WO2023018009A1 - Composition for piezoelectric element printing, method for preparing same, and piezoelectric element printer using same - Google Patents

Composition for piezoelectric element printing, method for preparing same, and piezoelectric element printer using same Download PDF

Info

Publication number
WO2023018009A1
WO2023018009A1 PCT/KR2022/009563 KR2022009563W WO2023018009A1 WO 2023018009 A1 WO2023018009 A1 WO 2023018009A1 KR 2022009563 W KR2022009563 W KR 2022009563W WO 2023018009 A1 WO2023018009 A1 WO 2023018009A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
printing
pvdf
hfp
composition
Prior art date
Application number
PCT/KR2022/009563
Other languages
French (fr)
Korean (ko)
Inventor
송호성
임수만
리하이
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2023018009A1 publication Critical patent/WO2023018009A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing

Definitions

  • the present invention relates to a composition for printing a piezoelectric element, and more particularly, to a composition for printing a piezoelectric element for forming a piezoelectric element by constructing a DLP-based real-time polling process system, a method for manufacturing the same, and a printer for a piezoelectric element using the same It is about.
  • PVDF Polyvinylidene fluoride
  • DLP systems require a post-polling process step, and so far no effort has been made to reduce it.
  • an object of the present invention is to provide a composition for printing a piezoelectric element for forming a piezoelectric element by constructing a DLP-based real-time polling process system, a manufacturing method thereof, and a printer for a piezoelectric element using the same.
  • a method for preparing a composition for printing of a piezoelectric element according to the present invention includes the steps of adding PVDF-HFP formed by copolymerizing PVDF (Polyvinylidene fluoride) and HFP (hexa fluoropropylene) to a solvent and firstly stirring it, and adding photocurable to the stirred solution. Adding a polymer and performing secondary stirring, and preparing a composition for printing a piezoelectric element by degassing the solution to which the photocurable polymer is added.
  • PVDF-HFP formed by copolymerizing PVDF (Polyvinylidene fluoride) and HFP (hexa fluoropropylene)
  • the primary stirring step is characterized in that PVDF-HFP is added to a solvent and stirred at 15 to 35 ° C. for 1 to 5 hours.
  • the composition for printing a piezoelectric element includes 20 to 60 wt% of the PVDF-HFP.
  • composition for printing a piezoelectric element according to the present invention is characterized in that it includes PVDF-HFP formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP) and a photocurable polymer.
  • PVDF-HFP formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP) and a photocurable polymer.
  • a printer for piezoelectric elements includes a printing material containing a printing composition containing PVDF-HFP and a photocurable polymer formed by copolymerizing PVDF (Polyvinylidene fluoride) and HFP (hexa fluoropropylene), and a tray provided with an electrode.
  • PVDF Polyvinylidene fluoride
  • HFP hexa fluoropropylene
  • the electrode is characterized in that it includes indium tin oxide (ITO) and polyethylene terephthalate (PET).
  • ITO indium tin oxide
  • PET polyethylene terephthalate
  • the composition for printing is formed into the piezoelectric element by polarization alignment by the polarization alignment unit and then cured by the irradiation unit.
  • composition for printing a piezoelectric element according to the present invention can produce a piezoelectric element with high sensitivity, mechanical flexibility and durability, and a large area.
  • composition for printing a piezoelectric element according to the present invention produces a piezoelectric element having a high piezoelectric coefficient, but can significantly reduce the manufacturing time by more than 10 times compared to the existing EPAM (Electric Poling-Assisted Additive Manufacturing) technology.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a composition for printing a piezoelectric element according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of a printer for a piezoelectric element according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram briefly showing a printing process of a printer for a piezoelectric element according to an embodiment of the present invention and a printer for a piezoelectric element without a polarization alignment unit.
  • FIG. 4 is a graph for explaining characteristics of a composition for printing a piezoelectric element according to an embodiment of the present invention.
  • 5 is a graph showing rheological performance according to the mixing ratio of printing materials.
  • FIG. 6 is a graph showing output voltage sensitivities of printed piezoelectric elements having different mass fractions.
  • FIG. 7 is a graph showing polarity conversion test results of piezoelectric elements manufactured according to an embodiment of the present invention.
  • FIG. 8 is a graph for explaining applicability of a piezoelectric element manufactured according to an embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a composition for printing a piezoelectric element according to an embodiment of the present invention.
  • PVDF-HFP formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP) is first added to a solvent in step S10 and stirred. At this time, PVDF-HFP may be added to the solvent and stirred at 15 to 35 ° C. for 1 to 5 hours.
  • the solvent may be DMF (dimethyl formamide), but is not limited thereto, and solvents such as NMP (N-methyl pyrrolidone), acetone, and dimethylacetamide may be used.
  • a photocurable polymer is added to the solution produced in step S10 and then dispersed.
  • the photocurable polymer may be a polycarbonate curable resin (PCR), and the polycarbonate curable resin may be added to a solution containing PVDF-HFP and stirred for 14 to 34 hours to uniformly disperse.
  • PCR polycarbonate curable resin
  • step S30 the solution in which the photocurable polymer is dispersed is degassed to prepare a composition for printing a piezoelectric element.
  • the deaeration may be maintained at room temperature for 1 to 5 hours to allow self-deaeration.
  • the prepared composition for printing a piezoelectric element may include 20 to 60 wt% of PVDF-HFP.
  • composition for printing a piezoelectric element prepared here includes PVDF-HFP formed by copolymerizing HFP and PVDF, which are ferroelectric polymers having a relatively high electric displacement polarization, piezoelectricity secured in flexibility and chemical resistance when compared to PVDF alone polymers. devices can be manufactured.
  • the prepared composition for printing a piezoelectric device can maximize the piezoelectric coefficient by rheologically and functionally optimized by adding PVDF-HFP to the photocurable polymer solution.
  • the composition for printing a piezoelectric element according to an embodiment of the present invention can manufacture a piezoelectric element having high sensitivity, mechanical flexibility and durability, and a large area.
  • composition for printing a piezoelectric element produces a piezoelectric element having a high piezoelectric coefficient, but can greatly reduce the manufacturing time by 10 times or more compared to existing EPAM (Electric Poling-Assisted Additive Manufacturing) technology.
  • FIG. 2 is a diagram showing the configuration of a printer for a piezoelectric element according to an embodiment of the present invention.
  • the printer 100 for a piezoelectric element may be a 3D printer based on Digital Light Processing (DLP).
  • DLP Digital Light Processing
  • the printer 100 for piezoelectric elements may include a tray 10 , a plate 20 , an irradiation unit 30 and a polarization alignment unit 40 .
  • the tray 10 may include a printing material including a printing composition including PVDF-HFP and a photocurable polymer formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP), and an electrode.
  • a printing material including a printing composition including PVDF-HFP and a photocurable polymer formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP), and an electrode.
  • the tray 10 may have an open top, and a space for accommodating electrodes and printing materials is formed therein. At this time, the inner space of the tray 10 may be formed larger than the area of the plate 20 so that the plate 20 to be described later can be inserted and contacted with the printing material.
  • the tray 10 is formed of a transparent material so that the light irradiated from the irradiation unit 30 provided thereunder can pass through and be irradiated to the printing material.
  • the electrode may be in the form of a film including indium tin oxide (ITO) and polyethylene terephthalate (PET). These electrodes may be attached to the lower surface of the tray 10 .
  • ITO indium tin oxide
  • PET polyethylene terephthalate
  • the printing material may be the composition for printing the piezoelectric element described above, and may be provided inside the tray to which the electrode is attached.
  • the plate 20 may be provided on top of the tray 10 and may be configured to move up and down in the direction of the tray 10 . That is, the plate 20 comes into contact with the printing material while moving downward in the direction of the tray 10, and when the irradiation unit 30 operates to irradiate light at the moment of contact, a part of the piezoelectric element having a predetermined shape is formed on the lower surface. can be formed In this way, while the plate 20 repeatedly moves up and down, a piezoelectric element, which is a result of 3D printing, may be formed on the lower surface.
  • This plate 20 may be formed of metal.
  • the irradiation unit 30 may be provided under the tray 10 and irradiates light to the tray 10 in an array arrangement.
  • the irradiation unit 30 may be a plurality of DLP projectors.
  • the irradiation unit 30 irradiates light corresponding to each allocated unit image to form a cross-sectional image. That is, since the irradiation unit 30 irradiates light corresponding to the cross-sectional image of the molding to be printed, large-area photocuring is possible, so that large-sized moldings with high resolution can be manufactured at once without dividing them.
  • An example in which the irradiation unit 30 is installed in the lower portion of the tray 10 and irradiates light to the upper tray 10 has been disclosed.
  • the irradiation unit 30 may consider a method of forming a cross-sectional image by manufacturing the size of one DLP projector to be the same as that of a plurality of DLP projectors.
  • a cross-sectional image formed by the plurality of DLP projectors has a higher resolution. That is, there is a problem in that the resolution of a cross-sectional image formed by one DLP projector is lower than that of a cross-sectional image formed by a plurality of DLP projectors. Therefore, in this embodiment, the irradiation unit 30 will be described as having a plurality of DLP projectors as an example.
  • the irradiation unit 30 may output ultraviolet (UV) light, but is not limited thereto and may output visible light or the like depending on the material of the printing material.
  • UV ultraviolet
  • the polarization aligning unit 40 is electrically connected to the electrodes provided on the tray 10 and the plate 20, respectively, and applies power to align the polarization to the printing material.
  • the polarization alignment unit 40 may perform polarization alignment by applying DC power before the printing material is cured by the irradiation unit 30.
  • the printing material was prepared by mixing PVDF-HFP and the polycarbonate curable resin used. That is, 1 g PVDF-FHP was added to 5 ml DMF solution and the mixture was stirred at 25° C. for 3 hours to obtain a clear and homogeneous solution. Next, 1g PCR was added and dispersed by stirring for 24 hours. Then, the mixed solution was degassed at room temperature for 3 hours to prepare a composition for printing containing 50 wt% of PVDF-HFP.
  • a transparent ITO coating film was attached to the inner surface of the tray and used as an electrode.
  • the printing material with a size of 30 x 30 x 0.5 mm was loaded between the ITO film and the metal plate. Then, direct current (DC) power was applied to the plate and tray for 5 minutes and UV cured at 405 nm. As for the printing resolution, a total thickness of 100 ⁇ m along the plate movement direction was used for all samples. After printing, the samples were washed with ethanol.
  • the piezoelectric element To fabricate the piezoelectric element, a commercially available silver paste was printed on the upper surface of the 3D-printed film (area: 2 cm x 2 cm) using a screen printing process. Next, an ITO-PET film was attached to the bottom surface of the film. Next, nickel tape was attached to both sides of the device as the top and bottom electrode lines, and then the piezoelectric element was encapsulated using PP tape.
  • FIG. 3 is a schematic diagram briefly showing a printing process of a printer for a piezoelectric element according to an embodiment of the present invention and a printer for a piezoelectric element without a polarization alignment unit.
  • FIG. 3 (a) is a schematic diagram showing a printing process of a printer for a piezoelectric element without a polarization alignment unit, and (b) is a schematic diagram showing a printing process of a printer for a piezoelectric element according to an embodiment of the present invention. .
  • the photoinitiator when the mixed ink was exposed to UV light, the photoinitiator absorbed light energy and dissociated into active free radicals, initiating free radical catalyzed polymerization of PCR. After free radicals are generated, polymerization of PCR is initiated to increase the chain length and eventually form an extensive cross-linking network. During the photopolymerization process, the PVDF dipoles aligned along the direction of the electric field are trapped within the 3D cross-linked structure of the PCR.
  • an embodiment of the present invention with an in-suit polling process may provide a new perspective for developing phases of a product. That is, compared to the existing method, it is possible to greatly reduce dipole direction, cost and time at the same time.
  • FIG. 4 is a graph for explaining characteristics of a composition for printing a piezoelectric element according to an embodiment of the present invention.
  • the results show that the d33 of the 3D printed samples increased as the loading PVDF-HFP content increased from 1pC/N for 20wt% PVDF-HFP to 42pC/N for 60wt% PVDF-HFP.
  • An increase in the piezoelectric coefficient can be attributed to an increase in the content of the piezoelectric material.
  • the 3D printed sample can maintain its shape and optimal piezoelectric performance when the PCR weight ratio is 50 wt%.
  • d33 was low under the low Pauling electric field condition and increased dramatically as the Pauling electric field increased. Above the maximum polarity electric field, the mixed ink is electrically destroyed by dielectric breakdown and discharge caused by the high electric field, and communication between the 3D printer and the computer may be lost.
  • 3D printed PVDF-HFP samples without in-situ polling were prepared and electrical polling was performed at 1 kV for different times at room temperature.
  • the 3D printed PVDFHFP sample without in situ polling can obtain the same d33 value as its in situ polling counterpart as shown in (c).
  • This phenomenon is caused by the three-dimensional bridging network impeding the movement of the PVDF-HFP dipoles.
  • 5 is a graph showing rheological performance according to the mixing ratio of printing materials.
  • FIG. 5 shows the rheological performance of series photocurable inks with different mixing ratios of PVDF-HFP to PCR (10:0, 7:3, 6:4, 5:5, 4:6, and 0:10 by weight, respectively).
  • (a) shows the change in viscosity of the photocurable ink as a function of shear rate.
  • the yield stress calculated by Bingham Equation 31 supports that all inks have yield values low enough to flow in the printing system and that PCR plays a major role in increasing the viscosity. Therefore, the rheological properties of the mixed ink ensure proper ink filling and leveling in the empty space during printing.
  • FIG. 6 is a graph showing the electrical output voltage sensitivity of printed piezoelectric elements with different mass fractions.
  • the printed piezoelectric sensor exhibits high impact force sensitivity (235 mV/N) in a wide pressure range (1-50 N).
  • the ultra-large linear response area of the 3D-printed sensor can provide a stable test process and avoid a complicated calibration process.
  • (c) shows the output voltage of the 3D printed sensor at different impact frequencies under a constant pressure of 50 N.
  • the 3D-printed sensor When the electrodes of the 3D-printed sensor were connected forward to the measurement circuit, the 3D-printed sensor produced a positive electrical signal in the pressure release movement and then measured a negative output in the reverse connection.
  • the electrical output signal switching caused by changing the electrode connection fully demonstrates that the energy-harvesting signal was generated by the piezoelectricity of the 3D-printed sensor.
  • FIG. 8 is a graph for explaining applicability of a piezoelectric element manufactured according to an embodiment of the present invention.
  • a glass bottle (20 g) was dropped vertically on the piezoelectric sensor to further investigate the applicability of the 3D printed piezoelectric sensor. As the drop height increases from 2cm to 12cm, the 3D printed piezoelectric sensor produces an output voltage ranging from 1.7V to 7.8V.
  • the 3D-printed piezoelectric sensor can not only be used to discriminate between different pressures, but also act as an impact energy harvester by converting mechanical energy into electrical energy.
  • the piezoelectric output voltages were generated by the 3D printed piezoelectric sensor under tapping and compression conditions, respectively.
  • the 3D printed sensor device can be used for potential real-time/practical applications for collecting biomechanical energy or sensing human motion.
  • tray 20 plate
  • irradiation unit 40 polarization alignment unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

The present invention relates to a composition for piezoelectric element printing to form a piezoelectric element by constructing a DLP-based real-time poling process system, a method for preparing same, and a piezoelectric element printer using same. The present invention comprises the steps of: adding, to a solvent, PVDF-HFP formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP), followed by stirring; adding a photo-curable polymer to the stirred solution; degassing the solution added with the photo-curable polymer, thereby preparing a composition for piezoelectric element printing.

Description

압전 소자의 프린팅용 조성물, 이의 제조 방법 및 이를 이용한 압전 소자용 프린터Composition for printing piezoelectric elements, manufacturing method thereof, and printer for piezoelectric elements using the same
본 발명은 압전 소자의 프린팅용 조성물에 관한 것으로, 더욱 상세하게는 DLP 기반의 실시간 폴링 공정 시스템을 구축하여 압전 소자를 형성하기 위한 압전 소자의 프린팅용 조성물, 이의 제조 방법 및 이를 이용한 압전 소자용 프린터에 관한 것이다.The present invention relates to a composition for printing a piezoelectric element, and more particularly, to a composition for printing a piezoelectric element for forming a piezoelectric element by constructing a DLP-based real-time polling process system, a method for manufacturing the same, and a printer for a piezoelectric element using the same It is about.
PVDF(Polyvinylidene fluoride)는 높은 유연성과 압전 능력으로 압전 소자 기술의 핵심 물질로 사용되고 있다. 일반적으로 PVDF의 압전성을 높이는 방법으로 천연 α상에서 β 상으로 변환하는 과정은 폴리머를 축 방향으로 늘린 다음 높은 전기장을 적용하여 쌍극자 구조를 정렬하는 것이다. 그러나 이 폴링 작업은 최소한 몇 시간 이상 고전압을 적용하기 때문에 수행하는 데 비용이 많이 들고 위험하고 번거로운 작업 프로세스로 지양하고 있다.Polyvinylidene fluoride (PVDF) is used as a key material in piezoelectric device technology due to its high flexibility and piezoelectric ability. In general, the conversion process from natural α phase to β phase as a way to increase the piezoelectricity of PVDF is to axially stretch the polymer and then apply a high electric field to align the dipole structure. However, this polling is an expensive, dangerous and cumbersome process to perform, as it applies high voltages for at least several hours.
최근에는 3D 프린팅과 폴링을 동시에 수행하여 3D 구조를 생성 할 수 있는 EPAM(Electric Poling-Assisted Additive Manufacturing) 기술이 개발되어 FDM 방식의 3D 프린팅을 이용한 압전소자 제작에 적용하였다.Recently, EPAM (Electric Poling-Assisted Additive Manufacturing) technology, which can create 3D structures by simultaneously performing 3D printing and poling, has been developed and applied to the production of piezoelectric elements using FDM-type 3D printing.
그러나 FDM 구조 특성상 좁은 노즐 범위, 높은 용융 온도, 느린 증착 속도와 같은 재료 압출 방법의 단점으로 지적되었다. 반면, DLP 프로세스는 대면적의 빔프로젝트를 조사하기 때문에 더 빠른 프로세스 속도로 고온 조건이 필요없는 넓은 면적의 3D 구조를 만드는 대안이 될 수 있다.However, due to the nature of the FDM structure, the disadvantages of material extrusion methods such as narrow nozzle range, high melting temperature, and slow deposition rate have been pointed out. On the other hand, since the DLP process irradiates a large-area beam project, it can be an alternative to create a large-area 3D structure that does not require high-temperature conditions at a faster process speed.
그러나 DLP 시스템에는 사후 폴링 프로세스 단계가 필요하며 지금까지는 이를 줄이기 위한 노력이 전무하다.However, DLP systems require a post-polling process step, and so far no effort has been made to reduce it.
따라서 본 발명의 목적은 DLP 기반의 실시간 폴링 공정 시스템을 구축하여 압전 소자를 형성하기 위한 압전 소자의 프린팅용 조성물, 이의 제조 방법 및 이를 이용한 압전 소자용 프린터를 제공하는 데 있다.Accordingly, an object of the present invention is to provide a composition for printing a piezoelectric element for forming a piezoelectric element by constructing a DLP-based real-time polling process system, a manufacturing method thereof, and a printer for a piezoelectric element using the same.
본 발명에 따른 압전 소자의 프린팅용 조성물 제조 방법은 PVDF(Polyvinylidene fluoride)와 HFP(hexa fluoropropylene)를 공중합하여 형성되는 PVDF-HFP를 용매에 첨가하고 1차 교반하는 단계, 상기 교반된 용액에 광 경화성 폴리머를 첨가하고 2차 교반하는 단계, 상기 광 경화성 폴리머가 첨가된 용액을 탈기시켜 압전 소자의 프린팅용 조성물을 제조하는 단계를 포함한다.A method for preparing a composition for printing of a piezoelectric element according to the present invention includes the steps of adding PVDF-HFP formed by copolymerizing PVDF (Polyvinylidene fluoride) and HFP (hexa fluoropropylene) to a solvent and firstly stirring it, and adding photocurable to the stirred solution. Adding a polymer and performing secondary stirring, and preparing a composition for printing a piezoelectric element by degassing the solution to which the photocurable polymer is added.
본 발명에 따른 압전 소자의 프린팅용 조성물 제조 방법에 있어서, 상기 1차 교반하는 단계는, PVDF-HFP를 용매에 첨가하고, 15 ~ 35℃에서 1 ~ 5시간 동안 교반하는 것을 특징으로 한다.In the method for preparing a composition for printing a piezoelectric element according to the present invention, the primary stirring step is characterized in that PVDF-HFP is added to a solvent and stirred at 15 to 35 ° C. for 1 to 5 hours.
본 발명에 따른 압전 소자의 프린팅용 조성물 제조 방법에 있어서, 상기 압전 소자의 프린팅용 조성물은 20 ~ 60wt%의 상기 PVDF-HFP를 포함하는 것을 특징으로 한다.In the method for preparing a composition for printing a piezoelectric element according to the present invention, the composition for printing a piezoelectric element includes 20 to 60 wt% of the PVDF-HFP.
본 발명에 따른 압전 소자의 프린팅용 조성물은 PVDF(Polyvinylidene fluoride)와 HFP(hexa fluoropropylene)를 공중합하여 형성되는 PVDF-HFP 및 광 경화성 폴리머를 포함하는 것을 특징으로 한다.The composition for printing a piezoelectric element according to the present invention is characterized in that it includes PVDF-HFP formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP) and a photocurable polymer.
본 발명에 따른 압전 소자용 프린터는 PVDF(Polyvinylidene fluoride)와 HFP(hexa fluoropropylene)를 공중합하여 형성되는 PVDF-HFP 및 광 경화성 폴리머를 포함하는 프린팅용 조성물이 포함된 프린팅 재료와, 전극이 구비되는 트레이, 상기 트레이 상부에 구비되어, 상기 트레이를 기준으로 상하로 이동하면서 하부면에 상기 프린팅 재료에 의한 압전 소자가 형성되는 플레이트, 상기 트레이의 하부에 구비되어, 상기 트레이 방향으로 UV를 조사하여 상기 플레이트 상에 압전 소자를 형성하는 조사부, 및 전극과 상기 플레이트에 연결되어 전원을 인가하여 상기 프린팅 재료에 분극 정렬을 수행하는 분극 정렬부를 포함하는 것을 특징으로 한다.A printer for piezoelectric elements according to the present invention includes a printing material containing a printing composition containing PVDF-HFP and a photocurable polymer formed by copolymerizing PVDF (Polyvinylidene fluoride) and HFP (hexa fluoropropylene), and a tray provided with an electrode. , A plate provided on the upper part of the tray and having a piezoelectric element made of the printing material formed on the lower surface while moving up and down with respect to the tray, provided on the lower part of the tray and irradiating UV in the direction of the tray to It is characterized in that it includes an irradiation unit for forming a piezoelectric element thereon, and a polarization aligning unit connected to electrodes and the plate to apply power to perform polarization alignment on the printing material.
본 발명에 따른 압전 소자용 프린터에 있어서, 상기 전극은 ITO(Indium Tin Oxide) 및 PET(polyethylene terephthalate)을 포함하는 것을 특징으로 한다.In the printer for a piezoelectric element according to the present invention, the electrode is characterized in that it includes indium tin oxide (ITO) and polyethylene terephthalate (PET).
본 발명에 따른 압전 소자용 프린터에 있어서, 상기 프린팅용 조성물은 상기 분극 정렬부에 의해 분극 정렬이 일어난 후 상기 조사부에 의해 경화되어 상기 압전 소자로 형성되는 것을 특징으로 한다.In the printer for a piezoelectric element according to the present invention, the composition for printing is formed into the piezoelectric element by polarization alignment by the polarization alignment unit and then cured by the irradiation unit.
본 발명에 따른 압전 소자의 프린팅용 조성물은 고감도, 기계적 플렉서블 내구성 및 넓은 면적을 갖춘 압전 소자를 제조할 수 있다.The composition for printing a piezoelectric element according to the present invention can produce a piezoelectric element with high sensitivity, mechanical flexibility and durability, and a large area.
또한 본 발명에 따른 압전 소자의 프린팅용 조성물은 압전 계수가 높은 압전소자를 생산하되, 기존 EPAM(Electric Poling-Assisted Additive Manufacturing)기술 대비 제조 시간을 10배 이상 크게 단축할 수 있다.In addition, the composition for printing a piezoelectric element according to the present invention produces a piezoelectric element having a high piezoelectric coefficient, but can significantly reduce the manufacturing time by more than 10 times compared to the existing EPAM (Electric Poling-Assisted Additive Manufacturing) technology.
도 1은 본 발명의 실시예에 따른 압전 소자의 프린팅용 조성물의 제조 방법을 나타낸 순서도이다.1 is a flowchart illustrating a method of manufacturing a composition for printing a piezoelectric element according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 압전 소자용 프린터의 구성을 나타낸 도면이다.2 is a diagram showing the configuration of a printer for a piezoelectric element according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 압전 소자용 프린터와, 분극 정렬부를 구비하지 않은 압전 소자용 프린터의 프린팅 프로세스를 간략히 보여주는 모식도이다.3 is a schematic diagram briefly showing a printing process of a printer for a piezoelectric element according to an embodiment of the present invention and a printer for a piezoelectric element without a polarization alignment unit.
도 4는 본 발명의 실시예에 따른 압전 소자의 프린팅용 조성물의 특징을 설명하기 위한 그래프이다.4 is a graph for explaining characteristics of a composition for printing a piezoelectric element according to an embodiment of the present invention.
도 5는 프린팅 재료의 혼합 비율에 따른 유변학적 성능을 나타낸 그래프이다.5 is a graph showing rheological performance according to the mixing ratio of printing materials.
도 6은 질량 분율이 다른 인쇄된 압전 소자의 출력 전압 감도를 나타낸 그래프이다.6 is a graph showing output voltage sensitivities of printed piezoelectric elements having different mass fractions.
도 7은 본 발명의 실시예에 따라 제조된 압전 소자의 극성 전환 테스트 결과를 나타낸 그래프이다.7 is a graph showing polarity conversion test results of piezoelectric elements manufactured according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따라 제조된 압전 소자의 응용 가능성을 설명하기 위한 그래프이다.8 is a graph for explaining applicability of a piezoelectric element manufactured according to an embodiment of the present invention.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.It should be noted that in the following description, only parts necessary for understanding the embodiments of the present invention are described, and descriptions of other parts will be omitted without disturbing the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다The terms or words used in this specification and claims described below should not be construed as being limited to ordinary or dictionary meanings, and the inventors have appropriately used the concept of terms to describe their inventions in the best way. can be defined
는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어 야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle. Therefore, the embodiments described in this specification and the configurations shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, so various equivalents that can replace them at the time of the present application. It should be understood that there may be variations and variations.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 압전 소자의 프린팅용 조성물의 제조 방법을 나타낸 순서도이다.1 is a flowchart illustrating a method of manufacturing a composition for printing a piezoelectric element according to an embodiment of the present invention.
도 1을 참조하면, 먼저 S10 단계에서 PVDF(Polyvinylidene fluoride)와 HFP(hexa fluoropropylene)를 공중합하여 형성되는 PVDF-HFP를 용매에 첨가하고 교반한다. 이때 PVDF-HFP를 용매에 첨가하고, 15 ~ 35℃에서 1 ~ 5시간 동안 교반할 수 있다.Referring to FIG. 1, PVDF-HFP formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP) is first added to a solvent in step S10 and stirred. At this time, PVDF-HFP may be added to the solvent and stirred at 15 to 35 ° C. for 1 to 5 hours.
여기서 용매는 DMF(디메틸 포름아미드)이 사용될 수 있으나, 이에 한정된 것은 아니고, NMP(N-메틸 피롤리돈), 아세톤, 디메틸아세트아미드 등의 용매가 사용될 수도 있다.Here, the solvent may be DMF (dimethyl formamide), but is not limited thereto, and solvents such as NMP (N-methyl pyrrolidone), acetone, and dimethylacetamide may be used.
다음으로 S20 단계에서 광 경화성 폴리머를 S10 단계에서 생성된 용액에 첨가한 후에 분산시킨다. 여기서 광 경화성 폴리머는 폴리 카보네이트 경화 수지(PCR)이 될 수 있으며, 폴리 카보네이트 경화 수지를 PVDF-HFP가 포함된 용액에 투입한 후에 14 ~ 34 시간 동안 교반하여 균일하게 분산시킬 수 있다.Next, in step S20, a photocurable polymer is added to the solution produced in step S10 and then dispersed. Here, the photocurable polymer may be a polycarbonate curable resin (PCR), and the polycarbonate curable resin may be added to a solution containing PVDF-HFP and stirred for 14 to 34 hours to uniformly disperse.
그리고 S30 단계에서 광 경화성 폴리머가 분산된 용액을 탈기시켜 압전 소자의 프린팅용 조성물을 제조한다. 여기서 탈기는 실온에서 1 ~ 5 시간 동안 유지시켜 자체적으로 탈기되도록 할 수 있다. 제조된 압전 소자의 프린팅용 조성물은 20 ~ 60wt%의 PVDF-HFP를 포함할 수 있다.In step S30, the solution in which the photocurable polymer is dispersed is degassed to prepare a composition for printing a piezoelectric element. Here, the deaeration may be maintained at room temperature for 1 to 5 hours to allow self-deaeration. The prepared composition for printing a piezoelectric element may include 20 to 60 wt% of PVDF-HFP.
여기서 제조된 압전 소자의 프린팅용 조성물은 상대적으로 높은 전기 변위 분극을 갖는 강유전성 폴리머인 HFP와 PVDF를 공중합하여 형성된 PVDF-HFP를 포함하기 때문에, PVDF 단독 폴리머와 비교할 경우 유연성과 내화학성을 확보된 압전 소자를 제조할 수 있다.Since the composition for printing a piezoelectric element prepared here includes PVDF-HFP formed by copolymerizing HFP and PVDF, which are ferroelectric polymers having a relatively high electric displacement polarization, piezoelectricity secured in flexibility and chemical resistance when compared to PVDF alone polymers. devices can be manufactured.
또한 제조된 압전 소자의 프린팅용 조성물은 PVDF-HFP를 광경화성 폴리머 솔루션에 첨가함에 따라 유변학적 및 기능적으로 최적화하여 압전 계수를 최대화할 수 있다.In addition, the prepared composition for printing a piezoelectric device can maximize the piezoelectric coefficient by rheologically and functionally optimized by adding PVDF-HFP to the photocurable polymer solution.
즉 본 발명의 실시예에 따른 압전 소자의 프린팅용 조성물은 고감도, 기계적 플렉서블 내구성 및 넓은 면적을 갖춘 압전 소자를 제조할 수 있다.That is, the composition for printing a piezoelectric element according to an embodiment of the present invention can manufacture a piezoelectric element having high sensitivity, mechanical flexibility and durability, and a large area.
또한 본 발명의 실시예에 따른 압전 소자의 프린팅용 조성물은 압전 계수가 높은 압전 소자를 생산하되, 기존 EPAM(Electric Poling-Assisted Additive Manufacturing) 기술 대비 제조 시간을 10배 이상 크게 단축할 수 있다.In addition, the composition for printing a piezoelectric element according to an embodiment of the present invention produces a piezoelectric element having a high piezoelectric coefficient, but can greatly reduce the manufacturing time by 10 times or more compared to existing EPAM (Electric Poling-Assisted Additive Manufacturing) technology.
이하 본 발명의 실시예에 따른 압전 소자용 프린터에 대하여 상세히 설명하도록 한다.Hereinafter, a printer for a piezoelectric element according to an embodiment of the present invention will be described in detail.
도 2는 본 발명의 실시예에 따른 압전 소자용 프린터의 구성을 나타낸 도면이다.2 is a diagram showing the configuration of a printer for a piezoelectric element according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 실시예에 따른 압전 소자용 프린터(100)는 DLP(Digital Light Processing) 기반의 3D 프린터가 될 수 있다.Referring to FIG. 2 , the printer 100 for a piezoelectric element according to an embodiment of the present invention may be a 3D printer based on Digital Light Processing (DLP).
이러한 압전 소자용 프린터(100)는 트레이(10), 플레이트(20), 조사부(30) 및 분극 정렬부(40)를 포함하여 구성될 수 있다.The printer 100 for piezoelectric elements may include a tray 10 , a plate 20 , an irradiation unit 30 and a polarization alignment unit 40 .
트레이(10)는 PVDF(Polyvinylidene fluoride)와 HFP(hexa fluoropropylene)를 공중합하여 형성되는 PVDF-HFP 및 광 경화성 폴리머를 포함하는 프린팅용 조성물이 포함된 프린팅 재료와, 전극이 구비될 수 있다.The tray 10 may include a printing material including a printing composition including PVDF-HFP and a photocurable polymer formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP), and an electrode.
트레이(10)는 상부가 개방될 수 있으며, 내부에 전극 및 프린팅 재료를 수용하기 위한 공간이 형성된다. 이때 트레이(10)의 내부 공간은 후술할 플레이트(20)가 삽입되어 프린팅 재료와 접촉할 수 있도록 플레이트(20)의 면적보다 더 크게 형성될 수 있다.The tray 10 may have an open top, and a space for accommodating electrodes and printing materials is formed therein. At this time, the inner space of the tray 10 may be formed larger than the area of the plate 20 so that the plate 20 to be described later can be inserted and contacted with the printing material.
또한 트레이(10)는 하부에 구비된 조사부(30)로부터 조사되는 광이 통과하여 프린팅 재료에 조사될 수 있도록 투명한 재질로 형성된다.In addition, the tray 10 is formed of a transparent material so that the light irradiated from the irradiation unit 30 provided thereunder can pass through and be irradiated to the printing material.
여기서 전극은 ITO(Indium Tin Oxide) PET(polyethylene terephthalate)을 포함하는 필름 형태가 될 수 있다. 이러한 전극은 트레이(10)의 하부면에 부착될 수 있다.Here, the electrode may be in the form of a film including indium tin oxide (ITO) and polyethylene terephthalate (PET). These electrodes may be attached to the lower surface of the tray 10 .
프린팅 재료는 앞서 설명한 압전 소자의 프린팅용 조성물이 될 수 있으며, 전극이 부착된 트레이 내부에 구비될 수 있다.The printing material may be the composition for printing the piezoelectric element described above, and may be provided inside the tray to which the electrode is attached.
플레이트(20)는 트레이(10)의 상부에 구비될 수 있으며, 트레이(10) 방향으로 상하로 이동되도록 구성될 수 있다. 즉 플레이트(20)는 트레이(10) 방향으로 하부로 이동하면서 프린팅 재료와 맞닿게 되고, 맞닿는 순간 조사부(30)가 동작하여 광을 조사하게 되면, 하부면에 미리 설정된 모양의 압전 소자의 일부가 형성될 수 있다. 이와 같이 플레이트(20)는 반복적으로 상하로 이동하면서, 하부면에 3D 프린팅 결과물인 압전 소자가 하부 영역에 형성될 수 있다. 이러한 플레이트(20)는 금속으로 형성될 수 있다.The plate 20 may be provided on top of the tray 10 and may be configured to move up and down in the direction of the tray 10 . That is, the plate 20 comes into contact with the printing material while moving downward in the direction of the tray 10, and when the irradiation unit 30 operates to irradiate light at the moment of contact, a part of the piezoelectric element having a predetermined shape is formed on the lower surface. can be formed In this way, while the plate 20 repeatedly moves up and down, a piezoelectric element, which is a result of 3D printing, may be formed on the lower surface. This plate 20 may be formed of metal.
조사부(30)는 트레이(10)의 하부에 구비될 수 있으며, 어레이 배열되어 트레이(10)로 광을 조사한다. 이러한 조사부(30)는 복수의 DLP 프로젝터가 될 수 있다.The irradiation unit 30 may be provided under the tray 10 and irradiates light to the tray 10 in an array arrangement. The irradiation unit 30 may be a plurality of DLP projectors.
조사부(30)는 각각 할당된 단위 이미지에 대응되는 광을 조사하여 단면 이미지를 형성한다. 즉 조사부(30)는 인쇄할 성형물의 단면 이미지에 대응되는 광을 조사함으로써 대면적의 광경화가 가능하기 때문에, 고해상도를 가진 대형 사이즈의 성형물을 분할하지 않고 한번에 제조할 수 있다. 조사부(30)가 트레이(10)의 하부에 설치되어 상부의 트레이(10)로 광을 조사하는 예를 개시하였다The irradiation unit 30 irradiates light corresponding to each allocated unit image to form a cross-sectional image. That is, since the irradiation unit 30 irradiates light corresponding to the cross-sectional image of the molding to be printed, large-area photocuring is possible, so that large-sized moldings with high resolution can be manufactured at once without dividing them. An example in which the irradiation unit 30 is installed in the lower portion of the tray 10 and irradiates light to the upper tray 10 has been disclosed.
한편 조사부(30)는 하나의 DLP 프로젝터의 크기를 복수의 DLP 프로젝터의 크기와 동일한 크기로 제조하여 단면 이미지를 형성하는 방안을 고려해 볼 수 있다.Meanwhile, the irradiation unit 30 may consider a method of forming a cross-sectional image by manufacturing the size of one DLP projector to be the same as that of a plurality of DLP projectors.
하나의 DLP 프로젝터와 복수의 DLP 프로젝터가 동일한 해상도를 가지고 있다고 가정할 때, 복수의 DLP 프로젝터로 형성하는 단면 이미지의 해상도가 더 높다. 즉 하나의 DLP 프로젝터로 형성되는 단면 이미지의 해상도가 복수의 DLP 프로젝터로 형성하는 단면 이미지에 비해서 해상도가 떨어지는 문제가 있다. 따라서 본 실시예에서 조사부(30)는 복수의 DLP 프로젝터를 구비한 것으로 예로 설명한다. 이러한 조사부(30)는 자외선(UV)을 출력할 수 있으나, 이에 한정된 것은 아니고 프린팅 재료의 소재에 따라 가시광선 등을 출력할 수도 있다.Assuming that one DLP projector and a plurality of DLP projectors have the same resolution, a cross-sectional image formed by the plurality of DLP projectors has a higher resolution. That is, there is a problem in that the resolution of a cross-sectional image formed by one DLP projector is lower than that of a cross-sectional image formed by a plurality of DLP projectors. Therefore, in this embodiment, the irradiation unit 30 will be described as having a plurality of DLP projectors as an example. The irradiation unit 30 may output ultraviolet (UV) light, but is not limited thereto and may output visible light or the like depending on the material of the printing material.
분극 정렬부(40)는 트레이(10)에 구비된 전극과 플레이트(20)에 각각 전기적으로 연결되고, 전원을 인가하여 프린팅 재료에 분극 정렬을 수행하도록 한다. 이러한 분극 정렬부(40)는 조사부(30)에 의해 프린팅 재료를 경화시키기 이전에 DC 전원을 인가하여 분극 정렬을 수행하도록 할 수 있다The polarization aligning unit 40 is electrically connected to the electrodes provided on the tray 10 and the plate 20, respectively, and applies power to align the polarization to the printing material. The polarization alignment unit 40 may perform polarization alignment by applying DC power before the printing material is cured by the irradiation unit 30.
이하, 본 발명의 실시예에 따른 압전 소자용 프린터의 특징에 대하여 상세히 설명하도록 한다.Hereinafter, features of a printer for a piezoelectric element according to an embodiment of the present invention will be described in detail.
실시예Example
1. 프린팅 재료1. Printing materials
프린팅 재료는 PVDF-HFP와 사용 폴리 카보네이트 경화성 수지를 혼합하여 제조하였다. 즉 1g PVDF-FHP를 5ml DMF 용액에 첨가하고 혼합물을 25℃에서 3시간 동안 교반하여 투명하고 균질한 용액을 얻었다. 다음으로 1g PCR을 첨가하고, 24시간 동안 교반하여 분산시켰다. 그리고 혼합 용액을 실온에서 3시간 동안 탈기시켜 50wt%의 PVDF-HFP를 함유하는 프린팅용 조성물을 제조하였다.The printing material was prepared by mixing PVDF-HFP and the polycarbonate curable resin used. That is, 1 g PVDF-FHP was added to 5 ml DMF solution and the mixture was stirred at 25° C. for 3 hours to obtain a clear and homogeneous solution. Next, 1g PCR was added and dispersed by stirring for 24 hours. Then, the mixed solution was degassed at room temperature for 3 hours to prepare a composition for printing containing 50 wt% of PVDF-HFP.
먼저 투명 ITO 코팅 필름을 트레이의 내부면에 부착하여 전극으로 사용했다.First, a transparent ITO coating film was attached to the inner surface of the tray and used as an electrode.
또한 ITO 필름과 금속 플레이트 사이에 30 x 30 x 0.5mm 크기의 상기 프린팅 재료를 로드시켰다. 그리고 직류(DC) 전원을 플레이트와 트레이에 5분 동안 적용하고 405nm로 UV 경화시켰다. 인쇄 해상도는 모든 샘플에 대해 플레이트 이동 방향에 따른 총 두께 100㎛를 사용했다. 인쇄 후 샘플은 에탄올로 세척하였다.In addition, the printing material with a size of 30 x 30 x 0.5 mm was loaded between the ITO film and the metal plate. Then, direct current (DC) power was applied to the plate and tray for 5 minutes and UV cured at 405 nm. As for the printing resolution, a total thickness of 100 μm along the plate movement direction was used for all samples. After printing, the samples were washed with ethanol.
3. 압전 소자 제작3. Fabrication of piezoelectric element
압전 소자를 제작하기 위해 스크린 프린팅 공정을 사용하여 3D 프린팅 된 필름(면적 : 2cm x 2cm)의 윗면에 상용 은 페이스트를 인쇄하였다. 다음으로 ITO-PET필름을 상기 필름의 바닥면에 부착하였다. 다음으로 니켈 테이프를 상단 및 하단 전극 라인으로 장치의 양면에 부착한 다음 PP 테이프를 사용하여 압전 소자를 캡슐화 하였다.To fabricate the piezoelectric element, a commercially available silver paste was printed on the upper surface of the 3D-printed film (area: 2 cm x 2 cm) using a screen printing process. Next, an ITO-PET film was attached to the bottom surface of the film. Next, nickel tape was attached to both sides of the device as the top and bottom electrode lines, and then the piezoelectric element was encapsulated using PP tape.
한편 도 3은 본 발명의 실시예에 따른 압전 소자용 프린터와, 분극 정렬부를 구비하지 않은 압전 소자용 프린터의 프린팅 프로세스를 간략히 보여주는 모식도이다.Meanwhile, FIG. 3 is a schematic diagram briefly showing a printing process of a printer for a piezoelectric element according to an embodiment of the present invention and a printer for a piezoelectric element without a polarization alignment unit.
도 3을 참조하면, (a)는 분극 정렬부를 구비하지 않은 압전 소자용 프린터의 프린팅 프로세스를 나타낸 모식도이고, (b)는 본 발명의 실시예에 따른 압전 소자용 프린터의 프린팅 프로세스를 나타낸 모식도이다.Referring to FIG. 3 , (a) is a schematic diagram showing a printing process of a printer for a piezoelectric element without a polarization alignment unit, and (b) is a schematic diagram showing a printing process of a printer for a piezoelectric element according to an embodiment of the present invention. .
(a)에 도시된 바와 같이, 혼합 잉크에서 PVDF-HFP 쌍극자의 방향은 무작위로 분포되어 전체 편광을 나타내지 않는 것을 확인할 수 있다.As shown in (a), it can be seen that the direction of the PVDF-HFP dipoles in the mixed ink is randomly distributed and does not show overall polarization.
반면에, (b)에 도시된 바와 같이, 본 발명의 실시예에서 높은 DC 전기장이 트레이의 잉크 혼합물에 인가되었을 때 PVDF-HFP 쌍극자는 전기장의 균일한 방향으로 정렬된 것을 확인할 수 있다.On the other hand, as shown in (b), in the embodiment of the present invention, when a high DC electric field is applied to the ink mixture on the tray, it can be seen that the PVDF-HFP dipoles are aligned in the uniform direction of the electric field.
또한, 혼합 잉크가 UV 빛에 노출되었을 때, 광개시제는 빛 에너지를 흡수하고 활성 자유 라디칼로 해리되어 PCR의 자유 라디칼 촉매 중합을 시작하였다. 자유 라디칼이 생성된 후, PCR의 중합이 개시되어 사슬 길이를 증가시키고 결국 광대한 가교 네트워크를 형성하게 된다. 광중합 과정에서 전기장의 방향을 따라 정렬된 PVDF 쌍극자는 PCR의 3차원 가교 구조 내에 갇히게 된다.In addition, when the mixed ink was exposed to UV light, the photoinitiator absorbed light energy and dissociated into active free radicals, initiating free radical catalyzed polymerization of PCR. After free radicals are generated, polymerization of PCR is initiated to increase the chain length and eventually form an extensive cross-linking network. During the photopolymerization process, the PVDF dipoles aligned along the direction of the electric field are trapped within the 3D cross-linked structure of the PCR.
따라서, 인-슈트(In-suit) 폴링 프로세스가 있는 본 발명의 실시예는 제품의 단계를 개발하는 새로운 관점을 제공할 수 있다. 즉 기존 방법과 비교할 때 쌍극자 방향은 물론 비용과 시간을 동시에 크게 줄일 수 있다.Thus, an embodiment of the present invention with an in-suit polling process may provide a new perspective for developing phases of a product. That is, compared to the existing method, it is possible to greatly reduce dipole direction, cost and time at the same time.
도 4는 본 발명의 실시예에 따른 압전 소자의 프린팅용 조성물의 특징을 설명하기 위한 그래프이다.4 is a graph for explaining characteristics of a composition for printing a piezoelectric element according to an embodiment of the present invention.
한편 최상의 잉크와 최대 압전성을 얻으려면 PVDF-HFP 농도가 인쇄된 샘플의 성능과 인쇄성에 미치는 영향을 결정하는 것이 필요하다.Meanwhile, to obtain the best ink and maximum piezoelectricity, it is necessary to determine the effect of the PVDF-HFP concentration on the performance and printability of the printed samples.
따라서 20 ~ 60wt% PVDF-HFP를 준비하고 (a)와 같이 준정적 d33 meter를 사용하여 인쇄된 샘플의 압전을 단순화하였다.Therefore, 20 ~ 60wt% PVDF-HFP was prepared and the piezoelectricity of the printed sample was simplified using a quasi-static d33 meter as shown in (a).
결과는 로딩 PVDF-HFP 함량이 20wt% PVDF-HFP의 경우, 1pC/N에서 60wt% PVDF-HFP의 경우, 42pC/N으로 증가함에 따라 3D 인쇄된 샘플의 d33이 증가했음을 보여준다.The results show that the d33 of the 3D printed samples increased as the loading PVDF-HFP content increased from 1pC/N for 20wt% PVDF-HFP to 42pC/N for 60wt% PVDF-HFP.
압전 계수의 증가는 압전 재료의 함량 증가에 기인할 수 있다.An increase in the piezoelectric coefficient can be attributed to an increase in the content of the piezoelectric material.
또한, PVDF-HFP 중량%가 60%를 초과하면 필름 형성이 관찰되지 않는다는 점에 주목할 필요가 있다. 이는 광중합 수지의 함량이 너무 낮고 가교 밀도가 낮아 필름을 형성하지 못하기 때문이다.It is also worth noting that no film formation was observed when the PVDF-HFP weight percentage exceeded 60%. This is because the content of the photopolymerization resin is too low and the crosslinking density is too low to form a film.
또한 PCR 농도가 높을수록 고형화되어 기능이 저하됨을 확인하였다. 따라서 3D 프린팅된 샘플은 PCR 중량비가 50wt%일 때 형태와 최적의 압전 성능을 유지할 수 있다.In addition, it was confirmed that the higher the PCR concentration, the more solidified and the lower the function. Therefore, the 3D printed sample can maintain its shape and optimal piezoelectric performance when the PCR weight ratio is 50 wt%.
압전 소자의 압전 특성을 향상시키기 위해서는 높은 DC 전계하에서 분극처리를 하는 것이 필수적이다. (b)는 서로 다른 폴링 전기장(0.3-1kV)에서 인시츄 폴링을 사용하여 3D 인쇄된 PVDF-HFP 샘플의 d33 변화를 나타낸다.In order to improve the piezoelectric properties of a piezoelectric element, it is essential to perform polarization treatment under a high DC electric field. (b) shows the d33 change of PVDF-HFP samples 3D printed using in situ polling at different polling electric fields (0.3–1 kV).
d33은 낮은 폴링 전기장 조건에서 낮았고 폴링 전기장이 증가함에 따라 극적으로 증가하였다. 최대 극성 전기장 이상에서 혼합 잉크는 높은 전기장으로 인한 절연 파괴 및 방전에 의해 전기적으로 파괴되어 3D 프린터와 컴퓨터 간의 통신이 끊어질 수 있다.d33 was low under the low Pauling electric field condition and increased dramatically as the Pauling electric field increased. Above the maximum polarity electric field, the mixed ink is electrically destroyed by dielectric breakdown and discharge caused by the high electric field, and communication between the 3D printer and the computer may be lost.
본 발명의 실시예의 우수성을 추가로 확인하기 위해 인시튜 폴링이 없는 3D 인쇄 PVDF-HFP 샘플을 준비한 다음 실온에서 서로 다른 시간 동안 1kV에서 전기 폴링을 수행하였다.To further confirm the superiority of the inventive examples, 3D printed PVDF-HFP samples without in-situ polling were prepared and electrical polling was performed at 1 kV for different times at room temperature.
10시간의 전기 폴링 처리를 적용한 후, 인시츄 폴링이 없는 3D 인쇄 PVDFHFP 샘플은 (c)와 같이 인시츄 폴링 대응물과 마찬가지로 d33 값을 얻을 수 있다.After applying 10 h of electrical polling treatment, the 3D printed PVDFHFP sample without in situ polling can obtain the same d33 value as its in situ polling counterpart as shown in (c).
이러한 현상은 PVDF-HFP 쌍극자의 움직임을 방해하는 3차원 가교 네트워크에 의해 발생한다.This phenomenon is caused by the three-dimensional bridging network impeding the movement of the PVDF-HFP dipoles.
도 5는 프린팅 재료의 혼합 비율에 따른 유변학적 성능을 나타낸 그래프이다.5 is a graph showing rheological performance according to the mixing ratio of printing materials.
즉 도 5는 PVDF-HFP 대 PCR(각각 중량비 10:0, 7:3, 6:4, 5:5, 4:6 및 0:10)의 혼합 비율이 다른 시리즈 광경화성 잉크의 유변학적 성능을 보여준다.That is, FIG. 5 shows the rheological performance of series photocurable inks with different mixing ratios of PVDF-HFP to PCR (10:0, 7:3, 6:4, 5:5, 4:6, and 0:10 by weight, respectively). show
한편 압전 능력에 대한 비율의 범위가 좁혀져 왔으나 실제 DLP 인쇄에서는 막 형성에 영향을 미치는 점도에 따른 잉크 유동성을 조사해야 한다.On the other hand, the range of the ratio for the piezoelectric ability has been narrowed, but in actual DLP printing, ink fluidity according to the viscosity that affects film formation must be investigated.
(a)는 전단율의 함수로서 광경화성 잉크의 점도 변화를 보여준다.(a) shows the change in viscosity of the photocurable ink as a function of shear rate.
전단 속도가 증가하면 혼합물의 점도가 감소하여 인쇄 시스템에서 일반적으로 발견되는 전단 박화 거동이 발생하였다.As the shear rate increased, the viscosity of the mixture decreased, resulting in the shear thinning behavior commonly found in printing systems.
PVDF-HFP 용액에서는 Newtonian 거동이 나타났으나 Non-newtonian 성질이 강한 PCR은 Shear thinning 효과를 유도하였다. 따라서 Zero-shear 점도 값은 45700 cP(4:6), 37720 cP(5:5), 30800 cP(6:4), 20466 cP(7:3)와 같이 PCR 첨가 순서대로 나열하였다.Newtonian behavior was observed in the PVDF-HFP solution, but PCR with strong non-Newtonian properties induced shear thinning effect. Therefore, the zero-shear viscosity values were listed in the order of PCR addition, such as 45700 cP (4:6), 37720 cP (5:5), 30800 cP (6:4), and 20466 cP (7:3).
또한, 광경화성 잉크는 (b)에 나와 있는 요변성을 관찰하기 위해 사전 전단을 거쳐야 했다. 전단 속도의 증가 및 감소 동안 광경화성 잉크의 점도에 대한 상당한 히스테리시스 효과가 관찰되었으며, 이는 잉크가 몇 초 내에 짧은 시간에 잘 레벨링될 것임을 시사한다.In addition, the photocurable ink had to undergo pre-shearing in order to observe the thixotropy shown in (b). A significant hysteresis effect on the viscosity of the photocurable ink was observed during the increase and decrease of the shear rate, suggesting that the ink will level well in a short time within seconds.
또한 (c)와 같이 Bingham 식31에 의해 계산된 항복응력은 모든 잉크가 인쇄 시스템 내에서 흐르기에 충분히 낮은 항복값을 가지며 PCR이 점도를 높이는 주요 역할을 함을 뒷받침한다. 따라서 혼합 잉크의 유변학적 특성은 인쇄 중 빈 공간에 적절한 잉크 충전 및 레벨링을 보장한다.Also, as shown in (c), the yield stress calculated by Bingham Equation 31 supports that all inks have yield values low enough to flow in the printing system and that PCR plays a major role in increasing the viscosity. Therefore, the rheological properties of the mixed ink ensure proper ink filling and leveling in the empty space during printing.
도 6은 질량 분율이 다른 인쇄된 압전 소자의 전기 출력 전압 감도를 나타낸 그래프이다.6 is a graph showing the electrical output voltage sensitivity of printed piezoelectric elements with different mass fractions.
충격력이 50N으로 증가함에 따라 적용된 변형력에 대한 압전 출력 전압의 강한 의존성이 관찰되었다.A strong dependence of the piezoelectric output voltage on the applied strain was observed as the impact force increased to 50 N.
출력 전압은 외부 충격력이 증가함에 따라 거의 선형으로 증가했다. 일반적으로 외부 충격력이 증가함에 따라 더 강한 변형은 더 높은 출력 전압과 더 높은 압전 위치 에너지를 초래한다.The output voltage increased almost linearly as the external impulse force increased. In general, as the external impact force increases, a stronger strain results in a higher output voltage and higher piezoelectric potential energy.
결과는 센서의 질량 분율이 다른 경우에도 외력이 증가함에 따라 전압이 증가함을 보여준다.The results show that the voltage increases as the external force increases even when the mass fraction of the sensor is different.
인쇄된 압전 센서의 전압 감도(S = △V / △P, 여기서 △V는 출력 전압 신호의 상대 변동이고 △P는 적용된 압력의 상대 변동)는 선형 기울기를 갖는 그래프를 얻을 수 있다.The voltage sensitivity of the printed piezoelectric sensor (S = ∆V / ∆P, where ∆V is the relative variation of the output voltage signal and ∆P is the relative variation of the applied pressure) can be obtained as a graph with a linear slope.
피팅된 선형 방정식에 따르면 인쇄된 압전 센서는 넓은 압력 영역(1-50N)에서 높은 충격력 감도(235mV/N)를 나타낸다.According to the fitted linear equation, the printed piezoelectric sensor exhibits high impact force sensitivity (235 mV/N) in a wide pressure range (1-50 N).
3D 프린팅된 센서의 초대형 선형 응답 영역은 안정적인 테스트 프로세스를 제공하고 복잡한 보정 프로세스를 방지할 수 있다는 점에 주목한다.It is noted that the ultra-large linear response area of the 3D-printed sensor can provide a stable test process and avoid a complicated calibration process.
또한, (c)는 50N의 일정한 압력하에서 서로 다른 충격 주파수에서 3D 인쇄된 센서의 출력 전압을 보여준다.Also, (c) shows the output voltage of the 3D printed sensor at different impact frequencies under a constant pressure of 50 N.
결과는 인쇄된 센서의 출력 전압이 영향 주파수가 증가함에 따라 비례적으로 증가함을 보여준다. 주파수에 따른 3D 프린팅 센서의 출력 전압 증가는 변형률에 따른 임피던스 감소로 설명할 수 있다.The results show that the output voltage of the printed sensor increases proportionally with increasing influence frequency. The increase in the output voltage of the 3D printed sensor according to the frequency can be explained by the decrease in impedance according to the strain.
도 7은 극성 전환 테스트 결과를 나타낸 그래프이다.7 is a graph showing polarity switching test results.
한편 널리 인정되는 극성 전환 테스트를 사용하여 3D 인쇄된 압전 센서에서 출력 신호가 실제로 생성되었는지 확인하였다.Meanwhile, the widely accepted polarity reversal test was used to verify that the output signal was actually generated from the 3D printed piezoelectric sensor.
(a)에 도시된 바와 같이, 전극 연결이 반대일 때 출력 신호의 극성의 스위칭이 얻어졌다.As shown in (a), switching of the polarity of the output signal was obtained when the electrode connections were reversed.
3D 프린팅된 센서의 전극이 측정 회로에 순방향으로 연결되면 3D 프린팅된 센서는 압력 해제 운동에서 양의 전기 신호를 생성한 다음 역 연결에서 음의 출력을 측정했다.When the electrodes of the 3D-printed sensor were connected forward to the measurement circuit, the 3D-printed sensor produced a positive electrical signal in the pressure release movement and then measured a negative output in the reverse connection.
분명히, 전극 연결을 변경하여 발생하는 전기 출력 신호 스위칭은 에너지 수확 신호가 3D 인쇄된 센서의 압전기에 의해 생성되었음을 완전히 보여준다.Clearly, the electrical output signal switching caused by changing the electrode connection fully demonstrates that the energy-harvesting signal was generated by the piezoelectricity of the 3D-printed sensor.
또한, 실생활에서의 실제 적용을 고려하여 3D 프린팅된 센서의 안정성과 내구성을 평가할 필요가 있다. 인쇄된 센서의 기계적 내구성은 (b)와 같이 4Hz에서 50N의 압력으로 10,000주기 동안 수행된 동적 하중 테스트를 통해 검증되었다. 반복적인 부하 테스트 동안 출력 전압은 변동을 나타내지 않았다.In addition, it is necessary to evaluate the stability and durability of 3D printed sensors in consideration of practical applications in real life. The mechanical durability of the printed sensor was verified through a dynamic load test performed for 10,000 cycles under a pressure of 50 N at 4 Hz as shown in (b). During the repeated load test, the output voltage showed no change.
도 8은 본 발명의 실시예에 따라 제조된 압전 소자의 응용 가능성을 설명하기 위한 그래프이다.8 is a graph for explaining applicability of a piezoelectric element manufactured according to an embodiment of the present invention.
(a)를 참조하면, 3D 인쇄 압전 센서의 응용 가능성을 추가로 조사하기 위해 유리병(20g)을 압전 센서 위에 수직으로 떨어트렸다. 낙하 높이가 2cm에서 12cm로 증가함에 따라 3D 인쇄 압전 센서는 1.7V에서 7.8V 범위의 출력 전압을 생성한다.Referring to (a), a glass bottle (20 g) was dropped vertically on the piezoelectric sensor to further investigate the applicability of the 3D printed piezoelectric sensor. As the drop height increases from 2cm to 12cm, the 3D printed piezoelectric sensor produces an output voltage ranging from 1.7V to 7.8V.
이는 3D 프린팅된 압전 센서가 다른 압력을 구별하는 데 사용할 수 있을 뿐만 아니라 기계적 에너지를 전기 에너지로 변환하여 충격 에너지 수확기로도 작동할 수 있음을 나타낸다.This indicates that the 3D-printed piezoelectric sensor can not only be used to discriminate between different pressures, but also act as an impact energy harvester by converting mechanical energy into electrical energy.
인간의 움직임을 감지하기 위한 3D 인쇄 압전 센서의 잠재력을 입증하기 위해 다양한 힘 조건에서 전기적 출력 성능을 체계적으로 조사했다.To demonstrate the potential of 3D printed piezoelectric sensors for detecting human motion, the electrical output performance under various force conditions was systematically investigated.
(b) 및 (c)를 참조하면, 압전 출력 전압은 탭핑 및 압축 조건에서 각각 3D 인쇄된 압전 센서에 의해 생성되었다.Referring to (b) and (c), the piezoelectric output voltages were generated by the 3D printed piezoelectric sensor under tapping and compression conditions, respectively.
이 결과는 압전 소자에 의해 ~2.5V 및 ~6.1V의 출력 전압 값이 손가락 두드리기 및 손 압축 조건에서 각각 생성되었음을 보여준다.This result shows that output voltage values of ~2.5V and ~6.1V were generated by the piezoelectric element under finger tapping and hand compression conditions, respectively.
따라서 3D 프린팅된 센서 장치는 생체 역학 에너지를 수집하거나 사람의 움직임을 감지하는 잠재적인 실시간/실용 응용 프로그램으로 사용될 수 있음을 나타낸다.Thus, the 3D printed sensor device can be used for potential real-time/practical applications for collecting biomechanical energy or sensing human motion.
(d)를 참조하면, 인쇄 압전 필름의 퍼즐 같은 구조를 사용하여 넓은 영역에서 사용되는 또 다른 응용 프로그램을 보여준다.Referring to (d), we show another application in a large area using the puzzle-like structure of the printed piezoelectric film.
DLP 시스템의 한계로 인해 대면적 제품을 생산하기 어렵기 때문에 각각의 3D 프린팅된 조각을 연결하여 대면적 구조를 쉽게 제작할 수 있다. 사진에서 보는 바와 같이 4개의 인쇄된 퍼즐을 하나의 대면적 터치센서로 사용하였으며, 성능도 우수한 것으로 입증되었다.Due to the limitations of the DLP system, it is difficult to produce large-area products, so large-area structures can be easily manufactured by connecting individual 3D printed pieces. As shown in the picture, four printed puzzles were used as one large area touch sensor, and the performance was also proven to be excellent.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in this specification and drawings are only presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. In addition to the embodiments disclosed herein, it is obvious to those skilled in the art that other modifications based on the technical idea of the present invention can be implemented.
<부호의 설명><Description of codes>
10 : 트레이 20 : 플레이트10: tray 20: plate
30 : 조사부 40 : 분극 정렬부30: irradiation unit 40: polarization alignment unit
100 : 프린터100: printer

Claims (7)

  1. PVDF(Polyvinylidene fluoride)와 HFP(hexa fluoropropylene)를 공중합하여 형성되는 PVDF-HFP를 용매에 첨가하고 1차 교반하는 단계;Adding PVDF-HFP formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP) to a solvent and performing primary stirring;
    상기 교반된 용액에 광 경화성 폴리머를 첨가하고 2차 교반하는 단계; 및Adding a photocurable polymer to the stirred solution and performing secondary stirring; and
    상기 광 경화성 폴리머가 첨가된 용액을 탈기시켜 압전 소자의 프린팅용 조성물을 제조하는 단계;를 포함하는 것을 특징으로 하는 압전 소자의 프린팅용 조성물 제조 방법.Preparing a composition for printing a piezoelectric element by degassing the solution to which the photocurable polymer is added; a method for preparing a composition for printing a piezoelectric element, comprising:
  2. 제1항에 있어서, 상기 1차 교반하는 단계는,The method of claim 1, wherein the primary stirring step,
    PVDF-HFP를 용매에 첨가하고, 15 ~ 35℃에서 1 ~ 5시간 동안 교반하는 것을 특징으로 하는 압전 소자의 프린팅용 조성물 제조 방법.A method for preparing a composition for printing of a piezoelectric element, characterized in that PVDF-HFP is added to a solvent and stirred at 15 to 35 ° C. for 1 to 5 hours.
  3. 제2항에 있어서, 상기 압전 소자의 프린팅용 조성물은,The method of claim 2, wherein the composition for printing the piezoelectric element,
    20 ~ 60wt%의 상기 PVDF-HFP를 포함하는 것을 특징으로 하는 압전 소자의 프린팅용 조성물 제조 방법.Method for producing a composition for printing a piezoelectric element, characterized in that it comprises 20 to 60wt% of the PVDF-HFP.
  4. PVDF(Polyvinylidene fluoride)와 HFP(hexa fluoropropylene)를 공중합하여 형성되는 PVDF-HFP 및 광 경화성 폴리머를 포함하는 것을 특징으로 하는 압전 소자의 프리팅용 조성물.A composition for fritting of a piezoelectric element comprising PVDF-HFP formed by copolymerizing polyvinylidene fluoride (PVDF) and hexa fluoropropylene (HFP) and a photocurable polymer.
  5. PVDF(Polyvinylidene fluoride)와 HFP(hexa fluoropropylene)를 공중합하여 형성되는 PVDF-HFP 및 광 경화성 폴리머를 포함하는 프린팅용 조성물이 포함된 프린팅 재료와, 전극이 구비되는 트레이;A tray provided with a printing material including a printing composition including PVDF-HFP and a photo-curable polymer formed by copolymerizing PVDF (Polyvinylidene fluoride) and HFP (hexa fluoropropylene), and an electrode;
    상기 트레이 상부에 구비되어, 상기 트레이를 기준으로 상하로 이동하면서, 하부면에 상기 프린팅 재료에 의한 압전 소자가 형성되는 플레이트;a plate provided above the tray and having a piezoelectric element formed on a lower surface thereof by the printing material while moving up and down with respect to the tray;
    상기 트레이의 하부에 구비되어, 상기 트레이 방향으로 UV를 조사하여 상기 플레이트 상에 압전 소자를 형성하는 조사부; 및an irradiation unit provided under the tray and irradiating UV in the direction of the tray to form a piezoelectric element on the plate; and
    상기 전극과 상기 플레이트에 연결되어, 전원을 인가하여 상기 프린팅 재료에 분극 정렬을 수행하는 분극 정렬부;를 포함하는 것을 특징으로 하는 압전 소자용 프린터.A printer for a piezoelectric element comprising a; polarization aligning unit connected to the electrode and the plate and performing polarization alignment on the printing material by applying power.
  6. 제5항에 있어서, 상기 전극은,The method of claim 5, wherein the electrode,
    ITO(Indium Tin Oxide) 및 PET(polyethylene terephthalate)을 포함하는 것을 특징으로 하는 압전 소자용 프린터.A printer for a piezoelectric element, characterized in that it comprises indium tin oxide (ITO) and polyethylene terephthalate (PET).
  7. 제5항에 있어서, 상기 프린팅용 조성물은,The method of claim 5, wherein the composition for printing,
    상기 분극 정렬부에 의해 분극 정렬이 일어난 후 상기 조사부에 의해 경화되어 상기 압전 소자로 형성되는 것을 특징으로 하는 압전 소자용 프린터.A printer for a piezoelectric element, characterized in that the piezoelectric element is formed by polarization alignment by the polarization alignment unit and then cured by the irradiation unit.
PCT/KR2022/009563 2021-08-09 2022-07-01 Composition for piezoelectric element printing, method for preparing same, and piezoelectric element printer using same WO2023018009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210104866A KR102595641B1 (en) 2021-08-09 2021-08-09 Composition for fritting of piezoelectric element, method for manufacturing same, and printer for piezoelectric element using same
KR10-2021-0104866 2021-08-09

Publications (1)

Publication Number Publication Date
WO2023018009A1 true WO2023018009A1 (en) 2023-02-16

Family

ID=85200002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009563 WO2023018009A1 (en) 2021-08-09 2022-07-01 Composition for piezoelectric element printing, method for preparing same, and piezoelectric element printer using same

Country Status (2)

Country Link
KR (1) KR102595641B1 (en)
WO (1) WO2023018009A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040094008A (en) * 2003-04-30 2004-11-09 주식회사 피앤아이 Piezo Polymer Speaker System
KR20090031330A (en) * 2007-09-21 2009-03-25 서울대학교산학협력단 Sensor comprising a material which generates an electrical signal due to elongation
KR20090112008A (en) * 2008-04-23 2009-10-28 한국전자통신연구원 Apparatus for preventing eavesdropping using piezoelectric film
WO2018085936A1 (en) * 2016-11-10 2018-05-17 Polyvalor, Limited Partnership Piezoelectric composite, ink and ink cartridge for 3d printing, bifunctional material comprising the piezoelectric composite, manufacture and uses thereof
CN112373014A (en) * 2020-10-09 2021-02-19 青岛大学 Method for preparing magnetoelectric composite material based on magnetic field assisted 3D printing technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201402652A (en) * 2012-02-14 2014-01-16 Ajinomoto Kk Piezoelectric element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040094008A (en) * 2003-04-30 2004-11-09 주식회사 피앤아이 Piezo Polymer Speaker System
KR20090031330A (en) * 2007-09-21 2009-03-25 서울대학교산학협력단 Sensor comprising a material which generates an electrical signal due to elongation
KR20090112008A (en) * 2008-04-23 2009-10-28 한국전자통신연구원 Apparatus for preventing eavesdropping using piezoelectric film
WO2018085936A1 (en) * 2016-11-10 2018-05-17 Polyvalor, Limited Partnership Piezoelectric composite, ink and ink cartridge for 3d printing, bifunctional material comprising the piezoelectric composite, manufacture and uses thereof
CN112373014A (en) * 2020-10-09 2021-02-19 青岛大学 Method for preparing magnetoelectric composite material based on magnetic field assisted 3D printing technology

Also Published As

Publication number Publication date
KR20230022733A (en) 2023-02-16
KR102595641B1 (en) 2023-10-30

Similar Documents

Publication Publication Date Title
Zhang et al. Probing the viscoelastic property of pseudo free‐standing conjugated polymeric thin films
WO2013081424A1 (en) Substrate film for transparent electrode film production
WO2021107437A1 (en) Self-healing ion conductive gel composition for 3d printing
Gerhard-Multhaupt Electrets: Dielectrics with quasi-permanent charge or polarization
WO2021080159A1 (en) Organic ionic conductive polymer gel elastomer and method for preparing same
WO2023018009A1 (en) Composition for piezoelectric element printing, method for preparing same, and piezoelectric element printer using same
KR20160096263A (en) Transmissivity changeable film, display device including the same and method for preparing transmissivity changeable film
WO2013177790A1 (en) Array substrate and manufacturing method thereof and liquid crystal display panel
WO2012128528A2 (en) Transparent electrode film having conductive polymer electrode layer
US4086499A (en) Stable electrets of styrene-type polymers
Owusu et al. Stretchable high response piezoelectric elastomers based on polable polynorbornene fillers in a polydimethylsiloxane matrix
WO2016082260A1 (en) Display panel and manufacturing method therefor
US9530533B2 (en) Conductive paste composition
WO2016043518A1 (en) Adhesive composition for touch screen panel, adhesive film and touch screen panel
WO2024060496A1 (en) Touch display apparatus and manufacturing method therefor
WO2019198901A1 (en) Electrophoretic display device and method for manufacturing same
WO2016043521A1 (en) Adhesive composition, optical adhesive film and touch screen panel
KR101993852B1 (en) Process for manufacturing an electrochemical device based on self-alignment electrolytes on electrodes
WO2020040376A1 (en) Method of manufacturing ultrasonic sensors
WO2022102881A1 (en) Piezoelectric material composite, film and production method of same, and sensor using film
WO2020226288A1 (en) Spike heat output-type pressure sensor comprising electrolyte, and method for manufacturing same
WO2015072636A1 (en) Preparation of corrosion-protective copper paste through single process and application thereof to dipole tag antenna
DE102017104037A1 (en) Polysiloxane films and methods of making polysiloxane films
Onyenucheya et al. Dielectric Elastomers: An Investigation in Strain Dependent Electrostatic Pressure of Soft Compliant Dielectric
WO2021045477A1 (en) Light transmission control device, smart window having same, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22856011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE