WO2023019447A1 - 控制阀结构、其使用方法、微流控芯片及核酸提取装置 - Google Patents

控制阀结构、其使用方法、微流控芯片及核酸提取装置 Download PDF

Info

Publication number
WO2023019447A1
WO2023019447A1 PCT/CN2021/113108 CN2021113108W WO2023019447A1 WO 2023019447 A1 WO2023019447 A1 WO 2023019447A1 CN 2021113108 W CN2021113108 W CN 2021113108W WO 2023019447 A1 WO2023019447 A1 WO 2023019447A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
control valve
channel layer
layer
limiting hole
Prior art date
Application number
PCT/CN2021/113108
Other languages
English (en)
French (fr)
Inventor
范蓓媛
徐为峰
丁丁
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/113108 priority Critical patent/WO2023019447A1/zh
Priority to CN202180002188.1A priority patent/CN116209850A/zh
Priority to US17/790,332 priority patent/US20240175521A1/en
Publication of WO2023019447A1 publication Critical patent/WO2023019447A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0015Diaphragm or membrane valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/16Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being mechanically actuated, e.g. by screw-spindle or cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • F16K99/0046Electric operating means therefor using magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology

Definitions

  • the present disclosure relates to the field of microfluidic technology, and in particular to a control valve structure, a method for using it, a microfluidic chip, and a nucleic acid extraction device.
  • microfluidic chip originally originated from the micro total analysis system ( ⁇ TAS) proposed by Manz and Widmer in the 1990s. Professor Manz successfully applied MEMS technology to the field of analytical chemistry, and soon realized high-speed capillary electrophoresis on a microchip. The results were published in journals such as "Science”.
  • Lab on a chip Lab on a chip
  • microfluidic chip Microfluidic Chip
  • a control valve structure, a method for using it, a microfluidic chip and a nucleic acid extraction device provided in the embodiments of the present disclosure, the specific scheme is as follows:
  • an embodiment of the present disclosure provides a control valve structure, including:
  • the cover layer includes at least one first limiting hole
  • the first channel layer is opposite to the cover layer, and the first channel layer has a second limit hole at a position corresponding to the first limit hole;
  • the first adhesive layer is located on the side of the first channel layer away from the cover layer, the first adhesive layer has a first through hole at a position corresponding to the second limiting hole, the first adhesive layer A through hole communicates with the corresponding second limiting hole;
  • the second channel layer is located on the side of the first glue layer away from the first channel layer, and the second channel layer includes a liquid outlet channel communicated with all the first through holes;
  • At least one spool moves in the space defined by the corresponding first limiting hole and the second limiting hole;
  • At least one elastic membrane is respectively located on the side of each valve core close to the second limiting hole; when at least part of the valve core is located in the first limiting hole, the elastic membrane seals the The first limit hole, so that the second limit hole, the first through hole and the liquid outlet channel form a sample liquid flow channel; at least part of the valve core is located in the second limit hole When inside, the elastic membrane seals the second limiting hole to block the flow channel of the sample solution.
  • the area of the orthographic projection of the first limiting hole on the plane where the first channel layer is located is within Orthographic projection areas on the plane where the first channel layer is located are approximately the same.
  • the area of the orthographic projection of the valve core on the plane where the first channel layer is located is the same as that of the second limiting hole in the first
  • the orthographic projection areas on the plane where a channel layer is located are approximately the same.
  • the area of the orthographic projection of the first through hole on the plane where the first channel layer is located is smaller than the area of the second limiting hole on the plane where the first channel layer is located. The area of the orthographic projection on the plane where the first channel layer is located.
  • the cover layer further includes a first sampling port, and the first sampling port is located in the area where all the first limiting holes are located. same side of
  • the first channel layer further includes a second through hole communicating with the first sample inlet, and a first liquid inlet channel communicating with the second through hole and the second limiting hole.
  • the cover layer further includes a second sampling port, and the second sampling port is located at the first sampling port The opposite side of the area where the first limiting hole is located;
  • the first channel layer also includes a third through hole communicating with the second injection port
  • the first adhesive layer further includes a fourth through hole communicating with the third through hole, and a fifth through hole located between the area where the fourth through hole is located and the area where all the first through holes are located, Wherein, the fifth through hole and the adjacent first through hole are covered by the same second limiting hole;
  • the second channel layer further includes a second liquid inlet channel communicating with the fourth through hole and the fifth through hole.
  • the distance between the fifth through hole and the adjacent first through hole is 1mm-3mm.
  • the fifth through hole and the first through hole are cylindrical holes, and the fifth through hole and the first through hole The diameter is 0.5mm-2mm.
  • the first adhesive layer includes a lower adhesive layer, a release film, and an upper adhesive layer that are laminated, wherein the lower adhesive layer and the upper adhesive layer The second channel layer is contact-bonded, the upper glue layer is contact-bonded with the first channel layer, the lower glue layer includes a first via hole, a second via hole and a third via hole, the The release film includes a fourth via hole, a fifth via hole, and a sixth via hole, and the adhesive layer includes a seventh via hole, an eighth via hole, and a ninth via hole, wherein the first via hole, the via hole The fourth via hole and the seventh via hole communicate with each other to form the first via hole, and the second via hole, the fifth via hole and the eighth via hole communicate with each other to form the fourth via hole. holes, the third via hole, the sixth via hole and the ninth via hole communicate with each other to form the fifth via hole.
  • the release film further includes a tenth via hole
  • the lower adhesive layer further includes an eleventh via hole
  • the tenth via hole Interconnected with the eleventh via hole, the orthographic projection of the tenth via hole on the plane where the first channel layer is located, and the eleventh via hole on the plane where the first channel layer is located.
  • the above-mentioned control valve structure provided by the embodiments of the present disclosure further includes: a second adhesive layer for bonding the cover layer and the first channel layer, and the second adhesive layer
  • the layer includes a twelfth via hole communicating with the first injection port and the second through hole, a thirteenth via hole communicating with the second injection port and the third via hole, and accommodating the Accommodating holes for the elastic membrane.
  • the thickness of the second adhesive layer is approximately equal to the thickness of the elastic film equal.
  • the cover layer includes a groove surrounding the first limiting hole, and the groove is located where the first channel layer is located.
  • the orthographic projection on the plane overlaps with the orthographic projection of the elastic film on the plane where the first channel layer is located.
  • the groove includes a first groove and/or a second groove, wherein the first groove is located on the cover layer On the side away from the first channel layer, the second groove is located on the side of the cover layer facing the first channel layer, and the first groove is on the side of the first channel layer
  • the area of the orthographic projection on the plane where the elastic film is located is approximately the same as the area of the orthographic projection of the elastic film on the plane where the first channel layer is located, and the orthographic projection area of the second groove on the plane where the first channel layer is located Located in the orthographic projection of the elastic film on the plane where the first channel layer is located.
  • the boundary of the orthographic projection of the second groove on the plane where the first channel layer is located is the same as that of the elastic film on the first channel layer.
  • the distance between the orthographic projection boundaries on the plane where the channel layer is located is 0.5mm-1.0mm.
  • the depth of the first groove in the vertical direction of the plane where the first channel layer is located, is 0.8mm-1.2mm, so The depth of the second groove is 10 ⁇ m-50 ⁇ m.
  • the above-mentioned control valve structure provided by the embodiments of the present disclosure further includes a protective film on the side of the cover layer away from the first channel layer, and the protective film is connected to the first channel layer.
  • the two grooves are arranged correspondingly, and the orthographic projection of the second groove on the plane of the first channel layer is located within the orthographic projection of the protective film on the plane of the first channel layer.
  • an embodiment of the present disclosure provides a method for using the above control valve structure, including:
  • At least part of the control valve core is located in the first limiting hole, so that the elastic film seals the first limiting hole, and the sample liquid is injected into the liquid outlet channel from the second limiting hole through the first through hole;
  • control valve core while at least part of the control valve core is located in the first limiting hole, it also includes: the first injection port, the second The through hole and the first liquid inlet channel inject sample liquid into the second limiting hole.
  • control valve core while at least part of the control valve core is located in the first limiting hole, it also includes:
  • the sample liquid is injected into the second limiting hole through the second sample inlet, the third through hole, the fourth through hole, the second liquid inlet channel and the fifth through hole which are arranged in communication.
  • an embodiment of the present disclosure provides a microfluidic chip, including the above-mentioned control valve structure provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a nucleic acid extraction device, including a microfluidic chip and an electromagnet, wherein the microfluidic chip is the aforementioned microfluidic chip provided in an embodiment of the present disclosure, and the electromagnet It is located on the side of the second channel layer away from the cover layer.
  • FIG. 1 is a schematic diagram of a control valve structure in the related art in an open state
  • FIG. 2 is a schematic diagram of a control valve structure in the related art in a closed state
  • FIG. 3 is a schematic diagram of a laminated structure of a control valve structure provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the control valve structure provided by an embodiment of the present disclosure in an open state
  • FIG. 5 is a schematic diagram of a control valve structure provided by an embodiment of the present disclosure in a closed state
  • FIG. 6 is another schematic diagram of the control valve structure provided by the embodiment of the present disclosure in an open state
  • Fig. 7 is another schematic diagram of the control valve structure provided by the embodiment of the present disclosure in a closed state
  • FIG. 8 is a flowchart of a method for using a control valve structure provided by an embodiment of the present disclosure
  • Fig. 9 is a schematic structural diagram of a nucleic acid extraction device provided by an embodiment of the present disclosure.
  • FIGs 1 and 2 are schematic diagrams of a control valve structure in the related art, specifically including a channel plate 1, a cover plate 2, an iron block 3 and an elastic protective film 4, wherein the cover plate 2 has a structure for accommodating the iron block 3 storage tank 01.
  • the control valve When the control valve is opened, the iron block 3 is not subjected to the magnetic force, and the iron block 3 is completely located in the holding tank 01, and the sample liquid can pass through without hindrance, as shown in Figure 1;
  • the control valve is closed, the iron block 3 is subjected to downward force Under the action of the magnetic force, the iron block 3 in the accommodating tank 01 is absorbed, and the elastic protective film 4 bends and deforms downward under pressure to block the flow of the sample liquid, as shown in FIG. 2 .
  • the iron block is likely to be displaced, resulting in the control valve not being tightly closed and causing a liquid leakage problem.
  • an embodiment of the present disclosure provides a control valve structure, as shown in Fig. 3 to Fig. 5 , including:
  • the cover layer 101 includes at least one first limiting hole 1011;
  • the first channel layer 102 is located opposite to the cover layer 101, and the first channel layer 102 has a second limiting hole 1021 at a position corresponding to the first limiting hole 1011;
  • the first adhesive layer 103 is located on the side of the first channel layer 102 away from the cover layer 101.
  • the first adhesive layer 103 has a first through hole 1031 at a position corresponding to the second limiting hole 1021, and the first through hole 1031 communicates with the corresponding second limiting hole 1021;
  • the second channel layer 104 is located on the side of the first adhesive layer 103 away from the first channel layer 102, and the second channel layer 104 includes a liquid outlet channel 1041 communicating with all the first through holes 1031;
  • At least one spool 105 moves in the space defined by the corresponding first limiting hole 1011 and the second limiting hole 1021;
  • At least one elastic membrane 106 is respectively located on the side of each valve core 105 close to the second limiting hole 1021;
  • the elastic film 106 seals the first limiting hole 1011, so that the second limiting hole 1021, the first through hole 1031 and the liquid outlet channel 1041 form a sample liquid flow channel; or all) are located in the second limiting hole 1021, the elastic membrane 106 seals the second limiting hole 1021, so as to block the flow channel of the sample liquid.
  • the movable space of the valve core 105 is defined jointly by the first limiting hole 1011 of the cover layer 101 and the second limiting hole 1021 of the first channel layer 102, and
  • the first through hole 1031 and the liquid outlet channel 1041 communicated with it are arranged below the second limiting hole 1021 to form a sample liquid flow channel, so that the inlet and outlet of the sample liquid flow channel and the valve control space are not on the same floor, so that when the control valve is closed
  • at least part of the valve core 105 (that is, part or all of the valve core 105) is located in the second limiting hole 1021 without displacement, and the elastic film 106 seals the second limiting hole 1021 to block the flow of sample liquid channel, thereby greatly improving the leakage problem;
  • the elastic film 106 seals the first limiting hole 1011, and the second limiting hole 1011
  • a smaller and lighter valve core 105 can be selected, such as a steel column. Moreover, since the smaller and lighter spool 105 will not cause deformation of the elastic membrane 106, when the control valve is opened, the spool 105 can be completely located in the first limiting hole 1011, or can be partially located in the first limiting hole 1011. Inside the hole 1011 (that is, the valve core 105 protrudes from the first limiting hole 1011).
  • the spool 105 presses down on the elastic film 106, as long as the elastic film 106 can seal the second limiting hole 1021. Therefore, the spool 105 can be partially located in the second limiting hole 1021 (such as As shown in FIG. 5 ), it can also be completely located in the second limiting hole 1021.
  • the height of the valve core 105 may be 1mm-3mm.
  • the area of the orthographic projection of the first limiting hole 1011 on the plane of the first channel layer 102 may be approximately the same as the area of the orthographic projection of the second limiting hole 1021 on the plane of the first channel layer 102 .
  • control valve structure due to the limitation of process conditions or the influence of other factors such as measurement, “approximately” may be completely the same, or there may be some deviations, so the differences between each feature As long as the “roughly” relationship among them is allowed by the error (for example, the fluctuation of 10% up and down), they all belong to the protection scope of the present disclosure.
  • the orthographic projection area of the positioning hole 1021 on the plane where the first channel layer 102 is located is approximately the same, so as to ensure that the valve core 105 can pass through the second limiting hole 1021 and the first limiting hole which is similar in size to the second limiting hole 1021 1011, and because the valve core 105 is similar in size to the second limiting hole 1021, it can effectively prevent the valve core 105 from being displaced when moving between the first limiting hole 1011 and the second limiting hole 1021.
  • the valve core 105 can be a steel column, and the first limiting hole 1011 and the second limiting hole 1021 can be cylindrical holes. At this time, the valve core 105, the first limiting hole 1011 and the second limiting hole The diameter of the position hole 1021 may be 5mm-8mm.
  • the first through hole 1031 of the first adhesive layer 103 is located
  • the area of the orthographic projection is smaller than the area of the orthographic projection of the second limiting hole 1021 on the plane where the first channel layer 102 is located.
  • the position of the first sample inlet 1012 can be selected according to the size of the space around the area where the first limiting hole 1011 is located in the cover layer 101, as shown in FIG. 3, when the space on both sides of the first limiting hole 1011 in the X direction is large, and the space on both sides in the Y direction is small, in order to facilitate processing, the first sample inlet 1012 can be set at the first limiting hole 1011.
  • One side of the bit hole 1011 in the X direction for example, the right side shown in FIG. 3 );
  • the first channel layer 102 may further include a second through hole 1022 communicating with the first sample inlet 1012 , and a first liquid inlet channel 1023 communicating with the second through hole 1022 and the second limiting hole 1021 .
  • the sample liquid is injected from the first sample inlet 1012 , it flows through the second through hole 1022 and the first liquid inlet channel 1023 in sequence, and then reaches the second limiting hole 1021 .
  • the control valve is opened, at least part of the valve core 105 is located in the first limiting hole 1011, the elastic film 106 seals the first limiting hole 1011, and the sample solution at the second limiting hole 1021 is injected out through the first through hole 1031.
  • the liquid channel 1041 flows out.
  • the control valve is closed, at least part of the valve core 105 is located in the second limiting hole 1021 , the elastic membrane 106 seals the second limiting hole 1021 , and the sample liquid at the second limiting hole 1021 cannot flow.
  • the control valve is a top-in and bottom-out type valve.
  • FIG. 6 and FIG. 1013 is located on the opposite side of the first sample inlet 1012 in the area where all the first limiting holes 1011 are located;
  • the first channel layer 102 may also include a third through hole 1024 communicating with the second injection port 1013;
  • the first adhesive layer 103 may further include a fourth through hole 1032 communicating with the third through hole 1024, and a fifth through hole 1033 located between the area where the fourth through hole 1032 is located and the area where all the first through holes 1031 are located, wherein , the fifth through hole 1033 and the adjacent first through hole 1031 are covered by the same second limiting hole 1021;
  • the second channel layer 104 may further include a second liquid inlet channel 1042 communicating with the fourth through hole 1032 and the fifth through hole 1033 .
  • the sample liquid is injected from the second sample inlet 1013, it flows through the third through hole 1024, the fourth through hole 1032, the second liquid inlet channel 1042 and the fifth through hole 1033 in sequence, and then reaches the second through hole 1033.
  • Position limit hole 1021 When the control valve is opened, at least part of the valve core 105 is located in the first limiting hole 1011, the elastic film 106 seals the first limiting hole 1011, and the sample solution at the second limiting hole 1021 is injected out through the first through hole 1031.
  • the liquid channel 1041 flows out.
  • control valve When the control valve is closed, at least part of the valve core 105 is located in the second limiting hole 1021 , the elastic membrane 106 seals the second limiting hole 1021 , and the sample liquid at the second limiting hole 1021 cannot flow.
  • the control valve is a bottom-in bottom-out type valve.
  • the distance between the fifth through hole 1033 and the adjacent first through hole 1031 may be 1mm-3mm, so as to ensure that the fifth through hole 1033 and the adjacent first through hole 1031
  • the adjacent first through hole 1031 can be covered by the same second limiting hole 1021 , so that the sample liquid can flow in from the fifth through hole 1033 and flow out from the adjacent first through hole 1031 , as shown in FIG. 6 .
  • the fifth through hole 1033 and the first through hole 1031 are cylindrical holes, and the diameters of the fifth through hole 1033 and the first through hole 1031 can be 0.5mm-2mm, to ensure that the fifth through hole 1033 and the adjacent first through hole 1031 can be covered by the same second limiting hole 1021, so that the sample liquid can flow in from the fifth through hole 1033, and from the adjacent The first through hole 1031 flows out, as shown in FIG. 6 .
  • the first adhesive layer 103 may include a lower adhesive layer a, a release film b, and an upper adhesive layer c that are stacked.
  • the lower adhesive layer a is in contact with the second channel layer 104
  • the upper adhesive layer c is in contact with the first channel layer 102
  • the lower adhesive layer a includes the first via hole a1, the second via hole a2 and the second via hole a2.
  • the release film b includes the fourth via b1, the fifth via b2 and the sixth via b3
  • the adhesive layer c includes the seventh via c1, the eighth via c3 and the ninth via c3 , wherein the first via hole a1, the fourth via hole b1 and the seventh via hole c1 penetrate each other to form the first via hole 1031, and the second via hole a2, the fifth via hole b2 and the eighth via hole c2 communicate with each other to form the first via hole
  • the four through holes 1032 , the third through hole a3 , the sixth through hole b3 and the ninth through hole c3 communicate with each other to form a fifth through hole 1033 .
  • the release film b may also include a tenth via hole b4, and the lower adhesive layer a may also include an eleventh via hole a4, the tenth via b4 and the eleventh via a4 are connected to each other, and the orthographic projection of the tenth via b4 on the plane where the first channel layer 102 is located, and the eleventh via a4 in the first channel
  • the orthographic projections of the layer 102 on the plane substantially coincide with the orthographic projections of the second limiting holes 1021 on the plane of the first channel layer 102 .
  • the above setting makes the first adhesive layer 103 directly below the second limiting hole 1021 only include the upper adhesive layer c, and the thickness is relatively small, which can reduce the flow resistance of the first adhesive layer 103 to the sample solution.
  • the first adhesive layer 103 can be processed using conventional double-sided adhesive tape, which includes an upper release film, an adhesive layer and a lower release film.
  • the first adhesive layer 103 can be prepared by using two layers of conventional double-sided adhesive, and the two layers of conventional double-sided adhesive are respectively referred to as the first layer of conventional double-sided adhesive and the second layer of conventional double-sided adhesive.
  • the first layer of conventional double-sided adhesive can be half-cut at the position of the first limiting hole 1011 (that is, only the upper release film and the adhesive layer are cut off, and the lower release film is kept), and the first layer of conventional double-sided adhesive tape
  • the surface glue is completely cut through the first through hole 1031, the fourth through hole 1033 and the fifth through hole 1033 (that is, the upper release film, the adhesive layer and the lower release film are completely removed);
  • the second layer of conventional double-sided adhesive Cut through all the positions of the first through hole 1031, the fourth through hole 1033 and the fifth through hole 1033; when in use, peel off the upper release film of the second layer of conventional double-sided adhesive, and paste it on the first layer of conventional double-sided adhesive Below, peel off the upper release film of the first layer of conventional double-sided adhesive tape and paste it below the first channel layer 104, then peel off the lower release film of the second layer of conventional double-sided adhesive tape, so that the second channel Layer 104 sticks on it, like this, the adhesive layer of the first layer
  • the second adhesive layer 107 for bonding the cover layer 101 and the first channel layer 102
  • the second adhesive layer 107 includes a twelfth via hole 1071 communicating with the first injection port 1012 and the second through hole 1022, a thirteenth via hole 1072 communicating with the second injection port 1013 and the third through hole 1024
  • the accommodating hole 1073 for accommodating the elastic film 106 wherein the accommodating hole 1073 can ensure that the valve core 105 can move freely in the space defined by the first limiting hole 1011 and the second limiting hole 1021, and the twelfth via hole 1071 can Ensure that the sample liquid injected from the first sample inlet 1012 smoothly flows into the second limiting hole 1021 , and the thirteenth via hole 1072 can ensure that the sample liquid injected from the second sample inlet 1013 smoothly flows into the second limiting hole 1021 .
  • the thickness of the second adhesive layer 107 is approximately equal to the thickness of the elastic film 106 in the vertical direction to the plane where the first channel layer 102 is located, so that There is almost no height difference between the second adhesive layer 107 and the elastic film 106 , so as to ensure no gap between the second adhesive layer 107 and the elastic film 106 and avoid liquid leakage.
  • each layer of the cover layer 101, the first channel layer 102, the first adhesive layer 103, and the second channel layer 104 is uniform. Sex is better.
  • the orthographic projection of the channel layer 102 on the plane and the orthographic projection of the elastic film 106 on the plane of the first channel layer 102 overlap each other.
  • the existence of the groove 1014 can increase the gas space around the valve core 105, reduce the change of air pressure around the valve core 105, and help improve the stability of the control valve.
  • the groove 1014 may include the first groove And/or the second groove, wherein the first groove is located on the side of the cover layer 101 away from the first channel layer 102, and the second groove is located on the side of the cover layer 101 facing the first channel layer 102,
  • the area of the orthographic projection of the first groove on the plane where the first channel layer 102 is located is approximately the same as the area of the orthographic projection of the elastic film 106 on the plane where the first channel layer 102 is located.
  • the orthographic projection on the plane is located within the orthographic projection of the elastic film 106 on the plane where the first channel layer 102 is located.
  • the boundary of the orthographic projection of the second groove on the plane where the first channel layer 102 is located is the same as that of the elastic film 106 on the plane where the first channel layer 102 is located.
  • the distance between the boundaries of the orthographic projection above can be 0.5mm-1.0mm, so as to ensure the edge-holding effect of the elastic film 106 on the second groove.
  • the depth of the first groove may be 0.8 mm-1.2mm
  • the depth of the second groove can be 10 ⁇ m-50 ⁇ m.
  • the protective film 108 is arranged corresponding to the second groove, and the orthographic projection of the second groove on the plane where the first channel layer 102 is located is located within the orthographic projection of the corresponding protective film 108 on the plane where the first channel layer 102 is located, so that The second groove and the first limiting hole 1011 surrounded by the second groove can be sealed by the protective film 108 to prevent the valve core 105 from falling off from the first limiting hole 1011 .
  • the embodiment of the present disclosure provides a method of using the above-mentioned control valve structure. Since the problem-solving principle of this method is similar to that of the above-mentioned control valve structure, the method of using the above-mentioned control valve structure provided by the embodiment of the present disclosure for the implementation of the method, reference may be made to the implementation of the above-mentioned control valve structure provided by the embodiments of the present disclosure, and repeated descriptions will not be repeated.
  • an embodiment of the present disclosure provides a method for using the above-mentioned control valve structure, as shown in FIG. 8 , which may include the following steps:
  • At least part of the control valve core is located in the first limiting hole, so that the elastic film seals the first limiting hole, and the sample liquid is injected into the liquid outlet channel from the second limiting hole through the first through hole;
  • At least part of the control valve core is located in the second limiting hole, so that the elastic film seals the second limiting hole, preventing the sample liquid from being injected into the liquid outlet channel from the second limiting hole through the first through hole.
  • step S801 while performing step S801, at least part of the control valve core is located in the first limiting hole, the following steps may also be performed: A sample inlet, the second through hole and the first liquid inlet channel inject sample liquid into the second limiting hole.
  • step S801 while performing step S801, at least part of the control valve core is located in the first limiting hole, the following steps may also be performed:
  • the sample liquid is injected into the second limiting hole through the second sample inlet, the third through hole, the fourth through hole, the second liquid inlet channel and the fifth through hole which are arranged in communication.
  • an embodiment of the present disclosure provides a microfluidic chip, including the above-mentioned control valve structure provided by the embodiment of the present disclosure. Since the problem-solving principle of the microfluidic chip is similar to that of the above-mentioned control valve structure, the implementation of the microfluidic chip provided by the embodiment of the present disclosure can refer to the implementation of the above-mentioned control valve structure provided by the embodiment of the present disclosure. , the repetitions will not be repeated.
  • an embodiment of the present disclosure provides a nucleic acid extraction device, as shown in FIG. 9 , including a microfluidic chip 001 and an electromagnet 002, wherein the microfluidic chip 001 is the microfluidic chip provided by the embodiment of the present disclosure. control chip, the electromagnet 002 is located on the side of the second channel layer 104 away from the cover layer 101 .
  • an electromagnet 002 may be disposed under each spool 105 , so as to achieve independent control of each spool 105 through the corresponding electromagnet 002 .
  • the electromagnet 002 can be controlled to be energized in the forward direction to restrict the valve core 105 in the second limiting hole 1021; and the valve core 105 can be limited to the first limiting hole by controlling the electromagnet 002 to be de-energized or reversely energized. 1011 inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Valve Housings (AREA)

Abstract

控制阀结构、其使用方法、微流控芯片(001)及核酸提取装置,包括:具有至少一个第一限位孔(1011)的盖板层(101);与盖板层(101)相对而置的第一沟道层(102),具有与第一限位孔(1011)正对的第二限位孔(1021);位于第一沟道层(102)背离盖板层(101)一侧的第一胶层(103),具有与第二限位孔(1021)连通的第一通孔(1031);位于第一胶层(103)背离第一沟道层(102)一侧的第二沟道层(104),包括与全部第一通孔(1031)连通的出液沟道(1041);至少一个阀芯(105),分别在对应设置的第一限位孔(1011)与第二限位孔(1021)限定的空间内移动;至少一个弹性膜(106),分别位于各阀芯(105)靠近第二限位孔(1021)的一侧;在阀芯(105)嵌入第一限位孔(1011)时,弹性膜(106)密封第一限位孔(1011),第二限位孔(1021)、第一通孔(1031)和出液沟道(1041)形成样品液流通通道;在阀芯(105)嵌入第二限位孔(1021)时,弹性膜(106)密封第二限位孔(1021),以阻断样品液流通通道。

Description

控制阀结构、其使用方法、微流控芯片及核酸提取装置 技术领域
本公开涉及微流控技术领域,尤其涉及一种控制阀结构、其使用方法、微流控芯片及核酸提取装置。
背景技术
微流控芯片这一名词最初源于20世纪90年代Manz与Widmer提出微全分析***(μTAS)。Manz教授成功的把MEMS技术运用到分析化学领域,并在不久后在微芯片上实现了高速毛细管电泳,成果发表在《Science》等杂志上,从此这一领域迅速受到学界重视,并成为当今世界上最前沿的科技领域之一。芯片实验室(Lab on a chip)和微流控芯片(Microfluidic Chip)都是人们对这一领域提出的不同名称,而随着这一学科的应用从最初的分析化学拓展到多个研究与应用领域,以及研究者对这一学科的深入理解,微流控芯片已经成为对这一领域的统称。
发明内容
本公开实施例提供的一种控制阀结构、其使用方法、微流控芯片及核酸提取装置,具体方案如下:
一方面,本公开实施例提供了一种控制阀结构,包括:
盖板层,包括至少一个第一限位孔;
第一沟道层,与所述盖板层相对而置,所述第一沟道层在与所述第一限位孔对应的位置具有第二限位孔;
第一胶层,位于所述第一沟道层背离所述盖板层的一侧,所述第一胶层在与所述第二限位孔对应的位置具有第一通孔,所述第一通孔与对应的所述第二限位孔连通;
第二沟道层,位于所述第一胶层背离所述第一沟道层的一侧,第二沟道 层包括与全部所述第一通孔连通的出液沟道;
至少一个阀芯,分别在对应设置的所述第一限位孔与所述第二限位孔限定的空间内移动;
至少一个弹性膜,分别位于各所述阀芯靠近所述第二限位孔的一侧;在所述阀芯的至少部分位于所述第一限位孔内时,所述弹性膜密封所述第一限位孔,使得所述第二限位孔、所述第一通孔和所述出液沟道形成样品液流通通道;在所述阀芯的至少部分位于所述第二限位孔内时,所述弹性膜密封所述第二限位孔,以阻断所述样品液流通通道。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述第一限位孔在所述第一沟道层所在平面上的正投影面积与所述第二限位孔在所述第一沟道层所在平面上的正投影面积大致相同。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述阀芯在所述第一沟道层所在平面上的正投影面积与所述第二限位孔在所述第一沟道层所在平面上的正投影面积大致相同。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述第一通孔在所述第一沟道层所在平面上的正投影面积小于所述第二限位孔在所述第一沟道层所在平面上的正投影面积。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述盖板层还包括第一进样口,所述第一进样口位于全部所述第一限位孔所在区域的同侧;
所述第一沟道层还包括与所述第一进样口连通的第二通孔,以及连通所述第二通孔和所述第二限位孔的第一进液沟道。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述盖板层还包括第二进样口,所述第二进样口位于所述第一进样口在全部所述第一限位孔所在区域的相对侧;
所述第一沟道层还包括与所述第二进样口连通的第三通孔;
所述第一胶层还包括与所述第三通孔连通的第四通孔,以及位于所述第 四通孔所在区域与全部所述第一通孔所在区域之间的第五通孔,其中,所述第五通孔与邻近的所述第一通孔被同一所述第二限位孔所覆盖;
所述第二沟道层还包括连通所述第四通孔和所述第五通孔的第二进液沟道。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述第五通孔与邻近的所述第一通孔之间的距离为1mm-3mm。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述第五通孔及所述第一通孔为圆柱形孔,所述第五通孔及所述第一通孔的直径为0.5mm-2mm。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述第一胶层包括层叠设置的下胶层、离型膜和上胶层,其中,所述下胶层与所述第二沟道层接触粘结,所述上胶层与所述第一沟道层接触粘结,所述下胶层包括第一过孔、第二过孔和第三过孔,所述离型膜包括第四过孔、第五过孔和第六过孔,所述上胶层包括第七过孔、第八过孔和第九过孔,其中,所述第一过孔、所述第四过孔和所述第七过孔相互贯通构成所述第一通孔,所述第二过孔、所述第五过孔和所述第八过孔相互贯通构成所述第四通孔,所述第三过孔、所述第六过孔和所述第九过孔相互贯通构成所述第五通孔。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述离型膜还包括第十过孔,所述下胶层还包括第十一过孔,所述第十过孔和所述第十一过孔相互贯通,所述第十过孔在所述第一沟道层所在平面上的正投影、以及所述第十一过孔在所述第一沟道层所在平面上的正投影均与所述第二限位孔在所述第一沟道层所在平面上的正投影大致重合。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,还包括:第二胶层,用于粘结所述盖板层与所述第一沟道层,所述第二胶层包括连通所述第一进样口与所述第二通孔的第十二过孔,连通所述第二进样口与所述第三通孔的第十三过孔,以及容纳所述弹性膜的容置孔。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,在所述第 一沟道层所在平面的垂直方向上,所述第二胶层的厚度与所述弹性膜的厚度大致相等。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述盖板层包括围绕所述第一限位孔的凹槽,所述凹槽在所述第一沟道层所在平面上的正投影与所述弹性膜在所述第一沟道层所在平面上的正投影相互交叠。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述凹槽包括第一凹槽和/或第二凹槽,其中,所述第一凹槽位于所述盖板层背离所述第一沟道层的一侧,所述第二凹槽位于所述盖板层面向所述第一沟道层的一侧,所述第一凹槽在所述第一沟道层所在平面上的正投影面积与所述弹性膜在所述第一沟道层所在平面上的正投影面积大致相同,所述第二凹槽在所述第一沟道层所在平面上的正投影位于所述弹性膜在所述第一沟道层所在平面上的正投影内。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,所述第二凹槽在所述第一沟道层所在平面上的正投影边界与所述弹性膜在所述第一沟道层所在平面上的正投影边界之间的距离为0.5mm-1.0mm。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,在所述第一沟道层所在平面的垂直方向上,所述第一凹槽的深度为0.8mm-1.2mm,所述第二凹槽的深度为10μm-50μm。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,还包括位于所述盖板层背离所述第一沟道层的一侧的保护膜,所述保护膜与所述第二凹槽对应设置,所述第二凹槽在所述第一沟道层所在平面上的正投影位于对应所述保护膜在所述第一沟道层所在平面上的正投影内。
另一方面,本公开实施例提供了一种上述控制阀结构的使用方法,包括:
控制阀芯的至少部分位于第一限位孔内,使得弹性膜密封所述第一限位孔,样品液自第二限位孔经第一通孔注入出液沟道;
控制所述阀芯的至少部分位于第二限位孔内,使得所述弹性膜密封所述第二限位孔,阻止所述样品液自所述第二限位孔经所述第一通孔注入所述出 液沟道。
在一些实施例中,在本公开实施例提供的上述使用方法中,在控制阀芯的至少部分位于第一限位孔内的同时,还包括:通过连通设置的第一进样口、第二通孔和第一进液沟道向所述第二限位孔注入样品液。
在一些实施例中,在本公开实施例提供的上述使用方法中,在控制阀芯的至少部分位于第一限位孔内的同时,还包括:
通过连通设置的第二进样口、第三通孔、第四通孔、第二进液沟道和第五通孔向所述第二限位孔注入样品液。
另一方面,本公开实施例提供了一种微流控芯片,包括本公开实施例提供的上述控制阀结构。
另一方面,本公开实施例提供了一种核酸提取装置,包括微流控芯片和电磁铁,其中,所述微流控芯片为本公开实施例提供的上述微流控芯片,所述电磁铁位于第二沟道层背离盖板层的一侧。
附图说明
图1为相关技术中的控制阀结构在开启状态下的示意图;
图2为相关技术中的控制阀结构在关闭状态下的示意图;
图3为本公开实施例提供的控制阀结构的叠层结构示意图;
图4为本公开实施例提供的控制阀结构在开启状态下的一种示意图;
图5为本公开实施例提供的控制阀结构在关闭状态下的一种示意图;
图6为本公开实施例提供的控制阀结构在开启状态下的又一种示意图;
图7为本公开实施例提供的控制阀结构在关闭状态下的又一种示意图;
图8为本公开实施例提供的控制阀结构的使用方法的流程图;
图9为本公开实施例提供的核酸提取装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1和图2所示为相关技术中的一种控制阀结构的示意图,具体包括沟道板1、盖板2、铁块3和弹性保护膜4,其中,盖板2具有容纳铁块3的容置槽01。在控制阀开启时,铁块3未受到磁力作用,铁块3完全位于容置槽01内,样品液可以无阻碍通过,如图1所示;在控制阀关闭时,铁块3受到向下的磁力作用,容置槽01内的铁块3被吸附下来,弹性保护膜4受压向下弯曲变形而阻挡样品液流过,如图2所示。然而,在将铁块3吸附下来的过程中容易发生铁块移位,造成控制阀关闭不严,产生漏液问题。
为了至少解决相关技术中存在的上述技术问题,本公开实施例提供了一种控制阀结构,如图3至图5所示,包括:
盖板层101,包括至少一个第一限位孔1011;
第一沟道层102,与盖板层101相对而置,第一沟道层102在与第一限位孔1011对应的位置具有第二限位孔1021;
第一胶层103,位于第一沟道层102背离盖板层101的一侧,第一胶层103在与第二限位孔1021对应的位置具有第一通孔1031,且第一通孔1031与对应的第二限位孔1021连通;
第二沟道层104,位于第一胶层103背离第一沟道层102的一侧,第二沟道层104包括与全部第一通孔1031连通的出液沟道1041;
至少一个阀芯105,分别在对应设置的第一限位孔1011与第二限位孔1021限定的空间内移动;
至少一个弹性膜106,分别位于各阀芯105靠近第二限位孔1021的一侧;在阀芯105的至少部分(即阀芯105的局部或全部)位于第一限位孔1011内时,弹性膜106密封第一限位孔1011,使得第二限位孔1021、第一通孔1031和出液沟道1041形成样品液流通通道;在阀芯105的至少部分(即阀芯105的局部或全部)位于第二限位孔1021时,弹性膜106密封第二限位孔1021,以阻断样品液流通通道。
在本公开实施例提供的上述控制阀结构中,通过盖板层101的第一限位孔1011与第一沟道层102的第二限位孔1021共同限定阀芯105的可移动空间,并在第二限位孔1021的下方设置与其连通的第一通孔1031和出液沟道1041构成样品液流通通道,使得样品液流通通道的出入口和阀控空间不在同一层,从而在控制阀关闭时,阀芯105的至少部分(即阀芯105的局部或全部)位于第二限位孔1021内而不会发生移位,弹性膜106密封第二限位孔1021,以阻断样品液流通通道,由此极大改善了漏液问题;另外,在控制阀开启时,阀芯105的局部或全部位于第一限位孔1011内,弹性膜106密封第一限位孔1011,第二限位孔1021、第一通孔1031和出液沟道1041形成样品液流通通道,保证了样品液的正常流动。
需要说明的是,在本公开中为了使得阀芯105对弹性膜106的压力较小,以利于弹性膜106正常复位,可选用较小较轻的阀芯105,例如钢柱。并且,由于较小较轻的阀芯105不会导致弹性膜106发生形变,因此,在控制阀开启时,阀芯105可以完全位于第一限位孔1011内,也可以局部位于第一限位孔1011内(即阀芯105会凸出第一限位孔1011)。另外,在控制阀关闭时,阀芯105下压弹性膜106,只要保证弹性膜106可以密封第二限位孔1021即可,因此,阀芯105可以局部位于第二限位孔1021内(如图5所示),也可 以完全位于第二限位孔1021内。可选地,在第一沟道层102所在平面的垂直方向上,阀芯105的高度可以为1mm-3mm。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,为了保证第一限位孔1011与第二限位孔1021对阀芯105的限位效果,如图3至图5所示,第一限位孔1011在第一沟道层102所在平面上的正投影面积可以与第二限位孔1021在第一沟道层102所在平面上的正投影面积大致相同。
需要说明的是,在本公开实施例提供的上述控制阀结构中,由于工艺条件的限制或测量等其他因素的影响,“大致”可能会完全等同,也可能会有一些偏差,因此各特征之间“大致”的关系只要满足误差(例如上下10%的浮动)允许,均属于本公开的保护范围。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,如图3至图5所示,阀芯105在第一沟道层102所在平面上的正投影面积可以与第二限位孔1021在第一沟道层102所在平面上的正投影面积大致相同,以保证阀芯105可以通过第二限位孔1021、以及与第二限位孔1021大小相近的第一限位孔1011,并且,因为阀芯105大小与第二限位孔1021相近,所以可有效防止阀芯105在第一限位孔1011及第二限位孔1021之间移动时发生移位。
在一些实施例中,阀芯105可以为钢柱,第一限位孔1011和第二限位孔1021可以为圆柱形孔,此时,阀芯105、第一限位孔1011和第二限位孔1021的直径可以为5mm-8mm。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,如图3至图5所示,第一胶层103的第一通孔1031在第一沟道层102所在平面上的正投影面积小于第二限位孔1021在第一沟道层102所在平面上的正投影面积,这样设置,在阀芯105受磁力吸附下压至第二限位孔1021时,发生形变的弹性膜106可以受到第一胶层103的支撑作用,使得弹性膜106可以有效阻断样品液流通通道,提高了防漏液的效果。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,如图3至图5所示,盖板层101还可以包括第一进样口1012,第一进样口1012位于全 部第一限位孔1011所在区域的同侧;在一些实施例中,第一进样口1012的位置可以根据盖板层101中第一限位孔1011所在区域周围的空间大小进行选择,例如图3所示,在第一限位孔1011在X方向上两侧的空间较大,在Y方向上两侧的空间较小时,为方便加工,可将第一进样口1012设置在第一限位孔1011在X方向上的一侧(例如图3中所示的右侧);
第一沟道层102还可以包括与第一进样口1012连通的第二通孔1022,以及连通第二通孔1022和第二限位孔1021的第一进液沟道1023。
在具体实施时,样品液自第一进样口1012注入后,依次流经第二通孔1022及第一进液沟道1023后,到达第二限位孔1021处。在控制阀开启时,阀芯105的至少部分位于第一限位孔1011内,弹性膜106密封第一限位孔1011,第二限位孔1021处的样品液经第一通孔1031注入出液沟道1041后流出。在控制阀关闭时,阀芯105的至少部分位于第二限位孔1021内,弹性膜106密封第二限位孔1021,第二限位孔1021处的样品液无法流动。在此情况下,控制阀为上进下出型阀。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,如图3、图6和图7所示,盖板层101还可以包括第二进样口1013,第二进样口1013位于第一进样口1012在全部第一限位孔1011所在区域的相对侧;
第一沟道层102还可以包括与第二进样口1013连通的第三通孔1024;
第一胶层103还可以包括与第三通孔1024连通的第四通孔1032,以及位于第四通孔1032所在区域与全部第一通孔1031所在区域之间的第五通孔1033,其中,第五通孔1033与邻近的第一通孔1031被同一第二限位孔1021所覆盖;
第二沟道层104还可以包括连通第四通孔1032和第五通孔1033的第二进液沟道1042。
在具体实施时,样品液自第二进样口1013注入后,依次流经第三通孔1024、第四通孔1032、第二进液沟道1042及第五通孔1033后,到达第二限位孔1021处。在控制阀开启时,阀芯105的至少部分位于第一限位孔1011内,弹性膜 106密封第一限位孔1011,第二限位孔1021处的样品液经第一通孔1031注入出液沟道1041后流出。在控制阀关闭时,阀芯105的至少部分位于第二限位孔1021内,弹性膜106密封第二限位孔1021,第二限位孔1021处的样品液无法流动。在此情况下,控制阀为下进下出型阀。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,第五通孔1033与邻近的第一通孔1031之间的距离可以为1mm-3mm,以保证第五通孔1033和邻近的第一通孔1031可以被同一个第二限位孔1021所覆盖,从而可以实现样品液自第五通孔1033流入,并从邻近的第一通孔1031流出,如图6所示。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,第五通孔1033及第一通孔1031为圆柱形孔,第五通孔1033及第一通孔1031的直径可以为0.5mm-2mm,以保证第五通孔1033和邻近的第一通孔1031可以被同一个第二限位孔1021所覆盖,从而可以实现样品液自第五通孔1033流入,并从邻近的第一通孔1031流出,如图6所示。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,如图3所示,第一胶层103可以包括层叠设置的下胶层a、离型膜b和上胶层c,其中,下胶层a与第二沟道层104接触粘结,上胶层c与第一沟道层102接触粘结,下胶层a包括第一过孔a1、第二过孔a2和第三过孔a3,离型膜b包括第四过孔b1、第五过孔b2和第六过孔b3,上胶层c包括第七过孔c1、第八过孔c3和第九过孔c3,其中,第一过孔a1、第四过孔b1和第七过孔c1相互贯通构成第一通孔1031,第二过孔a2、第五过孔b2和第八过孔c2相互贯通构成第四通孔1032,第三过孔a3、第六过孔b3和第九过孔c3相互贯通构成第五通孔1033。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,如图3所示,离型膜b还可以包括第十过孔b4,下胶层a还可以包括第十一过孔a4,该第十过孔b4和第十一过孔a4相互贯通,且第十过孔b4在第一沟道层102所在平面上的正投影、以及第十一过孔a4在第一沟道层102所在平面上的正 投影均与第二限位孔1021在第一沟道层102所在平面上的正投影大致重合。上述设置使得第二限位孔1021正下方的第一胶层103仅包括上胶层c,厚度较小,可以减小第一胶层103对样品液的流通阻力。
可选地,第一胶层103可使用常规双面胶加工,常规双面胶包括上离型膜、胶层和下离型膜。在具体实施时,可采用两层常规双面胶制备第一胶层103,两层常规双面胶分别称为第一层常规双面胶和第二层常规双面胶。具体地,可将第一层常规双面胶在第一限位孔1011的位置半透切(即仅切去上离型膜和胶层,保留下离型膜),并且第一层常规双面胶在第一通孔1031、第四通孔1033和第五通孔1033的位置全部切透(即完全切除上离型膜、胶层和下离型膜);第二层常规双面胶在第一通孔1031、第四通孔1033和第五通孔1033的位置全部切透;使用时将第二层常规双面胶的上离型膜剥离,贴至第一层常规双面胶下方,再将第一层常规双面胶的上离型膜剥去粘贴至第一沟道层104下方,再将第二层常规双面胶的下离型膜剥去,让第二沟道层104粘贴其上,如此,第一层常规双面胶的胶层、第一层常规双面胶的下离型膜和第二层常规双面胶的胶层共同构成了第一胶层103。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,如图3所示,还可以包括:用于粘结盖板层101与第一沟道层102的第二胶层107,该第二胶层107包括连通第一进样口1012与第二通孔1022的第十二过孔1071,连通第二进样口1013与第三通孔1024的第十三过孔1072,以及容纳弹性膜106的容置孔1073,其中,容置孔1073可以保证阀芯105在第一限位孔1011与第二限位孔1021限定的空间内自由移动,第十二过孔1071可以保证自第一进样口1012注入的样品液顺利流入第二限位孔1021,第十三过孔1072可以保证自第二进样口1013注入的样品液顺利流入第二限位孔1021。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,在第一沟道层102所在平面的垂直方向上,第二胶层107的厚度与弹性膜106的厚度大致相等,这样可以使得第二胶层107与弹性膜106之间几乎没有高度差,从而保证第二胶层107与弹性膜106之间无缝隙,避免液体泄漏。
此外,值得注意的是,为了便于加工、利于量产和提高良品率,盖板层101、第一沟道层102、第一胶层103、第二沟道层104中每一层的厚度均一性都较好。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,如图3所示,盖板层101可以包括围绕第一限位孔1011的凹槽1014,凹槽1014在第一沟道层102所在平面上的正投影与弹性膜106在第一沟道层102所在平面上的正投影相互交叠。凹槽1014的存在,可以增大阀芯105周围的气体空间,减小阀芯105周围的气压变化,利于提高控制阀的稳定性。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,为尽可能增大阀芯105周围的气体空间,以进一步提高控制阀的稳定性,凹槽1014可以包括第一凹槽和/或第二凹槽,其中,第一凹槽位于盖板层101背离第一沟道层102的一侧,第二凹槽位于盖板层101面向第一沟道层102的一侧,第一凹槽在第一沟道层102所在平面上的正投影面积与弹性膜106在第一沟道层102所在平面上的正投影面积大致相同,第二凹槽在第一沟道层102所在平面上的正投影位于弹性膜106在第一沟道层102所在平面上的正投影内。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,第二凹槽在第一沟道层102所在平面上的正投影边界与弹性膜106在第一沟道层102所在平面上的正投影边界之间的距离可以为0.5mm-1.0mm,以保证弹性膜106对第二凹槽的压边效果。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,为了提高控制阀的稳定效果,在第一沟道层102所在平面的垂直方向上,第一凹槽的深度可以为0.8mm-1.2mm,第二凹槽的深度可以为10μm-50μm。
在一些实施例中,在本公开实施例提供的上述控制阀结构中,如图4至图7所示,还可以包括位于盖板层101背离第一沟道层102的一侧的保护膜108,保护膜108与第二凹槽对应设置,第二凹槽在第一沟道层102所在平面上的正投影位于对应保护膜108在第一沟道层102所在平面上的正投影内,这样可以通过保护膜108密封第二凹槽及被第二凹槽包围的第一限位孔1011, 防止阀芯105自第一限位孔1011脱落。
基于同一发明构思,本公开实施例提供了一种上述控制阀结构的使用方法,由于该使用方法解决问题的原理与上述控制阀结构解决问题的原理相似,因此,本公开实施例提供的该使用方法的实施可以参见本公开实施例提供的上述控制阀结构的实施,重复之处不再赘述。
具体地,本公开实施例提供了一种上述控制阀结构的使用方法,如图8所示,可以包括以下步骤:
S801、控制阀芯的至少部分位于第一限位孔内,使得弹性膜密封第一限位孔,样品液自第二限位孔经第一通孔注入出液沟道;
S802、控制阀芯的至少部分位于第二限位孔内,使得弹性膜密封第二限位孔,阻止样品液自第二限位孔经第一通孔注入出液沟道。
在一些实施例中,在本公开实施例提供的上述使用方法中,在执行步骤S801、控制阀芯的至少部分位于第一限位孔内的同时,还可以执行以下步骤:通过连通设置的第一进样口、第二通孔和第一进液沟道向第二限位孔注入样品液。
在一些实施例中,在本公开实施例提供的上述使用方法中,在执行步骤S801、控制阀芯的至少部分位于第一限位孔内的同时,还可以执行以下步骤:
通过连通设置的第二进样口、第三通孔、第四通孔、第二进液沟道和第五通孔向第二限位孔注入样品液。
基于同一发明构思,本公开实施例提供了一种微流控芯片,包括本公开实施例提供的上述控制阀结构。由于该微流控芯片解决问题的原理与上述控制阀结构解决问题的原理相似,因此,本公开实施例提供的该微流控芯片的实施可以参见本公开实施例提供的上述控制阀结构的实施,重复之处不再赘述。
另一方面,本公开实施例提供了一种核酸提取装置,如图9所示,包括微流控芯片001和电磁铁002,其中,微流控芯片001为本公开实施例提供的上述微流控芯片,电磁铁002位于第二沟道层104背离盖板层101的一侧。
在一些实施例中,每个阀芯105下方可以对应设置一个电磁铁002,以通过对应的电磁铁002实现对每个阀芯105的独立控制。具体地,可以控制电磁铁002正向通电,将阀芯105限制在第二限位孔1021内;并通过控制电磁铁002断电或反向通电,将阀芯105限制在第一限位孔1011内。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (22)

  1. 一种控制阀结构,其中,包括:
    盖板层,包括至少一个第一限位孔;
    第一沟道层,与所述盖板层相对而置,所述第一沟道层在与所述第一限位孔对应的位置具有第二限位孔;
    第一胶层,位于所述第一沟道层背离所述盖板层的一侧,所述第一胶层在与所述第二限位孔对应的位置具有第一通孔,所述第一通孔与对应的所述第二限位孔连通;
    第二沟道层,位于所述第一胶层背离所述第一沟道层的一侧,第二沟道层包括与全部所述第一通孔连通的出液沟道;
    至少一个阀芯,分别在对应设置的所述第一限位孔与所述第二限位孔限定的空间内移动;
    至少一个弹性膜,分别位于各所述阀芯靠近所述第二限位孔的一侧;在所述阀芯的至少部分位于所述第一限位孔内时,所述弹性膜密封所述第一限位孔,使得所述第二限位孔、所述第一通孔和所述出液沟道形成样品液流通通道;在所述阀芯的至少部分位于所述第二限位孔内时,所述弹性膜密封所述第二限位孔,以阻断所述样品液流通通道。
  2. 如权利要求1所述的控制阀结构,其中,所述第一限位孔在所述第一沟道层所在平面上的正投影面积与所述第二限位孔在所述第一沟道层所在平面上的正投影面积大致相同。
  3. 如权利要求2所述的控制阀结构,其中,所述阀芯在所述第一沟道层所在平面上的正投影面积与所述第二限位孔在所述第一沟道层所在平面上的正投影面积大致相同。
  4. 如权利要求1所述的控制阀结构,其中,所述第一通孔在所述第一沟道层所在平面上的正投影面积小于所述第二限位孔在所述第一沟道层所在平面上的正投影面积。
  5. 如权利要求1-4任一项所述的控制阀结构,其中,所述盖板层还包括第一进样口,所述第一进样口位于全部所述第一限位孔所在区域的同侧;
    所述第一沟道层还包括与所述第一进样口连通的第二通孔,以及连通所述第二通孔和所述第二限位孔的第一进液沟道。
  6. 如权利要求5所述的控制阀结构,其中,所述盖板层还包括第二进样口,所述第二进样口位于所述第一进样口在全部所述第一限位孔所在区域的相对侧;
    所述第一沟道层还包括与所述第二进样口连通的第三通孔;
    所述第一胶层还包括与所述第三通孔连通的第四通孔,以及位于所述第四通孔所在区域与全部所述第一通孔所在区域之间的第五通孔,其中,所述第五通孔与邻近的所述第一通孔被同一所述第二限位孔所覆盖;
    所述第二沟道层还包括连通所述第四通孔和所述第五通孔的第二进液沟道。
  7. 如权利要求6所述的控制阀结构,其中,所述第五通孔与邻近的所述第一通孔之间的距离为1mm-3mm。
  8. 如权利要求6所述的控制阀结构,其中,所述第五通孔及所述第一通孔为圆柱形孔,所述第五通孔及所述第一通孔的直径为0.5mm-2mm。
  9. 如权利要求6所述的控制阀结构,其中,所述第一胶层包括层叠设置的下胶层、离型膜和上胶层,其中,所述下胶层与所述第二沟道层接触粘结,所述上胶层与所述第一沟道层接触粘结,所述下胶层包括第一过孔、第二过孔和第三过孔,所述离型膜包括第四过孔、第五过孔和第六过孔,所述上胶层包括第七过孔、第八过孔和第九过孔,其中,所述第一过孔、所述第四过孔和所述第七过孔相互贯通构成所述第一通孔,所述第二过孔、所述第五过孔和所述第八过孔相互贯通构成所述第四通孔,所述第三过孔、所述第六过孔和所述第九过孔相互贯通构成所述第五通孔。
  10. 如权利要求9所述的控制阀结构,其中,所述离型膜还包括第十过孔,所述下胶层还包括第十一过孔,所述第十过孔和所述第十一过孔相互贯 通,所述第十过孔在所述第一沟道层所在平面上的正投影、以及所述第十一过孔在所述第一沟道层所在平面上的正投影均与所述第二限位孔在所述第一沟道层所在平面上的正投影大致重合。
  11. 如权利要求6-10任一项所述的控制阀结构,其中,还包括:第二胶层,用于粘结所述盖板层与所述第一沟道层,所述第二胶层包括连通所述第一进样口与所述第二通孔的第十二过孔,连通所述第二进样口与所述第三通孔的第十三过孔,以及容纳所述弹性膜的容置孔。
  12. 如权利要求11所述的控制阀结构,其中,在所述第一沟道层所在平面的垂直方向上,所述第二胶层的厚度与所述弹性膜的厚度大致相等。
  13. 如权利要求1-12任一项所述的控制阀结构,其中,所述盖板层包括围绕所述第一限位孔的凹槽,所述凹槽在所述第一沟道层所在平面上的正投影与所述弹性膜在所述第一沟道层所在平面上的正投影相互交叠。
  14. 如权利要求13所述的控制阀结构,其中,所述凹槽包括第一凹槽和/或第二凹槽,其中,所述第一凹槽位于所述盖板层背离所述第一沟道层的一侧,所述第二凹槽位于所述盖板层面向所述第一沟道层的一侧,所述第一凹槽在所述第一沟道层所在平面上的正投影面积与所述弹性膜在所述第一沟道层所在平面上的正投影面积大致相同,所述第二凹槽在所述第一沟道层所在平面上的正投影位于所述弹性膜在所述第一沟道层所在平面上的正投影内。
  15. 如权利要求14所述的控制阀结构,其中,所述第二凹槽在所述第一沟道层所在平面上的正投影边界与所述弹性膜在所述第一沟道层所在平面上的正投影边界之间的距离为0.5mm-1.0mm。
  16. 如权利要求14所述的控制阀结构,其中,在所述第一沟道层所在平面的垂直方向上,所述第一凹槽的深度为0.8mm-1.2mm,所述第二凹槽的深度为10μm-50μm。
  17. 如权利要求14所述的控制阀结构,其中,还包括位于所述盖板层背离所述第一沟道层的一侧的保护膜,所述保护膜与所述第二凹槽对应设置,所述第二凹槽在所述第一沟道层所在平面上的正投影位于对应所述保护膜在 所述第一沟道层所在平面上的正投影内。
  18. 一种如权利要求1-17任一项所述的控制阀结构的使用方法,其中,包括:
    控制阀芯的至少部分位于第一限位孔内,使得弹性膜密封所述第一限位孔,样品液自第二限位孔经第一通孔注入出液沟道;
    控制所述阀芯的至少部分位于第二限位孔内,使得所述弹性膜密封所述第二限位孔,阻止所述样品液自所述第二限位孔经所述第一通孔注入所述出液沟道。
  19. 如权利要求18所述的使用方法,其中,在控制阀芯的至少部分位于第一限位孔内的同时,还包括:通过连通设置的第一进样口、第二通孔和第一进液沟道向所述第二限位孔注入样品液。
  20. 如权利要求18所述的使用方法,其中,在控制阀芯的至少部分位于第一限位孔内的同时,还包括:
    通过连通设置的第二进样口、第三通孔、第四通孔、第二进液沟道和第五通孔向所述第二限位孔注入样品液。
  21. 一种微流控芯片,其中,包括如权利要求1-17任一项所述的控制阀结构。
  22. 一种核酸提取装置,其中,包括微流控芯片和电磁铁,其中,所述微流控芯片为如权利要求21所述的微流控芯片,所述电磁铁位于第二沟道层背离盖板层的一侧。
PCT/CN2021/113108 2021-08-17 2021-08-17 控制阀结构、其使用方法、微流控芯片及核酸提取装置 WO2023019447A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/113108 WO2023019447A1 (zh) 2021-08-17 2021-08-17 控制阀结构、其使用方法、微流控芯片及核酸提取装置
CN202180002188.1A CN116209850A (zh) 2021-08-17 2021-08-17 控制阀结构、其使用方法、微流控芯片及核酸提取装置
US17/790,332 US20240175521A1 (en) 2021-08-17 2021-08-17 Control valve structure, using method thereof, microfluidic chip, and nucleic acid extraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113108 WO2023019447A1 (zh) 2021-08-17 2021-08-17 控制阀结构、其使用方法、微流控芯片及核酸提取装置

Publications (1)

Publication Number Publication Date
WO2023019447A1 true WO2023019447A1 (zh) 2023-02-23

Family

ID=85239941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113108 WO2023019447A1 (zh) 2021-08-17 2021-08-17 控制阀结构、其使用方法、微流控芯片及核酸提取装置

Country Status (3)

Country Link
US (1) US20240175521A1 (zh)
CN (1) CN116209850A (zh)
WO (1) WO2023019447A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183631A1 (en) * 2002-03-29 2003-10-02 Proplast Package provided with a rigid lid and a valve, in particular for cooking food
CN103244734A (zh) * 2012-02-07 2013-08-14 比尔克特韦尔克有限公司 阀塞
CN203925955U (zh) * 2014-07-10 2014-11-05 大连海事大学 一种基于微流控芯片的电磁微泵
CN108636464A (zh) * 2018-04-02 2018-10-12 中国科学院苏州生物医学工程技术研究所 一种液滴微流控芯片、成型装置及其制备方法
CN111423969A (zh) * 2020-03-03 2020-07-17 币冠(上海)生物科技有限公司 集成式微流控芯片
CN112774745A (zh) * 2020-12-23 2021-05-11 京东方科技集团股份有限公司 微流控芯片以及用于挤压微流控芯片的可动部件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6431212B1 (en) * 2000-05-24 2002-08-13 Jon W. Hayenga Valve for use in microfluidic structures
EP1331997B1 (en) * 2000-11-06 2004-06-16 Nanostream, Inc. Microfluidic flow control devices
US6739576B2 (en) * 2001-12-20 2004-05-25 Nanostream, Inc. Microfluidic flow control device with floating element
US7025324B1 (en) * 2002-01-04 2006-04-11 Massachusetts Institute Of Technology Gating apparatus and method of manufacture
CN101873885B (zh) * 2007-11-22 2013-07-31 三星电子株式会社 薄膜阀器件及其控制装置
US9389231B2 (en) * 2013-07-22 2016-07-12 Sandia Corporation Apparatus comprising magnetically actuated valves and uses thereof
US10400915B2 (en) * 2016-04-14 2019-09-03 Triad National Security, Llc Magnetically controlled valve and pump devices and methods of using the same
IT201800003552A1 (it) * 2018-03-14 2019-09-14 St Microelectronics Srl Modulo valvola piezoelettrico, metodo di fabbricazione del modulo valvola, metodo di funzionamento del modulo valvola e dispositivo di ausilio alla respirazione includente uno o piu' moduli valvola
IT201900005804A1 (it) * 2019-04-15 2020-10-15 St Microelectronics Srl Valvola microfluidica a membrana ad attuazione piezoelettrica e relativo procedimento di fabbricazione

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183631A1 (en) * 2002-03-29 2003-10-02 Proplast Package provided with a rigid lid and a valve, in particular for cooking food
CN103244734A (zh) * 2012-02-07 2013-08-14 比尔克特韦尔克有限公司 阀塞
CN203925955U (zh) * 2014-07-10 2014-11-05 大连海事大学 一种基于微流控芯片的电磁微泵
CN108636464A (zh) * 2018-04-02 2018-10-12 中国科学院苏州生物医学工程技术研究所 一种液滴微流控芯片、成型装置及其制备方法
CN111423969A (zh) * 2020-03-03 2020-07-17 币冠(上海)生物科技有限公司 集成式微流控芯片
CN112774745A (zh) * 2020-12-23 2021-05-11 京东方科技集团股份有限公司 微流控芯片以及用于挤压微流控芯片的可动部件

Also Published As

Publication number Publication date
CN116209850A (zh) 2023-06-02
US20240175521A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
US10875019B2 (en) Multi-flux microfluidic chip for nucleic acid detection and capable of actively controlling flow path, and use method thereof
CN104428651B (zh) 用于样品制备或自主分析的流体装置和***
US9808798B2 (en) Fluidic devices for biospecimen preservation
US10166539B2 (en) Multiplexer for controlling fluid in microfluidics chip and microfluidics chip assembly
CN106902904B (zh) 用于微流控芯片的液体控制阀门装置及其微流控芯片
JP6638917B2 (ja) バルブ、流体制御構造、流体デバイス及びバルブの製造方法
CN105939779A (zh) 用于移动和定时控制的***和方法
CN104226385A (zh) 一种新型微流控芯片及其使用方法
US20220226824A1 (en) Detection chip, method for using detection chip, and detection apparatus
Mao et al. Chemical operations on a living single cell by open microfluidics for wound repair studies and organelle transport analysis
CN204710358U (zh) 一种微流控芯片
Rosenfeld et al. Dynamic control of capillary flow in porous media by electroosmotic pumping
WO2023019447A1 (zh) 控制阀结构、其使用方法、微流控芯片及核酸提取装置
CN204448036U (zh) 一种微流控芯片
CN114308163B (zh) 微流控芯片检测卡盒
JPWO2009034819A1 (ja) マイクロチップの製造方法、マイクロチップ、真空貼付装置
JP6366226B2 (ja) マイクロチップ反応装置
Xu et al. Three-dimensional (3D) hydrodynamic focusing for continuous sampling and analysis of adherent cells
Cho et al. An assembly disposable degassing microfluidic device using a gas-permeable hydrophobic membrane and a reusable microsupport array
Tang et al. Lateral patch-clamping in a standard 1536-well microplate format
Kawai et al. Microfluidic valve array control system integrating a fluid demultiplexer circuit
TWI601947B (zh) Biological particle capture and capture system and method
US20150300985A1 (en) Fluid handling device and fluid handling method
CN207498376U (zh) 主动控制流路的多通量微流控核酸检测芯片
CN115703993A (zh) 微流控芯片、其核酸提取方法及核酸提取装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17790332

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE