WO2023021778A1 - Rotating machine, electric blower, and vacuum cleaner - Google Patents

Rotating machine, electric blower, and vacuum cleaner Download PDF

Info

Publication number
WO2023021778A1
WO2023021778A1 PCT/JP2022/014450 JP2022014450W WO2023021778A1 WO 2023021778 A1 WO2023021778 A1 WO 2023021778A1 JP 2022014450 W JP2022014450 W JP 2022014450W WO 2023021778 A1 WO2023021778 A1 WO 2023021778A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclined portion
diameter side
housing
contact
inner diameter
Prior art date
Application number
PCT/JP2022/014450
Other languages
French (fr)
Japanese (ja)
Inventor
啓祐 竹内
暁史 高橋
将太 山上
武史 本多
賢宏 伊藤
聡 菊地
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2023021778A1 publication Critical patent/WO2023021778A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to rotating electric machines and the like.
  • Patent Document 1 describes that the back yoke is separated from the inner wall of the frame to form a space.
  • Patent Document 2 describes a configuration in which a stator core has an oil passage groove that is cut out from the outer peripheral surface and penetrates both end surfaces, and a fitting groove that is continuous with the inner surface of the oil passage groove. ing.
  • the back yoke has a portion that contacts the frame (housing) and a portion that does not contact the frame alternately in the circumferential direction.
  • Patent Document 1 does not particularly consider the stress generated in the frame due to such a configuration. Therefore, in the technique described in Patent Document 1, it is necessary to increase the thickness of the frame in order to ensure strength, which causes an increase in the weight of the rotating electric machine.
  • an object of the present invention is to provide a rotating electrical machine, etc., which is designed to reduce the weight of the housing while reducing the stress on the housing.
  • a rotating electric machine includes a stator having a stator core and armature windings, a rotor rotatably disposed on the inner diameter side of the stator, and the stationary rotor. and a housing enclosing the rotor and the rotor, wherein the stator core includes a yoke in contact with the inner peripheral surface of the housing at a plurality of points spaced apart in the circumferential direction, and an inner diameter side from the yoke. and a plurality of extending teeth, wherein the yoke has a plurality of contact portions in contact with the inner peripheral surface of the housing, and a first slope extending from the contact portions to the tooth side.
  • the inclination angle of the outer diameter side of the second inclined portion with respect to the contact portion is The inclination angle of the inner diameter side of the second inclined portion with respect to the contact portion is larger than the inclination angle of the outer diameter side of the first inclined portion, and the inclination angle of the inner diameter side of the first inclined portion with respect to the contact portion is larger than the inclination angle of the inner diameter side of the first inclined portion.
  • the yoke has an opening recessed in a V-shape or a U-shape toward the inner diameter side from a connection point between the first slant portion and the second slant portion near the root of the tooth, and
  • the length of the opening in the radial direction is greater than or equal to the distance between the outer diameter side surface and the inner diameter side surface of the second inclined portion.
  • FIG. 1 is a perspective view of a rotating electrical machine according to a first embodiment
  • FIG. 1 is an exploded perspective view of a rotary electric machine according to a first embodiment
  • FIG. FIG. 2 is a cross-sectional view taken along line III-III in FIG. 1 in the rotary electric machine according to the first embodiment
  • FIG. 3 is a partial cross-sectional view of a stator core and a housing included in the rotary electric machine according to the first embodiment
  • FIG. FIG. 5 is an explanatory diagram of the equivalent stress distribution and the maximum equivalent stress of the housing in the first embodiment, comparative example 1, and comparative example 2;
  • FIG. 7 is a partial cross-sectional view of a stator core and a housing included in a rotating electrical machine according to a second embodiment
  • FIG. 11 is a partial cross-sectional view of a stator core and a housing included in a rotating electrical machine according to a third embodiment
  • FIG. 11 is a cross-sectional view of a rotating electrical machine according to a fourth embodiment
  • FIG. 11 is a cross-sectional view of a rotating electric machine according to a fifth embodiment
  • FIG. 11 is a cross-sectional view of a rotating electrical machine according to a sixth embodiment
  • FIG. 14 is a partial cross-sectional view of a stator core and a housing included in a rotating electric machine according to a seventh embodiment
  • FIG. 14 is a partial cross-sectional view of a stator core and a housing included in a rotating electric machine according to an eighth embodiment; It is a sectional view of the electric blower concerning a 9th embodiment.
  • FIG. 20 is a perspective view of the vacuum cleaner according to the tenth embodiment when it is used as a stick type;
  • FIG. 20 is a side view of the electric vacuum cleaner according to the tenth embodiment when used as a handy type;
  • FIG. 20 is a vertical cross-sectional view of the electric vacuum cleaner according to the tenth embodiment when it is used as a handy type;
  • FIG. 1 is a perspective view of a rotating electric machine 100 according to the first embodiment.
  • a rotating electric machine 100 shown in FIG. 1 is an electric motor that rotates a rotor 20 (see FIG. 2) by energizing an armature winding 13 (see FIG. 2). Examples of the type of rotating electric machine 100 include, but are not limited to, a synchronous motor.
  • the rotary electric machine 100 includes the housing 30 (see also FIG. 2) and the end bracket 40 (see also FIG. 2) shown in FIG. , is equipped with The housing 30 is a container containing the stator 10 (see FIG. 2) and the rotor 20 (see FIG. 2).
  • the housing 30 has a cylindrical portion 31 , a flange portion 32 and a holder portion 33 .
  • the cylindrical portion 31 is a portion in which the stator 10 (see FIG. 2) and the rotor 20 (see FIG. 2) are provided on the inner diameter side, and has a cylindrical shape.
  • the flange portion 32 is a portion on which an end bracket 40 (see also FIG. 2) is installed, and extends radially outward from one axial end of the cylindrical portion 31 .
  • the holder portion 33 is a portion where the bearing 22 (see FIG. 2) is installed, and is provided on the other side of the cylindrical portion 31 in the axial direction.
  • the holder portion 33 is provided with a hole 33a (see FIG. 2) in which the bearing 22 is installed.
  • the rotary shaft 21 is inserted through the hole 33a.
  • FIG. 2 is an exploded perspective view of rotating electric machine 100.
  • the stator 10 shown in FIG. 2 causes the rotor 20 to generate a predetermined rotational moment through electromagnetic interaction with the rotor 20 .
  • the stator 10 is fixed to the inner peripheral surface of the cylindrical portion 31 of the housing 30 .
  • the stator 10 includes a stator core 11, a bobbin 12, and an armature winding 13.
  • the stator core 11 has a function of holding the armature winding 13 and a function of a yoke (yoke) forming a magnetic circuit.
  • the stator core 11 is formed, for example, by laminating a plurality of magnetic steel sheets containing iron as a main component in the axial direction.
  • the bobbin 12 has functions such as securing an insulation distance between the stator core 11 and the armature winding 13 .
  • a resin such as PBT (polybutylene terephthalate) is used as a constituent material of the bobbin 12 .
  • the armature winding 13 is a winding that is energized in a predetermined manner, and is wound around the stator core 11 . Copper, aluminum, or the like is used as a constituent material of the armature winding 13 .
  • the rotor 20 rotates around the central axis of the rotating shaft 21 due to electromagnetic interaction with the stator 10 .
  • the rotor 20 is rotatably arranged on the inner diameter side of the stator 10 . Further, the outer peripheral surface of the rotor 20 and the inner peripheral surface of the stator 10 face each other with a predetermined air gap therebetween.
  • the rotor 20 includes a rotating shaft 21, a bearing 22, a balance ring 23, a permanent magnet 24, and a cover 25.
  • the rotating shaft 21 is a shaft that rotates integrally with the permanent magnet 24 and the like.
  • a predetermined load such as an impeller (not shown) is installed on the rotating shaft 21 .
  • the bearings 22 rotatably support the rotating shaft 21 on both sides in the axial direction.
  • the bearing 22 on one side in the axial direction is installed in the holder portion 33 of the housing 30, and the other bearing 22 on the other side in the axial direction is installed in the end bracket. 40.
  • the balance ring 23 has the function of correcting the rotational imbalance of the rotor 20 (balancing the rotation), and is formed by subjecting an annular member to a predetermined cutting process. Resin, copper, aluminum, or the like is used as a constituent material of the balance ring 23 .
  • the permanent magnet 24 has a cylindrical shape and has a plurality of magnetic poles (for example, four poles). As such a permanent magnet 24, a samarium-iron-nitrogen magnet, a neodymium magnet, a ferrite magnet, or the like is used.
  • the rotating shaft 21 is fixed to the cylindrical permanent magnet 24 by press fitting or the like.
  • the cover 25 prevents damage to the permanent magnets 24 when the rotor 20 rotates at high speed.
  • the cover 25 has a thin cylindrical shape and is installed on the outer peripheral surface of the permanent magnet 24 . SUS (Stainless Used Steel), CFRP (Carbon Fiber Reinforced Plastics), or the like is used as a constituent material of the cover 25 .
  • the end bracket 40 has functions such as holding the bearing 22 .
  • the end bracket 40 is fixed to the flange portion 32 so as to close the opening of the housing 30 .
  • As a method of fixing the housing 30 and the end bracket 40 in addition to fixing with bolts and screws, crimping or the like is used.
  • a power module (not shown) performs a switching operation based on a predetermined drive signal to convert DC power supplied from a battery (not shown) into three-phase AC power.
  • a battery (not shown)
  • the frequency and phase of the three-phase alternating current are controlled by a control circuit (not shown) and a drive circuit (not shown).
  • FIG. 3 is a cross-sectional view of rotating electric machine 100 taken along line III-III in FIG. 1 is a plane (broken line in FIG. 1) perpendicular to the central axis of the rotating shaft 21, and is a cross section when the stator core 11 is equally divided in the axial direction. be.
  • a cross section other than the line III-III shown in FIG. 1 is the same as that shown in FIG.
  • the U-phase armature winding 13 the current directed toward the front side of the paper surface of FIG. . The same applies to the remaining V-phase and W-phase currents.
  • the stator core 11 includes a yoke 51 and a plurality of (six in the example of FIG. 3) teeth 52 extending from the yoke 51 toward the inner diameter side.
  • the yoke 51 is a yoke forming part of the magnetic circuit, and is in contact with the inner peripheral surface of the housing 30 at a plurality of locations (six locations in the example of FIG. 3) at predetermined intervals in the circumferential direction. .
  • a portion of the yoke 51 that is in contact with the inner peripheral surface of the housing 30 is called a contact portion 51a.
  • the outer peripheral surface of the contact portion 51a has a predetermined circular arc shape with the central axis of the rotating shaft 21 as a reference (center) so as to be in close contact with the inner peripheral surface of the housing 30. Moreover, the thickness of the contact portion 51a is substantially constant in the circumferential direction.
  • welding, adhesion, etc., as well as press fitting and shrink fitting are used. Moreover, it is also possible to appropriately combine a plurality of the fixing methods described above.
  • a plurality of teeth 52 and slots 53 are provided on the inner diameter side of the yoke 51 over the entire circumference of the stator core 11 at equal intervals in the circumferential direction.
  • the teeth 52 are portions around which the armature winding 13 is wound, and as described above, extend from the yoke 51 to the inner diameter side.
  • the slot 53 is a space between the teeth 52, 52 adjacent in the circumferential direction.
  • a bobbin 12 is installed on the wall surface of each slot 53 .
  • the bobbin 12 has the function of ensuring the insulation distance between the stator core 11 and the armature winding 13, as described above.
  • the bobbin 12 prevents contact between the corners of the stator core 11 and the armature winding 13 when the armature winding 13 is wound. It also has the function of preventing damage to the insulating coating of the
  • the armature winding 13 is composed of a plurality of windings corresponding to each of U-phase, V-phase, and W-phase.
  • the rotary electric machine 100 is configured with three-phase, four-pole concentrated winding, and six teeth 52 and six slots 53 are provided at regular intervals.
  • the armature windings 13 are provided in the order of U phase, V phase, W phase, . . . in the circumferential direction.
  • FIG. 4 is a partial cross-sectional view of stator core 11 and housing 30 . 4, illustration of the bobbin 12 (see FIG. 3) and the armature winding 13 (see FIG. 3) is omitted.
  • the yoke 51 of the stator core 11 includes a first inclined portion 51b and a second inclined portion 51c in addition to the contact portion 51a.
  • the first inclined portion 51b extends from the contact portion 51a while being inclined toward the tooth 52 (the side of the tooth 52 among the plurality of teeth 52 to which the first inclined portion 51b is connected).
  • the first inclined portion 51b is connected to the circumferential end of the contact portion 51a, and is connected to the end of the second inclined portion 51c (the end far from the teeth 52). That is, the first inclined portion 51b connects the contact portion 51a and the second inclined portion 51c via itself.
  • the second inclined portion 51c extends from the first inclined portion 51b while being inclined toward the tooth 52 (the side of the tooth 52 among the plurality of teeth 52 to which the second inclined portion 51c is connected). Also, the second inclined portion 51 c is provided between the first inclined portion 51 b and the teeth 52 . That is, the second inclined portion 51c connects the first inclined portion 51b and the tooth 52 via itself.
  • ⁇ o1 be the inclination angle of the outer diameter side of the first inclined portion 51b with respect to the contact portion 51a
  • ⁇ i1 be the inclination angle of the inner diameter side of the first inclined portion 51b with respect to the contact portion 51a.
  • the inclination angle of the outer diameter side of the second inclined portion 51c with respect to the contact portion 51a is ⁇ o2
  • the inclination angle of the inner diameter side of the second inclined portion 51c with respect to the contact portion 51a is ⁇ i2
  • the tilt angles ⁇ o1, ⁇ o2, ⁇ i1, ⁇ i2 are defined as follows (this definition can also be applied to other embodiments). That is, the tangential line Lo1 of the outer peripheral surface of the contact portion 51a at the bending point Po1 on the outer diameter side between the contact portion 51a and the first inclined portion 51b and the outer peripheral surface of the first inclined portion 51b (flat in FIG. 4) is the angle of inclination ⁇ o1. The angle between the tangent line Lo1 and the tangent line Lo3 at the center of the outer peripheral surface (flat in FIG. 4) of the second inclined portion 51c is the inclination angle ⁇ o2.
  • the outer diameter side inclination angle ⁇ o2 of the second inclined portion 51c with respect to the contact portion 51a is larger than the outer diameter side inclination angle ⁇ o1 of the first inclined portion 51b with respect to the contact portion 51a.
  • the tangent line Li1 of the inner peripheral surface of the contact portion 51a at the inflection point Pi1 on the inner diameter side between the contact portion 51a and the first inclined portion 51b and the inner peripheral surface of the first inclined portion 51b (planar in FIG. 4) ) is the inclination angle ⁇ i1.
  • the angle between the tangent line Li1 and the tangent line Li3 at the center of the inner peripheral surface (flat in FIG. 4) of the second inclined portion 51c is the inclination angle ⁇ i2.
  • the inner diameter side inclination angle ⁇ i2 of the second inclined portion 51c with respect to the contact portion 51a is larger than the inner diameter side inclination angle ⁇ i1 of the first inclined portion 51b with respect to the contact portion 51a.
  • the inclination angle ⁇ o1 on the outer diameter side and the inclination angle ⁇ i1 on the inner diameter side of the first inclined portion 51b are substantially equal. It may be a value larger than the other.
  • the inclination angle ⁇ o2 on the outer diameter side of the second inclined portion 51c and the inclination angle ⁇ i2 on the inner diameter side are substantially equal, but one of these inclination angles ⁇ o2 and ⁇ i2 has a larger value than the other. may be In addition to the state in which the rotating electrical machine 100 is fitted in the motor housing 30, the relationship between the above-described formulas (1) and (2) also holds in a state in which the rotating electrical machine 100 is not fitted in the motor housing 30. ing.
  • the yoke 51 is V-shaped in the vicinity of the base of the tooth 52 from the connecting point (flexion point Po2 on the outer diameter side) of the first inclined portion 51b and the second inclined portion 51c to the inner diameter side. It has a recessed opening 51d.
  • a wall surface of the opening 51 d is a wall surface on the outer diameter side of the second inclined portion 51 c connected to the common tooth 52 .
  • the radial length L of the opening 51d is greater than or equal to the distance W between the outer diameter side surface 511c and the inner diameter side surface 512c of the second inclined portion 51c (L ⁇ W).
  • the length L in the radial direction is defined as the distance between the bending point Po2 on the outer diameter side between the first inclined portion 51b and the second inclined portion 51c and the bottom portion P3 on the inner diameter side of the opening portion 51d. is the radial distance between The distance W described above is the shortest distance between the outer diameter side surface 511c and the inner diameter side surface 512c of the second inclined portion 51c.
  • FIG. 5 shows analysis results showing the equivalent stress distribution and displacement when the stator core 11 is fitted in the housing 30 .
  • the two-dot chain line in FIG. 5 indicates the actual size line when no force is applied to the stator core 11 .
  • the solid line in FIG. 5 shows the stator core 11 in a deformed state fitted in the housing 30 .
  • the displacement of the stator core 11 after deformation is 50 times the normal displacement (that is, displacement The magnification is set to 50).
  • stator core 11 When the stator core 11 is fitted into the housing 30, stress is generated to compress the stator core 11 radially inward, and stress is generated to expand the housing 30 radially outward.
  • stress is generated to compress the stator core 11 radially inward, and stress is generated to expand the housing 30 radially outward.
  • the stator core 11 when the stator core 11 is press-fitted or shrink-fitted into the housing 30, a predetermined stress is generated due to interference.
  • the distance from the armature winding 13 which generates heat due to copper loss, to the stator core 11 is relatively short, and the stator core 11 itself also generates heat due to iron loss. As a result, the temperature of stator core 11 rises while rotating electric machine 100 is being driven.
  • the temperature of the stator core 11 is higher than that of the housing 30 due to the contact thermal resistance between the stator core 11 and the housing 30. Become. As a result, thermal expansion compresses the stator core 11 radially inward and generates a stress that expands the housing 30 radially outward.
  • the stator core 11 is in contact with the inner peripheral surface of the housing 30 at a plurality of points with predetermined intervals.
  • the inner peripheral surface of the housing 30 has a contact portion 31 a that contacts the stator core 11 and a non-contact portion 31 b that does not contact the stator core 11 .
  • the contact portion 31a of the housing 30 is pushed outward by stress, while the non-contact portion 31b is surrounded by the adjacent contact portion 31a. pulled in a direction. Therefore, stress tends to be concentrated on the inner peripheral side central portion 311b of the non-contact portion 31b and the outer peripheral side end portion 311a of the contact portion 31a. Therefore, in the first embodiment, by providing the first inclined portion 51b and the second inclined portion 51c, the stator core 11 is provided with a spring property and the stress concentration of the housing 30 is alleviated.
  • FIG. 6 is an explanatory diagram of the equivalent stress distribution and the maximum equivalent stress of the housing in the first embodiment, comparative example 1, and comparative example 2.
  • FIG. 6 is the radial length of the opening 51d (see FIG. 4) of the yoke 51 (see FIG. 4), as described above.
  • "W” shown in FIG. 6 is the distance between the outer diameter side surface 511c (see FIG. 4) and the inner diameter side surface 512c (see FIG. 4) of the second inclined portion 51c (see FIG. 4). be.
  • “displacement stress distribution” in FIG. 6 shows isostress lines (in the case of a displacement magnification of 50) in the first embodiment, comparative example 1, and comparative example 2.
  • the diagram of "displacement stress distribution" in the first embodiment is the same as FIG. Since these figures of "displacement stress distribution" are not labeled, the symbols of FIG. 4 are appropriately used in the explanation.
  • “Detailed view A” in FIG. 6 is a partially enlarged view of area A in “displacement stress distribution”.
  • “detailed view B” is a partially enlarged view of area B in “displacement stress distribution”.
  • the “housing maximum equivalent stress” in FIG. 6 indicates the maximum value of the equivalent stress of the housing 30 .
  • "p.u.” (per unit) in the column of "housing maximum equivalent stress” is a ratio to a predetermined reference amount (here, the maximum value of the stress in Comparative Example 1), and substantially It is dimensionless.
  • the housing 30 deforms radially outward at the contact portion 31a (see FIG. 5) and is stretched in the circumferential direction at the non-contact portion 31b (see FIG. 5). Such a phenomenon does not occur when a cylindrical stator core (not shown) is fitted into the housing 30, and is peculiar to the structure in which the housing 30 has the non-contact portion 31b (see FIG. 5). It is.
  • Comparative Example 2 (L ⁇ W), although the second inclined portion 51c (see FIG. 4) is provided, the length L of the opening portion 51d (see FIG. 4) is the thickness of the second inclined portion 51c (distance W ). In such a configuration, since the moment of inertia of area is large and it is difficult to deform, springiness in the circumferential direction is insufficient.
  • the housing 30 is largely pushed out radially by the stator core 11, so that the amount of reduction in the maximum equivalent stress of the housing 30 (the amount of reduction relative to Comparative Example 1) remains at about 10%.
  • the housing 30 needs to be sufficiently thick in order to ensure strength against stress concentration, resulting in an increase in the weight of the housing 30 .
  • the second inclined portion 51c has a larger inclination angle than the first inclined portion 51b ( ⁇ o2 > ⁇ o1, ⁇ i2> ⁇ i1: see FIG.
  • the radial length L of the opening 51d is equal to or greater than the thickness (distance W) of the second inclined portion 51c (see FIG. 4) (L ⁇ W).
  • radial displacement is absorbed by deforming in a direction that increases the inclination angle ⁇ o1 (see FIG. 4) on the outer diameter side of the first inclined portion 51b (see FIG. 4).
  • the second inclined portion 51c by deforming so that the distance in the circumferential direction between two bending points Po2 (see FIG. 4) adjacent to each other with the tooth 52 interposed therebetween becomes narrower, displacement in the circumferential direction is absorbing This makes it easier for the stator core 11 to undergo compression deformation toward the inner diameter side, and as a result, deformation of the housing 30 is suppressed.
  • the surface pressure at the contact portions 51a (see FIG. 4) required for fixing the stator core 11 is ensured by the repulsive force of the stator core 11 having spring properties, so that the fixing holding force can be sufficiently maintained. .
  • the stator core 11 (see FIG. 4) is easily contracted and deformed, the radial displacement when fitted into the housing 30 (see FIG. 4) increases, and the stator 10 rotates. The gap between child 20 is narrowed. As a result, a large torque can be generated with a relatively small current, so that the efficiency of the rotary electric machine 100 can be improved.
  • the magnetic path width (thickness) is substantially constant in the first inclined portion 51b (see FIG. 4) and the second inclined portion 51c (see FIG. 4), magnetic saturation can be prevented. can be suppressed.
  • the angle with respect to the extending direction of the teeth 52 is relatively small on the inner diameter side of the second inclined portion 51c (see FIG. 4), it is possible to wind the armature winding 13 also on the second inclined portion 51c. Become. As a result, the winding lamination factor increases, so the efficiency of the rotating electric machine 100 can be improved.
  • the moment of inertia of the second inclined portion 51c becomes smaller as the distance W (see FIG. 4) is shorter.
  • L the smaller.
  • the radial length L of the opening 51d is equal to or greater than the thickness (distance W) of the second inclined portion 51c, the geometrical moment of inertia can be reduced.
  • the springiness of the second inclined portion 51c in the circumferential direction is enhanced, and stress concentration in the housing 30 can be alleviated.
  • L ⁇ W the magnetic path length from the yoke 51 to the teeth 52 can be shortened, iron loss can be reduced, and motor characteristics can be improved. Another advantage is that the weight of the stator core 11 can be reduced.
  • the bottom portion P3 (see FIG. 4) on the inner diameter side of the opening portion 51d is Slightly higher stress.
  • the bottom portion P3 (see FIG. 4) on the inner diameter side of the opening portion 51d recessed in a V shape has a radius of curvature (so-called R) of 0.2 mm or more and a radius of curvature of the distance W or less. A curved surface is preferred. As a result, concentration of stress when the stator core 11 is deformed can be alleviated.
  • the stator core 11 shrinks and deforms due to its springiness, so the stress when the stator core 11 is fitted into the housing 30 can be reduced. As a result, the thickness of the housing 30 can be reduced and the weight can be reduced.
  • the stator core 11A has a third inclined portion 51e (see FIG. 7) between the second inclined portion 51Ac (see FIG. 7) and the teeth 52 (see FIG. 7). It differs from the first embodiment in that it is provided. In addition, about others, it is the same as that of 1st Embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 7 is a partial cross-sectional view of a stator core 11A and a housing 30 included in a rotary electric machine 100A according to the second embodiment.
  • the stator core 11A includes a yoke 51A and teeth 52.
  • the yoke 51A includes a contact portion 51a, a first inclined portion 51b, a second inclined portion 51Ac, and a third inclined portion 51e.
  • the inclination angle ⁇ o2 on the outer diameter side and the inclination angle ⁇ i2 on the inner diameter side are smaller than those in the first embodiment (see FIG. 4).
  • the third inclined portion 51e is a portion that connects the second inclined portion 51Ac and the tooth 52 via itself. That is, the third inclined portion 51e is provided between the second inclined portion 51Ac and the tooth 52.
  • FIG. 4 is a portion that connects the second inclined portion 51Ac and the tooth 52 via itself. That is, the third inclined portion 51e is provided between the second inclined portion 51Ac and the tooth 52.
  • the tilt angles ⁇ o3 and ⁇ i3 are defined as follows. That is, the tangential line Lo1 of the outer peripheral surface of the contact portion 51a at the bending point Po1 on the outer diameter side between the contact portion 51a and the first inclined portion 51b and the outer peripheral surface of the third inclined portion 51e (flat in FIG. 7) and the tangent line Lo4 at the center of is the inclination angle ⁇ o3.
  • the tangent line Li1 of the inner peripheral surface of the contact portion 51a at the bending point Pi1 on the inner diameter side between the contact portion 51a and the first inclined portion 51b and the inner peripheral surface of the third inclined portion 51e (planar in FIG. ) and the tangential line Li4 at the center thereof is the inclination angle ⁇ i3.
  • the outer diameter side inclination angle ⁇ o3 of the third inclined portion 51e with respect to the contact portion 51a is larger than the outer diameter side inclination angle ⁇ o2 of the second inclined portion 51Ac with respect to the contact portion 51a.
  • the inner diameter side inclination angle ⁇ i3 of the third inclined portion 51e with respect to the contact portion 51a is larger than the inner diameter side inclination angle ⁇ i2 of the second inclined portion 51Ac with respect to the contact portion 51a.
  • the length of the magnetic path between the yoke 51A and the teeth 52 can be shortened by providing the third inclined portion 51e. Therefore, in addition to the functions and effects of the first embodiment, it is possible to improve the efficiency of the electric motor as the iron loss is reduced.
  • one third inclined portion 51e is provided between the second inclined portion 51Ac (see FIG. 7) and the teeth 52 (see FIG. 7).
  • a plurality of inclined portions may be provided between the second inclined portion 51Ac and the teeth 52 .
  • the inclination angle of each of the plurality of inclined portions (not shown) on the outer diameter side with respect to the contact portion 51 a increases as the inclined portions are closer to the teeth 52 .
  • the inclination angle of each of the plurality of inclined portions (not shown) on the inner diameter side with respect to the contact portion 51 a increases as the inclined portion approaches the teeth 52 . Even with such a configuration, the magnetic path length can be shortened and the motor efficiency can be improved.
  • FIG. 8 is a partial cross-sectional view of a stator core 11B and a housing 30 included in a rotating electric machine 100B according to the third embodiment.
  • the stator core 11B has a yoke 51B and teeth 52 .
  • the yoke 51B includes a contact portion 51a, a first inclined portion 51Bb, and a second inclined portion 51Bc.
  • the first inclined portion 51Bb has curved outer and inner peripheral surfaces. Specifically, the outer peripheral surface and the inner peripheral surface of the first inclined portion 51Bb are curved so that the radial distance between them and the housing 30 increases as they approach the teeth 52 in the circumferential direction. .
  • a point (not shown) serving as the center of curvature of the outer peripheral surface and the inner peripheral surface of the first inclined portion 51Bb is located on the inner diameter side of the first inclined portion 51Bb.
  • the second inclined portion 51Bc has a curved surface not only on the outer peripheral surface but also on a part of the inner peripheral surface. That is, the outer peripheral surface of the second inclined portion 51Bc is curved such that the radial distance from the housing 30 increases as it approaches the center of the tooth 52 in the circumferential direction. A point (not shown) serving as the center of curvature of the outer peripheral surface of the second inclined portion 51Bc is located on the outer diameter side of the second inclined portion 51Bc.
  • the inner peripheral surface of the second inclined portion 51Bc is curved so as to smoothly connect to the inner peripheral surface of the first inclined portion 51Bb.
  • first inclined portion 51Bb and the second inclined portion 51Bc are defined, for example, by the outer peripheral surface of the yoke 51B projecting from the outer diameter side (the area of the first inclined portion 51Bb) to the inner diameter side (the second inclined portion 51Bb). 2) is the position of the inflection point (bending point Po2) where the area of the inclined portion 51Bc changes.
  • At least a part of the wall surface on the outer diameter side of the first inclined portion 51Bb and the second inclined portion 51Bc is curved. Moreover, at least a part of the wall surface on the inner diameter side of the first inclined portion 51Bb and the second inclined portion 51Bc is also curved.
  • the yoke 51B has an opening in the vicinity of the root of the tooth 52, which is recessed in a U shape radially inward from the connection point (flexion point Po2) between the first inclined portion 51Bb and the second inclined portion 51Bc. It has a portion 51Bd.
  • a bottom portion P3 on the inner diameter side of the opening 51Bd recessed in a U shape has a curvature radius of 0.2 mm or more and is a curved surface with a curvature radius of the distance W or less.
  • the distance W is the shortest distance between the outer diameter side surface 511c and the inner diameter side surface 512c of the second inclined portion 51cb of the stator core 11B.
  • the definition of the length L of the opening 51Bd and the size relationship (L ⁇ W) are the same as in the first embodiment.
  • the definitions and magnitude relationships ( ⁇ o2> ⁇ o1, ⁇ i2> ⁇ i1) of the tilt angles ⁇ o1, ⁇ o2, ⁇ i1, and ⁇ i2 are also the same as in the first embodiment.
  • stress concentration in the stator core 11B can be alleviated by forming at least a part of the outer and inner peripheral surfaces of the first inclined portion 51Bb and the second inclined portion 51Cc into curved surfaces. Therefore, in the stator core 11B, it is possible to suppress an increase in iron loss due to residual stress and improve motor efficiency.
  • the fourth embodiment differs from the first embodiment in that a housing 30C (see FIG. 9) has three protrusions 34 (see FIG. 9) on its inner peripheral surface. In addition, about others, it is the same as that of 1st Embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 9 is a cross-sectional view of a rotating electric machine 100C according to the fourth embodiment.
  • the housing 30C has three protrusions 34 provided at equal intervals in the circumferential direction on its inner peripheral surface.
  • the convex portion 34 is a portion that smoothly protrudes radially inward from the cylindrical portion 31 of the housing 30 ⁇ /b>C and is formed integrally with the cylindrical portion 31 .
  • the convex portion 34 protrudes radially inward from the cylindrical portion 31 so as to fill at least a portion of the gap G1 between the cylindrical portion 31 and the yoke 51 .
  • the portions where the projections 34 are provided and the portions where the gaps G1 are left are alternately arranged in the circumferential direction. Moreover, while the convex portion 34 is in contact with the first inclined portion 51b adjacent in the circumferential direction with the second inclined portion 51c interposed therebetween, it is not in contact with the second inclined portion 51c.
  • the convex portion 34 provided to fill the gap G1 between the cylindrical portion 31 and the stator core 11 functions as a so-called key groove (rotation stopper). Therefore, the fixing and holding force of the stator core 11 in the circumferential direction can be increased more than in the first embodiment. As a result, the rigidity of the rotary electric machine 100C is increased, so that vibration and noise caused by the electromagnetic excitation force can be suppressed.
  • the convex portion 34 only needs to be in contact with at least a portion of the first inclined portion 51b of the yoke 51, and the configuration of the convex portion 34 may be changed as appropriate. Also, the number of protrusions 34 is not limited to three, and may be at least one. Even in such a configuration, the convex portion 34 functions as a key groove, so that similar functions and effects can be obtained.
  • the fifth embodiment differs from the fourth embodiment (see FIG. 9) in that the thickness of the housing 30D (see FIG. 10) is constant in the circumferential direction and a recess 35 (see FIG. 10) is provided. ing. In addition, about others, it is the same as that of 4th Embodiment. Therefore, the parts different from the fourth embodiment will be explained, and the explanation of overlapping parts will be omitted.
  • FIG. 10 is a cross-sectional view of a rotating electric machine 100D according to the fifth embodiment.
  • the housing 30D includes a cylindrical portion 31D and a recess 35 formed by recessing the outer peripheral surface toward the inner diameter side.
  • the cylindrical portion 31D is a portion configured as a part of a predetermined virtual cylinder R1 (one-dot chain line in FIG. 10).
  • the recess 35D is a portion recessed radially inward from the virtual cylinder R1, and is formed integrally with the cylindrical portion 31D.
  • the portion where the concave portion 35 is provided and the portion where the gap G1 is left are alternately arranged in the circumferential direction. Further, the recessed portion 35 is in contact with the first inclined portion 51b adjacent in the circumferential direction with the second inclined portion 51c of the yoke 51 interposed therebetween, but is not in contact with the second inclined portion 51c. Note that FIG. 10 is an example, and the inner wall surface of the concave portion 35 only needs to be in contact with at least a portion of the first inclined portion 51b, and the configuration may be changed as appropriate.
  • the thickness of the housing 30D (including the recess 35) is constant in the circumferential direction.
  • the thickness of the concave portion 35 is approximately equal to the thickness of the cylindrical portion 31 .
  • the weight of the housing 30D can be reduced more than in the fourth embodiment.
  • the concave portion 35 functions as a key groove, it is possible to increase the fixed holding force of the stator core 11 in the circumferential direction.
  • the sixth embodiment differs from the fourth embodiment (see FIG. 11) in that convex portions 34E (see FIG. 11) are provided so as to sandwich the contact portion 51a (see FIG. 11) of the stator core 11 (see FIG. 11) in the circumferential direction. 9).
  • convex portions 34E see FIG. 11
  • it is the same as that of 4th Embodiment. Therefore, the parts different from the fourth embodiment will be explained, and the explanation of overlapping parts will be omitted.
  • FIG. 11 is a cross-sectional view of a rotating electric machine 100E according to the sixth embodiment.
  • the housing 30E includes a cylindrical portion 31 and three pairs of convex portions 34E, 34E.
  • the three pairs of protrusions 34 ⁇ /b>E, 34 ⁇ /b>E are portions projecting radially inwardly from the cylindrical portion 31 of the housing 30 ⁇ /b>C and formed integrally with the cylindrical portion 31 .
  • the pairs of protrusions 34E, 34E are provided so as to sandwich the contact portions 51a of the stator core 11 from both sides in the circumferential direction when the stator core 11 is installed in the housing 30E.
  • Each projection 34 ⁇ /b>E is formed in a wedge shape so as to be in close contact with a portion of the inner peripheral surface of the cylindrical portion 31 and a portion of the first inclined portion 51 b of the stator core 11 .
  • FIG. 12 is a partial cross-sectional view of a stator core 11F and a housing 30 included in a rotating electric machine 100F according to the seventh embodiment.
  • the stator core 11F includes a yoke 51F and teeth 52.
  • the yoke 51F includes a contact portion 51a, a first inclined portion 51b, and a second inclined portion 51Fc.
  • a cutout portion 51f that is cut out in a circular shape in a cross-sectional view is provided at the bottom portion on the inner diameter side of the opening portion 51Fd of the yoke 51F.
  • the eighth embodiment differs from the first embodiment in that the thickness of the first inclined portion 51Gb (see FIG. 13) of the stator core 11G (see FIG. 13) becomes thinner as it approaches the tooth 52.
  • FIG. 13 differs from the first embodiment in that the thickness of the second inclined portion 51Gc (see FIG. 13) of the stator core 11G (see FIG. 13) becomes thinner as it approaches the tooth 52.
  • the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
  • FIG. 13 is a partial cross-sectional view of the stator core 11G and the housing 30 included in the rotary electric machine 100G according to the eighth embodiment.
  • the stator core 11G has a yoke 51G and teeth 52.
  • the yoke 51G includes a contact portion 51a, a first inclined portion 51Gb, and a second inclined portion 51Gc.
  • the thickness of the first inclined portion 51Gb decreases as it approaches the teeth 52 in the circumferential direction.
  • the thickness of the second inclined portion 51Gc also becomes thinner at positions closer to the teeth 52 in the circumferential direction. With such a configuration, the weight of the stator core 11G can be reduced more than in the first embodiment.
  • FIG. 14 is a cross-sectional view of an electric blower 200 according to the ninth embodiment. Note that FIG. 14 shows a cross section of the electric blower 200 cut along a predetermined plane including the central axis of the rotating shaft 21 of the rotary electric machine 100 .
  • electric blower 200 includes rotary electric machine 100 , mixed flow impeller 201 (impeller), fan cover 202 , diffuser 203 , and motor housing 204 .
  • the rotary electric machine 100 is a drive source for rotating the mixed flow impeller 201, and has the same configuration as the first embodiment (see FIGS. 1 to 4).
  • the rotary electric machine 100 is fixed to a bearing insertion hole 206 provided in a motor fixing portion 205 of a motor housing 204 .
  • a diagonal flow impeller 201 is installed on one end side of the rotating shaft 21 in the axial direction.
  • the mixed flow impeller 201 (impeller) is a blade that pressurizes and blows air, and is rotated by the rotating electric machine 100 .
  • the fan cover 202 accommodates the mixed flow impeller 201 .
  • the diffuser 203 converts the kinetic energy of the air discharged from the mixed flow impeller 201 into an increase in static pressure, and is installed on the inner diameter side of the motor housing 204 .
  • the motor housing 204 accommodates the rotating electric machine 100 and the like.
  • a cylindrical flow path (air flow path) is formed by the motor housing 204 and the diffuser 203 .
  • the weight of the rotating electric machine 100 can be reduced and the electric motor characteristics can be improved.
  • a vacuum cleaner 300 (see FIGS. 15-17) including an electric blower 200 (see FIG. 17) will be described. Note that the configuration of the electric blower 200 is the same as that described in the ninth embodiment (see FIG. 14), so detailed description will be omitted.
  • FIG. 15 is a perspective view when the vacuum cleaner 300 according to the tenth embodiment is used as a stick type.
  • the electric vacuum cleaner 300 can be manually switched from one of the stick type (see FIG. 15) and the handy type (see FIGS. 16 and 17) to the other.
  • the electric vacuum cleaner 300 it is also possible to use the electric vacuum cleaner 300 only as a stick type or only as a handy type.
  • the electric vacuum cleaner 300 includes a dust collection chamber 301 that collects dust, and an electric blower 200 (see FIG. 17) that generates a suction airflow during dust collection.
  • the vacuum cleaner 300 includes a vacuum cleaner body 310 that houses the electric blower 200 , an expansion pipe 302 , a grip portion 303 and a switch portion 304 .
  • the telescopic pipe 302 is a tubular member that is telescopically provided with respect to the cleaner main body 310 .
  • the expandable pipe 302 is in an extended state.
  • the grip part 303 is a part that is gripped by the user, and is provided on one end side of the expandable pipe 302 .
  • the switch portion 304 is a portion that is operated when switching the power of the vacuum cleaner 300 between ON and OFF, and is provided on the grip portion 303 .
  • the telescopic pipe 302 described above is installed on one end side of the cleaner main body 310, and the suction body 305 is installed on the other end side.
  • the main body 310 of the cleaner and the suction body 305 are connected via the connecting portion 306 .
  • FIG. 16 is a side view of the electric vacuum cleaner 300 being used as a handy type. As shown in FIG. 16, when the electric vacuum cleaner 300 is used as a handheld type, the suction body 308 (see FIG. 15) is removed from the cleaner body 310, and the extensible pipe 302 is attached to the cleaner body 310. stored inside. In this state, the grip part 303 is close to the main body 310 of the cleaner.
  • a handy grip portion 307 that serves as a handle when the electric vacuum cleaner 300 is used as a handy type is provided between the grip portion 303 and the dust collection chamber 301 on the upper surface side of the vacuum cleaner main body 310 .
  • a suction body 308 (also referred to as a crevice nozzle) is attached to the other end of the cleaner body 310 . Also, the main body 310 of the cleaner and the suction body 308 are connected via the connecting portion 306 .
  • the electric blower 200 housed in the vacuum cleaner main body 310 operates to generate a suction airflow. Dust is sucked through the suction member 308 and the like and collected in the dust collection chamber 301 of the main body 310 of the cleaner.
  • FIG. 17 is a vertical cross-sectional view of the electric vacuum cleaner 300 used as a handy type.
  • a battery unit 320 that supplies electric power to the electric blower 200
  • a driving circuit 330 are provided inside the vacuum cleaner body 310.
  • the air from which dust has been separated in the dust collection chamber 301 passes through the electric blower 200 and the drive circuit 330 in sequence, and then passes through an exhaust port (not shown) of the cleaner body 310 to the outside. discharged to According to such a configuration, the weight of the electric vacuum cleaner 300 can be reduced, and efficiency can be enhanced to save energy.
  • the rotary electric machine 100, the electric blower 200, and the vacuum cleaner 300 according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
  • the permanent magnet 24 (see FIG. 3) included in the rotary electric machine 100 has four poles, but the number of poles is not limited to this. That is, the permanent magnet 24 may have another number of poles, such as two poles or six poles.
  • various magnetization distributions such as polar anisotropy, Halbach array, parallel magnetization, and radial magnetization can be applied.
  • the rotating electrical machine 100 may have one phase, or may have six phases.
  • rotating electric machine 100 may be of a surface magnet type or of an embedded magnet type.
  • the rotating electric machine 100 may be used as other types of motors such as induction motors and DC motors. It is also possible to use rotating electric machine 100 as a generator.
  • an electric blower 200 (see FIG. 14) including the rotating electric machine 100 was described, and in the tenth embodiment, an electric vacuum cleaner 300 (see FIG. 15) including the electric blower 200 was described. It is not limited to this.
  • the rotating electrical machine 100 may be used as a drive source for a compressor or fan of an air conditioner (not shown).
  • each embodiment can be appropriately combined.
  • a rotary electric machine 100A (see FIG. 7: second embodiment) including a third inclined portion 51e (see FIG. 7) is used as a drive source for the electric blower 200. You may do so (9th Embodiment).
  • a stator core 11B (see FIG. 8) in which the first inclined portion 51Bb (see FIG. 8) and the second inclined portion 51Bc (see FIG. 8) are curved by combining the third embodiment and the fourth embodiment. (see: third embodiment) may be fixed by the convex portion 34 (see FIG. 9) of the housing 30C (see FIG. 9) (fourth embodiment).
  • various combinations are possible.
  • the embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration. Further, the mechanisms and configurations described above show those considered necessary for explanation, and do not necessarily show all the mechanisms and configurations on the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

To provide a rotating machine which is more lightweight and mitigates stress on the housing. A yoke (51) of a rotating machine (100) in which the slope angle (θo2) on the outer-diameter side of a second sloped section (51c) is greater than the slope angle (θo1) on the outer-diameter side of a first sloped section (51b), and the slope angle (θi2) on the inner-diameter side of the second sloped section (51c) is also greater than the slope angle (θi1) on the inner-diameter side of the first sloped section (51b). The yoke (51) has, in an area near the base of teeth (52), an open section (51d) which recesses in a V-shape or a U-shape toward the inner-diameter side from the area connecting the first sloped section (51b) and the second sloped section (51c). The length of the open section (51d) in the radial direction is equal to or greater than the distance between the outer-diameter-side surface of the second sloped section (51c) and the inner-diameter-side surface thereof.

Description

回転電機、電動送風機、及び電気掃除機Rotating electric machine, electric blower, and vacuum cleaner
 本発明は、回転電機等に関する。 The present invention relates to rotating electric machines and the like.
 電動機等の回転電機に関して、例えば、特許文献1には、バックヨークがフレームの内壁と離反して空間部を形成することが記載されている。また、特許文献2には、ステータコアが、外周面から切り欠かれると共に両端面を貫通する油通過溝と、この油通過溝の内面に連設された嵌合用溝部と、を有する構成について記載されている。 Regarding rotating electric machines such as electric motors, for example, Patent Document 1 describes that the back yoke is separated from the inner wall of the frame to form a space. In addition, Patent Document 2 describes a configuration in which a stator core has an oil passage groove that is cut out from the outer peripheral surface and penetrates both end surfaces, and a fitting groove that is continuous with the inner surface of the oil passage groove. ing.
特開2019-140757号公報JP 2019-140757 A 特開2009-177971号公報JP 2009-177971 A
 特許文献1に記載の技術では、バックヨークにおいて、フレーム(ハウジング)に接触している部分と、フレームに接触していない部分と、が周方向で交互に設けられる。このような構成に起因してフレームで生じる応力については、特許文献1では特に考慮されていない。したがって、特許文献1に記載の技術では、強度を確保するためにフレームを厚くする必要があるため、回転電機の重量の増加を招く。 In the technique described in Patent Document 1, the back yoke has a portion that contacts the frame (housing) and a portion that does not contact the frame alternately in the circumferential direction. Patent Document 1 does not particularly consider the stress generated in the frame due to such a configuration. Therefore, in the technique described in Patent Document 1, it is necessary to increase the thickness of the frame in order to ensure strength, which causes an increase in the weight of the rotating electric machine.
 また、特許文献2に記載の技術では、インシュレータを固定するために嵌合用溝部が設けられており、ハウジングの応力の緩和については特に考慮されていない。したがって、特許文献2に記載の技術においても、ハウジングの応力の緩和の他、回転電機の軽量化を図る余地がある。 In addition, in the technique described in Patent Document 2, a fitting groove is provided for fixing the insulator, and relaxation of stress in the housing is not particularly considered. Therefore, even in the technique described in Patent Document 2, there is room for reducing the weight of the rotary electric machine as well as alleviating the stress of the housing.
 そこで、本発明は、ハウジングの応力の緩和を図るとともに、軽量化を図った回転電機等を提供することを課題とする。 Therefore, an object of the present invention is to provide a rotating electrical machine, etc., which is designed to reduce the weight of the housing while reducing the stress on the housing.
 前記した課題を解決するために、本発明に係る回転電機は、固定子コア及び電機子巻線を有する固定子と、前記固定子の内径側に回転自在に配置される回転子と、前記固定子及び前記回転子を内包するハウジングと、を備え、前記固定子コアは、前記ハウジングの内周面に周方向で間隔を空けて複数箇所で接触しているヨークと、前記ヨークから内径側に延びている複数のティースと、を有し、前記ヨークは、前記ハウジングの内周面に接触している複数の接触部と、前記接触部から前記ティース側に傾斜して延びている第1傾斜部と、前記第1傾斜部から前記ティース側に傾斜して延びている第2傾斜部と、を含み、前記接触部に対する前記第2傾斜部の外径側の傾斜角が、前記接触部に対する前記第1傾斜部の外径側の傾斜角よりも大きく、前記接触部に対する前記第2傾斜部の内径側の傾斜角が、前記接触部に対する前記第1傾斜部の内径側の傾斜角よりも大きく、前記ヨークは、前記ティースの根元付近において、前記第1傾斜部と前記第2傾斜部との接続箇所から内径側にV字状又はU字状に凹んでなる開口部を有し、前記開口部の径方向の長さは、前記第2傾斜部の外径側の面と内径側の面との間の距離以上であることとした。 In order to solve the above-described problems, a rotating electric machine according to the present invention includes a stator having a stator core and armature windings, a rotor rotatably disposed on the inner diameter side of the stator, and the stationary rotor. and a housing enclosing the rotor and the rotor, wherein the stator core includes a yoke in contact with the inner peripheral surface of the housing at a plurality of points spaced apart in the circumferential direction, and an inner diameter side from the yoke. and a plurality of extending teeth, wherein the yoke has a plurality of contact portions in contact with the inner peripheral surface of the housing, and a first slope extending from the contact portions to the tooth side. and a second inclined portion inclined and extending from the first inclined portion toward the tooth side, wherein the inclination angle of the outer diameter side of the second inclined portion with respect to the contact portion is The inclination angle of the inner diameter side of the second inclined portion with respect to the contact portion is larger than the inclination angle of the outer diameter side of the first inclined portion, and the inclination angle of the inner diameter side of the first inclined portion with respect to the contact portion is larger than the inclination angle of the inner diameter side of the first inclined portion. Largely, the yoke has an opening recessed in a V-shape or a U-shape toward the inner diameter side from a connection point between the first slant portion and the second slant portion near the root of the tooth, and The length of the opening in the radial direction is greater than or equal to the distance between the outer diameter side surface and the inner diameter side surface of the second inclined portion.
 本発明によれば、ハウジングの応力の緩和を図るとともに、軽量化を図った回転電機等を提供できる。 According to the present invention, it is possible to provide a rotating electrical machine or the like that is designed to reduce the stress of the housing and reduce the weight.
第1実施形態に係る回転電機の斜視図である。1 is a perspective view of a rotating electrical machine according to a first embodiment; FIG. 第1実施形態に係る回転電機の分解斜視図である。1 is an exploded perspective view of a rotary electric machine according to a first embodiment; FIG. 第1実施形態に係る回転電機における、図1のIII-III線矢視断面図である。FIG. 2 is a cross-sectional view taken along line III-III in FIG. 1 in the rotary electric machine according to the first embodiment; 第1実施形態に係る回転電機が備える固定子コア及びハウジングの部分的な断面図である。FIG. 3 is a partial cross-sectional view of a stator core and a housing included in the rotary electric machine according to the first embodiment; 第1実施形態に係る回転電機において、固定子コアをハウジングに嵌装した状態での相当応力分布及び変位を示す解析結果である。In the rotating electric machine according to the first embodiment, FIG. 第1実施形態、比較例1、及び比較例2におけるハウジングの相当応力分布及び最大相当応力の説明図である。FIG. 5 is an explanatory diagram of the equivalent stress distribution and the maximum equivalent stress of the housing in the first embodiment, comparative example 1, and comparative example 2; 第2実施形態に係る回転電機が備える固定子コア及びハウジングの部分的な断面図である。FIG. 7 is a partial cross-sectional view of a stator core and a housing included in a rotating electrical machine according to a second embodiment; 第3実施形態に係る回転電機が備える固定子コア及びハウジングの部分的な断面図である。FIG. 11 is a partial cross-sectional view of a stator core and a housing included in a rotating electrical machine according to a third embodiment; 第4実施形態に係る回転電機の断面図である。FIG. 11 is a cross-sectional view of a rotating electrical machine according to a fourth embodiment; 第5実施形態に係る回転電機の断面図である。FIG. 11 is a cross-sectional view of a rotating electric machine according to a fifth embodiment; 第6実施形態に係る回転電機の断面図である。FIG. 11 is a cross-sectional view of a rotating electrical machine according to a sixth embodiment; 第7実施形態に係る回転電機が備える固定子コア及びハウジングの部分的な断面図である。FIG. 14 is a partial cross-sectional view of a stator core and a housing included in a rotating electric machine according to a seventh embodiment; 第8実施形態に係る回転電機が備える固定子コア及びハウジングの部分的な断面図である。FIG. 14 is a partial cross-sectional view of a stator core and a housing included in a rotating electric machine according to an eighth embodiment; 第9実施形態に係る電動送風機の断面図である。It is a sectional view of the electric blower concerning a 9th embodiment. 第10実施形態に係る電気掃除機がスティック型で使用される場合の斜視図である。FIG. 20 is a perspective view of the vacuum cleaner according to the tenth embodiment when it is used as a stick type; 第10実施形態に係る電気掃除機がハンディ型で使用される場合の側面図である。FIG. 20 is a side view of the electric vacuum cleaner according to the tenth embodiment when used as a handy type; 第10実施形態に係る電気掃除機がハンディ型で使用される場合の縦断面図である。FIG. 20 is a vertical cross-sectional view of the electric vacuum cleaner according to the tenth embodiment when it is used as a handy type;
≪第1実施形態≫
<回転電機の構成>
 図1は、第1実施形態に係る回転電機100の斜視図である。
 図1に示す回転電機100は、電機子巻線13(図2参照)への通電によって回転子20(図2参照)を回転させる電動機である。回転電機100の種類として、例えば、同期モータが挙げられるが、これに限定されるものではない。回転電機100は、図1に示すハウジング30(図2も参照)やエンドブラケット40(図2も参照)を備える他、固定子10(図2参照)と、回転子20(図2参照)と、を備えている。ハウジング30は、固定子10(図2参照)及び回転子20(図2参照)を内包する収容体である。ハウジング30は、円筒部31と、フランジ部32と、ホルダ部33と、を備えている。
<<First Embodiment>>
<Configuration of rotating electric machine>
FIG. 1 is a perspective view of a rotating electric machine 100 according to the first embodiment.
A rotating electric machine 100 shown in FIG. 1 is an electric motor that rotates a rotor 20 (see FIG. 2) by energizing an armature winding 13 (see FIG. 2). Examples of the type of rotating electric machine 100 include, but are not limited to, a synchronous motor. The rotary electric machine 100 includes the housing 30 (see also FIG. 2) and the end bracket 40 (see also FIG. 2) shown in FIG. , is equipped with The housing 30 is a container containing the stator 10 (see FIG. 2) and the rotor 20 (see FIG. 2). The housing 30 has a cylindrical portion 31 , a flange portion 32 and a holder portion 33 .
 円筒部31は、その内径側に固定子10(図2参照)及び回転子20(図2参照)が設けられる部分であり、円筒状を呈している。フランジ部32は、エンドブラケット40(図2も参照)が設置される部分であり、円筒部31の軸方向一方側の端部から外径側に延びている。ホルダ部33は、軸受22(図2参照)が設置される部分であり、円筒部31の軸方向他方側に設けられている。なお、ホルダ部33には、軸受22が設置される孔33a(図2参照)が設けられている。この孔33aを介して、回転軸21が挿通されている。 The cylindrical portion 31 is a portion in which the stator 10 (see FIG. 2) and the rotor 20 (see FIG. 2) are provided on the inner diameter side, and has a cylindrical shape. The flange portion 32 is a portion on which an end bracket 40 (see also FIG. 2) is installed, and extends radially outward from one axial end of the cylindrical portion 31 . The holder portion 33 is a portion where the bearing 22 (see FIG. 2) is installed, and is provided on the other side of the cylindrical portion 31 in the axial direction. The holder portion 33 is provided with a hole 33a (see FIG. 2) in which the bearing 22 is installed. The rotary shaft 21 is inserted through the hole 33a.
 図2は、回転電機100の分解斜視図である。
 図2に示す固定子10は、回転子20との間の電磁気的な相互作用によって、回転子20に所定の回転モーメントを生じさせるものである。固定子10は、ハウジング30の円筒部31の内周面に固定されている。図2に示すように、固定子10は、固定子コア11と、ボビン12と、電機子巻線13と、を備えている。
FIG. 2 is an exploded perspective view of rotating electric machine 100. As shown in FIG.
The stator 10 shown in FIG. 2 causes the rotor 20 to generate a predetermined rotational moment through electromagnetic interaction with the rotor 20 . The stator 10 is fixed to the inner peripheral surface of the cylindrical portion 31 of the housing 30 . As shown in FIG. 2, the stator 10 includes a stator core 11, a bobbin 12, and an armature winding 13.
 固定子コア11は、電機子巻線13を保持する機能や、磁気回路を構成する継鉄(ヨーク)としての機能を有している。固定子コア11は、例えば、鉄を主成分とする複数の電磁鋼板が軸方向に積層されることで形成されている。
 ボビン12は、固定子コア11と電機子巻線13との間の絶縁距離を確保する機能等を有している。ボビン12の構成材料には、PBT(ポリブチレンテレフタレート)等の樹脂が用いられる。
 電機子巻線13は、所定に通電される巻線であり、固定子コア11に巻回されている。電機子巻線13の構成材料には、銅やアルミ等が用いられる。
The stator core 11 has a function of holding the armature winding 13 and a function of a yoke (yoke) forming a magnetic circuit. The stator core 11 is formed, for example, by laminating a plurality of magnetic steel sheets containing iron as a main component in the axial direction.
The bobbin 12 has functions such as securing an insulation distance between the stator core 11 and the armature winding 13 . A resin such as PBT (polybutylene terephthalate) is used as a constituent material of the bobbin 12 .
The armature winding 13 is a winding that is energized in a predetermined manner, and is wound around the stator core 11 . Copper, aluminum, or the like is used as a constituent material of the armature winding 13 .
 回転子20は、固定子10との間の電磁気的な相互作用によって、回転軸21の中心軸線周りに回転するものである。回転子20は、固定子10の内径側に回転自在に配置されている。また、回転子20の外周面と、固定子10の内周面と、は所定のエアギャップを介して対向している。図2に示すように、回転子20は、回転軸21と、軸受22と、バランスリング23と、永久磁石24と、カバー25と、を備えている。回転軸21は、永久磁石24等と一体で回転する軸である。回転軸21には、インペラ(図示せず)等の所定の負荷(図示せず)が設置される。 The rotor 20 rotates around the central axis of the rotating shaft 21 due to electromagnetic interaction with the stator 10 . The rotor 20 is rotatably arranged on the inner diameter side of the stator 10 . Further, the outer peripheral surface of the rotor 20 and the inner peripheral surface of the stator 10 face each other with a predetermined air gap therebetween. As shown in FIG. 2, the rotor 20 includes a rotating shaft 21, a bearing 22, a balance ring 23, a permanent magnet 24, and a cover 25. The rotating shaft 21 is a shaft that rotates integrally with the permanent magnet 24 and the like. A predetermined load (not shown) such as an impeller (not shown) is installed on the rotating shaft 21 .
 軸受22は、回転軸21を軸方向両側で回転自在に軸支するものである。なお、回転軸21の両側に設けられる一対の軸受22,22において、軸方向一方側の軸受22は、ハウジング30のホルダ部33に設置され、軸方向他方側の別の軸受22は、エンドブラケット40に設置される。
 バランスリング23は、回転子20の回転のアンバランスを修正する(回転の平衡をとる)機能を有し、環状部材に所定の切削加工が施されることで形成される。バランスリング23の構成材料には、樹脂、銅、アルミ等が用いられる。
The bearings 22 rotatably support the rotating shaft 21 on both sides in the axial direction. Of the pair of bearings 22, 22 provided on both sides of the rotating shaft 21, the bearing 22 on one side in the axial direction is installed in the holder portion 33 of the housing 30, and the other bearing 22 on the other side in the axial direction is installed in the end bracket. 40.
The balance ring 23 has the function of correcting the rotational imbalance of the rotor 20 (balancing the rotation), and is formed by subjecting an annular member to a predetermined cutting process. Resin, copper, aluminum, or the like is used as a constituent material of the balance ring 23 .
 永久磁石24は、円筒状を呈し、複数極(例えば、4極)の磁極を有している。このような永久磁石24として、サマリウム鉄窒素磁石やネオジム磁石の他、フェライト磁石等が用いられる。円筒状の永久磁石24には、回転軸21が圧入等で固定されている。
 カバー25は、回転子20の高速回転時に永久磁石24の破損を防止するものである。カバー25は、肉薄の円筒状を呈し、永久磁石24の外周面に設置されている。カバー25の構成材料には、SUS(Stainless Used Steel)やCFRP(Carbon Fiber Reinforced Plastics)等が用いられる。
The permanent magnet 24 has a cylindrical shape and has a plurality of magnetic poles (for example, four poles). As such a permanent magnet 24, a samarium-iron-nitrogen magnet, a neodymium magnet, a ferrite magnet, or the like is used. The rotating shaft 21 is fixed to the cylindrical permanent magnet 24 by press fitting or the like.
The cover 25 prevents damage to the permanent magnets 24 when the rotor 20 rotates at high speed. The cover 25 has a thin cylindrical shape and is installed on the outer peripheral surface of the permanent magnet 24 . SUS (Stainless Used Steel), CFRP (Carbon Fiber Reinforced Plastics), or the like is used as a constituent material of the cover 25 .
 エンドブラケット40は、軸受22を保持する機能等を有している。エンドブラケット40は、ハウジング30の開口を塞ぐように、フランジ部32に固定される。なお、ハウジング30とエンドブラケット40との固定方法として、ボルトやネジによる固定の他、加締め等が用いられる。 The end bracket 40 has functions such as holding the bearing 22 . The end bracket 40 is fixed to the flange portion 32 so as to close the opening of the housing 30 . As a method of fixing the housing 30 and the end bracket 40, in addition to fixing with bolts and screws, crimping or the like is used.
 第1実施形態では、一例として、回転電機100が3相交流電流で駆動される場合について説明する。例えば、パワーモジュール(図示せず)が所定の駆動信号に基づいて、スイッチング動作を行い、バッテリ(図示せず)から供給される直流電力を3相交流電力に変換する。そして、電機子巻線13に3相交流電力が供給されることで、固定子10に回転磁界が発生し、回転子20が所定に回転する。なお、3相交流電流の周波数及び位相は、制御回路(図示せず)や駆動回路(図示せず)によって所定に制御される。 In the first embodiment, as an example, a case where the rotating electric machine 100 is driven by a three-phase alternating current will be described. For example, a power module (not shown) performs a switching operation based on a predetermined drive signal to convert DC power supplied from a battery (not shown) into three-phase AC power. By supplying three-phase AC power to the armature winding 13, a rotating magnetic field is generated in the stator 10, and the rotor 20 rotates in a predetermined manner. The frequency and phase of the three-phase alternating current are controlled by a control circuit (not shown) and a drive circuit (not shown).
 図3は、回転電機100における、図1のIII-III線矢視断面図である。
 なお、図1に示すIII-III線の断面は、回転軸21の中心軸線に対して垂直な平面(図1の破線)で、固定子コア11を軸方向に均等に分割した場合の断面である。また、回転電機100において、図1に示すIII-III線以外の箇所における断面も、図3に示すものと同様である。図3では、例えば、U相の電機子巻線13において、所定のタイミングで図3の紙面手前側に向かう電流を「U+」とし、また、紙面奥側に向かう電流を「U-」としている。なお、残りのV相やW相の電流についても同様である。
FIG. 3 is a cross-sectional view of rotating electric machine 100 taken along line III-III in FIG.
1 is a plane (broken line in FIG. 1) perpendicular to the central axis of the rotating shaft 21, and is a cross section when the stator core 11 is equally divided in the axial direction. be. In addition, in the rotating electric machine 100, a cross section other than the line III-III shown in FIG. 1 is the same as that shown in FIG. In FIG. 3, for example, in the U-phase armature winding 13, the current directed toward the front side of the paper surface of FIG. . The same applies to the remaining V-phase and W-phase currents.
 図3に示すように、固定子コア11は、ヨーク51と、このヨーク51から内径側に延びている複数の(図3の例では6つの)ティース52と、を備えている。ヨーク51は、磁気回路の一部を構成する継鉄であり、ハウジング30の内周面に周方向で所定の間隔を空けて、複数箇所(図3の例では6箇所)で接触している。このように、ヨーク51において、ハウジング30の内周面に接触している部分を接触部51aという。 As shown in FIG. 3, the stator core 11 includes a yoke 51 and a plurality of (six in the example of FIG. 3) teeth 52 extending from the yoke 51 toward the inner diameter side. The yoke 51 is a yoke forming part of the magnetic circuit, and is in contact with the inner peripheral surface of the housing 30 at a plurality of locations (six locations in the example of FIG. 3) at predetermined intervals in the circumferential direction. . A portion of the yoke 51 that is in contact with the inner peripheral surface of the housing 30 is called a contact portion 51a.
 図3の断面視において、接触部51aの外周面は、ハウジング30の内周面に密着するように、回転軸21の中心軸線を基準(中心)とする所定の円弧状を呈している。また、接触部51aの肉厚は、周方向で略一定になっている。なお、固定子コア11をハウジング30に固定する方法として、圧入や焼き嵌めの他、溶接や接着等が用いられる。また、前記した固定方法のうち複数を適宜に組み合わせることも可能である。 In the cross-sectional view of FIG. 3, the outer peripheral surface of the contact portion 51a has a predetermined circular arc shape with the central axis of the rotating shaft 21 as a reference (center) so as to be in close contact with the inner peripheral surface of the housing 30. Moreover, the thickness of the contact portion 51a is substantially constant in the circumferential direction. As a method for fixing the stator core 11 to the housing 30, welding, adhesion, etc., as well as press fitting and shrink fitting are used. Moreover, it is also possible to appropriately combine a plurality of the fixing methods described above.
 ヨーク51の内径側には、複数のティース52及びスロット53が、固定子コア11の全周に亘って、周方向において均等な間隔で設けられている。ティース52は、電機子巻線13が巻回される部分であり、前記したように、ヨーク51から内径側に延びている。スロット53は、周方向で隣り合うティース52,52の間の空間である。それぞれのスロット53の壁面には、ボビン12が設置されている。
 ボビン12は、前記したように、固定子コア11と電機子巻線13との間の絶縁距離を確保する機能を有している。その他にも、ボビン12は、電機子巻線13が巻回される際などに固定子コア11の角部と電機子巻線13とが接触することを防止し、ひいては、電機子巻線13の絶縁被膜の損傷を防止する機能も有している。
A plurality of teeth 52 and slots 53 are provided on the inner diameter side of the yoke 51 over the entire circumference of the stator core 11 at equal intervals in the circumferential direction. The teeth 52 are portions around which the armature winding 13 is wound, and as described above, extend from the yoke 51 to the inner diameter side. The slot 53 is a space between the teeth 52, 52 adjacent in the circumferential direction. A bobbin 12 is installed on the wall surface of each slot 53 .
The bobbin 12 has the function of ensuring the insulation distance between the stator core 11 and the armature winding 13, as described above. In addition, the bobbin 12 prevents contact between the corners of the stator core 11 and the armature winding 13 when the armature winding 13 is wound. It also has the function of preventing damage to the insulating coating of the
 電機子巻線13は、U相・V相・W相の各相に対応する複数の巻線で構成されている。図3の例では、回転電機100が三相4極の集中巻で構成され、ティース52及びスロット53が等間隔に6つずつ設けられている。また、周方向において、U相、V相、W相、・・・の順に電機子巻線13が設けられている。 The armature winding 13 is composed of a plurality of windings corresponding to each of U-phase, V-phase, and W-phase. In the example of FIG. 3, the rotary electric machine 100 is configured with three-phase, four-pole concentrated winding, and six teeth 52 and six slots 53 are provided at regular intervals. In addition, the armature windings 13 are provided in the order of U phase, V phase, W phase, . . . in the circumferential direction.
 図4は、固定子コア11及びハウジング30の部分的な断面図である。
 なお、図4では、ボビン12(図3参照)や電機子巻線13(図3参照)の図示を省略している。図4に示すように、固定子コア11のヨーク51は、前記した接触部51aの他に、第1傾斜部51bと、第2傾斜部51cと、を備えている。第1傾斜部51bは、接触部51aからティース52側(複数のティース52のうち、第1傾斜部51bが接続されるティース52側)に傾斜して延びている。また、第1傾斜部51bは、接触部51aの周方向の端部に接続するとともに、第2傾斜部51cの端部(ティース52から遠い側の端部)に接続している。つまり、第1傾斜部51bは、自身を介して、接触部51aと第2傾斜部51cとを接続している。
FIG. 4 is a partial cross-sectional view of stator core 11 and housing 30 .
4, illustration of the bobbin 12 (see FIG. 3) and the armature winding 13 (see FIG. 3) is omitted. As shown in FIG. 4, the yoke 51 of the stator core 11 includes a first inclined portion 51b and a second inclined portion 51c in addition to the contact portion 51a. The first inclined portion 51b extends from the contact portion 51a while being inclined toward the tooth 52 (the side of the tooth 52 among the plurality of teeth 52 to which the first inclined portion 51b is connected). The first inclined portion 51b is connected to the circumferential end of the contact portion 51a, and is connected to the end of the second inclined portion 51c (the end far from the teeth 52). That is, the first inclined portion 51b connects the contact portion 51a and the second inclined portion 51c via itself.
 第2傾斜部51cは、第1傾斜部51bからティース52側(複数のティース52のうち、第2傾斜部51cが接続されるティース52側)に傾斜して延びている。また、第2傾斜部51cは、第1傾斜部51bとティース52との間に設けられている。すなわち、第2傾斜部51cは、自身を介して、第1傾斜部51bとティース52とを接続している。 The second inclined portion 51c extends from the first inclined portion 51b while being inclined toward the tooth 52 (the side of the tooth 52 among the plurality of teeth 52 to which the second inclined portion 51c is connected). Also, the second inclined portion 51 c is provided between the first inclined portion 51 b and the teeth 52 . That is, the second inclined portion 51c connects the first inclined portion 51b and the tooth 52 via itself.
 ここで、接触部51aに対する第1傾斜部51bの外径側の傾斜角をθo1とし、また、接触部51aに対する第1傾斜部51bの内径側の傾斜角をθi1とする。一方、接触部51aに対する第2傾斜部51cの外径側の傾斜角をθo2とし、また、接触部51aに対する第2傾斜部51cの内径側の傾斜角をθi2とすると、以下の式(1)、式(2)が満たされる。 Here, let θo1 be the inclination angle of the outer diameter side of the first inclined portion 51b with respect to the contact portion 51a, and let θi1 be the inclination angle of the inner diameter side of the first inclined portion 51b with respect to the contact portion 51a. On the other hand, assuming that the inclination angle of the outer diameter side of the second inclined portion 51c with respect to the contact portion 51a is θo2, and the inclination angle of the inner diameter side of the second inclined portion 51c with respect to the contact portion 51a is θi2, the following equation (1) is obtained. , the equation (2) is satisfied.
 θo2>θo1 ・・・(1)
 θi2>θi1 ・・・(2)
θo2>θo1 (1)
θi2>θi1 (2)
 より詳しく説明すると、傾斜角θo1,θo2,θi1,θi2は、次のように定義される(この定義は、他の実施形態にも適用できる)。すなわち、接触部51aと第1傾斜部51bとの間の外径側の屈曲点Po1における、接触部51aの外周面の接線Lo1と、第1傾斜部51bの外周面(図4では平面状)の中央における接線Lo2と、のなす角が、傾斜角θo1である。また、前記した接線Lo1と、第2傾斜部51cの外周面(図4では平面状)の中央における接線Lo3と、のなす角が、傾斜角θo2である。式(1)に示すように、接触部51aに対する第2傾斜部51cの外径側の傾斜角θo2が、接触部51aに対する第1傾斜部51bの外径側の傾斜角θo1よりも大きくなっている。 In more detail, the tilt angles θo1, θo2, θi1, θi2 are defined as follows (this definition can also be applied to other embodiments). That is, the tangential line Lo1 of the outer peripheral surface of the contact portion 51a at the bending point Po1 on the outer diameter side between the contact portion 51a and the first inclined portion 51b and the outer peripheral surface of the first inclined portion 51b (flat in FIG. 4) is the angle of inclination θo1. The angle between the tangent line Lo1 and the tangent line Lo3 at the center of the outer peripheral surface (flat in FIG. 4) of the second inclined portion 51c is the inclination angle θo2. As shown in formula (1), the outer diameter side inclination angle θo2 of the second inclined portion 51c with respect to the contact portion 51a is larger than the outer diameter side inclination angle θo1 of the first inclined portion 51b with respect to the contact portion 51a. there is
 また、接触部51aと第1傾斜部51bとの間の内径側の屈曲点Pi1における、接触部51aの内周面の接線Li1と、第1傾斜部51bの内周面(図4では平面状)の中央における接線Li2と、のなす角が、傾斜角θi1である。また、前記した接線Li1と、第2傾斜部51cの内周面(図4では平面状)の中央における接線Li3と、のなす角が、傾斜角θi2である。式(2)に示すように、接触部51aに対する第2傾斜部51cの内径側の傾斜角θi2が、接触部51aに対する第1傾斜部51bの内径側の傾斜角θi1よりも大きくなっている。 In addition, the tangent line Li1 of the inner peripheral surface of the contact portion 51a at the inflection point Pi1 on the inner diameter side between the contact portion 51a and the first inclined portion 51b and the inner peripheral surface of the first inclined portion 51b (planar in FIG. 4) ) is the inclination angle θi1. The angle between the tangent line Li1 and the tangent line Li3 at the center of the inner peripheral surface (flat in FIG. 4) of the second inclined portion 51c is the inclination angle θi2. As shown in Equation (2), the inner diameter side inclination angle θi2 of the second inclined portion 51c with respect to the contact portion 51a is larger than the inner diameter side inclination angle θi1 of the first inclined portion 51b with respect to the contact portion 51a.
 なお、図4の例では、第1傾斜部51bの外径側の傾斜角θo1と、内径側の傾斜角θi1と、が略等しくなっているが、これらの傾斜角θo1,θi1のうち一方が他方よりも大きい値であってもよい。同様に、第2傾斜部51cの外径側の傾斜角θo2と、内径側の傾斜角θi2と、が略等しくなっているが、これらの傾斜角θo2,θi2のうち一方が他方よりも大きい値であってもよい。
 また、前記した式(1)及び式(2)の関係は、回転電機100がモータハウジング30に嵌装されている状態の他、回転電機100がモータハウジング30に嵌装されていない状態でも成り立っている。
In the example of FIG. 4, the inclination angle θo1 on the outer diameter side and the inclination angle θi1 on the inner diameter side of the first inclined portion 51b are substantially equal. It may be a value larger than the other. Similarly, the inclination angle θo2 on the outer diameter side of the second inclined portion 51c and the inclination angle θi2 on the inner diameter side are substantially equal, but one of these inclination angles θo2 and θi2 has a larger value than the other. may be
In addition to the state in which the rotating electrical machine 100 is fitted in the motor housing 30, the relationship between the above-described formulas (1) and (2) also holds in a state in which the rotating electrical machine 100 is not fitted in the motor housing 30. ing.
 図4に示すように、ヨーク51は、ティース52の根元付近において、第1傾斜部51bと第2傾斜部51cとの接続箇所(外径側の屈曲点Po2)から内径側にV字状に凹んでなる開口部51dを有している。開口部51dの壁面は、共通のティース52に接続している第2傾斜部51cの外径側の壁面である。 As shown in FIG. 4, the yoke 51 is V-shaped in the vicinity of the base of the tooth 52 from the connecting point (flexion point Po2 on the outer diameter side) of the first inclined portion 51b and the second inclined portion 51c to the inner diameter side. It has a recessed opening 51d. A wall surface of the opening 51 d is a wall surface on the outer diameter side of the second inclined portion 51 c connected to the common tooth 52 .
 また、開口部51dの径方向の長さLは、第2傾斜部51cの外径側の面511cと内径側の面512cとの間の距離W以上になっている(L≧W)。ここで、前記した径方向の長さLとは、第1傾斜部51bと第2傾斜部51cとの間の外径側の屈曲点Po2と、開口部51dの内径側の底部P3と、の間の径方向の距離である。また、前記した距離Wとは、第2傾斜部51cにおける外径側の面511cと、内径側の面512cと、の間の最短距離である。 In addition, the radial length L of the opening 51d is greater than or equal to the distance W between the outer diameter side surface 511c and the inner diameter side surface 512c of the second inclined portion 51c (L≧W). Here, the length L in the radial direction is defined as the distance between the bending point Po2 on the outer diameter side between the first inclined portion 51b and the second inclined portion 51c and the bottom portion P3 on the inner diameter side of the opening portion 51d. is the radial distance between The distance W described above is the shortest distance between the outer diameter side surface 511c and the inner diameter side surface 512c of the second inclined portion 51c.
<作用・効果>
 図5は、固定子コア11をハウジング30に嵌装した状態での相当応力分布及び変位を示す解析結果である。
 なお、図5の二点鎖線は、固定子コア11に力が作用していない状態の原寸線を示している。一方、図5の実線は、ハウジング30に嵌装されて変形した状態の固定子コア11を示している。図5の例では、説明を分かりやすくするために、構造解析において、固定子コア11の原寸線(二点鎖線)を基準とする変形後(実線)の変位が通常の50倍(つまり、変位倍率が50)となるようにしている。また、図5の図面上では、変形後の固定子コア11(実線)がハウジング30から離れているが、実際には固定子コア11の接触部51aがハウジング30に密着した状態になる。また、図5には、変位倍率50の条件下における応力が等しい点を連ねて、等応力線として示している。それぞれの等応力線における応力(相当応力)の具体的な数値については、後記する。
<Action/effect>
FIG. 5 shows analysis results showing the equivalent stress distribution and displacement when the stator core 11 is fitted in the housing 30 .
Note that the two-dot chain line in FIG. 5 indicates the actual size line when no force is applied to the stator core 11 . On the other hand, the solid line in FIG. 5 shows the stator core 11 in a deformed state fitted in the housing 30 . In the example of FIG. 5, in order to make the explanation easier to understand, in the structural analysis, the displacement of the stator core 11 after deformation (solid line) is 50 times the normal displacement (that is, displacement The magnification is set to 50). 5, the deformed stator core 11 (solid line) is separated from the housing 30, but the contact portion 51a of the stator core 11 is in close contact with the housing 30 in reality. Further, in FIG. 5, points having the same stress under the condition of a displacement magnification of 50 are connected and shown as isostress lines. Specific numerical values of stress (equivalent stress) on each isostress line will be described later.
 固定子コア11がハウジング30に嵌装されると、固定子コア11を内径側に圧縮する向きの応力が発生し、また、ハウジング30を外径側に拡張する向きの応力が発生する。例えば、固定子コア11がハウジング30に圧入又は焼き嵌めされた場合、締め代に起因して所定の応力が発生する。さらに、銅損によって発熱する電機子巻線13(図3参照)から固定子コア11までの距離が比較的近く、また、固定子コア11自体も鉄損で発熱する。その結果、回転電機100の駆動中に固定子コア11の温度が上昇する。 When the stator core 11 is fitted into the housing 30, stress is generated to compress the stator core 11 radially inward, and stress is generated to expand the housing 30 radially outward. For example, when the stator core 11 is press-fitted or shrink-fitted into the housing 30, a predetermined stress is generated due to interference. Furthermore, the distance from the armature winding 13 (see FIG. 3), which generates heat due to copper loss, to the stator core 11 is relatively short, and the stator core 11 itself also generates heat due to iron loss. As a result, the temperature of stator core 11 rises while rotating electric machine 100 is being driven.
 また、固定子コア11がハウジング30に溶接又は接着で固定された場合も、固定子コア11とハウジング30との間の接触熱抵抗によって、固定子コア11の温度の方がハウジング30よりも高くなる。その結果、熱膨張によって固定子コア11を内径側に圧縮し、また、ハウジング30を外径側に拡張する向きの応力が発生する。 Also, when the stator core 11 is fixed to the housing 30 by welding or adhesion, the temperature of the stator core 11 is higher than that of the housing 30 due to the contact thermal resistance between the stator core 11 and the housing 30. Become. As a result, thermal expansion compresses the stator core 11 radially inward and generates a stress that expands the housing 30 radially outward.
 前記したように、固定子コア11は、ハウジング30の内周面に所定間隔を空けて、複数箇所で接触している。換言すると、ハウジング30の内周面は、固定子コア11に接触している接触部位31aと、固定子コア11に接触していない非接触部位31bと、を有している。このような構成において、ハウジング30に固定子コア11が嵌装されると、ハウジング30の接触部位31aが応力によって外径側に押し出される一方、非接触部位31bが、隣接する接触部位31aによって周方向に引っ張られる。このため、非接触部位31bの内周側中央部311b、及び、接触部位31aの外周側端部311aに応力が集中しやすくなる。そこで、第1実施形態では、第1傾斜部51b及び第2傾斜部51cを設けることで、固定子コア11にバネ性を持たせ、ハウジング30の応力集中を緩和するようにしている。 As described above, the stator core 11 is in contact with the inner peripheral surface of the housing 30 at a plurality of points with predetermined intervals. In other words, the inner peripheral surface of the housing 30 has a contact portion 31 a that contacts the stator core 11 and a non-contact portion 31 b that does not contact the stator core 11 . In such a configuration, when the stator core 11 is fitted in the housing 30, the contact portion 31a of the housing 30 is pushed outward by stress, while the non-contact portion 31b is surrounded by the adjacent contact portion 31a. pulled in a direction. Therefore, stress tends to be concentrated on the inner peripheral side central portion 311b of the non-contact portion 31b and the outer peripheral side end portion 311a of the contact portion 31a. Therefore, in the first embodiment, by providing the first inclined portion 51b and the second inclined portion 51c, the stator core 11 is provided with a spring property and the stress concentration of the housing 30 is alleviated.
 図6は、第1実施形態、比較例1、及び比較例2におけるハウジングの相当応力分布及び最大相当応力の説明図である。
 なお、図6に示す「L」は、前記したように、ヨーク51(図4参照)の開口部51d(図4参照)の径方向の長さである。また、図6に示す「W」は、第2傾斜部51c(図4参照)の外径側の面511c(図4参照)と内径側の面512c(図4参照)との間の距離である。
FIG. 6 is an explanatory diagram of the equivalent stress distribution and the maximum equivalent stress of the housing in the first embodiment, comparative example 1, and comparative example 2. FIG.
6 is the radial length of the opening 51d (see FIG. 4) of the yoke 51 (see FIG. 4), as described above. "W" shown in FIG. 6 is the distance between the outer diameter side surface 511c (see FIG. 4) and the inner diameter side surface 512c (see FIG. 4) of the second inclined portion 51c (see FIG. 4). be.
 図6では、第1実施形態(L≧W)、比較例1(L=0)、及び比較例2(L<W)を並べて示している。また、図6の「変位応力分布」では、第1実施形態、比較例1、及び比較例2における等応力線(変位倍率50の場合)を示している。なお、第1実施形態における「変位応力分布」の図は、図5と同一のものである。これらの「変位応力分布」の図には符号を付していないため、説明の際に図4の符号を適宜に用いる。 In FIG. 6, the first embodiment (L≧W), the comparative example 1 (L=0), and the comparative example 2 (L<W) are shown side by side. In addition, "displacement stress distribution" in FIG. 6 shows isostress lines (in the case of a displacement magnification of 50) in the first embodiment, comparative example 1, and comparative example 2. As shown in FIG. The diagram of "displacement stress distribution" in the first embodiment is the same as FIG. Since these figures of "displacement stress distribution" are not labeled, the symbols of FIG. 4 are appropriately used in the explanation.
 図6の「詳細図A」は、「変位応力分布」における領域Aの部分拡大図である。同様に、「詳細図B」は、「変位応力分布」における領域Bの部分拡大図である。なお、「詳細図A」や「詳細図B」に示した数値は、比較例1(L=0)におけるハウジング30の応力の最大値を1.0とした場合の比率(相当応力)を示している。また、図6における「ハウジング最大相当応力」とは、ハウジング30の相当応力の最大値を示している。ちなみに、「ハウジング最大相当応力」の欄の「p.u.」(per unit)とは、所定の基準量(ここでは、比較例1の応力の最大値)に対する比率であり、実質的には無次元である。 "Detailed view A" in FIG. 6 is a partially enlarged view of area A in "displacement stress distribution". Similarly, "detailed view B" is a partially enlarged view of area B in "displacement stress distribution". The numerical values shown in "detailed view A" and "detailed view B" indicate the ratio (equivalent stress) when the maximum value of the stress of the housing 30 in Comparative Example 1 (L=0) is 1.0. ing. Further, the “housing maximum equivalent stress” in FIG. 6 indicates the maximum value of the equivalent stress of the housing 30 . Incidentally, "p.u." (per unit) in the column of "housing maximum equivalent stress" is a ratio to a predetermined reference amount (here, the maximum value of the stress in Comparative Example 1), and substantially It is dimensionless.
 前記したように、ハウジング30は、接触部位31a(図5参照)では外径側に変形し、また、非接触部位31b(図5参照)では周方向に引っ張られる。このような現象は、円筒状の固定子コア(図示せず)をハウジング30に嵌装する場合には発生せず、ハウジング30に非接触部位31b(図5参照)が存在する構成に特有のものである。 As described above, the housing 30 deforms radially outward at the contact portion 31a (see FIG. 5) and is stretched in the circumferential direction at the non-contact portion 31b (see FIG. 5). Such a phenomenon does not occur when a cylindrical stator core (not shown) is fitted into the housing 30, and is peculiar to the structure in which the housing 30 has the non-contact portion 31b (see FIG. 5). It is.
 例えば、比較例1(L=0)は、第2傾斜部51c(図4参照)を備えない構成であるため、周方向のばね性がほとんどない。その結果、固定子コア11によってハウジング30が外径側に大きく押し出されるため、ハウジング30の最大相当応力が大きくなっている。また、比較例2(L<W)では、第2傾斜部51c(図4参照)を備えるものの、開口部51d(図4参照)の長さLが第2傾斜部51cの肉厚(距離W)未満になっている。このような構成では、断面二次モーメントが大きく変形しにくいため、周方向のばね性が不十分になる。その結果、固定子コア11によってハウジング30が外径側に大きく押し出されため、ハウジング30の最大相当応力の低減量(比較例1に対する低減量)が1割程度に留まっている。その結果、比較例1,2の構成では、応力集中に対する強度を確保するために、ハウジング30に十分に厚みを持たせる必要があり、ハウジング30の重量の増加を招く。 For example, Comparative Example 1 (L=0) does not have the second inclined portion 51c (see FIG. 4), so it has almost no springiness in the circumferential direction. As a result, the stator core 11 pushes the housing 30 radially outward, increasing the maximum equivalent stress of the housing 30 . In Comparative Example 2 (L<W), although the second inclined portion 51c (see FIG. 4) is provided, the length L of the opening portion 51d (see FIG. 4) is the thickness of the second inclined portion 51c (distance W ). In such a configuration, since the moment of inertia of area is large and it is difficult to deform, springiness in the circumferential direction is insufficient. As a result, the housing 30 is largely pushed out radially by the stator core 11, so that the amount of reduction in the maximum equivalent stress of the housing 30 (the amount of reduction relative to Comparative Example 1) remains at about 10%. As a result, in the configurations of Comparative Examples 1 and 2, the housing 30 needs to be sufficiently thick in order to ensure strength against stress concentration, resulting in an increase in the weight of the housing 30 .
 これに対して、第1実施形態では、固定子コア11の外径側・内径側のそれぞれにおいて、第2傾斜部51cが第1傾斜部51bよりも大きな傾斜角を有するようにしている(θo2>θo1、θi2>θi1:図4参照)。さらに、第1実施形態では、開口部51d(図4参照)の径方向の長さLが、第2傾斜部51c(図4参照)の肉厚(距離W)以上になっている(L≧W)。これによって、第1傾斜部51bが径方向に対するばね性を発揮し、また、第2傾斜部51cが周方向に対するばね性を発揮するため、固定子コア11が縮小変形しやすくなる。 In contrast, in the first embodiment, the second inclined portion 51c has a larger inclination angle than the first inclined portion 51b (θo2 >θo1, θi2>θi1: see FIG. Furthermore, in the first embodiment, the radial length L of the opening 51d (see FIG. 4) is equal to or greater than the thickness (distance W) of the second inclined portion 51c (see FIG. 4) (L≧ W). As a result, the first inclined portion 51b exhibits springiness in the radial direction, and the second inclined portion 51c exhibits springiness in the circumferential direction, so that the stator core 11 is easily contracted and deformed.
 図6の解析結果では、第1傾斜部51b(図4参照)の外径側の傾斜角θo1(図4参照)が大きくなる向きに変形することで、径方向の変位を吸収している。また、第2傾斜部51c(図4参照)では、ティース52を挟んで隣り合う2つの屈曲点Po2(図4参照)の周方向の距離が狭くなるように変形することで、周方向の変位を吸収している。これによって、固定子コア11が内径側に圧縮変形しやすくなり、結果的にハウジング30の変形が抑制される。 According to the analysis result of FIG. 6, radial displacement is absorbed by deforming in a direction that increases the inclination angle θo1 (see FIG. 4) on the outer diameter side of the first inclined portion 51b (see FIG. 4). In addition, in the second inclined portion 51c (see FIG. 4), by deforming so that the distance in the circumferential direction between two bending points Po2 (see FIG. 4) adjacent to each other with the tooth 52 interposed therebetween becomes narrower, displacement in the circumferential direction is absorbing This makes it easier for the stator core 11 to undergo compression deformation toward the inner diameter side, and as a result, deformation of the housing 30 is suppressed.
 図6の解析結果によれば、第1実施形態でのハウジング30の最大相当応力が、L=0(比較例1)の場合に対して4割ほど低減されている。したがって、ハウジング30を薄肉化して、その軽量化を図ることができる。なお、固定子コア11の固定に必要な接触部51a(図4参照)における面圧は、ばね性を有する固定子コア11の反発力で確保されているため、固定保持力を十分に維持できる。 According to the analysis results of FIG. 6, the maximum equivalent stress of the housing 30 in the first embodiment is reduced by about 40% compared to the case of L=0 (comparative example 1). Therefore, the thickness of the housing 30 can be reduced and the weight thereof can be reduced. The surface pressure at the contact portions 51a (see FIG. 4) required for fixing the stator core 11 is ensured by the repulsive force of the stator core 11 having spring properties, so that the fixing holding force can be sufficiently maintained. .
 また、第1実施形態では、固定子コア11(図4参照)が縮小変形しやすくなるため、ハウジング30(図4参照)に嵌装した際の径方向変位が大きくなり、固定子10と回転子20との間のギャップが狭くなる。これによって、比較的小さな電流で大きなトルクを生じることが可能になるため、回転電機100の高効率化を図ることができる。 Further, in the first embodiment, since the stator core 11 (see FIG. 4) is easily contracted and deformed, the radial displacement when fitted into the housing 30 (see FIG. 4) increases, and the stator 10 rotates. The gap between child 20 is narrowed. As a result, a large torque can be generated with a relatively small current, so that the efficiency of the rotary electric machine 100 can be improved.
 また、第1実施形態によれば、第1傾斜部51b(図4参照)及び第2傾斜部51c(図4参照)において、磁路幅(肉厚)が略一定であるため、磁気飽和を抑制できる。また、第2傾斜部51c(図4参照)の内径側では、ティース52の延伸方向に対する角度が比較的小さいため、第2傾斜部51cにも電機子巻線13を巻回することが可能になる。これによって、巻線占積率が高くなるため、回転電機100の効率を高めることができる。 Further, according to the first embodiment, since the magnetic path width (thickness) is substantially constant in the first inclined portion 51b (see FIG. 4) and the second inclined portion 51c (see FIG. 4), magnetic saturation can be prevented. can be suppressed. In addition, since the angle with respect to the extending direction of the teeth 52 is relatively small on the inner diameter side of the second inclined portion 51c (see FIG. 4), it is possible to wind the armature winding 13 also on the second inclined portion 51c. Become. As a result, the winding lamination factor increases, so the efficiency of the rotating electric machine 100 can be improved.
 なお、第2傾斜部51c(図4参照)の断面二次モーメントは、前記した距離W(図4参照)が短いほど小さくなり、また、開口部51d(図4参照)の径方向の長さLが長いほど小さくなる。第1実施形態では、開口部51dの径方向の長さLが第2傾斜部51cの肉厚(距離W)以上であるため、断面二次モーメントを小さくすることができる。これによって、第2傾斜部51cの周方向のばね性が高められ、ひいては、ハウジング30の応力集中を緩和できる。また、L≧Wとなるように構成することで、ヨーク51からティース52の磁路長を短くできる他、鉄損を小さくして、電動機特性を改善することもできる。さらに、固定子コア11の重量を低減できるという利点もある。 The moment of inertia of the second inclined portion 51c (see FIG. 4) becomes smaller as the distance W (see FIG. 4) is shorter. The longer L, the smaller. In the first embodiment, since the radial length L of the opening 51d is equal to or greater than the thickness (distance W) of the second inclined portion 51c, the geometrical moment of inertia can be reduced. As a result, the springiness of the second inclined portion 51c in the circumferential direction is enhanced, and stress concentration in the housing 30 can be alleviated. Further, by setting L≧W, the magnetic path length from the yoke 51 to the teeth 52 can be shortened, iron loss can be reduced, and motor characteristics can be improved. Another advantage is that the weight of the stator core 11 can be reduced.
 ちなみに、第2傾斜部51c(図4参照)が周方向のばね性を発揮し、開口部51dが狭くなる向きに変形するため、開口部51dの内径側の底部P3(図4参照)では、応力が若干高くなる。しかしながら、この底部P3は、磁路の分岐点に位置するため、磁束量が比較的小さく、また、残留応力による鉄損増加も比較的小さいため、支障を生ずることはほとんどない。なお、V字状に凹んでなる開口部51dの内径側の底部P3(図4参照)は、その曲率半径(いわゆるR)が0.2mm以上であり、かつ、その曲率半径が距離W以下の曲面であることが好ましい。これによって、固定子コア11が変形した場合の応力の集中を緩和できる。 Incidentally, since the second inclined portion 51c (see FIG. 4) exhibits springiness in the circumferential direction and deforms in the direction in which the opening portion 51d narrows, the bottom portion P3 (see FIG. 4) on the inner diameter side of the opening portion 51d is Slightly higher stress. However, since this bottom portion P3 is located at the branch point of the magnetic path, the amount of magnetic flux is relatively small, and the increase in iron loss due to residual stress is relatively small, so that there is almost no problem. The bottom portion P3 (see FIG. 4) on the inner diameter side of the opening portion 51d recessed in a V shape has a radius of curvature (so-called R) of 0.2 mm or more and a radius of curvature of the distance W or less. A curved surface is preferred. As a result, concentration of stress when the stator core 11 is deformed can be alleviated.
 このように、第1実施形態によれば、固定子コア11がばね性によって縮小変形するため、固定子コア11がハウジング30に嵌装された際の応力を低減できる。これによって、ハウジング30の肉厚を薄くして、軽量化を図ることができる。 Thus, according to the first embodiment, the stator core 11 shrinks and deforms due to its springiness, so the stress when the stator core 11 is fitted into the housing 30 can be reduced. As a result, the thickness of the housing 30 can be reduced and the weight can be reduced.
≪第2実施形態≫
 第2実施形態は、固定子コア11A(図7参照)が、第2傾斜部51Ac(図7参照)とティース52(図7参照)との間に第3傾斜部51e(図7参照)を備えている点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Second embodiment>>
In the second embodiment, the stator core 11A (see FIG. 7) has a third inclined portion 51e (see FIG. 7) between the second inclined portion 51Ac (see FIG. 7) and the teeth 52 (see FIG. 7). It differs from the first embodiment in that it is provided. In addition, about others, it is the same as that of 1st Embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
 図7は、第2実施形態に係る回転電機100Aが備える固定子コア11A及びハウジング30の部分的な断面図である。
 図7に示すように、固定子コア11Aは、ヨーク51Aと、ティース52と、を備えている。ヨーク51Aは、接触部51aと、第1傾斜部51bと、第2傾斜部51Acと、第3傾斜部51eと、を備えている。なお、第2傾斜部51Acは、外径側の傾斜角θo2、及び内径側の傾斜角θi2が、第1実施形態の場合(図4参照)よりも小さくなっている。第3傾斜部51eは、自身を介して、第2傾斜部51Acとティース52とを接続する部分である。すなわち、第2傾斜部51Acとティース52との間に第3傾斜部51eが設けられている。
FIG. 7 is a partial cross-sectional view of a stator core 11A and a housing 30 included in a rotary electric machine 100A according to the second embodiment.
As shown in FIG. 7, the stator core 11A includes a yoke 51A and teeth 52. As shown in FIG. The yoke 51A includes a contact portion 51a, a first inclined portion 51b, a second inclined portion 51Ac, and a third inclined portion 51e. In the second inclined portion 51Ac, the inclination angle θo2 on the outer diameter side and the inclination angle θi2 on the inner diameter side are smaller than those in the first embodiment (see FIG. 4). The third inclined portion 51e is a portion that connects the second inclined portion 51Ac and the tooth 52 via itself. That is, the third inclined portion 51e is provided between the second inclined portion 51Ac and the tooth 52. As shown in FIG.
 ここで、第3傾斜部51eの外径側の傾斜角をθo3とし、また、第3傾斜部51eの内径側の傾斜角をθi3とすると、以下の式(3)、式(4)が満たされる。 Here, assuming that the inclination angle of the outer diameter side of the third inclined portion 51e is θo3 and the inclination angle of the inner diameter side of the third inclined portion 51e is θi3, the following formulas (3) and (4) are satisfied. be
 θo3>θo2 ・・・(3)
 θi3>θi2 ・・・(4)
θo3>θo2 (3)
θi3>θi2 (4)
 なお、傾斜角θo3,θi3は、次のように定義される。すなわち、接触部51aと第1傾斜部51bとの間の外径側の屈曲点Po1における、接触部51aの外周面の接線Lo1と、第3傾斜部51eの外周面(図7では平面状)の中央における接線Lo4と、のなす角が、傾斜角θo3である。また、接触部51aと第1傾斜部51bとの間の内径側の屈曲点Pi1における、接触部51aの内周面の接線Li1と、第3傾斜部51eの内周面(図7では平面状)の中央における接線Li4と、のなす角が、傾斜角θi3である。 The tilt angles θo3 and θi3 are defined as follows. That is, the tangential line Lo1 of the outer peripheral surface of the contact portion 51a at the bending point Po1 on the outer diameter side between the contact portion 51a and the first inclined portion 51b and the outer peripheral surface of the third inclined portion 51e (flat in FIG. 7) and the tangent line Lo4 at the center of is the inclination angle θo3. In addition, the tangent line Li1 of the inner peripheral surface of the contact portion 51a at the bending point Pi1 on the inner diameter side between the contact portion 51a and the first inclined portion 51b and the inner peripheral surface of the third inclined portion 51e (planar in FIG. ) and the tangential line Li4 at the center thereof is the inclination angle θi3.
 式(3)に示すように、接触部51aに対する第3傾斜部51eの外径側の傾斜角θo3が、接触部51aに対する第2傾斜部51Acの外径側の傾斜角θo2よりも大きくなっている。また、式(4)に示すように、接触部51aに対する第3傾斜部51eの内径側の傾斜角θi3が、接触部51aに対する第2傾斜部51Acの内径側の傾斜角θi2よりも大きくなっている。 As shown in Equation (3), the outer diameter side inclination angle θo3 of the third inclined portion 51e with respect to the contact portion 51a is larger than the outer diameter side inclination angle θo2 of the second inclined portion 51Ac with respect to the contact portion 51a. there is Further, as shown in Equation (4), the inner diameter side inclination angle θi3 of the third inclined portion 51e with respect to the contact portion 51a is larger than the inner diameter side inclination angle θi2 of the second inclined portion 51Ac with respect to the contact portion 51a. there is
 このような構成によれば、第3傾斜部51eを設けることで、ヨーク51Aとティース52との間の磁路長を短くすることができる。したがって、第1実施形態の作用・効果に加えて、鉄損の低減に伴って電動機効率を向上させることができる。 According to such a configuration, the length of the magnetic path between the yoke 51A and the teeth 52 can be shortened by providing the third inclined portion 51e. Therefore, in addition to the functions and effects of the first embodiment, it is possible to improve the efficiency of the electric motor as the iron loss is reduced.
≪第2実施形態の変形例≫
 第2実施形態では、第2傾斜部51Ac(図7参照)とティース52(図7参照)との間に、1つの第3傾斜部51e(図7参照)を設ける構成について説明したが、これに限らない。例えば、第2傾斜部51Acとティース52との間に複数の傾斜部(図示せず)を設けるようにしてもよい。このような構成において、接触部51aに対する複数の傾斜部(図示せず)のそれぞれの外径側の傾斜角は、傾斜部がティース52に近いほど大きいことが好ましい。また、接触部51aに対する複数の傾斜部(図示せず)のそれぞれの内径側の傾斜角は、傾斜部がティース52に近いほど大きいことが好ましい。このような構成でも、磁路長を短くして、電動機効率を高めることができる。
<<Modification of Second Embodiment>>
In the second embodiment, one third inclined portion 51e (see FIG. 7) is provided between the second inclined portion 51Ac (see FIG. 7) and the teeth 52 (see FIG. 7). is not limited to For example, a plurality of inclined portions (not shown) may be provided between the second inclined portion 51Ac and the teeth 52 . In such a configuration, it is preferable that the inclination angle of each of the plurality of inclined portions (not shown) on the outer diameter side with respect to the contact portion 51 a increases as the inclined portions are closer to the teeth 52 . In addition, it is preferable that the inclination angle of each of the plurality of inclined portions (not shown) on the inner diameter side with respect to the contact portion 51 a increases as the inclined portion approaches the teeth 52 . Even with such a configuration, the magnetic path length can be shortened and the motor efficiency can be improved.
≪第3実施形態≫
 第3実施形態は、固定子コア11B(図8参照)において、第1傾斜部51Bb(図8参照)の外周面・内周面が曲面状であるとともに、第2傾斜部51Bc(図8参照)の内周面・外周面も曲面状である点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Third Embodiment>>
In the third embodiment, in the stator core 11B (see FIG. 8), the outer and inner peripheral surfaces of the first inclined portion 51Bb (see FIG. 8) are curved, and the second inclined portion 51Bc (see FIG. 8) is curved. ) are also curved, which is different from the first embodiment. In addition, about others, it is the same as that of 1st Embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
 図8は、第3実施形態に係る回転電機100Bが備える固定子コア11B及びハウジング30の部分的な断面図である。
 図8に示すように、固定子コア11Bは、ヨーク51Bと、ティース52と、を備えている。ヨーク51Bは、接触部51aと、第1傾斜部51Bbと、第2傾斜部51Bcと、を備えている。図8に示すように、第1傾斜部51Bbは、外周面・内周面が曲面状になっている。具体的に説明すると、第1傾斜部51Bbの外周面・内周面は、それぞれ、周方向でティース52に近づくにつれて、ハウジング30との間の径方向の距離が長くなるように湾曲している。なお、第1傾斜部51Bbの外周面・内周面の曲率中心となる点(図示せず)は、第1傾斜部51Bbよりも内径側に位置している。
FIG. 8 is a partial cross-sectional view of a stator core 11B and a housing 30 included in a rotating electric machine 100B according to the third embodiment.
As shown in FIG. 8 , the stator core 11B has a yoke 51B and teeth 52 . The yoke 51B includes a contact portion 51a, a first inclined portion 51Bb, and a second inclined portion 51Bc. As shown in FIG. 8, the first inclined portion 51Bb has curved outer and inner peripheral surfaces. Specifically, the outer peripheral surface and the inner peripheral surface of the first inclined portion 51Bb are curved so that the radial distance between them and the housing 30 increases as they approach the teeth 52 in the circumferential direction. . A point (not shown) serving as the center of curvature of the outer peripheral surface and the inner peripheral surface of the first inclined portion 51Bb is located on the inner diameter side of the first inclined portion 51Bb.
 また、第2傾斜部51Bcは、その外周面の他、内周面の一部が曲面状になっている。すなわち、第2傾斜部51Bcの外周面は、周方向でティース52の中央に近づくにつれて、ハウジング30との間の径方向の距離が長くなるように湾曲している。なお、第2傾斜部51Bcの外周面の曲率中心となる点(図示せず)は、第2傾斜部51Bcよりも外径側に位置している。一方、第2傾斜部51Bcの内周面は、第1傾斜部51Bbの内周面に滑らかに連なるように湾曲している。
 なお、第1傾斜部51Bbと第2傾斜部51Bcとの間の境界は、例えば、ヨーク51Bの外周面が、外径側に凸(第1傾斜部51Bbの領域)から内径側に凸(第2傾斜部51Bcの領域)に変わる変曲点(屈曲点Po2)の位置である。
Further, the second inclined portion 51Bc has a curved surface not only on the outer peripheral surface but also on a part of the inner peripheral surface. That is, the outer peripheral surface of the second inclined portion 51Bc is curved such that the radial distance from the housing 30 increases as it approaches the center of the tooth 52 in the circumferential direction. A point (not shown) serving as the center of curvature of the outer peripheral surface of the second inclined portion 51Bc is located on the outer diameter side of the second inclined portion 51Bc. On the other hand, the inner peripheral surface of the second inclined portion 51Bc is curved so as to smoothly connect to the inner peripheral surface of the first inclined portion 51Bb.
Note that the boundary between the first inclined portion 51Bb and the second inclined portion 51Bc is defined, for example, by the outer peripheral surface of the yoke 51B projecting from the outer diameter side (the area of the first inclined portion 51Bb) to the inner diameter side (the second inclined portion 51Bb). 2) is the position of the inflection point (bending point Po2) where the area of the inclined portion 51Bc changes.
 このように、第1傾斜部51Bb及び第2傾斜部51Bcの外径側の壁面の少なくとも一部が、曲面状になっている。また、第1傾斜部51Bb及び第2傾斜部51Bcの内径側の壁面の少なくとも一部も、曲面状になっている。 In this way, at least a part of the wall surface on the outer diameter side of the first inclined portion 51Bb and the second inclined portion 51Bc is curved. Moreover, at least a part of the wall surface on the inner diameter side of the first inclined portion 51Bb and the second inclined portion 51Bc is also curved.
 図8に示すように、ヨーク51Bは、ティース52の根元付近において、第1傾斜部51Bbと第2傾斜部51Bcとの接続箇所(屈曲点Po2)から内径側にU字状に凹んでなる開口部51Bdを有している。また、U字状に凹んでなる開口部51Bdの内径側の底部P3は、曲率半径が0.2mm以上であり、かつ、曲率半径が距離W以下の曲面になっている。ここで、距離Wは、固定子コア11Bの第2傾斜部51cbにおける外径側の面511cと内径側の面512cとの間の最短距離である。なお、距離Wの他、開口部51Bdの長さLの定義や大小関係(L≧W)は、第1実施形態と同様である。また、傾斜角θo1,θo2,θi1,θi2の定義や大小関係(θo2>θo1、θi2>θi1)についても、第1実施形態と同様である。 As shown in FIG. 8, the yoke 51B has an opening in the vicinity of the root of the tooth 52, which is recessed in a U shape radially inward from the connection point (flexion point Po2) between the first inclined portion 51Bb and the second inclined portion 51Bc. It has a portion 51Bd. A bottom portion P3 on the inner diameter side of the opening 51Bd recessed in a U shape has a curvature radius of 0.2 mm or more and is a curved surface with a curvature radius of the distance W or less. Here, the distance W is the shortest distance between the outer diameter side surface 511c and the inner diameter side surface 512c of the second inclined portion 51cb of the stator core 11B. In addition to the distance W, the definition of the length L of the opening 51Bd and the size relationship (L≧W) are the same as in the first embodiment. The definitions and magnitude relationships (θo2>θo1, θi2>θi1) of the tilt angles θo1, θo2, θi1, and θi2 are also the same as in the first embodiment.
 第3実施形態によれば、第1傾斜部51Bb及び第2傾斜部51Ccの外周面・内周面の少なくとも一部を曲面状にすることで、固定子コア11Bにおける応力の集中を緩和できる。したがって、固定子コア11Bにおいて、残留応力に起因する鉄損の増加を抑制し、電動機効率を高めることができる。 According to the third embodiment, stress concentration in the stator core 11B can be alleviated by forming at least a part of the outer and inner peripheral surfaces of the first inclined portion 51Bb and the second inclined portion 51Cc into curved surfaces. Therefore, in the stator core 11B, it is possible to suppress an increase in iron loss due to residual stress and improve motor efficiency.
≪第4実施形態≫
 第4実施形態は、ハウジング30C(図9参照)が内周面に3つ凸部34(図9参照)を備える点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Fourth Embodiment>>
The fourth embodiment differs from the first embodiment in that a housing 30C (see FIG. 9) has three protrusions 34 (see FIG. 9) on its inner peripheral surface. In addition, about others, it is the same as that of 1st Embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
 図9は、第4実施形態に係る回転電機100Cの断面図である。
 図9に示すように、ハウジング30Cは、その内周面において周方向で等間隔に設けられる三つの凸部34を備えている。凸部34は、ハウジング30Cの円筒部31から内径側に滑らかに突出している部分であり、円筒部31と一体的に形成されている。具体的には、凸部34は、円筒部31とヨーク51との間の隙間G1の少なくとも一部を埋めるように、円筒部31から内径側に突出している。
FIG. 9 is a cross-sectional view of a rotating electric machine 100C according to the fourth embodiment.
As shown in FIG. 9, the housing 30C has three protrusions 34 provided at equal intervals in the circumferential direction on its inner peripheral surface. The convex portion 34 is a portion that smoothly protrudes radially inward from the cylindrical portion 31 of the housing 30</b>C and is formed integrally with the cylindrical portion 31 . Specifically, the convex portion 34 protrudes radially inward from the cylindrical portion 31 so as to fill at least a portion of the gap G1 between the cylindrical portion 31 and the yoke 51 .
 図9の例では、ハウジング30Cにおいて、凸部34が設けられている部分と、隙間G1がそのまま残されている部分と、が周方向で交互に配置されている。また、凸部34は、第2傾斜部51cを挟んで周方向で隣り合う第1傾斜部51bに接触している一方、第2傾斜部51cには接触していない。 In the example of FIG. 9, in the housing 30C, the portions where the projections 34 are provided and the portions where the gaps G1 are left are alternately arranged in the circumferential direction. Moreover, while the convex portion 34 is in contact with the first inclined portion 51b adjacent in the circumferential direction with the second inclined portion 51c interposed therebetween, it is not in contact with the second inclined portion 51c.
 第4実施形態によれば、円筒部31と固定子コア11との間の隙間G1を埋めるように設けられる凸部34が、いわゆるキー溝(回転止め)として機能する。したがって、固定子コア11の周方向の固定保持力を第1実施形態よりも高めることができる。これによって、回転電機100Cの剛性が高められるため、電磁加振力に起因する振動・騒音を抑制できる。 According to the fourth embodiment, the convex portion 34 provided to fill the gap G1 between the cylindrical portion 31 and the stator core 11 functions as a so-called key groove (rotation stopper). Therefore, the fixing and holding force of the stator core 11 in the circumferential direction can be increased more than in the first embodiment. As a result, the rigidity of the rotary electric machine 100C is increased, so that vibration and noise caused by the electromagnetic excitation force can be suppressed.
 なお、ヨーク51の第1傾斜部51bの少なくとも一部に凸部34が接触していればよく、凸部34の構成を適宜に変更してもよい。また、凸部34の個数は、3つに限定されるものではなく、少なくとも1つであってもよい。このような構成でも凸部34がキー溝として機能するため、同様の作用・効果が奏される。 It should be noted that the convex portion 34 only needs to be in contact with at least a portion of the first inclined portion 51b of the yoke 51, and the configuration of the convex portion 34 may be changed as appropriate. Also, the number of protrusions 34 is not limited to three, and may be at least one. Even in such a configuration, the convex portion 34 functions as a key groove, so that similar functions and effects can be obtained.
≪第5実施形態≫
 第5実施形態は、ハウジング30D(図10参照)の肉厚が周方向で一定とし、凹部35(図10参照)を設けるようにした点が、第4実施形態(図9参照)とは異なっている。なお、その他については、第4実施形態と同様である。したがって、第4実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Fifth Embodiment>>
The fifth embodiment differs from the fourth embodiment (see FIG. 9) in that the thickness of the housing 30D (see FIG. 10) is constant in the circumferential direction and a recess 35 (see FIG. 10) is provided. ing. In addition, about others, it is the same as that of 4th Embodiment. Therefore, the parts different from the fourth embodiment will be explained, and the explanation of overlapping parts will be omitted.
 図10は、第5実施形態に係る回転電機100Dの断面図である。
 図10に示すように、ハウジング30Dは、円筒部31Dを備えるとともに、外周面が内径側に凹んでなる凹部35を備えている。円筒部31Dは、所定の仮想的な円筒R1(図10の一点鎖線)の一部として構成されている部分である。凹部35Dは、前記した仮想的な円筒R1から内径側に凹んでいる部分であり、円筒部31Dと一体的に形成されている。
FIG. 10 is a cross-sectional view of a rotating electric machine 100D according to the fifth embodiment.
As shown in FIG. 10, the housing 30D includes a cylindrical portion 31D and a recess 35 formed by recessing the outer peripheral surface toward the inner diameter side. The cylindrical portion 31D is a portion configured as a part of a predetermined virtual cylinder R1 (one-dot chain line in FIG. 10). The recess 35D is a portion recessed radially inward from the virtual cylinder R1, and is formed integrally with the cylindrical portion 31D.
 図10の例では、ハウジング30Dにおいて、凹部35が設けられている部分と、隙間G1がそのまま残されている部分と、が周方向で交互に配置されている。また、凹部35は、ヨーク51の第2傾斜部51cを挟んで周方向で隣り合う第1傾斜部51bに接触している一方、第2傾斜部51cには接触していない。なお、図10は一例であり、凹部35の内壁面が、第1傾斜部51bの少なくとも一部に接触していればよく、適宜に構成を変更してもよい。 In the example of FIG. 10, in the housing 30D, the portion where the concave portion 35 is provided and the portion where the gap G1 is left are alternately arranged in the circumferential direction. Further, the recessed portion 35 is in contact with the first inclined portion 51b adjacent in the circumferential direction with the second inclined portion 51c of the yoke 51 interposed therebetween, but is not in contact with the second inclined portion 51c. Note that FIG. 10 is an example, and the inner wall surface of the concave portion 35 only needs to be in contact with at least a portion of the first inclined portion 51b, and the configuration may be changed as appropriate.
 また、ハウジング30D(凹部35を含む)の肉厚は、周方向で一定になっている。言い換えると、凹部35の肉厚は、円筒部31の肉厚に略等しい。これによって、第4実施形態よりもハウジング30Dの軽量化を図ることができる。また、凹部35がキー溝として機能するため、固定子コア11の周方向の固定保持力を高めることができる。 Also, the thickness of the housing 30D (including the recess 35) is constant in the circumferential direction. In other words, the thickness of the concave portion 35 is approximately equal to the thickness of the cylindrical portion 31 . As a result, the weight of the housing 30D can be reduced more than in the fourth embodiment. In addition, since the concave portion 35 functions as a key groove, it is possible to increase the fixed holding force of the stator core 11 in the circumferential direction.
≪第6実施形態≫
 第6実施形態は、固定子コア11(図11参照)の接触部51a(図11参照)を周方向で挟むように、凸部34E(図11参照)を設ける点が、第4実施形態(図9参照)とは異なっている。なお、その他については、第4実施形態と同様である。したがって、第4実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Sixth embodiment>>
The sixth embodiment differs from the fourth embodiment (see FIG. 11) in that convex portions 34E (see FIG. 11) are provided so as to sandwich the contact portion 51a (see FIG. 11) of the stator core 11 (see FIG. 11) in the circumferential direction. 9). In addition, about others, it is the same as that of 4th Embodiment. Therefore, the parts different from the fourth embodiment will be explained, and the explanation of overlapping parts will be omitted.
 図11は、第6実施形態に係る回転電機100Eの断面図である。
 図11に示すように、ハウジング30Eは、円筒部31と、3対の凸部34E,34Eと、を備えている。3対の凸部34E,34Eは、ハウジング30Cの円筒部31から内径側に突出している部分であり、円筒部31と一体的に形成されている。凸部34E,34Eの対は、ハウジング30Eに固定子コア11が設置された状態で、固定子コア11の接触部51aを周方向の両側から挟み込むように設けられている。それぞれの凸部34Eは、円筒部31の内周面の一部と、固定子コア11の第1傾斜部51bの一部、に密着するように、楔(くさび)状に形成されている。
FIG. 11 is a cross-sectional view of a rotating electric machine 100E according to the sixth embodiment.
As shown in FIG. 11, the housing 30E includes a cylindrical portion 31 and three pairs of convex portions 34E, 34E. The three pairs of protrusions 34</b>E, 34</b>E are portions projecting radially inwardly from the cylindrical portion 31 of the housing 30</b>C and formed integrally with the cylindrical portion 31 . The pairs of protrusions 34E, 34E are provided so as to sandwich the contact portions 51a of the stator core 11 from both sides in the circumferential direction when the stator core 11 is installed in the housing 30E. Each projection 34</b>E is formed in a wedge shape so as to be in close contact with a portion of the inner peripheral surface of the cylindrical portion 31 and a portion of the first inclined portion 51 b of the stator core 11 .
 図11の例では、固定子コア11の6つの接触部51aのうち、凸部34Eに接触しているものと、凸部34Eに接触していないものと、が周方向で交互に存在している。これらの凸部34Eがキー溝として機能するため、固定子コア11の周方向の固定保持力を第1実施形態よりも高めることができる。なお、少なくとも1対の凸部34E,34Eが設けられれば、その凸部34E,34Eがキー溝として機能するため、同様の作用・効果が奏される。 In the example of FIG. 11, of the six contact portions 51a of the stator core 11, those that are in contact with the convex portions 34E and those that are not in contact with the convex portions 34E are alternately present in the circumferential direction. there is Since these protrusions 34E function as key grooves, the fixing and holding force of the stator core 11 in the circumferential direction can be increased more than in the first embodiment. If at least one pair of protrusions 34E, 34E is provided, the protrusions 34E, 34E function as key grooves, and similar actions and effects can be obtained.
≪第7実施形態≫
 第7実施形態は、固定子コア11F(図12参照)において、第2傾斜部51Fc(図12参照)の開口部51Fdの内径側の底部が円形状に切り欠かれている点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Seventh Embodiment>>
In the seventh embodiment, in the stator core 11F (see FIG. 12), the bottom portion on the inner diameter side of the opening 51Fd of the second inclined portion 51Fc (see FIG. 12) is circularly cut out. It differs from the embodiment. In addition, about others, it is the same as that of 1st Embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
 図12は、第7実施形態に係る回転電機100Fが備える固定子コア11F及びハウジング30の部分的な断面図である。
 図12に示すように、固定子コア11Fは、ヨーク51Fと、ティース52と、を備えている。ヨーク51Fは、接触部51aと、第1傾斜部51bと、第2傾斜部51Fcと、を備えている。また、ヨーク51Fの開口部51Fdの内径側の底部には、断面視で円形状に切り欠かれなる切欠部51fが設けられている。このような切欠部51fを設けることで、固定子コア11Fをハウジング30に嵌装した際、開口部51Fdの底部付近の応力を第1実施形態できる。したがって、開口部51Fdの付近の応力に起因する鉄損の増加を抑制できる。
FIG. 12 is a partial cross-sectional view of a stator core 11F and a housing 30 included in a rotating electric machine 100F according to the seventh embodiment.
As shown in FIG. 12, the stator core 11F includes a yoke 51F and teeth 52. As shown in FIG. The yoke 51F includes a contact portion 51a, a first inclined portion 51b, and a second inclined portion 51Fc. A cutout portion 51f that is cut out in a circular shape in a cross-sectional view is provided at the bottom portion on the inner diameter side of the opening portion 51Fd of the yoke 51F. By providing such a notch portion 51f, when the stator core 11F is fitted in the housing 30, the stress in the vicinity of the bottom portion of the opening portion 51Fd can be reduced to the first embodiment. Therefore, it is possible to suppress an increase in iron loss caused by stress in the vicinity of the opening 51Fd.
≪第8実施形態≫
 第8実施形態は、固定子コア11G(図13参照)の第1傾斜部51Gb(図13参照)の肉厚がティース52に近いほど薄くなる点が、第1実施形態とは異なっている。また、第8実施形態は、固定子コア11G(図13参照)の第2傾斜部51Gc(図13参照)の肉厚がティース52に近いほど薄くなる点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Eighth Embodiment>>
The eighth embodiment differs from the first embodiment in that the thickness of the first inclined portion 51Gb (see FIG. 13) of the stator core 11G (see FIG. 13) becomes thinner as it approaches the tooth 52. FIG. Further, the eighth embodiment differs from the first embodiment in that the thickness of the second inclined portion 51Gc (see FIG. 13) of the stator core 11G (see FIG. 13) becomes thinner as it approaches the tooth 52. there is In addition, about others, it is the same as that of 1st Embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
 図13は、第8実施形態に係る回転電機100Gが備える固定子コア11G及びハウジング30の部分的な断面図である。
 図13に示すように、固定子コア11Gは、ヨーク51Gと、ティース52と、を備えている。ヨーク51Gは、接触部51aと、第1傾斜部51Gbと、第2傾斜部51Gcと、を備えている。第1傾斜部51Gbは、周方向でティース52に近い位置ほど、その肉厚が薄くなっている。同様に、第2傾斜部51Gcも、周方向でティース52に近い位置ほど、その肉厚が薄くなっている。このような構成にすることで、第1実施形態よりも固定子コア11Gの軽量化を図ることができる。なお、外径側の傾斜角θo1,θo2の大小関係(θo2>θo1)や、内径側の傾斜角θi1,θi2の大小関係(θi2>θi1)については、第1実施形態と同様である。
FIG. 13 is a partial cross-sectional view of the stator core 11G and the housing 30 included in the rotary electric machine 100G according to the eighth embodiment.
As shown in FIG. 13, the stator core 11G has a yoke 51G and teeth 52. As shown in FIG. The yoke 51G includes a contact portion 51a, a first inclined portion 51Gb, and a second inclined portion 51Gc. The thickness of the first inclined portion 51Gb decreases as it approaches the teeth 52 in the circumferential direction. Similarly, the thickness of the second inclined portion 51Gc also becomes thinner at positions closer to the teeth 52 in the circumferential direction. With such a configuration, the weight of the stator core 11G can be reduced more than in the first embodiment. The magnitude relationship between the outer diameter side inclination angles θo1 and θo2 (θo2>θo1) and the inner diameter side inclination angles θi1 and θi2 (θi2>θi1) are the same as in the first embodiment.
≪第9実施形態≫
 第9実施形態では、回転電機100(図14参照)を備える電動送風機200(図14参照)について説明する。なお、回転電機100の構成については、第1実施形態(図1~図4参照)で説明したものと同様であるから、詳細な説明を省略する。
<<Ninth Embodiment>>
In the ninth embodiment, an electric blower 200 (see FIG. 14) including a rotary electric machine 100 (see FIG. 14) will be described. The configuration of the rotating electrical machine 100 is the same as that described in the first embodiment (see FIGS. 1 to 4), so detailed description will be omitted.
<電動送風機の構成>
 図14は、第9実施形態に係る電動送風機200の断面図である。
 なお、図14では、回転電機100の回転軸21の中心軸線を含む所定平面で電動送風機200を切断した場合の断面を示している。図14に示すように、電動送風機200は、回転電機100を備えている他、斜流インペラ201(インペラ)と、ファンカバー202と、ディフューザ203と、モータハウジング204と、を備えている。回転電機100は、斜流インペラ201を回転させる駆動源であり、第1実施形態(図1~図4参照)と同様の構成を備えている。回転電機100は、モータハウジング204のモータ固定部205に設けられた軸受挿入孔206に固定されている。
<Configuration of electric blower>
FIG. 14 is a cross-sectional view of an electric blower 200 according to the ninth embodiment.
Note that FIG. 14 shows a cross section of the electric blower 200 cut along a predetermined plane including the central axis of the rotating shaft 21 of the rotary electric machine 100 . As shown in FIG. 14 , electric blower 200 includes rotary electric machine 100 , mixed flow impeller 201 (impeller), fan cover 202 , diffuser 203 , and motor housing 204 . The rotary electric machine 100 is a drive source for rotating the mixed flow impeller 201, and has the same configuration as the first embodiment (see FIGS. 1 to 4). The rotary electric machine 100 is fixed to a bearing insertion hole 206 provided in a motor fixing portion 205 of a motor housing 204 .
 回転軸21の軸方向一端側には、斜流インペラ201が設置されている。斜流インペラ201(インペラ)は、空気を昇圧して送風する翼であり、回転電機100によって回転する。ファンカバー202は、斜流インペラ201を収容するものである。ディフューザ203は、斜流インペラ201から吐出される空気の運動エネルギを静圧の上昇に変換するものであり、モータハウジング204に内径側に設置されている。モータハウジング204は、回転電機100等を収容するものである。なお、モータハウジング204とディフューザ203とによって、円筒状の流路(空気の流路)が形成されている。 A diagonal flow impeller 201 is installed on one end side of the rotating shaft 21 in the axial direction. The mixed flow impeller 201 (impeller) is a blade that pressurizes and blows air, and is rotated by the rotating electric machine 100 . The fan cover 202 accommodates the mixed flow impeller 201 . The diffuser 203 converts the kinetic energy of the air discharged from the mixed flow impeller 201 into an increase in static pressure, and is installed on the inner diameter side of the motor housing 204 . The motor housing 204 accommodates the rotating electric machine 100 and the like. A cylindrical flow path (air flow path) is formed by the motor housing 204 and the diffuser 203 .
<電動送風機の作用・効果>
 回転電機100の駆動によって、斜流インペラ201が回転軸21と一体で回転する。その結果、ファンカバー202に設けられた流路に気流Fが生じる(図14の白抜き矢印)。この気流Fは、図14の紙面右側に向かう直進成分と、軸の回転と同方向の旋回成分と、を含んでいる。そして、ディフューザ203を介して気流Fが流れる過程で、その風速が低下する一方、圧力が上昇する。
<Function and effect of the electric blower>
By driving the rotating electric machine 100 , the mixed flow impeller 201 rotates integrally with the rotating shaft 21 . As a result, an airflow F is generated in the flow path provided in the fan cover 202 (white arrow in FIG. 14). This airflow F includes a rectilinear component toward the right side of the paper surface of FIG. 14 and a swirling component in the same direction as the rotation of the shaft. Then, while the airflow F flows through the diffuser 203, the wind speed decreases and the pressure increases.
 第9実施形態によれば、電動送風機200の駆動源として、第1実施形態と同様の回転電機100を用いることで、回転電機100の軽量化を図ることができる他、電動機特性を改善できる。 According to the ninth embodiment, by using the same rotating electric machine 100 as in the first embodiment as the driving source of the electric blower 200, the weight of the rotating electric machine 100 can be reduced and the electric motor characteristics can be improved.
≪第10実施形態≫
 第10実施形態では、電動送風機200(図17参照)を備える電気掃除機300(図15~図17参照)について説明する。なお、電動送風機200の構成については、第9実施形態(図14参照)で説明したものと同様であるから、詳細な説明を省略する。
<<Tenth Embodiment>>
In the tenth embodiment, a vacuum cleaner 300 (see FIGS. 15-17) including an electric blower 200 (see FIG. 17) will be described. Note that the configuration of the electric blower 200 is the same as that described in the ninth embodiment (see FIG. 14), so detailed description will be omitted.
 図15は、第10実施形態に係る電気掃除機300がスティック型で使用される場合の斜視図である。
 なお、電気掃除機300は、スティック型(図15参照)及びハンディ型(図16、図17参照)の一方から他方に手動で切替可能である。ちなみに、電気掃除機300をスティック型のみで使用したり、ハンディ型のみで使用したりすることも可能である。
FIG. 15 is a perspective view when the vacuum cleaner 300 according to the tenth embodiment is used as a stick type.
Note that the electric vacuum cleaner 300 can be manually switched from one of the stick type (see FIG. 15) and the handy type (see FIGS. 16 and 17) to the other. Incidentally, it is also possible to use the electric vacuum cleaner 300 only as a stick type or only as a handy type.
 図15に示すように、電気掃除機300は、塵埃を集塵する集塵室301の他、集塵する際の吸込気流を発生させる電動送風機200(図17参照)を備えている。電気掃除機300は、電動送風機200を収納する掃除機本体310の他、伸縮パイプ302と、グリップ部303と、スイッチ部304と、を備えている。伸縮パイプ302は、掃除機本体310に対して伸縮自在に設けられた管状部材である。なお、スティック型で使用される場合には、図15に示すように、伸縮パイプ302が伸ばされた状態になっている。グリップ部303は、ユーザによって握られる部分であり、伸縮パイプ302の一端側に設けられている。スイッチ部304は、電気掃除機300の電源のオン・オフの切替え時等に操作される部分であり、グリップ部303に設けられている。 As shown in FIG. 15, the electric vacuum cleaner 300 includes a dust collection chamber 301 that collects dust, and an electric blower 200 (see FIG. 17) that generates a suction airflow during dust collection. The vacuum cleaner 300 includes a vacuum cleaner body 310 that houses the electric blower 200 , an expansion pipe 302 , a grip portion 303 and a switch portion 304 . The telescopic pipe 302 is a tubular member that is telescopically provided with respect to the cleaner main body 310 . When the stick type is used, as shown in FIG. 15, the expandable pipe 302 is in an extended state. The grip part 303 is a part that is gripped by the user, and is provided on one end side of the expandable pipe 302 . The switch portion 304 is a portion that is operated when switching the power of the vacuum cleaner 300 between ON and OFF, and is provided on the grip portion 303 .
 掃除機本体310の一端側には、前記した伸縮パイプ302が設置され、他端側には吸口体305が設置されている。そして、掃除機本体310と、吸口体305と、が接続部306を介して接続されている。 The telescopic pipe 302 described above is installed on one end side of the cleaner main body 310, and the suction body 305 is installed on the other end side. The main body 310 of the cleaner and the suction body 305 are connected via the connecting portion 306 .
 図16は、電気掃除機300がハンディ型で使用される場合の側面図である。
 図16に示すように、電気掃除機300がハンディ型で使用される場合には、掃除機本体310から吸口体308(図15参照)が取り外され、さらに、伸縮パイプ302が掃除機本体310の内部に収納される。この状態において、グリップ部303は、掃除機本体310に近接している。
FIG. 16 is a side view of the electric vacuum cleaner 300 being used as a handy type.
As shown in FIG. 16, when the electric vacuum cleaner 300 is used as a handheld type, the suction body 308 (see FIG. 15) is removed from the cleaner body 310, and the extensible pipe 302 is attached to the cleaner body 310. stored inside. In this state, the grip part 303 is close to the main body 310 of the cleaner.
 電気掃除機300がハンディ型で使用される際の持ち手となるハンディグリップ部307は、掃除機本体310の上面側において、グリップ部303と集塵室301との間に設けられている。掃除機本体310の他端部には、吸口体308(隙間ノズルともいう)が取り付けられている。また、掃除機本体310と、吸口体308と、が接続部306を介して接続されている。 A handy grip portion 307 that serves as a handle when the electric vacuum cleaner 300 is used as a handy type is provided between the grip portion 303 and the dust collection chamber 301 on the upper surface side of the vacuum cleaner main body 310 . A suction body 308 (also referred to as a crevice nozzle) is attached to the other end of the cleaner body 310 . Also, the main body 310 of the cleaner and the suction body 308 are connected via the connecting portion 306 .
 電気掃除機300のスイッチ部304の操作で電源が入れられると、掃除機本体310に収納された電動送風機200(図17参照)が作動し、吸込気流を発生させる。そして、吸口体308等を介して塵埃が吸い込まれ、掃除機本体310の集塵室301に集塵される。 When the switch portion 304 of the vacuum cleaner 300 is turned on, the electric blower 200 (see FIG. 17) housed in the vacuum cleaner main body 310 operates to generate a suction airflow. Dust is sucked through the suction member 308 and the like and collected in the dust collection chamber 301 of the main body 310 of the cleaner.
 図17は、電気掃除機300がハンディ型で使用される場合の縦断面図である。
 図17に示すように、掃除機本体310の内部には、吸引力を発生させる電動送風機200の他、電動送風機200に電力を供給する電池ユニット320や、駆動用回路330が設けられている。なお、集塵室301で塵挨が分離された後の空気は、電動送風機200及び駆動用回路330を順次に通り、さらに、掃除機本体310の排気口(図示せず)を介して、外部に排出される。このような構成によれば、電気掃除機300の軽量化を図ることができる他、効率を高めて省エネ化を図ることができる。
FIG. 17 is a vertical cross-sectional view of the electric vacuum cleaner 300 used as a handy type.
As shown in FIG. 17, inside the vacuum cleaner body 310, in addition to an electric blower 200 that generates a suction force, a battery unit 320 that supplies electric power to the electric blower 200, and a driving circuit 330 are provided. The air from which dust has been separated in the dust collection chamber 301 passes through the electric blower 200 and the drive circuit 330 in sequence, and then passes through an exhaust port (not shown) of the cleaner body 310 to the outside. discharged to According to such a configuration, the weight of the electric vacuum cleaner 300 can be reduced, and efficiency can be enhanced to save energy.
≪変形例≫
 以上、本発明に係る回転電機100や電動送風機200、電気掃除機300について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、各実施形態では、回転電機100が備える永久磁石24(図3参照)の極数が4極である場合について説明したが、これに限らない。すなわち、永久磁石24として、2極や6極といった他の極数のものが用いられてもよい。なお、永久磁石24の着磁分布としては、極異方性、ハルバッハ配列、並行着磁、径方向着磁といった各種の着磁分布を適用できる。
<<Modification>>
Although the rotary electric machine 100, the electric blower 200, and the vacuum cleaner 300 according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
For example, in each embodiment, the permanent magnet 24 (see FIG. 3) included in the rotary electric machine 100 has four poles, but the number of poles is not limited to this. That is, the permanent magnet 24 may have another number of poles, such as two poles or six poles. As the magnetization distribution of the permanent magnet 24, various magnetization distributions such as polar anisotropy, Halbach array, parallel magnetization, and radial magnetization can be applied.
 また、各実施形態では、回転電機100の相数が3である場合について説明したが、これに限らない。例えば、回転電機100の相数は1であってもよいし、また、相数が6であってもよい。また、回転電機100は、表面磁石型でもあってもよいし、また、埋込磁石型であってもよい。
 また、各実施形態では、回転電機100が同期モータである場合について説明したが、これに限らない。例えば、回転電機100が誘導モータや直流モータといった他の種類のモータとして用いられてもよい。また、回転電機100を発電機として使用することも可能である。
Moreover, in each embodiment, the case where the number of phases of the rotary electric machine 100 is three has been described, but the number of phases is not limited to this. For example, the rotating electrical machine 100 may have one phase, or may have six phases. In addition, rotating electric machine 100 may be of a surface magnet type or of an embedded magnet type.
Also, in each embodiment, the case where the rotary electric machine 100 is a synchronous motor has been described, but the present invention is not limited to this. For example, the rotating electric machine 100 may be used as other types of motors such as induction motors and DC motors. It is also possible to use rotating electric machine 100 as a generator.
 また、第9実施形態では、回転電機100を備える電動送風機200(図14参照)について説明し、第10実施形態では、電動送風機200を備える電気掃除機300(図15参照)について説明したが、これに限らない。例えば、洗濯機(図示せず)に用いられるブロアモータの他、空気調和機(図示せず)の圧縮機やファンの駆動源として、回転電機100を用いるようにしてもよい。また、その他の様々な機器の駆動源として、回転電機100を用いることも可能である。 Further, in the ninth embodiment, an electric blower 200 (see FIG. 14) including the rotating electric machine 100 was described, and in the tenth embodiment, an electric vacuum cleaner 300 (see FIG. 15) including the electric blower 200 was described. It is not limited to this. For example, in addition to a blower motor used in a washing machine (not shown), the rotating electrical machine 100 may be used as a drive source for a compressor or fan of an air conditioner (not shown). Moreover, it is also possible to use the rotary electric machine 100 as a drive source for various other devices.
 また、各実施形態は、適宜に組み合わせることができる。例えば、第2実施形態と第9実施形態とを組み合わせ、第3傾斜部51e(図7参照)を備える回転電機100A(図7参照:第2実施形態)を、電動送風機200の駆動源として用いるようにしてもよい(第9実施形態)。
 また、例えば、第3実施形態と第4実施形態とを組み合わせ、第1傾斜部51Bb(図8参照)及び第2傾斜部51Bc(図8参照)が曲面状である固定子コア11B(図8参照:第3実施形態)を、ハウジング30C(図9参照)の凸部34(図9参照)によって固定するようにしてもよい(第4実施形態)。その他にも、さまざまな組合せが可能である。
Moreover, each embodiment can be appropriately combined. For example, by combining the second embodiment and the ninth embodiment, a rotary electric machine 100A (see FIG. 7: second embodiment) including a third inclined portion 51e (see FIG. 7) is used as a drive source for the electric blower 200. You may do so (9th Embodiment).
Further, for example, a stator core 11B (see FIG. 8) in which the first inclined portion 51Bb (see FIG. 8) and the second inclined portion 51Bc (see FIG. 8) are curved by combining the third embodiment and the fourth embodiment. (see: third embodiment) may be fixed by the convex portion 34 (see FIG. 9) of the housing 30C (see FIG. 9) (fourth embodiment). In addition, various combinations are possible.
 また、実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Further, the embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration.
Further, the mechanisms and configurations described above show those considered necessary for explanation, and do not necessarily show all the mechanisms and configurations on the product.
 10 固定子
 11,11A,11B,11F,11G 固定子コア
 13 電機子巻線
 20 回転子
 30,30C,30D,30E ハウジング
 31,31D 円筒部
 34,34E 凸部
 35 凹部
 51,51A,51B,51F,51G ヨーク
 51a 接触部
 51b,51Bb,51Gb 第1傾斜部
 51c,51Ac,51Bc,51Fc,51Gc 第2傾斜部
 51e 第3傾斜部
 51d,51Bd,51Fd 開口部
 511c 面(第2傾斜部の外径側の面)
 512c 面(第2傾斜部の内径側の面)
 52 ティース
 100,100A,100B,100C,100D,100E 回転電機
 200 電動送風機
 201 斜流インペラ(インペラ)
 300 電気掃除機
 G1 隙間
 L 長さ
 W 距離
 θo1 傾斜角(接触部に対する第1傾斜部の外径側の傾斜角)
 θi1 傾斜角(接触部に対する第1傾斜部の内径側の傾斜角)
 θo2 傾斜角(接触部に対する第2傾斜部の外径側の傾斜角)
 θi2 傾斜角(接触部に対する第2傾斜部の内径側の傾斜角)
 θo3 傾斜角(接触部に対する第3傾斜部の外径側の傾斜角)
 θi3 傾斜角(接触部に対する第3傾斜部の内径側の傾斜角)
Reference Signs List 10 stator 11, 11A, 11B, 11F, 11G stator core 13 armature winding 20 rotor 30, 30C, 30D, 30E housing 31, 31D cylindrical portion 34, 34E convex portion 35 concave portion 51, 51A, 51B, 51F , 51G yoke 51a contact portion 51b, 51Bb, 51Gb first inclined portion 51c, 51Ac, 51Bc, 51Fc, 51Gc second inclined portion 51e third inclined portion 51d, 51Bd, 51Fd opening 511c surface (outer diameter of the second inclined portion side surface)
512c surface (surface on the inner diameter side of the second inclined portion)
52 teeth 100, 100A, 100B, 100C, 100D, 100E rotary electric machine 200 electric blower 201 diagonal flow impeller (impeller)
300 Electric vacuum cleaner G1 Gap L Length W Distance θo1 Inclination angle (inclination angle of the outer diameter side of the first inclined portion with respect to the contact portion)
θi1 inclination angle (inclination angle of the inner diameter side of the first inclined portion with respect to the contact portion)
θo2 Inclination angle (inclination angle of the outer diameter side of the second inclined portion with respect to the contact portion)
θi2 Inclination angle (inclination angle of the inner diameter side of the second inclined portion with respect to the contact portion)
θo3 Inclination angle (inclination angle of the outer diameter side of the third inclined portion with respect to the contact portion)
θi3 Inclination angle (inclination angle of the inner diameter side of the third inclined portion with respect to the contact portion)

Claims (10)

  1.  固定子コア及び電機子巻線を有する固定子と、
     前記固定子の内径側に回転自在に配置される回転子と、
     前記固定子及び前記回転子を内包するハウジングと、を備え、
     前記固定子コアは、
     前記ハウジングの内周面に周方向で間隔を空けて複数箇所で接触しているヨークと、
     前記ヨークから内径側に延びている複数のティースと、を有し、
     前記ヨークは、
     前記ハウジングの内周面に接触している複数の接触部と、
     前記接触部から前記ティース側に傾斜して延びている第1傾斜部と、
     前記第1傾斜部から前記ティース側に傾斜して延びている第2傾斜部と、を含み、
     前記接触部に対する前記第2傾斜部の外径側の傾斜角が、前記接触部に対する前記第1傾斜部の外径側の傾斜角よりも大きく、
     前記接触部に対する前記第2傾斜部の内径側の傾斜角が、前記接触部に対する前記第1傾斜部の内径側の傾斜角よりも大きく、
     前記ヨークは、前記ティースの根元付近において、前記第1傾斜部と前記第2傾斜部との接続箇所から内径側にV字状又はU字状に凹んでなる開口部を有し、
     前記開口部の径方向の長さは、前記第2傾斜部の外径側の面と内径側の面との間の距離以上である回転電機。
    a stator having a stator core and an armature winding;
    a rotor rotatably disposed on the inner diameter side of the stator;
    a housing enclosing the stator and the rotor,
    The stator core is
    a yoke in contact with the inner peripheral surface of the housing at a plurality of locations spaced apart in the circumferential direction;
    a plurality of teeth extending radially from the yoke,
    The yoke is
    a plurality of contact portions in contact with the inner peripheral surface of the housing;
    a first inclined portion extending from the contact portion to the tooth side;
    a second inclined portion that extends from the first inclined portion so as to incline toward the teeth;
    an inclination angle of the outer diameter side of the second inclined portion with respect to the contact portion is larger than an inclination angle of the outer diameter side of the first inclined portion with respect to the contact portion;
    the inclination angle of the inner diameter side of the second inclined portion with respect to the contact portion is larger than the inclination angle of the inner diameter side of the first inclined portion with respect to the contact portion;
    The yoke has an opening recessed in a V-shape or a U-shape toward the inner diameter side from a connection point between the first slope portion and the second slope portion in the vicinity of the root of the tooth,
    The rotating electrical machine, wherein the radial length of the opening is equal to or greater than the distance between the outer diameter side surface and the inner diameter side surface of the second inclined portion.
  2.  前記開口部の内径側の底部は、曲率半径が0.2mm以上であり、かつ、曲率半径が前記距離以下の曲面であること
     を特徴とする請求項1に記載の回転電機。
    The rotary electric machine according to claim 1, wherein the bottom portion on the inner diameter side of the opening is a curved surface having a curvature radius of 0.2 mm or more and a curvature radius equal to or less than the distance.
  3.  前記第2傾斜部と前記ティースとの間に設けられる第3傾斜部を備え、
     前記接触部に対する前記第3傾斜部の外径側の傾斜角が、前記接触部に対する前記第2傾斜部の外径側の傾斜角よりも大きく、
     前記接触部に対する前記第3傾斜部の内径側の傾斜角が、前記接触部に対する前記第2傾斜部の内径側の傾斜角よりも大きいこと
     を特徴とする請求項1に記載の回転電機。
    A third inclined portion provided between the second inclined portion and the teeth,
    an inclination angle of the outer diameter side of the third inclined portion with respect to the contact portion is larger than an inclination angle of the outer diameter side of the second inclined portion with respect to the contact portion;
    The rotary electric machine according to claim 1, wherein an inclination angle of the inner diameter side of the third inclined portion with respect to the contact portion is larger than an inclination angle of the inner diameter side of the second inclined portion with respect to the contact portion.
  4.  前記第2傾斜部と前記ティースとの間に設けられる複数の傾斜部を備え、
     前記接触部に対する複数の前記傾斜部のそれぞれの外径側の傾斜角は、前記傾斜部が前記ティースに近いほど大きく、
     前記接触部に対する複数の前記傾斜部のそれぞれの内径側の傾斜角は、前記傾斜部が前記ティースに近いほど大きいこと
     を特徴とする請求項1に記載の回転電機。
    A plurality of inclined portions provided between the second inclined portion and the teeth,
    The inclination angle of each of the plurality of inclined portions on the outer diameter side with respect to the contact portion is larger as the inclined portions are closer to the teeth,
    The rotary electric machine according to claim 1, wherein the inclination angle of each of the plurality of inclined portions on the inner diameter side with respect to the contact portion increases as the inclined portions are closer to the teeth.
  5.  前記第1傾斜部及び前記第2傾斜部の外径側の壁面の少なくとも一部は、曲面状であり、
     前記第1傾斜部及び前記第2傾斜部の内径側の壁面の少なくとも一部も、曲面状であること
     を特徴とする請求項1に記載の回転電機。
    At least a part of the wall surface on the outer diameter side of the first inclined portion and the second inclined portion is curved,
    2. The electric rotating machine according to claim 1, wherein at least a part of the wall surface on the inner diameter side of the first inclined portion and the second inclined portion is also curved.
  6.  前記ハウジングは、
     内径側に前記固定子及び前記回転子が設けられる円筒部と、
     前記円筒部と前記ヨークとの間の隙間の少なくとも一部を埋めるように、前記円筒部から内径側に突出している凸部と、を有し、
     前記凸部は、前記第1傾斜部の少なくとも一部に接触していること
     を特徴とする請求項1に記載の回転電機。
    The housing is
    a cylindrical portion provided with the stator and the rotor on the inner diameter side;
    a convex portion projecting radially inward from the cylindrical portion so as to fill at least part of a gap between the cylindrical portion and the yoke;
    The electric rotating machine according to claim 1, wherein the convex portion is in contact with at least part of the first inclined portion.
  7.  前記ハウジングは、外周面が内径側に凹んでなる凹部を有し、
     前記凹部の内壁面は、前記第1傾斜部の少なくとも一部に接触していること
     を特徴とする請求項1に記載の回転電機。
    The housing has a recess formed by recessing the outer peripheral surface toward the inner diameter side,
    The electric rotating machine according to claim 1, wherein an inner wall surface of the recess is in contact with at least a portion of the first inclined portion.
  8.  前記ハウジングの肉厚は、周方向で一定であること
     を特徴とする請求項7に記載の回転電機。
    The rotary electric machine according to claim 7, wherein the thickness of the housing is constant in the circumferential direction.
  9.  請求項1から請求項8のいずれか一項に記載の回転電機と、
     前記回転電機によって回転するインペラと、を備えること
     を特徴とする電動送風機。
    a rotating electric machine according to any one of claims 1 to 8;
    and an impeller rotated by the rotating electric machine.
  10.  請求項9に記載の電動送風機を備えること
     を特徴とする電気掃除機。
    A vacuum cleaner comprising the electric blower according to claim 9 .
PCT/JP2022/014450 2021-08-17 2022-03-25 Rotating machine, electric blower, and vacuum cleaner WO2023021778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021132493A JP2023027428A (en) 2021-08-17 2021-08-17 Rotary electric machine, electric blower, and vacuum cleaner
JP2021-132493 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023021778A1 true WO2023021778A1 (en) 2023-02-23

Family

ID=85240349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014450 WO2023021778A1 (en) 2021-08-17 2022-03-25 Rotating machine, electric blower, and vacuum cleaner

Country Status (2)

Country Link
JP (1) JP2023027428A (en)
WO (1) WO2023021778A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278673A (en) * 2007-05-01 2008-11-13 Daikin Ind Ltd Dynamo-electric machine and compressor
JP2009177971A (en) * 2008-01-25 2009-08-06 Daikin Ind Ltd Stator, motor and compressor
WO2018096887A1 (en) * 2016-11-28 2018-05-31 日立ジョンソンコントロールズ空調株式会社 Permanent magnet type rotary electric machine and compressor using same
JP2019140757A (en) * 2018-02-08 2019-08-22 三菱電機株式会社 Rotary electric machine, method for manufacturing the same, and blower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278673A (en) * 2007-05-01 2008-11-13 Daikin Ind Ltd Dynamo-electric machine and compressor
JP2009177971A (en) * 2008-01-25 2009-08-06 Daikin Ind Ltd Stator, motor and compressor
WO2018096887A1 (en) * 2016-11-28 2018-05-31 日立ジョンソンコントロールズ空調株式会社 Permanent magnet type rotary electric machine and compressor using same
JP2019140757A (en) * 2018-02-08 2019-08-22 三菱電機株式会社 Rotary electric machine, method for manufacturing the same, and blower

Also Published As

Publication number Publication date
JP2023027428A (en) 2023-03-02

Similar Documents

Publication Publication Date Title
Murakami et al. The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor
JP4389918B2 (en) Rotating electric machine and AC generator
JP6032769B2 (en) Electric compressor for vehicles
JP2004328956A (en) Motor
JP2007181305A (en) Permanent magnet type synchronous motor and compressor using the same
JP6857255B2 (en) Motors, blowers, vacuum cleaners and hand dryers
US11894721B2 (en) Stator, electric motor, vacuum cleaner, and hand drying device
US20040174083A1 (en) Single phase induction motor
JP2003032936A (en) Electric motor
US9000648B2 (en) Asymmetrical reluctance machine
WO2021100292A1 (en) Slotless electric motor, electric blower, and electric vacuum cleaner
Sugimoto et al. Design of SPM and IPM rotors in novel one-axis actively positioned single-drive bearingless motor
JP2005117771A (en) Permanent magnet type synchronous motor and compressor using it
WO2023021778A1 (en) Rotating machine, electric blower, and vacuum cleaner
JP3635912B2 (en) Permanent magnet rotating electric machine
Préault et al. Topology of Low Noise Polygonal Slotless BLDC Motor Designed for High Volume Production
CN208674969U (en) Motor stator and motor
TW202118193A (en) Electric motor
JP3145510U (en) Permanent magnet type motor structure
JP2002171730A (en) Permanent magnet rotating electric machine and air conditioner fitted with the same
KR20210028425A (en) Stator
JP2007166798A (en) Dynamo-electric machine, compressor, blower, and air conditioner
CN114172283B (en) Stator punching sheet, stator core, motor and vehicle
JP7426318B2 (en) Electric motors, electric blowers and vacuum cleaners
WO2023080110A1 (en) Magnetic geared motor and manufacturing method of magnetic geared motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE