WO2023020469A1 - 太阳能电池的栅线结构及其应用的太阳能电池 - Google Patents

太阳能电池的栅线结构及其应用的太阳能电池 Download PDF

Info

Publication number
WO2023020469A1
WO2023020469A1 PCT/CN2022/112716 CN2022112716W WO2023020469A1 WO 2023020469 A1 WO2023020469 A1 WO 2023020469A1 CN 2022112716 W CN2022112716 W CN 2022112716W WO 2023020469 A1 WO2023020469 A1 WO 2023020469A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
line
lines
main
busbar
Prior art date
Application number
PCT/CN2022/112716
Other languages
English (en)
French (fr)
Inventor
胡匀匀
刘宗涛
刘志远
徐冠超
陈达明
邹杨
张学玲
陈奕峰
Original Assignee
天合光能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天合光能股份有限公司 filed Critical 天合光能股份有限公司
Publication of WO2023020469A1 publication Critical patent/WO2023020469A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention mainly relates to the field of solar cells, in particular to a grid wire structure of a solar cell and a solar cell to which it is applied.
  • Silver (Ag) has a low resistivity, can transport carriers efficiently, and has low resistance loss, and is widely used in solar cells and electronics industries.
  • Ag has limited reserves and high cost. In existing solar cells, the cost of Ag is about 70% of the cost of non-silicon. Therefore, whether the silver consumption can be reduced on the basis of ensuring battery performance is one of the main factors affecting the cost of photovoltaic power generation.
  • Ag is used as a metallized electrode to extract carriers and transport them to the external circuit.
  • the specific process is to first grind silver into micro-nano particles, and then combine them with A viscous mixture of adhesives, solvents, additives, etc. These mixtures are printed on the battery by screen printing, and the pattern of the screen determines the pattern printed on the battery.
  • the paste printed on the battery is dried and sintered to form a silver electrode with better conductivity.
  • Electroplating is a common technology in the solar battery industry. It has mature technology and stable performance. It is difficult to be replaced in the foreseeable time. It is in an absolute advantage, but the price of silver paste is also increasing year by year.
  • Other methods of preparing electrodes include electroplating and silver-coated copper particles.
  • electrodes prepared by electroplating are generally composed of Ni/Cu/Ag, which can reduce the consumption of silver.
  • electroplating will produce a large amount of waste liquid, which contains A variety of cations and toxic organic substances cannot be discharged directly, and the treatment cost is also high.
  • the technology of silver-clad copper is not yet mature and has not yet been applied industrially. Therefore, screen printing technology still and will continue to dominate the preparation of photovoltaic electrodes, and optimizing screen printing technology to reduce silver consumption has of course become the top priority in the field.
  • the technical problem to be solved by the present invention is to provide a grid wire structure of a solar cell and a solar cell applied thereto, which can effectively reduce the consumption of silver paste and reduce the preparation cost of the solar cell on the basis of ensuring cell efficiency.
  • the present invention provides a grid line structure of a solar cell, comprising a plurality of main grid lines extending along the first direction and arranged at intervals along the second direction, and extending along the second direction and along the a plurality of thin grid lines arranged at intervals in the first direction, the first direction is not parallel to the second direction, and the plurality of main grid lines are respectively electrically connected to the plurality of thin grid lines, It is characterized in that, between any two adjacent main grid lines, each thin grid line has a disconnected section.
  • the length of the disconnection section of each fine grid line in the second direction is the disconnection distance, and the disconnection distance is less than or equal to the distance between two adjacent fine grid lines. double the spacing.
  • the disconnection distances of the disconnection sections of each fine grid line are equal.
  • the disconnected sections of the odd-numbered thin grid lines and the disconnected sections of the even-numbered thin grid lines are in the first direction Misalignment or incomplete alignment.
  • the disconnected sections of any two odd-numbered thin grid lines overlap in the first direction, and any two even-numbered thin grid lines
  • the disconnected sections of the fine grid lines also coincide in the first direction.
  • any two adjacent main grid lines are a first main grid line and a second main grid line, and between the first main grid line and the second main grid line, any The end of the disconnected section of the fine grid line close to the first busbar is the first end, wherein the distance between the first end of the disconnected section of any odd-numbered thin gridline and the first busbar
  • the difference between the distance between the first busbar line and the first main grid line of the even-numbered fine grid line or another odd-numbered fine grid line disconnected section is the stagger distance, when the break of each thin grid line When the opening distances are all equal, the staggering distance is equal to the breaking distance.
  • the present invention also proposes a solar cell, which includes a basic grid line structure, and the basic grid line structure is the above grid line structure.
  • the solar cell further includes a supplementary grid line structure
  • the supplementary grid line structure includes a plurality of main grid lines extending along the first direction and arranged at intervals along the second direction, and A plurality of fine grid lines extending in two directions and arranged at intervals along the first direction, the first direction is not parallel to the second direction, and the plurality of main grid lines are respectively connected to the plurality of fine grid lines
  • the lines are electrically connected, and between any two adjacent busbar lines, only the odd number of thin grid lines or only the even number of thin grid lines have disconnected regions.
  • any three busbar lines arranged in sequence are a first busbar line, a second busbar line, and a third busbar line, and the first busbar line and the second busbar line
  • a first region is formed between the gate lines
  • a second region is formed between the second busbar line and the third busbar line
  • the part of the grid lines in the first region has the basic grid line structure
  • the parts of the second busbar, the third busbar and the plurality of thin grid lines in the second region have The supplementary grid line structure.
  • any four busbar lines arranged in sequence are the first busbar line, the second busbar line, the third busbar line and the fourth busbar line, and the first busbar line
  • a first region is formed between the second main gate line
  • a second region is formed between the second main gate line and the third main gate line
  • a second region is formed between the third main gate line and the fourth main gate line.
  • a third region is formed between the gate lines, and the first busbar line, the second busbar line, the third busbar line and a plurality of fine grid lines are in the first region and the second region
  • the part in the third area is the supplementary gate line structure, and the part of the third main gate line, the fourth main gate line and the plurality of thin gate lines in the third region is the basic gate line structure.
  • the present invention has the following advantages: the grid line structure of the solar cell of the present invention and the solar cell applied thereto are provided with a disconnection section for each thin grid line between adjacent main grid lines, effectively The consumption of silver paste is greatly reduced; on this basis, the disconnected section of each grid line is arranged at a specific position, so that while reducing the consumption of silver paste, it can also effectively ensure the efficiency of the solar cell. Overall, the preparation cost of the solar cell is reduced.
  • Fig. 1 is a schematic diagram of a grid wire structure of a solar cell in the prior art
  • Fig. 2 is a schematic diagram of a grid wire structure of a solar cell according to an embodiment of the present invention
  • 3a to 5 are schematic diagrams of a grid wire structure of a solar cell according to another embodiment of the present invention.
  • Fig. 6 is a structural schematic diagram of a solar cell according to an embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a solar cell according to another embodiment of the present invention.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc. indicate the orientation Or positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description. In the absence of a contrary statement, these orientation words do not indicate or imply the device or element referred to It must have a specific orientation or be constructed and operated in a specific orientation, so it should not be construed as limiting the protection scope of the present application; the orientation words “inner and outer” refer to the inner and outer relative to the outline of each component itself.
  • spatially relative terms may be used here, such as “on !, “over !, “on the surface of !, “above”, etc., to describe the The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as “above” or “above” other devices or configurations would then be oriented “beneath” or “above” the other devices or configurations. under other devices or configurations”. Thus, the exemplary term “above” can encompass both an orientation of “above” and “beneath”. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
  • FIG. 1 it is a schematic diagram of a solar cell grid wire structure 10 in the prior art.
  • the grid line structure 10 has two adjacent main grid lines 111 and 112, and between the two main grid lines 111 and 112, there are a plurality of thin grid lines 12, the above-mentioned main grid lines and thin grid lines They are all arranged on a silicon chip (in order to keep the drawing simple, the silicon chip is not shown in FIG. 1 ).
  • the photoelectric conversion efficiency of the solar cell can be guaranteed by adopting the grid wire structure 10 shown in Figure 1, a large amount of silver is required to prepare a plurality of grid wires, especially a plurality of fine grid wires 12 therein.
  • the slurry increases the preparation cost of the solar cell, which is exactly the problem to be solved by the present invention.
  • An embodiment of the present invention proposes a grid wire structure of a solar cell, which can effectively reduce the consumption of silver paste and reduce the manufacturing cost of the solar cell on the basis of ensuring the efficiency of the cell.
  • the gate line structure 20 includes a plurality of main gate lines 21 extending along the first direction X and arranged at intervals along the second direction Y.
  • FIG. 2 shows two adjacent main gate lines 211 and 212.
  • the grid line structure 20 further includes a plurality of thin grid lines 22 extending along the second direction Y and arranged at intervals along the first direction X.
  • first direction X and the second direction Y are not parallel. More specifically, in the embodiment shown in FIG. 2 , the first direction X is perpendicular to the second direction Y, but the present invention is not limited thereto.
  • a plurality of busbar lines 21 (such as busbar lines 211 and 212 in the figure) are electrically connected to a plurality of thin gridlines 22 respectively.
  • each thin grid line 22 has a disconnection section 220 .
  • the disconnected section 220 provided on each fine grid line 22 effectively reduces the consumption of silver paste as a whole and saves the preparation cost of solar cells .
  • the length of the disconnection section 220 of each fine grid line in the gate line structure 20 in the second direction Y is the disconnection distance d (ie, the distance indicated by the dotted line in the Y direction in FIG. 2 ).
  • the disconnection distance d is less than or equal to twice the distance a between two adjacent thin grid lines. Adopting such parameter setting can make the grid line structure of the present invention save silver paste consumption. At the same time, the effect on the efficiency of the battery adopting the grid line structure of the present invention is reduced as much as possible.
  • the disconnection distance d of the disconnection section 220 of each fine grid line 22 is equal. Moreover, between the adjacent busbar lines 211 and 212 , the disconnected sections of all the thin grid lines 22 coincide in the first direction X. Referring to FIG.
  • the present invention does not limit whether the distances between the disconnected sections of the fine grid lines are equal and whether they overlap in the first direction X in all embodiments.
  • the disconnection sections of all fine grid lines 22 do not overlap or do not completely overlap in the first direction X, and the disconnection distances of each fine grid line are not necessarily equal .
  • Figures 3a to 5 respectively show different situations from incomplete overlap to non-overlapping, and the specific positions of the arrangement of the disconnected sections will be described below with reference to Figures 3a to 5 .
  • Fig. 3a to Fig. 5 select the case where the breaking distances d of the breaking sections are equal.
  • the gate line structure 30 has a plurality of main gate lines 31 , wherein FIG. 3 a shows two adjacent main gate lines 311 and 312 and a plurality of thin gate lines 32 .
  • the thin grid lines 321 and 323 are two odd-numbered thin grid lines.
  • the fine grid lines adjacent to all odd-numbered fine grid lines are even-numbered fine grid lines, such as the fine grid line 322 .
  • all the odd-numbered thin grid lines and the even-numbered thin grid lines have disconnected sections between the adjacent busbars 311 and 312, for example, the disconnected sections 3210 and 3230 of the odd-numbered thin grid lines 321 and 323 , and the disconnected segment 3220 of the even-numbered fine grid line 322 .
  • the multiple thin grid lines 32 between two adjacent main grid lines 311 and 312 in the grid line structure 30 also have disconnected regions. segments, except that the disconnected segments of the fine grid lines 32 do not completely overlap in the first direction X.
  • the grid line structure 30 is particularly described as a disconnected section (eg, a disconnected area) of an odd-numbered thin grid line (eg, a thin grid line 321 ).
  • Segment 3210 ) and the disconnected segment (eg disconnected segment 3220 ) of the even-numbered fine grid line (eg fine grid line 322 ) do not completely coincide in the first direction X.
  • any two odd-numbered thin grid lines (for example, thin grid lines 321 and 323) have a disconnected area
  • the segments (respectively disconnected segments 3210 and 3230), coincide in the first direction X according to the dashed line in Fig. 3a.
  • the disconnected sections of any two even-numbered fine grid lines also coincide in the first direction X.
  • the present invention is not limited thereto.
  • the disconnected sections of any two odd-numbered thin grid lines or any two even-numbered thin grid lines are not in the first direction X. must coincide.
  • FIG. 4 shows another embodiment of a grid line structure 40 in which the broken sections of the thin grid lines do not overlap.
  • any two adjacent main gate lines 41 are respectively a first main gate line 411 and a second main gate line 412, between the first main gate line 411 and the second main gate line 412,
  • the disconnection section of any fine grid line 42 (such as the fine grid line 421 and 422) (for the sake of brevity of the drawings, the disconnection segment is not particularly shown in FIG. 3a)
  • the end close to the first busbar 421 is the first end (the first ends 4211 and 4221 respectively).
  • the thin grid lines 421 are odd-numbered thin grid lines
  • the thin grid lines 422 are even-numbered thin grid lines.
  • the disconnection distance d of each fine grid line 42 is equal, and the aforementioned offset distance t is equal to the disconnection distance d.
  • the disconnected segments of each thin grid line 32 in the grid line structure 30 do not completely overlap in the first direction X
  • the odd-numbered thin grid lines for example, The thin grid lines 321
  • the even-numbered thin grid lines such as thin grid lines 322
  • the stagger distance t is only the disconnection distance d half of.
  • the gate line structure 30' there are thin gate lines 323 and 325 with odd numbers between two adjacent main gate lines 313 and 314, and even-numbered fine grid lines 324 .
  • the present invention does not limit whether the fine grid lines with the staggered distance are odd-numbered fine grid lines or even-numbered fine grid lines.
  • FIG. 5 shows an embodiment of the grid line structure 50 in which the disconnected sections of the thin grid lines do not overlap completely in the first direction X.
  • the gate line structure 50 also has a plurality of main gate lines 51, wherein the plurality of thin gate lines 52 between any two main gate lines 511 and 512 have disconnected sections, and in the embodiment shown in FIG. 5, Obviously, the stagger distance t is greater than the disconnection distance d.
  • FIGS. 2 to 4 which will not be repeated here.
  • Voc is the open circuit voltage
  • Isc is the short circuit current
  • FF is the fill factor
  • Eff is the photoelectric conversion efficiency.
  • the efficiency is the highest. That is, as mentioned above, the gate line structure 40 shown in FIG. 4 may have higher efficiency under the same conditions. This optimal efficiency is only less than 0.05% different from the baseline of the reference case without disconnection as shown in FIG. 1 , but the cost of silver consumption can be saved by about 15% when preparing solar cells. It can be seen that, by adopting the grid wire structure of the solar cell of the present invention, the consumption of silver paste can be effectively reduced on the basis of ensuring the efficiency of the cell, thereby reducing the manufacturing cost of the solar cell.
  • the efficiency of the solar cell prepared by grid line structure of the present invention is better than the efficiency of comparison structure, and result is as follows:
  • the grid structure of the solar cell of the present invention can effectively reduce the consumption of silver paste on the basis of ensuring the efficiency of the cell, thereby reducing the production cost of the solar cell.
  • the efficiency of the prepared solar cell also has better performance.
  • the solar cell first includes a basic grid line structure, and the basic grid line structure is a grid line structure in which all the thin grid lines between two adjacent main grid lines described above with reference to FIGS. 2 to 5 have disconnected sections. .
  • the above-mentioned basic grid line structure is also included, and a supplementary grid line structure is also included.
  • FIG. 6 it is a schematic structural diagram of a solar cell 60 according to an embodiment of the present invention.
  • the solar cell 60 has the above-mentioned basic grid line structure and supplementary grid line structure, which will be described below in conjunction with FIG. 6 .
  • the solar cell 60 has a plurality of busbar lines 61 and a plurality of thin grid lines 62 , wherein the three busbar lines arranged in sequence are the first busbar line 611 , the second busbar line 612 and the second busbar line 612 .
  • Three main grid lines 613 a first region 601 is formed between the first main gate line 611 and the second main gate line 612
  • a second region 602 is formed between the second main gate line 612 and the third main gate line 613 .
  • parts of the first main gate line 611 , the second main gate line 612 and the plurality of thin gate lines 62 in the first region 601 have a basic gate line structure 63 .
  • the basic gate line structure 63 in the first region 601 shown in FIG. 6 is specifically the gate line structure 20 shown in FIG. 2 .
  • the present invention is not limited thereto.
  • the basic gate line structure may also be the gate line structures 30 - 50 shown in FIGS. 3 a - 5 .
  • the second main gate line 612 , the third main gate line 613 and the plurality of thin gate lines 62 in the second region 602 have a supplementary gate line structure 64 .
  • the supplementary gate line structure 64 includes main gate lines 612 and 613 extending along the first direction X and arranged at intervals along the second direction Y, and extending along the second direction Y and along the first A plurality of fine grid lines 62 arranged at intervals in the direction X.
  • the first direction X is not parallel to the second direction Y, more specifically, they are vertical, but the present invention is not limited thereto.
  • the main grid lines 612 and 613 are respectively electrically connected to a plurality of thin grid lines 62, and between the two main grid lines 612 and 613, only odd-numbered thin grid lines or only even-numbered thin grid lines Has a disconnected area.
  • the thin grid lines 621 are odd-numbered thin grid lines
  • the thin grid lines 622 are even-numbered thin grid lines.
  • the wire has a disconnected section 620 .
  • the basic gate line structure 63 and the supplementary gate line structure 64 are arranged at intervals. It can be understood that, FIG. 6 shows only a part of the solar cell 60, and between any two main grid lines not shown in the solar cell 60, the basic grid lines as shown in FIG. structure 63 or supplementary gridline structure 64 . Moreover, the present invention does not limit the specific positions of the disconnected sections in the basic grid line structure 63 and the supplementary grid line structure 64 as shown in FIG. 6 .
  • a solar cell 70 also has multiple busbars 71 and multiple thin gridlines 72, wherein any four busbars arranged in sequence are selected as the first The main grid line 711, the second main grid line 712, the third main grid line 713 and the fourth main grid line 714, the first area 701 is formed between the first main grid line 711 and the second main grid line 712, the second main grid line A second region 702 is formed between the gate line 712 and the third main gate line 713 , and a third region 703 is formed between the third main gate line 713 and the fourth main gate line 714 .
  • parts of the first busbar 711, the second busbar 712, the third busbar 713 and the plurality of thin gridlines 72 in the first region 701 and the second region 702 are supplementary gateline structures 74, which For specific features of the supplementary gate line structure 74 , reference may be made to the above description of the supplementary gate line structure 64 in FIG. 6 , which will not be repeated here.
  • the part of the third busbar 713, the fourth busbar 714, and the plurality of thin gridlines 72 in the third region 703 is the basic gridline structure 73, and the basic gridline structure 73 can also refer to the above-mentioned referring to FIGS. The description of FIG. 5 will not be repeated here.
  • the solar cell 70 also has a structural design in which the basic grid structure and the supplementary grid structure are arranged at intervals, but the spacing method is different from that of the solar cell 60 .
  • every two supplementary gridline structures 74 are followed by a basic gridline structure 73 , which serves as a basic gridline structure combination.
  • the basic grid line structure is combined into a basic grid line structure 73 followed by a supplementary grid line structure 74 . According to the comparison of the experimental results, compared with the solar cell 60 shown in FIG. 6 , the solar cell 70 has a better effect on improving the black block problem in the battery test application scenario.
  • the grid line structure described in the present invention with reference to FIGS. 2 to 5 can effectively save the consumption of silver paste when preparing solar cells on the basis of ensuring cell efficiency.
  • the solar cell proposed by another aspect of the present invention as shown in Figure 6 and Figure 7 in some embodiments, can further improve the battery test application scenario on the basis of ensuring efficiency and saving silver paste consumption under the black block problem,
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of the present application to confirm the breadth of the scope are approximate values, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种太阳能电池的栅线结构及其应用的太阳能电池,包括沿第一方向延伸且沿第二方向间隔排布的多条主栅线,以及沿第二方向延伸且沿第一方向间隔排布的多条细栅线,第一方向与第二方向不平行,且多条主栅线分别与多条细栅线电性连接,在任意两条相邻的主栅线之间,每条细栅线均具有断开区段。本发明的太阳能电池的栅线结构及其应用的太阳能电池,可以在保证电池效率的基础上有效的降低银浆耗量,降低太阳能电池的制备成本。

Description

太阳能电池的栅线结构及其应用的太阳能电池 技术领域
本发明主要涉及太阳能电池领域,尤其涉及一种太阳能电池的栅线结构及其应用的太阳能电池。
背景技术
银(Ag)具有较低的电阻率,可以有效传输载流子,电阻损耗低,在太阳电池和电子行业中被大量使用。但是,Ag作为贵金属,其储量有限,成本较高,在现有的太阳能电池中,Ag的成本约为非硅成本的70%左右。因此,是否可以在保证电池效能的基础上降低银耗量是影响光伏发电成本的主要因素之一。
具体来说,在太阳电池中,Ag作为金属化电极使用,用于导出载流子,并将载流子传输到外电路,具体的工艺上是先把银研磨为微纳米级颗粒,然后与粘合剂、溶剂、助剂等组成的粘稠状的混合物。这些混合物通过丝网印刷的方法印制在电池上,而丝网的图形决定着印刷在电池上的图形,印刷到电池上的浆料通过烘干和烧结形成导电性较好的银电极。
丝网印刷银电池是太阳电池行业一直以来的常用技术,工艺成熟,性能稳定,在可预见的时间内很难被取代,处于绝对优势地位,但是银浆的价格也在逐年提升。其他制备电极的方法有电镀法和银包铜颗粒法,然而电镀法制备的电极一般由Ni/Cu/Ag构成,可以降低银的耗量,但是电镀法会产生大量废液,废液里含有多种阳离子和有毒有机物,不能直接排放,处理成本也较高。在此基础上,银包铜的技术目前还未成熟,还未产业化应用。因此丝网印刷技术仍然并将继续主导着光伏电极的制备,而优化丝网印刷技术,实现降低银耗量当然地成为了领域内的重中之重。
发明内容
本发明要解决的技术问题是提供了一种太阳能电池的栅线结构及其应用的太阳能电池,可以在保证电池效率的基础上有效的降低银浆耗量,降低太阳能电池的制备成本。
为解决上述技术问题,本发明提供了一种太阳能电池的栅线结构,包括沿第一方向延伸且沿第二方向间隔排布的多条主栅线,以及沿所述第二方向延伸且沿所述第一方向间隔排布的多条细栅线,所述第一方向与所述第二方向不平行,且所述多条主栅线分别与所述多条细栅线电性连接,其特征在于,在任意两条相邻的主栅线之间,每条细栅线均具有断开区段。
在本发明的一实施例中,每条细栅线的断开区段在所述第二方向上的长度为断开距离,所述断开距离小于或等于相邻两条细栅线之间间距的两倍。
在本发明的一实施例中,每条细栅线的断开区段的所述断开距离均相等。
在本发明的一实施例中,在任意两条相邻的主栅线之间,奇数序号细栅线的断开区段和偶数序号细栅线的断开区段在所述第一方向上不重合或不完全重合。
在本发明的一实施例中,在任意两条相邻的主栅线之间,任意两条奇数序号细栅线的断开区段在所述第一方向上重合,且任意两条偶数条细栅线的断开区段在所述第一方向上也重合。
在本发明的一实施例中,任意两条相邻的主栅线为第一主栅线和第二主栅线,在所述第一主栅线和第二主栅线之间,任一细栅线的断开区段靠近所述第一主栅线的一端为第一端,其中,任一奇数序号细栅线断开区段的第一端与所述第一主栅线的距离与偶数序号细栅线或另外一奇数序号细栅线断开区段的第一与所述第一主栅线的距离之间的差值为错开距离,当每条细栅线的所述断开距离均相等时,所述错开距离等于所述断开距离。
为了解决以上的问题,本发明还提出了一种太阳能电池,包括基础栅线结构,所述基础栅线结构是上述的栅线结构。
在本发明的一实施例中,太阳能电池还包括补充栅线结构,所述补充栅线结构包括沿第一方向延伸且沿第二方向间隔排布的多条主栅线,以及沿所述第二方向延伸且沿所述第一方向间隔排布的多条细栅线,所述第一方向与所述第二方向不平行,且所述多条主栅线分别与所述多条细栅线电性连接,在任意两条相邻的主栅线之间,仅奇数条细栅线或仅偶数条细栅线具有断开区域。
在本发明的一实施例中,依次排布的任意三条主栅线为第一主栅线、第二主栅线以及第三主栅线,所述第一主栅线与所述第二主栅线之间形成第一区域,所述第二主栅线与所述第三主栅线之间形成第二区域,所述第一主栅线、所述第二主栅 线以及多条细栅线在所述第一区域中的部分具有所述基础栅线结构,所述第二主栅线、所述第三主栅线以及多条细栅线在所述第二区域中的部分具有所述补充栅线结构。
在本发明的一实施例中,依次排布的任意四条主栅线为第一主栅线、第二主栅线、第三主栅线以及第四主栅线,所述第一主栅线与所述第二主栅线之间形成第一区域,所述第二主栅线与所述第三主栅线之间形成第二区域、所述第三主栅线与所述第四主栅线之间形成第三区域,所述第一主栅线、所述第二主栅线、所述第三主栅线以及多条细栅线在所述第一区域和所述第二区域中的部分为所述补充栅线结构,所述第三主栅线、所述第四主栅线以及多条细栅线在所述第三区域中的部分为所述基础栅线结构。
与现有技术相比,本发明具有以下优点:本发明的太阳能电池的栅线结构及其应用的太阳能电池在相邻主栅线之间的每条细栅线设置了断开区段,有效的降低了银浆耗量;在此基础上,将每条栅线的断开区段配置在特定的位置,从而在降低银浆耗量的同时,也可以有效的保证太阳能电池的效率,在整体上降低了太阳能电池的制备成本。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述。包括附图是为提供对本申请进一步的理解,它们被收录并构成本申请的一部分,附图示出了本申请的实施例,并与本说明书一起起到解释本发明原理的作用。附图中:
图1是现有技术中一种太阳能电池栅线结构的示意图;
图2是本发明一实施例的一种太阳能电池栅线结构的示意图;
图3a~5分别是本发明另外一实施例的一种太阳能电池栅线结构的示意图;
图6是本发明一实施例的一种太阳能电池的结构示意图;以及
图7是本发明另外一实施例的一种太阳能电池的结构示意图。
本发明的较佳实施方式
为了更清楚地说明本申请的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请 的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他 器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。此外,尽管本申请中所使用的术语是从公知公用的术语中选择的,但是本申请说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本申请。
应当理解,当一个部件被称为“在另一个部件上”、“连接到另一个部件”、“耦合于另一个部件”或“接触另一个部件”时,它可以直接在该另一个部件之上、连接于或耦合于、或接触该另一个部件,或者可以存在***部件。相比之下,当一个部件被称为“直接在另一个部件上”、“直接连接于”、“直接耦合于”或“直接接触”另一个部件时,不存在***部件。同样的,当第一个部件被称为“电接触”或“电耦合于”第二个部件,在该第一部件和该第二部件之间存在允许电流流动的电路径。该电路径可以包括电容器、耦合的电感器和/或允许电流流动的其它部件,甚至在导电部件之间没有直接接触。
如图1所示,是现有技术中一种太阳能电池栅线结构10的示意图。根据图1,栅线结构10具有两条相邻的主栅线111和112,在两条主栅线111和112之间,具有多条细栅线12,上述的主栅线和细栅线均排布在硅片上(为了保持附图的简洁,硅片未在图1中示出)。在此基础上,每两条细栅线12之间也均有“H”型线13使相邻的两条细栅线12相连。如上所述,采用如图1所示的栅线结构10,虽然可以保证太阳能电池的光电转化效率,但是由于制备多条栅线,尤其是其中的多条细栅线12,需要耗费大量的银浆,提高了太阳能电池的制备成本,这也正是本发明所要解决的问题。
本发明的一实施例提出了一种太阳能电池的栅线结构,可以在保证电池效率的基础上有效的降低银浆耗量,降低太阳能电池的制备成本。
如图2所示,是在该实施例中太阳能电池的栅线结构20的示意图。根据 图2,栅线结构20包括沿第一方向X延伸且沿第二方向Y间隔排布的多条主栅线21,在图2中示出了其中相邻的两条主栅线211和212。
另一方面,栅线结构20还包括沿第二方向Y延伸且沿第一方向X间隔排布的多条细栅线22。根据图2可以看出的是,第一方向X与第二方向Y不平行。更具体的,在图2所示的实施例中,第一方向X垂直于第二方向Y,但是本发明不以此为限。在此基础上,多条主栅线21(例如是图中的主栅线211和212)分别与多条细栅线22电性连接。
特别地,在本发明如图2所示的实施例中,在主栅线211和212之间,每条细栅线22均具有断开区段220。与图1所示的未断开的栅线结构10相比,每条细栅线22上设置的断开区段220在整体上有效的减少了银浆耗量,节约了太阳能电池的制备成本。
根据图2,栅线结构20的每条细栅线的断开区段220在第二方向Y上的长度为断开距离d(即图2中Y方向的虚线示出的距离)。在本发明的一些实施例中,该断开距离d小于或等于相邻两条细栅线之间间距a的两倍,采用这样的参数设置可以使本发明的栅线结构在节约银浆耗量的同时,尽量降低对采用本发明栅线结构的电池的效率影响。
进一步的,考虑到所制备的太阳能电池的外观以及制备的工艺,在如图2所示的实施例中,每条细栅线22的断开区段220的断开距离d均相等。并且,在相邻的主栅线211和212之间,所有细栅线22的断开区段在第一方向X上重合。
然而,本发明并不在所有的实施例中对于各细栅线的断开区段的距离是否相等以及在第一方向X上是否重合做出限制。例如,在本发明的一些其他的实施例中,所有细栅线22的断开区段在第一方向X上不重合或不完全重合,以及各条细栅线的断开距离并不必然相等。图3a~图5分别示出了不完全重合直至不重合的不同的情况,下面参照图3a~图5对于断开区段的排布的特定位置做出说明。为了便于说明,图3a~图5选取了断开区段的断开距离d相等的情况。
在图3a所示的实施例中,栅线结构30具有多条主栅线31,其中图3a示出的为两条相邻的主栅线311和312以及多条细栅线32。在多条细栅线32中, 细栅线321和细栅线323为其中两条奇数序号细栅线。在图3a中,与所有奇数序号细栅线相邻的细栅线则为偶数序号细栅线,例如细栅线322。并且,所有奇数序号细栅线和偶数序号细栅线在相邻的主栅线311和312之间均具有断开区段,例如奇数序号细栅线321和323的断开区段3210和3230,以及偶数序号细栅线322的断开区段3220。
可以看出的是,与图2所示的栅线结构20相比,栅线结构30中相邻的两条主栅线311和312之间的多条细栅线32也均具有断开区段,只是各条细栅线32的断开区段在第一方向X上不完全重合。具体的,在如图3a所述的实施例中,参照X方向的辅助虚线,栅线结构30特别描述为奇数序号细栅线(例如细栅线321)的断开区段(例如断开区段3210)和偶数序号细栅线(例如细栅线322)的断开区段(例如断开区段3220)在第一方向X上不完全重合。
进一步具体的,在如图3a所示的实施例中,在相邻的主栅线311和312之间,任意两条奇数序号细栅线(例如是细栅线321和323)的断开区段(相应的为断开区段3210和3230),根据图3a中的虚线所示,在第一方向X上重合。相同的,虽然为了附图的简洁在图3a中未明确标记,但是任意两条偶数序号细栅线的断开区段在第一方向X上也重合。然而本发明不以此为限,例如,在本发明其他的一些实施例中,任意两条奇数序号细栅线的断开区段或任意两条偶数序号细栅线在第一方向X上不必然重合。
最后,关于图3a中的标记t和d以及图3b将在下文进一步详细说明。
图4示出了另外一个细栅线断开区段不重合的栅线结构40的实施例。在栅线结构40中,任意两条相邻的主栅线41分别为第一主栅线411和第二主栅线412,在第一主栅线411和第二主栅线412之间,任一细栅线42(例如是细栅线421和422)的断开区段(为了附图的简洁,在图4中未再特别示出断开区段,可以参考上述根据图2和图3a的说明)靠近第一主栅线421的一端为第一端(分别为第一端4211和4221)。
进一步的,在图4中,细栅线421为奇数序号细栅线,而细栅线422为偶数序号细栅线。奇数序号细栅线421断开区段的第一端4211和第一主栅线411的距离、与偶数序号细栅线422断开区段的第一端4221和第一主栅线411的距离之间的差值为错开距离t。如上所述,在图4所示的实施例中,每条细栅 线42的断开距离d均相等,而上述错开距离t等于断开距离d。采用如图4所示的结构,可以在降低银浆耗量从而降低太阳能电池的制备成本的同时,获得更好的电池效率,此效果将在下文进一步的解释以及验证。
相似的,由于在图3a所示的实施例中,栅线结构30中的各条细栅线32的断开区段在第一方向X上也不完全重合,奇数序号细栅线(例如是细栅线321)与偶数序号细栅线(例如是细栅线322)在第一方向X上也有错开距离t,但是在图3a所示的实施例中,错开距离t仅为断开距离d的一半。
进一步的,在本发明的一些实施例中,如图3b所示,在栅线结构30’中,在两条相邻的主栅线313和314之间具有奇数序号细栅线323和325,以及偶数序号细栅线324。在如图3b所示的实施例中,是奇数序号细栅线323和另外一条奇数序号细栅线325之间具有错开距离t。本发明不对具有错开距离的细栅线是奇数序号细栅线或偶数序号细栅线做出限制。
进一步的,图5示出了细栅线的断开区段在第一方向X上完全不重合的栅线结构50的实施例。栅线结构50也具有多条主栅线51,其中任意两条主栅线511和512之间的多条细栅线52均具有断开区段,且在图5所示的实施例中,明显地,错开距离t大于断开距离d。其他关于图5所示的栅线结构50的细节可以参考上述对于图2~图4的说明,在此不再赘述。
上述参考图2~图5示出的栅线结构20~50为本发明细栅线全部断开的不同示例,各栅线结构的不同之处在于断开区段的位置、以及断开区段与错开距离之间的大小存在差异。以边长为158.75mm的太阳能电池为例,仅改变栅线的结构,随着错开距离的增加,效率先增加后减小,以断开距离d=2mm为例,随着错开距离t的改变,对应图2~图5的各栅线结构所制备的太阳能电池的效率数据如下表所示,在表1中的Baseline为如图1所示的无细栅线断开的参考结构:
分组 Voc Isc FF Eff
Baseline 709.348509 39.192504 82.268551 22.871598
栅线结构20 710.128805 39.271922 81.745977 22.797419
栅线结构30 710.209291 39.274807 81.800794 22.816968
栅线结构40 710.171149 39.271922 81.873599 22.834372
栅线结构50 710.176769 39.271922 81.856122 22.829678
表1:不同栅线结构制备的太阳能电池的性能比较
其中,Voc为开路电压,Isc为短路电流,FF为填充因子,Eff为光电转化效率。各分组的控制条件如下:
Baseline:d=0,t=0;
栅线结构20:d=2mm,t=0;
栅线结构30:d=2mm,t=1mm;
栅线结构40:d=2mm,t=2mm;
栅线结构50:d=2mm,t=4mm。
可以看出,随着错开距离t的增加,效率先增加后减小,当错开距离t刚好等于断开距离d时,具有最高的效率。也即如上所述,图4示出的栅线结构40在同等条件下可以具有更高的效率。此优选的效率仅与如图1所示的无断开情况参考案例的Baseline相差小于0.05%,但是在制备太阳能电池时,银耗的成本却可以节约15%左右。由此可见,采用本发明的太阳能电池的栅线结构,可以在保证电池效率的基础上有效的降低银浆耗量,从而降低太阳能电池的制备成本。
另一方面,为了进一步证实本发明的太阳能电池栅线结构的技术效果,还将本发明与当本发明与现有技术中在任意相邻主栅线之间细栅线未全部断开的对比结构(Baseline)进行比较。当对比结构与本发明的栅线结构所节约银耗相等时,例如,选取对比结构的一断开距离为2mm,与本发明上述栅线结构30的结构进行比对,即本发明d=1mm,t=0的情况。通过实验分析可以得出,本发明的栅线结构所制备的太阳能电池的效率优于对比结构的效率,结果如下:
分组 Voc Isc FF Eff
Baseline 709.348509 39.192504 82.268551 22.871598
本发明结构 710.007267 39.244590 82.158923 22.892716
对比结构 709.923955 39.244590 82.078330 22.867576
表2:本发明栅线结构与对比结构制备的太阳能电池的性能比较
通过以上的说明,特别是实验数据分析结果可知,采用本发明的太阳能电池的栅线结构,可以在保证电池效率的基础上,有效的降低银浆耗量,从而降 低太阳能电池的制备成本。同时,相较于其他具有节省银浆耗量构思的对比结构,所制备的太阳能电池的效率也具有更好的表现。
在以上栅线结构的基础上,本发明的另一方面还提出了一种太阳能电池。该太阳能电池中首先包括基础栅线结构,而基础栅线结构为上述参照图2~图5说明的两条相邻主栅线之间的所有细栅线均具有断开区段的栅线结构。除此之外,在本发明的一些太阳能电池的实施例中,出了上述的基础栅线结构,还包括补充栅线结构。
如图6所示,为本发明一实施例的一种太阳能电池60的结构示意图。太阳能电池60中具有上述基础栅线结构以及补充栅线结构,下面结合图6展开说明。
根据图6,太阳能电池60中具有多条主栅线61以及多条细栅线62,其中,依次排布的三条主栅线分别为第一主栅线611、第二主栅线612以及第三主栅线613。根据图6,第一主栅线611与第二主栅线612之间形成第一区域601,第二主栅线612与第三主栅线613之间形成第二区域602。特别的,第一主栅线611、第二主栅线612以及多条细栅线62在第一区域601中的部分具有基础栅线结构63。图6示出的第一区域601中的基础栅线结构63具体为上述图2中示出的栅线结构20。但是本发明不以此为限,例如,在本发明的一些实施例中,基础栅线结构还可以是图3a~图5中示出的栅线结构30~50。
进一步的,在图6中,第二主栅线612与第三主栅线613以及多条细栅线62在第二区域602中的部分具有补充栅线结构64。从图6中可以看出的是,补充栅线结构64包括沿第一方向X延伸且沿第二方向Y间隔排布的主栅线612和613,以及沿第二方向Y延伸且沿第一方向X间隔排布的多条细栅线62。相似的,在图6中,第一方向X与第二方向Y不平行,更具体的为垂直关系,但是本发明不以此为限。
基于这样的结构,主栅线612和613分别与多条细栅线62电性连接,且在这两条主栅线612和613之间,仅奇数序号细栅线或仅偶数序号细栅线具有断开区域。在图6中,如细栅线621为奇数序号细栅线,则细栅线622为偶数序号细栅线,在图6所示的实施例中,补充栅线结构64中仅偶数序号细栅线具有断开区段620。
在如图6所示的实施例中,基础栅线结构63和补充栅线结构64是间隔排列的。可以理解的是,图6示出的仅仅是太阳能电池60的其中一部分,在太阳能电池60的其他未示出的任意两条主栅线之间,也形成了如图6所示的基础栅线结构63或补充栅线结构64。并且,对于如图6所示的基础栅线结构63和补充栅线结构64中的断开区段的特定位置,本发明不做出限制。
从图6所示的太阳能电池60的优势的角度,如果一块电池全部采用基础栅线结构,也即将任意两条主栅线之间的细栅线全部断开,虽然可以在很大程度上降低银耗用量,但是也具有一定的局限性。特别是在电池测试的应用场景下,IV和EL测试结果显示,这样全部断开的设计有时会影响电池的测试结果。因此,细栅线全部断开的太阳能电池在应用过程中仍然存在一定的局限性。
具体来说,当测试时的探针接触不到电池或探针与电池接触不良时,太阳能电池的EL测试会出现明显的黑块。这些黑块主要是因为细栅线全部断开的设计让每一条主栅线及与其相连的细栅线都是相互独立的,由此一来,当某一条主栅线上的测试探针不与主栅接触或接触不良时,该位置的电流不能有效传输出来,造成IV测试时效率降低,或者在EL测试时局部出现黑块。
采用本发明如图6所示的基础栅线结构和补充栅线结构间隔排列的结构设计,太阳能电池60相较于全部为基础栅线结构的电池,在具有节省银浆耗量的有益效果的基础上,还能进一步的改善电池测试时可能造成的黑块问题。
在本发明的另外一实施例中,如图7所示,太阳能电池70也具有多条主栅线71和多条细栅线72,其中,选取依次排布的任意四条主栅线为第一主栅线711、第二主栅线712、第三主栅线713以及第四主栅线714,第一主栅线711与第二主栅线712之间形成第一区域701,第二主栅线712与第三主栅线713之间形成第二区域702、以及第三主栅线713与第四主栅线714之间形成第三区域703。
其中,第一主栅线711、第二主栅线712、第三主栅线713以及多条细栅线72在第一区域701和第二区域702中的部分为补充栅线结构74,该补充栅线结构74的具体特征可以参考上述对照图6的补充栅线结构64的说明,在此不再赘述。而第三主栅线713、第四主栅线714以及多条细栅线72在第三区域703中的部分为基础栅线结构73,该基础栅线结构73也可以参考上述参照图 2~图5的说明,在此不再赘述。
与图6所示的实施例相比,太阳能电池70中也具有基础栅线结构和补充栅线结构间隔排布的结构设计,但是其间隔的方式与太阳能电池60有所不同。在太阳能电池70中,每两个补充栅线结构74后接续一个基础栅线结构73,以此作为基础的栅线结构组合。而在图6所示的太阳能电池60中,可以认为基础的栅线结构组合为一个基础栅线结构73后接续一个补充栅线结构74。根据实验结果的比较,相较于图6所示的太阳能电池60,太阳能电池70对于电池测试应用场景中的黑块问题具有更好的改善效果。
本发明参考图2~图5所述栅线结构可以在保证电池效率的基础上有效的节省制备太阳能电池时的银浆耗量。在此基础上,本发明另一方面提出的太阳能电池,在一些实施例中如图6和图7所示,在保证效率并节省银浆耗量的基础上,还可以进一步改善电池测试应用场景下的黑块问题,
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用 于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
虽然本申请已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本申请,在没有脱离本申请精神的情况下还可作出各种等效的变化或替换,因此,只要在本申请的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (10)

  1. 一种太阳能电池的栅线结构,包括沿第一方向延伸且沿第二方向间隔排布的多条主栅线,以及沿所述第二方向延伸且沿所述第一方向间隔排布的多条细栅线,所述第一方向与所述第二方向不平行,且所述多条主栅线分别与所述多条细栅线电性连接,其特征在于,在任意两条相邻的主栅线之间,每条细栅线均具有断开区段。
  2. 如权利要求1所述的栅线结构,其特征在于,每条细栅线的断开区段在所述第二方向上的长度为断开距离,所述断开距离小于或等于相邻两条细栅线之间间距的两倍。
  3. 如权利要求2所述的栅线结构,其特征在于,每条细栅线的断开区段的所述断开距离均相等。
  4. 如权利要求2或3所述的栅线结构,其特征在于,在任意两条相邻的主栅线之间,奇数序号细栅线的断开区段和偶数序号细栅线的断开区段在所述第一方向上不重合或不完全重合。
  5. 如权利要求4所述的栅线结构,其特征在于,在任意两条相邻的主栅线之间,任意两条奇数序号细栅线的断开区段在所述第一方向上重合,且任意两条偶数条细栅线的断开区段在所述第一方向上也重合。
  6. 如权利要求5所述的栅线结构,其特征在于,任意两条相邻的主栅线为第一主栅线和第二主栅线,在所述第一主栅线和第二主栅线之间,任一细栅线的断开区段靠近所述第一主栅线的一端为第一端,其中,任一奇数序号细栅线断开区段的第一端与所述第一主栅线的距离与偶数序号细栅线或另外一奇数序号细栅线断开区段的第一与所述第一主栅线的距离之间的差值为错开距离,当每条细栅线的所述断开距离均相等时,所述错开距离等于所述断开距离。
  7. 一种太阳能电池,其特征在于,包括基础栅线结构,所述基础栅线结构是如权利要求1-6任一所述的栅线结构。
  8. 如权利要求7所述的太阳能电池,其特征在于,还包括补充栅线结构,所述补充栅线结构包括沿第一方向延伸且沿第二方向间隔排布的多条主栅线,以及沿所述第二方向延伸且沿所述第一方向间隔排布的多条细栅线,所述第一方向与所述第二方向不平行,且所述多条主栅线分别与所述多条细栅线电性连接, 在任意两条相邻的主栅线之间,仅奇数序号细栅线或仅偶数序号细栅线具有断开区段。
  9. 如权利要求8所述的太阳能电池,其特征在于,依次排布的任意三条主栅线为第一主栅线、第二主栅线以及第三主栅线,所述第一主栅线与所述第二主栅线之间形成第一区域,所述第二主栅线与所述第三主栅线之间形成第二区域,所述第一主栅线、所述第二主栅线以及多条细栅线在所述第一区域中的部分具有所述基础栅线结构,所述第二主栅线、所述第三主栅线以及多条细栅线在所述第二区域中的部分具有所述补充栅线结构。
  10. 如权利要求8所述的太阳能电池,其特征在于,依次排布的任意四条主栅线为第一主栅线、第二主栅线、第三主栅线以及第四主栅线,所述第一主栅线与所述第二主栅线之间形成第一区域,所述第二主栅线与所述第三主栅线之间形成第二区域、所述第三主栅线与所述第四主栅线之间形成第三区域,所述第一主栅线、所述第二主栅线、所述第三主栅线以及多条细栅线在所述第一区域和所述第二区域中的部分为所述补充栅线结构,所述第三主栅线、所述第四主栅线以及多条细栅线在所述第三区域中的部分为所述基础栅线结构。
PCT/CN2022/112716 2021-08-17 2022-08-16 太阳能电池的栅线结构及其应用的太阳能电池 WO2023020469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110944458.2A CN113471309A (zh) 2021-08-17 2021-08-17 太阳能电池的栅线结构及其应用的太阳能电池
CN202110944458.2 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023020469A1 true WO2023020469A1 (zh) 2023-02-23

Family

ID=77866734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112716 WO2023020469A1 (zh) 2021-08-17 2022-08-16 太阳能电池的栅线结构及其应用的太阳能电池

Country Status (2)

Country Link
CN (1) CN113471309A (zh)
WO (1) WO2023020469A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471309A (zh) * 2021-08-17 2021-10-01 天合光能股份有限公司 太阳能电池的栅线结构及其应用的太阳能电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072637A (ja) * 2014-09-30 2016-05-09 エルジー エレクトロニクス インコーポレイティド 太陽電池及びそれを含む太陽電池パネル
US20160322527A1 (en) * 2015-04-30 2016-11-03 Lg Electronics Inc. Solar cell and solar cell panel including the same
US20170162722A1 (en) * 2015-12-08 2017-06-08 Solarcity Corporation Photovoltaic structures with electrodes having variable width and height
CN111403500A (zh) * 2020-02-28 2020-07-10 浙江硕克科技有限公司 一种太阳能电池电极
CN212967720U (zh) * 2020-09-08 2021-04-13 东方日升(常州)新能源有限公司 一种太阳能电池金属电极结构及电池组件
CN113471309A (zh) * 2021-08-17 2021-10-01 天合光能股份有限公司 太阳能电池的栅线结构及其应用的太阳能电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072637A (ja) * 2014-09-30 2016-05-09 エルジー エレクトロニクス インコーポレイティド 太陽電池及びそれを含む太陽電池パネル
US20160322527A1 (en) * 2015-04-30 2016-11-03 Lg Electronics Inc. Solar cell and solar cell panel including the same
US20170162722A1 (en) * 2015-12-08 2017-06-08 Solarcity Corporation Photovoltaic structures with electrodes having variable width and height
CN111403500A (zh) * 2020-02-28 2020-07-10 浙江硕克科技有限公司 一种太阳能电池电极
CN212967720U (zh) * 2020-09-08 2021-04-13 东方日升(常州)新能源有限公司 一种太阳能电池金属电极结构及电池组件
CN113471309A (zh) * 2021-08-17 2021-10-01 天合光能股份有限公司 太阳能电池的栅线结构及其应用的太阳能电池

Also Published As

Publication number Publication date
CN113471309A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2023020469A1 (zh) 太阳能电池的栅线结构及其应用的太阳能电池
EP2709162A1 (en) Photovoltaic cell and photovoltaic cell module based thereon
CN102709370B (zh) 太阳电池及太阳电池模块
US20140209158A1 (en) Solar cell
EP4195295A1 (en) Solar battery metal electrode structure and battery assembly
KR20110122176A (ko) 태양전지 모듈
EP2824712A1 (en) Back contact solar cell
EP3136594A1 (en) Photovoltaic junction box
CN106449608A (zh) 半导体模块
CN203415589U (zh) 太阳能电池片的栅线结构
CN108574048A (zh) 一种新型钙钛矿太阳能电池模块
CN103715279B (zh) 一种太阳能电池片的正极栅线结构
CN104339826A (zh) 一种太阳能电池主栅镂空正电极网版
CN104218102A (zh) 太阳能电池及其模组
CN105122459A (zh) 无母线背接触式太阳能电池及其太阳能模块和制造方法
CN103337526A (zh) 一种太阳能电池正面电极布局结构
CN215731737U (zh) 太阳能电池的栅线结构及其应用的太阳能电池
CN201788828U (zh) 钽质固态电容
CN205542817U (zh) 太阳能电池组件
CN206301807U (zh) 光伏组件
CN204706601U (zh) 一种铅酸蓄电池
CN202905727U (zh) 一种太阳能电池正面电极布局结构
US20140230879A1 (en) Photovoltaic module
CN204577446U (zh) 一种背钝化太阳能电池的背面钝化模开槽结构
CN105848404B (zh) 电动工具及其电路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022857781

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022857781

Country of ref document: EP

Effective date: 20240314