WO2023021676A1 - User terminal, wireless communication method, and storage medium - Google Patents

User terminal, wireless communication method, and storage medium Download PDF

Info

Publication number
WO2023021676A1
WO2023021676A1 PCT/JP2021/030508 JP2021030508W WO2023021676A1 WO 2023021676 A1 WO2023021676 A1 WO 2023021676A1 JP 2021030508 W JP2021030508 W JP 2021030508W WO 2023021676 A1 WO2023021676 A1 WO 2023021676A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
user terminal
power
value
transmission power
Prior art date
Application number
PCT/JP2021/030508
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 秋元
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2021/030508 priority Critical patent/WO2023021676A1/en
Publication of WO2023021676A1 publication Critical patent/WO2023021676A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to user terminals, wireless communication methods, and storage media.
  • Non-Patent Document 1 In 3GPP (Third Generation Partnership Project), an international standardization body, NR (New Radio ) has been specified (for example, Non-Patent Document 1).
  • Release 15 introduces Carrier Aggregation (CA), which integrates multiple cells to widen the bandwidth. Also, Release 15 introduces Dual Connectivity (DC) in which a user terminal connects to multiple cell groups each containing one or more cells.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • Non-Patent Document 2 describes that the user terminal has the ability to transmit with power exceeding the above upper limit, and in order to increase the chances of using UL CA, a predetermined threshold such as SAR (Specific Absorption Rate) It has been proposed to temporarily transmit at power exceeding the upper limit, as long as it does not exceed the upper limit.
  • SAR Specific Absorption Rate
  • An object of the present invention is to provide technology related to appropriate control of transmission power of user terminals.
  • a user terminal includes a control unit that controls to raise an upper limit value of transmission power when transmitting an uplink signal using carrier aggregation, and transmission based on the controlled upper limit value.
  • a transmission unit configured to transmit an uplink signal through a plurality of cells with power, and the control unit controls, when a cumulative power value of transmission by the transmission unit in a predetermined time range exceeds a threshold, Control to lower transmission power.
  • a radio communication method is a radio communication method performed by a user terminal including a control unit and a transmission unit, wherein the control unit performs controlling the upper limit of transmission power to be higher than in the case of one-carrier transmission; and transmitting a signal, wherein the controller controls to lower transmission power of the transmitter when a cumulative power value of transmission by the transmitter in a predetermined time range exceeds a threshold.
  • a storage medium is a storage medium storing a program for executing a wireless communication method implemented by a user terminal including a control unit and a transmission unit, wherein the wireless communication method includes a carrier
  • the control unit controls to increase the upper limit value of transmission power
  • the transmission unit uses the transmission power based on the controlled upper limit value to transmit a plurality of and transmitting a plurality of uplink signals over a cell
  • the control unit reduces transmission power of the transmission unit when an accumulated power value of transmission by the transmission unit in a predetermined time range exceeds a threshold. to control.
  • FIG. 1 is a diagram showing an example of an overview of a wireless communication system according to an embodiment
  • FIG. It is a figure which shows an example of the hardware configuration of each apparatus in the radio
  • FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to this embodiment.
  • the wireless communication system 1 may include user terminals 10, base stations 20A, base stations 20B, and a core network 30.
  • FIG. Cell C1 is associated with base station 20A and cell C2 is associated with base station 20B.
  • the base station 20A and the base station 20B are collectively referred to as the base station 20 when not distinguished from each other.
  • Cell C1 and cell C2 are collectively referred to as cell C when not distinguished from each other.
  • the numbers of user terminals 10, base stations 20, and cells C shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
  • the radio communication system 1 operates with one or more radio access technologies (RAT).
  • RAT radio access technologies
  • the wireless communication system 1 may operate in either LTE, LTE-Advanced or NR, or operate in multiple RATs including LTE and/or LTE-Advanced and NR (multi-RAT). good too.
  • LTE and/or LTE-Advanced is also called Evolved-Universal Terrestrial Radio Access (E-UTRA).
  • E-UTRA Evolved-Universal Terrestrial Radio Access
  • the wireless communication system 1 operates in one or more frequency ranges (FR).
  • FR frequency ranges
  • the wireless communication system 1 may operate with FR1 corresponding to 410 MHz to 7125 MHz and/or FR2 corresponding to 24250 MHz to 52600 MHz.
  • Each FR contains one or more frequency bands.
  • the frequency band is also called operating band, band, NR operating band, NR band, and the like.
  • Each frequency band is associated with multiple ARFCNs (Absolute Radio Frequency Channel Numbers).
  • the ARFCN may identify the frequency on which the carrier is located within the frequency band (hereinafter "carrier frequency").
  • Carrier frequencies are also called RF reference frequencies, NR frequencies, E-UTRA frequencies, center frequencies, channel rasters, simply frequencies, and the like. In this way, ARFCNs and carrier frequencies are uniquely associated. Also, one carrier frequency may be used in one or more cells C.
  • the user terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, or a stationary device.
  • the user terminal 10 may be called User Equipment (UE) or the like.
  • UE User Equipment
  • the user terminal 10 may be mobile or fixed.
  • the user terminal 10 is configured to be able to communicate with at least one RAT of E-UTRA and NR, for example.
  • the base station 20 forms one or more cells C.
  • Cell C may also be referred to as a serving cell, carrier, component carrier (CC), or the like.
  • CC component carrier
  • the base stations 20A and 20B form cells C1 and C2, respectively, in FIG. 1, each base station may form one or more cells.
  • multiple base stations 20 may be connected via an ideal backhaul or a non-ideal backhaul.
  • the plurality of base stations 20 may be connected via a predetermined interface (eg, X2 or Xn interface).
  • the base station 20 communicates with the user terminal 10.
  • the base station 20 includes eNodeB (eNB), ng-eNB, gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, Donor eNodeB (DeNB), Donor eNodeB (DeNB), Donor node or Central Unit, low-power node, pico eNB, Home eNB (HeNB), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), Integrated Access and Backhaul/Backhauling (IAB ) node, node, master node (MN), or secondary node (SN).
  • eNB eNodeB
  • gNB Next Generation-Radio Access Network
  • NG-RAN Next Generation-Radio Access Network
  • DeNB Donor eNodeB
  • DeNB Donor eNodeB
  • DeNB Donor node or Central Unit
  • low-power node pico eNB
  • HeNB Home eNB
  • the core network 30 is, for example, a core network (Evolved Packet Core: EPC) compatible with E-UTRA or a core network (5G Core Network: 5GC) compatible with NR.
  • EPC Evolved Packet Core
  • 5GC 5G Core Network
  • Devices on the core network 30 (hereinafter also referred to as “core network devices”) perform mobility management such as paging and location registration of the user terminals 10 .
  • a core network device may be connected to the base station 20 via a predetermined interface (eg, S1 or NG interface).
  • the core network device includes, for example, a Mobility Management Entity (MME) that manages mobility of the user terminal 10, an Access and Mobility Management Function (AMF) that manages C-plane information (for example, information on access and mobility management), a U It may include at least one User Plane Function (UPF) that controls transmission of plane information (for example, user data).
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the user terminal 10 uses carrier aggregation and / or dual connectivity (hereinafter also referred to as "CA / DC”.)
  • CA / DC carrier aggregation and / or dual connectivity
  • the user terminal 10 receives downlink signals and/or transmits uplink signals in a plurality of cells C within the same cell group.
  • the plurality of cells C may include one primary cell (PCell) and one or more secondary cells (SCell).
  • PCell may be called a special cell (Special Cell: SpCell).
  • the multiple cells C may be associated with a single node (eg, a single Medium Access Control (MAC) entity).
  • a CA in which the RAT of the plurality of cells C is NR may be called "NR-NR Carrier Aggregation (NR CA)".
  • the user terminal 10 receives downlink signals and/or transmits uplink signals in multiple cells C in different cell groups. For example, the user terminal 10 transmits downlink signals in one or more cells C in the master cell group (MCG) and one or more cells C in the secondary cell group (Secondary Cell Group: SCG). Receive and/or transmit upstream signals.
  • MCG master cell group
  • SCG Secondary Cell Group
  • One or more MCG cells include at least a PCell and may include one or more SCells.
  • One or more SCG cells include at least a primary SCG cell (Primary SCG Cell: PSCell) and may include one or more SCells.
  • PCell and PSCell may be referred to as SpCell.
  • one or more MCG cells may be associated with a Master Node (MN) and one or more SCG cells may be associated with a Secondary Node (SN).
  • MN and SN may each have a MAC entity.
  • a plurality of cells C in each cell group (eg, MCG or SCG) can be said to be aggregated by CA.
  • multiple nodes e.g., MN and SN
  • multiple cell groups e.g., MCG and SCG
  • the user terminal 10 connects with an eNB operating as an MN (that is, the E-UTRA base station 20 connected to the EPC) and an en-gNB operating as an SN (that is, the NR base station 20 that is connected to the EPC).
  • an eNB operating as an MN that is, the E-UTRA base station 20 connected to the EPC
  • an en-gNB operating as an SN that is, the NR base station 20 that is connected to the EPC.
  • a DC that does so may be called "E-UTRA-NR Dual Connectivity (EN-DC)".
  • the user terminal 10 is connected to a gNB operating as a MN (ie, an NR base station 20 connected to 5GC) and an ng-eNB operating as an SN (ie, an E-UTRA base station 20 connected to 5GC).
  • a DC that does so may be called "NR-E-UTRA Dual Connectivity (NE-DC)".
  • the user terminal 10 is an ng-eNB operating as an MN (that is, an E-UTRA base station 20 connected to 5GC) and a gNB operating as an SN (that is, an NR base station 20 that is connected to 5GC).
  • a connecting DC may be called "NG-RAN E-UTRA-NR Dual Connectivity (NGEN-DC)".
  • the DC that connects the user terminal 10 to the gNB operating as the MN (that is, the NR base station 20 connected to 5GC) and the gNB operating as the SN (that is, the NR base station 20 that is connected to 5GC) is " may be called NR-NR Dual Connectivity (NR-DC).
  • NR-DC NR-NR Dual Connectivity
  • a DC to which the user terminal 10 connects with two gNB-DUs acting as MN and SN, respectively, may be called NR-DC.
  • the two gNB-DUs are connected to the gNB-CU. Note that the two gNB-DU and gNB-CU may configure one base station 20 .
  • the user terminal 10 uses radio resource control (RRC) signaling in the SpCell to transmit predetermined information (for example, an RRC message or an RRC information element (RRC Information Element: RRC IE )) may be received/sent.
  • RRC radio resource control
  • RRC signaling is implemented in PCell
  • DC RRC signaling is implemented in PCell and PSCell.
  • RRC entity may be provided for each node associated with a cell group.
  • the duplex mode of multiple cells C may be frequency division duplex (Frequency Division Duplex: FDD) or time division duplex (Time Division Duplex: TDD) Alternatively, it may be FDD and TDD.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • FIG. 2 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to this embodiment.
  • Each device in the wireless communication system 1 includes a processor 10a, a memory 10b, a storage device 10c, a communication device 10d, an input device 10e, an output device 10f, and one or more antennas A have at least
  • the processor 10a is, for example, a CPU (Central Processing Unit) and controls each device in the wireless communication system 1.
  • the processor 10a may constitute a control unit that controls each device.
  • the memory 10b is composed of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM) and/or RAM (Random Access Memory).
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the storage device 10c is composed of a storage such as a HDD (Hard Disk Drive), SSD (Solid State Drive) and/or eMMC (embedded Multi Media Card).
  • a storage such as a HDD (Hard Disk Drive), SSD (Solid State Drive) and/or eMMC (embedded Multi Media Card).
  • the communication device 10d is a device that communicates via a wired and/or wireless network, such as a network adapter or a communication module. Further, the communication device 10d may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device generates a radio signal to be transmitted from the antenna A by performing D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna A, and transmits the digital baseband signal to the BB device.
  • the BB device performs processing for converting a digital baseband signal into an IP packet and processing for converting an IP packet into a digital baseband signal.
  • the input device 10e is a device that receives various inputs, such as a keyboard, touch panel, mouse and/or microphone.
  • the output device 10f is a device that outputs various information, such as a display and/or a speaker.
  • each device (for example, each of the user terminal 10 and the base station 20) further includes a power supply and a power amplifier.
  • the power supply supplies drive power for each device and includes, for example, a battery.
  • a power amplifier is a device that amplifies power supplied from a power source to drive power required for each configuration of each device.
  • FIG. 3 is a diagram showing an example of the functional block configuration of the user terminal 10 according to this embodiment.
  • the user terminal 10 includes a receiver 11 , a transmitter 12 , a storage 13 , a measurer 14 and a controller 15 .
  • the receiving unit 11 receives the downstream signal.
  • Downlink signals include, for example, a broadcast channel (physical broadcast channel (Physical Broadcast Channel: PBCH)), a synchronization signal (Synchronization Signal: SS), a downlink shared channel (physical downlink shared channel (Physical Downlink Shared Channel: PDSCH)), downlink control It may be at least one of a channel (Physical Downlink Control Channel: PDCCH) and a downlink reference signal.
  • the synchronization signal may include a Primary Synchronization Signal (PSS) and/or a Secondary Synchronization Signal (PSS).
  • PSS Primary Synchronization Signal
  • PSS Secondary Synchronization Signal
  • a block containing a synchronization signal and PBCH may be called an SS/PBCH block, a synchronization signal block (SSB).
  • Downlink reference signals for example, demodulation reference signals of PDCCH and / or PDSCH (Demodulation Reference Signal: DMRS), channel state information reference signal (Channel State Information Reference Signal: CSI-RS)) and may include at least one .
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • the receiving unit 11 may perform processing (for example, reception, demapping, demodulation, decoding, etc.) related to reception of information and/or data transmitted via the downlink signal. Specifically, the receiving unit 11 receives information requesting the capability information of the user terminal 10 (hereinafter referred to as “capability information request”).
  • the capability information request is sent from the base station 20 to the user terminal 10 via higher layer signaling and may be, for example, an RRC message "UECapabilityEnquiry".
  • the receiving unit 11 also receives an RRC reconfiguration message (for example, RRC message "RRCReconfiguration") including CA/DC configuration information.
  • the receiving unit 11 also receives downlink signals from a plurality of transmission points (TP) corresponding to a plurality of cells C using CA/DC.
  • the receiving unit 11 may receive signals other than the above.
  • the transmission unit 12 transmits an upstream signal.
  • the uplink signal is, for example, a random access channel (Physical Random Access Channel: PRACH), an uplink control channel (Physical Uplink Control Channel: PUCCH), an uplink shared channel (physical uplink shared channel ( Physical Uplink Shared Channel: PUSCH)), and may be at least one of uplink reference signals, etc.
  • Uplink reference signals are, for example, PUCCH and/or PUSCH DMRS, Sounding Reference Signal (SRS) At least one of the like may be included.
  • the transmission unit 12 may perform processing (for example, transmission, mapping, modulation, coding, etc.) related to transmission of information and/or data transmitted via the uplink signal. Specifically, the transmission unit 12 transmits capability information of the user terminal 10 . Capability information is information about the capabilities of the user terminal 10, and may include information indicating whether the user terminal 10 supports various requirements and/or functions. Also, the capability information is transmitted from the user terminal 10 to the base station 20 by higher layer signaling, and may be, for example, "UE CapabilityInformation" of the RRC IE. The transmitter 12 may transmit signals other than those described above.
  • the transmission unit 12 transmits uplink signals via one or a plurality of cells C at transmission power based on a preset upper limit value of transmission power or the upper limit value changed by the control unit 15 as described later. Send. That is, the transmission unit 12 transmits an uplink signal with power that does not exceed the preset upper limit of transmission power.
  • An arbitrary value is set as the preset upper limit value of the transmission power.
  • the upper limit value may be, for example, 23 dBm (200 mW).
  • the storage unit 13 stores various information.
  • the storage unit 13 may store, for example, the upper limit value of transmission power of the transmission unit 12, threshold values required for various processes, information received via downlink signals, and the like.
  • the measurement unit 14 measures the reception power and/or reception timing of downlink signals in a plurality of cells C.
  • the received power is, for example, Reference Signal Received Power (RSRP), Synchronization Signal based Reference Signal Received Power (SS-RSRP) (also called SS/PBCH block RSRP), or CSI-RS based Reference Signal Received Power (CSI- RS-RSRP).
  • the reception timing may be, for example, the start timing of a time unit (eg, subframe or slot) in each cell.
  • the control unit 15 performs various controls in the user terminal 10. Specifically, the control unit 15 controls reception of downlink signals from a plurality of TPs corresponding to a plurality of cells C using CA/DC. The control unit 15 controls transmission of uplink signals to multiple TPs corresponding to multiple cells C using CA/DC. The control unit 15 controls transmission power for transmission of uplink signals. The control unit 15 controls the change of the upper limit value so as to raise the upper limit value of the transmission power of the transmission unit 12 or lower the upper limit value of the transmission power. Specifically, the control unit 15 performs control so that the upper limit value of the transmission power of the transmission unit 12 is increased compared to the case of one-carrier transmission when transmitting an uplink signal using CA/DC.
  • the control unit 15 sets two CCs (for example, CC1 and CC2).
  • the upper limit of the transmission power of the transmitter 12 is raised from 23 dBm (200 mW) to 26 dBm (400 mW), and the transmitter 12 transmits at 23 dBm (200 mW) via CC1 and CC2 at 23 dBm (200 mW). may be transmitted at 23 dBm (200 mW).
  • Transmission power is controlled using, for example, both open-loop control and closed-loop control.
  • Open-loop control is control based on the propagation loss (path loss) between the user terminal and the radio base station and the target received power.
  • Open-loop control includes, for example, fractional TPC that lowers the transmission power closer to the cell edge (that is, the greater the propagation loss) in order to prevent interference with other cells.
  • Open-loop control is performed based on the path loss calculated by the user terminal and parameters notified by higher layer signaling from the radio base station.
  • closed-loop control is control for correcting transmission power errors, and is performed based on a transmission power control (TPC) command dynamically notified from the radio base station.
  • TPC command is included in downlink control information (DCI: Downlink Control Information).
  • DCI Downlink Control Information
  • the upper limit of the transmission power of the transmission unit 12 may be constant regardless of the number of CCs used for uplink signal transmission. That is, in this case, the upper limit of the total transmission power is the same whether one CC is used to transmit an uplink signal or two CCs are used to transmit an uplink signal. Since transmission using more CCs requires higher transmission power, when transmitting an uplink signal using CA/DC, control is performed to raise the upper limit of the transmission power of the transmission unit 12. , CA/DC availability can be increased.
  • the control unit 15 may control the transmission power to be lowered when the transmission power of the transmission unit 12 reaches or exceeds a predetermined threshold.
  • the predetermined threshold of transmission power may be a threshold of the cumulative power value of transmission by the transmitter 12 in a predetermined time range.
  • the predetermined time range is, for example, within the most recent predetermined time period (for example, the most recent six minutes) when the cumulative power value is specified.
  • the threshold of the cumulative power value in the predetermined time range may be set based on SAR (Specific Absorption Rate).
  • SAR is a measure of the amount of energy absorbed by a unit mass of human tissue per unit time when the human body is exposed to radio waves.
  • the laws and regulations of each country stipulate that radio waves emitted by user terminals must satisfy a predetermined standard value of SAR.
  • As a method of calculating the SAR for example, by exposing the user's human body to radio waves due to the power used by the user terminal 10, the amount of energy absorbed by any human body tissue 10g in any six minutes is specified, The SAR can be obtained by dividing the energy amount by 10 g and then by 6 minutes.
  • the "predetermined time range" is set to 6 minutes, and the cumulative transmission by the transmission unit 12 for the most recent 6 minutes A threshold may be set for the power value so as to correspond to the SAR reference value.
  • the cumulative power value of transmission by the transmission unit 12 in the predetermined time range may be a value obtained by adding the transmission power of each of a plurality of slots transmitted by the transmission unit 12 in the predetermined time range.
  • the cumulative power value of transmission by the transmission unit 12 in the predetermined time range may be a value obtained by adding the transmission power of each of a plurality of subframes transmitted by the transmission unit 12 in the predetermined time range.
  • the "predetermined time range" may be 6 minutes or any time range selected from 1 minute to 10 minutes.
  • the control unit 15 controls to raise the upper limit value of transmission power when transmitting an uplink signal using CA.
  • the control unit 15 may perform control so as to increase the upper limit of transmission power when transmitting an uplink signal using DC.
  • the transmission unit 12 transmits uplink signals via a plurality of cells C with transmission power based on the controlled upper limit value.
  • the control unit 15 controls to lower the transmission power of the transmission unit 12 when the cumulative power value of transmission by the transmission unit 12 within a predetermined time range exceeds or reaches the threshold.
  • the control unit 15 may calculate the cumulative power value of transmission by the transmission unit 12 within a predetermined time range.
  • the control unit 15 controls to lower the transmission power of the transmission unit 12. Therefore, it is possible to implement a technique for appropriately controlling the transmission power of the user terminal 10 . Also, if the base station 20 calculates the cumulative power value of transmission by the user terminal 10 and controls the transmission power of the user terminal 10 based on the calculation result, an error occurs in the calculation by the base station 20. , the transmission power of the user terminal 10 may not be appropriately controlled. On the other hand, according to the present embodiment, the control unit 15 of the user terminal 10 determines whether or not the cumulative transmission power value exceeds the threshold, and appropriately controls the transmission power of the user terminal 10. It is possible to reduce the possibility that the user terminal 10 transmits an uplink signal while the power value exceeds the threshold.
  • a plurality of cumulative power value thresholds may be set, and the transmission power of the user terminal 10 may be controlled by different methods according to the thresholds exceeded or reached.
  • the above-described control to lower the transmission power of the transmission unit 12 may include control by the control unit 15 to stop transmission by the transmission unit 12 . By stopping the transmission by the transmitter 12, the transmission power of the transmitter 12 is lowered. Transmission by the transmitter 12 includes transmission of uplink signals as described above.
  • the above control of the transmission power by the transmission unit 12 may include lowering the transmission power of the uplink signal by a preset low-priority channel.
  • the above priority of channels can be set in any way.
  • the priority may be set for a signal such as SRS that is transmitted regardless of the channel.
  • the method of setting priority is the same in the following description.
  • the above-described control for lowering the transmission power by the transmission unit 12 may include stopping the transmission of uplink signals by preset low-priority channels.
  • control unit 15 may set transmission power allocation for transmission of PUSCH, PUCCH, PRACH, and SRS according to the following order of priority.
  • the transmission power allocation setting is performed, for example, so that the transmission power of the transmission unit 12 is equal to or less than or less than the cumulative power value threshold.
  • Order of priority (descending order of priority) 1) PRACH transmission in PCell 2) PUCCH or PUSCH transmission with a higher preset priority index value If the PUCCH or PUSCH priority index values are the same, 2-1) HARQ-ACK (Hybrid automatic repeat request-acknowledgement) information, SR (Scheduling request), and / or PUCCH transmission with LRR (link recovery request), or PUSCH transmission with HARQ-ACK information 2-2) PUCCH transmission with CSI or PUSCH transmission with CSI 2-3) PUSCH transmission with neither HARQ-ACK information nor CSI 3) SRS transmission or PRACH transmission in cells other than PCell
  • the transmitting unit 12 may transmit to the base station 20 cumulative value information indicating the cumulative power value at the time when the cumulative power value of transmission by the transmitting unit 12 within a predetermined time range reaches a predetermined value.
  • the cumulative power value indicated by the cumulative value information may be an absolute value of power or a relative value.
  • the relative value may be indicated by, for example, the rate at which the cumulative power value reaches the threshold within a predetermined time range.
  • the reach percentage may include, for example, 25%, 50%, 75%, or 90%.
  • the transmitter 12 generates a cumulative value indicating the cumulative power value at another predetermined timing such as a predetermined periodic timing, not when the cumulative power value of transmission by the transmitter 12 within a predetermined time range reaches a predetermined value.
  • Information may be transmitted to the base station 20 .
  • the transmission unit 12 transmits the cumulative value information to the base station 20 by any method.
  • the transmitter 12 may transmit the cumulative value information via a physical channel such as PUSCH or PUCCH, for example.
  • PUSCH may be scheduled and the cumulative value information may be transmitted using, for example, MAC CE (Control Element).
  • PUCCH PUCCH resources are configured in advance, and information about the PUCCH resources is transmitted from the base station 20 to the user terminal 10 .
  • the PUCCH resource may be assigned for each value indicated by the cumulative value information (eg, 25%, 50%, 75%, or 90%), and as the PUCCH resource, part of the PUCCH payload resource (eg , 2-bit) components may be used.
  • the storage unit 13 may be implemented by the storage device 10c, for example.
  • the receiving unit 11, the transmitting unit 12, and the measuring unit 14 may be realized by, for example, the communication device 10d, or may be realized by executing a program stored in the storage device 10c by the processor 10a in addition to the communication device 10d. good too.
  • the control unit 15 may be implemented by the processor 10a executing a program stored in the storage device 10c.
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium storing the program may be a non-transitory computer readable medium.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
  • FIG. 4 is a diagram showing an example of the functional block configuration of the base station 20 according to this embodiment.
  • the base station 20 includes a transmitter 21, a receiver 22, and a controller .
  • the transmission unit 21 transmits downlink signals.
  • the transmitting unit 21 also performs processing (for example, encoding, decoding, mapping to resources, etc.) related to information and/or data transmitted via the downlink signal.
  • the transmitting unit 21 may transmit at least one of the capability information request and the RRC reconfiguration message.
  • the receiving unit 22 receives the upstream signal.
  • the receiving unit 22 also performs processing (for example, demapping, demodulation, decoding, etc.) regarding information and/or data transmitted via the uplink signal.
  • processing for example, demapping, demodulation, decoding, etc.
  • the receiving unit 22 may receive at least one of the capability information and the cumulative value information.
  • the control unit 23 performs various controls related to communication between the user terminal 10 and the base station 20. Specifically, the control unit 23 controls transmission of the downlink signal by the transmission unit 21 and/or reception of the uplink signal by the reception unit 22 .
  • the control unit 23 may control CA/DC based on capability information from the user terminal 10 .
  • the control unit 23 may control the transmission power of the user terminal 10 based on the cumulative value information from the user terminal 10.
  • FIG. Control of the transmission power of the user terminal 10 is performed by transmitting a TPC command to the user terminal 10, for example.
  • the transmission power for example, when the accumulated power value of transmission by the user terminal 10 in a predetermined time range exceeds or reaches a predetermined threshold, the transmission power of the user terminal 10 is controlled to be lowered.
  • the transmitting unit 21 and the receiving unit 22 may be realized by, for example, the communication device 10d, or may be realized by executing a program stored in the storage device 10c by the processor 10a in addition to the communication device 10d.
  • the control unit 23 may be implemented by the processor 10a executing a program stored in the storage device 10c.
  • a first example of processing in the radio communication system 1 regarding CA according to the present embodiment will be described with reference to FIG.
  • the user terminal 10 controls the transmission power of the user terminal 10 based on the first threshold. Also in transmission of uplink signals using DC, it is possible to control the transmission power of the user terminal 10 by processing similar to that described below.
  • step S ⁇ b>101 the base station 20 transmits information regarding the accumulated transmission power value to the user terminal 10 .
  • the information on the cumulative power value of transmission includes information on the time range for calculating the cumulative power value of transmission by the user terminal 10 and the above threshold (referred to as the first threshold) used to control the transmission power.
  • the first threshold is the cumulative power value threshold for transmissions by the user terminal 10 in the time range.
  • the first threshold may not be transmitted from the base station 20, but a value pre-stored in the user terminal 10 may be used as the first threshold in the following processing.
  • Information about the cumulative power value of transmission is transmitted by any channel.
  • Information about the cumulative power value of transmission may be included in, for example, MIB (Master Information Block) in PBCH or SIB (System Information Block) in PDSCH and transmitted as broadcast information.
  • the information about the accumulated power value of the transmission may be transmitted, for example, included in the individual signal of the RRC message.
  • the user terminal 10 transmits capability information (for example, RRC IE "UE CapabilityInformation") in response to the capability information request from the base station 20.
  • the capability information for example, indicates which band combination of UL CA to which the processing related to transmission power control in the step described later can be applied, and information indicating the CC upper limit value for the transmission power in one slot. include.
  • the base station 20 sets CA for the user terminal 10. Specifically, the base station 20 may transmit an RRC reconfiguration message (for example, RRC message “RRCReconfiguration”) including configuration information of the CA to the user terminal 10 . Based on the RRC reconfiguration message, the user terminal 10 initiates CA. At this time, the user terminal 10 performs control such that the setting of the upper limit value of transmission power by the user terminal 10 is raised compared to when CA is not performed.
  • RRC reconfiguration message for example, RRC message “RRCReconfiguration”
  • the upper limit of the transmission power of the user terminal 10 is increased from 23 dBm (200 mW) to 26 dBm (400 mW), and the user terminal 10
  • One CC may be transmitted at 23 dBm (200 mW) and the other CC may be transmitted at 23 dBm (200 mW).
  • step S104 the base station 20 schedules uplink signals transmitted by the user terminals 10.
  • the base station 20 continuously transmits scheduling information to the user terminal 10 via PDCCH.
  • the scheduling information is also called UL scheduling grant.
  • the base station 20 may notify the user terminal 10 of the scheduled resource allocation by continuously transmitting an RRC message containing a configured grant. Scheduling may be performed by SPS (semi-persistent scheduling).
  • step S105 the user terminal 10 calculates the cumulative power value of transmission by the user terminal 10 in the time range received in step S101.
  • the cumulative power value of transmission by the user terminal 10 in the above time range may be a value obtained by adding the transmission power of each of the plurality of slots transmitted by the user terminal 10 to the time range.
  • the cumulative power value of transmission by the user terminal 10 in the above time range may be a value obtained by adding the transmission power of each of the plurality of subframes transmitted by the user terminal 10 to the time range.
  • step S106 the user terminal 10 compares the cumulative power value calculated in step S105 with the first threshold received in step S101, and determines whether the cumulative power value exceeds the first threshold. If the cumulative power value does not exceed the first threshold, the process proceeds to step S107.
  • step S107 the user terminal 10 transmits an uplink signal to the base station 20 based on the upper limit of transmission power set in step S103. For example, the user terminal 10 increases the transmission power within the range of the upper limit of the transmission power set in step S103 and transmits an uplink signal. Regarding uplink signal transmission performed while the cumulative power value does not exceed the first threshold, the user terminal 10 increases the transmission power within the range of the upper limit value of the transmission power set in step S103, and performs transmission. conduct. Transmission of the uplink signal includes, for example, transmission by PUSCH, PUCCH, PRACH, and SRS.
  • step S104 when the setting grant is transmitted/set to the user terminal 10, repetition of the process of step S104 is omitted.
  • step S108 the base station 20 schedules uplink signals transmitted by the user terminals 10, as in step S104.
  • step S109 the user terminal 10 calculates the accumulated power value of transmission by the user terminal 10 in the time range received in step S101, as in step S105.
  • step S110 the user terminal 10 compares the cumulative power value calculated in step S105 with the first threshold received in step S101, and determines whether the cumulative power value exceeds the first threshold. If the accumulated power value exceeds the first threshold, the process proceeds to step S111.
  • step S111 the user terminal 10 lowers the transmission power and transmits an uplink signal to the base station 20. That is, the user terminal 10 transmits an uplink signal with power lower than the transmission power in step S107.
  • Transmission of the uplink signal includes, for example, transmission by PUSCH, PUCCH, PRACH, and SRS.
  • the user terminal 10 performs transmission with power lower than the transmission power in step S107. Transmitting at lower power includes, for example, reducing the transmit power of each of the uplink channels or signals by the same percentage. Also, transmitting at low power includes ceasing transmission.
  • the cumulative power value exceeds the value defined by the SAR the user terminal 10 may stop uplink signal transmission regardless of the operation defined by the comparison with the first threshold.
  • the control unit 15 of the user terminal 10 determines whether or not the cumulative transmission power value exceeds the first threshold, and appropriately controls the transmission power of the user terminal 10. is performed, it is possible to reduce the possibility that the user terminal 10 transmits an uplink signal while the accumulated power value exceeds the first threshold.
  • a second example of processing in the radio communication system 1 regarding CA according to the present embodiment will be described with reference to FIG.
  • the user terminal 10 controls the transmission power of the user terminal 10 based on the second threshold in addition to the first threshold. Also in transmission of uplink signals using DC, it is possible to control the transmission power of the user terminal 10 by the same processing as in FIG.
  • steps S102 to S109 in FIG. 6 is the same as the processing in FIG. 5, so the description is omitted here.
  • the base station 20 transmits information on the accumulated transmission power value to the user terminal 10 .
  • the information about the cumulative power value of transmissions includes the time range for calculating the cumulative power value of transmissions by the user terminal 10, and the information about the second threshold in addition to the first threshold used to control the transmission power.
  • the first threshold and the second threshold are thresholds for cumulative power values of transmissions by the user terminal 10 in the time range.
  • the second threshold may be set lower than the first threshold, or the second threshold may be set higher than the first threshold.
  • the first threshold may not be used in the processing shown in FIG. 6, and only the second threshold may be used.
  • the first threshold value or the second threshold value may not be transmitted from the base station 20, but a value pre-stored in the user terminal 10 may be used as the first threshold value or the second threshold value in the following processing.
  • Information about the cumulative power value of transmission is transmitted by any channel.
  • Information about the accumulated transmission power value may be included in the MIB in the PBCH or the SIB in the PDSCH and transmitted as broadcast information, for example.
  • the information about the accumulated power value of the transmission may be transmitted, for example, included in the individual signal of the RRC message.
  • step S112 the user terminal 10 compares the cumulative power value calculated in step S105 with the second threshold received in step S101. and determine whether the cumulative power value exceeds the second threshold. If the accumulated power value does not exceed the second threshold, the process proceeds to step S107.
  • steps S104 to S107 and S112 are repeated multiple times, and the cumulative power value increases. However, if a configured grant has been transmitted to the user terminal 10 in step S104, the repetition of the processing in step S104 is omitted.
  • step S1101 the user terminal 10 compares the cumulative power value calculated in step S109 with the first threshold, and determines whether the cumulative power value exceeds the first threshold. If the accumulated power value does not exceed the first threshold, the process proceeds to step S113.
  • step S113 the user terminal 10 compares the cumulative power value calculated in step S109 with the second threshold, and determines whether the cumulative power value exceeds the second threshold. If the accumulated power value exceeds the second threshold, the process proceeds to step S1111.
  • step S ⁇ b>1111 the user terminal 10 lowers the transmission power of the uplink signal by the preset low priority channel and transmits the uplink signal to the base station 20 . That is, the user terminal 10 transmits an uplink signal with power lower than the transmission power in step S107.
  • Transmission of the uplink signal includes, for example, transmission by PUSCH, PUCCH, PRACH, and SRS.
  • the priority information may be set in the user terminal 10 from the base station 20 or may be stored in the user terminal 10 in advance. A detailed description of the priority has already been given, and will be omitted here.
  • the user terminal 10 performs transmission with power lower than the transmission power in step S107. Also, transmitting at low power includes ceasing transmission on low priority channels.
  • a third example of processing in the radio communication system 1 regarding CA according to the present embodiment will be described with reference to FIG. 7 in the transmission of an uplink signal using CA, the user terminal 10 reports to the base station 20 the arrival ratio of the transmission cumulative power value to the upper limit value. Also in transmission of uplink signals using DC, it is possible to control the transmission power of the user terminal 10 by the same processing as in FIG.
  • steps S102 to S105, S1061, and S107 to S109 in FIG. 7 is the same as the processing in FIG. 5, so the description is omitted here.
  • the base station 20 transmits to the user terminal 10 information on the cumulative transmission power value.
  • the information on the cumulative power value of transmissions includes information on the time range for calculating the cumulative power value of transmissions by the user terminal 10 and the third threshold used to control the transmission power.
  • the third threshold is a threshold used to determine the timing of reporting from the user terminal 10 to the base station 20 about the arrival rate of the accumulated transmission power value with respect to the upper limit value.
  • the third threshold includes, for example, 25%, 50%, 75%, or 90% as a threshold of the arrival rate with respect to the upper limit of the accumulated transmission power value.
  • a plurality of values may be set for the third threshold.
  • the third threshold may not be transmitted from the base station 20, but a value pre-stored in the user terminal 10 may be used as the third threshold in the following processing.
  • step S1061 the user terminal 10 compares the cumulative power value calculated in step S105 with the third threshold, and determines whether the cumulative power value exceeds the third threshold. If the cumulative power value does not exceed the third threshold, the process proceeds to step S107.
  • steps S104, S105, S1061 and S107 are repeated multiple times, and the cumulative power value increases.
  • step S104 when the setting grant is transmitted/set to the user terminal 10, repetition of the process of step S104 is omitted.
  • step S1102 the user terminal 10 compares the cumulative power value calculated in step S109 with the third threshold, and determines whether the cumulative power value exceeds the third threshold. If the cumulative power value exceeds the third threshold, the process proceeds to step S1112.
  • the user terminal 10 transmits cumulative value information indicating the cumulative power value at the time when the cumulative power value of transmission by the user terminal 10 reaches the third threshold to the base station 20 as a report. For example, when the third threshold is 75%, the user terminal 10 reports cumulative value information indicating 75% to the base station 20 .
  • the accumulated value information may be transmitted using PUSCH, for example, scheduled on the UL shared channel. In this case, it may be transmitted using MAC CE (Control Element).
  • the accumulated value information may be transmitted using PUCCH, for example. In this case, in PUCCH, resources may be allocated for each value included in the third threshold (eg, each of 25%, 50%, 75%, or 90%). Also, a part (for example, 2-bit) component of the PUCCH payload resource may be used as the PUCCH resource.
  • the base station 20 After step S1112, the base station 20 performs predetermined settings for controlling the transmission power of the user terminal 10 according to the received cumulative value information. For example, the base station 20 sets the transmission power of the user terminal 10 to be lowered according to the received cumulative value information.
  • the accumulated value information is transmitted to the base station 20 based on the accumulated transmission power value calculated by the user terminal 10. correct cumulative power value can be obtained. Since the base station 20 does not need to manage the cumulative power value of transmission by the user terminal 10 until the cumulative value information is received, the processing by the base station 20 can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a technology related to appropriate control of transmission power of a user terminal. This user terminal comprises: a control unit that performs control to increase the upper limit value of transmission power at the time of transmission of an uplink signal using carrier aggregation; and a transmission unit that transmits the uplink signal via a plurality of cells at the transmission power based on the controlled upper limit value. When a cumulative power value of transmission by the transmission unit in a specific time range has exceeded a threshold value, the control unit performs control to reduce the transmission power by the transmission unit.

Description

ユーザ端末、無線通信方法、及び記憶媒体User terminal, wireless communication method, and storage medium
 本発明は、ユーザ端末、無線通信方法、及び記憶媒体に関する。 The present invention relates to user terminals, wireless communication methods, and storage media.
 国際標準化団体である3GPP(Third Generation Partnership Project)では、LTE(Long Term Evolution)、LTE-Advancedの後継として、第5世代(Fifth Generation:5G)のRAT(Radio Access Technology)であるNR(New Radio)のリリース15が仕様化されている(例えば、非特許文献1)。 In 3GPP (Third Generation Partnership Project), an international standardization body, NR (New Radio ) has been specified (for example, Non-Patent Document 1).
 リリース15では、複数のセルを統合して広帯域化を図るキャリアアグリゲーション(Carrier Aggregation:CA)が導入されている。また、リリース15では、一以上のセルをそれぞれ含む複数のセルグループにユーザ端末が接続するデュアルコネクティビティ(Dual Connectivity:DC)が導入されている。 Release 15 introduces Carrier Aggregation (CA), which integrates multiple cells to widen the bandwidth. Also, Release 15 introduces Dual Connectivity (DC) in which a user terminal connects to multiple cell groups each containing one or more cells.
 UL(Up link)におけるCA及びDCの利用可能性は、ユーザ端末の送信電力の上限により制限される場合がある。ユーザ端末の送信電力の上限は、CA又はDCにおけるコンポーネントキャリア(Component Carrier:CC)の数によらず一定である。非特許文献2には、ユーザ端末は上記上限を超える電力で送信する能力を有することが記載され、また、UL CAの利用機会を増やすために、SAR(Specific Absorption Rate)などの所定の閾値を超えない範囲において、一時的に上記上限を超えた電力で送信を行うことが提案されている。 The availability of CA and DC in UL (Uplink) may be limited by the upper limit of the transmission power of the user terminal. The upper limit of transmission power of user terminals is constant regardless of the number of component carriers (CCs) in CA or DC. Non-Patent Document 2 describes that the user terminal has the ability to transmit with power exceeding the above upper limit, and in order to increase the chances of using UL CA, a predetermined threshold such as SAR (Specific Absorption Rate) It has been proposed to temporarily transmit at power exceeding the upper limit, as long as it does not exceed the upper limit.
 ユーザ端末が、一時的に送信電力を上げて送信を行う場合における適切な制御方法はまだ確立されていない。 An appropriate control method for when a user terminal temporarily raises transmission power and transmits is not yet established.
 本発明は、ユーザ端末の送信電力の適切な制御に関する技術を提供することを目的とする。 An object of the present invention is to provide technology related to appropriate control of transmission power of user terminals.
 本発明の一の側面に係るユーザ端末は、キャリアアグリゲーションを用いた上り信号の送信のときに、送信電力の上限値を上げるように制御する制御部と、前記制御された前記上限値に基づく送信電力で、複数のセルを介して上り信号を送信する送信部とを備え、前記制御部は、所定時間範囲における前記送信部による送信の累積電力値が閾値を超えているとき、前記送信部による送信電力を下げるように制御する。 A user terminal according to one aspect of the present invention includes a control unit that controls to raise an upper limit value of transmission power when transmitting an uplink signal using carrier aggregation, and transmission based on the controlled upper limit value. a transmission unit configured to transmit an uplink signal through a plurality of cells with power, and the control unit controls, when a cumulative power value of transmission by the transmission unit in a predetermined time range exceeds a threshold, Control to lower transmission power.
 本発明の一の側面に係る無線通信方法は、制御部と送信部を備えるユーザ端末により実施される無線通信方法であって、キャリアアグリゲーションを用いた上り信号の送信のときに、前記制御部が送信電力の上限値を1キャリア送信の場合と比較して上げるように制御することと、前記送信部が、前記制御された前記上限値に基づく送信電力で、複数のセルを介して複数の上り信号を送信することとを備え、前記制御部は、所定時間範囲における前記送信部による送信の累積電力値が閾値を超えているとき、前記送信部による送信電力を下げるように制御する。 A radio communication method according to one aspect of the present invention is a radio communication method performed by a user terminal including a control unit and a transmission unit, wherein the control unit performs controlling the upper limit of transmission power to be higher than in the case of one-carrier transmission; and transmitting a signal, wherein the controller controls to lower transmission power of the transmitter when a cumulative power value of transmission by the transmitter in a predetermined time range exceeds a threshold.
 本発明の一の側面に係る記憶媒体は、制御部と送信部を備えるユーザ端末により実施される無線通信方法を実行するためのプログラムを記憶した記憶媒体であって、前記無線通信方法は、キャリアアグリゲーションを用いた上り信号の送信のときに、前記制御部が送信電力の上限値を上げるように制御することと、前記送信部が、前記制御された前記上限値に基づく送信電力で、複数のセルを介して複数の上り信号を送信することとを含み、前記制御部は、所定時間範囲における前記送信部による送信の累積電力値が閾値を超えているとき、前記送信部による送信電力を下げるように制御する。 A storage medium according to one aspect of the present invention is a storage medium storing a program for executing a wireless communication method implemented by a user terminal including a control unit and a transmission unit, wherein the wireless communication method includes a carrier When transmitting an uplink signal using aggregation, the control unit controls to increase the upper limit value of transmission power, and the transmission unit uses the transmission power based on the controlled upper limit value to transmit a plurality of and transmitting a plurality of uplink signals over a cell, wherein the control unit reduces transmission power of the transmission unit when an accumulated power value of transmission by the transmission unit in a predetermined time range exceeds a threshold. to control.
 本発明によれば、ユーザ端末の送信電力の適切な制御に関する技術を提供することができる。 According to the present invention, it is possible to provide technology related to appropriate control of transmission power of user terminals.
本実施形態に係る無線通信システムの概要の一例を示す図である。1 is a diagram showing an example of an overview of a wireless communication system according to an embodiment; FIG. 本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware configuration of each apparatus in the radio|wireless communications system which concerns on this embodiment. 本実施形態に係るユーザ端末の機能ブロック構成の一例を示す図である。It is a figure which shows an example of a functional block configuration of the user terminal which concerns on this embodiment. 本実施形態に係る基地局の機能ブロック構成の一例を示す図である。It is a figure which shows an example of a functional block configuration of the base station which concerns on this embodiment. 本実施形態に係る無線通信システムによる処理の一例を示す図である。It is a figure which shows an example of the process by the radio|wireless communications system which concerns on this embodiment. 本実施形態に係る無線通信システムによる処理の一例を示す図である。It is a figure which shows an example of the process by the radio|wireless communications system which concerns on this embodiment. 本実施形態に係る無線通信システムによる処理の一例を示す図である。It is a figure which shows an example of the process by the radio|wireless communications system which concerns on this embodiment.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有してもよい。 An embodiment of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the thing which attached|subjected the same code|symbol may have the same or the same structure.
 (無線通信システムの概要)
 図1は、本実施形態に係る無線通信システムの概要の一例を示す図である。図1に示すように、無線通信システム1は、ユーザ端末10、基地局20A、基地局20B、及びコアネットワーク30を含んでもよい。セルC1は、基地局20Aに関連付けられ、セルC2は、基地局20Bに関連付けられている。なお、基地局20Aと、基地局20Bを区別しない場合、基地局20と総称する。セルC1と、セルC2を区別しない場合、セルCと総称する。また、図1に示すユーザ端末10、基地局20、及びセルCの数は例示にすぎず、図示する数に限られない。
(Overview of wireless communication system)
FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to this embodiment. As shown in FIG. 1, the wireless communication system 1 may include user terminals 10, base stations 20A, base stations 20B, and a core network 30. FIG. Cell C1 is associated with base station 20A and cell C2 is associated with base station 20B. Note that the base station 20A and the base station 20B are collectively referred to as the base station 20 when not distinguished from each other. Cell C1 and cell C2 are collectively referred to as cell C when not distinguished from each other. Also, the numbers of user terminals 10, base stations 20, and cells C shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
 無線通信システム1は、一つ又は複数の無線アクセス技術(Radio Access Technology:RAT)で動作する。例えば、無線通信システム1は、LTE、LTE-Advanced又はNRのいずれかで動作してもよいし、LTE及び/又はLTE-AdvancedとNRとを含む複数のRAT(multi-RAT)で動作してもよい。LTE及び/又はLTE-Advancedは、Evolved-Universal Terrestrial Radio Access(E-UTRA)とも呼ばれる。 The radio communication system 1 operates with one or more radio access technologies (RAT). For example, the wireless communication system 1 may operate in either LTE, LTE-Advanced or NR, or operate in multiple RATs including LTE and/or LTE-Advanced and NR (multi-RAT). good too. LTE and/or LTE-Advanced is also called Evolved-Universal Terrestrial Radio Access (E-UTRA).
 また、無線通信システム1は、一つ又は複数の周波数範囲(FR)で動作する。例えば、無線通信システム1は、410MHz~7125MHzに対応するFR1及び/又は24250MHz~52600MHzに対応するFR2で動作してもよい。各FRには、一以上の周波数バンドが含まれる。当該周波数バンドは、オペレーティングバンド(operating band)、バンド(band)、NRオペレーティングバンド、NRバンド等とも呼ばれる。 Also, the wireless communication system 1 operates in one or more frequency ranges (FR). For example, the wireless communication system 1 may operate with FR1 corresponding to 410 MHz to 7125 MHz and/or FR2 corresponding to 24250 MHz to 52600 MHz. Each FR contains one or more frequency bands. The frequency band is also called operating band, band, NR operating band, NR band, and the like.
 各周波数バンドには、複数のARFCN(Absolute Radio Frequency Channel Number)が関連付けられている。ARFCNは、周波数バンド内でキャリアが配置される周波数(以下、「キャリア周波数」という)を識別してもよい。キャリア周波数は、RF参照周波数、NR周波数、E-UTRA周波数、中心周波数、チャネルラスタ、単に、周波数等とも呼ばれる。このように、ARFCNとキャリア周波数は一意に関連付けられる。また、一つのキャリア周波数は、一つ又は複数のセルCで用いられてもよい。 Each frequency band is associated with multiple ARFCNs (Absolute Radio Frequency Channel Numbers). The ARFCN may identify the frequency on which the carrier is located within the frequency band (hereinafter "carrier frequency"). Carrier frequencies are also called RF reference frequencies, NR frequencies, E-UTRA frequencies, center frequencies, channel rasters, simply frequencies, and the like. In this way, ARFCNs and carrier frequencies are uniquely associated. Also, one carrier frequency may be used in one or more cells C.
 ユーザ端末10は、例えば、スマートフォン、パーソナルコンピュータ、車載端末、車載装置、又は静止装置などの所定の端末又は装置である。ユーザ端末10は、User Equipment(UE)等と呼ばれてもよい。ユーザ端末10は、移動型であってもよいし、固定型であってもよい。ユーザ端末10は、例えば、E-UTRA及びNRの少なくとも一つのRATで通信可能に構成される。 The user terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, or a stationary device. The user terminal 10 may be called User Equipment (UE) or the like. The user terminal 10 may be mobile or fixed. The user terminal 10 is configured to be able to communicate with at least one RAT of E-UTRA and NR, for example.
 基地局20は、一以上のセルCを形成する。セルCは、サービングセル、キャリア、コンポーネントキャリア(Component Carrier:CC)等と言い換えられてもよい。なお、図1では、基地局20A及び20BはそれぞれセルC1及びC2を形成するが、これに限られず、各基地局は、一以上のセルCを形成してもよい。また、複数の基地局20は、理想的なバックホール(ideal backhaul)又は非理想的なバックホール(non-ideal backhaul)で接続されてもよい。また、複数の基地局20は、所定のインタフェース(例えば、X2又はXnインタフェース)で接続されてもよい。 The base station 20 forms one or more cells C. Cell C may also be referred to as a serving cell, carrier, component carrier (CC), or the like. Although the base stations 20A and 20B form cells C1 and C2, respectively, in FIG. 1, each base station may form one or more cells. Also, multiple base stations 20 may be connected via an ideal backhaul or a non-ideal backhaul. Also, the plurality of base stations 20 may be connected via a predetermined interface (eg, X2 or Xn interface).
 基地局20は、ユーザ端末10と通信する。基地局20は、eNodeB(eNB)、ng-eNB、gNodeB(gNB)、en-gNB、Next Generation‐Radio Access Network(NG-RAN)ノード、Donor eNodeB(DeNB)、Donor eNodeB(DeNB)、Donor node、又は、Central Unit、低電力ノード(low-power node)、pico eNB、Home eNB(HeNB)、Distributed Unit(DU)、gNB-DU、Remote Radio Head(RRH)、Integrated Access and Backhaul/Backhauling(IAB)ノード、ノード、マスターノード(Master Node(MN))、又は、セカンダリーノード(Secondary Node(SN))等と呼ばれてもよい。なお、NRで動作する基地局20は「NR基地局」とも呼ばれ、E-UTRAで動作する基地局20は「E-UTRA基地局」と呼ばれてもよい。 The base station 20 communicates with the user terminal 10. The base station 20 includes eNodeB (eNB), ng-eNB, gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, Donor eNodeB (DeNB), Donor eNodeB (DeNB), Donor node or Central Unit, low-power node, pico eNB, Home eNB (HeNB), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), Integrated Access and Backhaul/Backhauling (IAB ) node, node, master node (MN), or secondary node (SN). Note that the base station 20 operating in NR may also be called "NR base station", and the base station 20 operating in E-UTRA may be called "E-UTRA base station".
 コアネットワーク30は、例えば、E-UTRAに対応したコアネットワーク(Evolved Packet Core:EPC)、又は、NRに対応したコアネットワーク(5G Core Network:5GC)である。コアネットワーク30上の装置(以下、「コアネットワーク装置」ともいう)は、ユーザ端末10のページング、位置登録等の移動(mobility)管理を行う。コアネットワーク装置は、所定のインタフェース(例えば、S1又はNGインタフェース)を介して基地局20に接続されてもよい。 The core network 30 is, for example, a core network (Evolved Packet Core: EPC) compatible with E-UTRA or a core network (5G Core Network: 5GC) compatible with NR. Devices on the core network 30 (hereinafter also referred to as “core network devices”) perform mobility management such as paging and location registration of the user terminals 10 . A core network device may be connected to the base station 20 via a predetermined interface (eg, S1 or NG interface).
 コアネットワーク装置は、例えば、ユーザ端末10の移動管理を行うMobility Management Entity(MME)、Cプレーンの情報(例えば、アクセス及び移動管理等に関する情報)を管理するAccess and Mobility Management Function(AMF)、Uプレーンの情報(例えば、ユーザデータ)の伝送制御を行うUser Plane Function(UPF)の少なくとも一つ等を含んでもよい。 The core network device includes, for example, a Mobility Management Entity (MME) that manages mobility of the user terminal 10, an Access and Mobility Management Function (AMF) that manages C-plane information (for example, information on access and mobility management), a U It may include at least one User Plane Function (UPF) that controls transmission of plane information (for example, user data).
 <CA/DC>
 無線通信システム1において、ユーザ端末10は、キャリアアグリゲーション及び/又はデュアルコネクティビティ(以下、「CA/DC」とも称する。)を用いて、複数のセルCにおいて、下り(downlink:DL)信号の受信及び/又は上り信号(uplink:∪L)の送信を行う。
<CA/DC>
In the radio communication system 1, the user terminal 10 uses carrier aggregation and / or dual connectivity (hereinafter also referred to as "CA / DC".) In a plurality of cells C, downlink (downlink: DL) signal reception and / Or transmit an uplink signal (uplink: ∪L).
 CAでは、ユーザ端末10は、同一のセルグループ内の複数のセルCにおいて、下り信号を受信及び/又は上り信号を送信する。当該複数のセルCは、一つのプライマリセル(Primary Cell:PCell)と、一以上のセカンダリセル(Secondary Cell:SCell)とを含んでもよい。PCellは、スペシャルセル(Special Cell:SpCell)と呼ばれてもよい。また、当該複数のセルCは、単一のノード(例えば、単一のミディアムアクセス制御(Medium Access Control:MAC)エンティティ)に関連付けられてもよい。また、当該複数のセルCのRATがNRであるCAは、「NR-NR Carrier Aggregation(NR CA)」と呼ばれてもよい。 In CA, the user terminal 10 receives downlink signals and/or transmits uplink signals in a plurality of cells C within the same cell group. The plurality of cells C may include one primary cell (PCell) and one or more secondary cells (SCell). PCell may be called a special cell (Special Cell: SpCell). Also, the multiple cells C may be associated with a single node (eg, a single Medium Access Control (MAC) entity). Also, a CA in which the RAT of the plurality of cells C is NR may be called "NR-NR Carrier Aggregation (NR CA)".
 DCでは、ユーザ端末10は、異なるセルグループ内の複数のセルCにおいて、下り信号を受信及び/又は上り信号を送信する。例えば、ユーザ端末10は、マスターセルグループ(Master Cell Group:MCG)内の一以上のセルCと、セカンダリーセルグループ(Secondary Cell Group:SCG)内の一以上のセルCと、において、下り信号を受信及び/又は上り信号を送信する。MCG内の各セルCは「MCGセル」と呼ばれ、SCG内の各セルCは「SCGセル」とも呼ばれる。 In DC, the user terminal 10 receives downlink signals and/or transmits uplink signals in multiple cells C in different cell groups. For example, the user terminal 10 transmits downlink signals in one or more cells C in the master cell group (MCG) and one or more cells C in the secondary cell group (Secondary Cell Group: SCG). Receive and/or transmit upstream signals. Each cell C within the MCG is called an "MCG cell" and each cell C within the SCG is also called an "SCG cell".
 一以上のMCGセルは、PCellを少なくとも含み、一以上のSCellを含んでもよい。一以上のSCGセルは、プライマリSCGセル(Primary SCG Cell:PSCell)を少なくとも含み、一以上のSCellを含んでもよい。PCell及びPSCellは、SpCellと呼ばれてもよい。また、一以上のMCGセルはマスターノード(Master Node(MN))に関連付けられ、一以上のSCGセルはセカンダリーノード(Secondary Node(SN))に関連付けられてもよい。MN及びSNは、それぞれ、MACエンティティを有してもよい。各セルグループ(例えば、MCG又はSCG)内の複数のセルCは、CAにより統合されるともいえる。 One or more MCG cells include at least a PCell and may include one or more SCells. One or more SCG cells include at least a primary SCG cell (Primary SCG Cell: PSCell) and may include one or more SCells. PCell and PSCell may be referred to as SpCell. Also, one or more MCG cells may be associated with a Master Node (MN) and one or more SCG cells may be associated with a Secondary Node (SN). MN and SN may each have a MAC entity. A plurality of cells C in each cell group (eg, MCG or SCG) can be said to be aggregated by CA.
 DCにおいて、複数のセルグループ(例えば、MCG及びSCG)にそれぞれ関連付けられる複数のノード(例えば、MN及びSN)は、同一のRATを使用してもよいし、又は、異なるRATを使用してもよい。 In DC, multiple nodes (e.g., MN and SN) respectively associated with multiple cell groups (e.g., MCG and SCG) may use the same RAT or may use different RATs good.
 例えば、ユーザ端末10が、MNとして動作するeNB(すなわち、EPCに接続されるE-UTRA基地局20)とSNとして動作するen-gNB(すなわち、EPCに接続されるNR基地局20)と接続するDCは、「E-UTRA-NR Dual Connectivity(EN-DC)」と呼ばれてもよい。 For example, the user terminal 10 connects with an eNB operating as an MN (that is, the E-UTRA base station 20 connected to the EPC) and an en-gNB operating as an SN (that is, the NR base station 20 that is connected to the EPC). A DC that does so may be called "E-UTRA-NR Dual Connectivity (EN-DC)".
 また、ユーザ端末10が、MNとして動作するgNB(すなわち、5GCに接続されるNR基地局20)とSNとして動作するng-eNB(すなわち、5GCに接続されるE-UTRA基地局20)と接続するDCは、「NR-E-UTRA Dual Connectivity(NE-DC)」と呼ばれてもよい。 Also, the user terminal 10 is connected to a gNB operating as a MN (ie, an NR base station 20 connected to 5GC) and an ng-eNB operating as an SN (ie, an E-UTRA base station 20 connected to 5GC). A DC that does so may be called "NR-E-UTRA Dual Connectivity (NE-DC)".
 また、ユーザ端末10が、MNとして動作するng-eNB(すなわち、5GCに接続されるE-UTRA基地局20)とSNとして動作するgNB(すなわち、5GCに接続されるNRの基地局20)と接続するDCは、「NG-RAN E-UTRA-NR Dual Connectivity(NGEN-DC)」と呼ばれてもよい。 In addition, the user terminal 10 is an ng-eNB operating as an MN (that is, an E-UTRA base station 20 connected to 5GC) and a gNB operating as an SN (that is, an NR base station 20 that is connected to 5GC). A connecting DC may be called "NG-RAN E-UTRA-NR Dual Connectivity (NGEN-DC)".
 また、ユーザ端末10がMNとして動作するgNB(すなわち、5GCに接続されるNR基地局20)とSNとして動作するgNB(すなわち、5GCに接続されるNR基地局20)と接続するDCは、「NR-NR Dual Connectivity(NR-DC)」と呼ばれてもよい。また、ユーザ端末10がMN及びSNとしてそれぞれ動作する2つのgNB-DUと接続するDCが、NR-DCと呼ばれてもよい。当該2つのgNB-DUは、gNB-CUに接続される。なお、当該2つのgNB-DU及びgNB-CUが、一つの基地局20を構成してもよい。 In addition, the DC that connects the user terminal 10 to the gNB operating as the MN (that is, the NR base station 20 connected to 5GC) and the gNB operating as the SN (that is, the NR base station 20 that is connected to 5GC) is " may be called NR-NR Dual Connectivity (NR-DC). Also, a DC to which the user terminal 10 connects with two gNB-DUs acting as MN and SN, respectively, may be called NR-DC. The two gNB-DUs are connected to the gNB-CU. Note that the two gNB-DU and gNB-CU may configure one base station 20 .
 以上のようなCA/DCにおいて、ユーザ端末10は、SpCellにおいて、無線リソース制御(Radio Resource Control:RRC)シグナリングを用いて所定の情報(例えば、RRCメッセージ又はRRC情報要素(RRC Information Element:RRC IE))を受信/送信してもよい。具体的には、CAでは、PCellでRRCシグナリングが実施され、DCでは、PCell及びPSCellでRRCシグナリングが実施される。このように、CA/DCでは、セルグループに関連付けられるノード毎にRRCエンティティが設けられてもよい。 In the CA/DC as described above, the user terminal 10 uses radio resource control (RRC) signaling in the SpCell to transmit predetermined information (for example, an RRC message or an RRC information element (RRC Information Element: RRC IE )) may be received/sent. Specifically, in CA, RRC signaling is implemented in PCell, and in DC, RRC signaling is implemented in PCell and PSCell. Thus, in CA/DC, an RRC entity may be provided for each node associated with a cell group.
 また、CA/DCにおいて、複数のセルCの複信モードは、周波数分割複信(Frequency Division Duplex:FDD)であってもよいし、時間分割複信(Time Division Duplex:TDD)であってもよいし、FDD及びTDDであってもよい。 Further, in CA / DC, the duplex mode of multiple cells C may be frequency division duplex (Frequency Division Duplex: FDD) or time division duplex (Time Division Duplex: TDD) Alternatively, it may be FDD and TDD.
 (無線通信システムの詳細構成)
 無線通信システム1の各装置の詳細構成について説明する。なお、以下の構成は、本実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。
(Detailed configuration of wireless communication system)
A detailed configuration of each device of the wireless communication system 1 will be described. Note that the following configuration is for showing the configuration required in the description of the present embodiment, and does not exclude that each device has functional blocks other than those illustrated.
 <ハードウェア構成>
 図2は、本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。無線通信システム1内の各装置(例えば、ユーザ端末10及び基地局20の各々)は、プロセッサ10a、メモリ10b、記憶装置10c、通信装置10d、入力装置10e、出力装置10f及び一以上のアンテナAを少なくとも有する。
<Hardware configuration>
FIG. 2 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to this embodiment. Each device in the wireless communication system 1 (for example, each of the user terminal 10 and the base station 20) includes a processor 10a, a memory 10b, a storage device 10c, a communication device 10d, an input device 10e, an output device 10f, and one or more antennas A have at least
 プロセッサ10aは、例えば、CPU(Central Processing Unit)であり、無線通信システム1内の各装置を制御する。プロセッサ10aは、各装置を制御する制御部を構成してもよい。 The processor 10a is, for example, a CPU (Central Processing Unit) and controls each device in the wireless communication system 1. The processor 10a may constitute a control unit that controls each device.
 メモリ10bは、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及び/又はRAM(Random Access Memory)等から構成される。 The memory 10b is composed of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM) and/or RAM (Random Access Memory).
 記憶装置10cは、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及び/又はeMMC(embedded Multi Media Card)等のストレージから構成される。 The storage device 10c is composed of a storage such as a HDD (Hard Disk Drive), SSD (Solid State Drive) and/or eMMC (embedded Multi Media Card).
 通信装置10dは、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークアダプタ、通信モジュールなどである。また、通信装置10dには、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。 The communication device 10d is a device that communicates via a wired and/or wireless network, such as a network adapter or a communication module. Further, the communication device 10d may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナAから送信する無線信号を生成する。また、RF装置は、アンテナAから受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をIPパケットに変換する処理、及び、IPパケットをデジタルベースバンド信号に変換する処理を行う。 For example, the RF device generates a radio signal to be transmitted from the antenna A by performing D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna A, and transmits the digital baseband signal to the BB device. The BB device performs processing for converting a digital baseband signal into an IP packet and processing for converting an IP packet into a digital baseband signal.
 入力装置10eは、各種入力を受け付ける装置であり、例えば、キーボード、タッチパネル、マウス及び/又はマイク等である。出力装置10fは、各種情報を出力する装置であり、例えば、ディスプレイ及び/又はスピーカ等である。 The input device 10e is a device that receives various inputs, such as a keyboard, touch panel, mouse and/or microphone. The output device 10f is a device that outputs various information, such as a display and/or a speaker.
 図示しないが、各装置(例えば、ユーザ端末10及び基地局20の各々)はさらに、電源及びパワーアンプを備える。電源は、各装置の駆動電力を供給し、例えば、バッテリーを含む。パワーアンプは、電源から供給される電力を各装置の各構成が必要とする駆動電力に増幅させる装置である。 Although not shown, each device (for example, each of the user terminal 10 and the base station 20) further includes a power supply and a power amplifier. The power supply supplies drive power for each device and includes, for example, a battery. A power amplifier is a device that amplifies power supplied from a power source to drive power required for each configuration of each device.
 <機能ブロック構成>
 ≪ユーザ端末≫
 図3は、本実施形態に係るユーザ端末10の機能ブロック構成の一例を示す図である。図3に示すように、ユーザ端末10は、受信部11と、送信部12と、記憶部13と、測定部14と、制御部15と、を備える。
<Functional block configuration>
≪User terminal≫
FIG. 3 is a diagram showing an example of the functional block configuration of the user terminal 10 according to this embodiment. As shown in FIG. 3 , the user terminal 10 includes a receiver 11 , a transmitter 12 , a storage 13 , a measurer 14 and a controller 15 .
 受信部11は、下り信号を受信する。下り信号は、例えば、報知チャネル(物理報知チャネル(Physical Broadcast Channel:PBCH))、同期信号(Synchronization Signal:SS)、下り共有チャネル(物理下り共有チャネル(Physical Downlink Shared Channel:PDSCH))、下り制御チャネル(物理下り制御チャネル(Physical Downlink Control Channel:PDCCH))、及び、下り参照信号等の少なくとも一つであってもよい。 The receiving unit 11 receives the downstream signal. Downlink signals include, for example, a broadcast channel (physical broadcast channel (Physical Broadcast Channel: PBCH)), a synchronization signal (Synchronization Signal: SS), a downlink shared channel (physical downlink shared channel (Physical Downlink Shared Channel: PDSCH)), downlink control It may be at least one of a channel (Physical Downlink Control Channel: PDCCH) and a downlink reference signal.
 同期信号は、プライマリ同期信号(Primary Synchronization Signal:PSS)及び/又はセカンダリ同期信号(Secondary Synchronization Signal:PSS)を含んでもよい。同期信号及びPBCHを含むブロックは、SS/PBCHブロック、同期信号ブロック(SSB)と呼ばれてもよい。下り参照信号は、例えば、PDCCH及び/又はPDSCHの復調参照信号(Demodulation Reference Signal:DMRS)、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS))等の少なくとも一つを含んでもよい。 The synchronization signal may include a Primary Synchronization Signal (PSS) and/or a Secondary Synchronization Signal (PSS). A block containing a synchronization signal and PBCH may be called an SS/PBCH block, a synchronization signal block (SSB). Downlink reference signals, for example, demodulation reference signals of PDCCH and / or PDSCH (Demodulation Reference Signal: DMRS), channel state information reference signal (Channel State Information Reference Signal: CSI-RS)) and may include at least one .
 また、受信部11は、当該下り信号を介して伝送された情報及び/又はデータの受信に関する処理(例えば、受信、デマッピング、復調、復号等)を行ってもよい。具体的には、受信部11は、ユーザ端末10の能力情報を要求する情報(以下、「能力情報要求」という)を受信する。能力情報要求は、上位レイヤシグナリングにより基地局20からユーザ端末10に送信され、例えば、RRCメッセージ「UECapabilityEnquiry」であってもよい。 Also, the receiving unit 11 may perform processing (for example, reception, demapping, demodulation, decoding, etc.) related to reception of information and/or data transmitted via the downlink signal. Specifically, the receiving unit 11 receives information requesting the capability information of the user terminal 10 (hereinafter referred to as “capability information request”). The capability information request is sent from the base station 20 to the user terminal 10 via higher layer signaling and may be, for example, an RRC message "UECapabilityEnquiry".
 また、受信部11は、CA/DCの設定(configuration)情報を含むRRC再構成メッセージ(例えば、RRCメッセージ「RRCReconfiguration」)を受信する。また、受信部11は、CA/DCを用いて、複数のセルCにそれぞれ対応する複数の送信ポイント(Transmission point:TP)から、下り信号を受信する。受信部11は、上記以外の信号を受信してもよい。 The receiving unit 11 also receives an RRC reconfiguration message (for example, RRC message "RRCReconfiguration") including CA/DC configuration information. The receiving unit 11 also receives downlink signals from a plurality of transmission points (TP) corresponding to a plurality of cells C using CA/DC. The receiving unit 11 may receive signals other than the above.
 送信部12は、上り信号を送信する。上り信号は、例えば、ランダムアクセスチャネル(物理ランダムアクセスチャネル(Physical Random Access Channel:PRACH)、上り制御チャネル(物理上り制御チャネル(Physical Uplink Control Channel:PUCCH))、上り共有チャネル(物理上り共有チャネル(Physical Uplink Shared Channel:PUSCH))、及び、上り参照信号等の少なくとも一つであってもよい。上り参照信号は、例えば、PUCCH及び/又はPUSCHのDMRS、サウンディング参照信号(Sounding Reference Signal:SRS)等の少なくとも一つを含んでもよい。 The transmission unit 12 transmits an upstream signal. The uplink signal is, for example, a random access channel (Physical Random Access Channel: PRACH), an uplink control channel (Physical Uplink Control Channel: PUCCH), an uplink shared channel (physical uplink shared channel ( Physical Uplink Shared Channel: PUSCH)), and may be at least one of uplink reference signals, etc. Uplink reference signals are, for example, PUCCH and/or PUSCH DMRS, Sounding Reference Signal (SRS) At least one of the like may be included.
 送信部12は、当該上り信号を介して伝送される情報及び/又はデータの送信に関する処理(例えば、送信、マッピング、変調、符号等)を行ってもよい。具体的には、送信部12は、ユーザ端末10の能力情報を送信する。能力情報とは、ユーザ端末10の能力に関する情報であり、ユーザ端末10が各種の要求条件及び/又は機能をサポートするか否かを示す情報を含んでもよい。また、能力情報は、上位レイヤシグナリングによりユーザ端末10から基地局20に送信され、例えば、RRC IEの「UECapabilityInformation」であってもよい。送信部12は、上記以外の信号を送信してもよい。 The transmission unit 12 may perform processing (for example, transmission, mapping, modulation, coding, etc.) related to transmission of information and/or data transmitted via the uplink signal. Specifically, the transmission unit 12 transmits capability information of the user terminal 10 . Capability information is information about the capabilities of the user terminal 10, and may include information indicating whether the user terminal 10 supports various requirements and/or functions. Also, the capability information is transmitted from the user terminal 10 to the base station 20 by higher layer signaling, and may be, for example, "UE CapabilityInformation" of the RRC IE. The transmitter 12 may transmit signals other than those described above.
 送信部12は、予め設定された送信電力の上限値、又は後述するように制御部15により変更された当該上限値に基づく送信電力で、一つ又は複数のセルCを介して、上り信号を送信する。すなわち、送信部12は、予め設定された送信電力の上限値を超えない電力で上り信号を送信する。予め設定された送信電力の上限値は、任意の値が設定される。当該上限値は、例えば、23dBm(200mW)であってもよい。 The transmission unit 12 transmits uplink signals via one or a plurality of cells C at transmission power based on a preset upper limit value of transmission power or the upper limit value changed by the control unit 15 as described later. Send. That is, the transmission unit 12 transmits an uplink signal with power that does not exceed the preset upper limit of transmission power. An arbitrary value is set as the preset upper limit value of the transmission power. The upper limit value may be, for example, 23 dBm (200 mW).
 記憶部13は、種々の情報を記憶する。記憶部13は、例えば、送信部12による送信電力の上限値、種々の処理に必要な閾値、及び下り信号を介して受信した情報等を記憶してもよい。 The storage unit 13 stores various information. The storage unit 13 may store, for example, the upper limit value of transmission power of the transmission unit 12, threshold values required for various processes, information received via downlink signals, and the like.
 測定部14は、複数のセルCにおける下り信号の受信電力及び/又は受信タイミングを測定する。当該受信電力は、例えば、Reference Signal Received Power(RSRP)、Synchronization Signal based Reference Signal Received Power(SS-RSRP)(SS/PBCHブロックRSRPとも呼ばれる)、又は、CSI-RS based Reference Signal Received Power(CSI-RS-RSRP)であってもよい。当該受信タイミングは、例えば、各セルにおける時間ユニット(例えば、サブフレーム又はスロット)の開始タイミングであってもよい。 The measurement unit 14 measures the reception power and/or reception timing of downlink signals in a plurality of cells C. The received power is, for example, Reference Signal Received Power (RSRP), Synchronization Signal based Reference Signal Received Power (SS-RSRP) (also called SS/PBCH block RSRP), or CSI-RS based Reference Signal Received Power (CSI- RS-RSRP). The reception timing may be, for example, the start timing of a time unit (eg, subframe or slot) in each cell.
 制御部15は、ユーザ端末10における各種制御を行う。具体的には、制御部15は、CA/DCを用いて、複数のセルCに対応する複数のTPからの下り信号の受信を制御する。制御部15は、CA/DCを用いて、複数のセルCに対応する複数のTPへの上り信号の送信を制御する。制御部15は、上り信号の送信の送信電力を制御する。制御部15は、送信部12による送信電力の上限値を上げる、又は当該送信電力の上限値を下げるように、当該上限値の変更を制御する。具体的には、制御部15は、CA/DCを用いた上り信号の送信のときに、送信部12による送信電力の上限値を1キャリア送信の場合と比較して上げるように制御する。例えば、1キャリア送信(1つのCCを使用した送信)時の送信電力の上限値が23dBm(200mW)である場合において、制御部15は、2つのCC(例えば、CC1及びCC2とする。)を使用して上り信号を送信するために、送信部12による送信電力の上限値を23dBm(200mW)から26dBm(400mW)に上げ、送信部12がCC1を介した送信を23dBm(200mW)で、CC2を介した送信を23dBm(200mW)で行うようにしてもよい。 The control unit 15 performs various controls in the user terminal 10. Specifically, the control unit 15 controls reception of downlink signals from a plurality of TPs corresponding to a plurality of cells C using CA/DC. The control unit 15 controls transmission of uplink signals to multiple TPs corresponding to multiple cells C using CA/DC. The control unit 15 controls transmission power for transmission of uplink signals. The control unit 15 controls the change of the upper limit value so as to raise the upper limit value of the transmission power of the transmission unit 12 or lower the upper limit value of the transmission power. Specifically, the control unit 15 performs control so that the upper limit value of the transmission power of the transmission unit 12 is increased compared to the case of one-carrier transmission when transmitting an uplink signal using CA/DC. For example, when the upper limit value of transmission power for one carrier transmission (transmission using one CC) is 23 dBm (200 mW), the control unit 15 sets two CCs (for example, CC1 and CC2). In order to transmit an upstream signal using the transmitter 12, the upper limit of the transmission power of the transmitter 12 is raised from 23 dBm (200 mW) to 26 dBm (400 mW), and the transmitter 12 transmits at 23 dBm (200 mW) via CC1 and CC2 at 23 dBm (200 mW). may be transmitted at 23 dBm (200 mW).
 送信電力の制御は、例えば、開ループ制御と閉ループ制御の双方を用いて制御される。開ループ制御は、ユーザ端末と無線基地局との間の伝搬損失(パスロス:path loss)と目標受信電力とに基づく制御である。開ループ制御は、例えば、他セルへの干渉を防ぐためにセル端に近いほど(すなわち、伝搬損失が大きいほど)送信電力を低下させるフラクショナルTPCを含む。開ループ制御は、ユーザ端末によって算出されるパスロスと無線基地局から上位レイヤシグナリングにより通知されるパラメータとに基づいて行われる。一方、閉ループ制御は、送信電力誤差を補正するための制御であり、無線基地局から動的に通知される送信電力制御(TPC:Transmission Power Control)コマンドに基づいて行われる。TPCコマンドは、下りリンク制御情報(DCI:Downlink Control Information)に含まれる。  Transmission power is controlled using, for example, both open-loop control and closed-loop control. Open-loop control is control based on the propagation loss (path loss) between the user terminal and the radio base station and the target received power. Open-loop control includes, for example, fractional TPC that lowers the transmission power closer to the cell edge (that is, the greater the propagation loss) in order to prevent interference with other cells. Open-loop control is performed based on the path loss calculated by the user terminal and parameters notified by higher layer signaling from the radio base station. On the other hand, closed-loop control is control for correcting transmission power errors, and is performed based on a transmission power control (TPC) command dynamically notified from the radio base station. The TPC command is included in downlink control information (DCI: Downlink Control Information).
 送信部12による送信電力の上限値は、上り信号の送信に使用するCCの数によらず一定であってもよい。すなわち、この場合において、1つのCCを用いて上り信号を送信する場合も、2つのCCを用いて上り信号を送信する場合も、総送信電力の上限値は同じである。より多くのCCを利用した送信ほどより高い送信電力が必要となるため、CA/DCを用いた上り信号の送信のときに、送信部12による送信電力の上限値を上げるように制御することにより、CA/DCの利用可能性を高めることができる。 The upper limit of the transmission power of the transmission unit 12 may be constant regardless of the number of CCs used for uplink signal transmission. That is, in this case, the upper limit of the total transmission power is the same whether one CC is used to transmit an uplink signal or two CCs are used to transmit an uplink signal. Since transmission using more CCs requires higher transmission power, when transmitting an uplink signal using CA/DC, control is performed to raise the upper limit of the transmission power of the transmission unit 12. , CA/DC availability can be increased.
 同時に利用されるCCの数に応じて送信部12による送信電力の上限値を上げることによりCA/DCの利用可能性を高めることができる一方で、送信電力の上限値を過度に上げた場合、不都合が生じる可能性がある。そのため、制御部15は、送信部12による送信電力が所定の閾値に達している又は当該閾値を超えているとき、送信電力を下げるように制御してもよい。送信電力の上記所定の閾値は、所定時間範囲における送信部12による送信の累積電力値の閾値であってもよい。所定時間範囲とは、例えば、累積電力値の特定時における直近の所定時間内(例えば、直近の6分間)である。当該所定時間範囲における累積電力値の閾値は、SAR(Specific Absorption Rate)に基づいて設定されてもよい。 While it is possible to increase the availability of CA / DC by increasing the upper limit of the transmission power of the transmission unit 12 according to the number of CCs that are used simultaneously, if the upper limit of the transmission power is excessively increased, inconvenience may occur. Therefore, the control unit 15 may control the transmission power to be lowered when the transmission power of the transmission unit 12 reaches or exceeds a predetermined threshold. The predetermined threshold of transmission power may be a threshold of the cumulative power value of transmission by the transmitter 12 in a predetermined time range. The predetermined time range is, for example, within the most recent predetermined time period (for example, the most recent six minutes) when the cumulative power value is specified. The threshold of the cumulative power value in the predetermined time range may be set based on SAR (Specific Absorption Rate).
 SARは、人体が電波に曝露されることによって、単位質量の人体組織に単位時間に吸収されるエネルギー量に関する尺度である。ユーザ端末が発する電波に関して、SARの所定の基準値を満たすように、国ごとの法令等が定めている場合がある。SARの算出方法として、例えば、ユーザ端末10が使用する電力に起因してユーザの人体が電波に曝露されることによって、任意の人体組織10gが任意の6分間に吸収したエネルギー量を特定し、当該エネルギー量を10gで除し、さらに6分で除して得た値をSARとすることができる。この場合において、上記の所定時間範囲における送信部12による送信の累積電力値の閾値の設定のために、当該「所定時間範囲」を6分間とし、直近の6分間の送信部12による送信の累積電力値について、SARの基準値に対応するように閾値を設定してもよい。  SAR is a measure of the amount of energy absorbed by a unit mass of human tissue per unit time when the human body is exposed to radio waves. In some cases, the laws and regulations of each country stipulate that radio waves emitted by user terminals must satisfy a predetermined standard value of SAR. As a method of calculating the SAR, for example, by exposing the user's human body to radio waves due to the power used by the user terminal 10, the amount of energy absorbed by any human body tissue 10g in any six minutes is specified, The SAR can be obtained by dividing the energy amount by 10 g and then by 6 minutes. In this case, in order to set the threshold value of the cumulative power value of the transmission by the transmission unit 12 in the predetermined time range, the "predetermined time range" is set to 6 minutes, and the cumulative transmission by the transmission unit 12 for the most recent 6 minutes A threshold may be set for the power value so as to correspond to the SAR reference value.
 上記の所定時間範囲における送信部12による送信の累積電力値は、所定時間範囲に送信部12により送信される複数のスロットのそれぞれの送信電力を加算した値であってもよい。上記の所定時間範囲における送信部12による送信の累積電力値は、所定時間範囲に送信部12により送信される複数のサブフレームのそれぞれの送信電力を加算した値であってもよい。「所定時間範囲」は、6分間であてもよいし、1分間から10分間のうちから選択された任意の時間範囲であってもよい。 The cumulative power value of transmission by the transmission unit 12 in the predetermined time range may be a value obtained by adding the transmission power of each of a plurality of slots transmitted by the transmission unit 12 in the predetermined time range. The cumulative power value of transmission by the transmission unit 12 in the predetermined time range may be a value obtained by adding the transmission power of each of a plurality of subframes transmitted by the transmission unit 12 in the predetermined time range. The "predetermined time range" may be 6 minutes or any time range selected from 1 minute to 10 minutes.
 以上のように本実施形態によれば、制御部15は、CAを用いた上り信号の送信のときに、送信電力の上限値を上げるように制御する。制御部15は、DCを用いた上り信号の送信のときに、送信電力の上限値を上げるように制御してもよい。送信部12は、制御された上記上限値に基づく送信電力で、複数のセルCを介して上り信号を送信する。制御部15は、所定時間範囲における送信部12による送信の累積電力値が閾値を超えている又は当該閾値に達したとき、送信部12による送信電力を下げるように制御する。所定時間範囲における送信部12による送信の累積電力値は、制御部15によって算出されてもよい。 As described above, according to the present embodiment, the control unit 15 controls to raise the upper limit value of transmission power when transmitting an uplink signal using CA. The control unit 15 may perform control so as to increase the upper limit of transmission power when transmitting an uplink signal using DC. The transmission unit 12 transmits uplink signals via a plurality of cells C with transmission power based on the controlled upper limit value. The control unit 15 controls to lower the transmission power of the transmission unit 12 when the cumulative power value of transmission by the transmission unit 12 within a predetermined time range exceeds or reaches the threshold. The control unit 15 may calculate the cumulative power value of transmission by the transmission unit 12 within a predetermined time range.
 本実施形態によれば、制御部15は、所定時間範囲における送信部12による送信の累積電力値が閾値を超えている又は当該閾値に達したとき、送信部12による送信電力を下げるように制御するため、ユーザ端末10の送信電力の適切な制御に関する技術を実現することが可能である。また、基地局20が、ユーザ端末10による送信の累積電力値を計算し、当該計算結果に基づいてユーザ端末10の送信電力を制御する仕様とした場合、基地局20による当該計算に誤りが生じると、ユーザ端末10の送信電力を適切に制御できない場合がある。一方、本実施形態によれば、ユーザ端末10の制御部15が、送信の累積電力値が閾値を超えているか否かを判断し、ユーザ端末10の送信電力の適切な制御を行うため、累積電力値が閾値を超えた状態でユーザ端末10が上り信号を送信する可能性を低減できる。 According to the present embodiment, when the cumulative power value of transmission by the transmission unit 12 in a predetermined time range exceeds or reaches the threshold, the control unit 15 controls to lower the transmission power of the transmission unit 12. Therefore, it is possible to implement a technique for appropriately controlling the transmission power of the user terminal 10 . Also, if the base station 20 calculates the cumulative power value of transmission by the user terminal 10 and controls the transmission power of the user terminal 10 based on the calculation result, an error occurs in the calculation by the base station 20. , the transmission power of the user terminal 10 may not be appropriately controlled. On the other hand, according to the present embodiment, the control unit 15 of the user terminal 10 determines whether or not the cumulative transmission power value exceeds the threshold, and appropriately controls the transmission power of the user terminal 10. It is possible to reduce the possibility that the user terminal 10 transmits an uplink signal while the power value exceeds the threshold.
 累積電力値の閾値が複数設定され、超えた又は達した閾値に応じて、異なる方法でユーザ端末10の送信電力を制御してもよい。 A plurality of cumulative power value thresholds may be set, and the transmission power of the user terminal 10 may be controlled by different methods according to the thresholds exceeded or reached.
 送信部12による送信電力を下げる上記の制御は、制御部15が、送信部12による送信を停止するように制御することを含んでもよい。送信部12による送信を停止することにより、送信部12による送信電力が下がる。送信部12による送信は、上記のとおり上り信号の送信を含む。 The above-described control to lower the transmission power of the transmission unit 12 may include control by the control unit 15 to stop transmission by the transmission unit 12 . By stopping the transmission by the transmitter 12, the transmission power of the transmitter 12 is lowered. Transmission by the transmitter 12 includes transmission of uplink signals as described above.
 送信部12による送信電力を上記の制御は、予め設定された優先度の低いチャネルによる上り信号の送信電力を下げることを含んでもよい。チャネルの上記優先度は、任意の方法で設定することができる。上記優先度は、SRSなどチャネルによらず送信される信号に対して設定されてもよい。優先度の設定方法は、以下の説明においても同様である。 The above control of the transmission power by the transmission unit 12 may include lowering the transmission power of the uplink signal by a preset low-priority channel. The above priority of channels can be set in any way. The priority may be set for a signal such as SRS that is transmitted regardless of the channel. The method of setting priority is the same in the following description.
 送信部12による送信電力を下げる上記の制御は、予め設定された優先度の低いチャネルによる上り信号の送信を停止することを含んでもよい。 The above-described control for lowering the transmission power by the transmission unit 12 may include stopping the transmission of uplink signals by preset low-priority channels.
 制御部15は、例えば、次の優先度の順序に従って、PUSCH、PUCCH、PRACH、及びSRSの送信に対して送信電力の割り当てを設定してもよい。送信電力の割り当ての設定は、例えば、送信部12による送信電力が累積電力値の閾値以下又は未満となるように行われる。 For example, the control unit 15 may set transmission power allocation for transmission of PUSCH, PUCCH, PRACH, and SRS according to the following order of priority. The transmission power allocation setting is performed, for example, so that the transmission power of the transmission unit 12 is equal to or less than or less than the cumulative power value threshold.
 優先度の順序(優先度の降順)
1)PCellにおけるPRACH送信
2)予め設定された優先度インデックスの値が高いPUCCH又はPUSCH送信
 PUCCH又はPUSCHの優先度インデックスの値が同じである場合、
 2-1)HARQ-ACK(Hybrid automatic repeat request-acknowledgement)情報、SR(Scheduling request)、及び/若しくはLRR(link recovery request)を有するPUCCH送信、又はHARQ-ACK情報を有するPUSCH送信
 2-2)CSIを有するPUCCH送信、又はCSIを有するPUSCH送信
 2-3)HARQ-ACK情報もCSIも有さないPUSCH送信
3)SRS送信、又はPCell以外のセルにおけるPRACH送信
Order of priority (descending order of priority)
1) PRACH transmission in PCell 2) PUCCH or PUSCH transmission with a higher preset priority index value If the PUCCH or PUSCH priority index values are the same,
2-1) HARQ-ACK (Hybrid automatic repeat request-acknowledgement) information, SR (Scheduling request), and / or PUCCH transmission with LRR (link recovery request), or PUSCH transmission with HARQ-ACK information 2-2) PUCCH transmission with CSI or PUSCH transmission with CSI 2-3) PUSCH transmission with neither HARQ-ACK information nor CSI 3) SRS transmission or PRACH transmission in cells other than PCell
 送信部12は、所定時間範囲における送信部12による送信の累積電力値が所定値に達した時点の累積電力値を示す累積値情報を基地局20に送信してもよい。累積値情報が示す累積電力値は、電力の絶対値であってもよいし、相対値であってもよい。当該相対値は、例えば、所定時間範囲における累積電力値の上記閾値への到達割合で示されてもよい。当該到達割合は、例えば、25%、50%、75%、又は90%を含んでもよい。 The transmitting unit 12 may transmit to the base station 20 cumulative value information indicating the cumulative power value at the time when the cumulative power value of transmission by the transmitting unit 12 within a predetermined time range reaches a predetermined value. The cumulative power value indicated by the cumulative value information may be an absolute value of power or a relative value. The relative value may be indicated by, for example, the rate at which the cumulative power value reaches the threshold within a predetermined time range. The reach percentage may include, for example, 25%, 50%, 75%, or 90%.
 送信部12は、所定時間範囲における送信部12による送信の累積電力値が所定値に達した時点ではなく、所定の周期的タイミングなど、他の所定のタイミングで、上記累積電力値を示す累積値情報を基地局20に送信してもよい。 The transmitter 12 generates a cumulative value indicating the cumulative power value at another predetermined timing such as a predetermined periodic timing, not when the cumulative power value of transmission by the transmitter 12 within a predetermined time range reaches a predetermined value. Information may be transmitted to the base station 20 .
 送信部12は、累積値情報を任意の方法で基地局20に送信する。送信部12は、例えば、PUSCH又はPUCCHなどの物理チャネルを介して累積値情報を送信してもよい。PUSCHの場合、PUSCHがスケジュールされ、例えば、MAC CE(Control Element)などを利用して、累積値情報が送信されてもよい。PUCCHの場合、予めPUCCHリソースが設定され、当該PUCCHリソースに関する情報が基地局20からユーザ端末10に送信される。当該PUCCHリソースは、累積値情報が示す値ごと(例えば、25%、50%、75%、又は90%)に割り当てられてもよいし、当該PUCCHリソースとして、PUCCHペイロードのリソースの一部(例えば、2bit)のコンポーネントが利用されてもよい。 The transmission unit 12 transmits the cumulative value information to the base station 20 by any method. The transmitter 12 may transmit the cumulative value information via a physical channel such as PUSCH or PUCCH, for example. In the case of PUSCH, PUSCH may be scheduled and the cumulative value information may be transmitted using, for example, MAC CE (Control Element). In the case of PUCCH, PUCCH resources are configured in advance, and information about the PUCCH resources is transmitted from the base station 20 to the user terminal 10 . The PUCCH resource may be assigned for each value indicated by the cumulative value information (eg, 25%, 50%, 75%, or 90%), and as the PUCCH resource, part of the PUCCH payload resource (eg , 2-bit) components may be used.
 なお、記憶部13は、例えば記憶装置10cにより実現されてもよい。受信部11、送信部12及び測定部14は、例えば通信装置10dにより実現されてもよいし、通信装置10dに加えてプロセッサ10aが記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。制御部15は、プロセッサ10aが、記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USB(Universal Serial Bus)メモリ、又はCD-ROM(Compact Disc ROM)等の記憶媒体であってもよい。 The storage unit 13 may be implemented by the storage device 10c, for example. The receiving unit 11, the transmitting unit 12, and the measuring unit 14 may be realized by, for example, the communication device 10d, or may be realized by executing a program stored in the storage device 10c by the processor 10a in addition to the communication device 10d. good too. The control unit 15 may be implemented by the processor 10a executing a program stored in the storage device 10c. When executing a program, the program may be stored in a storage medium. The storage medium storing the program may be a non-transitory computer readable medium. The non-temporary storage medium is not particularly limited, but may be, for example, a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
 ≪基地局≫
 図4は、本実施形態に係る基地局20の機能ブロック構成の一例を示す図である。図4に示すように、基地局20は、送信部21、受信部22、及び制御部23を備える。
≪Base station≫
FIG. 4 is a diagram showing an example of the functional block configuration of the base station 20 according to this embodiment. As shown in FIG. 4, the base station 20 includes a transmitter 21, a receiver 22, and a controller .
 送信部21は、下り信号を送信する。また、送信部21は、当該下り信号を介して伝送される情報及び/又はデータに関する処理(例えば、符号、復号、リソースへのマッピング等)を行う。具体的には、送信部21は、上記能力情報要求、及びRRC再構成メッセージの少なくとも一つを送信してもよい。 The transmission unit 21 transmits downlink signals. The transmitting unit 21 also performs processing (for example, encoding, decoding, mapping to resources, etc.) related to information and/or data transmitted via the downlink signal. Specifically, the transmitting unit 21 may transmit at least one of the capability information request and the RRC reconfiguration message.
 受信部22は、上り信号を受信する。また、受信部22は、当該上り信号を介して伝送される情報及び/又はデータに関する処理(例えば、デマッピング、復調、復号等)を行う。具体的には、受信部22は、上記能力情報、及び上記累積値情報の少なくとも一つを受信してもよい。 The receiving unit 22 receives the upstream signal. The receiving unit 22 also performs processing (for example, demapping, demodulation, decoding, etc.) regarding information and/or data transmitted via the uplink signal. Specifically, the receiving unit 22 may receive at least one of the capability information and the cumulative value information.
 制御部23は、ユーザ端末10と基地局20との間の通信に関する各種制御を行う。具体的には、制御部23は、送信部21による下り信号の送信、及び/又は、受信部22による上り信号の受信を制御する。制御部23は、ユーザ端末10からの能力情報に基づいて、CA/DCを制御してもよい。制御部23は、ユーザ端末10からの累積値情報に基づいて、ユーザ端末10の送信電力を制御してもよい。ユーザ端末10の送信電力の制御は、例えば、TPCコマンドをユーザ端末10に送信することにより行われる。送信電力の制御により、例えば、所定時間範囲におけるユーザ端末10による送信の累積電力値が所定の閾値を超えている又は当該閾値に達したとき、ユーザ端末10による送信電力を下げるように制御する。 The control unit 23 performs various controls related to communication between the user terminal 10 and the base station 20. Specifically, the control unit 23 controls transmission of the downlink signal by the transmission unit 21 and/or reception of the uplink signal by the reception unit 22 . The control unit 23 may control CA/DC based on capability information from the user terminal 10 . The control unit 23 may control the transmission power of the user terminal 10 based on the cumulative value information from the user terminal 10. FIG. Control of the transmission power of the user terminal 10 is performed by transmitting a TPC command to the user terminal 10, for example. By controlling the transmission power, for example, when the accumulated power value of transmission by the user terminal 10 in a predetermined time range exceeds or reaches a predetermined threshold, the transmission power of the user terminal 10 is controlled to be lowered.
 なお、送信部21及び受信部22は、例えば通信装置10dにより実現されてもよいし、通信装置10dに加えてプロセッサ10aが記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。制御部23は、プロセッサ10aが、記憶装置10cに記憶されたプログラムを実行することにより実現されてもよい。 The transmitting unit 21 and the receiving unit 22 may be realized by, for example, the communication device 10d, or may be realized by executing a program stored in the storage device 10c by the processor 10a in addition to the communication device 10d. . The control unit 23 may be implemented by the processor 10a executing a program stored in the storage device 10c.
 (無線通信システムの動作)
 次に、以上のように構成される無線通信システム1の動作について説明する。なお、以下に説明する動作は、例示にすぎず、一部のステップが省略されてもよいし、不図示のステップが実施されてもよいし、不具合を生じない範囲でステップの順序を入れ替えてもよいことは勿論である。
(Operation of wireless communication system)
Next, the operation of the radio communication system 1 configured as above will be described. It should be noted that the operation described below is merely an example, and some steps may be omitted, steps not shown may be performed, or the order of the steps may be changed as long as no problem occurs. Of course, it is also good.
 図5を参照して、本実施形態に係るCAに関する無線通信システム1における処理の第一の例を説明する。図5に示す処理では、CAを用いた上り信号の送信(UL CA)において、ユーザ端末10が第一閾値に基づいてユーザ端末10の送信電力を制御する。DCを用いた上り信号の送信においても、下記と同様の処理によりユーザ端末10の送信電力を制御することが可能である。 A first example of processing in the radio communication system 1 regarding CA according to the present embodiment will be described with reference to FIG. In the process shown in FIG. 5, in transmission of uplink signals using CA (UL CA), the user terminal 10 controls the transmission power of the user terminal 10 based on the first threshold. Also in transmission of uplink signals using DC, it is possible to control the transmission power of the user terminal 10 by processing similar to that described below.
 ステップS101において、基地局20は、ユーザ端末10に対して、送信の累積電力値に関する情報を送信する。送信の累積電力値に関する情報には、ユーザ端末10による送信の累積電力値を計算する時間範囲、及び送信電力の制御に使用される上記の閾値(第一閾値と称する。)に関する情報が含まれる。当該第一閾値は、当該時間範囲におけるユーザ端末10による送信の累積電力値の閾値である。第一閾値は、基地局20から送信されるのではなく、ユーザ端末10に予め記憶された値が第一閾値として以下の処理で使用されてもよい。 In step S<b>101 , the base station 20 transmits information regarding the accumulated transmission power value to the user terminal 10 . The information on the cumulative power value of transmission includes information on the time range for calculating the cumulative power value of transmission by the user terminal 10 and the above threshold (referred to as the first threshold) used to control the transmission power. . The first threshold is the cumulative power value threshold for transmissions by the user terminal 10 in the time range. The first threshold may not be transmitted from the base station 20, but a value pre-stored in the user terminal 10 may be used as the first threshold in the following processing.
 送信の累積電力値に関する情報は、任意のチャネルにより送信される。送信の累積電力値に関する情報は、例えば、報知情報としてPBCHにおけるMIB(Master Information Block)、又はPDSCHにおけるSIB(System Information Block)に含めて送信されてもよい。送信の累積電力値に関する情報は、例えば、RRCメッセージの個別信号に含めて送信されてもよい。 Information about the cumulative power value of transmission is transmitted by any channel. Information about the cumulative power value of transmission may be included in, for example, MIB (Master Information Block) in PBCH or SIB (System Information Block) in PDSCH and transmitted as broadcast information. The information about the accumulated power value of the transmission may be transmitted, for example, included in the individual signal of the RRC message.
 ステップS102において、ユーザ端末10は、基地局20からの能力情報要求に応じて、能力情報(例えば、RRC IE「UECapabilityInformation」)を送信する。能力情報は、例えば、どのバンドコンビネーションのUL CAに対して、後述するステップにおける送信電力の制御に関する処理を適用可能であるか、また、1スロットでの送信電力について、CC上限値を示す情報を含む。 In step S102, the user terminal 10 transmits capability information (for example, RRC IE "UE CapabilityInformation") in response to the capability information request from the base station 20. The capability information, for example, indicates which band combination of UL CA to which the processing related to transmission power control in the step described later can be applied, and information indicating the CC upper limit value for the transmission power in one slot. include.
 ステップS103において、基地局20は、ユーザ端末10に対して、CAを設定する。具体的には、基地局20は、当該CAの設定情報を含むRRC再構成メッセージ(例えば、RRCメッセージ「RRCReconfiguration」)をユーザ端末10に送信してもよい。当該RRC再構成メッセージに基づいて、ユーザ端末10は、CAを開始する。このとき、ユーザ端末10は、CAを行っていないときと比較して、ユーザ端末10による送信電力の上限値の設定を上げるように制御する。例えば、ユーザ端末10は、2つのCCを使用して上り信号を送信するときに、ユーザ端末10による送信電力の上限値を23dBm(200mW)から26dBm(400mW)に上げ、ユーザ端末10が一方のCCを介した送信を23dBm(200mW)で、他方のCCを介した送信を23dBm(200mW)で行うようにしてもよい。 In step S103, the base station 20 sets CA for the user terminal 10. Specifically, the base station 20 may transmit an RRC reconfiguration message (for example, RRC message “RRCReconfiguration”) including configuration information of the CA to the user terminal 10 . Based on the RRC reconfiguration message, the user terminal 10 initiates CA. At this time, the user terminal 10 performs control such that the setting of the upper limit value of transmission power by the user terminal 10 is raised compared to when CA is not performed. For example, when the user terminal 10 transmits an uplink signal using two CCs, the upper limit of the transmission power of the user terminal 10 is increased from 23 dBm (200 mW) to 26 dBm (400 mW), and the user terminal 10 One CC may be transmitted at 23 dBm (200 mW) and the other CC may be transmitted at 23 dBm (200 mW).
 ステップS104において、基地局20は、ユーザ端末10が送信する上り信号のスケジューリング行う。スケジューリングされたリソース割り当てを通知するために、例えば、基地局20は、PDCCHによりスケジューリング情報をユーザ端末10に対して継続的に送信する。当該スケジューリング情報は、ULスケジューリンググラントとも呼ばれる。基地局20は、ユーザ端末10に対して、設定グラント(Configured Grant)を含むRRCメッセージを継続的に送信することにより、スケジューリングされたリソース割り当てを通知してもよい。スケジューリングは、SPS(semi-persistent scheduling)により行われてもよい。 In step S104, the base station 20 schedules uplink signals transmitted by the user terminals 10. In order to notify the scheduled resource allocation, for example, the base station 20 continuously transmits scheduling information to the user terminal 10 via PDCCH. The scheduling information is also called UL scheduling grant. The base station 20 may notify the user terminal 10 of the scheduled resource allocation by continuously transmitting an RRC message containing a configured grant. Scheduling may be performed by SPS (semi-persistent scheduling).
 ステップS105において、ユーザ端末10は、ステップS101で受信した時間範囲におけるユーザ端末10による送信の累積電力値を計算する。上記の時間範囲におけるユーザ端末10による送信の累積電力値は、当該時間範囲にユーザ端末10により送信される複数のスロットのそれぞれの送信電力を加算した値であってもよい。上記の時間範囲におけるユーザ端末10による送信の累積電力値は、当該時間範囲にユーザ端末10により送信される複数のサブフレームのそれぞれの送信電力を加算した値であってもよい。 In step S105, the user terminal 10 calculates the cumulative power value of transmission by the user terminal 10 in the time range received in step S101. The cumulative power value of transmission by the user terminal 10 in the above time range may be a value obtained by adding the transmission power of each of the plurality of slots transmitted by the user terminal 10 to the time range. The cumulative power value of transmission by the user terminal 10 in the above time range may be a value obtained by adding the transmission power of each of the plurality of subframes transmitted by the user terminal 10 to the time range.
 ステップS106において、ユーザ端末10は、ステップS105で計算した累積電力値と、ステップS101で受信した第一閾値とを比較し、累積電力値が第一閾値を超えているか否かを判断する。累積電力値が第一閾値を超えていない場合、処理はステップS107に進む。 In step S106, the user terminal 10 compares the cumulative power value calculated in step S105 with the first threshold received in step S101, and determines whether the cumulative power value exceeds the first threshold. If the cumulative power value does not exceed the first threshold, the process proceeds to step S107.
 ステップS107において、ユーザ端末10は、ステップS103で設定された送信電力の上限値に基づいて、基地局20に対して、上り信号を送信する。例えば、ユーザ端末10は、ステップS103で設定された送信電力の上限値の範囲で、送信電力を上げて、上り信号を送信する。累積電力値が第一閾値を超えていない間に実行される上り信号の送信に関して、ユーザ端末10は、ステップS103で設定された送信電力の上限値の範囲で、送信電力を上げて、送信を行う。当該上り信号の送信は、例えば、PUSCH、PUCCH、PRACH、及びSRSによる送信が含まれる。 In step S107, the user terminal 10 transmits an uplink signal to the base station 20 based on the upper limit of transmission power set in step S103. For example, the user terminal 10 increases the transmission power within the range of the upper limit of the transmission power set in step S103 and transmits an uplink signal. Regarding uplink signal transmission performed while the cumulative power value does not exceed the first threshold, the user terminal 10 increases the transmission power within the range of the upper limit value of the transmission power set in step S103, and performs transmission. conduct. Transmission of the uplink signal includes, for example, transmission by PUSCH, PUCCH, PRACH, and SRS.
 ステップS104からS107の処理は複数回繰り返され、累積電力値が増加していく。ただし、ステップS104において、ユーザ端末10に対して、設定グラントが送信/設定されている場合には、ステップS104の処理の繰り返しは省略される。 The processing from steps S104 to S107 is repeated multiple times, and the cumulative power value increases. However, in step S104, when the setting grant is transmitted/set to the user terminal 10, repetition of the process of step S104 is omitted.
 ステップS108において、基地局20は、ステップS104と同様に、ユーザ端末10が送信する上り信号のスケジューリング行う。ステップS109において、ユーザ端末10は、ステップS105と同様に、ステップS101で受信した時間範囲におけるユーザ端末10による送信の累積電力値を計算する。 In step S108, the base station 20 schedules uplink signals transmitted by the user terminals 10, as in step S104. In step S109, the user terminal 10 calculates the accumulated power value of transmission by the user terminal 10 in the time range received in step S101, as in step S105.
 ステップS110において、ユーザ端末10は、ステップS105で計算した累積電力値と、ステップS101で受信した第一閾値とを比較し、累積電力値が第一閾値を超えているか否かを判断する。累積電力値が第一閾値を超えている場合、処理はステップS111に進む。 In step S110, the user terminal 10 compares the cumulative power value calculated in step S105 with the first threshold received in step S101, and determines whether the cumulative power value exceeds the first threshold. If the accumulated power value exceeds the first threshold, the process proceeds to step S111.
 ステップS111において、ユーザ端末10は、送信電力を下げて、基地局20に対して、上り信号を送信する。すなわち、ユーザ端末10は、ステップS107における送信電力よりも低い電力で上り信号を送信する。当該上り信号の送信は、例えば、PUSCH、PUCCH、PRACH、及びSRSによる送信が含まれる。累積電力値が第一閾値を超えている間に実行される上り信号の送信に関して、ユーザ端末10は、ステップS107における送信電力よりも低い電力で送信を行う。低い電力で送信を行うことは、例えば、上りチャネル又は信号のそれぞれの送信電力を同じ割合で下げることを含む。また、低い電力で送信を行うことは、送信を停止することを含む。また、累積電力値がSARで規定された値を超えた場合には、ユーザ端末10は、第一閾値との比較によって定義される動作に関わらず、上り信号の送信を停止してもよい。 In step S111, the user terminal 10 lowers the transmission power and transmits an uplink signal to the base station 20. That is, the user terminal 10 transmits an uplink signal with power lower than the transmission power in step S107. Transmission of the uplink signal includes, for example, transmission by PUSCH, PUCCH, PRACH, and SRS. Regarding uplink signal transmission performed while the cumulative power value exceeds the first threshold, the user terminal 10 performs transmission with power lower than the transmission power in step S107. Transmitting at lower power includes, for example, reducing the transmit power of each of the uplink channels or signals by the same percentage. Also, transmitting at low power includes ceasing transmission. Also, when the cumulative power value exceeds the value defined by the SAR, the user terminal 10 may stop uplink signal transmission regardless of the operation defined by the comparison with the first threshold.
 基地局20が、ユーザ端末10による送信の累積電力値を計算し、当該計算結果に基づいてユーザ端末10の送信電力を制御する仕様とした場合、基地局20による当該計算に誤りが生じると、ユーザ端末10の送信電力を適切に制御できない場合がある。一方、図5に示した処理によれば、ユーザ端末10の制御部15が、送信の累積電力値が第一閾値を超えているか否かを判断し、ユーザ端末10の送信電力の適切な制御を行うため、累積電力値が第一閾値を超えた状態でユーザ端末10が上り信号を送信する可能性を低減できる。 When the base station 20 calculates the cumulative power value of transmission by the user terminal 10 and controls the transmission power of the user terminal 10 based on the calculation result, if an error occurs in the calculation by the base station 20, In some cases, the transmission power of the user terminal 10 cannot be appropriately controlled. On the other hand, according to the processing shown in FIG. 5, the control unit 15 of the user terminal 10 determines whether or not the cumulative transmission power value exceeds the first threshold, and appropriately controls the transmission power of the user terminal 10. is performed, it is possible to reduce the possibility that the user terminal 10 transmits an uplink signal while the accumulated power value exceeds the first threshold.
 図6を参照して、本実施形態に係るCAに関する無線通信システム1における処理の第二の例を説明する。図6に示す処理では、CAを用いた上り信号の送信(UL CA)において、ユーザ端末10が上記の第一閾値に加えて、第二閾値に基づいてユーザ端末10の送信電力を制御する。DCを用いた上り信号の送信においても、図6と同様の処理によりユーザ端末10の送信電力を制御することが可能である。 A second example of processing in the radio communication system 1 regarding CA according to the present embodiment will be described with reference to FIG. In the processing shown in FIG. 6, in the transmission of uplink signals using CA (UL CA), the user terminal 10 controls the transmission power of the user terminal 10 based on the second threshold in addition to the first threshold. Also in transmission of uplink signals using DC, it is possible to control the transmission power of the user terminal 10 by the same processing as in FIG.
 図6のステップS102からS109の処理は、図5における処理と同様であるため、ここでは説明を省略する。 The processing from steps S102 to S109 in FIG. 6 is the same as the processing in FIG. 5, so the description is omitted here.
 ステップS1011において、基地局20は、ユーザ端末10に対して、送信の累積電力値に関する情報を送信する。送信の累積電力値に関する情報には、ユーザ端末10による送信の累積電力値を計算する時間範囲、及び送信電力の制御に使用される上記の第一閾値に加えて、第二閾値に関する情報が含まれる。第一閾値及び第二閾値は、当該時間範囲におけるユーザ端末10による送信の累積電力値の閾値である。第一閾値より第二閾値が低く設定されてもよいし、第一閾値より第二閾値が高く設定されてもよい。図6に示す処理において第一閾値は使用されず、第二閾値のみが使用されてもよい。第一閾値又は第二閾値は、基地局20から送信されるのではなく、ユーザ端末10に予め記憶された値が第一閾値又は第二閾値として以下の処理で使用されてもよい。 In step S<b>1011 , the base station 20 transmits information on the accumulated transmission power value to the user terminal 10 . The information about the cumulative power value of transmissions includes the time range for calculating the cumulative power value of transmissions by the user terminal 10, and the information about the second threshold in addition to the first threshold used to control the transmission power. be The first threshold and the second threshold are thresholds for cumulative power values of transmissions by the user terminal 10 in the time range. The second threshold may be set lower than the first threshold, or the second threshold may be set higher than the first threshold. The first threshold may not be used in the processing shown in FIG. 6, and only the second threshold may be used. The first threshold value or the second threshold value may not be transmitted from the base station 20, but a value pre-stored in the user terminal 10 may be used as the first threshold value or the second threshold value in the following processing.
 送信の累積電力値に関する情報は、任意のチャネルにより送信される。送信の累積電力値に関する情報は、例えば、報知情報としてPBCHにおけるMIB、又はPDSCHにおけるSIBに含めて送信されてもよい。送信の累積電力値に関する情報は、例えば、RRCメッセージの個別信号に含めて送信されてもよい。 Information about the cumulative power value of transmission is transmitted by any channel. Information about the accumulated transmission power value may be included in the MIB in the PBCH or the SIB in the PDSCH and transmitted as broadcast information, for example. The information about the accumulated power value of the transmission may be transmitted, for example, included in the individual signal of the RRC message.
 ステップS106において、累積電力値が第一閾値を超えていないと判断された後、ステップS112において、ユーザ端末10は、ステップS105で計算した累積電力値と、ステップS101で受信した第二閾値とを比較し、累積電力値が第二閾値を超えているか否かを判断する。累積電力値が第二閾値を超えていない場合、処理はステップS107に進む。 After it is determined in step S106 that the cumulative power value does not exceed the first threshold, in step S112 the user terminal 10 compares the cumulative power value calculated in step S105 with the second threshold received in step S101. and determine whether the cumulative power value exceeds the second threshold. If the accumulated power value does not exceed the second threshold, the process proceeds to step S107.
 ステップS104からS107及びS112の処理は複数回繰り返され、累積電力値が増加していく。ただし、ステップS104において、ユーザ端末10に対して、設定グラント(Configured Grant)が送信されている場合には、ステップS104の処理の繰り返しは省略される。 The processing from steps S104 to S107 and S112 is repeated multiple times, and the cumulative power value increases. However, if a configured grant has been transmitted to the user terminal 10 in step S104, the repetition of the processing in step S104 is omitted.
 ステップS109の後、ステップS1101において、ユーザ端末10は、ステップS109で計算した累積電力値と、第一閾値とを比較し、累積電力値が第一閾値を超えているか否かを判断する。累積電力値が第一閾値を超えていない場合、処理はステップS113に進む。 After step S109, in step S1101, the user terminal 10 compares the cumulative power value calculated in step S109 with the first threshold, and determines whether the cumulative power value exceeds the first threshold. If the accumulated power value does not exceed the first threshold, the process proceeds to step S113.
 ステップS113において、ユーザ端末10は、ステップS109で計算した累積電力値と、第二閾値とを比較し、累積電力値が第二閾値を超えているか否かを判断する。累積電力値が第二閾値を超えている場合、処理はステップS1111に進む。 In step S113, the user terminal 10 compares the cumulative power value calculated in step S109 with the second threshold, and determines whether the cumulative power value exceeds the second threshold. If the accumulated power value exceeds the second threshold, the process proceeds to step S1111.
 ステップS1111において、ユーザ端末10は、予め設定された優先度の低いチャネルによる上り信号の送信電力を下げて、基地局20に対して、上り信号を送信する。すなわち、ユーザ端末10は、ステップS107における送信電力よりも低い電力で上り信号を送信する。当該上り信号の送信は、例えば、PUSCH、PUCCH、PRACH、及びSRSによる送信が含まれる。優先度の情報は、基地局20からユーザ端末10に設定されてもよいし、ユーザ端末10に予め記憶されていてもよい。優先度の詳細な説明は既に行ったため、ここでは省略する。 In step S<b>1111 , the user terminal 10 lowers the transmission power of the uplink signal by the preset low priority channel and transmits the uplink signal to the base station 20 . That is, the user terminal 10 transmits an uplink signal with power lower than the transmission power in step S107. Transmission of the uplink signal includes, for example, transmission by PUSCH, PUCCH, PRACH, and SRS. The priority information may be set in the user terminal 10 from the base station 20 or may be stored in the user terminal 10 in advance. A detailed description of the priority has already been given, and will be omitted here.
 累積電力値が第一閾値又は第二閾値を超えている間に実行される上り信号の送信に関して、ユーザ端末10は、ステップS107における送信電力よりも低い電力で送信を行う。また、低い電力で送信を行うことは、優先度の低いチャネルによる送信を停止することを含む。 Regarding the uplink signal transmission performed while the cumulative power value exceeds the first threshold or the second threshold, the user terminal 10 performs transmission with power lower than the transmission power in step S107. Also, transmitting at low power includes ceasing transmission on low priority channels.
 図7を参照して、本実施形態に係るCAに関する無線通信システム1における処理の第三の例を説明する。図7に示す処理では、CAを用いた上り信号の送信において、送信の累積電力値の上限値に対する到達割合をユーザ端末10から基地局20にレポートする。DCを用いた上り信号の送信においても、図7と同様の処理によりユーザ端末10の送信電力を制御することが可能である。 A third example of processing in the radio communication system 1 regarding CA according to the present embodiment will be described with reference to FIG. In the processing shown in FIG. 7, in the transmission of an uplink signal using CA, the user terminal 10 reports to the base station 20 the arrival ratio of the transmission cumulative power value to the upper limit value. Also in transmission of uplink signals using DC, it is possible to control the transmission power of the user terminal 10 by the same processing as in FIG.
 図7のステップS102からS105、S1061、及びS107からS109の処理は、図5における処理と同様であるため、ここでは説明を省略する。 The processing from steps S102 to S105, S1061, and S107 to S109 in FIG. 7 is the same as the processing in FIG. 5, so the description is omitted here.
 ステップS1012において、基地局20は、ユーザ端末10に対して、送信の累積電力値に関する情報を送信する。送信の累積電力値に関する情報には、ユーザ端末10による送信の累積電力値を計算する時間範囲、及び送信電力の制御に使用される第三閾値に関する情報が含まれる。第三閾値は、送信の累積電力値の上限値に対する到達割合について、ユーザ端末10から基地局20にレポートするタイミングを判断するために使用される閾値である。第三閾値は、例えば、送信の累積電力値の上限値に対する到達割合の閾値として、25%、50%、75%、又は90%を含む。第三閾値は、複数の値が設定されてもよい。第三閾値は、基地局20から送信されるのではなく、ユーザ端末10に予め記憶された値が第三閾値として以下の処理で使用されてもよい。 In step S1012, the base station 20 transmits to the user terminal 10 information on the cumulative transmission power value. The information on the cumulative power value of transmissions includes information on the time range for calculating the cumulative power value of transmissions by the user terminal 10 and the third threshold used to control the transmission power. The third threshold is a threshold used to determine the timing of reporting from the user terminal 10 to the base station 20 about the arrival rate of the accumulated transmission power value with respect to the upper limit value. The third threshold includes, for example, 25%, 50%, 75%, or 90% as a threshold of the arrival rate with respect to the upper limit of the accumulated transmission power value. A plurality of values may be set for the third threshold. The third threshold may not be transmitted from the base station 20, but a value pre-stored in the user terminal 10 may be used as the third threshold in the following processing.
 ステップS1061において、ユーザ端末10は、ステップS105で計算した累積電力値と、第三閾値とを比較し、累積電力値が第三閾値を超えているか否かを判断する。累積電力値が第三閾値を超えていない場合、処理はステップS107に進む。 In step S1061, the user terminal 10 compares the cumulative power value calculated in step S105 with the third threshold, and determines whether the cumulative power value exceeds the third threshold. If the cumulative power value does not exceed the third threshold, the process proceeds to step S107.
 ステップS104、S105、S1061及びS107の処理は複数回繰り返され、累積電力値が増加していく。ただし、ステップS104において、ユーザ端末10に対して、設定グラントが送信/設定されている場合には、ステップS104の処理の繰り返しは省略される。 The processing of steps S104, S105, S1061 and S107 is repeated multiple times, and the cumulative power value increases. However, in step S104, when the setting grant is transmitted/set to the user terminal 10, repetition of the process of step S104 is omitted.
 ステップS1102において、ユーザ端末10は、ステップS109で計算した累積電力値と、第三閾値とを比較し、累積電力値が第三閾値を超えているか否かを判断する。累積電力値が第三閾値を超えている場合、処理はステップS1112に進む。 In step S1102, the user terminal 10 compares the cumulative power value calculated in step S109 with the third threshold, and determines whether the cumulative power value exceeds the third threshold. If the cumulative power value exceeds the third threshold, the process proceeds to step S1112.
 ステップS1112において、ユーザ端末10は、ユーザ端末10による送信の累積電力値が第三閾値に達した時点の累積電力値を示す累積値情報を基地局20にレポートとして送信する。例えば、第三閾値が75%であるとき、ユーザ端末10は、75%を示す累積値情報を基地局20にレポートする。累積値情報は、例えば、UL共有チャネルがスケジュールされ、PUSCHを利用して送信されてもよい。この場合、MAC CE(Control Element)を利用して送信されてもよい。累積値情報は、例えば、PUCCHを利用して送信されてもよい。この場合、PUCCHにおいて、第三閾値に含まれる値ごとに(例えば、25%、50%、75%、又は90%のそれぞれについて)、リソースが割り当てられてもよい。また、当該PUCCHリソースとして、PUCCHペイロードのリソースの一部(例えば、2bit)のコンポーネントが利用されてもよい。 In step S1112, the user terminal 10 transmits cumulative value information indicating the cumulative power value at the time when the cumulative power value of transmission by the user terminal 10 reaches the third threshold to the base station 20 as a report. For example, when the third threshold is 75%, the user terminal 10 reports cumulative value information indicating 75% to the base station 20 . The accumulated value information may be transmitted using PUSCH, for example, scheduled on the UL shared channel. In this case, it may be transmitted using MAC CE (Control Element). The accumulated value information may be transmitted using PUCCH, for example. In this case, in PUCCH, resources may be allocated for each value included in the third threshold (eg, each of 25%, 50%, 75%, or 90%). Also, a part (for example, 2-bit) component of the PUCCH payload resource may be used as the PUCCH resource.
 ステップS1112の後、基地局20は、受信した累積値情報に応じて、ユーザ端末10の送信電力の制御のために、予め定められた設定を行う。例えば、基地局20は、受信した累積値情報に応じて、ユーザ端末10の送信電力を下げるように設定する。 After step S1112, the base station 20 performs predetermined settings for controlling the transmission power of the user terminal 10 according to the received cumulative value information. For example, the base station 20 sets the transmission power of the user terminal 10 to be lowered according to the received cumulative value information.
 図7に示した処理によれば、ユーザ端末10で算出された送信の累積電力値に基づいて、累積値情報が基地局20に送信されるため、基地局20は、ユーザ端末10で算出された正しい累積電力値を得ることができる。基地局20は、累積値情報を受信するまで、ユーザ端末10による送信の累積電力値を管理する必要がないため、基地局20による処理を簡略化できる。 According to the process shown in FIG. 7, the accumulated value information is transmitted to the base station 20 based on the accumulated transmission power value calculated by the user terminal 10. correct cumulative power value can be obtained. Since the base station 20 does not need to manage the cumulative power value of transmission by the user terminal 10 until the cumulative value information is received, the processing by the base station 20 can be simplified.
 (その他の実施形態)
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
(Other embodiments)
The embodiments described above are for facilitating understanding of the present invention, and are not intended to limit and interpret the present invention. Flowcharts, sequences, elements included in the embodiments, their arrangement, materials, conditions, shapes, sizes, and the like described in the embodiments are not limited to those illustrated and can be changed as appropriate. Also, it is possible to partially replace or combine the configurations shown in different embodiments.
1…無線通信システム、11…受信部、12…送信部、13…記憶部、14…測定部、15…制御部、20…基地局、21…送信部、22…受信部、23…制御部、30…コアネットワーク、A…アンテナ、10a…プロセッサ、10b…メモリ、10c…記憶装置、10d…通信装置、10e…入力装置、10f…出力装置
 
DESCRIPTION OF SYMBOLS 1... Wireless communication system 11... Reception part 12... Transmission part 13... Storage part 14... Measurement part 15... Control part 20... Base station 21... Transmission part 22... Reception part 23... Control part , 30... Core network, A... Antenna, 10a... Processor, 10b... Memory, 10c... Storage device, 10d... Communication device, 10e... Input device, 10f... Output device

Claims (9)

  1.  キャリアアグリゲーションを用いた上り信号の送信のときに、送信電力の上限値を上げるように制御する制御部と、
     前記制御された前記上限値に基づく送信電力で、複数のセルを介して上り信号を送信する送信部と
     を備え、
     前記制御部は、所定時間範囲における前記送信部による送信の累積電力値が閾値を超えているとき、前記送信部による送信電力を下げるように制御する、ユーザ端末。
    a control unit that controls to increase the upper limit of transmission power when transmitting an uplink signal using carrier aggregation;
    a transmission unit that transmits an uplink signal via a plurality of cells with transmission power based on the controlled upper limit value,
    The user terminal, wherein the control unit controls to lower the transmission power of the transmission unit when a cumulative power value of transmission by the transmission unit in a predetermined time range exceeds a threshold.
  2.  前記送信部による送信電力を下げる前記制御は、前記送信部による送信を停止することを含む、請求項1に記載のユーザ端末。  The user terminal according to claim 1, wherein said control to reduce transmission power by said transmission unit includes stopping transmission by said transmission unit.
  3.  前記送信部による送信電力を下げる前記制御は、予め設定された優先度の低いチャネルによる上り信号の送信電力を下げることを含む、請求項1又は2に記載のユーザ端末。 The user terminal according to claim 1 or 2, wherein the control for lowering the transmission power by the transmission unit includes lowering the transmission power of an uplink signal by a preset low-priority channel.
  4.  前記送信部による送信電力を下げる前記制御は、前記予め設定された優先度の低いチャネルによる上り信号の送信を停止することを含む、請求項3に記載のユーザ端末。 The user terminal according to claim 3, wherein said control for lowering transmission power by said transmission unit includes stopping transmission of uplink signals through said preset low-priority channel.
  5.  前記累積電力値は、前記所定時間範囲における前記送信部による複数のスロットの送信電力の累積値を含む、請求項1から4のいずれか一項に記載のユーザ端末。 The user terminal according to any one of claims 1 to 4, wherein said cumulative power value includes a cumulative value of transmission power of a plurality of slots by said transmission unit within said predetermined time range.
  6.  前記送信部は、前記累積電力値が所定値に達した時点の前記累積電力値を基地局に送信する、請求項1から5のいずれか一項に記載のユーザ端末。 The user terminal according to any one of claims 1 to 5, wherein the transmitting unit transmits to the base station the cumulative power value when the cumulative power value reaches a predetermined value.
  7.  前記送信部は、所定の周期的タイミングにおける前記累積電力値を基地局に送信する、請求項1から6のいずれか一項に記載のユーザ端末。 The user terminal according to any one of claims 1 to 6, wherein said transmission unit transmits said accumulated power value at predetermined periodic timing to a base station.
  8.  制御部と送信部を備えるユーザ端末により実施される無線通信方法であって、
     キャリアアグリゲーションを用いた上り信号の送信のときに、前記制御部が送信電力の上限値を上げるように制御することと、
     前記送信部が、前記制御された前記上限値に基づく送信電力で、複数のセルを介して複数の上り信号を送信することと
     を含み、
     前記制御部は、所定時間範囲における前記送信部による送信の累積電力値が閾値を超えているとき、前記送信部による送信電力を下げるように制御する、無線通信方法。
    A wireless communication method implemented by a user terminal comprising a control unit and a transmission unit,
    When transmitting an uplink signal using carrier aggregation, the control unit controls to increase the upper limit value of transmission power;
    The transmission unit transmits a plurality of uplink signals via a plurality of cells with transmission power based on the controlled upper limit value,
    The wireless communication method according to claim 1, wherein the control unit performs control to lower transmission power of the transmission unit when a cumulative power value of transmission by the transmission unit within a predetermined time range exceeds a threshold.
  9.  制御部と送信部を備えるユーザ端末により実施される無線通信方法を実行するためのプログラムを記憶した記憶媒体であって、前記無線通信方法は、
     キャリアアグリゲーションを用いた上り信号の送信のときに、前記制御部が送信電力の上限値を上げるように制御することと、
     前記送信部が、前記制御された前記上限値に基づく送信電力で、複数のセルを介して複数の上り信号を送信することと
     を含み、
     前記制御部は、所定時間範囲における前記送信部による送信の累積電力値が閾値を超えているとき、前記送信部による送信電力を下げるように制御する、記憶媒体。
    A storage medium storing a program for executing a wireless communication method implemented by a user terminal comprising a control unit and a transmission unit, the wireless communication method comprising:
    When transmitting an uplink signal using carrier aggregation, the control unit controls to increase the upper limit value of transmission power;
    The transmission unit transmits a plurality of uplink signals via a plurality of cells with transmission power based on the controlled upper limit value,
    The storage medium, wherein the control unit controls to lower transmission power of the transmission unit when a cumulative power value of transmission by the transmission unit within a predetermined time range exceeds a threshold.
PCT/JP2021/030508 2021-08-20 2021-08-20 User terminal, wireless communication method, and storage medium WO2023021676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030508 WO2023021676A1 (en) 2021-08-20 2021-08-20 User terminal, wireless communication method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030508 WO2023021676A1 (en) 2021-08-20 2021-08-20 User terminal, wireless communication method, and storage medium

Publications (1)

Publication Number Publication Date
WO2023021676A1 true WO2023021676A1 (en) 2023-02-23

Family

ID=85240407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030508 WO2023021676A1 (en) 2021-08-20 2021-08-20 User terminal, wireless communication method, and storage medium

Country Status (1)

Country Link
WO (1) WO2023021676A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "WF on power configuration for PC2 NR inter-band CA", 3GPP DRAFT; R4-2016852, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20201102 - 20201113, 16 November 2020 (2020-11-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051954748 *
XIAOMI: "Discussion on SAR issue for HP UE inter-band UL CA", 3GPP DRAFT; R4-2106541, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052176305 *

Similar Documents

Publication Publication Date Title
KR102337557B1 (en) Method and apparatus for uplink transmission in a wireless communication system
JP5980241B2 (en) User terminal, radio base station, and radio communication method
US10764834B2 (en) Uplink transmission power control method and apparatus
US9215675B2 (en) Determining transmit power of a sounding reference signal for a first cell based on power for a second cell and power offset
US12028293B2 (en) Scell dormancy indication by PDCCH
US20140301256A1 (en) Uplink Power Control Enhancement for Dynamic Time Division Duplex Uplink-Downlink Reconfiguration
US11071068B2 (en) User terminal and radio communication method
US20200186286A1 (en) Transport Block Size Determination for Equal Size Code Blocks
US11252675B2 (en) Method for transmitting sidelink signals through plurality of carriers in wireless communication system
CN110351822B (en) Method and apparatus for wireless communication
US11805451B2 (en) Fast SCell activation
US11153858B2 (en) Uplink communication method, terminal device, and network device
CN114175554A (en) System information and paging monitoring for multiple synchronization signal blocks
US11924786B2 (en) SSB adaptive power transmission
US20150319708A1 (en) Base station apparatus, communications method, and terminal device
EP4150837A1 (en) Uplink control information multiplexing rule simplification for reduced capability user equipments
WO2023197242A1 (en) Timing advance timer handling for multi-timing advance operation for multi-transmit and receive points
WO2023021676A1 (en) User terminal, wireless communication method, and storage medium
US20220385398A1 (en) Erasure style ldpc rate matching for tb over multiple slots
WO2023008325A1 (en) Communication device, base station, and communication method
CN118302975A (en) Cross-link interference estimation for full duplex communication to secondary cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE