply tube 3 can be sent in the direction (reverse direction) from the concentrator 20 to the filter 10 .
  • the filtrate supply tube 3 is provided with a pressure measuring section 3 s that measures the pressure inside the filtrate supply tube 3 .
  • the pressure measuring part 3 s is provided in the filtrate supply tube 3 between the filtrate supply tube liquid sending part 3 p and the filtrate supply port 20 a of the concentrator 20 .
  • a branch tube 6 is connected to the filtrate supply tube 3 .
  • one end of the branch tube 6 is connected to a portion of the filtrate supply tube 3 between the filtrate discharge port 11c of the filter 10 and the filtrate supply tube liquid feed section 3p.
  • the end is connected to the concentrate bag CB. That is, the liquid in the filtrate supply tube 3 is supplied to the concentrate bag CB through the branch tube 6, and conversely, the liquid (for example, the concentrate) in the concentrate bag CB is supplied to the filtrate supply tube 3.
  • the branch tube 6 is provided with a flow rate adjusting means 6c such as a clamp or a clip for stopping and releasing the flow of liquid in the branch tube 6 .
  • the filtrate supply tube 3 may also be provided with a flow rate adjusting means 3c such as a clamp or a clip for stopping and releasing the flow of liquid in the filtrate supply tube 3.
  • a flow rate adjusting means 3c such as a clamp or a clip for stopping and releasing the flow of liquid in the filtrate supply tube 3.
  • the flow rate adjusting means 3c is provided in the filtrate supply tube 3 on the upstream side (filter 10 side) of the connecting portion between the filtrate supply tube liquid feeding portion 3p and the branch tube 6.
  • the position where the flow rate adjusting means 3c is provided is not particularly limited.
  • a flow rate adjusting means 3c may be provided on the downstream side (on the concentrator 20 side) of the filtrate supply tube liquid supply section 3p, or the connection between the filtrate supply tube liquid supply section 3p and the branch tube 6 may be provided. You may provide the flow volume adjustment means 3c between the parts.
  • the flow rate adjusting means 3c may be provided at all the above-described positions or at a plurality of the above-described positions.
  • the concentrator 20 produces a concentrate by concentrating the filtrate. Specifically, the concentrator 20 separates liquid such as a part of water (separated liquid, waste liquid, hereinafter referred to as waste liquid) from the filtrate supplied from the filtrate supply port 20a by a water separation member (concentration member). The concentrated liquid from which the liquid such as moisture is separated is discharged from the concentrated liquid discharge port 20b, and the waste liquid separated from the filtrate is discharged from the waste liquid discharge port 20c.
  • waste liquid separation member
  • a concentrated liquid bag CB is connected to the concentrator 20 via a concentrated liquid tube 4 .
  • the concentrated liquid tube 4 is a tube that supplies the concentrated liquid concentrated by the concentrator 20 to the concentrated liquid bag CB.
  • One end of the concentrated liquid tube 4 is connected to the concentrated liquid outlet 20b of the concentrator 20. connected to CB.
  • the concentrated liquid tube 4 is provided with a flow rate adjusting means 4c such as a clamp or a clip for stopping and releasing the flow of the liquid in the concentrated liquid tube 4 .
  • a waste liquid bag DB is also connected to the concentrator 20 via the waste liquid tube 5 .
  • the waste liquid tube 5 is a tube that supplies the waste liquid separated from the concentrated liquid in the concentrator 20 to the waste liquid bag DB. It is connected.
  • the waste liquid tube 5 is provided with a flow rate adjusting means 5c such as a clamp or a clip for stopping and releasing the flow of the liquid in the waste liquid tube 5 .
  • the undiluted solution processing apparatus 1 of the present embodiment when the undiluted solution is supplied from the undiluted solution bag UB to the filter 10 through the feed tube 2, the undiluted solution is filtered by the filter 10 to obtain the filtrate. can be generated. Further, by supplying the generated filtrate to the concentrator 20 through the filtrate supply tube 3, the concentrator 20 can generate a concentrated liquid. The concentrated liquid generated through the concentrated liquid tube 4 can be collected in the concentrated liquid bag CB, and the waste liquid separated from the concentrated liquid can be collected in the waste liquid bag DB.
  • ⁇ Preparation cleaning work> In the preparatory cleaning work of the undiluted solution processing apparatus 1 of the present embodiment, first, the operation of the filtrate supply tube liquid sending section 3p is stopped, and all the tubes 2-6 are closed by all the flow rate adjusting means 2c-6c. The pressure measuring part 10s is removed from the port 11b of the filter 10, and the port 11b of the filter 10 is closed with a filter connecting connector or the like.
  • the filter 10 and the concentrator 20 are reversed from the state during the filtration and concentration operation. That is, the port 11b of the filter 10 is positioned downward and the filtrate discharge port 11c is positioned upward, and the filtrate supply port 20a of the concentrator 20 is positioned downward and the concentrated liquid discharge port 20b is positioned upward. (See FIG. 2).
  • the filter 10 and the concentrator 20 do not necessarily have to be reversed from the state during the filtration and concentration work during the preparatory cleaning work.
  • the posture of the filter 10 and the concentrator 20 in the preparatory cleaning work may be any posture as long as the inside of the filter 10 and the inside of the concentrator 20 can be cleaned with the cleaning liquid when the cleaning liquid is poured.
  • the filter 10 and the concentrator 20 are placed in a posture in which the undiluted solution supply port 11a and the waste liquid outlet 20c face upward, that is, the filter 10 and the concentrator 20 are placed horizontally or diagonally during the preparatory cleaning work.
  • a cleaning liquid recovery bag FB is connected to the other end of the concentrated liquid tube 4 instead of the concentrated liquid bag CB, and a cleaning liquid recovery bag FB is connected to the other end of the waste liquid tube 5 instead of the waste liquid bag DB (see FIG. 2).
  • the other end of the concentrated liquid tube 4 may be placed in a simple bucket or the like.
  • the other end of the waste liquid tube 5 may be left connected to the waste liquid bag DB, or may be placed in a simple bucket or the like.
  • a washing solution bag SB is connected to the other end of the solution supply tube 2 (see FIG. 2).
  • the flow rate adjusting means 2c-4c allow the liquid to flow through the tubes 2-4.
  • the inside of the waste liquid tube 5 is maintained so that the liquid does not flow by the flow rate adjusting means 5c.
  • the cleaning liquid can flow through the flow path of the concentrated liquid in the filter 10 and the concentrator 20 and the tubes 2 to 4, the flow path of the concentrated liquid in the filter 10 and the concentrator 20 and the tubes 2 to 4 4 can be washed.
  • the waste liquid tube 5 is opened by the flow rate adjusting means 5 c so that the liquid flows through the waste liquid tube 5 . do. Then, since the cleaning liquid can flow through the flow path of the waste liquid in the concentrator 20, the filter 10, the flow path of the waste liquid in the concentrator 20, and the tubes 2, 3, and 5 can be washed.
  • the entire undiluted solution processing apparatus 1 of this embodiment (excluding the branch tube 6) can be preparatory and washed.
  • the branch tube 6 may be removed from the filtrate supply tube 3 during the preparatory cleaning work (see FIG. 2), the preparatory cleaning work may be performed with the branch tube 6 connected. Then, by allowing the liquid to flow through the branch tube 6 by means of the flow rate adjusting means 6c during the preparatory cleaning work, the branch tube 6 can also be cleaned with the cleaning liquid. In this case, instead of the concentrated solution bag CB, the other end of the branch tube 6 may be connected to the cleaning solution recovery bag FB or placed in a simple bucket or the like.
  • the inside of the branch tube 6 will be controlled by the flow rate adjusting means 6c. By allowing the liquid to flow through, the branch tube 6 can be washed with the washing liquid.
  • preparatory washing may be performed by flowing the washing liquid only through either the concentrated liquid tube 4 or the waste liquid tube 5, but the washing liquid may be flowed through both the concentrated liquid tube 4 and the waste liquid tube 5 at the same time. Washing may be performed. In this case, the preparatory cleaning is performed with both the flow rate adjusting means 4c and the flow rate adjusting means 5c opened (see FIG. 2).
  • the cleaning liquid is flowed from the filter 10 toward the concentrator 20 to perform preparatory cleaning. good.
  • the other end of the liquid supply tube 2 is connected to a cleaning solution recovery bag FB (or a simple bucket or the like), and to the other end of the concentrated solution tube 4 is connected a cleaning solution bag instead of the concentrated solution bag CB. SB is connected, and the washing liquid bag SB is connected to the other end of the waste liquid tube 5 in place of the waste liquid bag DB.
  • the filtrate supply tube liquid sending part 3p is operated so that the liquid flows in the opposite direction, the washing liquid can flow from the concentrator 20 toward the filter 10 to perform preparatory washing.
  • the cleaning liquid bag SB to which only the other end of the concentrated liquid tube 4 is connected may be used as the cleaning liquid bag SB to which the cleaning liquid is supplied during the preparatory cleaning work.
  • the washing liquid bag SB may be connected only to the other end of the .
  • the cleaning liquid may be supplied from both the cleaning liquid bag SB to which only the other end of the concentrated liquid tube 4 is connected and the cleaning liquid bag SB to which only the other end of the waste liquid tube 5 is connected.
  • the cleaning solution bag SB is connected to either the other end of the concentrated solution tube 4 or the other end of the waste solution tube 5, and the other end of the other tube is connected to the cleaning solution collection bag FB (or a simple bucket or the like).
  • the postures of the filter 10 and the concentrator 20 may be kept constant during the preparatory cleaning work, but the filter 10 and the concentrator 20 may be reversed during the preparatory cleaning work.
  • the filter 10 and the concentrator 20 are held in the same posture as the state in which the filtration and concentration work is performed, and in the middle of the preparatory cleaning work, both the filter 10 and the concentrator 20 or Either one may be reversed from the posture at the start of the preparatory cleaning work.
  • the filter 10 and the concentrator 20 are held in an inverted position from the state in which the filtration and concentration work is being performed, and the filter 10 and the concentrator 20 are held in the middle of the preparatory cleaning work. Either or both may be reversed from the position at the start of the preparatory cleaning operation. Furthermore, at the start of the preparatory cleaning work, one of the filter 10 and the concentrator 20 is held in the same posture as the state in which the filtration and concentration work is carried out, and the other is turned over from the state in which the filtration and concentration work is carried out.
  • filter 10 and the concentrator 20 may be reversed from the attitude at the start of the preparatory cleaning work in the middle of the preparatory cleaning work.
  • filter 10 and concentrator 20 may be inverted multiple times during the preparatory cleaning operation, if desired.
  • the surface of the filter member of the filter 10 (the outer surface of the hollow fiber membrane in the external pressure filtration method), that is, the surface on the side to which the stock solution is supplied and the filtration
  • the space on the side of the container 10 to which the stock solution is supplied may be preliminarily washed.
  • a cleaning solution bag SB is connected to the other end of the solution supply tube 2 instead of the undiluted solution bag UB, and one end of the cleaning solution recovery tube 7 is connected to the undiluted solution supply port 11a to which the solution supply tube 2 is not connected.
  • the other end of the tube 7 is connected to a washing liquid collection bag FB (or simply a bucket or the like).
  • the surface of the filtering member to which the undiluted liquid is supplied (the outer surface of the hollow fiber membrane in the external pressure filtration method) is inserted into the space of the filter 10 to which the undiluted liquid is supplied.
  • the cleaning liquid can flow along the Therefore, the surface of the filter member of the filter 10 to which the stock solution is supplied (the outer surface of the hollow fiber membrane in the external pressure filtration method) and the space of the filter 10 to which the stock solution is supplied can be preliminarily washed.
  • the washing liquid can be flowed by
  • the method of flowing the cleaning liquid is not limited to the gravitational method, and the cleaning liquid may be flowed by a pump or the like.
  • a pump may be arranged in the liquid supply tube 2 or the cleaning liquid recovery tube 7 to feed the liquid, or an aspirator may be arranged in the other end of the cleaning liquid recovery tube 7 to suck the stock liquid in the filter 10.
  • Preliminary cleaning may be performed in the space on the supply side or in the surface of the filter member on the side to which the undiluted solution is supplied (the outer surface of the hollow fiber membrane in the external pressure filtration method).
  • the circuit is adjusted to the configuration shown in FIG. 1 (the circuit shown in FIG. 3).
  • a port 11b of the filter 10 is connected to a pressure measuring section 10s.
  • the concentrated liquid bag CB is connected to the other end of the concentrated liquid tube 4 instead of the cleaning liquid recovery bag FB, and the other end of the waste liquid tube 5 is connected to a waste liquid bag instead of the cleaning liquid recovery bag FB.
  • DB is connected.
  • the other end of the waste liquid tube 5 may be placed in a bucket instead of the waste liquid bag DB.
  • the concentrated liquid bag CB is configured so that the concentrated liquid discharged from the concentrated liquid outlet 20b of the concentrator 20 can be supplied to the concentrated liquid bag CB only by gravity. It is desirable to place it downwards.
  • the height of the concentrated liquid bag CB is the same as the concentrated liquid discharge port 20b of the concentrator 20. It may be arranged at a height, or may be arranged at a position higher than the concentrated liquid outlet 20 b of the concentrator 20 .
  • the waste liquid bag DB is also desirably arranged below the waste liquid discharge port 20c of the concentrator 20 so that the waste liquid discharged from the waste liquid discharge port 20c of the concentrator 20 can be supplied to the waste liquid bag DB only by gravity. .
  • the height of the waste liquid bag DB is arranged at the same height as the waste liquid discharge port 20c of the concentrator 20. Alternatively, it may be arranged at a position higher than the waste liquid discharge port 20c of the concentrator 20 .
  • the undiluted solution bag UB is connected to the liquid supply tube 2 instead of the cleaning solution bag SB, and the other end of the branch tube 6 is connected to the concentrated solution bag CB to which the other end of the concentrated solution tube 4 is connected.
  • the undiluted solution bag UB connected to the supply tube 2 is installed at a position higher than the undiluted solution supply port 11 a of the filter 10 . That is, the undiluted solution bag UB is arranged so that the undiluted solution in the undiluted solution bag UB is supplied to the undiluted solution supply port 11a of the filter 10 only by gravity.
  • the concentrated liquid bag CB is provided with the filtrate supplying tube 3 and the branch tube 6 so that the filtrate supplied from the filtrate supplying tube 3 can be supplied to the concentrated liquid bag CB through the branch tube 6 only by gravity. It is desirable to arrange it below the connection position of .
  • the flow rate adjusting means 2c is opened, the undiluted liquid is supplied from the undiluted liquid bag UB to the filter 10 through the liquid supply tube 2, and the supplied undiluted liquid is filtered in the filter 10 to generate filtrate.
  • the filtrate produced by the filter 10 is supplied to the concentrate bag CB through the filtrate supply tube 3 and the branch tube 6 .
  • the undiluted solution flows through the supply tube 2, the filter 10, the filtrate supply tube 3, and the branch tube 6 in this order only by gravity, and the filtrate is generated by filtering the undiluted solution, and the filtrate is collected in the concentrated solution bag CB. be done.
  • the filtration process of the stock solution can be accelerated when filtering a stock solution with low viscosity. That is, compared to sending liquid to the filter 10 by the filtrate supply tube liquid sending unit 3p, the speed at which the stock solution flows through each tube and the filter 10 can be increased (that is, the flow rate can be increased). Filtration of stock solution can be done quickly.
  • the capacity of the concentrate bag UB in other words the amount of concentrate contained in the concentrate bag UB, is greater than the capacity of the concentrate bag CB.
  • the undiluted solution bag UB contains about 3 L
  • the concentrated solution bag CB generally has a capacity of about 1 L. Therefore, when the above-described filtering work is performed, the total amount of filtrate supplied from the filter 10 to the concentrated liquid bag CB through the branch tube 6 exceeds the capacity of the concentrated liquid bag CB during the work. . Then, the filtered liquid cannot be supplied to the concentrated liquid bag CB, and the filtering operation stops.
  • the control unit 30 causes the liquid to flow forward through the filtrate supply tube 3 .
  • Part 3p is activated.
  • a part (or all) of the filtrate is then supplied to the concentrator 20 through the filtrate supply tube 3 and the filtrate is concentrated in the concentrator 20 .
  • the operator may instruct the timing of starting the operation of the filtrate supply tube liquid sending unit 3p. For example, an operator may input an operation instruction for the filtrate supply tube liquid-feeding unit 3p to operate the filtrate-supply tube liquid-feeding unit 3p so that the liquid flows in the forward direction in the filtrate supply tube 3. .
  • the timing at which the control unit 30 (or the operator) operates the filtrate supply tube liquid sending unit 3p is the total amount of the filtrate supplied from the filter 10 through the branch tube 6 to the concentrate bag CB.
  • filtration concentration proceeds as follows depending on the operating state of the filtrate supply tube liquid-feeding unit 3p, that is, the amount of liquid fed by the filtrate supply tube liquid-feeding unit 3p. .
  • the liquid sucked out from the concentrated liquid bag CB contains both the filtrate and the concentrated liquid, and the concentrator 20 is supplied with the filtrate and the concentrated liquid.
  • concentration of the filtrate and reconcentration of the concentrate will be performed simultaneously. In other words, it is possible to re-concentrate while concentrating the filtrate and circulating the concentrate. Since the filtration and concentration can be performed while the stock solution is being supplied to the filter 10 by gravity, the filtrate can be concentrated (and the concentrate can be re-concentrated) while increasing the speed of the filtration operation. Therefore, the filtration and concentration work can be effectively carried out.
  • the concentrator transmembrane pressure difference the pressure in the filtrate supply tube 3 detected by the pressure measuring unit 3s (hereinafter referred to as the concentrator transmembrane pressure difference) rises. Since the concentrator transmembrane pressure is transmitted to the control unit 30, the concentrator transmembrane pressure is a predetermined pressure, for example, the maximum concentrator transmembrane pressure that the concentrator 20 allows ), the control unit 30 controls the filtrate supply tube liquid sending unit 3p so that the concentrator transmembrane pressure is maintained at a pressure equal to or lower than the permissible concentrator transmembrane pressure. Its actuation is controlled so as to be the liquid volume.
  • liquid sending part 3p when the operation of the filtrate supply tube liquid sending part 3p is controlled so that the transmembrane pressure of the concentrator maintains a pressure equal to or lower than the permissible transmembrane pressure of the concentrator.
  • the amount of liquid sent from the liquid-sending portion 3p of the filtrate supply tube is larger than the flow rate of the filtrate supplied from the filter 10, filtration concentration and re-concentration can be performed at the same time.
  • the filtration and concentration can be performed while the stock solution is being supplied to the filter 10 by gravity, if the viscosity of the stock solution is low, the filtration speed can be increased while concentrating the filtrate. Therefore, the filtration and concentration work can be effectively carried out. In this case, liquid (filtrate and concentrated liquid) is stored.
  • the concentrated liquid bag CB becomes full, but when the concentrated liquid bag CB becomes full, filtrate stops flowing from the filter 10 to the concentrated liquid bag CB. Then, the liquid (moisture) discharged as waste liquid from the concentrator 20 is supplied from the filter 10 to the liquid feed section 3p of the filtrate supply tube.
  • the amount of filtration and the amount of concentration are limited by the flow rate of the liquid feed section 3p of the filtrate supply tube, but the liquid feed section 3p of the filtrate supply tube has the maximum flow rate in the range in which the liquid feed amount is possible. As such, the operation is controlled by the control unit 30 .
  • the total amount of the filtrate and the concentrate stored in the concentrate bag CB is the liquid transfer amount that maintains the transmembrane pressure of the concentrator equal to or lower than the allowable transmembrane pressure of the concentrator.
  • the control unit 30 controls the operation of the filtrate supply tube liquid feed unit 3p so that the liquid feed amount of the maximum flow rate does not exceed the total amount of the concentrated liquid bag CB.
  • the filtration operation of the undiluted solution and the concentration operation of the filtrate can be performed at the same time, but the filtration concentration and the re-concentration of the concentrate cannot be performed at the same time. Also, the filtrate in the concentrate bag CB cannot be concentrated. Therefore, when concentrating the filtrate in the concentrated solution bag CB and re-concentrating the concentrated solution, the amount of liquid sent from the filtrate supply tube liquid sending unit 3p is supplied from the filter 10 to the filtrate supply tube 3. Either the operation of the filtrate supply tube liquid sending part 3p is switched so that the flow rate of the filtrate becomes higher than the flow rate of the filtrate, or the re-concentration operation described later can be performed after the processing of the undiluted solution in the undiluted solution bag UB is completed. .
  • control unit 30 controls the concentrator transmembrane pressure to maintain a pressure equal to or lower than the permissible concentrator transmembrane pressure
  • the operation of the filtrate-supply-tube liquid-feeding unit 3p is controlled so that the total amount of the filtrate and the concentrated liquid to be stored becomes the maximum liquid-feeding amount that does not exceed the total amount of the concentrated-liquid bag CB.
  • the operation of filtering the undiluted liquid and the operation of concentrating the filtrate can be carried out simultaneously, but the concentration of the filtrate in the concentrate bag CB and the re-concentration of the concentrate cannot be carried out at the same time.
  • the amount of liquid sent from the filtrate supply tube liquid sending unit 3p is supplied from the filter 10 to the filtrate supply tube 3. Either the operation of the filtrate supply tube liquid sending part 3p is switched so that the flow rate of the filtrate becomes higher than the flow rate of the filtrate, or the re-concentration operation described later can be performed after the processing of the undiluted solution in the undiluted solution bag UB is completed. .
  • ⁇ Completion of filtration and concentration work> When the filtration concentration progresses and the transmembrane pressure difference of the filter becomes equal to or less than a certain value, the control unit 30 judges that the filtrate in the undiluted solution bag UB is completely exhausted, and operates the filtrate supply tube liquid sending unit 3p. is stopped, and the filtration and concentration operation is completed.
  • the control unit 30 may automatically terminate the filtration and concentration work, or an operator may terminate the filtration and concentration work. In this case, it is desirable to provide the device with a function (alarm function) to notify the operator of the end of the work when the transmembrane pressure difference of the filter becomes equal to or less than a certain value.
  • a function is provided to inform the worker of the end of the work by using a buzzer or the like. Then, the operator who has grasped the end of the work by a buzzer or the like can stop the operation of the filtrate supply tube liquid sending part 3p and finish the filtration and concentration work.
  • the method by which the control unit 30 determines that all the filtrate in the undiluted solution bag UB has run out is not limited to the filter transmembrane pressure difference.
  • the weight of the undiluted solution bag UB may be measured, and when the weight falls below a certain value, it may be determined that all the undiluted solution in the undiluted solution bag UB has run out.
  • a liquid empty detection sensor that detects the gas and liquid in the undiluted solution bag UB, a liquid level detection sensor that detects the liquid level in the undiluted solution bag UB, etc. are attached to the undiluted solution bag UB, and the undiluted solution in the undiluted solution bag UB is completely exhausted. It can be judged that Even when such a sensor is provided, if the alarm function of the apparatus is activated when the sensor or the like detects a predetermined state, the operator can finish the filtration and concentration work.
  • Concentration of the filtrate fed to 3 and re-concentration of the concentrate will be carried out simultaneously (see FIG. 1).
  • the filtrate supplied from the filter 10 to the filtrate supply tube 3 can be concentrated and re-concentrated while the concentrated solution is circulated.
  • Filtration and concentration can be performed while the stock solution is supplied to the filter 10 by gravity. Therefore, if the viscosity of the stock solution is low, filtration and concentration can be performed while increasing the speed of the filtration operation. Therefore, the filtration and concentration work can be effectively carried out.
  • the concentrator transmembrane pressure rises, but since the concentrator transmembrane pressure is transmitted to the control unit 30, the filtrate supply tube liquid sending unit 3p keeps the concentrator transmembrane pressure above the permissible concentrator. The operation is controlled so that the amount of liquid sent maintains a pressure equal to or lower than the transmembrane pressure.
  • the amount of liquid (filtrate and concentrate) in the concentrate bag CB is equal to the sum of the amount of filtrate supplied from the filter 10 through the branch tube 6 and the amount of concentrate supplied from the concentrator 20. liquid) is accumulated.
  • the concentrated liquid bag CB becomes full, but when the concentrated liquid bag CB becomes full, filtrate stops flowing from the filter 10 to the concentrated liquid bag CB. Then, the liquid (moisture) discharged as waste liquid from the concentrator 20 is supplied from the filter 10 to the liquid feed section 3p of the filtrate supply tube.
  • the amount of filtration and the amount of concentration are limited by the flow rate of the liquid feed section 3p of the filtrate supply tube, but the liquid feed section 3p of the filtrate supply tube has the maximum flow rate in the range in which the liquid feed amount is possible. As such, the operation is controlled by the control unit 30 .
  • the total amount of the filtrate and the concentrate stored in the concentrate bag CB is the liquid transfer amount that maintains the transmembrane pressure of the concentrator equal to or lower than the allowable transmembrane pressure of the concentrator.
  • the control unit 30 controls the operation of the filtrate supply tube liquid feed unit 3p so that the liquid feed amount of the maximum flow rate does not exceed the total amount of the concentrated liquid bag CB.
  • the filtration operation of the undiluted solution and the concentration operation of the filtrate can be performed at the same time, but the filtration concentration and the re-concentration of the concentrate cannot be performed at the same time. Also, the filtrate in the concentrate bag CB cannot be concentrated. Therefore, when concentrating the filtrate in the concentrated solution bag CB and re-concentrating the concentrated solution, the amount of liquid sent from the filtrate supply tube liquid sending unit 3p is supplied from the filter 10 to the filtrate supply tube 3. Either the operation of the filtrate supply tube liquid sending part 3p is switched so that the flow rate of the filtrate becomes higher than the flow rate of the filtrate, or the re-concentration operation described later can be performed after the processing of the undiluted solution in the undiluted solution bag UB is completed. .
  • the filtration and concentration may be performed simultaneously with the flow rate adjusting means 6c of the branch tube 6 closed (see FIG. 13), and the filtration and concentration may be performed by opening the flow rate adjusting means 6c of the branch tube 6 halfway through. Good (see Figure 1).
  • the filtrate supply tube liquid sending section 3p is operated so that all of the filtrate supplied from the filter 10 to the filtrate supply tube 3 is supplied to the concentrator 20 .
  • the flow rate adjusting means 6c of the branch tube 6 is opened, and all of the filtrate supplied from the filter 10 to the filtrate supply tube 3 is removed. and a portion of the liquid in the concentrated liquid bag CB are supplied to the concentrator 20 by operating the liquid feed section 3p of the filtrate supply tube. Then, the concentrated liquid in the concentrated liquid bag CB can be re-concentrated by the concentrator 20 while continuing the filtration and concentration operation.
  • the undiluted solution supplied from the undiluted solution bag UB to the filter 10 has a high viscosity, or in the latter stage of the filtration work (when the undiluted solution in the undiluted solution bag UB is low)
  • the undiluted solution is supplied from the undiluted solution bag UB to the filter 10. If the flow of the undiluted solution is not smooth, the treatment efficiency can be improved by carrying out the concentration by filtration at the same time, and carrying out the concentration by filtration and the re-concentration at the same time.
  • the conditions for operating the filtrate supply tube liquid feeding unit 3p that is, the amount of liquid fed in the filtrate supply tube 3
  • various conditions viscosity of the undiluted liquid, amount of undiluted liquid, (relative distance between the undiluted solution bag UB and the undiluted solution supply port 11a of the filter 10 in the height direction, etc.) is determined in advance by preliminary experiments, numerical simulations, or the like.
  • the amount of liquid to be fed through the filtrate supply tube 3 that allows appropriate filtration and concentration operations and re-concentration operations can be obtained by preliminary experiments, numerical simulations, and the like. Then, based on data from preliminary experiments and numerical simulations, the control unit 30 (or an operator) determines the state of operating the filtrate supply tube liquid sending unit 3p, and the filtration and concentration work and the re-concentration work can be performed. Even if various conditions change as the process progresses, the liquid can be sent by the filtrate supply tube liquid sending unit 3p so that the filtration and concentration work and the re-concentration work can be performed appropriately.
  • ⁇ About filter cleaning> There is a possibility that the hollow fiber membrane of the filter 10 will clog by carrying out filtration concentration. In order to eliminate or prevent such clogging, the hollow fiber membranes of the filter 10 are washed during the filtration and concentration operations and re-concentration operations of the undiluted solution processing apparatus 1 of the present embodiment. may Specifically, filter cleaning is performed as follows.
  • the cleaning solution bag SB is connected to the downstream side of the filtrate supply tube liquid sending portion 3p in the filtrate supply tube 3, that is, between the filtrate supply tube solution sending portion 3p and the concentrator 20.
  • the method of connecting the cleaning solution bag SB to the filtrate supply tube 3 is not particularly limited.
  • the pressure measuring section 3s may be removed and the cleaning liquid bag SB may be connected to the portion (such as a plug) to which the pressure measuring section 3s was connected, or a dedicated plug or the like for connecting the cleaning liquid bag SB may be used to supply the filtrate. It may be provided on the tube 3 .
  • a washing solution recovery bag FB is connected to one end of the solution supply tube 2 .
  • the concentrated liquid tube 4 and the waste liquid tube 5 are closed by the flow rate adjusting means 4c and the flow rate adjusting means 5c so that the cleaning liquid does not flow from the filtrate supply tube 3 to the concentrator 20.
  • FIG. A clip, clamp, or the like is provided on the downstream side (on the concentrator 20 side) of the portion to which the cleaning liquid bag SB is connected to block the filtrate supply tube 3 so that the cleaning liquid does not flow from the cleaning liquid bag SB to the concentrator 20.
  • the filtrate supply tube liquid sending unit 3p is operated so that the liquid flows in the opposite direction.
  • the washing liquid can flow in the flow path of the filter 10 in which the stock solution flows in the direction opposite to the direction in which the stock solution flows during the filtration and concentration operation, so that the inside of the flow path of the filter 10 in which the stock solution flows can be washed. (See Figure 5).
  • the filter 10 has a plurality of undiluted solution supply ports 11a>
  • the other end of the undiluted solution supply tube 2 is connected to one undiluted solution supply port 11a as described above, and other undiluted solution supply ports are connected.
  • One end of the washing liquid recovery tube 7 may be connected to 11a (see FIG. 9).
  • the cleaning liquid recovery tube 7 is provided with a flow rate adjusting means 7c such as a clamp or a clip for stopping and releasing the flow of the liquid in the cleaning liquid recovery tube 7 .
  • the cleaning liquid can be discharged from the filter 10 through the cleaning liquid recovery tube 7, so that the undiluted liquid flows in the direction opposite to the flow direction during the filtration and concentration operation without switching the connection of the liquid supply tube 2.
  • the cleaning liquid can flow in the direction. That is, the liquid supply tube 2 is closed by the flow rate adjusting means 2c, and the other end of the cleaning liquid recovery tube 7 is connected to the cleaning liquid recovery bag FB or simply placed in a bucket or the like. In this state, if the flow rate adjusting means 7c allows the liquid to flow through the washing liquid recovery tube 7, the direction of flow of the stock liquid is opposite to that of the liquid during the filtration and concentration work without switching the connection of the liquid supply tube 2. The cleaning liquid can flow in the direction.
  • the other end of the liquid supply tube 2 may be connected to the cleaning liquid recovery bag FB or arranged in a simple bucket or the like (see FIG. 10). That is, both the other end of the liquid supply tube 2 and the other end of the cleaning liquid recovery tube 7 may be connected to the cleaning liquid recovery bag FB or placed in a simple bucket or the like.
  • the other end of the cleaning liquid recovery tube 7 may always be connected to the cleaning liquid recovery bag FB, or the other end may be connected to the undiluted solution bag UB during filtration and concentration.
  • the other end may be connected to the cleaning liquid collection bag FB or simply placed in a bucket or the like during the filter cleaning operation. If the other end of the washing liquid recovery tube 7 is connected to the undiluted solution bag UB during the filtration and concentration operation, there is an advantage that the protein remaining in the filter 10 can be recovered.
  • the cleaning solution bag SB is connected. Then, both (or one) of the other end of the liquid supply tube 2 and the other end of the cleaning liquid recovery tube 7 are connected to the cleaning liquid recovery bag FB or simply placed in a bucket or the like. In this state, not only the filter 10 but also the concentrator 20 can be cleaned by activating the filtrate supply tube liquid sending part 3p so that the liquid flows in the opposite direction.
  • the flow rate adjusting means 3c (the branch tube 6 and the filtrate supply tube 3 are Filtrate supply tube 3 is blocked by a device provided on the upstream side (filter 10 side) of the connected position to prevent liquid from flowing through filtrate supply tube 3 toward filter 10 , the reconcentration operation can be performed.
  • the filtrate supply tube liquid sending unit 3p is operated so that the liquid flows in the forward direction
  • the concentrated solution in the concentrated solution bag CB is transferred to the branch tube 6, the filtrate supply tube 3, and the concentrator. 20 and the concentrate tube 4 can be circulated in that order.
  • the waste liquid is separated from the circulating concentrated liquid in the concentrator 20, so that a concentrated liquid (re-concentrated liquid) with an increased concentration ratio can be obtained.
  • the branch tube 6 may be detachable from the filtrate supply tube 3 .
  • the branch tube 6 when re-concentration is not performed, the branch tube 6 is removed from the filtrate supply tube 3, and when re-concentration is performed in the filtration and concentration work, the filtrate supply tube is used when re-concentration is performed. 3 can be connected.
  • a method for making the branch tube 6 detachable from the filtrate supply tube 3 is not particularly limited. For example, if the filtrate supply tube 3 is provided with a dedicated plug or the like for connecting the branch tube 6 , the attachment and detachment of the branch tube 6 with respect to the filtrate supply tube 3 is facilitated.
  • the concentration is kept until the amount of the concentrated liquid in the concentrated liquid bag CB reaches a predetermined amount, that is, until the concentrated liquid in the concentrated liquid bag CB reaches a predetermined concentrated state.
  • the operation of the filtrate supply tube liquid sending unit 3p may be continued.
  • the method for determining that the concentrated liquid in the concentrated liquid bag CB has reached a predetermined concentrated state is not particularly limited. For example, as the re-concentration of the concentrated liquid in the concentrated liquid bag CB progresses, the concentration of the concentrated liquid increases (that is, the water content decreases), so concentration in the concentrator 20 (in other words, water removal) becomes difficult.
  • the resistance to sending the concentrated solution to the concentrator 20 increases, and the transmembrane pressure difference of the concentrator increases.
  • the amount of concentrated liquid in the concentrated liquid bag CB becomes equal to or less than a certain amount, even if the flow rate of the filtrate supply tube liquid transfer section 3p is adjusted (that is, even if the minimum flow rate assumed for re-concentration is used), The differential pressure becomes higher than the predetermined pressure. That is, when the concentrated liquid reaches a predetermined concentrated state, the concentrator transmembrane pressure difference becomes higher than the permissible concentrator transmembrane pressure difference even if the flow rate of the filtrate supply tube liquid sending unit 3p is adjusted.
  • the control unit 30 may determine that it has become, and stop the operation of the filtrate supply tube liquid sending unit 3p.
  • a function is provided to notify the operator of the end of the work with a buzzer or the like, so that the operator can send the filtrate to the filtrate supply tube.
  • the operation of the part 3p may be stopped to terminate the reconcentration operation.
  • the gap between the undiluted solution bag UB and the filtrate supply tube liquid feeding portion 3p can be automatically closed by the flow rate adjusting means 3c when a predetermined state is reached. can.
  • the control unit 30 operates the flow rate adjusting means 3c to adjust the flow rate between the undiluted solution bag UB and the filtrate supply tube feeding unit 3p. 3c may be closed.
  • control unit 30 detects that the re-concentration work has started, a function is provided to inform the worker of the end of the work with a buzzer or the like, and the worker operates the flow rate adjusting means 3c to control the undiluted solution bag UB and the filtration.
  • the space between the liquid supply tube and the liquid feeding section 3p may be closed.
  • the method of determining when to shift to reconcentration work may be judged by whether or not the amount of liquid in the concentrated liquid bag CB exceeds a predetermined amount. Whether or not the amount of liquid in the concentrate bag CB has exceeded a predetermined amount may be determined by the weight of the concentrate bag CB, that is, the weight of the liquid stored in the concentrate bag CB. That is, the timing of switching from the filtration and concentration operation to the re-concentration operation may be determined by the weight of the concentrated solution bag CB.
  • the method for determining whether the re-concentration work has been completed is not particularly limited. For example, it may be determined by the weight of the liquid stored in the concentrated liquid bag CB. For example, the weight of the concentrate bag CB may be measured, and the re-concentration operation may be concluded when the weight is less than a certain value.
  • a liquid empty detection sensor that detects the gas and liquid in the concentrated liquid bag CB, a liquid level detection sensor that detects the liquid level in the concentrated liquid bag CB, etc. are attached to the concentrated liquid bag CB to detect the concentration in the concentrated liquid bag CB. The amount of liquid may be measured and the reconcentration operation may be concluded when the amount of concentrated liquid is less than a certain amount.
  • the liquid supply tube 2 is closed by the flow rate adjusting means 2c of the liquid supply tube 2, and in this state, the pressure measuring section 2s is removed from the liquid supply tube 2 (or the undiluted liquid supply port 11a). Then, the liquid supply tube 2 is communicated with the outside, and the liquid feed section 3p of the filtrate supply tube is operated so that the liquid flows in the forward direction. Then, the stock solution on the upstream side of the hollow fiber membrane can be filtered by the hollow fiber membrane and flowed to the downstream side of the hollow fiber membrane.
  • the operation of the filtrate supply tube liquid-feeding unit 3p is stopped (or the filtrate supply tube liquid-feeding unit 3p is kept operating), and the Remove the pressure measuring part 10s. Then, the space on the downstream side of the hollow fiber membrane (that is, the space communicated with the filtrate discharge port 11c, the through channel of the hollow fiber membrane) communicates with the outside. In this state, if the filtrate supply tube liquid sending part 3p is operated so that the liquid flows in the forward direction, the undiluted liquid existing downstream of the hollow fiber membrane in the filter 10 is allowed to flow into the filtrate supply tube 3. can be done.
  • whether or not the undiluted solution has disappeared on the upstream side of the hollow fiber membrane can be determined by checking the pressure of the pressure measuring section 10s. For example, when the stock solution exists on the upstream side of the hollow fiber membranes, the pressure of the pressure measuring section 10s is maintained substantially constant. The pressure of the measuring section 10s is lowered. Therefore, when the pressure of the pressure measuring portion 10s becomes equal to or less than a certain value, it can be determined that the stock solution on the upstream side of the hollow fiber membrane has disappeared.
  • the condition inside the filter 10 may be visually checked.
  • the liquid level on the upstream side of the hollow fiber membrane of the filter 10 may be detected by attaching a capacitance sensor to the filter 10 .
  • whether or not the liquid downstream of the hollow fiber membranes of the filter 10 has run out can be determined, for example, by attaching a liquid empty detection sensor that detects gas and liquid to the filtrate supply tube 3 . In this case, if an empty liquid detection sensor is attached to the upstream side (filter 10 side) of the position where the branch tube 6 is connected in the filtrate supply tube 3, air will be detected in the filtrate supply tube 3 during re-concentration. 3 can be prevented.
  • an air filter may be attached to the place where the pressure measuring part 2s and the pressure measuring part 10s were attached without directly opening to the atmosphere. Then, clean air can be taken into the liquid supply tube 2 or the like. Furthermore, after removing the pressure measuring part 2s and the pressure measuring part 10s, the outside air may be sucked by the operation of the filtrate supply tube liquid sending part 3p. can be
  • the filtrate recovered from the filter 10 is concentrated. is collected in the concentrate bag CB without However, the liquid in the filter 10 may be collected in the concentrated liquid bag CB while concentrating the filtrate.
  • the liquid in the filter 10 is recovered, if the liquid is allowed to flow through the waste liquid tube 5 by means of the flow rate adjusting means 5c, the liquid in the filter 10 is recovered while the filtrate is recovered. Concentration can be carried out.
  • the liquid in the filter 10 may be collected after the re-concentration work is finished. Even when the liquid in the filter 10 is recovered after the reconcentration operation is finished, the liquid in the filter 10 can be recovered by the same method as described above.
  • the concentrated liquid in the concentrator 20 is collected in the concentrated liquid bag CB, and the liquid in the concentrator 20 is When the concentrated liquid is used up, the operation of the filtrate supply tube liquid feeding section 3p is stopped. Then, the concentrated liquid in the concentrator 20 can be recovered.
  • Whether or not the concentrated liquid in the concentrator 20 has run out can be determined by checking the concentrated liquid tube 4 and the concentrated liquid bag CB. For example, when air is sucked from the pressure measuring unit 10s, if air bubbles flow in the concentrated liquid tube 4 or air bubbles appear in the concentrated liquid bag CB, the concentrated liquid in the concentrator 20 is can be determined to have disappeared.
  • the cleaning liquid may be supplied from the pressure measuring unit 10s or the like. In this case, it is possible to confirm whether or not the concentrated liquid in the concentrator 20 has run out by measuring the concentration, color, and specific gravity of the liquid in the concentrated liquid bag CB. For example, when all the concentrated liquid in the concentrator 20 has been collected, the cleaning liquid is collected in the concentrated liquid bag CB. As a result, the color of the liquid in the concentrated liquid bag CB becomes lighter, so that it can be determined that the concentrated liquid in the concentrator 20 has run out.
  • the liquid in the concentrated liquid bag CB becomes a mixture of the concentrated liquid and the cleaning liquid, and the concentration and specific gravity of the liquid change from those of the concentrated liquid alone. Therefore, by sampling the liquid in the concentrated liquid bag CB and measuring the concentration and specific gravity of the liquid with a hydrometer, it is possible to confirm that the concentrated liquid in the concentrator 20 has run out.
  • each tube (filtrate supply tube 3, concentration (liquid tube 4, etc.) and the capacity of the concentrator 20 are determined in advance by calculation or the like, and by counting the feed amount derived from the number of revolutions of the pump, it is determined that the collection of the concentrated liquid in the concentrator 20 has been completed.
  • the concentrated liquid is eliminated from the concentrator 20 by the following method.
  • the water separation member of the concentrator 20 is a hollow fiber membrane
  • the filtrate supply tube 3, the concentrated liquid tube 4, and the waste liquid tube 5 are connected so that the liquid to be concentrated passes through the hollow fiber membrane.
  • the flow rate of the concentrated liquid tube 4 is made smaller than the flow rate of the waste liquid tube 5.
  • the flow rate of the liquid flowing from the concentrated liquid tube 4 to the concentrated liquid bag CB is changed from the waste liquid tube 5 by the flow rate adjusting means 4c. It should be less than the flow rate flowing to the waste liquid bag DB. Then, as the recovery of the concentrated liquid in the concentrator 20 progresses, air is sent into the hollow fiber membranes of the concentrator 20, but the air cannot pass through the hollow fiber membranes, that is, the air leaks into the waste liquid bag DB. Therefore, the inside of the hollow fiber membrane of the concentrator 20 is filled with air.
  • the concentrator transmembrane pressure difference rises, and when the concentrator transmembrane pressure difference reaches a certain level or higher, the concentrated liquid in the concentrator 20 is replaced with air. It can be judged that all the concentrate has been collected.
  • the concentrated liquid in the concentrator 20 may be collected into the concentrated liquid bag CB by gravity.
  • the operation of the filtrate supply tube liquid sending unit 3p is stopped, and the pressure measurement unit 3s is removed from the filtrate supply tube 3 (Fig. 8).
  • the concentrated liquid bag CB is arranged below the concentrated liquid discharge port 20b of the concentrator 20, the liquid in the flow path through which the concentrated liquid flows in the concentrator 20 is forced toward the concentrated liquid bag CB by gravity.
  • the concentrate can be drained and collected in the concentrate bag CB.
  • the washing liquid may be supplied to the filtrate supply tube 3 from the point where the pressure measurement section 3s was connected after removing the pressure measurement section 3s.
  • whether or not the concentrated liquid in the concentrator 20 has run out can be determined by checking the concentrated liquid tube 4 and the concentrated liquid bag CB. For example, when air is sucked from the pressure measuring part 3s, if air bubbles flow in the concentrated liquid tube 4 or air bubbles appear in the concentrated liquid bag CB, the concentrated liquid in the concentrator 20 is can be determined to have disappeared.
  • the speed at which the liquid flows due to gravity in the filtrate supply tube 3, the concentrator 20, the concentrated liquid tube 4, etc. is obtained in advance by calculation or experiment, and the expected recovery time is calculated from the speed. It may be determined that the recovery of the concentrated liquid in the concentrator 20 is completed when the specified recovery time elapses.
  • the filtered liquid in the concentrator 20 is recovered by gravity using the above method, since the filtered liquid on the upstream side of the pressure measuring section 3s cannot be recovered, the filtered liquid is filtered to the upstream side of the pressure measuring section 3s.
  • the operation of the liquid feed section 3p of the filtrate supply tube may be stopped after the liquid is no longer present.
  • the filtrate supply tube 3 it can be understood that the filtrate no longer exists upstream of the pressure measuring part 3s.
  • the filtrate on the upstream side of the pressure measuring section 3s may be collected in the concentrated liquid bag CB as it is through the branch tube 6 .
  • the following method may be adopted. First, the filtrate supply tube liquid-feeding part 3p is removed from the filtrate supply tube 3, and the inside of the filtrate supply tube 3 is made to be in a state where the liquid flows freely. Next, of the pressure measurement unit 2s and the pressure measurement unit 10s, the filtrate supply tube liquid supply unit 3p and the flow path that is not separated by the hollow fiber membrane of the filter 10, that is, communicate with the filtrate supply tube liquid supply unit 3p. Remove the one that is connected to the flow path that is connected.
  • the operation of the filtrate supply tube liquid sending unit 3p is stopped, and all the tubes 2-6 are blocked by all the flow rate adjusting means 2c-6c. Then, one end of the filtrate supply tube 3 is connected to the undiluted solution supply port 11a of the filter 10 (undiluted solution supply port 11a to which the undiluted solution bag UB is not connected). Further, one end of the washing liquid recovery tube 7 is connected to the filtrate discharge port 11c of the filter 10 with the flow rate adjusting means 7c closed.
  • the pressure measuring part 3s is removed from the filtrate supply tube 3, the flow rate adjusting means 3c and 7c are opened, and the fluid is operated to flow in the reverse direction through the filtrate supply tube liquid sending part 3p. Then, the air sucked from the pressure measuring part 3s is pushed into the filter 10 from the raw liquid supply port 11a, and the liquid present upstream of the hollow fiber membranes of the filter 10 passes through the hollow fiber membranes and is filtered. It is discharged from the filtrate discharge port 11c of the vessel 10. FIG. When all the liquid upstream of the hollow fiber membranes is discharged, the pressure in the space separated from the filtrate discharge port 11c by the hollow fiber membranes rises.
  • the filtrate supply tube liquid sending unit 3p is operated until the differential pressure measured by the pressure measuring unit 2s and the pressure measuring unit 10s reaches a predetermined pressure (for example, 100 mmHg or more and less than 500 mmHg). The operation of the filtrate supply tube liquid sending unit 3p is stopped.
  • a predetermined pressure for example, 100 mmHg or more and less than 500 mmHg.
  • the predetermined pressure is equal to or higher than the transmembrane pressure difference of the filter in the filtration and concentration work. For example, if the filter transmembrane pressure is 200 mmHg or more and 300 mmHg or less in the filtration and concentration work, the leak check may be performed at about 400 mmHg.
  • the flow rate adjusting means 7c of the cleaning liquid recovery tube 7 connected to the filtered liquid discharge port 11c of the filter 10 is open, so the damage can be prevented. Air leaks from the space on the upstream side of the hollow fiber membranes into the space connected to the filtrate discharge port 11c (that is, inside the hollow fiber membranes). Then, the differential pressure between the pressures measured by the pressure measuring section 2s and the pressure measuring section 10s becomes smaller than the predetermined pressure.
  • the state in which the operation of the liquid feed unit 3p of the filtrate supply tube is stopped is maintained for a certain period of time (for example, about 2 minutes), and the pressure difference measured by the pressure measurement unit 2s and the pressure measurement unit 10s is maintained for a certain period of time. If so, it can be determined that the filter member of the filter 10 is not damaged, and the leak check is terminated.
  • the flow rate adjusting means 6c of the branch tube 6 is opened, the air in the space on the upstream side of the hollow fiber membranes of the filter 10 is discharged to the outside, and the air in the space on the upstream side of the hollow fiber membranes of the filter 10 is discharged. pressure can be reduced. If the pressure in the space on the upstream side of the hollow fiber membranes of the filter 10 can be lowered, the washing liquid collection tube 7 is removed from the filtrate discharge port 11c, the filtrate supply tube 3 is removed from the undiluted solution supply port 11a, and the filtrate discharge port is removed.
  • the undiluted solution supply port 11a to which the filtrate supply tube 3 is connected may be closed with a filter connector or the like. Preliminary cleaning of the space upstream of the fiber membranes and the outer surface of the hollow fiber membranes can also be carried out.
  • the pressure in the space on the upstream side of the hollow fiber membrane of the filter 10 can be lowered by performing the preparatory cleaning work while the tube is still connected when the leak check is performed.
  • the flow rate adjusting means 7c of the cleaning liquid recovery tube 7 is closed, the pressure measuring section 3s is attached, and the flow rate adjusting means 4c of the concentrated liquid tube 4 and the flow rate of the waste liquid tube 5 are adjusted.
  • the means 5c is opened, and the filtrate supply tube liquid sending portion 3p is operated to suck the air in the space on the upstream side of the hollow fiber membranes of the filter 10. As shown in FIG.
  • the cleaning liquid is supplied from the cleaning liquid bag SB by opening the flow rate adjusting means 2c of the liquid supply tube 2. Therefore, preparatory cleaning can be performed as it is.
  • the concentrator 20 may be connected to the filtrate supply tube 3 after removing air from the filter 10 . Furthermore, in order to efficiently fill the space upstream of the hollow fiber membranes of the filter 10 with the cleaning liquid, the filter 10 is turned upside down before the flow rate adjusting means 2c of the liquid supply tube 2 is opened so that the cleaning liquid flows downward. should be made to flow upwards from the
  • the flow rate adjusting means 2c of the liquid supply tube 2 is opened and the liquid feed section 3p of the filtrate supply tube is operated so that the liquid flows forward in the filtrate supply tube 3, the cleaning liquid supplied from the cleaning liquid bag SB is passes through the hollow fiber membranes, the space downstream of the hollow fiber membranes in the filter 10 can also be prewashed.
  • the leak check is performed by pushing air into the filter 10, but as shown in FIG.
  • the operation of the filtrate supply tube liquid sending portion 3p is stopped, and all the tubes 2 to 6 are closed by all the flow rate adjusting means 2c to 6c.
  • one end of the filtrate supply tube 3 is connected to the undiluted solution supply port 11a of the filter 10 (undiluted solution supply port 11a to which the undiluted solution bag UB is not connected).
  • one end of the washing liquid recovery tube 7 is connected to the filtrate discharge port 11c of the filter 10 with the flow rate adjusting means 7c closed.
  • the pressure measuring part 3s is removed from the filtrate supply tube 3, the flow rate adjusting means 3c and 7c are opened, and the fluid is operated to flow forward through the filtrate supply tube liquid sending part 3p. Then, the liquid and gas present in the space upstream of the hollow fiber membrane are sucked out, and the pressure of the space upstream of the hollow fiber membrane, that is, the space separated from the filtrate discharge port 11c by the hollow fiber membrane decreases. Then, the filtrate supply tube liquid sending unit 3p is operated until the differential pressure measured by the pressure measuring unit 2s and the pressure measuring unit 10s reaches a predetermined pressure (for example, 100 mmHg or more and less than 500 mmHg). The operation of the filtrate supply tube liquid sending unit 3p is stopped.
  • a predetermined pressure for example, 100 mmHg or more and less than 500 mmHg.
  • the predetermined pressure is equal to or higher than the transmembrane pressure difference of the filter in the filtration and concentration work.
  • the leak check may be performed at about 400 mmHg.
  • the flow rate adjusting means 7c of the cleaning liquid recovery tube 7 connected to the filtered liquid discharge port 11c of the filter 10 is open, so the damage can be prevented. Air leaks into the space on the upstream side of the hollow fiber membrane through the filtrate discharge port 11c. Then, the differential pressure between the pressures measured by the pressure measuring section 2s and the pressure measuring section 10s becomes smaller than the predetermined pressure.
  • the state in which the operation of the liquid feed unit 3p of the filtrate supply tube is stopped is maintained for a certain period of time (for example, about 2 minutes), and the pressure difference measured by the pressure measurement unit 2s and the pressure measurement unit 10s is maintained for a certain period of time. If so, it can be determined that the filter member of the filter 10 is not damaged, and the leak check is terminated.
  • the leak check and preparatory cleaning work can be carried out in the following manner.
  • the flow rate adjusting means 7c of the cleaning liquid recovery tube 7 is closed, and the flow rate adjusting means 2c of the liquid supply tube 2 is opened.
  • the cleaning liquid is supplied from the cleaning liquid bag SB to the filter 10, and the space on the upstream side of the hollow fiber membranes of the filter 10 and the inside of the hollow fiber membranes are filled with the cleaning liquid.
  • the pressure measuring part 3s is attached, the flow rate adjusting means 4c of the concentrated liquid tube 4 and the flow rate adjusting means 5c of the waste liquid tube 5 are opened, and the filtrate supply tube is adjusted so that the liquid flows forward in the filtrate supply tube 3.
  • Preliminary cleaning can be performed as it is by activating the liquid feeding unit 3p.
  • the filter 10 is turned upside down before the flow rate adjusting means 2c of the liquid supply tube 2 is opened so that the cleaning liquid flows downward. should be made to flow upwards from the
  • the flow rate adjusting means 2c of the liquid supply tube 2 is temporarily stopped, the cleaning liquid recovery tube 7 is removed from the filtrate discharge port 11c, and the filtrate supply tube 3 is connected from the undiluted liquid supply port 11a. Remove it and connect it to the filtrate discharge port 11c.
  • the flow rate adjusting means 2c of the liquid supply tube 2 is opened, and the liquid supply section 3p of the filtrate supply tube is operated so that the liquid flows in the filtrate supply tube 3 in the positive direction. Then, since the cleaning liquid supplied from the cleaning liquid bag SB passes through the hollow fiber membranes, the space on the downstream side of the hollow fiber membranes in the filter 10 can also be preliminarily cleaned.
  • ⁇ Adjustment tool 50> the case where the concentrated liquid tube 4 is provided with the flow rate adjusting means 4c such as a clamp or a clip has been described.
  • a general clamp, clip, or the like used as the flow rate adjusting means 4c has the function of closing or opening the concentrated liquid tube 4. If the clamp is used, the flow rate of the liquid flowing in the concentrated liquid tube 4 is can also be adjusted. For example, crimps that are commonly used in medical practice can only open and close, but crimps that can prevent the tube from being completely clogged can also adjust the flow rate of the liquid.
  • the liquid flowing through the concentrate tube 4 can be adjusted by adjusting the fixing position of the tube crushing member.
  • the adjusting tool 50 corresponds to the adjusting section described in the claims.
  • the flow rate of the concentrated liquid flowing through the concentrated liquid tube 4 can be accurately adjusted by using the following adjusting device 50 as the flow rate adjusting means 4c. Moreover, by adjusting the operation of the filtrate supply tube liquid sending section 3p, that is, the flow rate of the liquid flowing through the filtrate supply tube 3, it becomes possible to adjust the transmembrane pressure difference in the concentrator to an appropriate range.
  • the adjusting tool 50 As the adjusting tool 50, the following structure can be adopted.
  • the concentrated liquid tube 4 having flexibility and softness is used as the concentrated liquid tube 4 .
  • Such tubes include, for example, polyvinyl chloride and silicone rubber tubes.
  • the adjustment tool 50 includes a base member 51, two tube holding members 52 provided on this base member 51, and a lid member 53.
  • the base member 51 is a plate-like member, and two cylindrical tube holding members 52 are erected on the surface thereof with a gap 52s.
  • the lid member 53 is for closing the openings of the two tube holding members 52 (upper ends in FIGS. 15(B) and 15(C)). In other words, when the concentrated liquid tube 4 is placed in the gap 52s between the two cylindrical tube holding members 52 as described later, the lid member 53 is provided to prevent the concentrated liquid tube 4 from coming off from the gap 52s. It is a plate-like member, and two cylindrical tube holding members 52 are erected on the surface thereof with a gap 52s.
  • the lid member 53 is for closing the openings of the two tube holding members 52 (upper ends in FIGS. 15(B) and 15(C)). In other words, when the concentrated liquid tube 4 is placed in the gap 52s between the two cylindrical tube holding members 52 as described later, the lid member 53 is provided to prevent the concentrated liquid tube 4 from coming off from the gap 52s. It is
  • the two tube holding members 52 are formed so that the gap 52s formed between them satisfies the following conditions. That is, when water is flowed at 50 mL/min so as not to apply gravity in the direction in which the water flows in the concentrated liquid tube 4 arranged in the gap 52s, the average pressure of the water in the concentrated liquid tube 4 is increased from 10 mmHg to 100 mmHg.
  • the gap 52s is formed so as to have a width 52w that can be maintained below.
  • the transmembrane pressure of the concentrator (that is, the pressure of the pressure measuring section 3s) can be increased to about 400 mmHg.
  • the maximum flow rate that can be supplied to the general concentrator 20 in other words, the flow rate of the filtrate supply tube liquid sending part 3p is increased to the flow rate that allows safe concentration work in the concentrator 20.
  • the concentrator transmembrane pressure can be raised to about 400 mmHg, which is the maximum concentrator transmembrane pressure at which the concentration can be safely performed in the concentrator 20 .
  • the width 52w of the gap 52s is twice the wall thickness t4 of the concentrate tube 4 (that is, the diameter If it is adjusted to 95% to 110% with respect to the total wall thickness t4 in the direction), it is possible to carry out the concentration treatment under the conditions as described above. In other words, it is possible to carry out the concentration process under conditions that maximize the concentration efficiency in the concentrator while maintaining the maximum transmembrane pressure difference in the concentrator.
  • the concentrated liquid tube 4 is a tube having a circular cross section made of polyvinyl chloride or silicone rubber, and has an outer diameter D of 3.0 to 12.0 mm and an inner diameter Dt of 2.0 to 8 mm. 0 mm, and the wall thickness t4 is 0.5 to 2.0 mm.
  • the width 52w of the gap 52s is adjusted to 0.95 to 4.40 mm, it becomes possible to carry out the concentration process under the above conditions.
  • the width 52w of the gap 52s is adjusted as described above, a certain amount of space is formed in the concentrated liquid tube 4 at the positions of the two tube holding members 52 (that is, the inner surface of the concentrated liquid tube 4 In some cases, the inner surfaces of the concentrate tubes 4 are in contact with each other at the positions of the two tube holding members 52 .
  • the width 52w of the gap 52s is adjusted as described above, even when the inner surfaces of the concentrated liquid tubes 4 are in contact with each other at the positions of the two tube holding members 52, If the concentrated solution is allowed to seep (leak), the concentrated solution can be recovered from the concentrator 20 through the concentrated solution tube 4 into the concentrated solution bag CB.
  • the adjustment instrument 50 may have three or more tube retaining members 52 .
  • three or more tube holding members 52 it is desirable to provide each tube holding member 52 so that the width of the gap formed between adjacent tube holding members 52 is different.
  • the four tube holding members 52 are provided such that the widths 52w1 to W3 of the gaps 52s1 to s3 are different.
  • the flow rate of the concentrate flowing through the concentrate tube 4 can be adjusted accurately.
  • the transmembrane pressure difference of the concentrator 20 can be adjusted within an appropriate range.
  • the base member 51 is not limited to a plate-like member, and may be formed in any shape.
  • the base member 51 may have sufficient strength to maintain the width of the concentrated liquid tube 4 when it is inserted into the gap between the adjacent tube holding members 52 .
  • the tube holding member 52 may have a curved surface at the portion that contacts the concentrate tube 4 on the surfaces facing each other.
  • the cross section of 52 need not be circular. More specifically, the line of intersection between the plane including the axial direction of the concentrated liquid tube 4 at the portion in contact with the tube holding member 52 and the surface of the tube holding member 52 in contact with the concentrated liquid tube 4 may be arcuate. .
  • the curvature radius of the curved surface of the portion that contacts the concentrate tube 4 in other words, the curvature radius R of the arc (see FIG. 15A. In FIG.
  • the radius of the tube holding member 52 corresponds
  • the radius of the tube holding member 52 is 1 to 10 mm, preferably 3 to 7 mm.
  • the radius of curvature R is greater than 7 mm, fluctuations in the concentrator transmembrane pressure difference can be moderated when the flow rate of the liquid flowing through the concentrated liquid tube 4 is changed.
  • the transmembrane pressure difference of the concentrator can be easily maintained in a stable state.
  • the radius of curvature R is smaller than 7 mm, the concentrator transmembrane pressure difference abruptly fluctuates when the flow rate of the liquid flowing through the concentrated liquid tube 4 is changed.
  • the change in the flow rate of the liquid flowing through the concentrated liquid tube 4 can be quickly reflected in the transmembrane pressure difference of the concentrator. Therefore, when a plurality of tube holding members 52 are provided and a plurality of gaps are provided, the same transmembrane difference of the concentrator can be obtained by providing tubes having the same width but different radii of curvature of the surface in contact with the concentrate tube 4. Even when adjusting the pressure, changes in the concentrator transmembrane pressure can be adjusted.
  • the portion of the tube holding member 52 that contacts the concentrated liquid tube 4 does not necessarily have to be curved. As long as the shape does not damage the tube 4 when it is held, the portion in contact with the tube 4 may be flat, polygonal, or corrugated.
  • the adjusting device 50 has a structure in which the concentrated liquid tube 4 is sandwiched between the cylindrical tube holding members 52, but the adjusting device 50 deforms the concentrated liquid tube 4 by means of the cylindrical tube holding members. It does not have to be a structure that allows
  • a structure may be employed in which the concentrated liquid tube 4 is sandwiched between the base member 51 and the lid member 53 so as to be deformed. In this case, the structure is such that the gap between the base member 51 and the lid member 53 can be kept constant when the base member 51 and the lid member 53 are brought close to each other.
  • the concentrated liquid tube 4 can be held in the same manner as when the concentrated liquid tube 4 is sandwiched between the tube holding members 52 described above.
  • the function of adjusting the flow rate of the concentrate flowing through 4 can be exhibited.
  • the base member 51 and the lid member 53 correspond to the tube holding member recited in the claims.
  • the filter 10 used in the liquid concentrate processing apparatus 1 of the present embodiment is, for example, an ascites filter used in CART, a plasma separator used in plasmapheresis, a plasma component separator, or the like.
  • the filter 10 has a filtering member housed therein, and can filter the pleural and ascitic fluid with the filtering member to separate it into a filtrate and a separated liquid containing cells and the like.
  • this filter 10 has a body portion 11 and a hollow fiber membrane bundle 15 arranged in this body portion 11 .
  • the hollow fiber membrane bundle 15 is configured by bundling a plurality of hollow fiber membranes 16 .
  • the hollow fiber membrane 16 is a tubular member having a wall 16w with an annular cross section and a through channel 16h formed inside the wall 16w so as to penetrate the hollow fiber membrane 16 in the axial direction.
  • the walls 16w of the hollow fiber membranes 16 have a function of impermeability of solids such as cells and gases but permeation of liquids.
  • the walls 16w of the hollow fiber membranes 16 are normally permeable to gas, but when immersed in liquid, the wall 16w may exhibit the function of impermeability of gas but permeation of liquid.
  • the hollow fiber membrane bundle 15 is formed by bundling a plurality of hollow fiber membranes 16 at one end and at the other end.
  • the hollow fiber membrane bundle 15 is formed by bundling a plurality of hollow fiber membranes 16 such that the through-channel 16h of each hollow fiber membrane 16 penetrates between one end and the other end of the hollow fiber membrane bundle 15. ing.
  • both ends of the through-channels 16h of the plurality of hollow fiber membranes 16 are arranged to communicate with the pair of header portions 13 and 14 of the main body portion 11, respectively.
  • the main body 11 includes a body 12 having an internal space 12h, which is a space airtight and liquid-tightly isolated from the outside.
  • the internal space 12 of the body portion 12 is formed so as to communicate with the outside only through the above-described undiluted solution supply port 11a provided on the side surface of the body portion 12, and the above-described hollow fiber membrane bundle 15 is placed inside. are housed in
  • the internal space 12 is airtightly separated from the through-channel 16h of the plurality of hollow fiber membranes 16 in a state in which the above-described hollow fiber membrane bundle 15 is housed inside, but liquid flows between them through the wall 16w. It is possible to pass through. In other words, the liquid inside the internal space 12 can be supplied to the through flow channel 16 h, and the liquid inside the through flow channel 16 h can be supplied to the internal space 12 .
  • the size and shape of the internal space 12 are not particularly limited.
  • the liquid that has flowed into the internal space 12 through the stock solution supply port 11a flows between the hollow fiber membrane bundle 15 and the inner surface of the body portion 12 (that is, the inner surface of the internal space 12) and It is sufficient that the liquid is large enough to allow the liquid to flow between the plurality of hollow fiber membranes 16 and to flow into the through channel 16h through the wall 16w of the hollow fiber membranes 16.
  • the liquid that has flowed out from the through-channel 16h into the internal space 12 through the walls 16w of the hollow fiber membranes 16 flows between the plurality of hollow fiber membranes 16 and between the hollow fiber membrane bundle 15 and the inner surface of the internal space 12. It is sufficient if the size is large enough to flow through and flow out from the filtrate discharge port 11c.
  • the body part 11 is provided with a pair of header parts 13 and 14 so as to sandwich the body part 12, that is, to sandwich the internal space 12h.
  • the pair of header portions 13 and 14 are spaces that are airtight and liquid-tightly isolated from the inner space 12h of the body portion 12 and the outside.
  • the header portion 13 communicates with the outside only through the cleaning liquid supply port 11b, and the header portion 14 communicates with the outside only through the filtrate discharge port 11c.
  • Each end of the hollow fiber membrane bundle 15 is connected to the pair of headers 13 and 14, respectively.
  • the hollow fiber membrane bundle 15 is arranged such that the openings at both ends of the through-channels 16h of the plurality of hollow fiber membranes 16 constituting the hollow fiber membrane bundle 15 communicate with the insides of the pair of header portions 13 and 14. are connected to a pair of header portions 13 and 14, respectively. Therefore, the pair of header portions 13 and 14 are in a state of being communicated with each other by the through passages 16 h of the plurality of hollow fiber membranes 16 forming the hollow fiber membrane bundle 15 .
  • the undiluted solution can be supplied from the undiluted solution bag UB to the internal space 12h of the body portion 12 of the body portion 11 through the undiluted solution supply tube 2 and the undiluted solution supply port 11a. Then, since the internal space 12h of the body portion 12 of the body portion 11 communicates with the outside only through the raw solution supply port 11a, the raw solution supplied to the internal space 12h passes through the wall 16w of the hollow fiber membrane 16 and penetrates. It flows into the flow path 16h. Then, since the solid content contained in the stock solution cannot pass through the wall 16w of the hollow fiber membrane 16, it remains in the internal space 12h. be able to. Then, the filtered liquid can be supplied to the outside through the filtrate discharge port 11c.
  • the cleaning liquid passes through the wall 16w from the through channel 16h of the hollow fiber membrane 16 and flows into the internal space 12h of the body section 12 of the main body section 11. Therefore, clogging of the walls 16w of the hollow fiber membranes 16 and the like can be eliminated.
  • the concentrator 20 used in the undiluted solution processing apparatus 1 of the present embodiment is supplied with filtrate from the filter 10 and concentrates the filtrate.
  • the concentrator 20 has substantially the same structure as the filter 10 described above, and has the function of separating water from the filtrate to obtain a concentrated liquid. That is, the concentrator 20 has a structure in which a water separation member having a function of separating water from the filtrate is housed inside instead of the separation member of the filter 10 .
  • the concentrator 20 may be an ascitic fluid concentrator used for CART, a dialysis filter used for dialysis, or a membrane-type plasma component fractionator used for double-filtration plasma exchange therapy. can.
  • the concentrator 20 includes a body portion 22 having an internal space 22h which is a space for accommodating a hollow fiber membrane bundle 25 in which the hollow fiber membranes 16 are bundled, and a hollow fiber membrane bundle. 25 is formed in a structure having a pair of header portions 23 and 24 to which both ends are connected (see FIG. 17).
  • a waste liquid discharge port 20c to which the aforementioned waste liquid tube 5 is connected is provided on a side surface of the body portion 22, and the body portion 22 of the concentrator 20 is formed so as to communicate with the outside only through the waste liquid discharge port 20c. be.
  • the header portion 23 which is arranged above during the filtration and concentration operation, is provided with the above-described filtrate supply port 20a, and the filtrate supply port 20a alone communicates with the outside.
  • the header portion 23 is formed as follows.
  • the header portion 24 arranged below during the filtration and concentration operation is provided with a concentrated liquid discharge port 20b to which the above-described concentrated liquid tube 4 is connected.
  • a header portion 24 is formed in the .
  • the filtrate is supplied into the concentrator 20 from the filtrate supply port 20a, water is separated from the filtrate by the hollow fiber membrane 26, which is a water separation member, and the separated water is discharged from the waste liquid discharge port 20c. It is discharged and supplied to the waste liquid bag DB through the waste liquid tube 5 .
  • the concentrated liquid from which the waste liquid has been removed is supplied to the concentrated liquid bag CB through the concentrated liquid discharge port 20b and the concentrated liquid tube 4 .
  • the concentrator 20 Since the concentrator 20 has the above structure, the filtrate can be supplied from the filtrate supply tube 3 through the filtrate supply port 20a into the through channel 26h of the hollow fiber membrane 26. FIG. Then, the waste liquid is separated from the filtrate while the filtrate is passing through the hollow fiber membrane 26, and the separated waste liquid can be collected in the waste liquid bag DB through the waste liquid discharge port 20c and the waste liquid tube 5. On the other hand, the concentrated liquid obtained by separating and concentrating the waste liquid can be collected in the concentrated liquid bag CB through the concentrated liquid discharge port 20b and the concentrated liquid tube 4 .
  • the so-called external pressure filtration method which is a configuration in which the undiluted solution is supplied from the outside of the hollow fiber membranes that are the filtering members of the filter 10 and the filtrate is discharged inside the hollow fiber membranes. I explained when I was hired. However, a so-called internal pressure filtration method may be adopted in which the undiluted solution is supplied to the inside of the hollow fiber membranes of the filter 10 and the filtrate is discharged to the outside of the hollow fiber membranes.
  • the circuits are configured as shown in FIGS. 19 and 20 during filtration concentration work and filter cleaning work.
  • the concentrator 20 communicates with the port communicating with the inner space 12 of the barrel portion 12 in the body portion 11 of the filter 10 via the filtrate supply tube 3 . That is, the undiluted solution bag UB communicates with the washing liquid supply port 11b of the filter 10 in FIG. 16, and the concentrator 20 communicates with the undiluted solution supply port 11a of the filter 10 in FIG.
  • the circuit is configured in the same manner as in the case of adopting the external pressure filtration method (see FIG. 1), and the filtration and concentration work is carried out.
  • the liquid supply tube 2 is connected to the port communicating with the through flow path 16h of the hollow fiber membrane 16 in the main body 11 of the filter 10.
  • a port not connected to the cleaning liquid recovery tube 7 communicates with the cleaning liquid recovery bag FB (or a bucket or the like) through the cleaning liquid recovery tube 7 . That is, the undiluted solution bag UB communicates with the cleaning liquid supply port 11b of the filter 10 in FIG. 16, and the cleaning liquid collection bag FB communicates with the filtered liquid discharge port 11c of the filter 10 in FIG.
  • the circuit is configured in the same manner as in the case of adopting the external pressure filtration method (see FIG. 5), and the filter cleaning work is performed.
  • each operation can be performed in the same manner as in the case of employing the external pressure filtration method even when the internal pressure filtration method is employed in the undiluted solution processing apparatus 1 of the present embodiment.
  • the liquid supply tube 2 and the cleaning liquid recovery tube 7 are connected to the port communicating with the through flow path 16h of the hollow fiber membrane 16 in the main body 11 of the filter 10, and the filtrate supply tube 3 and the pressure measurement section 10s are filtered. If the main body 11 of the container 10 is connected to the port that communicates with the internal space 12 of the body 12, even when the internal pressure filtration method is adopted for the undiluted solution processing apparatus 1 of the present embodiment, it is different from the case where the external pressure filtration method is adopted. Each operation can be carried out in the same way.
  • the circuit shown in Fig. 18(A) was used to measure changes in the pressure inside the tube when the flow rate of the physiological saline flowing through the tube was changed.
  • the tube was placed horizontally between the pump for feeding the physiological saline solution and the portion (approximately 1500 mm) sandwiched between the pair of tube holding members of the adjusting device. This is to prevent the weight of the physiological saline in the part sandwiched between the pair of tube holding members of the pump for feeding the physiological saline and the adjusting device from affecting the pressure measurement.
  • the tube used in the experiment was a polyvinyl chloride tube with a circular cross section (manufactured by Kawasumi Chemical Industry Co., Ltd., model number: KMT-K007-5), with an outer diameter of 4.9 mm, a wall thickness of 0.75 mm, and an inner diameter of 3.4 mm. is.
  • the pair of tube holding members had a circular cross section (radius of 7 mm), and the width of the gap between the pair of tube holding members was 1.55 mm.
  • the pressure inside the tube was measured by a pressure sensor (manufactured by SMC, model number: PSE543A-M5) on the upstream side of the pair of tube holding members of the adjusting device.
  • a roller pump was used to transfer the liquid in the tube, and the flow rate in the tube was measured by the amount of rotation of the pump.
  • FIGS. 18B and 18C it is confirmed that the pressure in the tube can be changed by increasing the flow rate.
  • the relationship between the pressure in the tube and the flow rate is shown when the upper limit (1.48 mm) and the lower limit (1.70 mm) of the gap that can be assumed are assumed. It was confirmed that the slope of the pressure rise can be adjusted with respect to changes in the flow rate.
  • the undiluted solution processing apparatus of the present invention is an apparatus for obtaining a concentrated liquid by filtering and concentrating pleural and ascitic fluid containing cells, blood during surgery or phlebotomy, and purifying and reusing plasma such as waste plasma from plasmapheresis. It is suitable as a device for

Abstract

The stock solution treatment apparatus and stock solution treatment apparatus operating method according to the present invention can enhance stock solution treatment efficiency, the apparatus being easily controllable. The apparatus comprises a filtration device (10), a concentration device (20), a stock solution supplying unit (UB), a liquid supply flow path (2), a filtered liquid supply flow path (3), a concentrated liquid flow path (4), a waste liquid flow path (5), a collection unit (CB) that is connected to the concentrated liquid flow path (4) and collects concentrated liquid, a branch flow path (6) that communicates between the collection unit (CB) and the filtered liquid supply flow path (3), a liquid sending unit (3p) that is provided between the concentration device (20) and the connection of the branch flow path (6) in the filtered liquid supply flow path (3), and a control unit (30) that controls operation of the liquid sending unit (3p), wherein the liquid sending unit (3p) is operated such that after gravity filtration for supplying, by means of gravity force, a stock solution to the filtration device (10) from the stock solution supplying unit (UB) that is placed above a stock solution supply port (11a) of the filtration device (10) is started, and when a predetermined state is achieved, liquid is sent from the filtration device (10) to the concentration device (20); or the liquid sending unit (3p) is operated such that liquid is sent from the filtration device (10) to the concentration device (20) simultaneously with the start of gravity filtration for supplying, by means of gravity force, a stock solution to the filtration device (10) from the stock solution supplying unit (UB) that is placed above a stock solution supply port (11a) of the filtration device (10).

Description

原液処理装置、原液処理装置の操作方法および調整器具Undiluted solution processing device, method of operating undiluted solution processing device and adjusting device
 本発明は、原液処理装置、原液処理装置の操作方法および調整器具に関する。さらに詳しくは、癌性胸腹膜炎、肝硬変などにおいて胸部や腹部に溜まる胸腹水や血漿交換療法の廃液血漿などの原液を濾過したり濃縮したりして点滴静注する処理液を得る原液処理装置および原液処理装置の操作方法およびかかる原液処理装置に使用される調整器具に関する。 The present invention relates to an undiluted solution processing device, a method of operating the undiluted solution processing device, and an adjustment tool. More specifically, a stock solution processing device that filters and concentrates a stock solution such as pleural and ascitic fluid that accumulates in the chest and abdomen of patients with carcinomatous pleural peritonitis, cirrhosis of the liver, and plasma waste fluid from plasmapheresis to obtain a treatment solution for intravenous drip infusion. The present invention relates to a method of operating a concentrate processing device and an adjustment tool used in such a concentrate processing device.
 癌性胸腹膜炎、肝硬変などでは、胸腔や腹腔に胸水や腹水が溜まる場合があり、このような胸腹水が溜まった状態では、胸腹水が周囲の臓器を圧迫するなどの問題が生じる。かかる問題を改善するために、穿刺により胸腹水を抜く処理が行われる場合がある。 In carcinomatous pleural peritonitis, cirrhosis, etc., pleural effusion and ascites may accumulate in the thoracic and abdominal cavities. In order to improve such problems, there are cases in which the pleural and ascitic fluid is removed by puncture.
 一方、胸腹水には、血液から漏出した血漿成分の一部または全てが含まれており、この血漿中には主要な蛋白質(例えば、アルブミンやグロブリンなど)が含まれている。胸腹水を抜くことによって上記症状は改善されるものの、水分とともに蛋白質などの人体に有用な成分などが失われてしまう。このため、アルブミン製剤やグロブリン製剤などを静脈から投与するなどして失われた成分を補給することが必要になる。 On the other hand, pleural and ascitic fluid contains some or all of the plasma components leaked from the blood, and this plasma contains major proteins (eg, albumin, globulin, etc.). Although the above-mentioned symptoms can be improved by removing the pleural and ascitic fluid, the components useful for the human body, such as proteins, are lost along with the fluid. Therefore, it is necessary to replenish the lost components by intravenous administration of albumin preparations, globulin preparations, and the like.
 しかし、アルブミン製剤やグロブリン製剤などを静脈から投与することによって、特定の成分を補給することはできるものの、製剤が高価であり、治療費が高くなる。
 しかも、失われた成分のうち特定の成分を限られた量しか供給できないので、低栄養や易感染性などの問題が生じる可能性もある。
However, intravenous administration of albumin preparations, globulin preparations, and the like makes it possible to replenish specific components, but the preparations are expensive and treatment costs increase.
Moreover, since only a limited amount of specific components can be supplied among the lost components, problems such as malnutrition and susceptibility to infection may occur.
 そこで、胸腔や腹腔から抜いた胸水または腹水(以下原液という場合がある)を処理した処理液を静脈内へ投与する治療方法、いわゆる胸腹水濾過濃縮再静注法(Cell-free and Concentrated Ascites Reinfusion Therapy;CART)が開発されている。かかるCARTの場合、胸水や腹水に含まれる細胞成分以外の有効な成分の大部分を患者の体内に戻すことができるので、特定の成分に限定することなく、血液から失われた成分を効果的に患者に供給できる。しかも、濃縮液を投与しても不足する成分を不足する量だけ製剤によって補えばよいので、アルブミン製剤などの使用量を極力少なくすることができ、治療費を抑えることができる。 Therefore, a treatment method in which pleural fluid or ascites fluid (hereinafter sometimes referred to as undiluted fluid) is treated and treated intravenously, the so-called cell-free and concentrated ascites reinfusion method (cell-free and concentrated ascites reinfusion method), is used. Therapy; CART) has been developed. In the case of such CART, most of the effective components other than the cellular components contained in the pleural effusion and ascites can be returned to the patient's body. can be supplied to the patient at Moreover, even if the concentrated liquid is administered, the deficient amount of the component can be supplemented by the formulation, so the amount of the albumin formulation or the like used can be reduced as much as possible, and the treatment cost can be suppressed.
 CARTにおいて、患者の体内に戻す処理液は胸水や腹水を濾過濃縮することによって生成される。このような処理液を生成する処理装置では、胸水や腹水等の原液を中空糸膜や板状の透過膜などの濾過部材を有する濾過器に供給して液体成分(以下濾過液という場合がある)を分離する。分離された濾過液を濃縮器に通すことによって濾過液から水分を除去すれば濾過液を濃縮した濃縮液、つまり、上述した処理液を得ることができる。 In CART, the treatment fluid to be returned to the patient's body is generated by filtering and concentrating the pleural and ascites fluids. In a processing apparatus that generates such a treatment liquid, an undiluted liquid such as pleural effusion or ascites is supplied to a filter having a filtering member such as a hollow fiber membrane or a plate-like permeable membrane to obtain a liquid component (hereinafter sometimes referred to as a filtrate). ). By removing water from the filtrate by passing the separated filtrate through a concentrator, it is possible to obtain a concentrate obtained by concentrating the filtrate, that is, the above-described treated liquid.
 胸水や腹水等の原液を濾過器に供給する場合、重力によって原液を濾過器に供給する方法と、ポンプなどを利用して原液を濾過器に供給する方法(特許文献1~6参照)と、がある。ポンプなどを利用して原液を濾過器に供給すれば、原液の粘度が高くても原液を濾過器に安定して供給できる。また、複数のポンプを使用すれば、回路内の原液の流れをある程度自由にコントロールできるので、原液の濾過濃縮処理を適切に制御できるし、回路や濾過器などの洗浄作業を実施し易くなる。 When supplying an undiluted solution such as pleural effusion or ascites to the filter, a method of supplying the undiluted solution to the filter by gravity, a method of supplying the undiluted solution to the filter using a pump or the like (see Patent Documents 1 to 6), There is If the stock solution is supplied to the filter using a pump or the like, the stock solution can be stably supplied to the filter even if the viscosity of the stock solution is high. In addition, if a plurality of pumps are used, the flow of the stock solution in the circuit can be freely controlled to some extent, so that the filtration and concentration treatment of the stock solution can be appropriately controlled, and the cleaning work of the circuit, filter, etc. can be easily carried out.
 しかし、CARTをベッドサイドで使用する場合には装置はできるだけ小さい方が望ましいが、複数のポンプを設ければ装置が大型化する。また、ポンプの数が多くなると、回路内の原液の流れをある程度自由にコントロールできる一方、適切な濾過濃縮を実現するには、複数のポンプの作動を制御しなければならず、装置の制御が難しくなる。 However, when using CART at the bedside, it is desirable that the device be as small as possible, but if multiple pumps are provided, the device will become large. In addition, while the flow of the concentrate in the circuit can be controlled to some extent by increasing the number of pumps, it is necessary to control the operation of multiple pumps in order to achieve appropriate filtration and concentration, making the control of the device difficult. it gets harder.
 特許文献7には、濾過器と濃縮器の間に一つのポンプを設けこの一つのポンプだけで原液を流すことができる体液濾過濃縮装置が開示されている。この体液濾過濃縮装置では、濃縮器と濃縮体液回収容器との間の通路に絞り弁を設けており、この絞り弁によって濃縮器の中空糸膜に膜間圧力差を付加することにより、濃縮器での濃縮を円滑に行わせている旨の記載がある。 Patent Document 7 discloses a body fluid filtering and concentrating device in which one pump is provided between a filter and a concentrator, and the undiluted liquid can flow only with this one pump. In this body fluid filtration and concentration apparatus, a throttle valve is provided in the passage between the concentrator and the concentrated body fluid recovery container. There is a description to the effect that the concentration is smoothly performed at
特許5062631号公報Japanese Patent No. 5062631 特開2015-126763号公報JP 2015-126763 A 特開2019-13487号公報JP 2019-13487 A 特開2019-13488号公報JP 2019-13488 A 特開2020-25825号公報JP 2020-25825 A 特開2020-25864号公報JP 2020-25864 A 実用新案登録第2543466号公報Utility Model Registration No. 2543466
 しかし、特許文献7では、ポンプの駆動力で原液を濾過器に供給する方法を採用している。このため、原液の粘度が低い場合には、重力を利用して原液を濾過器に供給するよりも初期の処理が遅くなるので、全体としての処理時間が長くなる可能性がある。 However, in Patent Document 7, a method is adopted in which the undiluted solution is supplied to the filter by the driving force of the pump. For this reason, when the viscosity of the stock solution is low, the initial treatment is slower than when the stock solution is supplied to the filter using gravity, so the overall treatment time may be longer.
 また、特許文献7では、濃縮器と濃縮体液回収容器との間の通路に、ポンプを設ける代わりに絞り弁を設けて濃縮器の膜間圧力差を調整するものである。このため、濃縮器に供給される濾過液の流量が変動した場合には、絞り弁によって濃縮器の膜間圧力差を調整する必要がある。すると、複数のポンプを設けた場合と同様に、適切な濾過濃縮を特許文献7の体液濾過濃縮装置によって実現するには、ポンプと絞り弁の両方を制御しなければならず、ポンプが一つであるにもかかわらず装置の制御が難しくなる。 In Patent Document 7, instead of providing a pump, a throttle valve is provided in the passage between the concentrator and the concentrated body fluid recovery container to adjust the transmembrane pressure difference of the concentrator. Therefore, when the flow rate of the filtrate supplied to the concentrator fluctuates, it is necessary to adjust the transmembrane pressure difference of the concentrator with a throttle valve. Then, as in the case of providing a plurality of pumps, in order to realize appropriate filtration and concentration by the body fluid filtration and concentration device of Patent Document 7, both the pump and the throttle valve must be controlled, and only one pump is required. However, it becomes difficult to control the device.
 本発明はかかる事情に鑑み、原液の処理効率を高めることができ装置の制御も容易である原液処理装置および原液処理装置の操作方法を提供することを目的とする。
 また、上記原液処理装置に使用することができる調整器具を提供することを目的とする。
SUMMARY OF THE INVENTION In view of such circumstances, it is an object of the present invention to provide a concentrate processing apparatus and an operation method of the concentrate treatment apparatus that can improve the efficiency of processing the concentrate and facilitate the control of the apparatus.
It is another object of the present invention to provide an adjustment tool that can be used in the undiluted solution processing apparatus.
<原液処理装置>
 第1発明の原液処理装置は、原液を濾過濃縮して濃縮液を形成する装置であって、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器の原液供給口より上方に配置され前記濾過器に対して前記原液を供給する原液供給部と前記濾過器の原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、前記濾過器の濾過液排出口より下方に配置され、前記濃縮液流路に接続された濃縮液を回収する回収部と、該回収部と前記濾過液供給流路とを連通する分岐流路と、前記濾過液供給流路における前記分岐流路との接続部分と前記濃縮器との間に設けられた送液部と、該送液部の作動を制御する制御部と、を備えており、前記制御部は、前記濾過液供給流路と前記回収部との間を双方向に液体が流れる状態となるように前記分岐流路を維持した状態において、前記濾過器の原液供給口より上方に配置した前記原液供給部から重力によって前記濾過器に対して原液を供給する重力濾過を開始し、所定の状態となると前記濾過器から前記濃縮器に送液するように前記送液部の作動を制御する、または、前記濾過器の原液供給口より上方に配置した前記原液供給部から重力によって前記濾過器に対して原液を供給する重力濾過を開始すると同時に、前記濾過器から前記濃縮器に送液するように前記送液部の作動を制御することを特徴とする。
 第2発明の原液処理装置は、第1発明において、前記所定の状態が、重力濾過状態を開始してから前記回収部に供給される濾過液の量が、該回収部に収容できる液量を越えた状態であることを特徴とする。
 第3発明の原液処理装置は、第1または第2発明において、前記濃縮液流路には、該濃縮液流路を所定の状態に調整する調整部が設けられていることを特徴とする。
 第4発明の原液処理装置は、第3発明において、該制御部は、前記送液部の作動を制御して前記濃縮器に供給する液体の流量を調整し、前記濃縮器の濃縮器膜間差圧を制御することを特徴とする。
 第5発明の原液処理装置は、第3または第4発明において、前記濃縮液流路が、断面が変形可能なチューブであり、前記調整部は、前記チューブが配置される隙間を有する部材であり、前記調整部の隙間は、該隙間に配置した状態のチューブ内に水を50mL/min流したときに、チューブ内の水の平均圧力を10mmHg以上100mmHg以下に維持できる長さに形成されていることを特徴とする。
 第6発明の原液処理装置は、第3または第4発明において、前記濃縮液流路が、断面が変形可能なチューブであり、前記調整部は、前記チューブが配置される隙間を有する部材であり、前記調整部の隙間は、前記チューブを隙間に配置した状態において、前記チューブの壁厚合計の95%~110%となるように調整されていることを特徴とする。
 第7発明の原液処理装置は、第3または第4発明において、前記濃縮液流路が、ポリ塩化ビニルまたはシリコーンゴムによって形成された断面円形のチューブであって、前記調整部は、前記チューブが配置される隙間を有する部材であり、前記チューブは、外径が3.0~12.0mm、内径が2.0~8.0mm、壁厚が0.5~2.0mmであり、前記調整部の隙間の幅が、0.95~4.40mmであることを特徴とする。
<原液処理装置の操作方法>
 第8発明の原液処理装置の操作方法は、原液を濾過濃縮して濃縮液を形成する装置の操作方法であって、装置が、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に対して前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、前記濃縮液流路に接続され、前記濾過器の濾過液排出口より下方に配置された濃縮液を回収する回収部と、該回収部と前記濾過液供給流路とを連通する分岐流路と、前記濾過液供給流路における前記分岐流路との接続部分と前記濃縮器との間に設けられた送液部と、該送液部の作動を制御する制御部と、を備えており、前記濾過液供給流路と前記回収部との間を双方向に液体が流れる状態となるように前記分岐流路を維持した状態において、前記濾過器の原液供給口より上方に配置した前記原液供給部から重力によって前記濾過器に対して原液を供給する重力濾過を開始し、所定の状態となると前記濾過器から前記濃縮器に送液するように前記送液部を作動する、または、前記濾過器の原液供給口より上方に配置した前記原液供給部から重力によって前記濾過器に対して原液を供給する重力濾過を開始すると同時に、前記濾過器から前記濃縮器に送液するように前記送液部を作動することを特徴とする。
 第9発明の原液処理装置の操作方法は、第8発明において、前記所定の状態が、重力濾過を開始してから前記回収部に供給される濾過液の量が、該回収部に収容できる液量を越えた状態であることを特徴とする。
 第10発明の原液処理装置の操作方法は、第8または第9発明において、前記濃縮液流路を所定の状態に調整することを特徴とする。
 第11発明の原液処理装置の操作方法は、第10発明において、前記濃縮器に供給する液体の流量を調整し、前記濃縮器の濃縮器膜間差圧を制御することを特徴とする。
 第12発明の原液処理装置の操作方法は、第10または第11発明において、前記濃縮液流路が、断面が変形可能なチューブであり、前記調整部は、前記チューブが配置される隙間を有する部材であり、前記調整部の隙間は、該隙間に配置した状態のチューブ内に水を50mL/min流したときに、チューブ内の水の平均圧力を10mmHg以上100mmHg以下に維持できる長さに形成されていることを特徴とする。
 第13発明の原液処理装置の操作方法は、第10または第11発明において、前記濃縮液流路が、断面が変形可能なチューブであり、前記調整部は、前記チューブが配置される隙間を有する部材であり、前記調整部の隙間は、前記チューブを隙間に配置した状態において、前記チューブの壁厚合計の95%~110%となるように調整されていることを特徴とする。
 第14発明の原液処理装置の操作方法は、第10または第11発明において、前記濃縮液流路が、ポリ塩化ビニルまたはシリコーンゴムによって形成された断面円形のチューブであって、前記調整部は、前記チューブが配置される隙間を有する部材であり、前記チューブは、外径が3.0~12.0mm、内径が2.0~8.0mm、壁厚が0.5~2.0mmであり、前記調整部の隙間の幅が、0.95~4.40mmであることを特徴とする。
 第15発明の原液処理装置の操作方法は、第8から第14発明のいずれかにおいて、前記濾過器は、前記原液供給口を2つ有しており、前記2つの原液供給口のうち、濾過濃縮作業時に上方に位置する原液供給口に前記給液流路が接続されており、前記濾過器の洗浄の際には、該濾過器おける濾過液排出口から洗浄液を供給し、前記2つの原液供給口のうち濾過濃縮作業時に下方に位置する原液供給口または前記2つの原液供給口の両方から洗浄液を排出することを特徴とする。
 第16発明の原液処理装置の操作方法は、第15発明において、洗浄液を前記濃縮器の廃液排出口から供給し、前記濾過器における濾過濃縮作業時に下方に位置する原液供給口または前記2つの原液供給口の両方から洗浄液を排出することを特徴とする。
<調整器具>
 第17発明の調整器具は、断面が変形可能なチューブが配置される隙間を形成する2つのチューブ保持部材を備えており、該2つのチューブ保持部材は、両者間に形成される隙間の幅が、隙間に配置した状態のチューブ内に水を50mL/min流したときに、チューブ内の水の平均圧力を10mmHg以上100mmHg以下に維持できる長さに形成されていることを特徴とする。
 第18発明の調整器具は、第17発明において、前記2つのチューブ保持部材間の隙間に配置されるチューブは、断面が変形可能な素材によって形成された断面円形のチューブであり、前記2つのチューブ保持部材は、両者間に形成される隙間の幅が、前記チューブを隙間に配置した状態において、前記チューブの内径の最小部分の長さが該チューブの壁厚合計の95%~110%となるように調整されていることを特徴とする。
 第19発明の調整器具は、第18発明において、前記2つのチューブ保持部材間の隙間に配置されるチューブは、ポリ塩化ビニルまたはシリコーンゴムによって形成された断面円形のチューブであって、その外径が3.0~12.0mm、内径が2.0~8.0mm、壁厚が0.5~2.0mmであり、前記2つのチューブ保持部材は、両者間に形成される隙間の幅が、0.95~4.40mmであるであることを特徴とする。
 第20発明の調整器具は、第17、第18または第19発明において、前記2つのチューブ保持部材は、互いに対向しチューブと接触する部分の曲率半径が1~10mmに形成されていることを特徴とする。
 第21発明の調整器具は、第17、第18または第19または第20発明において、前記チューブ保持部材が3つ以上設けられており、隣接するチューブ保持部材間にチューブが配置される隙間がそれぞれ形成されており、各隙間の幅が異なるように前記チューブ保持部材が配設されていることを特徴とする。
 第22発明の調整器具は、第17~第21発明のいずれかにおいて、第3発明に記載の原液処理装置の調整部として使用される器具であることを特徴とする。
<Undiluted solution processing device>
A liquid concentrate processing apparatus according to a first aspect of the present invention is an apparatus for filtering and concentrating a liquid concentrate to form a concentrated liquid, which comprises a filter having a filtering member for filtering the liquid concentrate and a filtrate filtered by the filter. a concentrator for concentrating the filtered liquid to form the concentrated liquid; a raw liquid supply unit arranged above a raw liquid supply port of the filter for supplying the raw liquid to the filter; and a raw liquid for the filter. a filtrate supply channel communicating with the supply port; a filtrate supply channel communicating between the filtrate outlet of the filter and the filtrate supply port of the concentrator; and connected to the concentrate outlet of the concentrator. and a waste liquid flow path connected to a waste liquid discharge port for discharging waste liquid separated from the concentrate in the concentrator, and disposed below the filtrate discharge port of the filter, wherein A recovery unit for recovering a concentrated liquid connected to a concentrated liquid channel, a branch channel communicating between the recovery unit and the filtrate supply channel, and a connection between the branch channel in the filtrate supply channel. and a control unit for controlling the operation of the liquid supply unit, wherein the control unit controls the operation of the filtrate supply channel and the recovery unit. In the state where the branched flow path is maintained so that the liquid flows bidirectionally between the Start gravity filtration to supply the undiluted solution, and control the operation of the liquid feeding unit so that the liquid is fed from the filter to the concentrator when a predetermined state is reached, or At the same time as starting gravity filtration in which the undiluted liquid is supplied to the filter by gravity from the undiluted liquid supply unit provided, the operation of the liquid feeding section is controlled so that the liquid is fed from the filter to the concentrator. Characterized by
The undiluted solution processing apparatus of the second invention is characterized in that, in the first invention, the amount of filtrate supplied to the recovery unit after the predetermined state starts the gravity filtration state does not exceed the amount of liquid that can be accommodated in the recovery unit. It is characterized by being in a state of exceeding.
According to a third aspect of the present invention, there is provided an undiluted solution processing apparatus according to the first or second aspect, wherein the concentrated liquid flow path is provided with an adjustment section for adjusting the concentrated liquid flow path to a predetermined state.
According to a fourth aspect of the present invention, there is provided an undiluted solution treatment apparatus according to the third aspect, wherein the control section controls the operation of the liquid feeding section to adjust the flow rate of the liquid supplied to the concentrator, and the concentrator membrane of the concentrator It is characterized by controlling differential pressure.
According to a fifth aspect of the present invention, there is provided an undiluted solution processing apparatus according to the third or fourth aspect, wherein the concentrated liquid flow path is a tube whose cross section is deformable, and the adjusting section is a member having a gap in which the tube is arranged. The gap of the adjustment part is formed to have a length that can maintain the average pressure of water in the tube at 10 mmHg or more and 100 mmHg or less when 50 mL/min of water is flowed into the tube placed in the gap. It is characterized by
According to a sixth aspect of the present invention, there is provided a concentrate processing apparatus according to the third or fourth aspect, wherein the concentrated liquid channel is a tube whose cross section is deformable, and the adjusting section is a member having a gap in which the tube is arranged. The gap of the adjusting portion is adjusted to be 95% to 110% of the total wall thickness of the tube when the tube is placed in the gap.
The undiluted solution processing apparatus of the seventh invention is the concentrate processing apparatus of the third or fourth invention, wherein the concentrated liquid flow path is a tube having a circular cross section made of polyvinyl chloride or silicone rubber, and the adjusting section is configured such that the tube is A member having a gap disposed therein, wherein the tube has an outer diameter of 3.0 to 12.0 mm, an inner diameter of 2.0 to 8.0 mm, and a wall thickness of 0.5 to 2.0 mm, and the adjustment The width of the gap between the parts is 0.95 to 4.40 mm.
<How to operate the undiluted solution processing device>
An eighth aspect of the present invention provides a method for operating an apparatus for treating a liquid concentrate, which is a method for operating an apparatus for filtering and concentrating a liquid concentrate to form a concentrate, the apparatus comprising a filter having a filter member for filtering the liquid, and the filter. a concentrator for concentrating the filtered liquid to form the concentrated liquid; a raw liquid supply unit for supplying the raw liquid to the filter; and a raw liquid supply unit and the filter a filtrate supply channel communicating with the undiluted solution supply port of the device; a filtrate supply channel communicating between the filtrate discharge port of the filter and the filtrate supply port of the concentrator; and a concentrated solution drain of the concentrator. a concentrated liquid flow path connected to an outlet; a waste liquid flow path connected to a waste liquid discharge port for discharging waste liquid separated from the concentrated liquid in the concentrator; and a filter connected to the concentrated liquid flow path. a recovery unit for recovering the concentrated liquid disposed below the filtrate discharge port; a branch channel communicating between the recovery unit and the filtrate supply channel; and the branch channel in the filtrate supply channel and a control unit for controlling the operation of the liquid sending unit provided between the connecting portion and the concentrator, and the filtrate supply channel and the collecting unit. In a state in which the branched flow path is maintained so that the liquid flows in both directions between them, the undiluted liquid is supplied to the filter by gravity from the undiluted liquid supply unit disposed above the undiluted liquid supply port of the filter. Gravity filtration to supply is started, and when a predetermined state is reached, the liquid sending unit is operated to send the liquid from the filter to the concentrator, or the undiluted liquid is placed above the undiluted liquid supply port of the filter. The method is characterized in that, at the same time as starting gravity filtration in which the undiluted liquid is supplied from the supply unit to the filter by gravity, the liquid supply unit is operated so as to supply the liquid from the filter to the concentrator.
A method of operating the undiluted solution processing apparatus of the ninth invention is characterized in that, in the eighth invention, the predetermined state is such that the amount of filtrate supplied to the recovery unit after gravity filtration is started is such that the volume of the filtrate can be accommodated in the recovery unit. It is characterized by being in a state of exceeding quantity.
A tenth aspect of the invention is a method for operating a concentrate processing apparatus, in the eighth or ninth aspect of the invention, characterized in that the concentrated liquid flow path is adjusted to a predetermined state.
An eleventh aspect of the invention provides a method for operating a liquid concentrate processing apparatus according to the tenth aspect, characterized in that the flow rate of the liquid supplied to the concentrator is adjusted to control the transmembrane pressure difference of the concentrator of the concentrator.
A method for operating a concentrate processing apparatus according to a twelfth invention is the method according to the tenth or eleventh invention, wherein the concentrated liquid channel is a tube whose cross section is deformable, and the adjusting section has a gap in which the tube is arranged. The gap of the adjustment part is formed to a length that can maintain the average pressure of water in the tube at 10 mmHg or more and 100 mmHg or less when 50 mL/min of water is flowed into the tube placed in the gap. It is characterized by being
A method for operating a concentrate processing apparatus of a thirteenth aspect is the method according to the tenth or eleventh aspect, wherein the concentrated liquid channel is a tube whose cross section is deformable, and the adjusting section has a gap in which the tube is arranged. It is a member, and the gap of the adjusting portion is adjusted to be 95% to 110% of the total wall thickness of the tube when the tube is placed in the gap.
A method for operating a concentrate processing apparatus according to a fourteenth invention is, in the tenth or eleventh invention, wherein the concentrated liquid channel is a tube having a circular cross section and is made of polyvinyl chloride or silicone rubber, and the adjusting section comprises: A member having a gap in which the tube is arranged, the tube having an outer diameter of 3.0 to 12.0 mm, an inner diameter of 2.0 to 8.0 mm, and a wall thickness of 0.5 to 2.0 mm. , wherein the width of the clearance of the adjusting portion is 0.95 to 4.40 mm.
A fifteenth aspect of the invention is a method for operating a concentrate processing apparatus according to any one of the eighth to fourteenth inventions, wherein the filter has two of the concentrate solution supply ports, and one of the two concentrate solution supply ports The liquid supply channel is connected to a raw liquid supply port positioned above during the concentration operation, and when the filter is washed, the washing liquid is supplied from the filtered liquid discharge port of the filter to supply the two raw liquids. It is characterized in that the washing liquid is discharged from the raw solution supply port positioned below or both of the two raw solution supply ports during the filtration and concentration operation.
A method for operating a concentrate processing apparatus according to a sixteenth aspect of the invention is characterized in that, in the fifteenth aspect of the invention, the washing liquid is supplied from the waste liquid discharge port of the concentrator, and during the filtration and concentration operation in the filter, the concentrate liquid supply port located below or the two The cleaning liquid is discharged from both of the supply ports.
<Adjustment tool>
The adjuster of the seventeenth invention comprises two tube holding members forming a gap in which a tube having a deformable cross section is arranged, and the width of the gap formed between the two tube holding members is The length is such that the average pressure of water in the tube can be maintained at 10 mmHg or more and 100 mmHg or less when 50 mL/min of water is flowed into the tube placed in the gap.
An adjusting instrument according to an eighteenth aspect is the adjusting device according to the seventeenth aspect, wherein the tube arranged in the gap between the two tube holding members is a tube with a circular cross section formed of a material whose cross section is deformable, and the two tubes are In the holding member, the width of the gap formed between the two is 95% to 110% of the total wall thickness of the tube when the tube is placed in the gap. It is characterized by being adjusted as follows.
A nineteenth aspect of the present invention is an adjustment device according to the eighteenth aspect, wherein the tube arranged in the gap between the two tube holding members is a tube having a circular cross section made of polyvinyl chloride or silicone rubber, and the outer diameter of the tube is is 3.0 to 12.0 mm, the inner diameter is 2.0 to 8.0 mm, and the wall thickness is 0.5 to 2.0 mm. , 0.95 to 4.40 mm.
A twentieth invention is an adjusting instrument according to the seventeenth, eighteenth, or nineteenth invention, wherein the two tube holding members have a radius of curvature of 1 to 10 mm at portions that face each other and come into contact with the tube. and
A 21st aspect of the invention is an adjusting device according to the 17th, 18th, 19th or 20th aspects of the invention, wherein three or more tube holding members are provided, and gaps between adjacent tube holding members for arranging the tubes are respectively and the tube holding members are arranged so that the widths of the gaps are different.
An adjusting instrument according to a twenty-second aspect of the invention is characterized in that, in any one of the seventeenth to twenty-first aspects of the invention, it is an instrument used as an adjusting part of the undiluted solution processing apparatus according to the third aspect of the invention.
<原液処理装置>
 第1、第2発明によれば、濾過器に対して原液供給部から原液を効果的に供給できるので、原液の処理効率を高めることができる。
 第3発明によれば、調整部によって濃縮液流路を所定の状態に調整すれば、濃縮状態の調整が容易になる。
 第4発明によれば、送液部の作動を制御するだけで濃縮器の濃縮器膜間差圧を所定の圧力に調整できるので、装置の制御が容易になる。
 第5~7発明によれば、調整部の構成を簡素化できるので、装置の構成を簡素化することができる。
<原液処理装置の操作方法>
 第8、第9発明によれば、濾過器に対して原液供給部から原液を効果的に供給できるので、原液の処理効率を高めることができる。
 第10発明によれば、調整部によって濃縮液流路を所定の状態に調整すれば、濃縮状態の調整が容易になる。
 第4発明によれば、送液部の作動を制御するだけで濃縮器の濃縮器膜間差圧を所定の圧力に調整できるので、装置の制御が容易になる。
 第12~第14発明によれば、調整部の構成を簡素化できるので、装置の構成を簡素化することができる。
 第15発明によれば、濾過器の洗浄を効率よく実施できる。
 第16発明によれば、装置全体の洗浄を効率よく実施できる。
<調整器具>
 第17~第20発明によれば、チューブに供給する流量を調整すれば、隙間より上流側のチューブ内の圧力を適切な値に維持することができる。
 第21発明によれば、チューブに応じて適切な隙間にチューブを配置することができる。
 第22発明によれば、原液処理装置における濃縮器の負荷を低減しつつ、濃縮液を所望の濃縮状態に調整することができる。
<Undiluted solution processing device>
According to the first and second aspects of the present invention, the undiluted liquid can be effectively supplied from the undiluted liquid supply section to the filter, so that the processing efficiency of the undiluted liquid can be enhanced.
According to the third invention, adjusting the concentrated liquid flow path to a predetermined state by the adjusting section facilitates adjustment of the concentrated state.
According to the fourth invention, the transmembrane pressure difference of the concentrator of the concentrator can be adjusted to a predetermined pressure only by controlling the operation of the liquid feeding section, so that the control of the device is facilitated.
According to the fifth to seventh inventions, the configuration of the adjustment section can be simplified, so the configuration of the device can be simplified.
<How to operate the undiluted solution processing device>
According to the eighth and ninth inventions, since the concentrate can be effectively supplied from the concentrate supply section to the filter, the treatment efficiency of the concentrate can be improved.
According to the tenth aspect of the invention, the concentration state can be easily adjusted by adjusting the concentrated liquid channel to a predetermined state by the adjusting section.
According to the fourth invention, the transmembrane pressure difference of the concentrator of the concentrator can be adjusted to a predetermined pressure only by controlling the operation of the liquid feeding section, so that the control of the device is facilitated.
According to the twelfth to fourteenth inventions, the configuration of the adjustment section can be simplified, so the configuration of the apparatus can be simplified.
According to the fifteenth invention, cleaning of the filter can be carried out efficiently.
According to the sixteenth invention, cleaning of the entire apparatus can be efficiently carried out.
<Adjustment tool>
According to the seventeenth to twentieth inventions, by adjusting the flow rate supplied to the tube, the pressure inside the tube on the upstream side of the gap can be maintained at an appropriate value.
According to the twenty-first invention, the tube can be arranged in an appropriate gap depending on the tube.
According to the twenty-second invention, the concentrated liquid can be adjusted to a desired concentrated state while reducing the load on the concentrator in the undiluted liquid processing apparatus.
本実施形態の原液処理装置1の回路図であって濾過濃縮作業を実施する回路図の概略説明図である。FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out the filtration and concentration work. 本実施形態の原液処理装置1の回路図であって準備洗浄作業を実施する回路図の概略説明図である。FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for performing preparatory cleaning work. 本実施形態の原液処理装置1の回路図であって濾過作業を実施する回路図の概略説明図である。FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out a filtering operation. 本実施形態の原液処理装置1の回路図であって濾過濃縮作業を実施する他の回路図の概略説明図である。FIG. 2 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of another circuit diagram for carrying out the filtration and concentration work. 本実施形態の原液処理装置1の回路図であって濾過器洗浄作業を実施する回路図の概略説明図である。FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out filter cleaning work. 本実施形態の原液処理装置1の回路図であって再濃縮作業を実施する回路図の概略説明図である。FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out re-concentration work. 本実施形態の原液処理装置1の回路図であって濾過器10から液体を回収する作業を実施する回路図の概略説明図である。FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted liquid processing apparatus 1 of the present embodiment, which is a circuit diagram for carrying out the work of recovering the liquid from the filter 10. FIG. 本実施形態の原液処理装置1の回路図であって濃縮器20から液体を回収する作業を実施する回路図の概略説明図である。FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a circuit diagram for carrying out the work of recovering the liquid from the concentrator 20. FIG. 本実施形態の原液処理装置1の回路図であって濾過器10の洗浄作業を実施する他の回路図の概略説明図である。FIG. 2 is a schematic explanatory diagram of another circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for performing cleaning work of the filter 10. FIG. 本実施形態の原液処理装置1の回路図であって濾過器洗浄作業を実施する他の回路図の概略説明図である。It is a circuit diagram of the undiluted solution processing apparatus 1 of this embodiment, and is schematic explanatory drawing of another circuit diagram which implements filter cleaning work. 本実施形態の原液処理装置1の回路図であって回路全体の洗浄作業を実施する他の回路図の概略説明図である。FIG. 3 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of another circuit diagram for performing cleaning work of the entire circuit. 本実施形態の原液処理装置1の回路図であって、濃縮液チューブ4に調整器具50を設けた回路の概略説明図である。FIG. 2 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of the circuit in which the concentrated liquid tube 4 is provided with an adjusting device 50. FIG. 本実施形態の原液処理装置1の回路図であって濾過濃縮作業を実施する他の回路図の概略説明図である。FIG. 2 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of another circuit diagram for carrying out the filtration and concentration work. 本実施形態の原液処理装置1の回路図であってリークチェック作業を実施する回路図の概略説明図である。FIG. 2 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, which is a circuit diagram for performing leak check work. 調整器具50の概略説明図であって、(A)は(B)のA-A線断面矢視図であり、(B)は(A)のB矢視図であり、(C)は4本のチューブ保持部材52を設けた例である。4 is a schematic explanatory diagram of the adjustment tool 50, in which (A) is a cross-sectional view taken along the line AA of (B), (B) is a view taken along the arrow B of (A), and (C) is a 4 This is an example in which two tube holding members 52 are provided. 濾過器10の概略説明図である。1 is a schematic explanatory diagram of a filter 10; FIG. 濃縮器20の概略説明図である。2 is a schematic explanatory diagram of a concentrator 20; FIG. (A)は実験回路の概略説明図であり、(B)は実験結果の表であり、(C)は実験結果のグラフである。(A) is a schematic illustration of an experimental circuit, (B) is a table of experimental results, and (C) is a graph of experimental results. 他の実施形態の原液処理装置1の回路図であって濾過濃縮作業を実施する回路図の概略説明図である。FIG. 10 is a schematic explanatory diagram of a circuit diagram of the undiluted solution processing apparatus 1 of another embodiment, which is a circuit diagram for carrying out the filtration and concentration work. 他の実施形態の原液処理装置1の回路図であって濾過器洗浄作業を実施する回路図の概略説明図である。It is a circuit diagram of the undiluted solution processing apparatus 1 of other embodiment, and is a schematic explanatory drawing of the circuit diagram which implements a filter cleaning operation|work. 本実施形態の原液処理装置1の回路図であってリークチェック作業を実施する他の回路図の概略説明図である。FIG. 3 is a circuit diagram of the undiluted solution processing apparatus 1 of the present embodiment, and is a schematic explanatory diagram of another circuit diagram for performing leak check work.
 本実施形態の原液処理装置は、胸腹水などの原液を濾過濃縮して点滴静注や腹腔内投与などの方法によって患者に投与できる処理液を得るための装置である。 The undiluted solution processing apparatus of this embodiment is an apparatus for obtaining a processed liquid that can be administered to a patient by a method such as intravenous drip infusion or intraperitoneal administration by filtering and concentrating undiluted liquid such as pleural and ascitic fluid.
 本実施形態の原液処理装置によって処理される対象となる原液はとくに限定されないが、例えば、胸腹水や血漿、血液などを挙げることができる。胸腹水とは、癌性胸腹膜炎、肝硬変などにおいて胸腔や腹腔に溜まる胸水や腹水のことである。この胸腹水には、血管や臓器から漏出した血漿成分(蛋白質、ホルモン、糖、脂質、電解質、ビタミン、ビリルビン、アミノ酸など)、ヘモグロビン、癌細胞、マクロファージ、組織球、白血球、赤血球、血小板、細菌などが含まれている。本発明の原液処理装置では、この胸腹水から、癌細胞、マクロファージ、組織球、白血球、赤血球、血小板、細菌などの固形分を除去して、胸腹水中に含まれる水分や有用成分を含む濃縮液を生成することができる。 The stock solution to be processed by the stock solution processing apparatus of the present embodiment is not particularly limited, but examples include pleural and ascitic fluid, blood plasma, and blood. Pleural and ascitic fluid is pleural or ascitic fluid that accumulates in the thoracic cavity or peritoneal cavity due to carcinomatous pleural peritonitis, liver cirrhosis, or the like. This pleural and ascitic fluid contains plasma components (proteins, hormones, sugars, lipids, electrolytes, vitamins, bilirubin, amino acids, etc.) leaked from blood vessels and organs, hemoglobin, cancer cells, macrophages, histiocytes, white blood cells, red blood cells, platelets, and bacteria. etc. are included. The undiluted solution processing apparatus of the present invention removes solids such as cancer cells, macrophages, histiocytes, white blood cells, red blood cells, platelets, and bacteria from the pleural and ascitic fluid, and concentrates the water and useful components contained in the pleural and ascitic fluid. can produce liquid.
 血漿とは、血漿交換療法の廃液血漿などを、血液とは、手術中に回収した血液などを挙げることができる。つまり、廃液血漿や手術中に回収した血液などを本発明の原液処理装置を利用して浄化すれば、再利用可能な再生血漿を製造することができる。なお、本発明の原液処理装置において、血漿交換療法の廃液血漿を処理する場合には、濾過器として血漿成分分離器を、手術中に回収した血液を処理する場合には、濾過器として血漿分離器を使用すればよい。 Plasma can include waste plasma from plasma exchange therapy, and blood can include blood collected during surgery. In other words, reusable regenerated plasma can be produced by purifying waste plasma, blood collected during surgery, or the like using the undiluted solution processing apparatus of the present invention. In addition, in the undiluted solution processing apparatus of the present invention, when processing waste plasma of plasma exchange therapy, a plasma component separator is used as a filter, and when processing blood collected during surgery, a plasma separator is used as a filter. You should use a device.
 また、本発明の原液処理装置の濾過器に使用する濾過部材はとくに限定されない。また、濃縮器における濾過液の濃縮に使用する濃縮部材もとくに限定されない。濃縮部材として、濾過器に使用する濾過部材と同等の部材を濃縮部材として使用する場合がある。かかる濾過や濃縮に使用する濾過部材や濃縮部材(以下濾過部材等という場合がある)は、胸腹水中に含まれる血漿、水分および上述したような有用な成分は透過するが、癌細胞、マクロファージ、組織球、白血球、赤血球、血小板、細菌などの細胞成分(つまり固形分)は透過しないものであって、気体を透過しないものであればよく、その素材やサイズ、形状はとくに限定されない。例えば、濾過部材等の形状は、中空糸膜、平膜、積層型膜などを使用することができる。また、濾過部材等は、液体で濡らした際に気体を透過しない機能を発揮する素材によって形成されたものを使用することができる。もちろん、液体で濡らさない状態でも気体を透過しない機能を発揮する素材で形成されたものを濾過部材等として使用してもよい。なお、本明細書において、濾過部材等を透過しない気体とは、窒素などの不活性気体や、空気、酸素等であるが、一般的なリークチェックなどに使用される気体を意味している。 Also, the filtering member used in the filter of the undiluted solution processing apparatus of the present invention is not particularly limited. Also, the concentrating member used for concentrating the filtrate in the concentrator is not particularly limited. As the concentrating member, a member equivalent to the filtering member used in the filter may be used as the concentrating member. Filtration members and concentration members (hereinafter sometimes referred to as filtration members, etc.) used for such filtration and concentration are permeable to plasma, water, and the above-mentioned useful components contained in the pleural and ascitic fluid, but cancer cells, macrophages, etc. are permeable. , histocytes, leukocytes, erythrocytes, platelets, bacteria, and other cell components (that is, solids) are impermeable. For example, as for the shape of the filtering member, etc., a hollow fiber membrane, a flat membrane, a laminated membrane, or the like can be used. Also, the filtering member or the like can be made of a material that exhibits a function of not permeating gas when wetted with a liquid. Of course, it is also possible to use a filter member or the like made of a material that exhibits a function of not permeating gas even when not wetted with liquid. In this specification, the gas that does not permeate the filtering member or the like includes an inert gas such as nitrogen, air, oxygen, and the like, and means a gas that is generally used for leak checks and the like.
 濾過部材等の一例としては、CARTの腹水濾過器や血漿交換用血漿分離器、血漿交換用血漿成分分離器などに使用されている中空糸膜を挙げることができる。つまり、CARTの腹水濾過器や血漿交換用血漿分離器、血漿交換用血漿成分分離器などに使用されている中空糸膜を、本発明の原液処理装置の濾過器の濾過部材や濃縮器の濃縮部材として使用することができる。 Examples of filtering members include hollow fiber membranes used in CART ascitic fluid filters, plasma exchange plasma separators, and plasma component separators for plasma exchange. In other words, the hollow fiber membranes used in CART's ascites filter, plasma separator for plasmapheresis, plasma component separator for plasmapheresis, etc. are used as the filtering member of the filter of the undiluted solution processing device of the present invention and the concentration of the concentrator. It can be used as a member.
<本実施形態の原液処理装置1>
 図1に基づいて、本実施形態の原液処理装置1を説明する。
<Undiluted solution processing device 1 of the present embodiment>
Based on FIG. 1, the undiluted solution processing apparatus 1 of this embodiment is demonstrated.
 なお、以下では、処理対象となる原液が胸腹水である場合を代表として説明する。 In addition, the case where the undiluted solution to be processed is pleural and ascitic fluid will be described below as a representative.
 また、以下の説明では、濾過器10に設けられる濾過部材が中空糸膜である場合を代表として説明する。濾過部材が中空糸膜の場合、中空糸膜の外側に供給された原液を中空糸膜の壁を透過して中空糸膜内に流入させて濾過する場合(つまり外圧濾過法の場合)と、中空糸膜の内側に供給された原液を中空糸膜の壁を透過して中空糸膜外に流出させて濾過する場合(つまり内圧濾過法の場合)と、をいずれも採用することができる。以下の説明では、濾過器10における濾過に外圧濾過法を採用した場合を説明する。なお、以下の説明において、中空糸膜の上流側とは、中空糸膜の壁の外面より上流側を意味し、中空糸膜の下流側とは、中空糸膜の壁の内面より下流側を意味する。なお、中空糸膜の壁の内面より下流側には、中空糸膜の貫通流路も含まれる。 Also, in the following description, the case where the filtering member provided in the filter 10 is a hollow fiber membrane will be described as a representative. When the filtration member is a hollow fiber membrane, the undiluted solution supplied to the outside of the hollow fiber membrane is filtered by passing through the wall of the hollow fiber membrane and flowing into the hollow fiber membrane (that is, in the case of external pressure filtration method), Either the case where the undiluted solution supplied to the inside of the hollow fiber membrane is allowed to permeate the wall of the hollow fiber membrane and flow out of the hollow fiber membrane for filtration (that is, the internal pressure filtration method) can be adopted. In the following description, the case where the external pressure filtration method is adopted for filtration in the filter 10 will be described. In the following description, the upstream side of the hollow fiber membrane means the upstream side from the outer surface of the wall of the hollow fiber membrane, and the downstream side of the hollow fiber membrane means the downstream side from the inner surface of the wall of the hollow fiber membrane. means. In addition, the through channel of the hollow fiber membrane is also included on the downstream side from the inner surface of the wall of the hollow fiber membrane.
 また、以下の説明では、特許請求の範囲にいう各流路(給液流路、濾過液供給流路、濃縮液流路、廃液流路、分岐流路)が可撓性や柔軟性を有するチューブ(給液チューブ2、濾過液供給チューブ3、濃縮液チューブ4、廃液チューブ5、分岐チューブ6)で形成されている場合を説明する。しかし、各流路は可撓性や柔軟性を有しない管(例えば、硬質プラスチック製の管や鋼管、塩ビ管等)や、樹脂成型された一体型回路等で形成されていてもよい。 Further, in the following description, each channel (supply channel, filtrate supply channel, concentrated liquid channel, waste liquid channel, branch channel) referred to in the claims has flexibility or flexibility. A case of being formed by tubes (liquid supply tube 2, filtrate supply tube 3, concentrated liquid tube 4, waste liquid tube 5, branch tube 6) will be described. However, each flow path may be formed of a flexible or inflexible pipe (for example, a hard plastic pipe, a steel pipe, a vinyl chloride pipe, etc.), a resin-molded integrated circuit, or the like.
 さらに、以下の説明では、各流路を可撓性や柔軟性を有するチューブで形成した場合を説明するので、濾過液供給流路に設けられる送液部にローラーポンプを使用することを前提に説明する。しかし、送液部は濾過液供給流路内の液体を正逆両方向に送液できるものであればよく、濾過液供給流路を構成する管の素材や濾過液供給流路内を流れる液体に合わせて送液部は適宜選択すればよい。ローラーポンプ以外にも、例えば、輸液ポンプやダイヤフラムポンプ等を送液部として使用することもできる。 Furthermore, in the following description, since each channel is formed of a tube having flexibility or flexibility, it is assumed that a roller pump is used for the liquid feeding part provided in the filtrate supply channel. explain. However, as long as the liquid sending unit can send the liquid in the filtrate supply channel in both the forward and reverse directions, the material of the tube constituting the filtrate supply channel and the liquid flowing in the filtrate supply channel may vary. In addition, the liquid feeding section may be appropriately selected. In addition to the roller pump, for example, an infusion pump, a diaphragm pump, or the like can also be used as the liquid feeding unit.
<本実施形態の原液処理装置1の構成>
 まず、本実施形態の原液処理装置1の構成を説明する。
<Structure of undiluted solution processing apparatus 1 of the present embodiment>
First, the configuration of the undiluted solution processing apparatus 1 of this embodiment will be described.
 図1において、符号UBは、原液、つまり、胸部や腹部から抜いた胸腹水を収容する原液バッグを示している。また、符号CBは、原液を濾過濃縮した濃縮液を収容する濃縮液バッグを示している。さらに、符号DBは、濃縮液から分離された廃液(つまり水分)を収容する廃液バッグを示している。なお、原液バッグUBが特許請求の範囲にいう原液供給部に相当し、濃縮液バッグCBが特許請求の範囲にいう回収部に相当するものになる。 In FIG. 1, the symbol UB indicates a stock solution bag that stores the stock solution, that is, the pleural and ascitic fluid extracted from the chest or abdomen. Further, reference numeral CB indicates a concentrated solution bag containing a concentrated solution obtained by filtering and concentrating the stock solution. Furthermore, the symbol DB indicates a waste bag containing the waste liquid (that is, water) separated from the concentrate. Note that the undiluted solution bag UB corresponds to the undiluted solution supply part in the claims, and the concentrated solution bag CB corresponds to the collection part in the claims.
 図1に示すように、本実施形態の原液処理装置1では、原液バッグUBは濾過器10に給液チューブ2を介して接続されている。給液チューブ2は、原液バッグUB内の原液を濾過器10に供給するチューブであり、一端が原液バッグUBに接続されており、他端が、濾過器10の原液供給ポート11aに接続されている。なお、図1のように、濾過器10が2つの原液供給ポート11aを有しており、給液チューブ2が接続されていない原液供給ポート11aに他のチューブが接続されない場合には、他のチューブが接続されない原液供給ポート11aは濾過器接続コネクタ等によって閉塞すればよい。 As shown in FIG. 1, in the undiluted solution processing apparatus 1 of this embodiment, the undiluted solution bag UB is connected to the filter 10 via the supply tube 2 . The feed tube 2 is a tube that supplies the concentrate in the concentrate bag UB to the filter 10, and has one end connected to the concentrate bag UB and the other end connected to the concentrate supply port 11a of the filter 10. there is As shown in FIG. 1, when the filter 10 has two stock solution supply ports 11a and no other tube is connected to the stock solution supply port 11a to which the supply tube 2 is not connected, another The undiluted solution supply port 11a to which no tube is connected may be closed by a filter connector or the like.
 この給液チューブ2には、給液チューブ2内における液体の流れを停止開放する、例えば、クレンメやクリップ等の流量調整手段2cが設けられている。また、給液チューブ2には、給液チューブ2内の圧力を測定する圧力測定部2sが設けられている。なお、圧力測定部2sは、給液チューブ2が接続される濾過器10の原液供給ポート11aに直接接続されていてもよい。 The liquid supply tube 2 is provided with a flow rate adjusting means 2c such as a clamp or a clip for stopping and releasing the flow of the liquid in the liquid supply tube 2 . Further, the liquid supply tube 2 is provided with a pressure measuring section 2 s for measuring the pressure inside the liquid supply tube 2 . The pressure measuring part 2s may be directly connected to the undiluted solution supply port 11a of the filter 10 to which the liquid supply tube 2 is connected.
 濾過器10は、原液を濾過して濾過液を生成するものである。具体的には、濾過器10は、原液供給ポート11aから供給された原液を濾過部材である中空糸膜によって濾過した後、濾過液排出ポート11cから濾過液を排出するように構成されている。具体的には、原液供給ポート11aから濾過器10内に供給された原液が濾過器10内の中空糸膜の外側から中空糸膜の壁を通過して中空糸膜の貫通流路内に流入する際に濾過されるように濾過器10は構成されている。そして、濾過された濾過液が中空糸膜の貫通流路から濾過液排出ポート11cを通って外部(濾過液供給チューブ3)に排出されるように濾過器10は構成されている。この濾過器10には、濾過器10において中空糸膜によって原液供給ポート11aと分離された空間(つまり中空糸膜の貫通流路)の圧力を測定する圧力測定部10sが設けられている。この圧力測定部10sは、原液供給ポート11aと分離された空間に連通されたポート11bに接続されている。したがって、圧力測定部2sの測定値と圧力測定部10sの測定値とを比較すれば、濾過部材前後の圧力差、つまり、中空糸膜の内外の圧力差(以下、濾過器膜間差圧という)を把握することができる。
 なお、濾過器10の濾過部材は、上述した中空糸膜に限定されない。濾過部材は、濾過部材を透過する際に原液を濾過でき、濾過器10内を原液供給ポート11aに連通された空間と濾過液排出ポート11cおよびポート11bに連通された空間とを気密分離できるものであればよい。
The filter 10 filters the undiluted liquid to produce filtrate. Specifically, the filter 10 is configured to filter the undiluted liquid supplied from the undiluted liquid supply port 11a by a hollow fiber membrane, which is a filtering member, and then discharge the filtrate from the filtrate discharge port 11c. Specifically, the stock solution supplied from the stock solution supply port 11a into the filter 10 passes through the wall of the hollow fiber membrane from the outside of the hollow fiber membrane in the filter 10 and flows into the through channel of the hollow fiber membrane. The filter 10 is configured so that it is filtered when it is filtered. The filter 10 is configured such that the filtrate that has been filtered is discharged to the outside (the filtrate supply tube 3) through the passage of the hollow fiber membrane through the filtrate discharge port 11c. The filter 10 is provided with a pressure measuring section 10s for measuring the pressure in a space separated from the undiluted solution supply port 11a by the hollow fiber membrane in the filter 10 (that is, the passage through the hollow fiber membrane). This pressure measuring section 10s is connected to a port 11b communicating with a space separated from the undiluted solution supply port 11a. Therefore, if the measured value of the pressure measuring part 2s and the measured value of the pressure measuring part 10s are compared, the pressure difference before and after the filtering member, that is, the pressure difference between the inside and outside of the hollow fiber membrane (hereinafter referred to as the filter transmembrane pressure difference) ) can be grasped.
In addition, the filtering member of the filter 10 is not limited to the hollow fiber membrane described above. The filtering member can filter the undiluted liquid when passing through the filtering member, and can airtightly separate the space in the filter 10 communicating with the undiluted liquid supply port 11a and the space communicating with the filtrate discharge port 11c and the port 11b. If it is
 濾過器10は、濾過液供給チューブ3を介して濃縮器20に接続されている。濾過液供給チューブ3は、濾過器10で生成された濾過液を濃縮器20に供給するチューブであり、一端が濾過液排出ポート11cに接続されており、他端が濃縮器20の濾過液供給口20aに接続されている。 The filter 10 is connected to the concentrator 20 via the filtrate supply tube 3. The filtrate supply tube 3 is a tube that supplies the filtrate generated by the filter 10 to the concentrator 20, one end of which is connected to the filtrate discharge port 11c, and the other end of which is connected to the filtrate supply of the concentrator 20. It is connected to port 20a.
 この濾過液供給チューブ3には、濾過液供給チューブ3内の液体を送液する濾過液供給チューブ送液部3pが設けられている。この濾過液供給チューブ送液部3pは、正逆両方向に濾過液供給チューブ3内の液体を送液できる機能を有している。具体的には、濾過液供給チューブ送液部3pは、その作動を調整することによって、濾過器10から濃縮器20に向う方向(正方向)に濾過液供給チューブ3内の液体を送液したり、濃縮器20から濾過器10に向う方向(逆方向)に濾過液供給チューブ3内の液体を送液したりできる機能を有している。 The filtrate supply tube 3 is provided with a filtrate supply tube liquid-feeding portion 3p for feeding the liquid in the filtrate supply tube 3 . The filtrate supply tube liquid-feeding unit 3p has a function of feeding the liquid in the filtrate supply tube 3 in both forward and reverse directions. Specifically, the filtrate supply tube liquid-feeding unit 3p feeds the liquid in the filtrate supply tube 3 in the direction (positive direction) from the filter 10 to the concentrator 20 by adjusting its operation. Also, the liquid in the filtrate supply tube 3 can be sent in the direction (reverse direction) from the concentrator 20 to the filter 10 .
 濾過液供給チューブ3には、濾過液供給チューブ3内の圧力を測定する圧力測定部3sが設けられている。具体的には、圧力測定部3sは、濾過液供給チューブ3において、濾過液供給チューブ送液部3pと濃縮器20の濾過液供給口20aとの間に設けられている。 The filtrate supply tube 3 is provided with a pressure measuring section 3 s that measures the pressure inside the filtrate supply tube 3 . Specifically, the pressure measuring part 3 s is provided in the filtrate supply tube 3 between the filtrate supply tube liquid sending part 3 p and the filtrate supply port 20 a of the concentrator 20 .
 また、この濾過液供給チューブ3には、分岐チューブ6の一端が接続されている。具体的には、分岐チューブ6は、その一端が、濾過液供給チューブ3において濾過器10の濾過液排出ポート11cと濾過液供給チューブ送液部3pとの間の部分に連結されており、他端は濃縮液バッグCBに接続されている。つまり、分岐チューブ6を通して、濾過液供給チューブ3内の液体を濃縮液バッグCBに供給したり、逆に、濃縮液バッグCB内の液体(例えば濃縮液)を濾過液供給チューブ3に供給したりできるようになっている。なお、分岐チューブ6には、分岐チューブ6内における液体の流れを停止開放する、例えば、クレンメやクリップ等の流量調整手段6cが設けられている。 Also, one end of a branch tube 6 is connected to the filtrate supply tube 3 . Specifically, one end of the branch tube 6 is connected to a portion of the filtrate supply tube 3 between the filtrate discharge port 11c of the filter 10 and the filtrate supply tube liquid feed section 3p. The end is connected to the concentrate bag CB. That is, the liquid in the filtrate supply tube 3 is supplied to the concentrate bag CB through the branch tube 6, and conversely, the liquid (for example, the concentrate) in the concentrate bag CB is supplied to the filtrate supply tube 3. It is possible. The branch tube 6 is provided with a flow rate adjusting means 6c such as a clamp or a clip for stopping and releasing the flow of liquid in the branch tube 6 .
 なお、図1に示すように、この濾過液供給チューブ3にも、濾過液供給チューブ3内における液体の流れを停止開放する、例えば、クレンメやクリップ等の流量調整手段3cを設けてもよい。濾過液供給チューブ送液部3pの作動を停止すれば、濾過液供給チューブ送液部3pによって濾過液供給チューブ3内における液体の流れを停止することができる。しかし、流量調整手段3cを設けておけば、濾過液供給チューブ3の他端を濃縮器20の濾過液供給口20aに連結する際に濾過器10内の充填液が漏れることを防止できるという利点が得られる。また、作業終了後に濾過液供給チューブ3を廃棄する際に濾過液供給チューブ3内に残存した濾過液等の液体が漏れることを防止できるという利点も得られる。 As shown in FIG. 1, the filtrate supply tube 3 may also be provided with a flow rate adjusting means 3c such as a clamp or a clip for stopping and releasing the flow of liquid in the filtrate supply tube 3. By stopping the operation of the filtrate supply tube liquid-feeding unit 3p, the flow of liquid in the filtrate supply tube 3 can be stopped by the filtrate-supply tube liquid-feeding unit 3p. However, if the flow rate adjusting means 3c is provided, there is an advantage that the filling liquid in the filter 10 can be prevented from leaking when the other end of the filtrate supply tube 3 is connected to the filtrate supply port 20a of the concentrator 20. is obtained. In addition, it is possible to prevent the liquid such as the filtrate remaining in the filtrate supply tube 3 from leaking when the filtrate supply tube 3 is discarded after the work is completed.
 また、図1では、流量調整手段3cは、濾過液供給チューブ3において、濾過液供給チューブ送液部3pと分岐チューブ6との接続部分よりも上流側(濾過器10側)に設けているが、流量調整手段3cを設ける位置はとくに限定されない。濾過液供給チューブ3において濾過液供給チューブ送液部3pよりも下流側(濃縮器20側)に流量調整手段3cを設けてもよいし、濾過液供給チューブ送液部3pと分岐チューブ6の接続部分との間に流量調整手段3cを設けてもよい。もちろん、上述した全ての位置や、上述した位置の複数の位置に流量調整手段3cを設けてもよい。 In FIG. 1, the flow rate adjusting means 3c is provided in the filtrate supply tube 3 on the upstream side (filter 10 side) of the connecting portion between the filtrate supply tube liquid feeding portion 3p and the branch tube 6. , the position where the flow rate adjusting means 3c is provided is not particularly limited. In the filtrate supply tube 3, a flow rate adjusting means 3c may be provided on the downstream side (on the concentrator 20 side) of the filtrate supply tube liquid supply section 3p, or the connection between the filtrate supply tube liquid supply section 3p and the branch tube 6 may be provided. You may provide the flow volume adjustment means 3c between the parts. Of course, the flow rate adjusting means 3c may be provided at all the above-described positions or at a plurality of the above-described positions.
 濃縮器20は、濾過液を濃縮した濃縮液を生成するものである。具体的には、濃縮器20は、水分分離部材(濃縮部材)によって、濾過液供給口20aから供給された濾過液から一部の水分等の液体(分離液、廃液、以下廃液という)を分離し、水分等の液体が分離された濃縮液を濃縮液排出口20bから排出し、濾過液から分離された廃液を廃液排出口20cから排出するように構成されている。 The concentrator 20 produces a concentrate by concentrating the filtrate. Specifically, the concentrator 20 separates liquid such as a part of water (separated liquid, waste liquid, hereinafter referred to as waste liquid) from the filtrate supplied from the filtrate supply port 20a by a water separation member (concentration member). The concentrated liquid from which the liquid such as moisture is separated is discharged from the concentrated liquid discharge port 20b, and the waste liquid separated from the filtrate is discharged from the waste liquid discharge port 20c.
 濃縮器20には、濃縮液チューブ4を介して濃縮液バッグCBが接続されている。濃縮液チューブ4は、濃縮器20で濃縮された濃縮液を濃縮液バッグCBに供給するチューブであり、一端が濃縮器20の濃縮液排出口20bに接続されており、他端が濃縮液バッグCBに接続されている。この濃縮液チューブ4には、濃縮液チューブ4内における液体の流れを停止開放する、例えば、クレンメやクリップ等の流量調整手段4cが設けられている。 A concentrated liquid bag CB is connected to the concentrator 20 via a concentrated liquid tube 4 . The concentrated liquid tube 4 is a tube that supplies the concentrated liquid concentrated by the concentrator 20 to the concentrated liquid bag CB. One end of the concentrated liquid tube 4 is connected to the concentrated liquid outlet 20b of the concentrator 20. connected to CB. The concentrated liquid tube 4 is provided with a flow rate adjusting means 4c such as a clamp or a clip for stopping and releasing the flow of the liquid in the concentrated liquid tube 4 .
 また、濃縮器20には、廃液チューブ5を介して廃液バッグDBが接続されている。廃液チューブ5は、濃縮器20で濃縮液から分離された廃液を廃液バッグDBに供給するチューブであり、一端が濃縮器20の廃液排出口20cに接続されており、他端が廃液バッグDBに接続されている。この廃液チューブ5には、廃液チューブ5内における液体の流れを停止開放する、例えば、クレンメやクリップ等の流量調整手段5cが設けられている。 A waste liquid bag DB is also connected to the concentrator 20 via the waste liquid tube 5 . The waste liquid tube 5 is a tube that supplies the waste liquid separated from the concentrated liquid in the concentrator 20 to the waste liquid bag DB. It is connected. The waste liquid tube 5 is provided with a flow rate adjusting means 5c such as a clamp or a clip for stopping and releasing the flow of the liquid in the waste liquid tube 5 .
 以上のごとき構成であるので、本実施形態の原液処理装置1では、給液チューブ2を介して原液バッグUBから原液を濾過器10に供給すれば、濾過器10で原液を濾過して濾過液を生成することができる。また、濾過液供給チューブ3を介して生成された濾過液を濃縮器20に供給すれば、濃縮器20によって濃縮液を生成することができる。そして、濃縮液チューブ4を介して生成された濃縮液を濃縮液バッグCBに回収することができ、濃縮液から分離された廃液を廃液バッグDBに回収することができる。 With the configuration as described above, in the undiluted solution processing apparatus 1 of the present embodiment, when the undiluted solution is supplied from the undiluted solution bag UB to the filter 10 through the feed tube 2, the undiluted solution is filtered by the filter 10 to obtain the filtrate. can be generated. Further, by supplying the generated filtrate to the concentrator 20 through the filtrate supply tube 3, the concentrator 20 can generate a concentrated liquid. The concentrated liquid generated through the concentrated liquid tube 4 can be collected in the concentrated liquid bag CB, and the waste liquid separated from the concentrated liquid can be collected in the waste liquid bag DB.
 以下、本実施形態の原液処理装置1による作業を説明する。 The work performed by the undiluted solution processing apparatus 1 of this embodiment will be described below.
<準備洗浄作業>
 本実施形態の原液処理装置1の準備洗浄作業では、まず、濾過液供給チューブ送液部3pの作動を停止し、全ての流量調整手段2c~6cによって、全てのチューブ2~6を閉塞する。圧力測定部10sは濾過器10のポート11bから取り外し、濾過器10のポート11bは濾過器接続コネクタ等によって閉塞する。
<Preparation cleaning work>
In the preparatory cleaning work of the undiluted solution processing apparatus 1 of the present embodiment, first, the operation of the filtrate supply tube liquid sending section 3p is stopped, and all the tubes 2-6 are closed by all the flow rate adjusting means 2c-6c. The pressure measuring part 10s is removed from the port 11b of the filter 10, and the port 11b of the filter 10 is closed with a filter connecting connector or the like.
 ついで、濾過器10および濃縮器20を濾過濃縮作業時の状態から反転させた状態とする。つまり、濾過器10のポート11bが下方に位置し濾過液排出ポート11cが上方に位置する状態、また、濃縮器20の濾過液供給口20aが下方に位置し濃縮液排出口20bが上方に位置する状態、とする(図2参照)。
 なお、準備洗浄作業の際に、濾過器10および濃縮器20は必ずしも濾過濃縮作業時の状態から反転させなくてもよい。
 また、準備洗浄作業における濾過器10および濃縮器20の姿勢は、洗浄液を流した際に濾過器10内および濃縮器20内を洗浄液によって洗浄できる姿勢であればよい。例えば、濾過器10や濃縮器20を、原液供給ポート11aや廃液排出口20cが上方を向いた姿勢、つまり、濾過器10や濃縮器20が水平や斜めになった姿勢で準備洗浄作業を行ってもよい。
Next, the filter 10 and the concentrator 20 are reversed from the state during the filtration and concentration operation. That is, the port 11b of the filter 10 is positioned downward and the filtrate discharge port 11c is positioned upward, and the filtrate supply port 20a of the concentrator 20 is positioned downward and the concentrated liquid discharge port 20b is positioned upward. (See FIG. 2).
Note that the filter 10 and the concentrator 20 do not necessarily have to be reversed from the state during the filtration and concentration work during the preparatory cleaning work.
Moreover, the posture of the filter 10 and the concentrator 20 in the preparatory cleaning work may be any posture as long as the inside of the filter 10 and the inside of the concentrator 20 can be cleaned with the cleaning liquid when the cleaning liquid is poured. For example, the filter 10 and the concentrator 20 are placed in a posture in which the undiluted solution supply port 11a and the waste liquid outlet 20c face upward, that is, the filter 10 and the concentrator 20 are placed horizontally or diagonally during the preparatory cleaning work. may
 そして、濃縮液チューブ4の他端に濃縮液バッグCBに代えて洗浄液回収バッグFBを接続し、廃液チューブ5の他端に廃液バッグDBに代えて洗浄液回収バッグFBを接続する(図2参照)。なお、濃縮液チューブ4の他端は、単なるバケツなどに配置してもよい。また、廃液チューブ5の他端は、廃液バッグDBを接続したままとしてもよいし、単なるバケツなどに配置してもよい。
 また、給液チューブ2の他端には、原液バッグUBに代えて洗浄液バッグSBを接続する(図2参照)。
Then, a cleaning liquid recovery bag FB is connected to the other end of the concentrated liquid tube 4 instead of the concentrated liquid bag CB, and a cleaning liquid recovery bag FB is connected to the other end of the waste liquid tube 5 instead of the waste liquid bag DB (see FIG. 2). . The other end of the concentrated liquid tube 4 may be placed in a simple bucket or the like. Further, the other end of the waste liquid tube 5 may be left connected to the waste liquid bag DB, or may be placed in a simple bucket or the like.
In place of the undiluted solution bag UB, a washing solution bag SB is connected to the other end of the solution supply tube 2 (see FIG. 2).
 最後に、流量調整手段2c~4cによって、チューブ2~4内を液体が流れることができる状態にする。なお、流量調整手段5cによって、廃液チューブ5内は液体が流れないように維持する。 Finally, the flow rate adjusting means 2c-4c allow the liquid to flow through the tubes 2-4. In addition, the inside of the waste liquid tube 5 is maintained so that the liquid does not flow by the flow rate adjusting means 5c.
 上記状態で、正方向に液体が流れるように濾過液供給チューブ送液部3pを作動する(図2参照)。すると、給液チューブ2に接続された洗浄液バッグSBから、給液チューブ2、濾過器10、濾過液供給チューブ3、濃縮器20、濃縮液チューブ4、の順に洗浄液が流れて、濃縮液チューブ4に接続された洗浄液回収バッグFBに洗浄液が回収される。 In the above state, operate the filtrate supply tube liquid sending part 3p so that the liquid flows in the forward direction (see FIG. 2). Then, the washing liquid flows from the washing liquid bag SB connected to the liquid feeding tube 2 to the liquid feeding tube 2, the filter 10, the filtered liquid feeding tube 3, the concentrator 20, and the concentrated liquid tube 4 in this order. The cleaning liquid is recovered in the cleaning liquid recovery bag FB connected to the .
 すると、濾過器10、濃縮器20において濃縮液が流れる流路、およびチューブ2~4に洗浄液を流すことができるので、濾過器10、濃縮器20において濃縮液が流れる流路、およびチューブ2~4を洗浄することができる。 Then, since the cleaning liquid can flow through the flow path of the concentrated liquid in the filter 10 and the concentrator 20 and the tubes 2 to 4, the flow path of the concentrated liquid in the filter 10 and the concentrator 20 and the tubes 2 to 4 4 can be washed.
 ついで、流量調整手段4cによって濃縮液チューブ4を閉塞し濃縮液チューブ4に液体が流れないようにした後、流量調整手段5cによって廃液チューブ5を開放して、廃液チューブ5に液体が流れるようにする。すると、濃縮器20において廃液が流れる流路に洗浄液を流すことができるので、濾過器10、濃縮器20において廃液が流れる流路、およびチューブ2、3、5を洗浄することができる。 Next, after the concentrated liquid tube 4 is blocked by the flow rate adjusting means 4 c to prevent the liquid from flowing into the concentrated liquid tube 4 , the waste liquid tube 5 is opened by the flow rate adjusting means 5 c so that the liquid flows through the waste liquid tube 5 . do. Then, since the cleaning liquid can flow through the flow path of the waste liquid in the concentrator 20, the filter 10, the flow path of the waste liquid in the concentrator 20, and the tubes 2, 3, and 5 can be washed.
 以上の作業を実施すれば、本実施形態の原液処理装置1全体(分岐チューブ6を除く)を準備洗浄することができる。 By carrying out the above work, the entire undiluted solution processing apparatus 1 of this embodiment (excluding the branch tube 6) can be preparatory and washed.
 なお、準備洗浄作業の際には、分岐チューブ6を濾過液供給チューブ3から取り外していてもよいが(図2参照)、分岐チューブ6を接続したままで、準備洗浄作業を行ってもよい。すると、準備洗浄作業の途中で流量調整手段6cによって分岐チューブ6内を液体が流れることができるようにすれば、分岐チューブ6も洗浄液によって洗浄することができる。この場合には、分岐チューブ6の他端には、濃縮液バッグCBに代えて洗浄液回収バッグFBを接続したり単なるバケツなどに配置したりしておけばよい。準備洗浄作業の際に分岐チューブ6を濾過液供給チューブ3から取り外した場合でも、準備洗浄作業の途中で分岐チューブ6を濾過液供給チューブ3に接続すれば、流量調整手段6cによって分岐チューブ6内を液体が流れることができるようにすることで、分岐チューブ6を洗浄液によって洗浄することができる。 Although the branch tube 6 may be removed from the filtrate supply tube 3 during the preparatory cleaning work (see FIG. 2), the preparatory cleaning work may be performed with the branch tube 6 connected. Then, by allowing the liquid to flow through the branch tube 6 by means of the flow rate adjusting means 6c during the preparatory cleaning work, the branch tube 6 can also be cleaned with the cleaning liquid. In this case, instead of the concentrated solution bag CB, the other end of the branch tube 6 may be connected to the cleaning solution recovery bag FB or placed in a simple bucket or the like. Even if the branch tube 6 is removed from the filtrate supply tube 3 during the preparatory washing work, if the branch tube 6 is connected to the filtrate supply tube 3 during the preparatory washing work, the inside of the branch tube 6 will be controlled by the flow rate adjusting means 6c. By allowing the liquid to flow through, the branch tube 6 can be washed with the washing liquid.
 上記説明のように、濃縮液チューブ4と廃液チューブ5のいずれか一方のみに洗浄液を流して準備洗浄を行ってもよいが、濃縮液チューブ4と廃液チューブ5の両方に同時に洗浄液を流して準備洗浄を行ってもよい。この場合には、流量調整手段4cと流量調整手段5cは両方が開放された状態で準備洗浄が実施される(図2参照)。 As described above, preparatory washing may be performed by flowing the washing liquid only through either the concentrated liquid tube 4 or the waste liquid tube 5, but the washing liquid may be flowed through both the concentrated liquid tube 4 and the waste liquid tube 5 at the same time. Washing may be performed. In this case, the preparatory cleaning is performed with both the flow rate adjusting means 4c and the flow rate adjusting means 5c opened (see FIG. 2).
 また、上記例では、濾過器10から濃縮器20に向かって洗浄液を流して準備洗浄を行う場合を説明したが、濃縮器20から濾過器10に向かって洗浄液を流して準備洗浄を行ってもよい。この場合には、給液チューブ2の他端に原液バッグUBに代えて洗浄液回収バッグFB(または単なるバケツ等)を接続し、濃縮液チューブ4の他端に濃縮液バッグCBに代えて洗浄液バッグSBを接続し、廃液チューブ5の他端に廃液バッグDBに代えて洗浄液バッグSBを接続する。その状態で、逆方向に液体が流れるように濾過液供給チューブ送液部3pを作動すれば、濃縮器20から濾過器10に向かって洗浄液を流して準備洗浄を行うことができる。なお、この方法で準備洗浄を行う場合には、準備洗浄作業の途中で、洗浄液を供給する洗浄液バッグSBを、濃縮液チューブ4の他端だけが接続された洗浄液バッグSBとしたり、廃液チューブ5の他端だけが接続された洗浄液バッグSBとしたりしてもよい。また、濃縮液チューブ4の他端だけが接続された洗浄液バッグSBと廃液チューブ5の他端だけが接続された洗浄液バッグSBの両方の洗浄液バッグSBから洗浄液を供給してもよい。また、濃縮液チューブ4の他端と廃液チューブ5の他端のいずれか一方に洗浄液バッグSBを接続し、他方のチューブの他端は洗浄液回収バッグFB(または単なるバケツ等)に接続するようにしてもよい。 In the above example, the cleaning liquid is flowed from the filter 10 toward the concentrator 20 to perform preparatory cleaning. good. In this case, instead of the undiluted solution bag UB, the other end of the liquid supply tube 2 is connected to a cleaning solution recovery bag FB (or a simple bucket or the like), and to the other end of the concentrated solution tube 4 is connected a cleaning solution bag instead of the concentrated solution bag CB. SB is connected, and the washing liquid bag SB is connected to the other end of the waste liquid tube 5 in place of the waste liquid bag DB. In this state, if the filtrate supply tube liquid sending part 3p is operated so that the liquid flows in the opposite direction, the washing liquid can flow from the concentrator 20 toward the filter 10 to perform preparatory washing. When preparatory cleaning is performed by this method, the cleaning liquid bag SB to which only the other end of the concentrated liquid tube 4 is connected may be used as the cleaning liquid bag SB to which the cleaning liquid is supplied during the preparatory cleaning work. The washing liquid bag SB may be connected only to the other end of the . Also, the cleaning liquid may be supplied from both the cleaning liquid bag SB to which only the other end of the concentrated liquid tube 4 is connected and the cleaning liquid bag SB to which only the other end of the waste liquid tube 5 is connected. Also, the cleaning solution bag SB is connected to either the other end of the concentrated solution tube 4 or the other end of the waste solution tube 5, and the other end of the other tube is connected to the cleaning solution collection bag FB (or a simple bucket or the like). may
 また、準備洗浄作業の間、濾過器10および濃縮器20の姿勢は一定の姿勢に保持してもよいが、準備洗浄作業の途中で、濾過器10や濃縮器20を反転させてもよい。例えば、準備洗浄作業の開始時は濾過濃縮作業を実施する状態と同じ姿勢で濾過器10および濃縮器20を保持しておき、準備洗浄作業の途中で、濾過器10と濃縮器20の両方またはいずれか一方を準備洗浄作業の開始時の姿勢から反転させてもよい。また、準備洗浄作業の開始時に、濾過濃縮作業を実施する状態から反転させた姿勢で濾過器10および濃縮器20を保持しておき、準備洗浄作業の途中で、濾過器10と濃縮器20の両方またはいずれか一方を準備洗浄作業の開始時の姿勢から反転させてもよい。さらに、準備洗浄作業の開始時は、濾過器10と濃縮器20のいずれか一方を濾過濃縮作業を実施する状態と同じ姿勢で保持し、他方を濾過濃縮作業を実施する状態から反転させた姿勢で保持しておき、準備洗浄作業の途中で、濾過器10と濃縮器20の両方またはいずれか一方を準備洗浄作業の開始時の姿勢から反転させてもよい。もちろん、準備洗浄作業の途中で、必要に応じて、濾過器10および濃縮器20を複数回反転させてもよい。 In addition, the postures of the filter 10 and the concentrator 20 may be kept constant during the preparatory cleaning work, but the filter 10 and the concentrator 20 may be reversed during the preparatory cleaning work. For example, at the start of the preparatory cleaning work, the filter 10 and the concentrator 20 are held in the same posture as the state in which the filtration and concentration work is performed, and in the middle of the preparatory cleaning work, both the filter 10 and the concentrator 20 or Either one may be reversed from the posture at the start of the preparatory cleaning work. Further, at the start of the preparatory cleaning work, the filter 10 and the concentrator 20 are held in an inverted position from the state in which the filtration and concentration work is being performed, and the filter 10 and the concentrator 20 are held in the middle of the preparatory cleaning work. Either or both may be reversed from the position at the start of the preparatory cleaning operation. Furthermore, at the start of the preparatory cleaning work, one of the filter 10 and the concentrator 20 is held in the same posture as the state in which the filtration and concentration work is carried out, and the other is turned over from the state in which the filtration and concentration work is carried out. and either or both of the filter 10 and the concentrator 20 may be reversed from the attitude at the start of the preparatory cleaning work in the middle of the preparatory cleaning work. Of course, filter 10 and concentrator 20 may be inverted multiple times during the preparatory cleaning operation, if desired.
 また、濾過器10が2つの原液供給ポート11aを有する場合には、濾過器10の濾過部材の表面(外圧濾過法では中空糸膜の外面)、つまり、原液が供給される側の面や濾過器10において原液が供給される側の空間を準備洗浄してもよい。この場合、給液チューブ2の他端に原液バッグUBに代えて洗浄液バッグSBを接続し、給液チューブ2が接続されていない原液供給ポート11aに洗浄液回収チューブ7の一端を接続し、洗浄液回収チューブ7の他端を洗浄液回収バッグFB(または単なるバケツ等)に接続する。すると、浄液バッグSBから洗浄液を供給すれば、濾過器10において原液が供給される側の空間内に、濾過部材において原液が供給される側の面(外圧濾過法では中空糸膜の外面)に沿って洗浄液を流すことができる。したがって、濾過器10の濾過部材において原液が供給される側の面(外圧濾過法では中空糸膜の外面)や濾過器10において原液が供給される側の空間を準備洗浄することができる。この準備洗浄作業、つまり、濾過器10の濾過部材の表面を準備洗浄する場合には、洗浄液バッグSBを洗浄液回収バッグFB(または単なるバケツ等)よりも高い位置に配置すれば、重力(落差)によって洗浄液を流すことができる。しかし、洗浄液を流す方法は重力による方法に限られず、ポンプなどで洗浄液を流してもよい。例えば、給液チューブ2や洗浄液回収チューブ7にポンプを配置して送液を行ったり、洗浄液回収チューブ7の他端に吸引器を配置して吸引を行ったりして、濾過器10において原液が供給される側の空間内や濾過部材において原液が供給される側の面(外圧濾過法では中空糸膜の外面)の準備洗浄を行ってもよい。 Further, when the filter 10 has two stock solution supply ports 11a, the surface of the filter member of the filter 10 (the outer surface of the hollow fiber membrane in the external pressure filtration method), that is, the surface on the side to which the stock solution is supplied and the filtration The space on the side of the container 10 to which the stock solution is supplied may be preliminarily washed. In this case, a cleaning solution bag SB is connected to the other end of the solution supply tube 2 instead of the undiluted solution bag UB, and one end of the cleaning solution recovery tube 7 is connected to the undiluted solution supply port 11a to which the solution supply tube 2 is not connected. The other end of the tube 7 is connected to a washing liquid collection bag FB (or simply a bucket or the like). Then, when the cleaning liquid is supplied from the liquid purification bag SB, the surface of the filtering member to which the undiluted liquid is supplied (the outer surface of the hollow fiber membrane in the external pressure filtration method) is inserted into the space of the filter 10 to which the undiluted liquid is supplied. The cleaning liquid can flow along the Therefore, the surface of the filter member of the filter 10 to which the stock solution is supplied (the outer surface of the hollow fiber membrane in the external pressure filtration method) and the space of the filter 10 to which the stock solution is supplied can be preliminarily washed. In this preparatory washing operation, that is, in the case of preparatory washing of the surface of the filtering member of the filter 10, if the washing liquid bag SB is arranged at a position higher than the washing liquid collection bag FB (or a simple bucket or the like), gravity (drop) The washing liquid can be flowed by However, the method of flowing the cleaning liquid is not limited to the gravitational method, and the cleaning liquid may be flowed by a pump or the like. For example, a pump may be arranged in the liquid supply tube 2 or the cleaning liquid recovery tube 7 to feed the liquid, or an aspirator may be arranged in the other end of the cleaning liquid recovery tube 7 to suck the stock liquid in the filter 10. Preliminary cleaning may be performed in the space on the supply side or in the surface of the filter member on the side to which the undiluted solution is supplied (the outer surface of the hollow fiber membrane in the external pressure filtration method).
<濾過作業>
 準備洗浄作業が終了すると、濾過作業が実施される。
<Filtration work>
After the preparatory cleaning work is completed, the filtering work is performed.
 準備洗浄作業が終了すると、図1に示す構成の回路(図3に示す回路)に調整される。 When the preparatory cleaning work is completed, the circuit is adjusted to the configuration shown in FIG. 1 (the circuit shown in FIG. 3).
 まず、一旦、全ての流量調整手段2c~6cによって全てのチューブ2~6を閉塞し、全てのチューブ2~6を液体が流れない状態にする。 First, all the tubes 2 to 6 are once blocked by all the flow rate adjusting means 2c to 6c to prevent liquid from flowing through all the tubes 2 to 6.
 ついで、濾過器10および濃縮器20を準備洗浄の状態から反転させて、濾過濃縮作業を実施する状態に戻す(準備洗浄で濾過器10および濃縮器20を反転させていない場合にはそのままの状態を維持する)。濾過器10のポート11bには圧力測定部10sを接続する。 Next, the filter 10 and the concentrator 20 are reversed from the preparatory cleaning state to return to the state of performing the filtration and concentration work (if the filter 10 and the concentrator 20 are not reversed in the preparatory cleaning, they are left as they are). ). A port 11b of the filter 10 is connected to a pressure measuring section 10s.
 さらに、準備洗浄作業の状態から、濃縮液チューブ4の他端には洗浄液回収バッグFBに代えて濃縮液バッグCBが接続され、廃液チューブ5の他端には洗浄液回収バッグFBに代えて廃液バッグDBが接続される。なお、廃液チューブ5の他端は、廃液バッグDBに代えてバケツなどに配置してもよい。 Further, from the state of the preparatory cleaning work, the concentrated liquid bag CB is connected to the other end of the concentrated liquid tube 4 instead of the cleaning liquid recovery bag FB, and the other end of the waste liquid tube 5 is connected to a waste liquid bag instead of the cleaning liquid recovery bag FB. DB is connected. The other end of the waste liquid tube 5 may be placed in a bucket instead of the waste liquid bag DB.
 なお、濃縮液バッグCBは、濃縮器20の濃縮液排出口20bより排出される濃縮液を重力だけでも濃縮液バッグCBに供給できるようにするために、濃縮器20の濃縮液排出口20bより下方に配置することが望ましい。しかし、濾過液供給チューブ送液部3pの送液圧等によって濃縮液を濃縮液バッグCBに供給できるのであれば、濃縮液バッグCBの高さは、濃縮器20の濃縮液排出口20bと同じ高さに配置してもよいし、濃縮器20の濃縮液排出口20bよりも高い位置に配置してもよい。 In addition, the concentrated liquid bag CB is configured so that the concentrated liquid discharged from the concentrated liquid outlet 20b of the concentrator 20 can be supplied to the concentrated liquid bag CB only by gravity. It is desirable to place it downwards. However, if the concentrated liquid can be supplied to the concentrated liquid bag CB by the liquid feeding pressure of the filtrate supply tube liquid feeding section 3p, etc., the height of the concentrated liquid bag CB is the same as the concentrated liquid discharge port 20b of the concentrator 20. It may be arranged at a height, or may be arranged at a position higher than the concentrated liquid outlet 20 b of the concentrator 20 .
 また。廃液バッグDBも、濃縮器20の廃液排出口20cより排出される廃液を重力だけでも廃液バッグDBに供給できるようにするために、濃縮器20の廃液排出口20cより下方に配置することが望ましい。しかし、濾過液供給チューブ送液部3pの送液圧等によって廃液を廃液バッグDBに供給できるのであれば、廃液バッグDBの高さは、濃縮器20の廃液排出口20cと同じ高さに配置してもよいし、濃縮器20の廃液排出口20cよりも高い位置に配置してもよい。 again. The waste liquid bag DB is also desirably arranged below the waste liquid discharge port 20c of the concentrator 20 so that the waste liquid discharged from the waste liquid discharge port 20c of the concentrator 20 can be supplied to the waste liquid bag DB only by gravity. . However, if the waste liquid can be supplied to the waste liquid bag DB by the liquid feeding pressure of the filtrate supply tube liquid feeding section 3p, etc., the height of the waste liquid bag DB is arranged at the same height as the waste liquid discharge port 20c of the concentrator 20. Alternatively, it may be arranged at a position higher than the waste liquid discharge port 20c of the concentrator 20 .
 給液チューブ2には、洗浄液バッグSBに代えて原液バッグUBが接続され、分岐チューブ6の他端は、濃縮液チューブ4の他端が接続されている濃縮液バッグCBに接続される。なお、給液チューブ2に接続された原液バッグUBは、濾過器10の原液供給ポート11aよりも高い位置に設置する。つまり、重力だけでも原液バッグUB内の原液が濾過器10の原液供給ポート11aに供給されるように原液バッグUBを配置する。また、濃縮液バッグCBは、濾過液供給チューブ3から供給される濾過液を重力だけでも分岐チューブ6を通して濃縮液バッグCBに供給できるようにするために、濾過液供給チューブ3と分岐チューブ6との接続位置よりも下方に配置することが望ましい。 The undiluted solution bag UB is connected to the liquid supply tube 2 instead of the cleaning solution bag SB, and the other end of the branch tube 6 is connected to the concentrated solution bag CB to which the other end of the concentrated solution tube 4 is connected. The undiluted solution bag UB connected to the supply tube 2 is installed at a position higher than the undiluted solution supply port 11 a of the filter 10 . That is, the undiluted solution bag UB is arranged so that the undiluted solution in the undiluted solution bag UB is supplied to the undiluted solution supply port 11a of the filter 10 only by gravity. In addition, the concentrated liquid bag CB is provided with the filtrate supplying tube 3 and the branch tube 6 so that the filtrate supplied from the filtrate supplying tube 3 can be supplied to the concentrated liquid bag CB through the branch tube 6 only by gravity. It is desirable to arrange it below the connection position of .
 そして、流量調整手段3c~6cによってチューブ3~6内を液体が流れることができる状態とする。なお、濾過液供給チューブ3に設けられた濾過液供給チューブ送液部3pは作動を停止した状態に維持されるため、濾過液供給チューブ3において分岐部チューブ6の接続位置よりも下流には液体が流れない状態に維持される。 Then, a state is established in which the liquid can flow through the tubes 3 to 6 by the flow rate adjusting means 3c to 6c. In addition, since the filtrate supply tube liquid feeding part 3p provided in the filtrate supply tube 3 is maintained in a state where the operation is stopped, liquid is maintained in a non-flowing state.
 上記状態とすると、流量調整手段2cが開放され、給液チューブ2を通して原液バッグUBから濾過器10に原液が供給され、供給された原液は濾過器10において濾過され濾過液が生成される。濾過器10で生成された濾過液は、濾過液供給チューブ3と分岐チューブ6とを通して濃縮液バッグCBに供給される。つまり、重力だけで原液が給液チューブ2、濾過器10、濾過液供給チューブ3、分岐チューブ6の順に流れて、原液が濾過された濾過液が生成され、濾過液が濃縮液バッグCBに回収される。 In the above state, the flow rate adjusting means 2c is opened, the undiluted liquid is supplied from the undiluted liquid bag UB to the filter 10 through the liquid supply tube 2, and the supplied undiluted liquid is filtered in the filter 10 to generate filtrate. The filtrate produced by the filter 10 is supplied to the concentrate bag CB through the filtrate supply tube 3 and the branch tube 6 . In other words, the undiluted solution flows through the supply tube 2, the filter 10, the filtrate supply tube 3, and the branch tube 6 in this order only by gravity, and the filtrate is generated by filtering the undiluted solution, and the filtrate is collected in the concentrated solution bag CB. be done.
 このような重力によって原液が流れて濾過される状態(以下、重力濾過という場合がある)では、粘度が低い原液を濾過する場合には原液の濾過処理を速くできる。つまり、濾過液供給チューブ送液部3pにより濾過器10に送液を行うに比べて、各チューブや濾過器10を原液が流れる速度を速くできる(つまり流量を大きくできる)ので、濾過器10における原液の濾過処理を速くできる。 In such a state where the stock solution flows and is filtered by gravity (hereinafter sometimes referred to as gravity filtration), the filtration process of the stock solution can be accelerated when filtering a stock solution with low viscosity. That is, compared to sending liquid to the filter 10 by the filtrate supply tube liquid sending unit 3p, the speed at which the stock solution flows through each tube and the filter 10 can be increased (that is, the flow rate can be increased). Filtration of stock solution can be done quickly.
<濾過濃縮作業>
 通常、原液バッグUBの容量、言い換えれば、原液バッグUBに収容されている原液の量は、濃縮液バッグCBの容量よりも大きい。例えば、一般的な癌もしくは肝硬変による胸腹水の場合、原液バッグUBには3L程度の量が収容されているが、濃縮液バッグCBの容量は一般的には1L程度である。このため、上述した濾過作業を実施していると、作業の途中で、濾過器10から分岐チューブ6を通して濃縮液バッグCBに供給される濾過液の総量が濃縮液バッグCBの容量を越えてしまう。すると、濾過液が濃縮液バッグCBに供給できなくなり、濾過作業が停止してしまう。
<Filtration concentration work>
Normally, the capacity of the concentrate bag UB, in other words the amount of concentrate contained in the concentrate bag UB, is greater than the capacity of the concentrate bag CB. For example, in the case of general pleural and ascites caused by cancer or liver cirrhosis, the undiluted solution bag UB contains about 3 L, while the concentrated solution bag CB generally has a capacity of about 1 L. Therefore, when the above-described filtering work is performed, the total amount of filtrate supplied from the filter 10 to the concentrated liquid bag CB through the branch tube 6 exceeds the capacity of the concentrated liquid bag CB during the work. . Then, the filtered liquid cannot be supplied to the concentrated liquid bag CB, and the filtering operation stops.
 本実施形態の原液処理装置1では、濾過作業を開始してから一定時間経過した場合には、制御部30によって濾過液供給チューブ3内を正方向に液体が流れるように濾過液供給チューブ送液部3pが作動される。すると、濾過液の一部(または全部)が濾過液供給チューブ3を通して濃縮器20に供給され、濾過液は濃縮器20において濃縮される。つまり、濾過器10による濾過作業と同時に、濃縮器20における濾過液の濃縮作業を実施することができる(図4参照)。なお、濾過液供給チューブ送液部3pの作動を開始するタイミングは作業者が指示してもよい。例えば、作業者によって濾過液供給チューブ送液部3pの作動指示を入力して、濾過液供給チューブ3内を正方向に液体が流れるように濾過液供給チューブ送液部3pを作動してもよい。 In the undiluted solution processing apparatus 1 of the present embodiment, when a certain period of time has passed since the filtration operation was started, the control unit 30 causes the liquid to flow forward through the filtrate supply tube 3 . Part 3p is activated. A part (or all) of the filtrate is then supplied to the concentrator 20 through the filtrate supply tube 3 and the filtrate is concentrated in the concentrator 20 . In other words, it is possible to concentrate the filtrate in the concentrator 20 at the same time as the filtering operation by the filter 10 (see FIG. 4). The operator may instruct the timing of starting the operation of the filtrate supply tube liquid sending unit 3p. For example, an operator may input an operation instruction for the filtrate supply tube liquid-feeding unit 3p to operate the filtrate-supply tube liquid-feeding unit 3p so that the liquid flows in the forward direction in the filtrate supply tube 3. .
<濃縮液バッグCBの容量を越える前に濾過液供給チューブ送液部3pが作動する場合>
 ここで、制御部30(または作業者)によって濾過液供給チューブ送液部3pが作動されるタイミングが、濾過器10から分岐チューブ6を通して濃縮液バッグCBに供給された濾過液の総量が濃縮液バッグCBの容量を越える前であれば、濾過液供給チューブ送液部3pの作動状態、つまり、濾過液供給チューブ送液部3pの送液量に応じて、以下のように濾過濃縮が進行する。
<When the filtrate supply tube liquid sending unit 3p operates before the capacity of the concentrated liquid bag CB is exceeded>
Here, the timing at which the control unit 30 (or the operator) operates the filtrate supply tube liquid sending unit 3p is the total amount of the filtrate supplied from the filter 10 through the branch tube 6 to the concentrate bag CB. Before exceeding the capacity of the bag CB, filtration concentration proceeds as follows depending on the operating state of the filtrate supply tube liquid-feeding unit 3p, that is, the amount of liquid fed by the filtrate supply tube liquid-feeding unit 3p. .
A)濾過液供給チューブ送液部3pの送液量が濾過液の流量よりも多い場合(図1参照)
 まず、濾過液供給チューブ送液部3pの送液量が濾過器10から濾過液供給チューブ3に供給される濾過液の流量よりも多い場合には、濃縮液バッグCB内の濾過液が吸い出される。つまり、濾過器10から供給される濾過液とともに濃縮液バッグCB内から吸い出された濾過液が濃縮器20に供給される。すると、濃縮液バッグCBから吸い出される濾過液と、濃縮器20から供給される濃縮液の差の分だけ、濃縮液バッグCBには液体(濾過液と濃縮液)が貯留されていく。すると、濃縮液バッグCB内から吸い出される液体には濾過液と濃縮液の両方が含まれる状態となり、濃縮器20には、濾過液と濃縮液とが供給される状態になるので、濃縮器20では、濾過液の濃縮と濃縮液の再濃縮が同時に実施されることになる。つまり、濾過液を濃縮しつつ、濃縮液を循環させながら再濃縮することができる。そして、原液を重力で濾過器10に供給しながら濾過濃縮を実施できるので、濾過作業の速度を速くしつつ濾過液の濃縮(および濃縮液の再濃縮)を実施できる。したがって、濾過濃縮作業を効果的に実施することができる。
A) When the amount of liquid fed from the liquid feed section 3p of the filtrate supply tube is greater than the flow rate of the filtrate (see FIG. 1)
First, when the amount of liquid sent from the liquid feed unit 3p of the filtrate supply tube is larger than the flow rate of the filtrate supplied from the filter 10 to the filtrate supply tube 3, the filtrate in the concentrated liquid bag CB is sucked out. be In other words, the filtrate sucked out of the concentrate bag CB is supplied to the concentrator 20 together with the filtrate supplied from the filter 10 . Then, liquid (filtrate and concentrate) is stored in the concentrate bag CB by the difference between the filtrate sucked out from the concentrate bag CB and the concentrate supplied from the concentrator 20 . Then, the liquid sucked out from the concentrated liquid bag CB contains both the filtrate and the concentrated liquid, and the concentrator 20 is supplied with the filtrate and the concentrated liquid. At 20, concentration of the filtrate and reconcentration of the concentrate will be performed simultaneously. In other words, it is possible to re-concentrate while concentrating the filtrate and circulating the concentrate. Since the filtration and concentration can be performed while the stock solution is being supplied to the filter 10 by gravity, the filtrate can be concentrated (and the concentrate can be re-concentrated) while increasing the speed of the filtration operation. Therefore, the filtration and concentration work can be effectively carried out.
 やがて、濃縮液バッグCBが満杯になるが、濃縮液バッグCBが満杯になると、濃縮器20に液体を供給する抵抗が大きくなる。すると、圧力測定部3sが検出する濾過液供給チューブ3内の圧力(以下では濃縮器膜間差圧という)が上昇する。濃縮器膜間差圧は制御部30に送信されているので、濃縮器膜間差圧が所定の圧力、例えば、濃縮器20が許容する最大の濃縮器膜間差圧(以下では許容濃縮器膜間差圧という)となると、制御部30によって、濾過液供給チューブ送液部3pは、濃縮器膜間差圧が許容濃縮器膜間差圧と同等またはそれよりも低い圧力を維持する送液量となるように、その作動が制御される。 Eventually, the concentrated liquid bag CB becomes full, but when the concentrated liquid bag CB becomes full, the resistance to supply the liquid to the concentrator 20 increases. Then, the pressure in the filtrate supply tube 3 detected by the pressure measuring unit 3s (hereinafter referred to as the concentrator transmembrane pressure difference) rises. Since the concentrator transmembrane pressure is transmitted to the control unit 30, the concentrator transmembrane pressure is a predetermined pressure, for example, the maximum concentrator transmembrane pressure that the concentrator 20 allows ), the control unit 30 controls the filtrate supply tube liquid sending unit 3p so that the concentrator transmembrane pressure is maintained at a pressure equal to or lower than the permissible concentrator transmembrane pressure. Its actuation is controlled so as to be the liquid volume.
 なお、濃縮器膜間差圧が許容濃縮器膜間差圧と同等またはそれよりも低い圧力を維持する送液量となるように濾過液供給チューブ送液部3pの作動が制御されている場合でも、濾過液供給チューブ送液部3pの送液量が濾過器10から供給される濾過液の流量よりも多い場合には、濾過濃縮と再濃縮を同時に実施することができる。 In addition, when the operation of the filtrate supply tube liquid sending part 3p is controlled so that the transmembrane pressure of the concentrator maintains a pressure equal to or lower than the permissible transmembrane pressure of the concentrator. However, when the amount of liquid sent from the liquid-sending portion 3p of the filtrate supply tube is larger than the flow rate of the filtrate supplied from the filter 10, filtration concentration and re-concentration can be performed at the same time.
B)濾過液供給チューブ送液部3pの送液量が濾過液の流量よりも少ない場合(図4参照)
 一方、濾過液供給チューブ送液部3pの送液量が濾過器10から濾過液供給チューブ3に供給される濾過液の流量よりも少ない場合には、濾過器10から濾過液供給チューブ3に供給される濾過液は、一部が濾過液供給チューブ送液部3pに供給され、一部は分岐チューブ6を通って濃縮液バッグCBに供給される。つまり、原液を重力で濾過器10に供給しながら濾過濃縮を実施できるので、原液の粘度が低い状態であれば、濾過作業の速度を速くしつつ、濾過液の濃縮作業を実施できる。したがって、濾過濃縮作業を効果的に実施することができる。この場合、濾過器10から分岐チューブ6を通って供給される濾過液の量と濃縮器20から供給される濃縮液の量とを併せた分だけ、濃縮液バッグCBには液体(濾過液と濃縮液)が貯留されていく。
B) When the amount of liquid fed from the liquid feed unit 3p of the filtrate supply tube is smaller than the flow rate of the filtrate (see FIG. 4)
On the other hand, when the flow rate of the filtrate supplied from the filter 10 to the filtrate supply tube 3 is smaller than the flow rate of the filtrate supplied from the filter 10 to the filtrate supply tube 3, the filtrate is supplied from the filter 10 to the filtrate supply tube 3. A part of the filtered liquid is supplied to the filtered liquid supply tube liquid sending section 3p, and a part of the filtered liquid is supplied to the concentrated liquid bag CB through the branch tube 6. That is, since the filtration and concentration can be performed while the stock solution is being supplied to the filter 10 by gravity, if the viscosity of the stock solution is low, the filtration speed can be increased while concentrating the filtrate. Therefore, the filtration and concentration work can be effectively carried out. In this case, liquid (filtrate and concentrated liquid) is stored.
 やがて、濃縮液バッグCBが満杯になるが、濃縮液バッグCBが満杯になると、濾過器10から濃縮液バッグCBには濾過液が流れなくなる。すると、濃縮器20において廃液として排出される液体(水分)の分だけ、濾過器10から濾過液供給チューブ送液部3pに濾過液が供給される状態になる。この場合、濾過液供給チューブ送液部3pの流量によって濾過量や濃縮量が制限されることになるが、濾過液供給チューブ送液部3pは、送液量が可能な範囲の最大流量となるように、制御部30によってその作動が制御される。つまり、濃縮器膜間差圧が許容濃縮器膜間差圧と同等またはそれよりも低い圧力を維持する送液量であって、濃縮液バッグCB内に貯留される濾過液と濃縮液の総量が濃縮液バッグCBの総量を越えない最大流量の送液量となるように、制御部30によって濾過液供給チューブ送液部3pの作動が制御される。 Eventually, the concentrated liquid bag CB becomes full, but when the concentrated liquid bag CB becomes full, filtrate stops flowing from the filter 10 to the concentrated liquid bag CB. Then, the liquid (moisture) discharged as waste liquid from the concentrator 20 is supplied from the filter 10 to the liquid feed section 3p of the filtrate supply tube. In this case, the amount of filtration and the amount of concentration are limited by the flow rate of the liquid feed section 3p of the filtrate supply tube, but the liquid feed section 3p of the filtrate supply tube has the maximum flow rate in the range in which the liquid feed amount is possible. As such, the operation is controlled by the control unit 30 . In other words, the total amount of the filtrate and the concentrate stored in the concentrate bag CB is the liquid transfer amount that maintains the transmembrane pressure of the concentrator equal to or lower than the allowable transmembrane pressure of the concentrator. The control unit 30 controls the operation of the filtrate supply tube liquid feed unit 3p so that the liquid feed amount of the maximum flow rate does not exceed the total amount of the concentrated liquid bag CB.
 なお、この状態では、原液の濾過作業と濾過液の濃縮作業を同時に実施できるが、濾過濃縮と濃縮液の再濃縮とを同時に実施することはできない。また、濃縮液バッグCB内の濾過液の濃縮も行うことができない。したがって、濃縮液バッグCB内の濾過液の濃縮と濃縮液の再濃縮を実施する場合には、濾過液供給チューブ送液部3pの送液量が濾過器10から濾過液供給チューブ3に供給される濾過液の流量よりも多くなるように濾過液供給チューブ送液部3pの作動を切り替えるか、または、原液バッグUB内の原液の処理が終了したのち、後述する再濃縮作業を実施すればよい。 In this state, the filtration operation of the undiluted solution and the concentration operation of the filtrate can be performed at the same time, but the filtration concentration and the re-concentration of the concentrate cannot be performed at the same time. Also, the filtrate in the concentrate bag CB cannot be concentrated. Therefore, when concentrating the filtrate in the concentrated solution bag CB and re-concentrating the concentrated solution, the amount of liquid sent from the filtrate supply tube liquid sending unit 3p is supplied from the filter 10 to the filtrate supply tube 3. Either the operation of the filtrate supply tube liquid sending part 3p is switched so that the flow rate of the filtrate becomes higher than the flow rate of the filtrate, or the re-concentration operation described later can be performed after the processing of the undiluted solution in the undiluted solution bag UB is completed. .
<濃縮液バッグCBの容量を越えた後に濾過液供給チューブ送液部3pが作動する場合>
 制御部30(または作業者)によって濾過液供給チューブ送液部3pを作動するタイミングにおいて、濾過器10から分岐チューブ6を通して濃縮液バッグCBに供給された濾過液の総量が濃縮液バッグCBの容量を越えていたとする。言い換えれば、濃縮液バッグCBの容量を越えた後に制御部30(または作業者)が濾過液供給チューブ送液部3pを作動させる場合には、以下の送液量となるように、制御部30(または作業者)によって濾過液供給チューブ送液部3pの作動が制御される。つまり、制御部30(または作業者)によって、濃縮器膜間差圧が許容濃縮器膜間差圧と同等またはそれよりも低い圧力を維持する送液量であって、濃縮液バッグCB内に貯留される濾過液と濃縮液の総量が濃縮液バッグCBの総量を越えない最大流量の送液量となるように、濾過液供給チューブ送液部3pの作動が制御される。
 この場合も、原液の濾過作業と濾過液の濃縮作業は同時に実施できるが、濃縮液バッグCB内の濾過液の濃縮と濃縮液の再濃縮とを同時に実施することはできない。したがって、濃縮液バッグCB内の濾過液の濃縮と濃縮液の再濃縮を実施する場合には、濾過液供給チューブ送液部3pの送液量が濾過器10から濾過液供給チューブ3に供給される濾過液の流量よりも多くなるように濾過液供給チューブ送液部3pの作動を切り替えるか、または、原液バッグUB内の原液の処理が終了したのち、後述する再濃縮作業を実施すればよい。
<When the filtrate supply tube liquid sending unit 3p operates after the capacity of the concentrated liquid bag CB is exceeded>
At the timing when the control unit 30 (or the operator) operates the filtrate supply tube liquid sending unit 3p, the total amount of filtrate supplied from the filter 10 through the branch tube 6 to the concentrate bag CB is equal to the capacity of the concentrate bag CB. Suppose that the In other words, when the control unit 30 (or an operator) operates the filtrate supply tube liquid feeding unit 3p after the capacity of the concentrated liquid bag CB is exceeded, the control unit 30 is adjusted so that the liquid feeding amount is as follows. (or an operator) controls the operation of the filtrate supply tube liquid sending unit 3p. In other words, the control unit 30 (or the operator) controls the concentrator transmembrane pressure to maintain a pressure equal to or lower than the permissible concentrator transmembrane pressure, and The operation of the filtrate-supply-tube liquid-feeding unit 3p is controlled so that the total amount of the filtrate and the concentrated liquid to be stored becomes the maximum liquid-feeding amount that does not exceed the total amount of the concentrated-liquid bag CB.
In this case as well, the operation of filtering the undiluted liquid and the operation of concentrating the filtrate can be carried out simultaneously, but the concentration of the filtrate in the concentrate bag CB and the re-concentration of the concentrate cannot be carried out at the same time. Therefore, when concentrating the filtrate in the concentrated solution bag CB and re-concentrating the concentrated solution, the amount of liquid sent from the filtrate supply tube liquid sending unit 3p is supplied from the filter 10 to the filtrate supply tube 3. Either the operation of the filtrate supply tube liquid sending part 3p is switched so that the flow rate of the filtrate becomes higher than the flow rate of the filtrate, or the re-concentration operation described later can be performed after the processing of the undiluted solution in the undiluted solution bag UB is completed. .
 上述した、「濾過作業を開始してから一定時間経過した」状態および「濃縮液バッグCBの容量を越えた」状態が、特許請求の範囲の請求項1および請求項8にいう「所定の状態」に相当する。 The above-described states "a certain period of time has elapsed since the start of filtering" and "the capacity of the concentrate bag CB has been exceeded" are the "predetermined states" in claims 1 and 8 of the scope of claims. Equivalent to
<濾過濃縮作業の終了>
 濾過濃縮が進行し、濾過器膜間差圧が一定の値以下になると、制御部30は、原液バッグUB内の濾過液が全てなくなったと判断して、濾過液供給チューブ送液部3pの作動を停止し、濾過濃縮作業が終了する。
 なお、制御部30が自動で濾過濃縮作業を終了させてもよいが、作業者が濾過濃縮作業を終了させるようにしてもよい。この場合、濾過器膜間差圧が一定の値以下になった際に、作業者に作業終了を知らせる機能(警報機能)を装置に設けておくことが望ましい。例えば、ブザー等で作業者に作業終了を知らせる機能を設けておく。すると、ブザー等により作業終了を把握した作業者が、濾過液供給チューブ送液部3pの作動を停止して、濾過濃縮作業を終了させることができる。
<Completion of filtration and concentration work>
When the filtration concentration progresses and the transmembrane pressure difference of the filter becomes equal to or less than a certain value, the control unit 30 judges that the filtrate in the undiluted solution bag UB is completely exhausted, and operates the filtrate supply tube liquid sending unit 3p. is stopped, and the filtration and concentration operation is completed.
The control unit 30 may automatically terminate the filtration and concentration work, or an operator may terminate the filtration and concentration work. In this case, it is desirable to provide the device with a function (alarm function) to notify the operator of the end of the work when the transmembrane pressure difference of the filter becomes equal to or less than a certain value. For example, a function is provided to inform the worker of the end of the work by using a buzzer or the like. Then, the operator who has grasped the end of the work by a buzzer or the like can stop the operation of the filtrate supply tube liquid sending part 3p and finish the filtration and concentration work.
 なお、制御部30が原液バッグUB内の濾過液が全てなくなったと判断する方法は、濾過器膜間差圧に限られない。例えば、原液バッグUBの重量を測定しておき、その重量が一定以下になった場合に、原液バッグUB内の原液が全てなくなったと判断してもよい。また、原液バッグUB内の気体と液体を検知する液空検知センサや原液バッグUB内の液面を検知する液面検知センサ等を原液バッグUBに取り付けて、原液バッグUB内の原液が全てなくなったと判断してもよい。このようなセンサを設けた場合も、センサ等が所定の状態を検出すると装置の警報機能が作動するようにしておけば、作業者が濾過濃縮作業を終了させることができる。 It should be noted that the method by which the control unit 30 determines that all the filtrate in the undiluted solution bag UB has run out is not limited to the filter transmembrane pressure difference. For example, the weight of the undiluted solution bag UB may be measured, and when the weight falls below a certain value, it may be determined that all the undiluted solution in the undiluted solution bag UB has run out. In addition, a liquid empty detection sensor that detects the gas and liquid in the undiluted solution bag UB, a liquid level detection sensor that detects the liquid level in the undiluted solution bag UB, etc. are attached to the undiluted solution bag UB, and the undiluted solution in the undiluted solution bag UB is completely exhausted. It can be judged that Even when such a sensor is provided, if the alarm function of the apparatus is activated when the sensor or the like detects a predetermined state, the operator can finish the filtration and concentration work.
<濾過濃縮作業の他の例>
 上記例では、濾過作業の途中で濾過液供給チューブ送液部3pを作動する場合を説明したが、濾過作業を開始すると同時に、濾過液供給チューブ送液部3pを作動するようにしてもよい(図1参照)。つまり、濾過作業を開始すると同時に、濾過液供給チューブ3内を正方向に液体が流れるように濾過液供給チューブ送液部3pを作動させてもよい。
<Other examples of filtration concentration work>
In the above example, the case where the filtrate supply tube liquid sending unit 3p is operated during the filtration work has been described, but the filtrate supply tube liquid sending unit 3p may be operated at the same time when the filtration work is started ( See Figure 1). In other words, at the same time as starting the filtering operation, the filtrate supply tube liquid sending section 3p may be operated so that the liquid flows in the filtrate supply tube 3 in the positive direction.
A)濾過液供給チューブ送液部3pの送液量が濾過液の流量よりも多い場合
 まず、濾過液供給チューブ送液部3pの送液量が濾過器10から供給される濾過液の流量よりも多い場合には、濾過器10から供給される濾過液は、全て濃縮器20に供給される。この状態は、濾過液は濃縮液バッグCBに貯留されず、濃縮液が濃縮液バッグCBに貯留されていく。やがて、濃縮液バッグCBが満杯になると濃縮器20に液体を供給する抵抗が大きくなるが、この状態になると、濾過液供給チューブ送液部3pは、濃縮液バッグCBから濃縮液を吸い出す状況になる。つまり、濃縮器20には、濾過器10から濾過液供給チューブ3に供給される濾過液と濃縮液の両方が供給される状態になるので、濃縮器20では、濾過器10から濾過液供給チューブ3に供給される濾過液の濃縮と濃縮液の再濃縮とが同時に実施されることになる(図1参照)。つまり、濾過器10から濾過液供給チューブ3に供給される濾過液を濃縮しつつ、濃縮液を循環させながら再濃縮することができる。そして、原液を重力で濾過器10に供給しながら濾過濃縮を実施できるので、原液の粘度が低い状態であれば、濾過作業の速度を速くしつつ、濾過濃縮を実施できる。したがって、濾過濃縮作業を効果的に実施することができる。
A) When the amount of liquid sent from the liquid feed unit 3p of the filtrate supply tube is larger than the flow rate of the filtrate If there are more, all the filtrate supplied from the filter 10 is supplied to the concentrator 20 . In this state, the filtrate is not stored in the concentrated solution bag CB, and the concentrated solution is stored in the concentrated solution bag CB. Eventually, when the concentrated solution bag CB becomes full, the resistance to supply the liquid to the concentrator 20 increases. In this state, the filtrate supply tube liquid sending part 3p is in a state of sucking the concentrated solution out of the concentrated solution bag CB. Become. That is, the concentrator 20 is supplied with both the filtrate and the concentrated liquid supplied from the filter 10 to the filtrate supply tube 3. Concentration of the filtrate fed to 3 and re-concentration of the concentrate will be carried out simultaneously (see FIG. 1). In other words, the filtrate supplied from the filter 10 to the filtrate supply tube 3 can be concentrated and re-concentrated while the concentrated solution is circulated. Filtration and concentration can be performed while the stock solution is supplied to the filter 10 by gravity. Therefore, if the viscosity of the stock solution is low, filtration and concentration can be performed while increasing the speed of the filtration operation. Therefore, the filtration and concentration work can be effectively carried out.
 やがて、濃縮器膜間差圧が上昇するが、濃縮器膜間差圧は制御部30に送信されているので、濾過液供給チューブ送液部3pは、濃縮器膜間差圧が許容濃縮器膜間差圧と同等またはそれよりも低い圧力を維持する送液量となるように、その作動が制御される。 Eventually, the concentrator transmembrane pressure rises, but since the concentrator transmembrane pressure is transmitted to the control unit 30, the filtrate supply tube liquid sending unit 3p keeps the concentrator transmembrane pressure above the permissible concentrator. The operation is controlled so that the amount of liquid sent maintains a pressure equal to or lower than the transmembrane pressure.
 なお、濃縮器膜間差圧が許容濃縮器膜間差圧と同等またはそれよりも低い圧力を維持する送液量となるように濾過液供給チューブ送液部3pの作動が制御されている場合でも、濾過液供給チューブ送液部3pの送液量が濾過器10から濾過液供給チューブ3に供給される濾過液の流量よりも多い場合には、濾過濃縮と再濃縮を同時に実施することができる。 In addition, when the operation of the filtrate supply tube liquid sending part 3p is controlled so that the transmembrane pressure of the concentrator maintains a pressure equal to or lower than the permissible transmembrane pressure of the concentrator. However, when the flow rate of the filtrate supplied from the filtrate supply tube liquid supply unit 3p is greater than the flow rate of the filtrate supplied from the filter 10 to the filtrate supply tube 3, filtration concentration and re-concentration can be performed simultaneously. can.
B)濾過液供給チューブ送液部3pの送液量が濾過液の流量よりも少ない場合(図4参照)
 一方、濾過液供給チューブ送液部3pの送液量が濾過器10から供給される濾過液の流量よりも少ない場合には、濾過器10から供給される濾過液は、一部が濾過液供給チューブ送液部3pに供給され、一部は濃縮液バッグCBに供給される。この場合も、原液を重力で濾過器10に供給しながら濾過濃縮を実施できるので、原液の粘度が低い状態であれば、濾過作業の速度を速くしつつ、濾過濃縮を実施できる。したがって、濾過濃縮作業を効果的に実施することができる。この場合、濾過器10から分岐チューブ6を通って供給される濾過液の量と濃縮器20から供給される濃縮液の量とを併せた分だけ、濃縮液バッグCBに液体(濾過液と濃縮液)が貯留されていく。
B) When the amount of liquid fed from the liquid feed unit 3p of the filtrate supply tube is smaller than the flow rate of the filtrate (see FIG. 4)
On the other hand, when the flow rate of the filtrate supplied from the filtrate supply tube liquid supply unit 3p is less than the flow rate of the filtrate supplied from the filter 10, part of the filtrate supplied from the filter 10 is supplied from the filtrate supply tube. It is supplied to the tube liquid sending part 3p, and part of it is supplied to the concentrated liquid bag CB. In this case as well, the filtration and concentration can be carried out while the stock solution is being supplied to the filter 10 by gravity. Therefore, if the viscosity of the stock solution is low, the filtration and concentration can be carried out while increasing the speed of the filtration operation. Therefore, the filtration and concentration work can be effectively carried out. In this case, the amount of liquid (filtrate and concentrate) in the concentrate bag CB is equal to the sum of the amount of filtrate supplied from the filter 10 through the branch tube 6 and the amount of concentrate supplied from the concentrator 20. liquid) is accumulated.
 やがて、濃縮液バッグCBが満杯になるが、濃縮液バッグCBが満杯になると、濾過器10から濃縮液バッグCBには濾過液が流れなくなる。すると、濃縮器20において廃液として排出される液体(水分)の分だけ、濾過器10から濾過液供給チューブ送液部3pに濾過液が供給される状態になる。この場合、濾過液供給チューブ送液部3pの流量によって濾過量や濃縮量が制限されることになるが、濾過液供給チューブ送液部3pは、送液量が可能な範囲の最大流量となるように、制御部30によってその作動が制御される。つまり、濃縮器膜間差圧が許容濃縮器膜間差圧と同等またはそれよりも低い圧力を維持する送液量であって、濃縮液バッグCB内に貯留される濾過液と濃縮液の総量が濃縮液バッグCBの総量を越えない最大流量の送液量となるように、制御部30によって濾過液供給チューブ送液部3pの作動が制御される。 Eventually, the concentrated liquid bag CB becomes full, but when the concentrated liquid bag CB becomes full, filtrate stops flowing from the filter 10 to the concentrated liquid bag CB. Then, the liquid (moisture) discharged as waste liquid from the concentrator 20 is supplied from the filter 10 to the liquid feed section 3p of the filtrate supply tube. In this case, the amount of filtration and the amount of concentration are limited by the flow rate of the liquid feed section 3p of the filtrate supply tube, but the liquid feed section 3p of the filtrate supply tube has the maximum flow rate in the range in which the liquid feed amount is possible. As such, the operation is controlled by the control unit 30 . In other words, the total amount of the filtrate and the concentrate stored in the concentrate bag CB is the liquid transfer amount that maintains the transmembrane pressure of the concentrator equal to or lower than the allowable transmembrane pressure of the concentrator. The control unit 30 controls the operation of the filtrate supply tube liquid feed unit 3p so that the liquid feed amount of the maximum flow rate does not exceed the total amount of the concentrated liquid bag CB.
 なお、この状態では、原液の濾過作業と濾過液の濃縮作業を同時に実施できるが、濾過濃縮と濃縮液の再濃縮とを同時に実施することはできない。また、濃縮液バッグCB内の濾過液の濃縮も行うことができない。したがって、濃縮液バッグCB内の濾過液の濃縮と濃縮液の再濃縮を実施する場合には、濾過液供給チューブ送液部3pの送液量が濾過器10から濾過液供給チューブ3に供給される濾過液の流量よりも多くなるように濾過液供給チューブ送液部3pの作動を切り替えるか、または、原液バッグUB内の原液の処理が終了したのち、後述する再濃縮作業を実施すればよい。 In this state, the filtration operation of the undiluted solution and the concentration operation of the filtrate can be performed at the same time, but the filtration concentration and the re-concentration of the concentrate cannot be performed at the same time. Also, the filtrate in the concentrate bag CB cannot be concentrated. Therefore, when concentrating the filtrate in the concentrated solution bag CB and re-concentrating the concentrated solution, the amount of liquid sent from the filtrate supply tube liquid sending unit 3p is supplied from the filter 10 to the filtrate supply tube 3. Either the operation of the filtrate supply tube liquid sending part 3p is switched so that the flow rate of the filtrate becomes higher than the flow rate of the filtrate, or the re-concentration operation described later can be performed after the processing of the undiluted solution in the undiluted solution bag UB is completed. .
<濾過濃縮作業のさらに他の例>
 もちろん、分岐チューブ6の流量調整手段6cを閉塞した状態で濾過濃縮を同時に実施し(図13参照)、途中から分岐チューブ6の流量調整手段6cを開放して濾過濃縮を実施するようにしてもよい(図1参照)。つまり、濾過濃縮作業の最初の段階では、濾過器10から濾過液供給チューブ3に供給される濾過液の全てが濃縮器20に供給されるように濾過液供給チューブ送液部3pを作動する。そして、濃縮液バッグCB内の濃縮液の量が所定の量を越えると、分岐チューブ6の流量調整手段6cを開放して、濾過器10から濾過液供給チューブ3に供給される濾過液の全てと濃縮液バッグCB内の液体の一部とが濃縮器20に供給されるように濾過液供給チューブ送液部3pを作動する。すると、濾過濃縮作業を継続しつつ、濃縮液バッグCB内の濃縮液を濃縮器20によって再濃縮することできる。例えば、原液バッグUBから濾過器10に供給される原液の粘度が高い場合や濾過作業の後期(原液バッグUB内の原液が少なくなった状態)のように、原液バッグUBから濾過器10に供給される原液の流れがスムースではない場合には、濾過濃縮を同時に実施し、途中から濾過濃縮と再濃縮とを同時に実施するようにしたほうが、処理効率を向上できる。
<Another example of filtration concentration work>
Of course, the filtration and concentration may be performed simultaneously with the flow rate adjusting means 6c of the branch tube 6 closed (see FIG. 13), and the filtration and concentration may be performed by opening the flow rate adjusting means 6c of the branch tube 6 halfway through. Good (see Figure 1). In other words, in the first stage of the filtration and concentration operation, the filtrate supply tube liquid sending section 3p is operated so that all of the filtrate supplied from the filter 10 to the filtrate supply tube 3 is supplied to the concentrator 20 . Then, when the amount of the concentrated liquid in the concentrated liquid bag CB exceeds a predetermined amount, the flow rate adjusting means 6c of the branch tube 6 is opened, and all of the filtrate supplied from the filter 10 to the filtrate supply tube 3 is removed. and a portion of the liquid in the concentrated liquid bag CB are supplied to the concentrator 20 by operating the liquid feed section 3p of the filtrate supply tube. Then, the concentrated liquid in the concentrated liquid bag CB can be re-concentrated by the concentrator 20 while continuing the filtration and concentration operation. For example, when the undiluted solution supplied from the undiluted solution bag UB to the filter 10 has a high viscosity, or in the latter stage of the filtration work (when the undiluted solution in the undiluted solution bag UB is low), the undiluted solution is supplied from the undiluted solution bag UB to the filter 10. If the flow of the undiluted solution is not smooth, the treatment efficiency can be improved by carrying out the concentration by filtration at the same time, and carrying out the concentration by filtration and the re-concentration at the same time.
<濾過液供給チューブ送液部3pの作動条件について>
 また、濾過濃縮作業や再濃縮作業において、濾過液供給チューブ送液部3pを作動する条件、つまり、濾過液供給チューブ3内の送液量は、種々の条件(原液の粘度や原液の量、原液バッグUBと濾過器10の原液供給ポート11aの相対的な高さ方向の距離等)において予備実験や数値シミュレ―ション等によって求めておく。つまり、種々の条件において、適切に濾過濃縮作業や再濃縮作業を実施できる濾過液供給チューブ3内の送液量を予備実験や数値シミュレ―ション等によって求めておく。そして、予備実験や数値シミュレ―ション等のデータに基づいて、制御部30(または作業者)が濾過液供給チューブ送液部3pを作動する状態を決定すれば、濾過濃縮作業や再濃縮作業の進行に伴って種々の条件が変化しても、適切に濾過濃縮作業や再濃縮作業ができるように、濾過液供給チューブ送液部3pによる送液を実施することができる。
<Regarding the operating conditions of the liquid-sending portion 3p of the filtrate supply tube>
In addition, in the filtration and concentration work and the re-concentration work, the conditions for operating the filtrate supply tube liquid feeding unit 3p, that is, the amount of liquid fed in the filtrate supply tube 3, can be changed according to various conditions (viscosity of the undiluted liquid, amount of undiluted liquid, (relative distance between the undiluted solution bag UB and the undiluted solution supply port 11a of the filter 10 in the height direction, etc.) is determined in advance by preliminary experiments, numerical simulations, or the like. In other words, under various conditions, the amount of liquid to be fed through the filtrate supply tube 3 that allows appropriate filtration and concentration operations and re-concentration operations can be obtained by preliminary experiments, numerical simulations, and the like. Then, based on data from preliminary experiments and numerical simulations, the control unit 30 (or an operator) determines the state of operating the filtrate supply tube liquid sending unit 3p, and the filtration and concentration work and the re-concentration work can be performed. Even if various conditions change as the process progresses, the liquid can be sent by the filtrate supply tube liquid sending unit 3p so that the filtration and concentration work and the re-concentration work can be performed appropriately.
<濾過器洗浄について>
 濾過濃縮を実施することによって、濾過器10の中空糸膜が目詰まりを起こしたりする可能性がある。このような目詰まりを解消したりまた目詰まりを防止したりするために、本実施形態の原液処理装置1の濾過濃縮作業や再濃縮作業の途中に、濾過器10の中空糸膜を洗浄してもよい。具体的には、以下のように濾過器洗浄を実施する。
<About filter cleaning>
There is a possibility that the hollow fiber membrane of the filter 10 will clog by carrying out filtration concentration. In order to eliminate or prevent such clogging, the hollow fiber membranes of the filter 10 are washed during the filtration and concentration operations and re-concentration operations of the undiluted solution processing apparatus 1 of the present embodiment. may Specifically, filter cleaning is performed as follows.
 まず、濾過液供給チューブ送液部3pの作動を停止して、濾過液供給チューブ3内における濾過液の流れを停止する。 First, the operation of the filtrate supply tube liquid feeding unit 3p is stopped to stop the flow of the filtrate in the filtrate supply tube 3.
 ついで、図5に示すように、濾過液供給チューブ3における濾過液供給チューブ送液部3pより下流側、つまり、濾過液供給チューブ送液部3pと濃縮器20の間に洗浄液バッグSBを接続する。この場合、洗浄液バッグSBを濾過液供給チューブ3に接続する方法はとくに限定されない。例えば、圧力測定部3sを外して、圧力測定部3sが接続されていた部分(プラグなど)に洗浄液バッグSBを接続してもよいし、洗浄液バッグSBを接続する専用のプラグ等を濾過液供給チューブ3に設けておいてもよい。 Next, as shown in FIG. 5, the cleaning solution bag SB is connected to the downstream side of the filtrate supply tube liquid sending portion 3p in the filtrate supply tube 3, that is, between the filtrate supply tube solution sending portion 3p and the concentrator 20. . In this case, the method of connecting the cleaning solution bag SB to the filtrate supply tube 3 is not particularly limited. For example, the pressure measuring section 3s may be removed and the cleaning liquid bag SB may be connected to the portion (such as a plug) to which the pressure measuring section 3s was connected, or a dedicated plug or the like for connecting the cleaning liquid bag SB may be used to supply the filtrate. It may be provided on the tube 3 .
 また、給液チューブ2の一端には、原液バッグUBに代えて洗浄液回収バッグFBを接続する。なお、濾過液供給チューブ3から濃縮器20に洗浄液が流れないように、濃縮液チューブ4および廃液チューブ5は、流量調整手段4cおよび流量調整手段5cによって閉塞する。なお、洗浄液バッグSBを接続する部分よりも下流側(濃縮器20側)にクリップやクレンメ等を設けて、洗浄液バッグSBから濃縮器20に洗浄液が流れないように濾過液供給チューブ3を閉塞してもよい。 In addition, instead of the undiluted solution bag UB, a washing solution recovery bag FB is connected to one end of the solution supply tube 2 . The concentrated liquid tube 4 and the waste liquid tube 5 are closed by the flow rate adjusting means 4c and the flow rate adjusting means 5c so that the cleaning liquid does not flow from the filtrate supply tube 3 to the concentrator 20. FIG. A clip, clamp, or the like is provided on the downstream side (on the concentrator 20 side) of the portion to which the cleaning liquid bag SB is connected to block the filtrate supply tube 3 so that the cleaning liquid does not flow from the cleaning liquid bag SB to the concentrator 20. may
 上記状態とした後、逆方向に液体が流れるように濾過液供給チューブ送液部3pを作動させる。すると、濾過器10の原液が流れる流路を、濾過濃縮作業の際に原液が流れる方向と逆方向に洗浄液を流すことができるので、濾過器10の原液が流れる流路内部を洗浄することができる(図5参照)。 After the above state is established, the filtrate supply tube liquid sending unit 3p is operated so that the liquid flows in the opposite direction. As a result, the washing liquid can flow in the flow path of the filter 10 in which the stock solution flows in the direction opposite to the direction in which the stock solution flows during the filtration and concentration operation, so that the inside of the flow path of the filter 10 in which the stock solution flows can be washed. (See Figure 5).
<濾過器10が複数の原液供給ポート11aを有する場合>
 濾過器10が複数の原液供給ポート11aを有している場合には、一つの原液供給ポート11aには、上述したように給液チューブ2の他端を接続しておき、他の原液供給ポート11aには、洗浄液回収チューブ7の一端を接続しておいてもよい(図9参照)。この場合、洗浄液回収チューブ7には、洗浄液回収チューブ7内における液体の流れを停止開放する、例えば、クレンメやクリップ等の流量調整手段7cを設けておく。すると、濾過器洗浄作業の際には、洗浄液回収チューブ7を通して濾過器10から洗浄液を排出できるので、給液チューブ2の接続を切り替えなくても、濾過濃縮作業の際に原液が流れる方向と逆方向に洗浄液を流すことができる。つまり、流量調整手段2cによって給液チューブ2を閉塞し、洗浄液回収チューブ7の他端を洗浄液回収バッグFBに接続したり単なるバケツなどに配置したりする。この状態で、流量調整手段7cによって洗浄液回収チューブ7内を液体が流れることができる状態にすれば、給液チューブ2の接続を切り替えなくても、濾過濃縮作業の際に原液が流れる方向と逆方向に洗浄液を流すことができる。もちろん、洗浄液回収チューブ7を設けた場合でも、給液チューブ2の他端を洗浄液回収バッグFBに接続したり単なるバケツなどに配置したりしてもよい(図10参照)。つまり、給液チューブ2の他端と洗浄液回収チューブ7の他端の両方を洗浄液回収バッグFBに接続したり単なるバケツなどに配置したりしてもよい。
<When the filter 10 has a plurality of undiluted solution supply ports 11a>
When the filter 10 has a plurality of undiluted solution supply ports 11a, the other end of the undiluted solution supply tube 2 is connected to one undiluted solution supply port 11a as described above, and other undiluted solution supply ports are connected. One end of the washing liquid recovery tube 7 may be connected to 11a (see FIG. 9). In this case, the cleaning liquid recovery tube 7 is provided with a flow rate adjusting means 7c such as a clamp or a clip for stopping and releasing the flow of the liquid in the cleaning liquid recovery tube 7 . Then, during the filter cleaning operation, the cleaning liquid can be discharged from the filter 10 through the cleaning liquid recovery tube 7, so that the undiluted liquid flows in the direction opposite to the flow direction during the filtration and concentration operation without switching the connection of the liquid supply tube 2. The cleaning liquid can flow in the direction. That is, the liquid supply tube 2 is closed by the flow rate adjusting means 2c, and the other end of the cleaning liquid recovery tube 7 is connected to the cleaning liquid recovery bag FB or simply placed in a bucket or the like. In this state, if the flow rate adjusting means 7c allows the liquid to flow through the washing liquid recovery tube 7, the direction of flow of the stock liquid is opposite to that of the liquid during the filtration and concentration work without switching the connection of the liquid supply tube 2. The cleaning liquid can flow in the direction. Of course, even when the cleaning liquid recovery tube 7 is provided, the other end of the liquid supply tube 2 may be connected to the cleaning liquid recovery bag FB or arranged in a simple bucket or the like (see FIG. 10). That is, both the other end of the liquid supply tube 2 and the other end of the cleaning liquid recovery tube 7 may be connected to the cleaning liquid recovery bag FB or placed in a simple bucket or the like.
 上記のように、洗浄液回収チューブ7を設けた場合、洗浄液回収チューブ7は、その他端を常時洗浄液回収バッグFBに接続していてもよいし、濾過濃縮作業時はその他端を原液バッグUBに接続しておき、濾過器洗浄作業のときに、他端を洗浄液回収バッグFBに接続したり単なるバケツなどに配置したりするようにしてもよい。濾過濃縮作業時に洗浄液回収チューブ7の他端を原液バッグUBに接続していれば、濾過器10に残存した蛋白質を回収できるという利点が得られる。 As described above, when the cleaning liquid recovery tube 7 is provided, the other end of the cleaning liquid recovery tube 7 may always be connected to the cleaning liquid recovery bag FB, or the other end may be connected to the undiluted solution bag UB during filtration and concentration. The other end may be connected to the cleaning liquid collection bag FB or simply placed in a bucket or the like during the filter cleaning operation. If the other end of the washing liquid recovery tube 7 is connected to the undiluted solution bag UB during the filtration and concentration operation, there is an advantage that the protein remaining in the filter 10 can be recovered.
 なお、濾過器10だけでなく濃縮器20も洗浄する場合には、図11に示すように、濃縮液チューブ4の他端と廃液チューブ5の他端の両方(または廃液チューブ5の他端だけ)に、濃縮液バッグCBや廃液バッグDBに代えて、洗浄液バッグSBを接続する。そして、給液チューブ2の他端と洗浄液回収チューブ7の他端の両方(または一方)を洗浄液回収バッグFBに接続したり単なるバケツなどに配置したりする。その状態で、逆方向に液体が流れるように濾過液供給チューブ送液部3pを作動させれば、濾過器10だけでなく濃縮器20も洗浄することができる。 When cleaning not only the filter 10 but also the concentrator 20, as shown in FIG. ), instead of the concentrated solution bag CB and the waste solution bag DB, the cleaning solution bag SB is connected. Then, both (or one) of the other end of the liquid supply tube 2 and the other end of the cleaning liquid recovery tube 7 are connected to the cleaning liquid recovery bag FB or simply placed in a bucket or the like. In this state, not only the filter 10 but also the concentrator 20 can be cleaned by activating the filtrate supply tube liquid sending part 3p so that the liquid flows in the opposite direction.
<再濃縮作業>
 濾過濃縮作業によって得られた濃縮液をさらに濃縮する場合には、上述した濾過濃縮作業の終了後に再濃縮作業を実施することが望ましい。
<Reconcentration work>
When further concentrating the concentrate obtained by the filtration and concentration work, it is desirable to re-concentrate after the end of the filtration and concentration work described above.
 図6に示すように、本実施形態の原液処理装置1では、分岐チューブ6の他端に濃縮液バッグCBが接続されているので、流量調整手段3c(分岐チューブ6と濾過液供給チューブ3が接続されている位置よりも上流側(濾過器10側)に設けられているもの)によって濾過液供給チューブ3を閉塞して濾過液供給チューブ3内を濾過器10に向かって液体が流れないようにすれば、再濃縮作業を実施することができる。つまり、上記状態として、正方向に液体が流れるように濾過液供給チューブ送液部3pを作動させれば、濃縮液バッグCB内の濃縮液を、分岐チューブ6、濾過液供給チューブ3、濃縮器20、濃縮液チューブ4の順に循環させることができる。すると、循環している濃縮液は、濃縮器20において廃液が分離されるので、濃縮割合を高めた濃縮液(再濃縮液)を得ることができる。 As shown in FIG. 6, in the undiluted solution processing apparatus 1 of the present embodiment, since the concentrated solution bag CB is connected to the other end of the branch tube 6, the flow rate adjusting means 3c (the branch tube 6 and the filtrate supply tube 3 are Filtrate supply tube 3 is blocked by a device provided on the upstream side (filter 10 side) of the connected position to prevent liquid from flowing through filtrate supply tube 3 toward filter 10 , the reconcentration operation can be performed. In other words, in the above state, if the filtrate supply tube liquid sending unit 3p is operated so that the liquid flows in the forward direction, the concentrated solution in the concentrated solution bag CB is transferred to the branch tube 6, the filtrate supply tube 3, and the concentrator. 20 and the concentrate tube 4 can be circulated in that order. Then, the waste liquid is separated from the circulating concentrated liquid in the concentrator 20, so that a concentrated liquid (re-concentrated liquid) with an increased concentration ratio can be obtained.
 なお、上記例では、分岐チューブ6が常時濾過液供給チューブ3に接続されている場合を説明したが、分岐チューブ6は濾過液供給チューブ3に対して着脱可能としてもよい。この場合には、再濃縮を行わない場合には、分岐チューブ6を濾過液供給チューブ3から外しておき、濾過濃縮作業において再濃縮も行う場合や再濃縮作業を行う際等に濾過液供給チューブ3に接続するようにすることができる。分岐チューブ6を濾過液供給チューブ3に対して着脱可能とする方法はとくに限定されない。例えば、分岐チューブ6を接続する専用のプラグ等を濾過液供給チューブ3に設けておけば、濾過液供給チューブ3に対する分岐チューブ6の着脱が容易になる。 Although the branch tube 6 is always connected to the filtrate supply tube 3 in the above example, the branch tube 6 may be detachable from the filtrate supply tube 3 . In this case, when re-concentration is not performed, the branch tube 6 is removed from the filtrate supply tube 3, and when re-concentration is performed in the filtration and concentration work, the filtrate supply tube is used when re-concentration is performed. 3 can be connected. A method for making the branch tube 6 detachable from the filtrate supply tube 3 is not particularly limited. For example, if the filtrate supply tube 3 is provided with a dedicated plug or the like for connecting the branch tube 6 , the attachment and detachment of the branch tube 6 with respect to the filtrate supply tube 3 is facilitated.
 また、分岐チューブ6を設けない場合でも、濾過液供給チューブ3の一端を濾過器10の濾過液排出ポート11cから外し濃縮液バッグCBに接続すれば、再濃縮作業は可能である。 Also, even if the branch tube 6 is not provided, reconcentration work is possible by removing one end of the filtrate supply tube 3 from the filtrate discharge port 11c of the filter 10 and connecting it to the concentrate bag CB.
<再濃縮作業への移行>
 濾過濃縮後に再濃縮作業を連続して実施する場合には、濃縮液バッグCB内の濃縮液が所定の量になるまで、つまり、濃縮液バッグCB内の濃縮液が所定の濃縮状態になるまで、濾過液供給チューブ送液部3pの作動を継続してもよい。この場合、濃縮液バッグCB内の濃縮液が所定の濃縮状態になったと判断する方法はとくに限定されない。例えば、濃縮液バッグCB内の濃縮液の再濃縮が進むと濃縮液の濃度が濃くなる(つまり水分量が少なくなる)ので、濃縮器20における濃縮(言い換えれば除水)がしづらくなる。すると、濾過液供給チューブ送液部3pを同じ流量で作動させていても、濃縮器20に濃縮液を送液する抵抗が強くなり、濃縮器膜間差圧が上昇する。濃縮液バッグCB内の濃縮液の量が一定量以下になると、濾過液供給チューブ送液部3pの流量を調整しても(つまり再濃縮で想定される最小の流量としても)濃縮器膜間差圧が所定の圧力よりも高くなる状態になる。つまり、濃縮液が所定の濃縮状態になると、濾過液供給チューブ送液部3pの流量を調整しても濃縮器膜間差圧が許容濃縮器膜間差圧よりも高くなる。したがって、濾過液供給チューブ送液部3pの流量を調整しても濃縮器膜間差圧が許容濃縮器膜間差圧よりも高くなる状態になった場合には、濃縮液が所定の濃縮状態になったと制御部30が判断して、濾過液供給チューブ送液部3pの作動を停止するようにしてもよい。この場合も、濃縮器膜間差圧が許容濃縮器膜間差圧以上になった際に、ブザー等で作業者に作業終了を知らせる機能を設けておき、作業者が濾過液供給チューブ送液部3pの作動を停止し、再濃縮作業を終了させるようにしてもよい。
<Transition to reconcentration work>
When the re-concentration operation is continuously performed after the concentration by filtration, the concentration is kept until the amount of the concentrated liquid in the concentrated liquid bag CB reaches a predetermined amount, that is, until the concentrated liquid in the concentrated liquid bag CB reaches a predetermined concentrated state. , the operation of the filtrate supply tube liquid sending unit 3p may be continued. In this case, the method for determining that the concentrated liquid in the concentrated liquid bag CB has reached a predetermined concentrated state is not particularly limited. For example, as the re-concentration of the concentrated liquid in the concentrated liquid bag CB progresses, the concentration of the concentrated liquid increases (that is, the water content decreases), so concentration in the concentrator 20 (in other words, water removal) becomes difficult. Then, even if the filtrate supply tube solution sending part 3p is operated at the same flow rate, the resistance to sending the concentrated solution to the concentrator 20 increases, and the transmembrane pressure difference of the concentrator increases. When the amount of concentrated liquid in the concentrated liquid bag CB becomes equal to or less than a certain amount, even if the flow rate of the filtrate supply tube liquid transfer section 3p is adjusted (that is, even if the minimum flow rate assumed for re-concentration is used), The differential pressure becomes higher than the predetermined pressure. That is, when the concentrated liquid reaches a predetermined concentrated state, the concentrator transmembrane pressure difference becomes higher than the permissible concentrator transmembrane pressure difference even if the flow rate of the filtrate supply tube liquid sending unit 3p is adjusted. Therefore, when the concentrator transmembrane pressure difference becomes higher than the permissible concentrator transmembrane pressure difference even if the flow rate of the filtrate supply tube liquid sending part 3p is adjusted, the concentrated liquid is kept in a predetermined concentrated state. The control unit 30 may determine that it has become, and stop the operation of the filtrate supply tube liquid sending unit 3p. In this case also, when the transmembrane pressure difference of the concentrator becomes equal to or higher than the permissible transmembrane pressure difference of the concentrator, a function is provided to notify the operator of the end of the work with a buzzer or the like, so that the operator can send the filtrate to the filtrate supply tube. The operation of the part 3p may be stopped to terminate the reconcentration operation.
 濾過濃縮後に再濃縮作業を連続して実施する場合でも、原液バッグUBと濾過液供給チューブ送液部3pとの間を閉塞しておくことが望ましい。この場合、流量調整手段3cとして自動弁を設けておけば、所定の状態になると、自動で、流量調整手段3cによって原液バッグUBと濾過液供給チューブ送液部3pとの間を閉塞することができる。例えば、原液バッグUB内の濾過液が全てなくなり再濃縮作業に移行すると、制御部30によって流量調整手段3cを作動し、原液バッグUBと濾過液供給チューブ送液部3pとの間を流量調整手段3cによって閉塞するようにすればよい。もちろん、再濃縮作業に移行したことを制御部30が検出すると、ブザー等で作業者に作業終了を知らせる機能を設けておき、作業者が流量調整手段3cを操作して、原液バッグUBと濾過液供給チューブ送液部3pとの間を閉塞するようにしてもよい。 Even if the re-concentration work is continuously carried out after filtration and concentration, it is desirable to close the gap between the undiluted solution bag UB and the filtrate supply tube liquid transfer section 3p. In this case, if an automatic valve is provided as the flow rate adjusting means 3c, the gap between the undiluted solution bag UB and the filtrate supply tube liquid feeding portion 3p can be automatically closed by the flow rate adjusting means 3c when a predetermined state is reached. can. For example, when the filtrate in the undiluted solution bag UB is completely exhausted and the process shifts to re-concentration, the control unit 30 operates the flow rate adjusting means 3c to adjust the flow rate between the undiluted solution bag UB and the filtrate supply tube feeding unit 3p. 3c may be closed. Of course, when the control unit 30 detects that the re-concentration work has started, a function is provided to inform the worker of the end of the work with a buzzer or the like, and the worker operates the flow rate adjusting means 3c to control the undiluted solution bag UB and the filtration. The space between the liquid supply tube and the liquid feeding section 3p may be closed.
 再濃縮作業へ移行するタイミングを判断する方法はとくに限定されない。例えば、濃縮液バッグCB内の液体の量が所定の量を越えたか否かによって判断してもよい。濃縮液バッグCB内の液体の量が所定の量を越えてしまったか否かは、濃縮液バッグCBの重量、つまり、濃縮液バッグCBに貯留されている液体の重量によって判断してもよい。つまり、濾過濃縮作業から再濃縮作業に切り替えるタイミングは、濃縮液バッグCBの重量によって判断してもよい。 There is no particular limitation on the method of determining when to shift to reconcentration work. For example, it may be judged by whether or not the amount of liquid in the concentrated liquid bag CB exceeds a predetermined amount. Whether or not the amount of liquid in the concentrate bag CB has exceeded a predetermined amount may be determined by the weight of the concentrate bag CB, that is, the weight of the liquid stored in the concentrate bag CB. That is, the timing of switching from the filtration and concentration operation to the re-concentration operation may be determined by the weight of the concentrated solution bag CB.
 また、再濃縮作業が終了したか否かを判断する方法はとくに限定されない。例えば、濃縮液バッグCBに貯留されている液体の重量によって判断してもよい。例えば、濃縮液バッグCBの重量を測定し、ある一定よりも軽くなれば再濃縮作業が終了したと判断してもよい。また、濃縮液バッグCB内の気体と液体を検知する液空検知センサや濃縮液バッグCB内の液面を検知する液面検知センサ等を濃縮液バッグCBに取り付けて濃縮液バッグCB内の濃縮液の量を測定し、濃縮液の量が一定よりも少なくなったときに、再濃縮作業が終了したと判断してもよい。 Also, the method for determining whether the re-concentration work has been completed is not particularly limited. For example, it may be determined by the weight of the liquid stored in the concentrated liquid bag CB. For example, the weight of the concentrate bag CB may be measured, and the re-concentration operation may be concluded when the weight is less than a certain value. In addition, a liquid empty detection sensor that detects the gas and liquid in the concentrated liquid bag CB, a liquid level detection sensor that detects the liquid level in the concentrated liquid bag CB, etc. are attached to the concentrated liquid bag CB to detect the concentration in the concentrated liquid bag CB. The amount of liquid may be measured and the reconcentration operation may be concluded when the amount of concentrated liquid is less than a certain amount.
<濾過器10内の液体回収方法の例>
 上述した再濃縮作業を実施する前には、濾過器10内の濾過液を濃縮器20に送液して、濾過液を濃縮液として回収することが望ましい。
<Example of Method for Recovering Liquid in Filter 10>
Before carrying out the re-concentration work described above, it is desirable to send the filtrate in the filter 10 to the concentrator 20 and collect the filtrate as a concentrate.
 この場合、図7に示すように、給液チューブ2の流量調整手段2cによって給液チューブ2を閉塞し、その状態で、圧力測定部2sを給液チューブ2(あるいは原液供給ポート11a)から外して、給液チューブ2を外部と連通し、正方向に液体が流れるように濾過液供給チューブ送液部3pを作動させる。すると、中空糸膜の上流側の原液を中空糸膜によって濾過して、中空糸膜の下流側に流すことができる。 In this case, as shown in FIG. 7, the liquid supply tube 2 is closed by the flow rate adjusting means 2c of the liquid supply tube 2, and in this state, the pressure measuring section 2s is removed from the liquid supply tube 2 (or the undiluted liquid supply port 11a). Then, the liquid supply tube 2 is communicated with the outside, and the liquid feed section 3p of the filtrate supply tube is operated so that the liquid flows in the forward direction. Then, the stock solution on the upstream side of the hollow fiber membrane can be filtered by the hollow fiber membrane and flowed to the downstream side of the hollow fiber membrane.
 中空糸膜の上流側に原液が無くなると、濾過液供給チューブ送液部3pの作動を停止して(または濾過液供給チューブ送液部3pを作動させたままで)、濾過器10のポート11bから圧力測定部10sを外す。すると、中空糸膜の下流側の空間(つまり濾過液排出ポート11cと連通された空間、中空糸膜の貫通流路)が外部と連通される。この状態で、正方向に液体が流れるように濾過液供給チューブ送液部3pを作動すれば、濾過器10において中空糸膜よりも下流側に存在する原液を、濾過液供給チューブ3に流すことができる。 When the stock solution runs out on the upstream side of the hollow fiber membrane, the operation of the filtrate supply tube liquid-feeding unit 3p is stopped (or the filtrate supply tube liquid-feeding unit 3p is kept operating), and the Remove the pressure measuring part 10s. Then, the space on the downstream side of the hollow fiber membrane (that is, the space communicated with the filtrate discharge port 11c, the through channel of the hollow fiber membrane) communicates with the outside. In this state, if the filtrate supply tube liquid sending part 3p is operated so that the liquid flows in the forward direction, the undiluted liquid existing downstream of the hollow fiber membrane in the filter 10 is allowed to flow into the filtrate supply tube 3. can be done.
 なお、中空糸膜よりも上流側に原液が無くなったか否かは、圧力測定部10sの圧力を確認することで判断できる。例えば、中空糸膜よりも上流側に原液が存在する場合には、圧力測定部10sの圧力はほぼ一定に維持されるが、中空糸膜よりも上流側の原液が無くなった場合には、圧力測定部10sの圧力が低下する。したがって、圧力測定部10sの圧力が一定以下になった場合には、中空糸膜よりも上流側の原液が無くなったと判断することができる。 It should be noted that whether or not the undiluted solution has disappeared on the upstream side of the hollow fiber membrane can be determined by checking the pressure of the pressure measuring section 10s. For example, when the stock solution exists on the upstream side of the hollow fiber membranes, the pressure of the pressure measuring section 10s is maintained substantially constant. The pressure of the measuring section 10s is lowered. Therefore, when the pressure of the pressure measuring portion 10s becomes equal to or less than a certain value, it can be determined that the stock solution on the upstream side of the hollow fiber membrane has disappeared.
 また、濾過器10の中空糸膜の上流側の原液が無くなったか判断する方法として、濾過器10内が視認できるのであれば、濾過器10内の状態を目視で確認してもよい。また、濾過器10に静電容量型のセンサを取り付けるなどして、濾過器10の中空糸膜の上流側の液面高さを検知してもよい。
 さらに、濾過器10の中空糸膜の下流側の液体が無くなったか否かは、例えば、濾過液供給チューブ3に気体と液体を検知する液空検知センサを取り付けて判断することもできる。この場合、濾過液供給チューブ3において分岐チューブ6が接続されている位置よりも上流側(濾過器10側)に液空検知センサを取り付けておけば、再濃縮の際に空気が濾過液供給チューブ3内に取り込まれることを防ぐことができる。
As a method for determining whether the stock solution on the upstream side of the hollow fiber membrane of the filter 10 has run out, if the inside of the filter 10 is visible, the condition inside the filter 10 may be visually checked. Alternatively, the liquid level on the upstream side of the hollow fiber membrane of the filter 10 may be detected by attaching a capacitance sensor to the filter 10 .
Furthermore, whether or not the liquid downstream of the hollow fiber membranes of the filter 10 has run out can be determined, for example, by attaching a liquid empty detection sensor that detects gas and liquid to the filtrate supply tube 3 . In this case, if an empty liquid detection sensor is attached to the upstream side (filter 10 side) of the position where the branch tube 6 is connected in the filtrate supply tube 3, air will be detected in the filtrate supply tube 3 during re-concentration. 3 can be prevented.
 また、圧力測定部2sや圧力測定部10sを外した後、直接大気開放せずに、圧力測定部2sや圧力測定部10sが取り付けられていた個所にエアフィルタを取り付けてもよい。すると、清潔な空気を給液チューブ2内等に取り込むことができる。
 さらに、圧力測定部2sや圧力測定部10sを外した後、濾過液供給チューブ送液部3pの作動によって外気が吸引されるだけでもよいが、給液チューブ2やポート11bに洗浄液を供給するようにしてもよい。
Further, after removing the pressure measuring part 2s and the pressure measuring part 10s, an air filter may be attached to the place where the pressure measuring part 2s and the pressure measuring part 10s were attached without directly opening to the atmosphere. Then, clean air can be taken into the liquid supply tube 2 or the like.
Furthermore, after removing the pressure measuring part 2s and the pressure measuring part 10s, the outside air may be sucked by the operation of the filtrate supply tube liquid sending part 3p. can be
 濾過器10内の液体を回収する場合、図7に示すように、廃液チューブ5の流量調整手段5cによって廃液チューブ5を閉塞した状態とすれば、濾過器10から回収される濾過液は濃縮されずに濃縮液バッグCBに回収される。しかし、濾過液の濃縮を行いながら、濾過器10内の液体を濃縮液バッグCBに回収してもよい。つまり、濾過器10内の液体を回収する際に、流量調整手段5cによって廃液チューブ5内を液体が流れることができるようにしておけば、濾過器10内の液体を回収しながら、濾過液の濃縮を行うことができる。 When recovering the liquid in the filter 10, as shown in FIG. 7, if the waste liquid tube 5 is closed by the flow rate adjusting means 5c of the waste liquid tube 5, the filtrate recovered from the filter 10 is concentrated. is collected in the concentrate bag CB without However, the liquid in the filter 10 may be collected in the concentrated liquid bag CB while concentrating the filtrate. In other words, when the liquid in the filter 10 is recovered, if the liquid is allowed to flow through the waste liquid tube 5 by means of the flow rate adjusting means 5c, the liquid in the filter 10 is recovered while the filtrate is recovered. Concentration can be carried out.
 上記例では、再濃縮作業を実施する前に濾過器10内の液体を回収する場合を説明したが、濾過器10内の液体は再濃縮作業が終わった後に回収を行ってもよい。再濃縮作業が終わった後に濾過器10内の液体を回収する場合でも、上述した方法と同様の方法で濾過器10内の液体を回収することができる。 In the above example, the case of collecting the liquid in the filter 10 before performing the re-concentration work was explained, but the liquid in the filter 10 may be collected after the re-concentration work is finished. Even when the liquid in the filter 10 is recovered after the reconcentration operation is finished, the liquid in the filter 10 can be recovered by the same method as described above.
<濃縮器20の回収作業>
 濃縮器20内の濃縮液を濃縮液バッグCBに回収する場合には、以下の方法を採用することができる。
<Recovery work of the concentrator 20>
When collecting the concentrated liquid in the concentrator 20 into the concentrated liquid bag CB, the following method can be adopted.
<濾過液供給チューブ送液部3pによる回収>
 まず、上述した濾過器10内の液体を回収する作業を行い、濾過器10において中空糸膜よりも下流側に存在する原液を濾過液供給チューブ3に供給する。やがて、中空糸膜よりも下流側に存在する原液が全て濾過液供給チューブ3に供給されるが、その後も濾過液供給チューブ送液部3pの作動を継続する。すると、圧力測定部10sから空気(または洗浄液)が吸引されるので、濾過液供給チューブ3内の液体(濾過液)は濃縮器20に供給され、濃縮器20で濃縮されて濃縮液チューブ4を通って濃縮液バッグCBに回収される。そして、濾過液供給チューブ3内の液体が無くなっても濾過液供給チューブ送液部3pの作動を継続すれば、濃縮器20内の濃縮液は濃縮液バッグCBに回収され、濃縮器20内の濃縮液がなくなれば濾過液供給チューブ送液部3pの作動を停止する。すると、濃縮器20内の濃縮液を回収することができる。
<Recovery by filtrate supply tube liquid sending unit 3p>
First, the operation of recovering the liquid in the filter 10 described above is performed, and the undiluted liquid existing downstream of the hollow fiber membranes in the filter 10 is supplied to the filtrate supply tube 3 . Before long, all of the undiluted liquid existing downstream of the hollow fiber membranes is supplied to the filtrate supply tube 3, but the operation of the filtrate supply tube liquid feeding section 3p is continued thereafter. Then, since air (or cleaning liquid) is sucked from the pressure measuring section 10s, the liquid (filtrate) in the filtrate supply tube 3 is supplied to the concentrator 20, where it is condensed and flows through the concentrated liquid tube 4. and collected in the concentrate bag CB. Even if the liquid in the filtrate supply tube 3 runs out, if the operation of the filtrate supply tube liquid sending unit 3p is continued, the concentrated liquid in the concentrator 20 is collected in the concentrated liquid bag CB, and the liquid in the concentrator 20 is When the concentrated liquid is used up, the operation of the filtrate supply tube liquid feeding section 3p is stopped. Then, the concentrated liquid in the concentrator 20 can be recovered.
 なお、濃縮器20内の濃縮液が無くなったか否かは、濃縮液チューブ4や濃縮液バッグCBを確認することで判断できる。例えば、圧力測定部10sから空気が吸引される場合には、濃縮液チューブ4内を気泡が流れたり、濃縮液バッグCBに気泡が出たりするようになれば、濃縮器20内の濃縮液が無くなったと判断することができる。 Whether or not the concentrated liquid in the concentrator 20 has run out can be determined by checking the concentrated liquid tube 4 and the concentrated liquid bag CB. For example, when air is sucked from the pressure measuring unit 10s, if air bubbles flow in the concentrated liquid tube 4 or air bubbles appear in the concentrated liquid bag CB, the concentrated liquid in the concentrator 20 is can be determined to have disappeared.
 濃縮器20内の濃縮液を回収する場合にも、圧力測定部10sなどから洗浄液を供給してもよい。この場合には、濃縮液バッグCB内の液体の濃度や色、比重を測定することによって濃縮器20内の濃縮液が無くなったか否かを確認できる。例えば、濃縮器20内の濃縮液が全て回収されると、洗浄液が濃縮液バッグCBに回収される状態になる。すると、濃縮液バッグCB内の液体の色が薄くなるので、濃縮器20内の濃縮液が無くなったと判断することができる。また、洗浄液が濃縮液バッグCBに回収されれば、濃縮液バッグCB内の液体は濃縮液と洗浄液が混ざった状態となり、液体の濃度および比重が濃縮液だけの場合から変化する。したがって、濃縮液バッグCB内の液体を採取して液体の濃度や比重を比重計によって測定すれば、濃縮器20内の濃縮液が無くなったことを確認することができる。さらに、濾過液供給チューブ送液部3pとしてステッピングモーター等の回転回数(回転角度)を計測することが可能なモーターを用いたポンプを使用した場合には、各チューブ(濾過液供給チューブ3や濃縮液チューブ4等)及び濃縮器20内の容量を予め計算等によって求めておき、ポンプの回転数から導き出される送り量をカウントすることによって、濃縮器20内の濃縮液の回収が終了したと判断することもできる。 Also when collecting the concentrated liquid in the concentrator 20, the cleaning liquid may be supplied from the pressure measuring unit 10s or the like. In this case, it is possible to confirm whether or not the concentrated liquid in the concentrator 20 has run out by measuring the concentration, color, and specific gravity of the liquid in the concentrated liquid bag CB. For example, when all the concentrated liquid in the concentrator 20 has been collected, the cleaning liquid is collected in the concentrated liquid bag CB. As a result, the color of the liquid in the concentrated liquid bag CB becomes lighter, so that it can be determined that the concentrated liquid in the concentrator 20 has run out. Further, when the cleaning liquid is collected in the concentrated liquid bag CB, the liquid in the concentrated liquid bag CB becomes a mixture of the concentrated liquid and the cleaning liquid, and the concentration and specific gravity of the liquid change from those of the concentrated liquid alone. Therefore, by sampling the liquid in the concentrated liquid bag CB and measuring the concentration and specific gravity of the liquid with a hydrometer, it is possible to confirm that the concentrated liquid in the concentrator 20 has run out. Furthermore, when a pump using a motor capable of measuring the number of rotations (rotation angle) such as a stepping motor is used as the filtrate supply tube liquid feeding unit 3p, each tube (filtrate supply tube 3, concentration (liquid tube 4, etc.) and the capacity of the concentrator 20 are determined in advance by calculation or the like, and by counting the feed amount derived from the number of revolutions of the pump, it is determined that the collection of the concentrated liquid in the concentrator 20 has been completed. You can also
 また、濃縮器20の水分分離部材が中空糸膜の場合、中空糸膜が空気を通さないという性質を持っていれば、以下のような方法で濃縮器20内に濃縮液が無くなっていることを検知することができる。まず、濃縮器20の水分分離部材が中空糸膜の場合には、濃縮する液体が中空糸膜内を通過するように濾過液供給チューブ3や濃縮液チューブ4、廃液チューブ5が接続される。かかる濃縮器20において、濃縮器20内の濃縮液を回収する際に、濃縮液チューブ4の流量が廃液チューブ5の流量よりも少なくなるようにする。つまり、流量調整手段5cによって廃液チューブ5から廃液バッグDB側に液体が流れるようにしている状態で、流量調整手段4cによって濃縮液チューブ4から濃縮液バッグCBに流れる液体の流量が廃液チューブ5から廃液バッグDBに流れる流量よりも少なくなるようにする。すると、濃縮器20内の濃縮液の回収が進むにつれて空気が濃縮器20の中空糸膜内に送り込まれていくが、空気は中空糸膜を通過できない、つまり、空気は廃液バッグDBには漏れ出ないため、濃縮器20の中空糸膜内に空気が充填される。すると、濃縮器膜間差圧が上昇するので、濃縮器膜間差圧がある一定以上に到達したときに、濃縮器20内の濃縮液が空気で置換された、つまり、濃縮器20内の濃縮液が全て回収されたと判断できる。 In addition, when the moisture separation member of the concentrator 20 is a hollow fiber membrane, if the hollow fiber membrane has the property of impermeability of air, the concentrated liquid is eliminated from the concentrator 20 by the following method. can be detected. First, when the water separation member of the concentrator 20 is a hollow fiber membrane, the filtrate supply tube 3, the concentrated liquid tube 4, and the waste liquid tube 5 are connected so that the liquid to be concentrated passes through the hollow fiber membrane. In such a concentrator 20, when the concentrated liquid in the concentrator 20 is recovered, the flow rate of the concentrated liquid tube 4 is made smaller than the flow rate of the waste liquid tube 5. FIG. That is, in a state in which liquid flows from the waste liquid tube 5 to the waste liquid bag DB side by the flow rate adjusting means 5c, the flow rate of the liquid flowing from the concentrated liquid tube 4 to the concentrated liquid bag CB is changed from the waste liquid tube 5 by the flow rate adjusting means 4c. It should be less than the flow rate flowing to the waste liquid bag DB. Then, as the recovery of the concentrated liquid in the concentrator 20 progresses, air is sent into the hollow fiber membranes of the concentrator 20, but the air cannot pass through the hollow fiber membranes, that is, the air leaks into the waste liquid bag DB. Therefore, the inside of the hollow fiber membrane of the concentrator 20 is filled with air. As a result, the concentrator transmembrane pressure difference rises, and when the concentrator transmembrane pressure difference reaches a certain level or higher, the concentrated liquid in the concentrator 20 is replaced with air. It can be judged that all the concentrate has been collected.
<重力による回収>
 また、濃縮器20内の濃縮液は、重力によって濃縮液バッグCBに回収してもよい。この場合には、中空糸膜よりも上流側の原液が無くなったことを判断すると、濾過液供給チューブ送液部3pの作動を停止し、濾過液供給チューブ3から圧力測定部3sを外す(図8参照)。この状態で、濃縮液バッグCBを濃縮器20の濃縮液排出口20bよりも下方に配置すれば、濃縮器20において濃縮液が流れる流路内の液体を、重力によって濃縮液バッグCBに向かって流して、濃縮液を濃縮液バッグCBに回収することができる。
<Collection by Gravity>
Alternatively, the concentrated liquid in the concentrator 20 may be collected into the concentrated liquid bag CB by gravity. In this case, when it is determined that the stock solution on the upstream side of the hollow fiber membrane has run out, the operation of the filtrate supply tube liquid sending unit 3p is stopped, and the pressure measurement unit 3s is removed from the filtrate supply tube 3 (Fig. 8). In this state, if the concentrated liquid bag CB is arranged below the concentrated liquid discharge port 20b of the concentrator 20, the liquid in the flow path through which the concentrated liquid flows in the concentrator 20 is forced toward the concentrated liquid bag CB by gravity. The concentrate can be drained and collected in the concentrate bag CB.
 重力による回収を行う場合も、圧力測定部3sを外した後、圧力測定部3sが接続されていた個所から、濾過液供給チューブ3に洗浄液を供給するようにしてもよい。 Also when recovery is performed by gravity, the washing liquid may be supplied to the filtrate supply tube 3 from the point where the pressure measurement section 3s was connected after removing the pressure measurement section 3s.
 なお、重力による回収を行う場合において、濃縮器20内の濃縮液が無くなったか否かは、濃縮液チューブ4や濃縮液バッグCBを確認することで判断できる。例えば、圧力測定部3sから空気が吸引される場合には、濃縮液チューブ4内を気泡が流れたり、濃縮液バッグCBに気泡が出たりするようになれば、濃縮器20内の濃縮液が無くなったと判断することができる。また、濾過液供給チューブ3内や濃縮器20内、濃縮液チューブ4内等を重力によって液体が流れる速度を計算や実験により予め求めておき、その速度から想定される回収時間を算出し、想定される回収時間が経過すると濃縮器20内の濃縮液の回収が終了したと判断してもよい。 In addition, in the case of performing recovery by gravity, whether or not the concentrated liquid in the concentrator 20 has run out can be determined by checking the concentrated liquid tube 4 and the concentrated liquid bag CB. For example, when air is sucked from the pressure measuring part 3s, if air bubbles flow in the concentrated liquid tube 4 or air bubbles appear in the concentrated liquid bag CB, the concentrated liquid in the concentrator 20 is can be determined to have disappeared. In addition, the speed at which the liquid flows due to gravity in the filtrate supply tube 3, the concentrator 20, the concentrated liquid tube 4, etc. is obtained in advance by calculation or experiment, and the expected recovery time is calculated from the speed. It may be determined that the recovery of the concentrated liquid in the concentrator 20 is completed when the specified recovery time elapses.
 また、上記方法を使用して濃縮器20内の濃縮液を重力による回収する場合には、圧力測定部3sよりも上流側の濾過液は回収できないので、圧力測定部3sよりも上流側に濾過液が存在しないようになってから濾過液供給チューブ送液部3pの作動を停止してもよい。圧力測定部3sよりも上流側に濾過液が存在しないようになったことは、濾過液供給チューブ3を確認することによって把握できる。
 また、圧力測定部3sよりも上流側の濾過液は分岐チューブ6を通して濾過液のまま濃縮液バッグCBに回収してもよい。
Further, when the concentrated liquid in the concentrator 20 is recovered by gravity using the above method, since the filtered liquid on the upstream side of the pressure measuring section 3s cannot be recovered, the filtered liquid is filtered to the upstream side of the pressure measuring section 3s. The operation of the liquid feed section 3p of the filtrate supply tube may be stopped after the liquid is no longer present. By checking the filtrate supply tube 3, it can be understood that the filtrate no longer exists upstream of the pressure measuring part 3s.
Further, the filtrate on the upstream side of the pressure measuring section 3s may be collected in the concentrated liquid bag CB as it is through the branch tube 6 .
 また、濃縮器20内の濃縮液とともに圧力測定部3sよりも上流側の濾過液も回収する場合には、以下の方法を採用してもよい。まず、濾過液供給チューブ3から濾過液供給チューブ送液部3pを取り外して、濾過液供給チューブ3内を自由に液体が流れる状態にする。ついで、圧力測定部2sと圧力測定部10sのうち、濾過液供給チューブ送液部3pと濾過器10の中空糸膜によって分離されていない流路、つまり、濾過液供給チューブ送液部3pと連通されている流路に接続されている方を取り外す。すると、濾過液供給チューブ3から圧力測定部3sを外した場合と同様に、圧力測定部2sや圧力測定部10sが取り外された部分から空気を導入できる。すると、圧力測定部2sや圧力測定部10sが取り外された部分よりも下流側に存在する濾過液を、濃縮器20内の濃縮液とともに回収することができる。 In addition, when collecting the filtrate on the upstream side of the pressure measuring unit 3s together with the concentrated liquid in the concentrator 20, the following method may be adopted. First, the filtrate supply tube liquid-feeding part 3p is removed from the filtrate supply tube 3, and the inside of the filtrate supply tube 3 is made to be in a state where the liquid flows freely. Next, of the pressure measurement unit 2s and the pressure measurement unit 10s, the filtrate supply tube liquid supply unit 3p and the flow path that is not separated by the hollow fiber membrane of the filter 10, that is, communicate with the filtrate supply tube liquid supply unit 3p. Remove the one that is connected to the flow path that is connected. Then, similarly to the case where the pressure measuring part 3s is removed from the filtrate supply tube 3, air can be introduced from the part where the pressure measuring part 2s and the pressure measuring part 10s are removed. Then, the filtrate present downstream of the portion where the pressure measurement unit 2 s and the pressure measurement unit 10 s are removed can be recovered together with the concentrated liquid in the concentrator 20 .
<リークチェック>
 濾過器10の濾過部材に損傷があったりした場合には、濾過器10に原液を供給した際に、原液が濾過されずに濾過部材を通過してしまう場合がある。すると、原液を適切に濾過できない。このため、本実施形態の原液処理装置1では、準備洗浄を実施する前に、濾過器10の漏れを確認すること(リークチェック)が実施することが望ましい(図14参照)。
<Leak check>
If the filter member of the filter 10 is damaged, the undiluted solution may pass through the filter member without being filtered when the undiluted solution is supplied to the filter 10 . Then the stock solution cannot be properly filtered. Therefore, in the undiluted solution processing apparatus 1 of the present embodiment, it is desirable to check for leaks in the filter 10 (leak check) before performing preparatory cleaning (see FIG. 14).
 以下、リークチェックを実施する一例を説明する。なお、以下の説明では、濾過器10が2つの原液供給ポート11a,11aを有する場合として説明する。 An example of performing a leak check will be described below. In the following description, it is assumed that the filter 10 has two undiluted solution supply ports 11a, 11a.
 リークチェックを実施する場合には、濾過液供給チューブ送液部3pの作動を停止し、全ての流量調整手段2c~6cによって、全てのチューブ2~6を閉塞する。そして、濾過液供給チューブ3の一端を濾過器10の原液供給ポート11a(原液バッグUBが接続されていない原液供給ポート11a)に接続する。また、流量調整手段7cを閉じた状態で洗浄液回収チューブ7の一端を濾過器10の濾過液排出ポート11cに接続する。 When performing a leak check, the operation of the filtrate supply tube liquid sending unit 3p is stopped, and all the tubes 2-6 are blocked by all the flow rate adjusting means 2c-6c. Then, one end of the filtrate supply tube 3 is connected to the undiluted solution supply port 11a of the filter 10 (undiluted solution supply port 11a to which the undiluted solution bag UB is not connected). Further, one end of the washing liquid recovery tube 7 is connected to the filtrate discharge port 11c of the filter 10 with the flow rate adjusting means 7c closed.
 ついで、圧力測定部3sを濾過液供給チューブ3から外し、流量調整手段3c,7cを開放して、濾過液供給チューブ送液部3pを逆方向に流体が流れるように作動する。すると、圧力測定部3sから吸引された空気が原液供給ポート11aから濾過器10内に押しこまれ、濾過器10の中空糸膜よりも上流側に存在する液体が中空糸膜を通過して濾過器10の濾過液排出ポート11cから排出される。そして、中空糸膜よりも上流側の液体が全て排出されると、中空糸膜によって濾過液排出ポート11cと分離された空間の圧力が上昇する。そして、圧力測定部2sと圧力測定部10sで測定される圧力の差圧が所定の圧力(例えば100mmHg以上500mmHg未満)になるまで濾過液供給チューブ送液部3pを作動し、所定の圧力になると濾過液供給チューブ送液部3pの作動を停止する。
 なお、上記所定の圧力は、濾過濃縮作業における濾過器膜間差圧以上で実施することが望ましい。例えば、濾過濃縮作業における濾過器膜間差圧が200mmHg以上300mmHg以下であれば、リークチェックは400mmHg程度で実施すればよい。
Next, the pressure measuring part 3s is removed from the filtrate supply tube 3, the flow rate adjusting means 3c and 7c are opened, and the fluid is operated to flow in the reverse direction through the filtrate supply tube liquid sending part 3p. Then, the air sucked from the pressure measuring part 3s is pushed into the filter 10 from the raw liquid supply port 11a, and the liquid present upstream of the hollow fiber membranes of the filter 10 passes through the hollow fiber membranes and is filtered. It is discharged from the filtrate discharge port 11c of the vessel 10. FIG. When all the liquid upstream of the hollow fiber membranes is discharged, the pressure in the space separated from the filtrate discharge port 11c by the hollow fiber membranes rises. Then, the filtrate supply tube liquid sending unit 3p is operated until the differential pressure measured by the pressure measuring unit 2s and the pressure measuring unit 10s reaches a predetermined pressure (for example, 100 mmHg or more and less than 500 mmHg). The operation of the filtrate supply tube liquid sending unit 3p is stopped.
In addition, it is desirable that the predetermined pressure is equal to or higher than the transmembrane pressure difference of the filter in the filtration and concentration work. For example, if the filter transmembrane pressure is 200 mmHg or more and 300 mmHg or less in the filtration and concentration work, the leak check may be performed at about 400 mmHg.
 もし、濾過器10の濾過部材に損傷があったりした場合には、濾過器10の濾過液排出ポート11cに接続されている洗浄液回収チューブ7の流量調整手段7cが開放されているので、損傷を介して、中空糸膜よりも上流側の空間から濾過液排出ポート11cに接続された空間内(つまり中空糸膜内)に空気が漏れる。すると、圧力測定部2sと圧力測定部10sで測定される圧力の差圧が所定の圧力よりも小さくなる。 If the filtering member of the filter 10 is damaged, the flow rate adjusting means 7c of the cleaning liquid recovery tube 7 connected to the filtered liquid discharge port 11c of the filter 10 is open, so the damage can be prevented. Air leaks from the space on the upstream side of the hollow fiber membranes into the space connected to the filtrate discharge port 11c (that is, inside the hollow fiber membranes). Then, the differential pressure between the pressures measured by the pressure measuring section 2s and the pressure measuring section 10s becomes smaller than the predetermined pressure.
 したがって、濾過液供給チューブ送液部3pの作動を停止した状態を一定時間(例えば2分程度)維持し、圧力測定部2sと圧力測定部10sで測定される圧力の差圧が一定時間保持されれば、濾過器10の濾過部材に損傷が無いと判断できるので、リークチェックを終了する。 Therefore, the state in which the operation of the liquid feed unit 3p of the filtrate supply tube is stopped is maintained for a certain period of time (for example, about 2 minutes), and the pressure difference measured by the pressure measurement unit 2s and the pressure measurement unit 10s is maintained for a certain period of time. If so, it can be determined that the filter member of the filter 10 is not damaged, and the leak check is terminated.
 なお、上記のように濾過器10内に空気を押しこんでリークチェックを実施した場合には、濾過器10の中空糸膜より上流側の空間は加圧された状態となっている。したがって、リークチェック後に準備洗浄等の別の作業を継続して実施する場合は、濾過器10の中空糸膜より上流側の空間の圧力を下げることが望ましい。濾過器10の中空糸膜より上流側の空間の圧力を下げるには、濾過器10の中空糸膜の上流側の空間を外部に連通すればよい。例えば、分岐チューブ6の流量調整手段6cを開放すれば、濾過器10の中空糸膜の上流側の空間内の空気を外部に排出させて、濾過器10の中空糸膜の上流側の空間内の圧力をさげることができる。濾過器10の中空糸膜の上流側の空間内の圧力をさげることができれば、洗浄液回収チューブ7を濾過液排出ポート11cから外し濾過液供給チューブ3を原液供給ポート11aから外して濾過液排出ポート11cに接続する、その後、給液チューブ2の流量調整手段2cを開放し濾過液供給チューブ3内を正方向に液体が流れるように濾過液供給チューブ送液部3pを作動すれば、洗浄液バッグSBから洗浄液が供給されるので、そのまま準備洗浄を行うことができる(図2参照)。なお、濾過液供給チューブ3が接続されていた原液供給ポート11aは濾過器接続コネクタ等で閉塞してもよいが、この原液供給ポート11aに洗浄液回収チューブ7を接続すれば、濾過器10における中空糸膜の上流側の空間や中空糸膜の外面の準備洗浄も実施できる。 It should be noted that when air is pushed into the filter 10 to perform a leak check as described above, the space upstream of the hollow fiber membrane of the filter 10 is in a pressurized state. Therefore, when continuing other work such as preparatory cleaning after the leak check, it is desirable to reduce the pressure in the space upstream of the hollow fiber membranes of the filter 10 . In order to lower the pressure in the space upstream of the hollow fiber membranes of the filter 10, the space upstream of the hollow fiber membranes of the filter 10 should be communicated with the outside. For example, if the flow rate adjusting means 6c of the branch tube 6 is opened, the air in the space on the upstream side of the hollow fiber membranes of the filter 10 is discharged to the outside, and the air in the space on the upstream side of the hollow fiber membranes of the filter 10 is discharged. pressure can be reduced. If the pressure in the space on the upstream side of the hollow fiber membranes of the filter 10 can be lowered, the washing liquid collection tube 7 is removed from the filtrate discharge port 11c, the filtrate supply tube 3 is removed from the undiluted solution supply port 11a, and the filtrate discharge port is removed. 11c, and then open the flow rate adjusting means 2c of the liquid supply tube 2 and operate the filtrate supply tube liquid feeding section 3p so that the liquid flows in the positive direction in the filtrate supply tube 3, the cleaning liquid bag SB Since the cleaning liquid is supplied from the , preparatory cleaning can be performed as it is (see FIG. 2). The undiluted solution supply port 11a to which the filtrate supply tube 3 is connected may be closed with a filter connector or the like. Preliminary cleaning of the space upstream of the fiber membranes and the outer surface of the hollow fiber membranes can also be carried out.
 また、リークチェック実施時のチューブ接続状態のまま、準備洗浄作業を行うことによって濾過器10の中空糸膜より上流側の空間の圧力を下げることもできる。例えば、リークチェックの状態(図14の状態)から、洗浄液回収チューブ7の流量調整手段7cを閉塞し、圧力測定部3sを取り付け、濃縮液チューブ4の流量調整手段4cや廃液チューブ5の流量調整手段5cを開放し、濾過液供給チューブ送液部3pを作動して濾過器10の中空糸膜の上流側の空間内の空気を吸引する。そして、圧力測定部2sの圧力や濾過器膜間差圧を確認することによって圧力が下がってきたと判断すると、給液チューブ2の流量調整手段2cを開放すれば、洗浄液バッグSBから洗浄液が供給されるので、そのまま準備洗浄を行うことができる。 In addition, the pressure in the space on the upstream side of the hollow fiber membrane of the filter 10 can be lowered by performing the preparatory cleaning work while the tube is still connected when the leak check is performed. For example, from the leak check state (the state of FIG. 14), the flow rate adjusting means 7c of the cleaning liquid recovery tube 7 is closed, the pressure measuring section 3s is attached, and the flow rate adjusting means 4c of the concentrated liquid tube 4 and the flow rate of the waste liquid tube 5 are adjusted. The means 5c is opened, and the filtrate supply tube liquid sending portion 3p is operated to suck the air in the space on the upstream side of the hollow fiber membranes of the filter 10. As shown in FIG. When it is determined that the pressure has decreased by checking the pressure of the pressure measuring portion 2s and the transmembrane pressure difference of the filter, the cleaning liquid is supplied from the cleaning liquid bag SB by opening the flow rate adjusting means 2c of the liquid supply tube 2. Therefore, preparatory cleaning can be performed as it is.
 なお、この方法を採用した場合、濃縮器20に空気が入ることになるので、濃縮器20の空気抜きが困難になるのであれば、リークチェックの際には濾過液供給チューブ3から濃縮器20を外しておき、濾過器10の空気が抜けた後に濃縮器20を濾過液供給チューブ3を接続するようにすればよい。さらに、濾過器10の中空糸膜より上流側の空間に洗浄液を効率よく充填するには、給液チューブ2の流量調整手段2cを開放する前に濾過器10を反転させておき、洗浄液が下方から上方へと流れるようにすればよい。 If this method is adopted, air will enter the concentrator 20, so if it becomes difficult to remove the air from the concentrator 20, the concentrator 20 should be removed from the filtrate supply tube 3 during the leak check. The concentrator 20 may be connected to the filtrate supply tube 3 after removing air from the filter 10 . Furthermore, in order to efficiently fill the space upstream of the hollow fiber membranes of the filter 10 with the cleaning liquid, the filter 10 is turned upside down before the flow rate adjusting means 2c of the liquid supply tube 2 is opened so that the cleaning liquid flows downward. should be made to flow upwards from the
 また、リークチェック実施時のチューブ接続状態のまま準備洗浄作業を行う方法では、濾過器10における中空糸膜の上流側の空間や中空糸膜の外面の準備洗浄は可能であるが、濾過器10における中空糸膜の下流側の空間には洗浄液が供給されないので、濾過器10における中空糸膜の下流側の空間の準備洗浄を実施することはできない。この場合でも、濾過器10における中空糸膜の上流側の空間の圧力が低下した後、または、濾過器10における中空糸膜の上流側の空間や中空糸膜の外面の準備洗浄をある程度実施した後、洗浄液回収チューブ7や濾過液供給チューブ3の接続を変更すれば、濾過器10における中空糸膜の下流側の空間の準備洗浄を実施することは可能である。つまり、給液チューブ2の流量調整手段2cを一旦閉塞し濾過液供給チューブ3の作動も一旦停止し、洗浄液回収チューブ7を濾過液排出ポート11cから外し濾過液供給チューブ3を原液供給ポート11aから外して濾過液排出ポート11cに接続する。その後、給液チューブ2の流量調整手段2cを開放し濾過液供給チューブ3内を正方向に液体が流れるように濾過液供給チューブ送液部3pを作動すれば、洗浄液バッグSBから供給される洗浄液が中空糸膜を通過するので、濾過器10における中空糸膜の下流側の空間も準備洗浄することができる。 In addition, in the method of performing preparatory cleaning work while the tube is connected during leak check, preparatory cleaning of the space on the upstream side of the hollow fiber membrane in the filter 10 and the outer surface of the hollow fiber membrane is possible. Since the cleaning liquid is not supplied to the space downstream of the hollow fiber membranes in the filter 10, preparatory cleaning of the space downstream of the hollow fiber membranes in the filter 10 cannot be performed. Even in this case, after the pressure in the space on the upstream side of the hollow fiber membrane in the filter 10 has decreased, or the space on the upstream side of the hollow fiber membrane in the filter 10 and the outer surface of the hollow fiber membrane have been preliminarily washed to some extent. After that, by changing the connections of the cleaning liquid collection tube 7 and the filtrate supply tube 3, it is possible to carry out preparatory cleaning of the space downstream of the hollow fiber membranes in the filter 10. FIG. That is, once the flow rate adjusting means 2c of the liquid supply tube 2 is blocked, the operation of the filtrate supply tube 3 is temporarily stopped, the cleaning liquid recovery tube 7 is removed from the filtrate discharge port 11c, and the filtrate supply tube 3 is connected from the undiluted liquid supply port 11a. Remove it and connect it to the filtrate discharge port 11c. After that, if the flow rate adjusting means 2c of the liquid supply tube 2 is opened and the liquid feed section 3p of the filtrate supply tube is operated so that the liquid flows forward in the filtrate supply tube 3, the cleaning liquid supplied from the cleaning liquid bag SB is passes through the hollow fiber membranes, the space downstream of the hollow fiber membranes in the filter 10 can also be prewashed.
 上記例では、濾過器10内に空気を押しこんでリークチェックを行う場合を説明したが、図21に示すように、濾過器10内から空気を吸い出して、リークチェックを実施してもよい。この場合も、まず、濾過液供給チューブ送液部3pの作動を停止し、全ての流量調整手段2c~6cによって、全てのチューブ2~6を閉塞する。そして、濾過液供給チューブ3の一端を濾過器10の原液供給ポート11a(原液バッグUBが接続されていない原液供給ポート11a)に接続する。また、流量調整手段7cを閉じた状態で洗浄液回収チューブ7の一端を濾過器10の濾過液排出ポート11cに接続する。 In the above example, the leak check is performed by pushing air into the filter 10, but as shown in FIG. In this case as well, first, the operation of the filtrate supply tube liquid sending portion 3p is stopped, and all the tubes 2 to 6 are closed by all the flow rate adjusting means 2c to 6c. Then, one end of the filtrate supply tube 3 is connected to the undiluted solution supply port 11a of the filter 10 (undiluted solution supply port 11a to which the undiluted solution bag UB is not connected). Further, one end of the washing liquid recovery tube 7 is connected to the filtrate discharge port 11c of the filter 10 with the flow rate adjusting means 7c closed.
 ついで、圧力測定部3sを濾過液供給チューブ3から外し、流量調整手段3c,7cを開放して、濾過液供給チューブ送液部3pを正方向に流体が流れるように作動する。すると、中空糸膜よりも上流側の空間に存在する液体や気体が吸い出され、中空糸膜よりも上流側の空間、つまり、中空糸膜によって濾過液排出ポート11cと分離された空間の圧力が低下する。そして、圧力測定部2sと圧力測定部10sで測定される圧力の差圧が所定の圧力(例えば100mmHg以上500mmHg未満)になるまで濾過液供給チューブ送液部3pを作動し、所定の圧力になると濾過液供給チューブ送液部3pの作動を停止する。
 なお、上記所定の圧力は、濾過濃縮作業における濾過器膜間差圧以上で実施することが望ましい。例えば、濾過濃縮作業における濾過器膜間差圧が200mmHg以上300mmHg以下であれば、リークチェックは400mmHg程度で実施すればよい。
Next, the pressure measuring part 3s is removed from the filtrate supply tube 3, the flow rate adjusting means 3c and 7c are opened, and the fluid is operated to flow forward through the filtrate supply tube liquid sending part 3p. Then, the liquid and gas present in the space upstream of the hollow fiber membrane are sucked out, and the pressure of the space upstream of the hollow fiber membrane, that is, the space separated from the filtrate discharge port 11c by the hollow fiber membrane decreases. Then, the filtrate supply tube liquid sending unit 3p is operated until the differential pressure measured by the pressure measuring unit 2s and the pressure measuring unit 10s reaches a predetermined pressure (for example, 100 mmHg or more and less than 500 mmHg). The operation of the filtrate supply tube liquid sending unit 3p is stopped.
In addition, it is desirable that the predetermined pressure is equal to or higher than the transmembrane pressure difference of the filter in the filtration and concentration work. For example, if the filter transmembrane pressure is 200 mmHg or more and 300 mmHg or less in the filtration and concentration work, the leak check may be performed at about 400 mmHg.
 もし、濾過器10の濾過部材に損傷があったりした場合には、濾過器10の濾過液排出ポート11cに接続されている洗浄液回収チューブ7の流量調整手段7cが開放されているので、損傷を介して、濾過液排出ポート11cを通して、中空糸膜よりも上流側の空間に空気が漏れる。すると、圧力測定部2sと圧力測定部10sで測定される圧力の差圧が所定の圧力よりも小さくなる。 If the filtering member of the filter 10 is damaged, the flow rate adjusting means 7c of the cleaning liquid recovery tube 7 connected to the filtered liquid discharge port 11c of the filter 10 is open, so the damage can be prevented. Air leaks into the space on the upstream side of the hollow fiber membrane through the filtrate discharge port 11c. Then, the differential pressure between the pressures measured by the pressure measuring section 2s and the pressure measuring section 10s becomes smaller than the predetermined pressure.
 したがって、濾過液供給チューブ送液部3pの作動を停止した状態を一定時間(例えば2分程度)維持し、圧力測定部2sと圧力測定部10sで測定される圧力の差圧が一定時間保持されれば、濾過器10の濾過部材に損傷が無いと判断できるので、リークチェックを終了する。 Therefore, the state in which the operation of the liquid feed unit 3p of the filtrate supply tube is stopped is maintained for a certain period of time (for example, about 2 minutes), and the pressure difference measured by the pressure measurement unit 2s and the pressure measurement unit 10s is maintained for a certain period of time. If so, it can be determined that the filter member of the filter 10 is not damaged, and the leak check is terminated.
 なお、濾過器10内から空気を吸い出してリークチェックを実施した場合には、濾過器10の中空糸膜より上流側の空間は低圧になっている。このため、以下のようにすれば、リークチェックから準備洗浄作業を実施することができる。まず、リークチェックの状態(図21の状態)から、洗浄液回収チューブ7の流量調整手段7cを閉塞し、給液チューブ2の流量調整手段2cを開放する。すると、浄液バッグSBから洗浄液が濾過器10に供給され、濾過器10の中空糸膜より上流側の空間および中空糸膜内に洗浄液が充填される。その後、圧力測定部3sを取り付け、濃縮液チューブ4の流量調整手段4cや廃液チューブ5の流量調整手段5cを開放し、濾過液供給チューブ3内を正方向に液体が流れるように濾過液供給チューブ送液部3pを作動すれば、そのまま準備洗浄を行うことができる。なお、濾過器10の中空糸膜より上流側の空間に洗浄液を効率よく充填するには、給液チューブ2の流量調整手段2cを開放する前に濾過器10を反転させておき、洗浄液が下方から上方へと流れるようにすればよい。 It should be noted that when air is sucked out of the filter 10 and a leak check is performed, the pressure in the space upstream of the hollow fiber membrane of the filter 10 is low. Therefore, the leak check and preparatory cleaning work can be carried out in the following manner. First, from the leak check state (the state of FIG. 21), the flow rate adjusting means 7c of the cleaning liquid recovery tube 7 is closed, and the flow rate adjusting means 2c of the liquid supply tube 2 is opened. Then, the cleaning liquid is supplied from the cleaning liquid bag SB to the filter 10, and the space on the upstream side of the hollow fiber membranes of the filter 10 and the inside of the hollow fiber membranes are filled with the cleaning liquid. After that, the pressure measuring part 3s is attached, the flow rate adjusting means 4c of the concentrated liquid tube 4 and the flow rate adjusting means 5c of the waste liquid tube 5 are opened, and the filtrate supply tube is adjusted so that the liquid flows forward in the filtrate supply tube 3. Preliminary cleaning can be performed as it is by activating the liquid feeding unit 3p. In order to efficiently fill the space upstream of the hollow fiber membrane of the filter 10 with the cleaning liquid, the filter 10 is turned upside down before the flow rate adjusting means 2c of the liquid supply tube 2 is opened so that the cleaning liquid flows downward. should be made to flow upwards from the
 また、濾過器10内から空気を吸い出してリークチェックを実施した後準備洗浄作業を実施する方法でも、濾過器10における中空糸膜の上流側の空間や中空糸膜の外面の準備洗浄は可能であるが、濾過器10における中空糸膜の下流側の空間には洗浄液が供給されない。この場合でも、濾過器10における中空糸膜の上流側の空間や中空糸膜の外面の準備洗浄をある程度実施した後、洗浄液回収チューブ7や濾過液供給チューブ3の接続を変更すれば、濾過器10における中空糸膜の下流側の空間の準備洗浄を実施することは可能である。つまり、給液チューブ2の流量調整手段2cを一旦閉塞し濾過液供給チューブ3の作動も一旦停止し、洗浄液回収チューブ7を濾過液排出ポート11cから外し濾過液供給チューブ3を原液供給ポート11aから外して濾過液排出ポート11cに接続する。その後、給液チューブ2の流量調整手段2cを開放し濾過液供給チューブ3内を正方向に液体が流れるように濾過液供給チューブ送液部3pを作動する。すると、洗浄液バッグSBから供給される洗浄液が中空糸膜を通過するので、濾過器10における中空糸膜の下流側の空間も準備洗浄することができる。 In addition, preparatory cleaning of the space on the upstream side of the hollow fiber membranes in the filter 10 and the outer surface of the hollow fiber membranes is also possible by a method of performing preparatory cleaning work after performing a leak check by sucking air from the inside of the filter 10. However, no washing liquid is supplied to the space on the downstream side of the hollow fiber membranes in the filter 10 . Even in this case, after preparatory cleaning of the space on the upstream side of the hollow fiber membrane and the outer surface of the hollow fiber membrane in the filter 10 to some extent, if the connection of the cleaning liquid collection tube 7 and the filtrate supply tube 3 is changed, the filter can be It is possible to carry out a preliminary cleaning of the space downstream of the hollow fiber membranes at 10 . That is, once the flow rate adjusting means 2c of the liquid supply tube 2 is blocked, the operation of the filtrate supply tube 3 is temporarily stopped, the cleaning liquid recovery tube 7 is removed from the filtrate discharge port 11c, and the filtrate supply tube 3 is connected from the undiluted liquid supply port 11a. Remove it and connect it to the filtrate discharge port 11c. After that, the flow rate adjusting means 2c of the liquid supply tube 2 is opened, and the liquid supply section 3p of the filtrate supply tube is operated so that the liquid flows in the filtrate supply tube 3 in the positive direction. Then, since the cleaning liquid supplied from the cleaning liquid bag SB passes through the hollow fiber membranes, the space on the downstream side of the hollow fiber membranes in the filter 10 can also be preliminarily cleaned.
<調整器具50>
 上記例では、濃縮液チューブ4にクレンメやクリップ等の流量調整手段4cを設ける場合を説明した。流量調整手段4cとして使用される一般的なクレンメやクリップ等は、濃縮液チューブ4を閉塞したり開放したりする機能を有しており、クレンメであれば濃縮液チューブ4内を流れる液体の流量を調整することもできる。例えば、医療現場で一般的に使用されているクレンメは開放と閉塞しかできないが、チューブを完全に閉塞しないようにできるクレンメであれば、液体の流量を調整することもできる。つまり、チューブをつぶす部材(ローラ等)を所望の位置で止めることができる(固定できる)クレンメであれば、チューブをつぶす部材を固定する位置を調整することによって、濃縮液チューブ4内を流れる液体の流量を調整することができる。
 なお、調整器具50が、特許請求の範囲にいう調整部に相当するものになる。
<Adjustment tool 50>
In the above example, the case where the concentrated liquid tube 4 is provided with the flow rate adjusting means 4c such as a clamp or a clip has been described. A general clamp, clip, or the like used as the flow rate adjusting means 4c has the function of closing or opening the concentrated liquid tube 4. If the clamp is used, the flow rate of the liquid flowing in the concentrated liquid tube 4 is can also be adjusted. For example, crimps that are commonly used in medical practice can only open and close, but crimps that can prevent the tube from being completely clogged can also adjust the flow rate of the liquid. In other words, with a clamp that can stop (fix) the tube crushing member (roller, etc.) at a desired position, the liquid flowing through the concentrate tube 4 can be adjusted by adjusting the fixing position of the tube crushing member. can be adjusted.
In addition, the adjusting tool 50 corresponds to the adjusting section described in the claims.
 しかし、一般的なクレンメ等の場合、液体の流量を調整する機能を有していても、濃縮液チューブ4を流れる濃縮液の流量を正確に調整することができない。 However, in the case of a general creme, etc., even if it has a function of adjusting the flow rate of the liquid, the flow rate of the concentrate flowing through the concentrate tube 4 cannot be adjusted accurately.
 そこで、流量調整手段4cとして、以下のような調整器具50を使用すれば、濃縮液チューブ4を流れる濃縮液の流量を正確に調整することができる。しかも、濾過液供給チューブ送液部3pの作動、つまり、濾過液供給チューブ3内を流れる液体の流量を調整すれば、濃縮器膜間差圧を適切な範囲に調節することが可能になる。 Therefore, the flow rate of the concentrated liquid flowing through the concentrated liquid tube 4 can be accurately adjusted by using the following adjusting device 50 as the flow rate adjusting means 4c. Moreover, by adjusting the operation of the filtrate supply tube liquid sending section 3p, that is, the flow rate of the liquid flowing through the filtrate supply tube 3, it becomes possible to adjust the transmembrane pressure difference in the concentrator to an appropriate range.
 調整器具50としては、以下のような構造を採用することができる。
 なお、上述した調整器具50を濃縮液チューブ4に設ける場合には、濃縮液チューブ4としては、可撓性や柔軟性を有する濃縮液チューブ4を使用する。かかるチューブとしては、例えばポリ塩化ビニル製やシリコーンゴム製のチューブを挙げることができる。
As the adjusting tool 50, the following structure can be adopted.
In addition, when the adjusting device 50 described above is provided in the concentrated liquid tube 4 , the concentrated liquid tube 4 having flexibility and softness is used as the concentrated liquid tube 4 . Such tubes include, for example, polyvinyl chloride and silicone rubber tubes.
 図15に示すように、調整器具50は、ベース部材51と、このベース部材51に設けられた2本のチューブ保持部材52と、蓋部材53と、を備えている。 As shown in FIG. 15, the adjustment tool 50 includes a base member 51, two tube holding members 52 provided on this base member 51, and a lid member 53.
 ベース部材51は板状の部材であり、その表面に隙間52sを空けた状態で2本の円柱状のチューブ保持部材52が立設されている。蓋部材53は2本のチューブ保持部材52の先端(図15(B)、(C)では上端)の開口を塞ぐためのものである。つまり、後述するように2本の円柱状のチューブ保持部材52の隙間52sに濃縮液チューブ4を配置した際に、隙間52sから濃縮液チューブ4から外れないようにするために蓋部材53が設けられている。 The base member 51 is a plate-like member, and two cylindrical tube holding members 52 are erected on the surface thereof with a gap 52s. The lid member 53 is for closing the openings of the two tube holding members 52 (upper ends in FIGS. 15(B) and 15(C)). In other words, when the concentrated liquid tube 4 is placed in the gap 52s between the two cylindrical tube holding members 52 as described later, the lid member 53 is provided to prevent the concentrated liquid tube 4 from coming off from the gap 52s. It is
 2本のチューブ保持部材52は、両者の間に形成される隙間52sが、以下の条件を満たすように形成されている。つまり、隙間52sに配置した状態の濃縮液チューブ4内に水が流れる方向に重力が加わらないように水を50mL/min流したときに、濃縮液チューブ4内の水の平均圧力を10mmHg以上100mmHg以下に維持できる幅52wとなるように隙間52sは形成されている。 The two tube holding members 52 are formed so that the gap 52s formed between them satisfies the following conditions. That is, when water is flowed at 50 mL/min so as not to apply gravity in the direction in which the water flows in the concentrated liquid tube 4 arranged in the gap 52s, the average pressure of the water in the concentrated liquid tube 4 is increased from 10 mmHg to 100 mmHg. The gap 52s is formed so as to have a width 52w that can be maintained below.
 かかる構成とすれば、濃縮液チューブ4内を流れる濃縮液の流量を200mL/minとすれば、濃縮器膜間差圧(つまり圧力測定部3sの圧力)を400mmHg程度まで上昇させることができる。すると、一般的な濃縮器20に供給することができる最大の流量、言い換えれば、濃縮器20において安全に濃縮作業を行うことができる流量まで濾過液供給チューブ送液部3pの流量を上昇させた際に、濃縮器20において安全に濃縮作業を行うことができる最大の濃縮器膜間差圧である400mmHg程度まで濃縮器膜間差圧を上昇させることができる。つまり、最大の濃縮器膜間差圧としつつ、濃縮器20において最大の濃縮効率となる条件(濃縮器20において安全に濃縮作業を行うことができる流量)で濃縮処理を実施することも可能になるので、濾過効率と濃縮効率を高くすることができる。 With such a configuration, if the flow rate of the concentrated liquid flowing through the concentrated liquid tube 4 is set to 200 mL/min, the transmembrane pressure of the concentrator (that is, the pressure of the pressure measuring section 3s) can be increased to about 400 mmHg. Then, the maximum flow rate that can be supplied to the general concentrator 20, in other words, the flow rate of the filtrate supply tube liquid sending part 3p is increased to the flow rate that allows safe concentration work in the concentrator 20. In this case, the concentrator transmembrane pressure can be raised to about 400 mmHg, which is the maximum concentrator transmembrane pressure at which the concentration can be safely performed in the concentrator 20 . In other words, it is also possible to carry out the concentration process under the conditions that maximize the concentration efficiency in the concentrator 20 (flow rate at which the concentration operation can be safely performed in the concentrator 20) while maintaining the maximum transmembrane pressure difference in the concentrator. Therefore, filtration efficiency and concentration efficiency can be increased.
 濃縮液チューブ4として、ポリ塩化ビニルやシリコーンゴムによって形成された断面円形のチューブを使用した場合であれば、隙間52sの幅52wを、濃縮液チューブ4の壁厚t4の二倍(つまり、直径方向における壁厚t4の合計)に対して95%~110%となるように調整すれば、上述したような条件で濃縮処理を実施することも可能になる。つまり、最大の濃縮器膜間差圧としつつ、濃縮器において最大の濃縮効率となる条件で濃縮処理を実施することも可能になる If a tube with a circular cross section made of polyvinyl chloride or silicone rubber is used as the concentrate tube 4, the width 52w of the gap 52s is twice the wall thickness t4 of the concentrate tube 4 (that is, the diameter If it is adjusted to 95% to 110% with respect to the total wall thickness t4 in the direction), it is possible to carry out the concentration treatment under the conditions as described above. In other words, it is possible to carry out the concentration process under conditions that maximize the concentration efficiency in the concentrator while maintaining the maximum transmembrane pressure difference in the concentrator.
 例えば、濃縮液チューブ4がポリ塩化ビニルやシリコーンゴムによって形成された断面円形のチューブであって、濃縮液チューブ4の外径Dが3.0~12.0mm、内径Dtが2.0~8.0mm、壁厚t4が0.5~2.0mmとする。この場合であれば、隙間52sの幅52wを、0.95~4.40mmに調整すれば、上述したような条件で濃縮処理を実施することも可能になる。 For example, the concentrated liquid tube 4 is a tube having a circular cross section made of polyvinyl chloride or silicone rubber, and has an outer diameter D of 3.0 to 12.0 mm and an inner diameter Dt of 2.0 to 8 mm. 0 mm, and the wall thickness t4 is 0.5 to 2.0 mm. In this case, if the width 52w of the gap 52s is adjusted to 0.95 to 4.40 mm, it becomes possible to carry out the concentration process under the above conditions.
 なお、隙間52sの幅52wを上記のように調整した場合には、2本のチューブ保持部材52の位置において濃縮液チューブ4内にある程度の空間が形成される状態(つまり濃縮液チューブ4の内面間に空間が形成されている状態)となる場合だけでなく、2本のチューブ保持部材52の位置において濃縮液チューブ4内面同士が接触している状態となる場合がある。しかし、隙間52sの幅52wを上記のように調整した場合には、2本のチューブ保持部材52の位置において濃縮液チューブ4の内面同士が接触している状態でも、濃縮液チューブ4内面間から濃縮液がしみだす(漏れだす)状態とできれば、濃縮液チューブ4を通して濃縮器20から濃縮液バッグCBに濃縮液を回収することができる。ここでいう、濃縮液チューブ4内にある程度の空間が形成される状態や濃縮液チューブ4の内面同士が接触している状態とすることは、特許請求の範囲にいう「濃縮液流路を所定の状態に調整する」ことに相当する。また、濃縮液流路として可撓性や柔軟性を有するチューブを使用しない場合であっても、濃縮液流路に濃縮液が流れる空間(上述した調整器具50と濃縮チューブ4とを使用した場合と同等の幅を有する空間)が形成された状態とすることや、濃縮液流路に濃縮液が流れる空間がないまたはわずかな隙間がある状態であって濃縮液がしみだす(漏れだす)ことができる状態とすることも、特許請求の範囲にいう「濃縮液流路を所定の状態に調整する」ことに相当する。例えば、濃縮液流路を一対の側壁間の距離を変更できる構造としても、上記2つの状態とすることは可能である。 In addition, when the width 52w of the gap 52s is adjusted as described above, a certain amount of space is formed in the concentrated liquid tube 4 at the positions of the two tube holding members 52 (that is, the inner surface of the concentrated liquid tube 4 In some cases, the inner surfaces of the concentrate tubes 4 are in contact with each other at the positions of the two tube holding members 52 . However, when the width 52w of the gap 52s is adjusted as described above, even when the inner surfaces of the concentrated liquid tubes 4 are in contact with each other at the positions of the two tube holding members 52, If the concentrated solution is allowed to seep (leak), the concentrated solution can be recovered from the concentrator 20 through the concentrated solution tube 4 into the concentrated solution bag CB. The state in which a certain amount of space is formed in the concentrated liquid tube 4 or the state in which the inner surfaces of the concentrated liquid tube 4 are in contact with each other is referred to in the scope of claims. Equivalent to "adjusting to the state of Also, even if a tube having flexibility or flexibility is not used as the concentrate channel, the space in which the concentrate flows in the concentrate channel A space with a width equivalent to the width of the liquid) is formed, or the concentrated liquid seeps out (leaks) when there is no space for the concentrated liquid to flow or there is a slight gap in the concentrated liquid channel. Setting a state in which it is possible to do so also corresponds to "adjusting the concentrated liquid channel to a predetermined state" as recited in the claims. For example, even if the concentrated liquid channel has a structure in which the distance between the pair of side walls can be changed, the above two states are possible.
<調整器具50の他の例>
 調整器具50は、3本以上のチューブ保持部材52を有していてもよい。3本以上のチューブ保持部材52を設けた場合には、隣接するチューブ保持部材52間に形成される隙間の幅を異なるように、各チューブ保持部材52を設けることが望ましい。例えば、図15(C)に示すように、4本のチューブ保持部材52を設けた場合には、隙間52s1~s3の幅52w1~W3が異なるように、4本のチューブ保持部材52を設ける。すると、濃縮液チューブ4に応じて適切な幅を有する隙間に濃縮液チューブ4を配置することによって、濃縮液チューブ4内を流れる濃縮液の流量を正確に調整することができる。そして、濾過液供給チューブ3内を流す液体の流量を調整することによって、濃縮器20の濃縮器膜間差圧を適切な範囲に調節することが可能になる。
<Another example of the adjusting tool 50>
The adjustment instrument 50 may have three or more tube retaining members 52 . When three or more tube holding members 52 are provided, it is desirable to provide each tube holding member 52 so that the width of the gap formed between adjacent tube holding members 52 is different. For example, as shown in FIG. 15C, when four tube holding members 52 are provided, the four tube holding members 52 are provided such that the widths 52w1 to W3 of the gaps 52s1 to s3 are different. Then, by placing the concentrate tube 4 in a gap having an appropriate width according to the concentrate tube 4, the flow rate of the concentrate flowing through the concentrate tube 4 can be adjusted accurately. By adjusting the flow rate of the liquid flowing through the filtrate supply tube 3, the transmembrane pressure difference of the concentrator 20 can be adjusted within an appropriate range.
<ベース部材51およびチューブ保持部材52について>
 ベース部材51は板状の部材に限られず、どのような形状に形成されていてもよい。ベース部材51は、隣接するチューブ保持部材52間の隙間に濃縮液チューブ4を差し込んだときに、その幅を維持できる強度を有していればよい。
<About the base member 51 and the tube holding member 52>
The base member 51 is not limited to a plate-like member, and may be formed in any shape. The base member 51 may have sufficient strength to maintain the width of the concentrated liquid tube 4 when it is inserted into the gap between the adjacent tube holding members 52 .
<チューブ保持部材52について>
 上記例では、チューブ保持部材52が円柱状の場合を説明したが、チューブ保持部材52は互いに対向する面において、濃縮液チューブ4と接触する部分が曲面になっていればよく、必ずしもチューブ保持部材52の断面が円形になっていなくてもよい。より詳しくは、チューブ保持部材52と接触する部分における濃縮液チューブ4の軸方向を含む平面とチューブ保持部材52において濃縮液チューブ4と接触する表面との交線が円弧状となっていればよい。この場合、濃縮液チューブ4と接触する部分の曲面の曲率半径、言い換えれば、前記円弧の曲率半径R(図15(A)参照。図15(A)ではチューブ保持部材52の半径が該当する)が1~10mm、好ましくは3~7mmに形成されていることが望ましい。とくに、曲率半径Rが7mmよりも大きければ、濃縮液チューブ4内を流れる液体の流量を変化させた際に濃縮器膜間差圧の変動を緩やかにできる。すると、濃縮液チューブ4内を流れる液体の流量が変化しても、濃縮器膜間差圧を安定した状態に維持し易くなる。一方、曲率半径Rが7mmよりも小さければ、濃縮液チューブ4内を流れる液体の流量を変化させた際に濃縮器膜間差圧が急激に変動する。すると、濃縮液チューブ4内を流れる液体の流量の変化を迅速に濃縮器膜間差圧に反映させることができる。したがって、複数のチューブ保持部材52を設け複数の隙間を設けた場合に、同じ幅であるが濃縮液チューブ4と接触する表面の曲率半径が異なるものを設けておけば、同じ濃縮器膜間差圧に調整する場合でも、濃縮器膜間差圧の変化を調整することができる。
<About the tube holding member 52>
In the above example, the case where the tube holding member 52 has a columnar shape was explained, but the tube holding member 52 may have a curved surface at the portion that contacts the concentrate tube 4 on the surfaces facing each other. The cross section of 52 need not be circular. More specifically, the line of intersection between the plane including the axial direction of the concentrated liquid tube 4 at the portion in contact with the tube holding member 52 and the surface of the tube holding member 52 in contact with the concentrated liquid tube 4 may be arcuate. . In this case, the curvature radius of the curved surface of the portion that contacts the concentrate tube 4, in other words, the curvature radius R of the arc (see FIG. 15A. In FIG. 15A, the radius of the tube holding member 52 corresponds) is 1 to 10 mm, preferably 3 to 7 mm. In particular, if the radius of curvature R is greater than 7 mm, fluctuations in the concentrator transmembrane pressure difference can be moderated when the flow rate of the liquid flowing through the concentrated liquid tube 4 is changed. As a result, even if the flow rate of the liquid flowing through the concentrated liquid tube 4 changes, the transmembrane pressure difference of the concentrator can be easily maintained in a stable state. On the other hand, if the radius of curvature R is smaller than 7 mm, the concentrator transmembrane pressure difference abruptly fluctuates when the flow rate of the liquid flowing through the concentrated liquid tube 4 is changed. Then, the change in the flow rate of the liquid flowing through the concentrated liquid tube 4 can be quickly reflected in the transmembrane pressure difference of the concentrator. Therefore, when a plurality of tube holding members 52 are provided and a plurality of gaps are provided, the same transmembrane difference of the concentrator can be obtained by providing tubes having the same width but different radii of curvature of the surface in contact with the concentrate tube 4. Even when adjusting the pressure, changes in the concentrator transmembrane pressure can be adjusted.
 また、チューブ保持部材52において、濃縮液チューブ4と接触する部分は必ずしも曲面になっていなくもよい。濃縮液チューブ4を保持する際に濃縮液チューブ4を傷付けない形状であれば、濃縮液チューブ4と接触する部分は平面や複数の平面からなる多角形状、波型でもよい。 In addition, the portion of the tube holding member 52 that contacts the concentrated liquid tube 4 does not necessarily have to be curved. As long as the shape does not damage the tube 4 when it is held, the portion in contact with the tube 4 may be flat, polygonal, or corrugated.
<調整器具50のさらに他の例>
 上記例では、調整器具50が、円柱状のチューブ保持部材52間に濃縮液チューブ4を挟む構造を有する場合を説明したが、調整器具50は円柱状のチューブ保持部材によって濃縮液チューブ4を変形させる構造でなくてもよい。例えば、上述した調整器具50において、ベース部材51と蓋部材53との間に濃縮液チューブ4を挟んで変形させる構造としてもよい。この場合には、ベース部材51と蓋部材53とを接近させた状態において、両者間の隙間を一定に維持できる構造とする。そして、両者間の隙間を適切に調整すれば、両者の間に濃縮液チューブ4を挟んだ際に、上述したチューブ保持部材52間に濃縮液チューブ4を挟んだ場合と同様に、濃縮液チューブ4を流れる濃縮液の流量を正確に調整する機能を発揮させることができる。この場合には、ベース部材51および蓋部材53が特許請求の範囲にいうチューブ保持部材に相当するものになる。
<Another example of the adjusting tool 50>
In the above example, the adjusting device 50 has a structure in which the concentrated liquid tube 4 is sandwiched between the cylindrical tube holding members 52, but the adjusting device 50 deforms the concentrated liquid tube 4 by means of the cylindrical tube holding members. It does not have to be a structure that allows For example, in the adjusting instrument 50 described above, a structure may be employed in which the concentrated liquid tube 4 is sandwiched between the base member 51 and the lid member 53 so as to be deformed. In this case, the structure is such that the gap between the base member 51 and the lid member 53 can be kept constant when the base member 51 and the lid member 53 are brought close to each other. If the gap between the two is appropriately adjusted, when the concentrated liquid tube 4 is sandwiched between the two, the concentrated liquid tube 4 can be held in the same manner as when the concentrated liquid tube 4 is sandwiched between the tube holding members 52 described above. The function of adjusting the flow rate of the concentrate flowing through 4 can be exhibited. In this case, the base member 51 and the lid member 53 correspond to the tube holding member recited in the claims.
<濾過器10の詳細な説明>
 本実施形態の原液処理装置1に使用される濾過器10は、例えば、CARTに使用されている腹水濾過器や、血漿交換に使用される血漿分離器、血漿成分分離器などである。この濾過器10は、濾過部材が内部に収容されたものであり、濾過部材によって胸腹水を濾過して、濾過液と細胞等を含む分離液とに分離することができるものである。
<Detailed Description of Filter 10>
The filter 10 used in the liquid concentrate processing apparatus 1 of the present embodiment is, for example, an ascites filter used in CART, a plasma separator used in plasmapheresis, a plasma component separator, or the like. The filter 10 has a filtering member housed therein, and can filter the pleural and ascitic fluid with the filtering member to separate it into a filtrate and a separated liquid containing cells and the like.
 以下、図16に基づいて、濾過部材が中空糸膜16である場合における濾過器10の構造を説明する。 The structure of the filter 10 when the filtering member is the hollow fiber membrane 16 will be described below with reference to FIG.
 図16に示すように、この濾過器10は、本体部11と、この本体部11内に配置された中空糸膜束15と、を有している。 As shown in FIG. 16, this filter 10 has a body portion 11 and a hollow fiber membrane bundle 15 arranged in this body portion 11 .
<中空糸膜束15>
 図16に示すように、中空糸膜束15は、複数本の中空糸膜16を束ねて構成されたものである。
<Hollow fiber membrane bundle 15>
As shown in FIG. 16, the hollow fiber membrane bundle 15 is configured by bundling a plurality of hollow fiber membranes 16 .
 中空糸膜16は、断面環状の壁16wを有しその壁16wの内部に中空糸膜16の軸方向を貫通する貫通流路16hが形成された管状の部材である。この中空糸膜16の壁16wは、細胞などの固形分や気体は透過しないが液体は透過する機能を有している。なお、中空糸膜16の壁16wは、通常は気体も透過するが、液体に浸漬されると気体は透過しないが液体は透過する機能を発揮するものであってもよい。 The hollow fiber membrane 16 is a tubular member having a wall 16w with an annular cross section and a through channel 16h formed inside the wall 16w so as to penetrate the hollow fiber membrane 16 in the axial direction. The walls 16w of the hollow fiber membranes 16 have a function of impermeability of solids such as cells and gases but permeation of liquids. The walls 16w of the hollow fiber membranes 16 are normally permeable to gas, but when immersed in liquid, the wall 16w may exhibit the function of impermeability of gas but permeation of liquid.
 中空糸膜束15は、複数の中空糸膜16の一端部同士、および、他端部同士が束ねられている。つまり、各中空糸膜16の貫通流路16hが中空糸膜束15の一端部と他端部との間を貫通するように複数の中空糸膜16を束ねて中空糸膜束15が形成されている。 The hollow fiber membrane bundle 15 is formed by bundling a plurality of hollow fiber membranes 16 at one end and at the other end. In other words, the hollow fiber membrane bundle 15 is formed by bundling a plurality of hollow fiber membranes 16 such that the through-channel 16h of each hollow fiber membrane 16 penetrates between one end and the other end of the hollow fiber membrane bundle 15. ing.
 なお、複数本の中空糸膜16はその両端部同士が必ずしも束ねられていなくてもよい。その場合には、複数本の中空糸膜16の貫通流路16hの両端がそれぞれ本体部11の一対のヘッダ部13,14に連通されるように配置される。 It should be noted that the ends of the multiple hollow fiber membranes 16 do not necessarily have to be bundled together. In that case, both ends of the through-channels 16h of the plurality of hollow fiber membranes 16 are arranged to communicate with the pair of header portions 13 and 14 of the main body portion 11, respectively.
<本体部11>
 図16に示すように、本体部11には、外部と気密かつ液密に隔離された空間である内部空間12hを有する胴部12を備えている。この胴部12の内部空間12は、胴部12の側面に設けられている、上述した原液供給ポート11aのみで外部と連通されるように形成されており、上述した中空糸膜束15を内部に収容している。この内部空間12は、上述した中空糸膜束15を内部に収容した状態において、複数本の中空糸膜16の貫通流路16hと気密に分離されているが、壁16wを通して両者間を液体が通過できるようになっている。つまり、内部空間12内の液体を貫通流路16hに供給できるし、貫通流路16h内の液体を内部空間12に供給できるようになっている。
<Body part 11>
As shown in FIG. 16, the main body 11 includes a body 12 having an internal space 12h, which is a space airtight and liquid-tightly isolated from the outside. The internal space 12 of the body portion 12 is formed so as to communicate with the outside only through the above-described undiluted solution supply port 11a provided on the side surface of the body portion 12, and the above-described hollow fiber membrane bundle 15 is placed inside. are housed in The internal space 12 is airtightly separated from the through-channel 16h of the plurality of hollow fiber membranes 16 in a state in which the above-described hollow fiber membrane bundle 15 is housed inside, but liquid flows between them through the wall 16w. It is possible to pass through. In other words, the liquid inside the internal space 12 can be supplied to the through flow channel 16 h, and the liquid inside the through flow channel 16 h can be supplied to the internal space 12 .
 なお、内部空間12の大きさや形状はとくに限定されない。中空糸膜束15を収容した状態において、原液供給ポート11aを介して内部空間12に流入した液体が、中空糸膜束15と胴部12の内面(つまり内部空間12の内面)との間および複数本の中空糸膜16同士の間を流れることができ、しかも、液体が中空糸膜16の壁16wを通して貫通流路16h内に流入できる程度の大きさがあればよい。加えて、中空糸膜16の壁16wを通して貫通流路16hから内部空間12に流出した液体が、複数本の中空糸膜16同士の間および中空糸膜束15と内部空間12の内面との間を流れて、濾過液排出ポート11cから流出できる程度の大きさがあればよい。 The size and shape of the internal space 12 are not particularly limited. In the state in which the hollow fiber membrane bundle 15 is accommodated, the liquid that has flowed into the internal space 12 through the stock solution supply port 11a flows between the hollow fiber membrane bundle 15 and the inner surface of the body portion 12 (that is, the inner surface of the internal space 12) and It is sufficient that the liquid is large enough to allow the liquid to flow between the plurality of hollow fiber membranes 16 and to flow into the through channel 16h through the wall 16w of the hollow fiber membranes 16. FIG. In addition, the liquid that has flowed out from the through-channel 16h into the internal space 12 through the walls 16w of the hollow fiber membranes 16 flows between the plurality of hollow fiber membranes 16 and between the hollow fiber membrane bundle 15 and the inner surface of the internal space 12. It is sufficient if the size is large enough to flow through and flow out from the filtrate discharge port 11c.
 図16に示すように、本体部11には、胴部12を挟むように、つまり、内部空間12hを挟むように一対のヘッダ部13,14が設けられている。この一対のヘッダ部13,14は、上述した胴部12の内部空間12hおよび外部と気密かつ液密に隔離された空間である。この一対のヘッダ部13,14のうち、ヘッダ部13は、上述した洗浄液供給ポート11bのみで外部と連通されており、ヘッダ部14は、上述した濾過液排出ポート11cのみで外部と連通されている。また、一対のヘッダ部13,14には、上述した中空糸膜束15の各端部がそれぞれ連結されている。具体的には、中空糸膜束15を構成する複数本の中空糸膜16の貫通流路16hの両端の開口が一対のヘッダ部13,14内と連通されるように、中空糸膜束15の両端部がそれぞれ一対のヘッダ部13,14に連結されている。したがって、一対のヘッダ部13,14間が中空糸膜束15を構成する複数本の中空糸膜16の貫通流路16hによって連通された状態となっている。 As shown in FIG. 16, the body part 11 is provided with a pair of header parts 13 and 14 so as to sandwich the body part 12, that is, to sandwich the internal space 12h. The pair of header portions 13 and 14 are spaces that are airtight and liquid-tightly isolated from the inner space 12h of the body portion 12 and the outside. Of the pair of header portions 13 and 14, the header portion 13 communicates with the outside only through the cleaning liquid supply port 11b, and the header portion 14 communicates with the outside only through the filtrate discharge port 11c. there is Each end of the hollow fiber membrane bundle 15 is connected to the pair of headers 13 and 14, respectively. Specifically, the hollow fiber membrane bundle 15 is arranged such that the openings at both ends of the through-channels 16h of the plurality of hollow fiber membranes 16 constituting the hollow fiber membrane bundle 15 communicate with the insides of the pair of header portions 13 and 14. are connected to a pair of header portions 13 and 14, respectively. Therefore, the pair of header portions 13 and 14 are in a state of being communicated with each other by the through passages 16 h of the plurality of hollow fiber membranes 16 forming the hollow fiber membrane bundle 15 .
<濾過器10の機能>
 濾過器10は以上のごとき構成を有しているので、原液バッグUBから給液チューブ2と原液供給ポート11aを通して、本体部11の胴部12の内部空間12hに原液を供給することができる。すると、本体部11の胴部12の内部空間12hは原液供給ポート11aのみで外部と連通されているので、内部空間12hに供給された原液は、中空糸膜16の壁16wを通過して貫通流路16h内に流入する。すると、原液に含まれる固形分は中空糸膜16の壁16wを通過できないので内部空間12h内に残り、中空糸膜16の壁16wを通過した液体分、つまり、原液を濾過した濾過液を得ることができる。そして、濾過された濾過液は、濾過液排出ポート11cを通して外部に供給することができる。
<Function of Filter 10>
Since the filter 10 has the structure described above, the undiluted solution can be supplied from the undiluted solution bag UB to the internal space 12h of the body portion 12 of the body portion 11 through the undiluted solution supply tube 2 and the undiluted solution supply port 11a. Then, since the internal space 12h of the body portion 12 of the body portion 11 communicates with the outside only through the raw solution supply port 11a, the raw solution supplied to the internal space 12h passes through the wall 16w of the hollow fiber membrane 16 and penetrates. It flows into the flow path 16h. Then, since the solid content contained in the stock solution cannot pass through the wall 16w of the hollow fiber membrane 16, it remains in the internal space 12h. be able to. Then, the filtered liquid can be supplied to the outside through the filtrate discharge port 11c.
 一方、上述したように、濾過液排出ポート11cから洗浄液を供給すれば、洗浄液は中空糸膜16の貫通流路16hから壁16wを通過して本体部11の胴部12の内部空間12hに流入するので、中空糸膜16の壁16wの詰り等を解消できる。 On the other hand, as described above, if the cleaning liquid is supplied from the filtrate discharge port 11c, the cleaning liquid passes through the wall 16w from the through channel 16h of the hollow fiber membrane 16 and flows into the internal space 12h of the body section 12 of the main body section 11. Therefore, clogging of the walls 16w of the hollow fiber membranes 16 and the like can be eliminated.
<濃縮器20の詳細な説明>
 本実施形態の原液処理装置1に使用される濃縮器20は、濾過器10から濾過液が供給され、この濾過液を濃縮するものである。この濃縮器20は、前述した濾過器10と実質的に同様の構造を有しており、濾過液から水分を分離して濃縮液とする機能を有している。つまり、濃縮器20は、濾過器10の分離部材に代えて、濾過液から水分を分離する機能を有する水分分離部材が内部に収容された構造を有している。例えば、濃縮器20には、CARTに使用されている腹水濃縮器や、透析に使用される透析用フィルター、二重濾過血漿交換療法に用いられる膜型血漿成分分画器などを使用することができる。
<Detailed Description of Concentrator 20>
The concentrator 20 used in the undiluted solution processing apparatus 1 of the present embodiment is supplied with filtrate from the filter 10 and concentrates the filtrate. The concentrator 20 has substantially the same structure as the filter 10 described above, and has the function of separating water from the filtrate to obtain a concentrated liquid. That is, the concentrator 20 has a structure in which a water separation member having a function of separating water from the filtrate is housed inside instead of the separation member of the filter 10 . For example, the concentrator 20 may be an ascitic fluid concentrator used for CART, a dialysis filter used for dialysis, or a membrane-type plasma component fractionator used for double-filtration plasma exchange therapy. can.
 例えば、水分分離部材が中空糸膜であれば、濃縮器20は、中空糸膜16を束ねた中空糸膜束25を収容する空間である内部空間22hを有する胴部22と、中空糸膜束25の両端部が連結される一対のヘッダ部23,24を有する構造に形成される(図17参照)。そして、胴部22の側面には上述した廃液チューブ5が接続される廃液排出口20cが設けられ、この廃液排出口20cのみで外部と連通されるように濃縮器20の胴部22が形成される。また、一対のヘッダ部23,24のうち、濾過濃縮作業時に上方に配置されるヘッダ部23には上述した濾過液供給口20aが設けられ、この濾過液供給口20aのみで外部と連通されるようにヘッダ部23は形成される。一方、濾過濃縮作業時に下方に配置されるヘッダ部24には、上述した濃縮液チューブ4が接続される濃縮液排出口20bが設けられ、この濃縮液排出口20bのみで外部と連通されるようにヘッダ部24は形成される。 For example, if the moisture separation member is a hollow fiber membrane, the concentrator 20 includes a body portion 22 having an internal space 22h which is a space for accommodating a hollow fiber membrane bundle 25 in which the hollow fiber membranes 16 are bundled, and a hollow fiber membrane bundle. 25 is formed in a structure having a pair of header portions 23 and 24 to which both ends are connected (see FIG. 17). A waste liquid discharge port 20c to which the aforementioned waste liquid tube 5 is connected is provided on a side surface of the body portion 22, and the body portion 22 of the concentrator 20 is formed so as to communicate with the outside only through the waste liquid discharge port 20c. be. Among the pair of header portions 23 and 24, the header portion 23, which is arranged above during the filtration and concentration operation, is provided with the above-described filtrate supply port 20a, and the filtrate supply port 20a alone communicates with the outside. The header portion 23 is formed as follows. On the other hand, the header portion 24 arranged below during the filtration and concentration operation is provided with a concentrated liquid discharge port 20b to which the above-described concentrated liquid tube 4 is connected. A header portion 24 is formed in the .
 このため、濾過液供給口20aから濃縮器20内に濾過液を供給すれば、水分分離部材である中空糸膜26によって濾過液から水分が分離され、分離された水分は、廃液排出口20cから排出され廃液チューブ5を通して廃液バッグDBに供給される。一方、廃液が除去されて濃縮された濃縮液は、濃縮液排出口20bと濃縮液チューブ4を通して濃縮液バッグCBに供給される。 Therefore, when the filtrate is supplied into the concentrator 20 from the filtrate supply port 20a, water is separated from the filtrate by the hollow fiber membrane 26, which is a water separation member, and the separated water is discharged from the waste liquid discharge port 20c. It is discharged and supplied to the waste liquid bag DB through the waste liquid tube 5 . On the other hand, the concentrated liquid from which the waste liquid has been removed is supplied to the concentrated liquid bag CB through the concentrated liquid discharge port 20b and the concentrated liquid tube 4 .
<濃縮器20の機能>
 濃縮器20は以上のごとき構成を有しているので、濾過液供給チューブ3から濾過液供給口20aを通して、中空糸膜26の貫通流路26h内に濾過液を供給することができる。すると、中空糸膜26内を濾過液か通過する間に、濾過液から廃液が分離され、分離された廃液を廃液排出口20cと廃液チューブ5を通して廃液バッグDBに回収することができる。一方、廃液が分離されて濃縮された濃縮液は、濃縮液排出口20bと濃縮液チューブ4を通して濃縮液バッグCBに回収することができる。
<Function of Concentrator 20>
Since the concentrator 20 has the above structure, the filtrate can be supplied from the filtrate supply tube 3 through the filtrate supply port 20a into the through channel 26h of the hollow fiber membrane 26. FIG. Then, the waste liquid is separated from the filtrate while the filtrate is passing through the hollow fiber membrane 26, and the separated waste liquid can be collected in the waste liquid bag DB through the waste liquid discharge port 20c and the waste liquid tube 5. On the other hand, the concentrated liquid obtained by separating and concentrating the waste liquid can be collected in the concentrated liquid bag CB through the concentrated liquid discharge port 20b and the concentrated liquid tube 4 .
<本実施形態の原液処理装置1の他の例>
 上記説明では、本実施形態の原液処理装置1において、濾過器10の濾過部材である中空糸膜の外側から原液を供給し中空糸膜の内側に濾過液を排出する構成、いわゆる外圧濾過法を採用した場合を説明した。しかし、濾過器10の中空糸膜の内側に原液を供給し中空糸膜の外側に濾過液を排出する構成、いわゆる内圧濾過法を採用してもよい。
<Another example of the undiluted solution processing apparatus 1 of the present embodiment>
In the above description, in the undiluted solution processing apparatus 1 of the present embodiment, the so-called external pressure filtration method, which is a configuration in which the undiluted solution is supplied from the outside of the hollow fiber membranes that are the filtering members of the filter 10 and the filtrate is discharged inside the hollow fiber membranes, is used. I explained when I was hired. However, a so-called internal pressure filtration method may be adopted in which the undiluted solution is supplied to the inside of the hollow fiber membranes of the filter 10 and the filtrate is discharged to the outside of the hollow fiber membranes.
 本実施形態の原液処理装置1において内圧濾過法を採用する場合、例えば、濾過濃縮作業および濾過器洗浄作業の際には、図19および図20のように回路が構成される。 When employing the internal pressure filtration method in the undiluted solution processing apparatus 1 of the present embodiment, for example, the circuits are configured as shown in FIGS. 19 and 20 during filtration concentration work and filter cleaning work.
 まず、濾過濃縮作業の際には、図19に示すように、原液バッグUBは、給液チューブ2を介して濾過器10の本体部11において中空糸膜16の貫通流路16hと連通されたポートに連通され、濃縮器20は、濾過液供給チューブ3を介して濾過器10の本体部11において胴部12の内部空間12と連通されたポートに連通される。つまり、図16における濾過器10の洗浄液供給ポート11bに原液バッグUBが連通され、図16における濾過器10の原液供給ポート11aに濃縮器20が連通される。その他の構成は、外圧濾過法を採用した場合(図1参照)と同様に回路を構成し、濾過濃縮作業が実施される。 First, during the filtration and concentration work, as shown in FIG. The concentrator 20 communicates with the port communicating with the inner space 12 of the barrel portion 12 in the body portion 11 of the filter 10 via the filtrate supply tube 3 . That is, the undiluted solution bag UB communicates with the washing liquid supply port 11b of the filter 10 in FIG. 16, and the concentrator 20 communicates with the undiluted solution supply port 11a of the filter 10 in FIG. As for the rest of the configuration, the circuit is configured in the same manner as in the case of adopting the external pressure filtration method (see FIG. 1), and the filtration and concentration work is carried out.
 また、濾過器洗浄作業の際には、図20に示すように、濾過器10の本体部11において中空糸膜16の貫通流路16hと連通されたポートのうち給液チューブ2が接続されていないポートが洗浄液回収チューブ7を介して洗浄液回収バッグFB(またはバケツ等)に連通される。つまり、図16における濾過器10の洗浄液供給ポート11bに原液バッグUBが連通され、図16における濾過器10の濾過液排出ポート11cに洗浄液回収バッグFBが連通される。その他の構成は、外圧濾過法を採用した場合(図5参照)と同様に回路を構成し、濾過器洗浄作業が実施される。 Further, during the filter cleaning operation, as shown in FIG. 20, the liquid supply tube 2 is connected to the port communicating with the through flow path 16h of the hollow fiber membrane 16 in the main body 11 of the filter 10. A port not connected to the cleaning liquid recovery tube 7 communicates with the cleaning liquid recovery bag FB (or a bucket or the like) through the cleaning liquid recovery tube 7 . That is, the undiluted solution bag UB communicates with the cleaning liquid supply port 11b of the filter 10 in FIG. 16, and the cleaning liquid collection bag FB communicates with the filtered liquid discharge port 11c of the filter 10 in FIG. As for the rest of the configuration, the circuit is configured in the same manner as in the case of adopting the external pressure filtration method (see FIG. 5), and the filter cleaning work is performed.
 なお、その他の作業でも、上記のように各チューブを接続すれば、本実施形態の原液処理装置1に内圧濾過法を採用した場合でも、外圧濾過法を採用した場合と同様に、各作業を実施することができる。つまり、給液チューブ2や洗浄液回収チューブ7を濾過器10の本体部11において中空糸膜16の貫通流路16hと連通されたポートに接続し、濾過液供給チューブ3や圧力測定部10sを濾過器10の本体部11において胴部12の内部空間12と連通されたポートに接続すれば、本実施形態の原液処理装置1に内圧濾過法を採用した場合でも、外圧濾過法を採用した場合と同様に各作業を実施することができる。 In other operations, if the tubes are connected as described above, each operation can be performed in the same manner as in the case of employing the external pressure filtration method even when the internal pressure filtration method is employed in the undiluted solution processing apparatus 1 of the present embodiment. can be implemented. In other words, the liquid supply tube 2 and the cleaning liquid recovery tube 7 are connected to the port communicating with the through flow path 16h of the hollow fiber membrane 16 in the main body 11 of the filter 10, and the filtrate supply tube 3 and the pressure measurement section 10s are filtered. If the main body 11 of the container 10 is connected to the port that communicates with the internal space 12 of the body 12, even when the internal pressure filtration method is adopted for the undiluted solution processing apparatus 1 of the present embodiment, it is different from the case where the external pressure filtration method is adopted. Each operation can be carried out in the same way.
 本発明の調整器具を使用した場合において、チューブに生理食塩水を流した場合において、流量とチューブ内の圧力との関係を確認した。 When the adjusting device of the present invention was used, the relationship between the flow rate and the pressure inside the tube was confirmed when physiological saline was flowed through the tube.
 実験では、図18(A)に示す回路を使用し、チューブに流した生理食塩水の流量を変更した際におけるチューブ内の圧力の変化を測定した。この回路では、チューブは、生理食塩水を送液するポンプと調整器具の一対のチューブ保持部材に挟まれた部分との間(約1500mm)は水平になるように配置した。これは、生理食塩水を送液するポンプと調整器具の一対のチューブ保持部材に挟まれた部分における生理食塩水の重さが圧力測定に影響しないようにするためである。 In the experiment, the circuit shown in Fig. 18(A) was used to measure changes in the pressure inside the tube when the flow rate of the physiological saline flowing through the tube was changed. In this circuit, the tube was placed horizontally between the pump for feeding the physiological saline solution and the portion (approximately 1500 mm) sandwiched between the pair of tube holding members of the adjusting device. This is to prevent the weight of the physiological saline in the part sandwiched between the pair of tube holding members of the pump for feeding the physiological saline and the adjusting device from affecting the pressure measurement.
 実験で使用したチューブは、ポリ塩化ビニル製の断面円形のチューブ(川澄化学工業株式会社製 型番:KMT-K007-5)であり、外径4.9mm、壁厚0.75mm,内径3.4mmである。
 一対のチューブ保持部材は、断面円形(半径7mm)であり、一対のチューブ保持部材間の隙間の幅は、1.55mmとした。
The tube used in the experiment was a polyvinyl chloride tube with a circular cross section (manufactured by Kawasumi Chemical Industry Co., Ltd., model number: KMT-K007-5), with an outer diameter of 4.9 mm, a wall thickness of 0.75 mm, and an inner diameter of 3.4 mm. is.
The pair of tube holding members had a circular cross section (radius of 7 mm), and the width of the gap between the pair of tube holding members was 1.55 mm.
 なお、チューブ内の圧力は、調整器具の一対のチューブ保持部材よりも上流側において、圧力センサ(SMC製 型番:PSE543A―M5)によって測定した。
 また、チューブ内の送液はローラーポンプを使用して実施し、チューブ内の流量はポンプの回転量によって測定した。
The pressure inside the tube was measured by a pressure sensor (manufactured by SMC, model number: PSE543A-M5) on the upstream side of the pair of tube holding members of the adjusting device.
A roller pump was used to transfer the liquid in the tube, and the flow rate in the tube was measured by the amount of rotation of the pump.
 結果を図18(B)、(C)に示す。
 図18(B)、(C)に示すように、流量を増加させることによって、チューブ内の圧力を変化させることができることが確認される。そして、想定できる隙間の上限値(1.48mm)および下限値(1.70mm)とした場合のチューブ内の圧力と流量との関係を示しているが、一対のチューブ保持部材間の隙間の幅によって、流量の変化に対して圧力が上昇する傾きを調整できることが確認された。
The results are shown in FIGS. 18(B) and (C).
As shown in FIGS. 18B and 18C, it is confirmed that the pressure in the tube can be changed by increasing the flow rate. The relationship between the pressure in the tube and the flow rate is shown when the upper limit (1.48 mm) and the lower limit (1.70 mm) of the gap that can be assumed are assumed. It was confirmed that the slope of the pressure rise can be adjusted with respect to changes in the flow rate.
 本発明の原液処理装置は、細胞などを含有する胸腹水や手術時や瀉血時の血液等を濾過濃縮して濃縮液を得る装置や、血漿交換の廃液血漿などの血漿を浄化して再利用する装置として適している。 The undiluted solution processing apparatus of the present invention is an apparatus for obtaining a concentrated liquid by filtering and concentrating pleural and ascitic fluid containing cells, blood during surgery or phlebotomy, and purifying and reusing plasma such as waste plasma from plasmapheresis. It is suitable as a device for
   1     原液処理装置
   2     給液チューブ
   2s    圧力測定部
   3     濾過液供給チューブ
   3c    流量調整手段
   3p    濾過液供給チューブ送液部
   3s    圧力測定部
   4     濃縮液チューブ
   4c    流量調整手段
   5     廃液チューブ
   5c    流量調整手段
   6     分岐チューブ
   6c    流量調整手段
   7     洗浄液回収チューブ
   7c    流量調整手段
   7p    洗浄液回収チューブ送液部
   9     連結チューブ
   9c    流量調整手段
   9f    流量調整手段
   9p    連結チューブ送液部
  10     濾過器
  10s    圧力測定部
  11     本体部
  11a    原液供給ポート
  11b    洗浄液供給ポート
  11c    濾過液排出ポート
  12     胴部
  12h    内部空間
  15     中空糸膜束
  16     中空糸膜
  16h    貫通流路
  16w    中空糸膜の壁
  20     濃縮器
  20a    濾過液供給口
  20b    濃縮液排出口
  20c    廃液排出口
  30     制御部
  50     調整部
  52     チューブ保持部材
  52s    隙間
  52w    幅
  UB     原液バッグ
  CB     濃縮液バッグ
  DB     廃液バッグ
  SB     洗浄液バッグ
  FB     洗浄液回収バッグ

 
REFERENCE SIGNS LIST 1 undiluted solution processing device 2 liquid supply tube 2s pressure measurement section 3 filtrate supply tube 3c flow rate adjustment means 3p filtrate supply tube liquid sending section 3s pressure measurement section 4 concentrated liquid tube 4c flow rate adjustment means 5 waste liquid tube 5c flow rate adjustment means 6 branch Tube 6c flow rate adjusting means 7 cleaning liquid recovery tube 7c flow rate adjusting means 7p cleaning liquid recovery tube liquid sending section 9 connecting tube 9c flow rate adjusting means 9f flow rate adjusting means 9p connecting tube liquid sending section 10 filter 10s pressure measuring section 11 body section 11a undiluted solution supply Port 11b Washing liquid supply port 11c Filtrate discharge port 12 Body 12h Internal space 15 Hollow fiber membrane bundle 16 Hollow fiber membrane 16h Penetration channel 16w Hollow fiber membrane wall 20 Concentrator 20a Filtrate liquid supply port 20b Concentrate liquid outlet 20c Waste liquid Discharge port 30 Control unit 50 Adjusting unit 52 Tube holding member 52s Gap 52w Width UB Undiluted solution bag CB Concentrated solution bag DB Waste solution bag SB Cleaning solution bag FB Cleaning solution recovery bag

Claims (22)

  1.  原液を濾過濃縮して濃縮液を形成する装置であって、
    前記原液を濾過する濾過部材を有する濾過器と、
    該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
    前記濾過器の原液供給口より上方に配置され該濾過器に対して前記原液を供給する原液供給部と前記濾過器の原液供給口とを連通する給液流路と、
    前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
    前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
    前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
    前記濾過器の濾過液排出口より下方に配置され、前記濃縮液流路に接続された濃縮液を回収する回収部と、
    該回収部と前記濾過液供給流路とを連通する分岐流路と、
    前記濾過液供給流路における前記分岐流路との接続部分と前記濃縮器との間に設けられた送液部と、
    該送液部の作動を制御する制御部と、を備えており、
    該制御部は、
    前記濾過液供給流路と前記回収部との間を双方向に液体が流れる状態となるように前記分岐流路を維持した状態において、
    前記原液供給部から重力によって前記濾過器に対して原液を供給する重力濾過を開始し、所定の状態となると前記濾過器から前記濃縮器に送液するように前記送液部の作動を制御する、
    または、
    前記原液供給部から重力によって前記濾過器に対して原液を供給する重力濾過を開始すると同時に、前記濾過器から前記濃縮器に送液するように前記送液部の作動を制御する
    ことを特徴とする原液処理装置。
    An apparatus for filtering and concentrating a stock solution to form a concentrate, comprising:
    a filter having a filter member for filtering the stock solution;
    a concentrator supplied with a filtrate filtered by the filter and concentrating the filtrate to form the concentrate;
    a liquid supply channel that communicates between a raw liquid supply unit that is arranged above the raw liquid supply port of the filter and that supplies the raw liquid to the filter and the raw liquid supply port of the filter;
    a filtrate supply channel communicating between the filtrate discharge port of the filter and the filtrate supply port of the concentrator;
    a concentrate channel connected to a concentrate outlet of the concentrator;
    a waste liquid channel connected to a waste liquid discharge port for discharging the waste liquid separated from the concentrated liquid in the concentrator;
    a collection unit arranged below the filtrate outlet of the filter and collecting the concentrated liquid connected to the concentrated liquid flow path;
    a branch channel that communicates the recovery unit and the filtrate supply channel;
    a liquid sending section provided between a connecting portion of the filtrate supply channel to the branch channel and the concentrator;
    a control unit that controls the operation of the liquid feeding unit,
    The control unit
    In a state in which the branch flow path is maintained such that the liquid flows in both directions between the filtrate supply flow path and the recovery section,
    Gravity filtration is started to supply the undiluted liquid from the undiluted liquid supply section to the filter by gravity, and when a predetermined state is reached, the operation of the liquid feeding section is controlled so that the liquid is fed from the filter to the concentrator. ,
    or,
    At the same time as starting gravitational filtration to supply the undiluted liquid from the undiluted liquid supply section to the filter by gravity, the operation of the liquid feeding section is controlled so that the liquid is fed from the filter to the concentrator. Undiluted solution processing equipment.
  2.  前記所定の状態が、
    前記回収部に供給された濾過液の量が、該回収部に収容できる液量を越えた状態である
    ことを特徴とする請求項1記載の原液処理装置。
    the predetermined state is
    2. The undiluted solution processing apparatus according to claim 1, wherein the amount of filtrate supplied to said collecting portion exceeds the amount of liquid that can be accommodated in said collecting portion.
  3.  前記濃縮液流路には、該濃縮液流路を所定の状態に調整する調整部が設けられている
    ことを特徴とする請求項1または2記載の原液処理装置。
    3. The undiluted solution processing apparatus according to claim 1, wherein the concentrated liquid flow path is provided with an adjustment unit for adjusting the concentrated liquid flow path to a predetermined state.
  4.  該制御部は、
    前記送液部の作動を制御して前記濃縮器に供給する液体の流量を調整し、前記濃縮器の濃縮器膜間差圧を制御する
    ことを特徴とする請求項3記載の原液処理装置。
    The control unit
    4. The undiluted solution processing apparatus according to claim 3, wherein the operation of said liquid feeding section is controlled to adjust the flow rate of the liquid supplied to said concentrator, thereby controlling the transmembrane pressure difference of said concentrator.
  5.  前記濃縮液流路が、断面が変形可能なチューブであり、
    前記調整部は、
    前記チューブが配置される隙間を有する部材であり、
    前記調整部の隙間は、
    該隙間に配置した状態のチューブ内に水を50mL/min流したときに、チューブ内の水の平均圧力を10mmHg以上100mmHg以下に維持できる長さに形成されている
    ことを特徴とする請求項3または4記載の原液処理装置。
    the concentrate channel is a tube with a deformable cross section;
    The adjustment unit
    A member having a gap in which the tube is arranged,
    The clearance of the adjusting portion is
    3. The tube is formed to have a length capable of maintaining an average pressure of water in the tube at 10 mmHg or more and 100 mmHg or less when water is flowed into the tube at 50 mL/min while being arranged in the gap. 5. The undiluted solution processing apparatus according to 4 above.
  6.  前記濃縮液流路が、断面が変形可能なチューブであり、
    前記調整部は、
    前記チューブが配置される隙間を有する部材であり、
    前記調整部の隙間は、
    前記チューブを隙間に配置した状態において、前記チューブの壁厚合計の95%~110%となるように調整されている
    ことを特徴とする請求項3または4記載の原液処理装置。
    the concentrate channel is a tube with a deformable cross section;
    The adjustment unit
    A member having a gap in which the tube is arranged,
    The clearance of the adjusting portion is
    5. The undiluted solution processing apparatus according to claim 3, wherein the tube is adjusted to have a total wall thickness of 95% to 110% of the total wall thickness of the tube when the tube is arranged in the gap.
  7.  前記濃縮液流路が、
    ポリ塩化ビニルまたはシリコーンゴムによって形成された断面円形のチューブであって、
    前記調整部は、
    前記チューブが配置される隙間を有する部材であり、
    前記チューブは、
    外径が3.0~12.0mm、内径が2.0~8.0mm、壁厚が0.5~2.0mmであり、
    前記調整部の隙間の幅が、0.95~4.40mmである
    ことを特徴とする請求項3または4記載の原液処理装置。
    The concentrate channel is
    A tube with a circular cross section made of polyvinyl chloride or silicone rubber,
    The adjustment unit
    A member having a gap in which the tube is arranged,
    The tube is
    an outer diameter of 3.0 to 12.0 mm, an inner diameter of 2.0 to 8.0 mm, and a wall thickness of 0.5 to 2.0 mm;
    5. The undiluted solution processing apparatus according to claim 3, wherein the width of the clearance of said adjustment portion is 0.95 to 4.40 mm.
  8.  原液を濾過濃縮して濃縮液を形成する装置の操作方法であって、
    装置が、
    前記原液を濾過する濾過部材を有する濾過器と、
    該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
    前記濾過器に対して前記原液を供給する原液供給部と、
    該原液供給部と前記濾過器の原液供給口とを連通する給液流路と、
    前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
    前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
    前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
    前記濃縮液流路に接続され、前記濾過器の濾過液排出口より下方に配置された濃縮液を回収する回収部と、
    該回収部と前記濾過液供給流路とを連通する分岐流路と、
    前記濾過液供給流路における前記分岐流路との接続部分と前記濃縮器との間に設けられた送液部と、
    該送液部の作動を制御する制御部と、を備えており、
    前記濾過液供給流路と前記回収部との間を双方向に液体が流れる状態となるように前記分岐流路を維持した状態において、
    前記濾過器の原液供給口より上方に配置した前記原液供給部から重力によって前記濾過器に対して原液を供給する重力濾過を開始し、所定の状態となると前記濾過器から前記濃縮器に送液するように前記送液部を作動する、
    または、
    前記濾過器の原液供給口より上方に配置した前記原液供給部から重力によって前記濾過器に対して原液を供給する重力濾過を開始すると同時に、前記濾過器から前記濃縮器に送液するように前記送液部を作動する
    ことを特徴とする原液処理装置の操作方法。
    A method of operating an apparatus for filtering and concentrating a stock solution to form a concentrate, comprising:
    the device
    a filter having a filter member for filtering the stock solution;
    a concentrator supplied with a filtrate filtered by the filter and concentrating the filtrate to form the concentrate;
    a stock solution supply unit that supplies the stock solution to the filter;
    a liquid feed channel communicating between the liquid feed section and the liquid feed port of the filter;
    a filtrate supply channel communicating between the filtrate discharge port of the filter and the filtrate supply port of the concentrator;
    a concentrate channel connected to a concentrate outlet of the concentrator;
    a waste liquid channel connected to a waste liquid discharge port for discharging the waste liquid separated from the concentrated liquid in the concentrator;
    a collecting unit connected to the concentrated liquid channel and collecting the concentrated liquid disposed below the filtered liquid outlet of the filter;
    a branch channel that communicates the recovery unit and the filtrate supply channel;
    a liquid sending section provided between a connecting portion of the filtrate supply channel to the branch channel and the concentrator;
    a control unit that controls the operation of the liquid feeding unit,
    In a state in which the branch flow path is maintained such that the liquid flows in both directions between the filtrate supply flow path and the recovery section,
    Gravity filtration is started to supply the undiluted liquid to the filter by gravity from the undiluted liquid supply unit arranged above the undiluted liquid supply port of the filter, and when a predetermined state is reached, the liquid is sent from the filter to the concentrator. actuating the liquid delivery unit to
    or,
    At the same time as starting gravity filtration to supply the undiluted liquid to the filter by gravity from the undiluted liquid supply unit disposed above the undiluted liquid supply port of the filter, the liquid is sent from the filter to the concentrator. A method of operating an undiluted solution processing apparatus, comprising operating a liquid feeding unit.
  9.  前記所定の状態が、
    前記回収部に供給された濾過液の量が、該回収部に収容できる液量を越えた状態である
    ことを特徴とする請求項8記載の原液処理装置の操作方法。
    the predetermined state is
    9. The method of operating the undiluted solution processing apparatus according to claim 8, wherein the amount of filtrate supplied to said collecting portion exceeds the amount of liquid that can be accommodated in said collecting portion.
  10.  前記濃縮液流路には、該濃縮液流路を所定の状態に調整する調整部が設けられている
    ことを特徴とする請求項8または9記載の原液処理装置の操作方法。
    10. The method of operating a concentrate processing apparatus according to claim 8, wherein the concentrated liquid flow path is provided with an adjustment unit for adjusting the concentrated liquid flow path to a predetermined state.
  11.  前記濃縮器に供給する液体の流量を調整し、前記濃縮器の濃縮器膜間差圧を制御する
    ことを特徴とする請求項10記載の原液処理装置の操作方法。
    11. The method of operating a raw liquid treatment apparatus according to claim 10, wherein the flow rate of the liquid supplied to the concentrator is adjusted to control the transmembrane pressure difference of the concentrator.
  12.  前記濃縮液流路が、断面が変形可能なチューブであり、
    前記調整部は、
    前記チューブが配置される隙間を有する部材であり、
    前記調整部の隙間は、
    該隙間に配置した状態のチューブ内に水を50mL/min流したときに、チューブ内の水の平均圧力を10mmHg以上100mmHg以下に維持できる長さに形成されている
    ことを特徴とする請求項10または11記載の原液処理装置の操作方法。
    the concentrate channel is a tube with a deformable cross section;
    The adjustment unit
    A member having a gap in which the tube is arranged,
    The clearance of the adjusting portion is
    10. The tube is formed to have a length that can maintain an average pressure of water in the tube at 10 mmHg or more and 100 mmHg or less when water is flowed into the tube at 50 mL/min while being arranged in the gap. 12. The method of operating the undiluted solution processing apparatus according to 11.
  13.  前記濃縮液流路が、断面が変形可能なチューブであり、
    前記調整部は、
    前記チューブが配置される隙間を有する部材であり、
    前記調整部の隙間は、
    前記チューブを隙間に配置した状態において、前記チューブの内径の最小部分の長さが該チューブの壁厚合計の95%~110%となるように調整されている
    ことを特徴とする請求項10または11記載の原液処理装置の操作方法。
    the concentrate channel is a tube with a deformable cross section;
    The adjustment unit
    A member having a gap in which the tube is arranged,
    The clearance of the adjusting portion is
    10. The length of the minimum portion of the inner diameter of the tube is adjusted to be 95% to 110% of the total wall thickness of the tube when the tube is arranged in the gap. 12. The method of operating the undiluted solution processing apparatus according to 11 above.
  14.  前記濃縮液流路が、
    ポリ塩化ビニルまたはシリコーンゴムによって形成された断面円形のチューブであって、
    前記調整部は、
    前記チューブが配置される隙間を有する部材であり、
    前記チューブは、
    外径が3.0~12.0mm、内径が2.0~8.0mm、壁厚が0.5~2.0mmであり、
    前記調整部の隙間の幅が、0.95~4.40mmである
    ことを特徴とする請求項10または11記載の原液処理装置の操作方法。
    The concentrate channel is
    A tube with a circular cross section made of polyvinyl chloride or silicone rubber,
    The adjustment unit
    A member having a gap in which the tube is arranged,
    The tube is
    an outer diameter of 3.0 to 12.0 mm, an inner diameter of 2.0 to 8.0 mm, and a wall thickness of 0.5 to 2.0 mm;
    12. The method of operating the undiluted solution processing apparatus according to claim 10, wherein the width of the gap of the adjusting portion is 0.95 to 4.40 mm.
  15.  前記濾過器は、
    前記原液供給口を2つ有しており、
    前記2つの原液供給口のうち、濾過濃縮作業時に上方に位置する原液供給口に前記給液流路が接続されており、
    前記濾過器の洗浄の際には、該濾過器おける濾過液排出口から洗浄液を供給し、前記2つの原液供給口のうち濾過濃縮作業時に下方に位置する原液供給口または前記2つの原液供給口の両方から洗浄液を排出する
    ことを特徴とする請求項8から14のいずれか一項に記載の原液処理装置の操作方法。
    The filter is
    It has two stock solution supply ports,
    Of the two stock solution supply ports, the supply flow path is connected to the stock solution supply port positioned above during the filtration and concentration operation,
    When the filter is washed, the cleaning liquid is supplied from the filtrate discharge port of the filter, and the raw liquid supply port or the two raw liquid supply ports located below during the filtration and concentration operation among the two raw liquid supply ports 15. The method of operating a concentrate processing apparatus according to any one of claims 8 to 14, wherein the cleaning liquid is discharged from both of the
  16.  洗浄液を前記濃縮器の廃液排出口から供給し、前記濾過器における濾過濃縮作業時に下方に位置する原液供給口または前記2つの原液供給口の両方から洗浄液を排出する
    ことを特徴とする請求項15記載の原液処理装置の操作方法。
    15. The cleaning liquid is supplied from the waste liquid discharge port of the concentrator, and the cleaning liquid is discharged from the raw liquid supply port located below or both of the two raw liquid supply ports during the filtration and concentration operation in the filter. A method of operating the described concentrate processing apparatus.
  17.  断面が変形可能なチューブが配置される隙間を形成する2つのチューブ保持部材を備えており、
    該2つのチューブ保持部材は、
    両者間に形成される隙間の幅が、隙間に配置した状態のチューブ内に水を50mL/min流したときに、チューブ内の水の平均圧力を10mmHg以上100mmHg以下に維持できる長さに形成されている
    ことを特徴とする調整器具。
    comprising two tube holding members forming a gap in which a tube having a deformable cross section is arranged;
    The two tube retaining members are
    The width of the gap formed between the two is formed to a length that allows the average pressure of water in the tube to be maintained at 10 mmHg or more and 100 mmHg or less when 50 mL/min of water is flowed into the tube placed in the gap. An adjustment device characterized by:
  18.  前記2つのチューブ保持部材間の隙間に配置されるチューブは、断面が変形可能な素材によって形成された断面円形のチューブであり、
    前記2つのチューブ保持部材は、
    両者間に形成される隙間の幅が、前記チューブを隙間に配置した状態において、前記チューブの壁厚合計の95%~110%となるように調整されている
    ことを特徴とする請求項17記載の調整器具。
    The tube arranged in the gap between the two tube holding members is a tube with a circular cross section made of a material whose cross section is deformable,
    The two tube holding members are
    The width of the gap formed between the two is adjusted to be 95% to 110% of the total wall thickness of the tube when the tube is placed in the gap. adjuster.
  19.  前記2つのチューブ保持部材間の隙間に配置されるチューブは、
    ポリ塩化ビニルまたはシリコーンゴムによって形成された断面円形のチューブであって、その外径が3.0~12.0mm、内径が2.0~8.0mm、壁厚が0.5~2.0mmであり、
    前記2つのチューブ保持部材は、
    両者間に形成される隙間の幅が、0.95~4.40mmである
    ことを特徴とする請求項18記載の調整器具。
    The tube arranged in the gap between the two tube holding members,
    A tube with a circular cross section made of polyvinyl chloride or silicone rubber, having an outer diameter of 3.0 to 12.0 mm, an inner diameter of 2.0 to 8.0 mm, and a wall thickness of 0.5 to 2.0 mm. and
    The two tube holding members are
    19. The adjustment tool according to claim 18, wherein the width of the gap formed between the two is 0.95-4.40 mm.
  20.  前記2つのチューブ保持部材は、
    互いに対向しチューブと接触する部分の曲率半径が1~10mmに形成されている
    ことを特徴とする請求項17、18または19記載の調整器具。
    The two tube holding members are
    20. The adjustment tool according to claim 17, 18 or 19, wherein the portions facing each other and contacting the tube have a radius of curvature of 1 to 10 mm.
  21.  前記チューブ保持部材が3つ以上設けられており、
    隣接するチューブ保持部材間にチューブが配置される隙間がそれぞれ形成されており、
    各隙間の幅が異なるように前記チューブ保持部材が配設されている
    ことを特徴とする請求項17、18、19または20記載の調整器具。
    Three or more tube holding members are provided,
    gaps in which the tubes are arranged are formed between adjacent tube holding members,
    21. An adjustment tool according to claim 17, 18, 19 or 20, wherein said tube retaining members are arranged such that each gap has a different width.
  22.  請求項3記載の原液処理装置の調整部として使用される器具である
    ことを特徴とする請求項17から21のいずれか一項に記載の調整器具。
     
    22. The adjustment tool according to any one of claims 17 to 21, which is used as an adjustment part of the undiluted solution processing apparatus according to claim 3.
PCT/JP2022/029393 2021-08-19 2022-07-29 Stock solution treatment apparatus, stock solution treatment apparatus operating method, and adjuster WO2023021967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280050017.0A CN117642193A (en) 2021-08-19 2022-07-29 Stock solution treatment device, method for operating stock solution treatment device, and adjustment tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-133949 2021-08-19
JP2021133949 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023021967A1 true WO2023021967A1 (en) 2023-02-23

Family

ID=85240542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029393 WO2023021967A1 (en) 2021-08-19 2022-07-29 Stock solution treatment apparatus, stock solution treatment apparatus operating method, and adjuster

Country Status (2)

Country Link
CN (1) CN117642193A (en)
WO (1) WO2023021967A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847370A (en) * 1972-02-16 1974-11-12 Horizon Ind Ltd Tube servicing device
US5318546A (en) * 1992-08-28 1994-06-07 Bierman Steven F Method of catheter irrigation and aspiration
JP2012075520A (en) * 2010-09-30 2012-04-19 Nihon Covidien Kk Tool for preventing incorrect operation of clamp
WO2016104582A1 (en) * 2014-12-26 2016-06-30 旭化成メディカル株式会社 Body cavity fluid treatment system
JP2017042225A (en) * 2015-08-24 2017-03-02 旭化成メディカル株式会社 Medical member
JP2019013488A (en) * 2017-07-07 2019-01-31 旭化成メディカル株式会社 Coelomic fluid treatment device
JP2020025825A (en) * 2018-08-18 2020-02-20 国立大学法人徳島大学 Raw solution treatment apparatus and operation method of raw solution treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847370A (en) * 1972-02-16 1974-11-12 Horizon Ind Ltd Tube servicing device
US5318546A (en) * 1992-08-28 1994-06-07 Bierman Steven F Method of catheter irrigation and aspiration
JP2012075520A (en) * 2010-09-30 2012-04-19 Nihon Covidien Kk Tool for preventing incorrect operation of clamp
WO2016104582A1 (en) * 2014-12-26 2016-06-30 旭化成メディカル株式会社 Body cavity fluid treatment system
JP2017042225A (en) * 2015-08-24 2017-03-02 旭化成メディカル株式会社 Medical member
JP2019013488A (en) * 2017-07-07 2019-01-31 旭化成メディカル株式会社 Coelomic fluid treatment device
JP2020025825A (en) * 2018-08-18 2020-02-20 国立大学法人徳島大学 Raw solution treatment apparatus and operation method of raw solution treatment apparatus

Also Published As

Publication number Publication date
CN117642193A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
US11969534B2 (en) Blood treatment device priming devices, methods, and systems
JP4091873B2 (en) Dialysis machine
JP4094946B2 (en) Method and apparatus for producing sterile infusion
US20150151036A1 (en) Blood purification apparatus and priming method for the same
US20130150768A1 (en) Blood Purification Apparatus And Method For Inspecting Liquid Leakage Thereof
US20090312686A1 (en) Blood purification apparatus and priming method thereof
EP3295976B1 (en) Blood purification device and priming method
US11931499B2 (en) Pressure detector
EP2708249B1 (en) Dialysis device
JP2023105264A (en) Liquid concentrate processor, and operation method of liquid concentrate processor
WO2023021967A1 (en) Stock solution treatment apparatus, stock solution treatment apparatus operating method, and adjuster
JP6667852B2 (en) Stock solution processing device and method of operating stock solution processing device
CN112703022A (en) Raw liquid processing apparatus, method for operating raw liquid processing apparatus, and method for cleaning instrument
US20210213189A1 (en) Blood purification apparatus
JP7411924B2 (en) How to clean instruments, how to operate the stock solution processing equipment and the stock solution processing equipment
WO2020202657A1 (en) Blood purification device
JP7422986B2 (en) Undiluted solution processing equipment and how to operate the undiluted solution processing equipment
JP2003265600A (en) Method and device for discharging remaining fluid
JP2022107559A (en) Thoracicoabdominal fluid processing system and cleaning method therefor
CN116507375A (en) Filter device for dialysis applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542308

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE