WO2023017683A1 - Outer package material for all-solid-state batteries, and all-solid-state battery - Google Patents

Outer package material for all-solid-state batteries, and all-solid-state battery Download PDF

Info

Publication number
WO2023017683A1
WO2023017683A1 PCT/JP2022/025347 JP2022025347W WO2023017683A1 WO 2023017683 A1 WO2023017683 A1 WO 2023017683A1 JP 2022025347 W JP2022025347 W JP 2022025347W WO 2023017683 A1 WO2023017683 A1 WO 2023017683A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
heat
exterior material
gas barrier
layer
Prior art date
Application number
PCT/JP2022/025347
Other languages
French (fr)
Japanese (ja)
Inventor
輝利 熊木
大介 中嶋
Original Assignee
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021132362A external-priority patent/JP2023026915A/en
Priority claimed from JP2021132355A external-priority patent/JP2023026910A/en
Application filed by 昭和電工パッケージング株式会社 filed Critical 昭和電工パッケージング株式会社
Priority to CN202280055728.7A priority Critical patent/CN117813719A/en
Priority to KR1020247003717A priority patent/KR20240027809A/en
Publication of WO2023017683A1 publication Critical patent/WO2023017683A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an exterior material for an all-solid-state battery and an all-solid-state battery used as high-power batteries such as batteries for vehicles, batteries for portable devices such as mobile electronic devices, and batteries for storing regenerative energy.
  • Lithium-ion secondary batteries which have been widely used in the past, use a liquid electrolyte as the electrolyte, so there is a risk that the separator will be destroyed due to liquid leakage or dentrites, and in some cases, ignition due to short circuit may occur. rice field.
  • an all-solid-state battery uses a solid electrolyte, so there is no liquid leakage or dendrites, and the separator is not destroyed. Therefore, there is no fear of ignition due to breakage of the separator, and it has attracted much attention from the standpoint of safety.
  • a normal all-solid-state battery is configured by enclosing a solid-state battery body such as an electrode active material and a solid electrolyte inside an exterior material as a casing.
  • a solid-state battery body such as an electrode active material
  • a solid electrolyte inside an exterior material as a casing.
  • the performance required of the exterior material is different from the exterior material of batteries using conventional liquid electrolytes.
  • Various cladding materials have been proposed to meet the performance requirements of the vehicle.
  • the exterior material for an all-solid-state battery as a basic structure, includes a metal foil layer and a heat-sealing layer (sealant layer) laminated inside it, and the solid-state battery body is formed by heat-sealing the sealant layer. It is enclosed.
  • the hydrogen sulfide gas permeability of the sealant layer is adjusted to a predetermined value.
  • the hydrogen sulfide gas permeability of the sealant layer is adjusted to a predetermined value.
  • the exterior material for an all-solid-state battery disclosed in Patent Document 3 uses a sealant layer that absorbs gas.
  • the exterior material for an all-solid-state battery disclosed in Patent Document 4 is configured by laminating a deposited film layer on the inner surface of the sealant layer.
  • Patent No. 6777276 Patent No. 6747636 JP 2020-187855 A Japanese Patent Application Laid-Open No. 2020-187835
  • Preferred embodiments of the present invention have been made in view of the above and/or other problems in the related art. Preferred embodiments of the present invention can significantly improve existing methods and/or apparatus.
  • An object of the present invention is to provide an all-solid-state battery exterior material and an all-solid-state battery that can prevent the leakage of .
  • the present invention has the following means.
  • a total body for encapsulating a solid battery body comprising a base material layer, a metal foil layer laminated on the inner surface side of the base material layer, and a sealant layer laminated on the inner surface side of the metal foil layer.
  • An exterior material for a solid battery An exterior material for an all-solid-state battery, wherein a resin-made heat-resistant gas barrier layer is provided between the metal foil layer and the sealant layer.
  • the heat-resistant gas barrier layer has a hydrogen sulfide gas permeability measured in accordance with JIS K7126-1 of 15 ⁇ cc mm/(m 2 D MPa) ⁇ or less.
  • JIS K7126-1 The exterior material for all-solid-state batteries described.
  • the resin constituting the heat-resistant gas barrier layer has an original thickness of "da0” and a thickness of "da1" when pressed under conditions of 200°C, 0.2 MPa, and 5 sec. 1 ⁇ da1/da0 ⁇ 0.9 2.
  • the exterior material for an all-solid-state battery according to the preceding item 2 which is configured to satisfy the relational expression of
  • sealant layer according to any one of the preceding items 2 to 4, wherein the sealant layer is made of a resin having a hydrogen sulfide gas permeability of 100 ⁇ cc mm / (m 2 D MPa) ⁇ or less. Exterior material for solid-state batteries.
  • the resin constituting the sealant layer has an original thickness of "db0" and a thickness of "db1" when pressed under the conditions of 200 ° C., 0.2 MPa, 5 sec, 0.5 ⁇ db1/db0 ⁇ 0.1
  • the resin constituting the heat-resistant gas barrier layer has a water vapor gas permeability of 50 (g/m 2 /day) or less as measured according to JIS K7129-1 (moisture sensor method, 40°C, 90% Rh).
  • the exterior material for an all-solid-state battery according to any one of the preceding items 2 to 6.
  • the heat-resistant gas barrier layer is made of an insulating resin having a melting point higher than that of the sealant layer by 20°C or more, 8.
  • a deposited film is provided between the heat-resistant gas barrier layer and the sealant layer, 2.
  • the heat-resistant gas barrier layer is interposed between the metal foil layer and the sealant layer, it is possible to reliably prevent the generated hydrogen sulfide gas from leaking to the outside. Furthermore, when the solid battery body is sealed with this exterior material, the heat-resistant gas barrier layer remains even if the resin of the sealant layer melts and flows out when the sealant layer is thermally bonded, and the insulation performance of the sealant layer is reduced. Therefore, the heat-resistant gas barrier layer can reliably ensure insulation.
  • the sealant layer can also prevent hydrogen sulfide gas from being discharged, so that leakage of hydrogen sulfide gas can be prevented more reliably.
  • the thickness of the sealant layer can be secured to some extent, so that the insulation and sealing performance can be further improved.
  • the infiltration of moisture can be prevented, and the generation of hydrogen sulfide gas itself can be suppressed, so that the leakage of hydrogen sulfide gas can be prevented more reliably. can.
  • the heat-resistant gas barrier layer has a high melting point, it is possible to prevent the heat-resistant gas barrier layer from melting and flowing out when the sealant layer is thermally adhered, thereby more reliably preventing gas leakage. can do.
  • the heat conductivity of the gas barrier layer is specified, so the cooling performance can be further improved.
  • the vapor deposition film is provided between the insulating layer and the sealant layer, sufficient gas barrier properties can be continuously ensured by the vapor deposition film. Therefore, it is possible to prevent the generation of hydrogen sulfide gas caused by the infiltration of moisture from the outside air, and furthermore, even if the hydrogen sulfide gas is generated, the gas barrier properties of the deposited film can reliably prevent the hydrogen sulfide gas from leaking to the outside. can be done.
  • the exterior material for an all-solid-state battery of the invention [16] since an adhesive layer is provided between the insulating layer and the sealant layer, even if a vapor deposition film is formed between the insulating layer and the sealant layer, the layers can be reliably separated. It can be tightly fixed.
  • the gas-barrier vapor-deposited film can be arranged further inside, further improving the barrier property against moisture. be able to.
  • the heat-resistant gas barrier layer since a heat-resistant gas barrier layer having a high Young's modulus at high temperature is used, the heat-resistant gas barrier layer, and thus the exterior, can be used not only at room temperature but also in a high temperature environment. It is possible to reliably prevent defects such as breakage from occurring in the entire area of the material.
  • the exterior material for an all-solid-state battery of inventions [20] and [21] even if the exterior material expands due to an increase in internal pressure due to high temperature in a state in which the solid-state battery body is enclosed, the exterior material is more reliably damaged. can be prevented.
  • the all-solid-state battery of the invention [22] the all-solid-state battery using the exterior material of the above inventions [1] to [21] is specified, so the same effects as above can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery that is an embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view showing an exterior material used in the all-solid-state battery of the embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an all-solid-state battery that is a first modification of the invention.
  • FIG. 4 is an exploded cross-sectional view schematically showing the configuration of the all-solid-state battery of the first modified example.
  • FIG. 5 is a schematic cross-sectional view showing an all-solid-state battery that is a second modification of the invention.
  • FIG. 6A is a schematic cross-sectional view showing a first exterior material applicable to the all-solid-state battery of the second modified example.
  • FIG. 6B is a schematic cross-sectional view showing a second exterior material applicable to the all-solid-state battery of the second modified example.
  • FIG. 6C is a schematic cross-sectional view showing a third exterior material applicable to the all-solid-state battery of the second modification.
  • FIG. 7 is a plan view schematically showing a sample for insulation evaluation.
  • FIG. 8 is a cross-sectional view schematically showing the insulation evaluation sample of FIG. 7, and is a cross-sectional view corresponding to the DD line cross section of FIG.
  • FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery that is an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view showing an exterior material 1 used in the all-solid-state battery.
  • the exterior material 1 that constitutes the casing of the all-solid-state battery of this embodiment is composed of a laminate such as a laminate sheet.
  • the exterior material 1 includes a base material layer 11 disposed on the outermost side, a metal foil layer 12 laminated on the inner surface side of the base material layer 11, and a heat-resistant gas barrier layer 21 laminated on the inner surface side of the metal foil layer 12. and a sealant layer 13 laminated on the inner surface side of the heat-resistant gas barrier layer 21.
  • an adhesive adheresive layer
  • the exterior material 1 of the present embodiment is composed of a laminate consisting of the base material layer 11/adhesive layer/metal foil layer 12/adhesive layer/heat-resistant gas barrier layer 21/adhesive layer/sealant layer 13.
  • an all-solid-state battery is produced by encapsulating the solid-state battery main body 5 with the exterior material 1 configured as described above so as to cover it. That is, the two rectangular exterior materials 1, 1 are superimposed one on the other with the solid battery main body 5 interposed therebetween, and the sealant layers 13, 13 at the outer peripheral edges of the two (a pair of) exterior materials 1, 1
  • an all-solid-state battery is manufactured in which the solid-state battery main body 5 is housed in a bag-shaped casing made of the exterior materials 1, 1. It is a thing.
  • the all-solid-state battery of this embodiment is provided with a tab lead for extracting electricity.
  • One end (inner end) of this tab lead is adhesively fixed to the solid battery main body 5, and the intermediate portion passes between the outer peripheral edges of the two exterior bodies 1, 1, and the other end side (outer end side) extends to the outside. arranged to be pulled out.
  • the casing is formed by pasting two planar exterior materials 1, 1 together, but the present invention is not limited to this, and at least one of the two exterior materials may be One of them may be molded in advance into a tray shape, and one tray-shaped exterior material may be attached to the other tray-shaped or planar exterior material to form a casing.
  • the base material layer 11 of the exterior material 1 is composed of a heat-resistant resin film with a thickness of 5 ⁇ m to 50 ⁇ m.
  • Polyamide, polyester (PET, PBT, PEN), polyolefin (PE, PP), or the like can be suitably used as the resin constituting the base material layer 11 .
  • the thickness of the metal foil layer 12 is set to 5 ⁇ m to 120 ⁇ m, and has the function of blocking the intrusion of oxygen and moisture from the surface (outer surface) side.
  • metal foil layer 12 aluminum foil, SUS foil (stainless steel foil), copper foil, nickel foil, or the like can be suitably used.
  • the terms "aluminum”, “copper” and “nickel” are used to include their alloys.
  • the metal foil layer 12 when the metal foil layer 12 is plated, the risk of pinholes is reduced, and the function of blocking the intrusion of oxygen and moisture can be further improved.
  • the corrosion resistance is further improved, so that defects such as chipping can be prevented more reliably, and adhesion to the resin is improved.
  • the durability can be further improved.
  • the sealant layer 13 has a thickness of 10 ⁇ m to 100 ⁇ m, and is made of a thermally adhesive (thermally fusible) resin film.
  • the resin constituting the sealant layer 13 includes polyethylene (LLDPE, LDPE, HDPE), polyolefins such as polypropylene, olefinic copolymers, acid-modified products thereof and ionomers, such as unstretched polypropylene (CPP , IPP) and the like can be preferably used.
  • sealant layer 13 taking into account the use of tab leads to extract electricity, that is, taking into consideration sealing properties and adhesive properties with tab leads, it is preferable to use a polypropylene resin such as unstretched polypropylene film (CPP, IPP). preferable.
  • a polypropylene resin such as unstretched polypropylene film (CPP, IPP).
  • the heat-resistant gas barrier layer 21 is composed of a heat-resistant and insulating resin film. Resins constituting the heat-resistant gas barrier layer 21 include polyamide (6-nylon, 66-nylon, MXD nylon, etc.), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), cellophane, poly It is preferable to use vinylidene chloride or the like.
  • the heat-resistant gas barrier layer 21 of the present embodiment has good insulating properties, and even after the solid battery main body 5 is encapsulated with the exterior material 1 of the present embodiment by thermal bonding (after sealing), the good insulating properties are maintained. It is what you get.
  • the resin forming the heat-resistant gas barrier layer 21 preferably has a predetermined hydrogen sulfide (H 2 S) gas permeability.
  • the heat-resistant gas barrier layer 21 is made of a resin having a hydrogen sulfide gas permeability of 30 ⁇ cc ⁇ mm/(m 2 ⁇ D ⁇ MPa) ⁇ or less, more preferably 15, as measured according to JIS K7126-1. It is preferable to use a resin of ⁇ cc ⁇ mm/(m 2 ⁇ D ⁇ MPa) ⁇ or less.
  • the heat-resistant gas barrier layer 21 prevents the solid electrolyte material from reacting with moisture in the outside air to generate hydrogen sulfide gas. Hydrogen sulfide gas can be prevented from leaking to the outside. In other words, if the hydrogen sulfide gas permeability of the heat-resistant gas barrier layer 21 is too high, the generated hydrogen sulfide gas may leak outside through the exterior material 1 (heat-resistant gas barrier layer 21), which is not preferable.
  • the resin constituting the heat-resistant gas barrier layer 21 has a water vapor gas permeability of 50 (g/m 2 /day) or less, more preferably 40 (g/m 2 /day) or less. That is, hydrogen sulfide gas is generated when external moisture permeates the exterior material 1 and reacts with the solid electrolyte material.
  • the gas barrier function of the metal foil layer 12 can prevent the intrusion of moisture. Therefore, it is possible to more reliably prevent hydrogen sulfide gas from leaking to the outside.
  • the thickness (original thickness) of the heat-resistant gas barrier layer 21 it is preferable to set the thickness (original thickness) of the heat-resistant gas barrier layer 21 to 3 ⁇ m to 50 ⁇ m. That is, when the thickness of the heat-resistant gas barrier layer 21 is set within this range, the permeation suppressing effect of the hydrogen sulfide gas and water vapor gas can be reliably obtained. Also, the heat-resistant gas barrier layer 21 can reliably ensure insulation. In other words, if the heat-resistant gas barrier layer 21 is too thin, the gas permeation suppressing action and insulation may not be ensured, which is not preferable. Conversely, if the heat-resistant gas barrier layer 21 is too thick, not only is it impossible to reduce the thickness of the exterior material 1, but the effect of making it thicker than necessary cannot be obtained sufficiently, which is not preferable.
  • the original thickness of the resin (resin film) constituting the heat-resistant gas barrier layer 21 is defined as "da0", and the thickness when pressed under the conditions of 200° C., 0.2 MPa, and 5 sec is defined as “da1". It is preferable to configure so that the survival rate "da1/da0" is 0.9 or more, that is, to satisfy the relational expression A "1 ⁇ da1/da0 ⁇ 0.9".
  • This relational expression A corresponds to a configuration in which the thickness reduction rate of the heat-resistant gas barrier layer 21 is 10% or less when the exterior material 1 is thermally bonded.
  • the heat-resistant gas barrier layer 21 preferably has a dielectric breakdown voltage of 18 kV/mm or more. That is, when the dielectric breakdown voltage of the heat-resistant gas barrier layer 21 is equal to or higher than a specific value, it is possible to ensure sufficient insulation. In other words, if the dielectric breakdown voltage of the heat-resistant gas barrier layer 21 is too low, it may not be possible to ensure sufficient insulation.
  • the hot water shrinkage rate of the heat-resistant gas barrier layer 21 it is preferable to set the hot water shrinkage rate of the heat-resistant gas barrier layer 21 to 2% to 10%. That is, when this configuration is adopted, the moldability of the heat-resistant gas barrier layer 21 and, in turn, the exterior material 1 is improved, and high insulation is maintained even after the solid battery main body 5 is sealed with the exterior material 1 by thermal bonding. can be done. In other words, when the hot water shrinkage ratio of the heat-resistant gas barrier layer 21 deviates from the above specific range, there is a possibility that good insulation cannot be ensured, which is not preferable.
  • the hot water shrinkage rate of the heat-resistant gas barrier layer 21 is measured by testing before and after immersing a resin film test piece (10 cm ⁇ 10 cm) constituting the heat-resistant gas barrier layer 21 in hot water at 95° C. for 30 minutes. It is the dimensional change rate in the stretching direction of the piece.
  • the hot water shrinkage ratio can be obtained by the following formula, where "X" is the dimension in the stretching direction before the immersion treatment, and "Y" is the dimension in the stretching direction after the immersion treatment.
  • Hot water shrinkage (%) ⁇ (XY)/X ⁇ x 100
  • a resin having a thermal conductivity of 0.2 W/m ⁇ K or more as the resin constituting the heat-resistant gas barrier layer 21 . That is, when adopting this configuration, the heat transfer property of the heat-resistant gas barrier layer 21 can be sufficiently ensured, so the cooling property of the solid battery main body 5 can be further improved.
  • the resin film that constitutes the heat-resistant gas barrier layer 21 has a Young's modulus at 90° C. that is 1 GPa or more in both the machine direction MD and the direction perpendicular to the MD, and preferably 5 GPa or more. It is preferable to have That is, by adopting this configuration, the heat-resistant gas barrier layer 21 and, in turn, the exterior material 1 can be secured with a predetermined hardness not only at room temperature but also in a high temperature environment, so that defects such as breakage can be prevented. can be prevented.
  • the heat-resistant gas barrier layer 21 preferably has a Young's modulus of 1.5 GPa or more at room temperature (25°C).
  • the heat-resistant gas barrier layer 21 preferably has a tensile breaking strength at 90°C of 100 MPa or more and 400 MPa or less in both MD and TD. That is, when adopting this configuration, even if the internal pressure increases due to the expansion of the solid battery main body 5 at a high temperature and the exterior material 1 expands, damage to the exterior material 1 can be reliably prevented.
  • the heat-resistant gas barrier layer 21 has a structure in which both the tensile elongation at break MD and TD at 90°C are 50% to 200%. That is, when adopting this configuration, even if the exterior material 1 expands and elongates due to an increase in internal pressure at high temperatures, damage to the exterior material 1 can be prevented more reliably.
  • the heat-resistant gas barrier layer 21 preferably has a tensile strength at break of 150 MPa and a tensile elongation at break of 50% to 150% at room temperature (25°C).
  • the original thickness is "db0", and the thickness when pressed under the conditions of 200 ° C., 0.2 MPa, 5 sec is "db1".
  • the ratio "db1/db0" is 0.1 to 0.5, that is, the relational expression B of "0.5 ⁇ db1/db0 ⁇ 0.1" is satisfied.
  • This relational expression B corresponds to a structure in which the reduction rate of the thickness of the sealant layer 13 is 50 to 90% when the exterior material 1 is thermally bonded.
  • the thickness of the sealant layer 13 can be secured to some extent when the solid battery main body 5 is sealed by thermally bonding the exterior material 1. Therefore, the sealant layer Even if there are tab leads or foreign matter, the resin of the sealant layer 13 flows into the peripheral gap between them while ensuring the insulation by 13, so that sufficient sealing performance can be reliably obtained.
  • the sealant layer 13 of the exterior material 1 is made of a resin having a hydrogen sulfide gas permeability of 100 ⁇ cc ⁇ mm/(m 2 ⁇ D ⁇ MPa) ⁇ or less according to JIS K7126-1. is preferred. That is, when the hydrogen sulfide gas permeability of the sealant layer 13 is set to the specific value or less, the heat-resistant gas barrier layer 21 suppresses permeation of hydrogen sulfide gas, and the sealant layer 13 suppresses permeation of hydrogen sulfide gas. Together, it is possible to more reliably prevent hydrogen sulfide gas from leaking to the outside.
  • the adhesive (adhesive layer) for bonding between the layers 11 to 13, 21 of the exterior material 1 is a two-liquid curing type, energy ray (UV, X-ray, etc.)
  • a curing type such as a curing type can be used, and among them, a urethane-based adhesive, an olefin-based adhesive, an acrylic-based adhesive, an epoxy-based adhesive, etc. can be preferably used.
  • the thickness of the adhesive layer 4 is set to 2 ⁇ m to 5 ⁇ m.
  • the heat-resistant gas barrier layer 21 is interposed between the metal foil layer 12 and the sealant layer 13 in the exterior material 1, the generated hydrogen sulfide gas is prevented from leaking to the outside. It can definitely be prevented. Furthermore, when the sealant layer 13 of the exterior material 1 is heat-bonded to seal the solid battery main body 5, even if the resin of the sealant layer 13 melts and flows out and the insulation performance of the sealant layer 13 is reduced, the heat resistance is reduced. Since the gas barrier layer 21 remains, the heat-resistant barrier layer 21 can reliably ensure insulation.
  • the hydrogen sulfide gas permeability of the heat-resistant gas barrier layer 21 is set to a specific value, the above effects can be obtained more reliably.
  • the dielectric breakdown voltage of the heat-resistant gas barrier layer 21 is set to a specific value, it is possible to ensure good insulation even in a high-temperature environment.
  • the heat-resistant gas barrier layer 21 and, in turn, the exterior material 1 may be damaged or otherwise damaged not only at room temperature but also at high temperatures. can be reliably prevented, and an all-solid-state battery product having excellent operational reliability especially in a high-temperature environment can be provided.
  • FIG. 3 is a schematic cross-sectional view showing an all-solid-state battery that is a first modified example of the present invention
  • FIG. 4 is an exploded view schematically showing the configuration of the all-solid-state battery.
  • the exterior material 1 includes a base material layer 11 arranged on the outermost side, and a metal layer laminated and bonded to the inner surface side of the base material layer 11 via an adhesive layer.
  • the sealant layer 13 has an opening 15 formed by removing the intermediate portion excluding the outer peripheral edge, and is left only on the outer peripheral edge.
  • the exterior material 1 is arranged so that the adhesive layer 4 does not exist in the opening 15 and the heat-resistant gas barrier layer 21 is exposed inside through the opening 15 .
  • two (a pair of) exterior materials 1, 1 formed in a rectangular shape are arranged so that the sealant layers 13 at the outer peripheral edges of each other face each other, and the solid battery main body 5 is interposed between them.
  • the sealant layers 13, 13 are joined together in an airtight state (sealed state) by heat bonding (heat sealing), and thus the bag-shaped casing made of the exterior materials 1, 1
  • An all-solid-state battery in which the solid-state battery main body 5 is accommodated in a sealed state is manufactured.
  • the opening 15 of the exterior material 1 is arranged in a portion corresponding to the solid-state battery main body 5 , and the upper and lower surfaces of the solid-state battery body 5 are in contact with the heat-resistant gas barrier layers 21 of the upper and lower exterior materials 1 . They are arranged to face each other through the opening 15 .
  • the exterior material 1 of the first modified example has the openings 15 formed in the sealant layer 13 .
  • the opening 15 is formed in a portion corresponding to the solid battery main body 5, and the sealant layer 13 is arranged in a portion corresponding to the heat seal portion (sealing portion).
  • the adhesive layer 4 is not provided in the opening 15 of the exterior material 1, and the heat-resistant gas barrier layer 21 is exposed (exposed) inside through the opening 15.
  • the heat-resistant gas barrier layer 21 is arranged so as to face the solid battery main body 5, and in some cases, so that at least a part thereof is in contact therewith.
  • the opening 15 of the exterior material 1 is formed, for example, by cutting the intermediate portion of the sealant layer 13 laminated on the entire area of the heat-resistant gas barrier layer 21. is a residual formation.
  • the inner surface of the resin film serving as the heat-resistant gas barrier layer 21 is coated with an adhesive serving as the adhesive layer 4 using a gravure roll or the like.
  • a resin film as the sealant layer 13 is pasted through the adhesive layer 4.
  • the adhesive is applied to the heat-resistant gas barrier layer 21 by a gravure roll or the like, the adhesive is applied to the region where the opening is to be formed. An uncoated portion is formed where is not applied.
  • a resin film for a sealant layer is adhered to the heat-resistant gas barrier layer 21 having the adhesive uncoated portion and dried. After that, the resin film for the sealant layer in the adhesive uncoated portion is cut off with a laser cutter, a roll blade, or the like to form the opening 15 (first forming method).
  • release paper is temporarily attached to the region where the opening portion is to be formed in the heat-resistant gas barrier layer 21, and the heat-resistant gas barrier layer 21 is attached in that state. Then, an adhesive is applied using a gravure roll or the like, and a resin film for the sealant layer is adhered and dried. After that, the sealant layer resin film corresponding to the release paper temporary fixing portion is cut off together with the adhesive and the release paper with a roll blade or the like to form the opening 15 .
  • the heat-resistant gas barrier layer 21 is formed between the metal foil layer 12 and the sealant layer 13 in the exterior material 1, and the sealant layer 13 corresponds to the solid-state battery main body 5. Since the opening 15 through which the heat-resistant gas barrier layer 21 is exposed is formed in the part, the heat generated from the solid battery main body 5 is not blocked by the sealant layer 13 and passes through the heat-resistant gas barrier layer 21 to the metal foil layer. 12 to dissipate the heat. Therefore, sufficient cooling performance can be ensured, and problems due to high temperatures can be reliably prevented.
  • the sealant layer 13 does not exist between the solid-state battery main body 5 and the metal foil layer 12, the insulating heat-resistant gas barrier layer 21 is arranged therebetween.
  • the heat-resistant gas barrier 21 can reliably ensure insulation.
  • the sealant layer 13 is not formed on the portion of the exterior material 1 corresponding to the solid-state battery main body 5, so the space for accommodating the solid-state battery main body 5 is increased accordingly ( thick). Therefore, in the all-solid-state battery of the present embodiment, compared with the conventional all-solid-state battery, the large-sized solid-state battery main body 5 can be accommodated without changing the external dimensions of the casing (the exterior material 1), so the thickness can be reduced. while achieving high output and high capacity.
  • FIG. 5 is a schematic cross-sectional view showing an all-solid-state battery that is a second modification of the invention.
  • the exterior material 1 in the all-solid-state battery of the second modification includes a base material layer 11 arranged on the outermost side, a metal foil layer 12 laminated on the inner surface side of the base material layer 11, a metal A heat-resistant gas barrier layer 21 as an insulating layer laminated on the inner surface side of the foil layer 12 and a sealant layer 13 laminated on the inner surface side of the heat-resistant gas barrier layer 21 are provided.
  • a deposited film (deposited layer) 22 is provided between the heat-resistant gas barrier layer 21 and the sealant layer 13 .
  • exterior materials 1a to 1c having first to third configurations can be adopted.
  • the first exterior material 1a is formed by laminating and bonding a resin film for the base material layer 11 to the outer surface of the metal foil for the metal foil layer 12 via an adhesive. Then, a resin film for the heat-resistant gas barrier layer 21 is laminated and adhered via an adhesive, and a vapor-deposited film 22 is vapor-deposited on the inner surface of the heat-resistant gas barrier layer 21. , a sealant layer 13 of a heat-fusible resin is laminated and adhered via an adhesive layer 4 .
  • the vapor deposition film is not formed on the inner surface of the heat-resistant gas barrier layer 21, and the vapor deposition film 22 is formed on the outer surface of the sealant layer 13, as compared with the first exterior material 1a.
  • the deposition surface (outer surface) of the sealant layer 13 is adhered to the inner surface of the heat-resistant gas barrier layer 21 via the adhesive 4 .
  • the third exterior material 1c has vapor deposition films 22, 22 formed on both the inner surface of the heat-resistant gas barrier layer 21 and the outer surface of the sealant layer 13, and the vapor-deposited surface (inner surface) of the heat-resistant gas barrier layer 21 and the deposition surface (outer surface) of the sealant layer 13 are adhered via the adhesive layer 4 .
  • the adhesive constituting the adhesive layer 4 that bonds between the heat-resistant gas barrier layer 21 and the sealant layer 13 a curing type such as a two-liquid curing type or a UV (energy ray) curing type can be used.
  • a curing type such as a two-liquid curing type or a UV (energy ray) curing type
  • urethane-based adhesives, olefin-based adhesives, acrylic-based adhesives, epoxy-based adhesives, etc. can be preferably used.
  • the thickness of the adhesive layer 4 is set to 2 ⁇ m to 5 ⁇ m.
  • such an adhesive is used to bond the heat-resistant gas barrier layer 21 and the sealant layer 13 by dry lamination or heat lamination.
  • the adhesive layer 4 is made of an acid-modified polyolefin-based adhesive that has good adhesion to the deposited film 22, so that the heat-resistant gas barrier layer 21 and the sealant layer 13 are reliably spaced apart. Adhesion can be achieved, and the occurrence of delamination during molding can be effectively prevented.
  • the same adhesive as the adhesive layer 4 is used as the adhesive for bonding between the base material layer 11 and the metal foil layer 12 and between the metal foil layer 12 and the heat-resistant gas barrier layer 21.
  • the same adhesive as the adhesive layer 4 is used as the adhesive for bonding between the base material layer 11 and the metal foil layer 12 and between the metal foil layer 12 and the heat-resistant gas barrier layer 21.
  • the deposited film 22 formed on the inner surface of the heat-resistant gas barrier layer 21 and/or the outer surface of the sealant layer 13 is composed of inorganic substances such as aluminum, titanium and silicon, and inorganic oxides such as alumina, silica and zinc oxide. , aluminum fluoride, magnesium fluoride and the like, at least one of which can be employed.
  • the gas barrier property can be further improved by forming the vapor deposition film 22 . Therefore, it is possible to prevent the infiltration of outside air, prevent the generation of hydrogen sulfide gas itself caused by the reaction between the moisture of the outside air and the solid electrolyte of the solid battery main body 5, and furthermore, even if the hydrogen sulfide gas is generated, the deposited film can be prevented.
  • the gas barrier property of 22 can reliably prevent hydrogen sulfide gas from leaking to the outside.
  • the vapor deposition film 22 preferably has a thickness of 50 ⁇ to 10000 ⁇ , or 5 nm to 1000 nm, or 0.005 ⁇ m to 1 ⁇ m. That is, by setting the thickness within this range, good gas barrier properties can be ensured more reliably. In other words, if the thickness of the deposited film 22 is too thin, good gas barrier properties cannot be obtained, which is not preferable. Even if the thickness of the vapor deposition film 22 is formed to be thicker than necessary, not only is it not possible to obtain the effect corresponding to the thickness, but also it takes a long time to form the thick vapor deposition film 22, which may lead to a decrease in production efficiency. , unfavorable.
  • the deposited film 22 can be formed by depositing and coating by dry coating.
  • Well-known methods such as the CVD method and the PVD method (sputtering method, ion beam method, etc.) can be employed for the dry coating.
  • the deposited film 22 is provided between the heat-resistant gas barrier layer 21 and the sealant layer 13 in the exterior material 1, sufficient gas barrier properties can be obtained by the deposited film 22. can be done. Therefore, it is possible to prevent the infiltration of outside air, prevent the generation of hydrogen sulfide gas itself caused by the reaction between the moisture of the outside air and the solid electrolyte of the solid battery main body 5, and furthermore, even if the hydrogen sulfide gas is generated, the deposited film can be prevented.
  • the gas barrier property of 22 can reliably prevent hydrogen sulfide gas from leaking to the outside.
  • the adhesive layer 4 is provided between the heat-resistant gas barrier layer 21 and the sealant layer 13, even if the vapor-deposited film 22 is formed on the inner surface of the heat-resistant gas barrier layer 21 or the outer surface of the sealant layer 13, , the heat-resistant gas barrier layer 21 and the sealant layer 13 can be securely adhered and fixed, and the occurrence of delamination can be prevented.
  • the gas barrier vapor deposition film 22 when the vapor deposition film 22 is formed on the sealant layer 13 side like the second and third exterior materials 1b and 1c, the gas barrier vapor deposition film 22 is placed further inside (on the solid battery main body 5 side). ), the barrier properties against moisture can be further improved.
  • the deposited film 22 when the deposited film 22 is formed on the heat-resistant gas barrier layer 21 side like the first and third exterior materials 1a and 1c, when the sealant layer 13 is heat-sealed, the adhesive layer Due to the heat shielding action of 4, the vapor deposition film 22 is less likely to be destroyed by heat, and the vapor barrier property of the vapor deposition film 22 can be reliably ensured.
  • Example 1a> (1-1) Preparation of exterior material On both sides of a 40 ⁇ m thick aluminum foil (A8021-O) as the metal foil layer 12, phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water After applying a chemical conversion treatment liquid containing alcohol, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
  • a two-liquid curable urethane adhesive (3 ⁇ m) was applied as the base layer 11 to form two layers having a thickness of 15 ⁇ m.
  • An axially oriented 6 nylon (ONY-6) film was dry laminated.
  • a PET film having a thickness of 9 ⁇ m is applied to the other surface (inner surface) of the aluminum foil after the dry lamination, and a two-liquid curing type urethane adhesive (3 ⁇ m) is applied. pasted together through
  • a 20 ⁇ m thick CPP film containing a lubricant (erucamide or the like) is sandwiched between a two-liquid curing urethane adhesive (3 ⁇ m) after the dry lamination.
  • Laminate constituting the exterior material 1 by being superimposed on the inner surface of the PET film (heat-resistant gas barrier layer 21) and sandwiched between a rubber nip roll and a lamination roll heated to 100° C. for dry lamination. got
  • the seal portion was hardened with resin, cut so that the cross section appeared, and the cross section was observed by SEM to determine the thickness of the heat-resistant gas barrier layer 21, the sealant layer 13, and the like.
  • Example 1a After cutting out two pieces of the exterior material sample of Example 1a to a size of 15 mm in width and 150 mm in length, the pair of samples were superimposed so that the inner sealant layers of each other were in contact with each other.
  • a heat sealing device TP-701-A manufactured by the company, heat sealing is performed by heating one side under the conditions of heat sealing temperature: 200 ° C, sealing pressure: 0.2 MPa (gauge display pressure), sealing time: 2 seconds (Thermal adhesion) was performed to obtain a sample for seal strength evaluation of Example 1a.
  • the heat-bonded portion (heat-sealed portion) 131 is hatched with oblique lines in order to facilitate understanding of the invention.
  • the illustration of the heat-resistant gas barrier layer 13 is omitted for easy understanding of the structure.
  • the resin as the base material layer 11 is partially peeled off to partially expose the aluminum foil as the metal foil layer 12, and the exposed At the portion 121, electrical continuity with the aluminum foil (metal foil layer 12) was secured from the outside.
  • This copper foil-type exterior material sample was cut into two sheets of a size of 30 mm ⁇ 50 mm, and these pair of exterior material samples 1, 1 were superimposed with the sealant layers 13 facing each other, and the superimposed exterior material sample Three sides (three sides) of 1 and 1 were sealed under the following sealing conditions: heat sealing temperature: 200°C, sealing pressure: 0.2 MPa (gauge display pressure), sealing time: 2 seconds to prepare a three-sided bag. After that, at one side (30 mm side) that is the opening of the three-sided bag, the injection needle is sandwiched between the outer packaging material samples 1 and 1, and the opening is sealed under the same sealing conditions as above, 0.1 MPa of H 2 S gas is sealed from the injection needle (the injection needle is sandwiched between 30 mm sides).
  • the needle is pulled out a little to prevent the gas from escaping, and the inside of the tip of the needle is heat-sealed again under the same sealing conditions to completely seal the gas. was made.
  • Example 2a A sample of Example 2a was prepared in the same manner as in Example 1a except that a PET film with a thickness of 3 ⁇ m was used as the heat-resistant gas barrier layer 21 and a CPP film with a thickness of 30 ⁇ m was used as the sealant layer 13. was measured (evaluated). The results are also shown in Tables 1 and 2.
  • Example 3a A sample of Example 3a was prepared in the same manner as in Example 1a except that a PET film having a thickness of 15 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 4a A sample of Example 4a was prepared in the same manner as in Example 1a except that a PET film having a thickness of 25 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 5a A sample of Example 5a was prepared in the same manner as in Example 1a except that a film having a thickness of 15 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 6a A sample of Example 6a was prepared in the same manner as in Example 1a except that a film having a thickness of 5 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 7a A sample of Example 7a was prepared in the same manner as in Example 1a except that a film having a thickness of 40 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 8a A sample of Example 8a was prepared in the same manner as in Example 1a except that a CPP film having a thickness of 60 ⁇ m was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 9a A sample of Example 9a was prepared in the same manner as in Example 1a except that an HDPE film having a thickness of 60 ⁇ m was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 10a A sample of Example 10a was prepared in the same manner as in Example 1a except that an LLDPE film having a thickness of 60 ⁇ m was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 11a A sample of Example 11a was prepared in the same manner as in Example 1a except that a CPP film having a thickness of 10 ⁇ m was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 12a A sample of Example 12a was prepared in the same manner as in Example 1a except that a cellophane film with a thickness of 20 ⁇ m was used as the heat-resistant gas barrier layer 21, and a CPP film with a thickness of 10 ⁇ m was used as the sealant layer 13. was measured (evaluated). The results are also shown in Tables 1 and 2.
  • Comparative Example 1a A sample of Comparative Example 1a was prepared in the same manner as in Example 1a, except that the heat-resistant gas barrier layer 21 was not formed, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Comparative Example 2a A sample of Comparative Example 2a was prepared in the same manner as in Example 1a except that a CPP film having a thickness of 25 ⁇ m was used as the sealant layer 13 without forming the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. did The results are also shown in Tables 1 and 2.
  • Comparative Example 3a A sample of Comparative Example 3a was prepared in the same manner as in Example 1a except that an OPP film having a thickness of 30 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
  • Example 1b (2-1) Preparation of exterior material On both sides of a 40 ⁇ m thick aluminum foil (A8021-O) as the metal foil layer 12, phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water After applying a chemical conversion treatment liquid containing alcohol, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
  • a two-liquid curable urethane adhesive (3 ⁇ m) was applied as the base layer 11 to form two layers having a thickness of 15 ⁇ m.
  • An axially stretched 6 nylon film was dry laminated (laminated).
  • a stretched PA6 film (ONY-6 film) having a thickness of 9 ⁇ m, a melting point of 225° C., a dielectric breakdown voltage of 19 kV/mm, and a hot water shrinkage rate of 5% was prepared.
  • a 20 nm-thick vapor deposition film of aluminum was formed on one side thereof. The non-vapor-deposited surface of the ONY-6 film with the vapor-deposited film was adhered to the other surface (inner surface) of the aluminum foil after the dry lamination via a two-liquid curing urethane adhesive (3 ⁇ m).
  • a CPP film having a thickness of 20 ⁇ m and a melting point of 150° C. containing a lubricant (erucamide or the like) is sandwiched through a two-component curable urethane adhesive (3 ⁇ m). It is dry-laminated by superimposing it on the deposition surface (inner surface) of the ONY-6 film (heat-resistant gas barrier layer 21) after dry lamination, sandwiching it between a rubber nip roll and a lamination roll heated to 100 ° C. and pressing it. Thus, a laminate constituting the exterior material 1 was obtained.
  • Hot water shrinkage (%) ⁇ (XY)/X ⁇ x 100
  • X is the dimension in the stretching direction before immersion treatment
  • Y is the dimension in the stretching direction after immersion treatment.
  • Example 1b (2-7) Evaluation of Formability
  • the exterior material sample of Example 1b was cut into a size of 100 mm ⁇ 100 mm to obtain a sample for formability evaluation.
  • a deep drawing test was performed on this formability evaluation sample using a deep drawing mold attached to a 25t press machine while changing the forming height (drawing depth) in increments of 0.5 mm. .
  • Example 1c> (3-1) Preparation of exterior material On both sides of a 40 ⁇ m thick aluminum foil (A8021-O) as the metal foil layer 12, phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water After applying a chemical conversion treatment liquid containing alcohol, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
  • a two-liquid curable urethane adhesive (3 ⁇ m) was applied as the base layer 11 to form two layers having a thickness of 15 ⁇ m.
  • An axially oriented 6 nylon (ONY-6) film was dry laminated.
  • a heat-resistant gas barrier layer 21 having a thickness of 9 ⁇ m was formed on the other surface (inner surface) of the aluminum foil after the dry lamination via a two-liquid curing type urethane adhesive (3 ⁇ m).
  • a PET film was dry laminated.
  • the inner surface of the PET film as the heat-resistant gas barrier layer 21 was gravure-coated with a two-liquid curing urethane adhesive (3 ⁇ m) as the adhesive layer 4 .
  • adhesive is not applied to the rectangular area where the opening is to be formed, leaving it as an uncoated area, and bonding only to the outer periphery of the opening forming area (heat-sealed area: remaining portion of sealant layer). agent was applied.
  • a 40 ⁇ m-thick CPP film containing a lubricant (erucamide or the like) is superimposed on the inner surface of the heat-resistant gas barrier layer 21 coated with the above-mentioned adhesive only on the required portions, and the rubber is coated.
  • the laminate was sandwiched between a nip roll and a laminating roll heated to 100° C. and pressed to perform dry lamination, thereby obtaining a laminate constituting the exterior material 1 .
  • this laminate is wound around a roll shaft and then aged at 40° C. for 10 days.
  • the CPP film for the sealant layer was cut out, and an opening 15 was formed in the intermediate portion of the sealant layer 13 to obtain an exterior material sample of Example 1c.
  • the heat-resistant gas barrier layer 21 is arranged so as to be exposed to the inner surface side through the opening 15 .
  • Example 1c (3-5) Evaluation of Cooling Performance (Cooling Effect) Two exterior material samples of Example 1c each having a size of 100 mm ⁇ 100 mm were prepared.
  • the opening 15 in this exterior material sample is square and has a size of 60 mm ⁇ 60 mm.
  • Example 2c A sample of Example 2c was prepared in the same manner as in Example 1c except that an ONY-6 film was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 5.
  • Example 3c A sample of Example 3c was prepared in the same manner as in Example 1c except that an OPP film (biaxially oriented polypropylene film) was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 5.
  • OPP film biaxially oriented polypropylene film
  • Comparative Example 1c A sample of Comparative Example 1c was prepared in the same manner as in Example 1c except that the sealant layer 13 was formed over the entire inner surface of the heat-resistant gas barrier layer 21, that is, the sealant layer 13 did not have the openings 15. was measured (evaluated). The results are also shown in Table 5.
  • Comparative Example 2c A sample of Comparative Example 2c was prepared in the same manner as in Comparative Example 1c except that an ONY-6 film was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 5.
  • Comparative Example 3c A sample of Comparative Example 3c was prepared in the same manner as in Comparative Example 1c except that an OPP film was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 5.
  • Example 1d Fabrication of exterior material On both sides of a 40 ⁇ m thick aluminum foil (A8021-O) as the metal foil layer 12, a chemical compound consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol was applied. After applying the treatment liquid, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
  • a two-liquid curable urethane adhesive (3 ⁇ m) was applied as the base layer 11 to form two layers having a thickness of 15 ⁇ m.
  • An axially oriented 6 nylon (ONY-6) film was dry laminated.
  • an insulating layer 21 having a thickness of 9 ⁇ m was applied to the other surface (inner surface) of the aluminum foil after the dry lamination via a two-liquid curing type urethane adhesive having a thickness of 3 ⁇ m.
  • An OPP film (biaxially oriented polypropylene film) was laminated.
  • a CPP film with a thickness of 40 ⁇ m containing 1000 ppm of erucamide as a lubricant was prepared, and on one surface (outer surface) thereof, an aluminum deposition film with a thickness of 20 nm was formed.
  • the vapor-deposited surface (outer surface) of the CPP film with the vapor-deposited film is superimposed on the inner surface of the CPP film of the insulating layer 21 via a maleic acid-modified polypropylene adhesive (MAPP) having a thickness of 2 ⁇ m as the adhesive layer 4. Then, it was sandwiched between a rubber nip roll and a lamination roll heated to 100° C., and dry-laminated to obtain a laminate constituting the exterior material 1 .
  • MAPP maleic acid-modified polypropylene adhesive
  • Example 1d (4-3) Evaluation of Water Vapor (Moisture) Permeability of Exterior Material
  • Two exterior material samples of Example 1d were cut into a size of 30 mm ⁇ 50 mm, and these pair of exterior material samples 1, 1 were attached to each other with the sealant layer 13.
  • the three sides (three sides) of the laminated exterior material samples 1 and 1 were heat-sealed at a temperature of 200°C, a sealing pressure of 0.2 MPa (gauge display pressure), and a sealing time of 2 seconds. It was sealed under the conditions to prepare a three-sided bag.
  • "Mc (g)" of calcium chloride was added to the three-sided bag (3 g as a guideline), and then the opening of the three-sided bag was sealed under the same sealing conditions as above.
  • Example 2d As shown in Table 6, the same as Example 1d above except that a 9 ⁇ m thick ONY-6 film was used as the insulating layer 21 and a 2 ⁇ m thick two-liquid curing urethane adhesive (PU) was used as the adhesive. Then, a sample of Example 2d was prepared, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 3d As shown in Table 6, a 9 ⁇ m thick ONY-6 film is used as the insulating layer 21, a 2 ⁇ m thick two-liquid curable urethane adhesive (PU) is used as the adhesive, and the deposited film 22 is 5 nm thick. A sample of Example 3d was prepared in the same manner as in Example 1d except for the above, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 4d As shown in Table 6, a sample of Example 4d was produced in the same manner as in Example 1d except that the thickness of the deposited film 22 was set to 500 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 5d As shown in Table 6, a sample of Example 5d was produced in the same manner as in Example 1d except that the thickness of the deposited film 22 was set to 1000 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 6d As shown in Table 6, a sample of Example 6d was produced in the same manner as in Example 1d except that the thickness of the deposited film 22 was set to 1200 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 7d As shown in Table 6, except that a two-liquid curing type urethane adhesive (PU) having a thickness of 2 ⁇ m was used as the adhesive, and the deposited film 22 was made of alumina (Al 2 O 3 ) having a thickness of 20 nm, A sample of Example 7d was prepared in the same manner as in 1d, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • PU two-liquid curing type urethane adhesive
  • Al 2 O 3 alumina
  • Example 8d As shown in Table 6, a 20 nm-thick aluminum deposition film 22 is formed on the inner surface of the OPP film for the insulating layer 21, and a 2- ⁇ m-thick two-liquid curing urethane adhesive (PU) is used as the adhesive. Further, a sample of Example 8d was produced in the same manner as in Example 1d except that no deposited film was formed on the CPP film for the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • PU 2- ⁇ m-thick two-liquid curing urethane adhesive
  • Example 9d As shown in Table 6, a sample of Example 9d was produced in the same manner as in Example 8d except that an ONY-6 film was used as the insulating layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 10d As shown in Table 6, a sample of Example 10d was produced in the same manner as in Example 8d except that the thickness of the deposited film 22 was set to 5 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 11d As shown in Table 6, a sample of Example 11d was produced in the same manner as in Example 8d except that the thickness of the deposited film 22 was set to 1000 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 12d As shown in Table 6, a sample of Example 12d was prepared in the same manner as in Example 1d above, except that an aluminum vapor deposition film 22 having a thickness of 20 nm was formed on the inner surface of the OPP film for the insulating layer 21. A similar measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 13d As shown in Table 6, an aluminum deposition film 22 having a thickness of 20 nm was formed on the inner surface of ONY-6 film having a thickness of 9 ⁇ m as the insulating layer 21, and a two-component curable urethane adhesive having a thickness of 2 ⁇ m was used as the adhesive. A sample of Example 13d was prepared in the same manner as in Example 1d except that (PU) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Comparative Example 1d As shown in Table 6, Comparative Example 1 was prepared in the same manner as in Example 1d above, except that an acid-modified polypropylene (acid-modified PP) having a thickness of 2 ⁇ m was used as an adhesive without forming any deposited film 22. A sample was prepared and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • acid-modified polypropylene acid-modified PP
  • Comparative Example 2d As shown in Table 6, a 9 ⁇ m thick ONY-6 film was used as the insulating layer 21, and a 2 ⁇ m thick two-liquid curable urethane adhesive (PU) was used as the adhesive. A sample of Comparative Example 2d was prepared in the same manner, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
  • Example 1e> (5-1) Fabrication of Exterior Material An exterior material sample of Example 1e was obtained in the same manner as in Example 1a.
  • a tensile test was performed at a tensile speed of 200 mm/min to measure Young's modulus (MPa), tensile strength at break (MPa), and tensile elongation at break (%).
  • MPa Young's modulus
  • MPa tensile strength at break
  • % tensile elongation at break
  • Table 8 in the heat-resistant gas barrier layer PET film of Example 1e, the Young's modulus was 3.6 GPa in MD and 3.2 GPa in TD, and the tensile strength at break was 190 MPa in MD and 210 MPa in TD. and the tensile elongation at break is 120% in MD and 110% in TD.
  • An exterior material sample of a predetermined size is fixed as a test piece, and a semicircular needle with a diameter of 1.0 mm and a tip shape radius of 0.5 mm is pierced at a speed of 50 ⁇ 5 mm per minute, and the maximum stress until the needle penetrates. was measured. The number of test pieces was 5, and the average value was taken as the puncture strength. The results are also shown in Table 8.
  • Example 2e The heat-resistant gas barrier layer 21 is biaxially oriented with a Young's modulus of MD: 1.5 GPa, TD: 1.2 GPa, a tensile strength at break of MD: 210 MPa, TD: 240 MPa, and a tensile elongation at break of MD: 140%, TD: 120%.
  • a sample of Example 2e was prepared in the same manner as in Example 1e except that a 6 nylon film (ONY-6 film) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
  • Example 3e> A sample of Example 3e was prepared in the same manner as in Example 2e except that a film having a thickness of 15 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
  • Example 4e> A sample of Example 4e was prepared in the same manner as in Example 2e except that a film having a thickness of 25 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
  • Example 5e As the heat-resistant gas barrier layer 21, a PET film having Young's modulus MD: 3.4 GPa, TD: 3.1 GPa, tensile strength at break MD: 200 MPa, TD: 220 MPa, and tensile elongation at break MD: 130%, TD: 125%.
  • a sample of Example 5e was prepared in the same manner as in Example 1e, except that it was used, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
  • Example 5e the Young's modulus, tensile strength at break, and tensile elongation at break of the PET film were made different from those in Example 1e by adjusting the conditions during film production and changing the degree of crystallinity.
  • Example 6e> The heat-resistant gas barrier layer 21 is biaxially stretched with a Young's modulus of MD: 1.1 GPa, TD: 1.6 GPa, a tensile strength at break of MD: 90 MPa, TD: 160 MPa, and a tensile elongation at break of MD: 140%, TD: 80%.
  • a sample of Example 6e was prepared in the same manner as in Example 1e except that a polypropylene film (OPP film) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
  • Example 7e> A sample of Example 7e was prepared in the same manner as in Example 1e except that a CPP film having a thickness of 10 ⁇ m was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
  • Example 8e> A sample of Example 8e was prepared in the same manner as in Example 1e except that a CPP film having a thickness of 100 ⁇ m was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
  • Comparative Example 1e As the heat-resistant gas barrier layer 21, an OPP film having Young's modulus MD: 0.9 GPa, TD: 1.5 GPa, tensile strength at break MD: 80 MPa, TD: 150 MPa, and tensile elongation at break MD: 150%, TD: 80%.
  • a sample of Comparative Example 1e was prepared in the same manner as in Example 6e, except that it was used, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
  • Example 1e the Young's modulus, tensile strength at break, and tensile elongation at break of the OPP film were made different from those in Example 6e by adjusting the conditions during film production and changing the degree of crystallinity.
  • Comparative Example 1 which deviates from the gist of the present invention, is inferior in piercing resistance at 90° C., and is damaged in a high-temperature environment compared to Examples 1e to 8e. It is thought that such defects are likely to occur.
  • the all-solid-state battery exterior material of the present invention can be suitably used as a casing material for housing the solid-state battery main body.

Abstract

The present invention provides an outer package material for all-solid-state batteries, the outer package material being free from gas leakage, while exhibiting sufficient insulation performance. The present invention relates to an outer package material for all-solid-state batteries, the outer package material being used for the purpose of having a solid-state battery main body 5 sealed therein, while being provided with a base material layer 11, a metal foil layer 12 that is superposed on the inner surface of the base material layer 11, and a sealant layer 13 that is superposed on the inner surface of the metal foil layer 12. A heat-resistant gas barrier layer 21, which is formed of a resin, is arranged between the metal foil layer 12 and the sealant layer 13.

Description

全固体電池用外装材および全固体電池Exterior materials for all-solid-state batteries and all-solid-state batteries
 この発明は、車載用電池等のハイパワーバッテリー、モバイル電子機器等のポータブル機器用電池、回生エネルギーの蓄電用電池等として用いられる全固体電池用の外装材および全固体電池に関する。 The present invention relates to an exterior material for an all-solid-state battery and an all-solid-state battery used as high-power batteries such as batteries for vehicles, batteries for portable devices such as mobile electronic devices, and batteries for storing regenerative energy.
 従来多く用いられているリチウムイオン2次電池は、電解質として液体電解質を使用しているため、液漏れやデントライトの発生によりセパレータが破壊され場合によっては、短絡による発火等が発生するおそれがあった。 Lithium-ion secondary batteries, which have been widely used in the past, use a liquid electrolyte as the electrolyte, so there is a risk that the separator will be destroyed due to liquid leakage or dentrites, and in some cases, ignition due to short circuit may occur. rice field.
 これに対し、全固体電池は、固体電解質を使用した電池であるため、液漏れやデンドライトが発生せずセパレータが破壊されることもない。従ってセパレータの破壊による発火等も懸念されることがなく、安全性の面等から大いに注目されている。 On the other hand, an all-solid-state battery uses a solid electrolyte, so there is no liquid leakage or dendrites, and the separator is not destroyed. Therefore, there is no fear of ignition due to breakage of the separator, and it has attracted much attention from the standpoint of safety.
 通常の全固体電池は、ケーシングとしての外装材の内部に、電極活物質や固体電解質等の固体電池本体が封入されて構成されている。この全固体電池においては、固体電解質の研究が進むにつれて、外装材に求められる性能が、従来の液体電解質を用いた電池の外装材とは異なる部分が徐々に顕現されてきており、全固体電池用の性能を満たすために種々の外装材が提案されている。 A normal all-solid-state battery is configured by enclosing a solid-state battery body such as an electrode active material and a solid electrolyte inside an exterior material as a casing. In this all-solid-state battery, as research on solid electrolytes progresses, it has gradually become apparent that the performance required of the exterior material is different from the exterior material of batteries using conventional liquid electrolytes. Various cladding materials have been proposed to meet the performance requirements of the vehicle.
 全固体電池用の外装材は、基本構造として、金属箔層と、その内側に積層された熱融着層(シーラント層)とを含み、シーラント層を熱融着することによって、固体電池本体を封入するものである。 The exterior material for an all-solid-state battery, as a basic structure, includes a metal foil layer and a heat-sealing layer (sealant layer) laminated inside it, and the solid-state battery body is formed by heat-sealing the sealant layer. It is enclosed.
 例えば下記特許文献1に示す全固体電池用外装材は、金属箔層とシーラント層との間に保護膜が介在されるとともに、シーラント層の硫化水素ガス透過度が所定値に調整されている。さらに特許文献2に示す全固体電池用外装材は、シーラント層の硫化水素ガス透過度が所定値に調整されている。また特許文献3に示す全固体電池用外装材は、シーラント層としてガスを吸収するものが用いられている。さらに特許文献4に示す全固体電池用外装材は、シーラント層の内面に蒸着膜層が積層されて構成されている。 For example, in the all-solid-state battery exterior material shown in Patent Document 1 below, a protective film is interposed between the metal foil layer and the sealant layer, and the hydrogen sulfide gas permeability of the sealant layer is adjusted to a predetermined value. Furthermore, in the all-solid-state battery exterior material disclosed in Patent Document 2, the hydrogen sulfide gas permeability of the sealant layer is adjusted to a predetermined value. In addition, the exterior material for an all-solid-state battery disclosed in Patent Document 3 uses a sealant layer that absorbs gas. Furthermore, the exterior material for an all-solid-state battery disclosed in Patent Document 4 is configured by laminating a deposited film layer on the inner surface of the sealant layer.
特許第6777276号Patent No. 6777276 特許第6747636号Patent No. 6747636 特開2020-187855号JP 2020-187855 A 特開2020-187835号Japanese Patent Application Laid-Open No. 2020-187835
 しかしながら、特許文献1,2に示す外装材を用いた全固体電池では、固体電解質が空気中の水分と反応して硫化水素ガスが発生した際に、その硫化水素ガスが漏出するおそれがあるという課題があった。 However, in the all-solid-state battery using the exterior materials disclosed in Patent Documents 1 and 2, when the solid electrolyte reacts with moisture in the air to generate hydrogen sulfide gas, the hydrogen sulfide gas may leak. I had a problem.
 また特許文献2~4に示す外装材では、電池本体を封入するに際して、シーラント層を溶融接着(熱接着)した場合、シーラント層を構成する樹脂が溶融流出して、シーラント層が部分的に薄くなり、シーラント層による金属箔層に対する保護機能が低下して、絶縁性の低下を来すおそれがあるという課題があった。 In addition, in the exterior materials shown in Patent Documents 2 to 4, when the sealant layer is melt-bonded (thermally bonded) when the battery body is sealed, the resin constituting the sealant layer melts and flows out, and the sealant layer becomes partially thin. As a result, there is a problem that the function of protecting the metal foil layer by the sealant layer is lowered, and the insulating property may be lowered.
 本発明の好ましい実施形態は、関連技術における上述した及び/又は他の問題点に鑑みてなされたものである。本発明の好ましい実施形態は、既存の方法及び/又は装置を著しく向上させることができるものである。 Preferred embodiments of the present invention have been made in view of the above and/or other problems in the related art. Preferred embodiments of the present invention can significantly improve existing methods and/or apparatus.
 この発明は、上記の課題に鑑みてなされたものであり、シーラント層を熱接着しても十分な絶縁性を確保できる上さらに、電池本体を封止した場合に内部で発生した硫化水素ガス等が漏出するのを防止することができる全固体電池用外装材および全固体電池を提供することを目的とする。 The present invention has been made in view of the above problems. An object of the present invention is to provide an all-solid-state battery exterior material and an all-solid-state battery that can prevent the leakage of .
 本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかであろう。 Other objects and advantages of the present invention will be apparent from the following preferred embodiments.
 上記課題を解決するため、本発明は、以下の手段を備えるものである。 In order to solve the above problems, the present invention has the following means.
 [1]基材層と、前記基材層の内面側に積層された金属箔層と、前記金属箔層の内面側に積層されたシーラント層とを備え、固体電池本体を封入するための全固体電池用外装材であって、
 前記金属箔層と前記シーラント層との間に樹脂製の耐熱ガスバリア層が設けられていることを特徴とする全固体電池用外装材。
[1] A total body for encapsulating a solid battery body, comprising a base material layer, a metal foil layer laminated on the inner surface side of the base material layer, and a sealant layer laminated on the inner surface side of the metal foil layer. An exterior material for a solid battery,
An exterior material for an all-solid-state battery, wherein a resin-made heat-resistant gas barrier layer is provided between the metal foil layer and the sealant layer.
 [2]前記耐熱ガスバリア層は、JIS K7126-1に準拠して測定された硫化水素ガス透過度が15{cc・mm/(m・D・MPa)}以下に設定されている前項1に記載の全固体電池用外装材。 [2] The heat-resistant gas barrier layer has a hydrogen sulfide gas permeability measured in accordance with JIS K7126-1 of 15 {cc mm/(m 2 D MPa)} or less. The exterior material for all-solid-state batteries described.
 [3]前記耐熱ガスバリア層を構成する樹脂は、元厚を「da0」として、200℃、0.2MPa、5secの条件で押圧したときの厚みを「da1」として、
 1≧da1/da0≧0.9
の関係式を満たすように構成されている前項2に記載の全固体電池用外装材。
[3] The resin constituting the heat-resistant gas barrier layer has an original thickness of "da0" and a thickness of "da1" when pressed under conditions of 200°C, 0.2 MPa, and 5 sec.
1≧da1/da0≧0.9
2. The exterior material for an all-solid-state battery according to the preceding item 2, which is configured to satisfy the relational expression of
 [4]前記耐熱ガスバリア層は、厚さが3μm~50μmに設定されている前項2または3に記載の全固体電池用外装材。 [4] The exterior material for an all-solid-state battery according to the preceding item 2 or 3, wherein the heat-resistant gas barrier layer has a thickness of 3 μm to 50 μm.
 [5]前記シーラント層は、硫化水素ガス透過度が100{cc・mm/(m・D・MPa)}以下の樹脂によって構成されている前項2~4のいずれか1項に記載の全固体電池用外装材。 [5] The sealant layer according to any one of the preceding items 2 to 4, wherein the sealant layer is made of a resin having a hydrogen sulfide gas permeability of 100 {cc mm / (m 2 D MPa)} or less. Exterior material for solid-state batteries.
 [6]前記シーラント層を構成する樹脂は、元厚を「db0」として、200℃、0.2MPa、5secの条件で押圧したときの厚みを「db1」として、
 0.5≧db1/db0≧0.1
の関係式を満たすように構成されている前項2~5のいずれか1項に記載の全固体電池用外装材。
[6] The resin constituting the sealant layer has an original thickness of "db0" and a thickness of "db1" when pressed under the conditions of 200 ° C., 0.2 MPa, 5 sec,
0.5≧db1/db0≧0.1
The exterior material for an all-solid-state battery according to any one of the preceding items 2 to 5, which is configured to satisfy the relational expression.
 [7]前記耐熱ガスバリア層を構成する樹脂は、JIS K7129-1(感湿センサー法 40℃ 90%Rh)に準拠して測定された水蒸気ガス透過率が50(g/m/day)以下である前項2~6のいずれか1項に記載の全固体電池用外装材。 [7] The resin constituting the heat-resistant gas barrier layer has a water vapor gas permeability of 50 (g/m 2 /day) or less as measured according to JIS K7129-1 (moisture sensor method, 40°C, 90% Rh). The exterior material for an all-solid-state battery according to any one of the preceding items 2 to 6.
 [8]前記耐熱ガスバリア層は、前記シーラント層よりも20℃以上融点が高い絶縁性の樹脂によって構成され、
 前記耐熱ガスバリア層は、絶縁破壊電圧が18kV/mm以上である前項1~7のいずれか1項に記載の全固体電池用外装材。
[8] The heat-resistant gas barrier layer is made of an insulating resin having a melting point higher than that of the sealant layer by 20°C or more,
8. The exterior material for an all-solid-state battery according to any one of the preceding items 1 to 7, wherein the heat-resistant gas barrier layer has a dielectric breakdown voltage of 18 kV/mm or more.
 [9]前記耐熱ガスバリア層を構成する樹脂は、熱水収縮率が2%~10%である前項8に記載の全固体電池用外装材。 [9] The exterior material for an all-solid-state battery according to the preceding item 8, wherein the resin constituting the heat-resistant gas barrier layer has a hot water shrinkage rate of 2% to 10%.
 [10]前記耐熱ガスバリア層を構成する樹脂は、ポリアミドである前項8または9に記載の全固体電池用外装材。 [10] The exterior material for an all-solid-state battery according to the preceding item 8 or 9, wherein the resin constituting the heat-resistant gas barrier layer is polyamide.
 [11]前記シーラント層における固体電池本体に対応する部分に開口部が設けられ、その開口部において、前記耐熱ガスバリア層が内面側に表出するように配置されている前項1~10のいずれか1項に記載の全固体電池用外装材。 [11] Any one of the preceding items 1 to 10, wherein an opening is provided in a portion of the sealant layer corresponding to the solid battery main body, and the heat-resistant gas barrier layer is arranged to be exposed to the inner surface side in the opening. 1. The exterior material for an all-solid-state battery according to item 1.
 [12]前記耐熱ガスバリア層は、前記シーラント層よりも10℃以上融点が高い樹脂によって構成されている前項11に記載の全固体電池用外装材。 [12] The exterior material for an all-solid-state battery according to the preceding item 11, wherein the heat-resistant gas barrier layer is made of a resin having a melting point higher than that of the sealant layer by 10°C or more.
 [13]前記耐熱ガスバリア層を構成する樹脂は、熱伝導率が0.2W/m・K以上である前項11または12に記載の全固体電池用外装材。 [13] The exterior material for an all-solid-state battery according to the preceding item 11 or 12, wherein the resin constituting the heat-resistant gas barrier layer has a thermal conductivity of 0.2 W/m·K or more.
 [14]前記耐熱ガスバリア層と前記シーラント層との間に、蒸着膜が設けられ、
 前記蒸着膜は、金属、金属酸化物、金属フッ化物の少なくともいずれか1つによって構成されている前項1に記載の全固体電池用外装材。
[14] A deposited film is provided between the heat-resistant gas barrier layer and the sealant layer,
2. The exterior material for an all-solid-state battery according to 1 above, wherein the vapor-deposited film is composed of at least one of a metal, a metal oxide, and a metal fluoride.
 [15]前記蒸着膜の厚さが5nm~1000nmに設定されている前項14に記載の全固体電池用外装材。 [15] The exterior material for an all-solid-state battery according to the preceding item 14, wherein the vapor deposition film has a thickness of 5 nm to 1000 nm.
 [16]前記耐熱ガスバリア層と前記シーラント層との間に接着剤層が設けられている前項14または15に記載の全固体電池用外装材。 [16] The exterior material for an all-solid-state battery according to the preceding item 14 or 15, wherein an adhesive layer is provided between the heat-resistant gas barrier layer and the sealant layer.
 [17]前記シーラント層における前記接着剤層との接触面に前記蒸着膜が設けられている前項16に記載の全固体電池用外装材。 [17] The exterior material for an all-solid-state battery according to 16 above, wherein the vapor-deposited film is provided on the contact surface of the sealant layer with the adhesive layer.
 [18]前記耐熱ガスバリア層における前記接着剤層との接触面に前記蒸着膜が設けられている前項16または17に記載の全固体電池用外装材。 [18] The exterior material for an all-solid-state battery according to the preceding item 16 or 17, wherein the vapor-deposited film is provided on the contact surface of the heat-resistant gas barrier layer with the adhesive layer.
 [19]前記耐熱ガスバリア層は、90℃におけるヤング率がMDおよびTD共に1GPa以上である前項1~18のいずれか1項に記載の全固体電池用外装材。 [19] The exterior material for an all-solid-state battery according to any one of the preceding items 1 to 18, wherein the heat-resistant gas barrier layer has a Young's modulus of 1 GPa or more in both MD and TD at 90°C.
 [20]前記耐熱ガスバリア層は、90℃における引張破断強度がMDおよびTD共に100MPa以上である前項19に記載の全固体電池用外装材。 [20] The exterior material for an all-solid-state battery according to the preceding item 19, wherein the heat-resistant gas barrier layer has a tensile breaking strength of 100 MPa or more at 90°C in both MD and TD.
 [21]前記耐熱ガスバリア層は、90℃における引張破断伸びがMDおよびTD共に50%~200%である前項19または20に記載の全固体電池用外装材。 [21] The exterior material for an all-solid-state battery according to the preceding item 19 or 20, wherein the heat-resistant gas barrier layer has a tensile elongation at break of 50% to 200% in both MD and TD at 90°C.
 [22]前項1~21のいずれか1項に記載の全固体電池用外装材に、固体電池本体が封入されていることを特徴とする全固体電池。 [22] An all-solid-state battery, wherein a solid-state battery main body is enclosed in the all-solid-state battery exterior material according to any one of the preceding items 1 to 21.
 発明[1]の全固体電池用外装材によれば、金属箔層およびシーラント層間に耐熱ガスバリア層を介在しているため、発生した硫化水素ガスが外部に漏出するのを確実に防止できる。さらに本外装材により固体電池本体を封止するにあたって、シーラント層を熱接着した際に、シーラント層の樹脂が溶融流出して、シーラント層による絶縁性が低下してとしても、耐熱ガスバリア層が残存しているため、その耐熱ガスバリア層によって絶縁性を確実に確保することができる。 According to the exterior material for an all-solid-state battery of invention [1], since the heat-resistant gas barrier layer is interposed between the metal foil layer and the sealant layer, it is possible to reliably prevent the generated hydrogen sulfide gas from leaking to the outside. Furthermore, when the solid battery body is sealed with this exterior material, the heat-resistant gas barrier layer remains even if the resin of the sealant layer melts and flows out when the sealant layer is thermally bonded, and the insulation performance of the sealant layer is reduced. Therefore, the heat-resistant gas barrier layer can reliably ensure insulation.
 発明[2]の全固体電池用外装材によれば、耐熱ガスバリア層の硫化水素ガス透過度を特定しているため、硫化水素ガスが外部に漏出するのをより確実に防止できる。 According to the exterior material for an all-solid-state battery of invention [2], since the hydrogen sulfide gas permeability of the heat-resistant gas barrier layer is specified, hydrogen sulfide gas can be more reliably prevented from leaking to the outside.
 発明[3][4]の全固体電池用外装材によれば、熱接着により固体電池本体を封入した際に、耐熱ガスバリア層の厚みを十分に確保できるため、硫化水素ガスが漏出するのを確実に防止できるとともに、良好な絶縁性も確実に確保することができる。 According to the exterior materials for all-solid-state batteries of inventions [3] and [4], when the solid-state battery main body is encapsulated by thermal bonding, a sufficient thickness of the heat-resistant gas barrier layer can be ensured, so that leakage of hydrogen sulfide gas can be prevented. While being able to prevent reliably, a favorable insulation can also be ensured reliably.
 発明[5]の全固体電池用外装材によれば、シーラント層によっても硫化水素ガスが排出するのを防止できるため、硫化水素ガスが漏出するのをより確実に防止することができる。 According to the exterior material for an all-solid-state battery of invention [5], the sealant layer can also prevent hydrogen sulfide gas from being discharged, so that leakage of hydrogen sulfide gas can be prevented more reliably.
 発明[6]の全固体電池用外装材によれば、熱接着により固体電池本体を封入した際に、シーラント層の厚みをある程度確保できるため、絶縁性および密封性をより一層向上させることができる。 According to the exterior material for an all-solid-state battery of the invention [6], when the solid-state battery body is encapsulated by thermal bonding, the thickness of the sealant layer can be secured to some extent, so that the insulation and sealing performance can be further improved. .
 発明[7]の全固体電池用外装材によれば、水分の浸入を防止できて、硫化水素ガスの発生自体を抑制できるため、硫化水素ガスが漏出するのをより一層確実に防止することができる。 According to the exterior material for an all-solid-state battery of the invention [7], the infiltration of moisture can be prevented, and the generation of hydrogen sulfide gas itself can be suppressed, so that the leakage of hydrogen sulfide gas can be prevented more reliably. can.
 発明[8]の全固体電池用外装材によれば、耐熱ガスバリア層の絶縁性を特定しているため、高温環境下においても十分な絶縁性を確実に確保することができる。 According to the exterior material for an all-solid-state battery of invention [8], since the insulation properties of the heat-resistant gas barrier layer are specified, it is possible to ensure sufficient insulation properties even in a high-temperature environment.
 発明[9]の全固体電池用外装材によれば、耐熱ガスバリア層の熱水収縮率を特定しているため、高い絶縁性を確保しつつ、成形性を向上させることができる。 According to the exterior material for an all-solid-state battery of invention [9], since the hot water shrinkage rate of the heat-resistant gas barrier layer is specified, it is possible to improve moldability while ensuring high insulation.
 発明[10]の全固体電池用外装材によれば、耐熱ガスバリア層として、汎用のポリアミド樹脂を用いているため、簡単かつ効率良く製作することができる。 According to the exterior material for an all-solid-state battery of invention [10], since a general-purpose polyamide resin is used as the heat-resistant gas barrier layer, it can be manufactured simply and efficiently.
 発明[11]の全固体電池用外装材によれば、シーラント層における固体電池本体に対応する部分に、耐熱ガスバリア層が表出する開口部を形成しているため、固体電池本体から発生する熱は、シーラント層に遮られることなく、耐熱ガスバリア層を介して金属箔層に伝達して放熱されることにより、十分な冷却性を確保することができる。 According to the exterior material for an all-solid-state battery of the invention [11], since an opening through which the heat-resistant gas barrier layer is exposed is formed in the portion corresponding to the solid-state battery body in the sealant layer, the heat generated from the solid-state battery body is The heat is transmitted to the metal foil layer through the heat-resistant gas barrier layer without being blocked by the sealant layer, thereby ensuring sufficient cooling performance.
 発明[12]の全固体電池用外装材によれば、耐熱ガスバリア層が高融点であるため、シーラント層の熱接着時に、耐熱ガスバリア層の溶融流出を防止でき、ガス漏れをより一層確実に防止することができる。 According to the exterior material for an all-solid-state battery of the invention [12], since the heat-resistant gas barrier layer has a high melting point, it is possible to prevent the heat-resistant gas barrier layer from melting and flowing out when the sealant layer is thermally adhered, thereby more reliably preventing gas leakage. can do.
 発明[13]の全固体電池用外装材によれば、ガスバリア層の熱伝導率を特定しているため、冷却性をより一層向上させることができる。 According to the all-solid-state battery exterior material of Invention [13], the heat conductivity of the gas barrier layer is specified, so the cooling performance can be further improved.
 発明[14][15]の全固体電池用外装材によれば、絶縁層およびシーラント層間に蒸着膜を設けているため、蒸着膜により十分なガスバリア性を継続的に確保することができる。このため外気の水分の浸入により生じる硫化水素ガスの発生を防止できる上さらに、硫化水素ガスが発生しても、蒸着膜のガスバリア性によって硫化水素ガスが外部に漏出するのを確実に防止することができる。 According to the exterior materials for all-solid-state batteries of inventions [14] and [15], since the vapor deposition film is provided between the insulating layer and the sealant layer, sufficient gas barrier properties can be continuously ensured by the vapor deposition film. Therefore, it is possible to prevent the generation of hydrogen sulfide gas caused by the infiltration of moisture from the outside air, and furthermore, even if the hydrogen sulfide gas is generated, the gas barrier properties of the deposited film can reliably prevent the hydrogen sulfide gas from leaking to the outside. can be done.
 発明[16]の全固体電池用外装材によれば、絶縁層およびシーラント層間に接着剤層を設けているため、絶縁層およびシーラント層間に蒸着膜が形成されていようとも、両層間を確実に密着固定することができる。 According to the exterior material for an all-solid-state battery of the invention [16], since an adhesive layer is provided between the insulating layer and the sealant layer, even if a vapor deposition film is formed between the insulating layer and the sealant layer, the layers can be reliably separated. It can be tightly fixed.
 発明[17]の全固体電池用外装材によれば、シーラント層の外面に蒸着膜を形成しているため、ガスバリア性の蒸着膜をより内側に配置でき、水分に対するバリア性をより一層向上させることができる。 According to the exterior material for an all-solid-state battery of the invention [17], since the vapor-deposited film is formed on the outer surface of the sealant layer, the gas-barrier vapor-deposited film can be arranged further inside, further improving the barrier property against moisture. be able to.
 発明[18]の全固体電池用外装材によれば、絶縁層の内面に蒸着膜を形成しているため、シーラント層を熱融着する際に、接着剤層の遮熱作用によって、熱による蒸着膜の破壊が生じ難くなり、蒸着膜によるガスバリア性を確実に確保することができる。 According to the exterior material for an all-solid-state battery of the invention [18], since a vapor-deposited film is formed on the inner surface of the insulating layer, when the sealant layer is heat-sealed, the heat shielding effect of the adhesive layer prevents heat from Destruction of the deposited film is less likely to occur, and the gas barrier properties of the deposited film can be reliably ensured.
 発明[19]の全固体電池用外装材によれば、高温下で高いヤング率を有する耐熱ガスバリア層を用いているため、常温に限られず高温環境下であっても、耐熱ガスバリア層、ひいては外装材全域に破損等の欠陥部が発生するのを確実に防止することができる。 According to the exterior material for an all-solid-state battery of the invention [19], since a heat-resistant gas barrier layer having a high Young's modulus at high temperature is used, the heat-resistant gas barrier layer, and thus the exterior, can be used not only at room temperature but also in a high temperature environment. It is possible to reliably prevent defects such as breakage from occurring in the entire area of the material.
 発明[20][21]の全固体電池用外装材によれば、固体電池本体を封入した状態において、高温による内圧上昇よって外装材が膨張して伸びたとしても、外装材の破損をより確実に防止することができる。 According to the exterior material for an all-solid-state battery of inventions [20] and [21], even if the exterior material expands due to an increase in internal pressure due to high temperature in a state in which the solid-state battery body is enclosed, the exterior material is more reliably damaged. can be prevented.
 発明[22]の全固体電池によれば、上記発明[1]~[21]の外装材を用いた全固体電池を特定するものであるため、上記と同様の効果を得ることができる。 According to the all-solid-state battery of the invention [22], the all-solid-state battery using the exterior material of the above inventions [1] to [21] is specified, so the same effects as above can be obtained.
図1はこの発明の実施形態である全固体電池を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery that is an embodiment of the invention. 図2は実施形態の全固体電池に用いられた外装材を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an exterior material used in the all-solid-state battery of the embodiment. 図3はこの発明の第1変形例である全固体電池を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an all-solid-state battery that is a first modification of the invention. 図4は第1変形例の全固体電池の構成を模式化して示す分解断面図である。FIG. 4 is an exploded cross-sectional view schematically showing the configuration of the all-solid-state battery of the first modified example. 図5はこの発明の第2変形例である全固体電池を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing an all-solid-state battery that is a second modification of the invention. 図6Aは第2変形例の全固体電池に適用可能な第1の外装材を示す概略断面図である。FIG. 6A is a schematic cross-sectional view showing a first exterior material applicable to the all-solid-state battery of the second modified example. 図6Bは第2変形例の全固体電池に適用可能な第2の外装材を示す概略断面図である。FIG. 6B is a schematic cross-sectional view showing a second exterior material applicable to the all-solid-state battery of the second modified example. 図6Cは第2変形例の全固体電池に適用可能な第3の外装材を示す概略断面図である。FIG. 6C is a schematic cross-sectional view showing a third exterior material applicable to the all-solid-state battery of the second modification. 図7は絶縁性評価用試料を模式化して示す平面図である。FIG. 7 is a plan view schematically showing a sample for insulation evaluation. 図8は図7の絶縁性評価用試料を模式化して示す断面図であって、図8のD-D線断面に相当する断面図である。FIG. 8 is a cross-sectional view schematically showing the insulation evaluation sample of FIG. 7, and is a cross-sectional view corresponding to the DD line cross section of FIG.
 図1はこの発明の実施形態である全固体電池を示す概略断面図、図2はその全固体電池に用いられた外装材1を示す概略断面図である。両図に示すように、本実施形態の全固体電池のケーシングとして構成される外装材1は、ラミネートシート等の積層体によって構成されている。 FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery that is an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing an exterior material 1 used in the all-solid-state battery. As shown in both figures, the exterior material 1 that constitutes the casing of the all-solid-state battery of this embodiment is composed of a laminate such as a laminate sheet.
 この外装材1は、最外側に配置される基材層11と、基材層11の内面側に積層される金属箔層12と、金属箔層12の内面側に積層される耐熱ガスバリア層21と、耐熱ガスバリア層21の内面側に積層されるシーラント層13とを備え、本実施形態では、外装材1の各層11~13,21の各間は、ドライラミネート法による接着剤(接着剤層)を介して接着されている。換言すると、本実施形態の外装材1は、基材層11/接着剤層/金属箔層12/接着剤層/耐熱ガスバリア層21/接着剤層/シーラント層13からなる積層体によって構成されている。 The exterior material 1 includes a base material layer 11 disposed on the outermost side, a metal foil layer 12 laminated on the inner surface side of the base material layer 11, and a heat-resistant gas barrier layer 21 laminated on the inner surface side of the metal foil layer 12. and a sealant layer 13 laminated on the inner surface side of the heat-resistant gas barrier layer 21. In this embodiment, an adhesive (adhesive layer ). In other words, the exterior material 1 of the present embodiment is composed of a laminate consisting of the base material layer 11/adhesive layer/metal foil layer 12/adhesive layer/heat-resistant gas barrier layer 21/adhesive layer/sealant layer 13. there is
 本実施形態においては図1に示すように、上記構成の外装材1によって、固体電池本体5を被覆するように封入して全固体電池を作製するものである。すなわち矩形状の2枚の外装材1,1が固体電池本体5を介して上下に重ね合わされて、2枚の(一対の)外装材1,1における外周縁部のシーラント層13,13同士が熱接着(ヒートシール)によって気密状態(封止状態)に接合一体化されることにより、外装材1,1からなる袋状のケーシング内に固体電池本体5が収容された全固体電池が製作されるものである。 In this embodiment, as shown in FIG. 1, an all-solid-state battery is produced by encapsulating the solid-state battery main body 5 with the exterior material 1 configured as described above so as to cover it. That is, the two rectangular exterior materials 1, 1 are superimposed one on the other with the solid battery main body 5 interposed therebetween, and the sealant layers 13, 13 at the outer peripheral edges of the two (a pair of) exterior materials 1, 1 By joining and integrating in an airtight state (sealed state) by thermal bonding (heat sealing), an all-solid-state battery is manufactured in which the solid-state battery main body 5 is housed in a bag-shaped casing made of the exterior materials 1, 1. It is a thing.
 本実施形態の全固体電池においては、図示は省略するが、電気取出用にタブリードが設けられている。このタブリードは、その一端(内端)が固体電池本体5に接着固定されて、中間部が2枚の外装体1,1の外周縁部間を通じて、他端側(外端側)が外部に引き出されるように配置されている。 Although not shown, the all-solid-state battery of this embodiment is provided with a tab lead for extracting electricity. One end (inner end) of this tab lead is adhesively fixed to the solid battery main body 5, and the intermediate portion passes between the outer peripheral edges of the two exterior bodies 1, 1, and the other end side (outer end side) extends to the outside. arranged to be pulled out.
 なお本実施形態においては、2枚の平面状の外装材1,1を貼り合わせてケーシングを形成するようにしているが、それだけに限られず、本発明においては、2枚の外装材のうち少なくともいずれか一方を予めトレイ状に成形しておいて、その一方のトレイ状の外装材を、トレイ状または平面状の他方の外装材に貼り合わせてケーシングを形成するようにしても良い。 In the present embodiment, the casing is formed by pasting two planar exterior materials 1, 1 together, but the present invention is not limited to this, and at least one of the two exterior materials may be One of them may be molded in advance into a tray shape, and one tray-shaped exterior material may be attached to the other tray-shaped or planar exterior material to form a casing.
 以下に、本実施形態の全固体電池の外装材1における詳細な構成について説明する。 The detailed configuration of the exterior material 1 of the all-solid-state battery of this embodiment will be described below.
 外装材1の基材層11は、厚さが5μm~50μmの耐熱性樹脂のフィルムによって構成されている。この基材層11を構成する樹脂としては、ポリアミド、ポリエステル(PET、PBT、PEN)、ポリオレフィン(PE、PP)等を好適に用いることができる。 The base material layer 11 of the exterior material 1 is composed of a heat-resistant resin film with a thickness of 5 μm to 50 μm. Polyamide, polyester (PET, PBT, PEN), polyolefin (PE, PP), or the like can be suitably used as the resin constituting the base material layer 11 .
 金属箔層12は、厚さが5μm~120μmに設定されており、表面(外面)側から酸素や水分の侵入をブロックする機能を有している。この金属箔層12としては、アルミニウム箔、SUS箔(ステンレス箔)、銅箔、ニッケル箔等を好適に用いることができる。なお本実施形態において、「アルミニウム」「銅」「ニッケル」という用語は、それらの合金も含む意味で用いられている。 The thickness of the metal foil layer 12 is set to 5 μm to 120 μm, and has the function of blocking the intrusion of oxygen and moisture from the surface (outer surface) side. As the metal foil layer 12, aluminum foil, SUS foil (stainless steel foil), copper foil, nickel foil, or the like can be suitably used. In the present embodiment, the terms "aluminum", "copper" and "nickel" are used to include their alloys.
 また金属箔層12にメッキ処理等を行うと、ピンホールが発生するリスクが少なくなり、より一層、酸素や水分の侵入をブロックする機能を向上させることができる。 In addition, when the metal foil layer 12 is plated, the risk of pinholes is reduced, and the function of blocking the intrusion of oxygen and moisture can be further improved.
 さらに金属箔層12にクロメート処理のような化成処理等を行うと、耐腐食性が一層向上するため、欠損等の不具合が発生するのをより確実に防止でき、また樹脂との接着性を向上できて耐久性を一段と向上させることができる。 Further, when the metal foil layer 12 is subjected to a chemical conversion treatment such as chromate treatment, the corrosion resistance is further improved, so that defects such as chipping can be prevented more reliably, and adhesion to the resin is improved. The durability can be further improved.
 シーラント層13は、厚さが10μm~100μmに設定されており、熱接着性(熱融着性)樹脂のフィルムによって構成されている。このシーラント層13を構成する樹脂としては、ポリエチレン(LLDPE、LDPE、HDPE)や、ポリプロピレンのようなポリオレフィン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群、例えば無延伸ポリプロピレン(CPP、IPP)等を好適に用いることができる。 The sealant layer 13 has a thickness of 10 μm to 100 μm, and is made of a thermally adhesive (thermally fusible) resin film. The resin constituting the sealant layer 13 includes polyethylene (LLDPE, LDPE, HDPE), polyolefins such as polypropylene, olefinic copolymers, acid-modified products thereof and ionomers, such as unstretched polypropylene (CPP , IPP) and the like can be preferably used.
 シーラント層13としては、タブリードを使って電気を取り出すことを考慮すると、つまりタブリードとのシール性や接着性等を考慮すると、無延伸ポリプロピレンフィルム(CPP、IPP)等のポリプロピレン系樹脂を用いるのが好ましい。 As the sealant layer 13, taking into account the use of tab leads to extract electricity, that is, taking into consideration sealing properties and adhesive properties with tab leads, it is preferable to use a polypropylene resin such as unstretched polypropylene film (CPP, IPP). preferable.
 耐熱ガスバリア層21は、耐熱性および絶縁性を有する樹脂のフィルムによって構成されている。この耐熱ガスバリア層21を構成する樹脂としては、ポリアミド(6-ナイロン、66-ナイロン、MXDナイロン等)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、セロハン、ポリ塩化ビニリデン等を用いるのが好ましい。 The heat-resistant gas barrier layer 21 is composed of a heat-resistant and insulating resin film. Resins constituting the heat-resistant gas barrier layer 21 include polyamide (6-nylon, 66-nylon, MXD nylon, etc.), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), cellophane, poly It is preferable to use vinylidene chloride or the like.
 本実施形態の耐熱ガスバリア層21は、良好な絶縁性を備えるものであり、本実施形態の外装材1によって固体電池本体5を熱接着により封入した後(シール後)も、良好な絶縁性を得るものである。 The heat-resistant gas barrier layer 21 of the present embodiment has good insulating properties, and even after the solid battery main body 5 is encapsulated with the exterior material 1 of the present embodiment by thermal bonding (after sealing), the good insulating properties are maintained. It is what you get.
 本実施形態では、耐熱ガスバリア層21を構成する樹脂は、所定の硫化水素(HS)ガス透過度を備えるのが好ましい。具体的には、耐熱ガスバリア層21は、JIS K7126-1に準拠する測定値において硫化水素ガス透過度が30{cc・mm/(m・D・MPa)}以下の樹脂、より好ましくは15{cc・mm/(m・D・MPa)}以下の樹脂によって構成するのが良い。すなわち耐熱ガスバリア層21の硫化水素ガス透過度を上記の特定値以下に設定した場合には、固体電解質材料と外気の水分とが反応して硫化水素ガスが発生した際に、耐熱ガスバリア層21によって硫化水素ガスが外部に漏出するのを防止することができる。換言すると、耐熱ガスバリア層21の硫化水素ガス透過度が大き過ぎる場合には、発生した硫化水素ガスが外装材1(耐熱ガスバリア層21)を通って外部に漏出するおそれがあり、好ましくない。 In this embodiment, the resin forming the heat-resistant gas barrier layer 21 preferably has a predetermined hydrogen sulfide (H 2 S) gas permeability. Specifically, the heat-resistant gas barrier layer 21 is made of a resin having a hydrogen sulfide gas permeability of 30 {cc·mm/(m 2 ·D·MPa)} or less, more preferably 15, as measured according to JIS K7126-1. It is preferable to use a resin of {cc·mm/(m 2 ·D·MPa)} or less. That is, when the hydrogen sulfide gas permeability of the heat-resistant gas barrier layer 21 is set to the specific value or less, the heat-resistant gas barrier layer 21 prevents the solid electrolyte material from reacting with moisture in the outside air to generate hydrogen sulfide gas. Hydrogen sulfide gas can be prevented from leaking to the outside. In other words, if the hydrogen sulfide gas permeability of the heat-resistant gas barrier layer 21 is too high, the generated hydrogen sulfide gas may leak outside through the exterior material 1 (heat-resistant gas barrier layer 21), which is not preferable.
 なお参考までに、硫化水素ガス透過度の単位に含まれる「D」は、「Day(24h)」に相当するものである。 For reference, "D" included in the unit of hydrogen sulfide gas permeability corresponds to "Day (24h)".
 また本実施形態においては、耐熱ガスバリア層21を構成する樹脂としては、JIS K7129-1(感湿センサー法 40℃ 90%Rh)に準拠して測定された水蒸気ガス透過率が50(g/m/day)以下のもの、より好ましくは40(g/m/day)以下のものを採用するのが良い。すなわち、硫化水素ガスは、外部の水分が外装材1を透過して固体電解質材料と反応することによって発生するが、耐熱ガスバリア層21の水蒸気ガス透過率を上記の特定値以下に設定した場合には、耐熱ガスバリア層21による水分の浸入を防止できる上さらに、金属箔層12のガスバリア機能も相俟って、水分の浸入をより一層確実に防止できて、硫化水素ガス自体の発生を確実に防止でき、ひいては硫化水素ガスが外部に漏出するのをより確実に防止することができる。 In the present embodiment, the resin constituting the heat-resistant gas barrier layer 21 has a water vapor gas permeability of 50 (g/m 2 /day) or less, more preferably 40 (g/m 2 /day) or less. That is, hydrogen sulfide gas is generated when external moisture permeates the exterior material 1 and reacts with the solid electrolyte material. In addition to the heat-resistant gas barrier layer 21, the gas barrier function of the metal foil layer 12 can prevent the intrusion of moisture. Therefore, it is possible to more reliably prevent hydrogen sulfide gas from leaking to the outside.
 本実施形態においては、耐熱ガスバリア層21の厚さ(元厚)を3μm~50μmに設定するのが好ましい。すなわち耐熱ガスバリア層21の厚さをこの範囲に設定した場合には、上記の硫化水素ガスおよび水蒸気ガスの透過抑制作用を確実に得ることができるとともに、熱接着によりシーラント層13が溶融流出したとしても、耐熱ガスバリア層21によって絶縁性を確実に確保することができる。換言すると、耐熱ガスバリア層21が薄過ぎる場合には、ガス透過抑制作用や絶縁性を確保できないおそれがあり、好ましくない。逆に耐熱ガスバリア層21が厚過ぎる場合には、外装材1の薄肉化を図ることができないばかりか、必要以上に厚くすることの効果も十分に得られないため、好ましくない。 In this embodiment, it is preferable to set the thickness (original thickness) of the heat-resistant gas barrier layer 21 to 3 μm to 50 μm. That is, when the thickness of the heat-resistant gas barrier layer 21 is set within this range, the permeation suppressing effect of the hydrogen sulfide gas and water vapor gas can be reliably obtained. Also, the heat-resistant gas barrier layer 21 can reliably ensure insulation. In other words, if the heat-resistant gas barrier layer 21 is too thin, the gas permeation suppressing action and insulation may not be ensured, which is not preferable. Conversely, if the heat-resistant gas barrier layer 21 is too thick, not only is it impossible to reduce the thickness of the exterior material 1, but the effect of making it thicker than necessary cannot be obtained sufficiently, which is not preferable.
 また本実施形態では、耐熱ガスバリア層21を構成する樹脂(樹脂フィルム)において、元厚を「da0」として、200℃、0.2MPa、5secの条件で押圧したときの厚みを「da1」として、残存率「da1/da0」が0.9以上となるように、つまり「1≧da1/da0≧0.9」の関係式Aを満たすように構成するのが好ましい。この関係式Aは、外装材1を熱接着した際に、耐熱ガスバリア層21の厚みの減量率が10%以下であるという構成に相当するものである。そして本実施形態においては、上記の関係式Aを満たしている場合、外装材1を熱接着して固体電池本体5を封止したとしても、耐熱ガスバリア層21の厚みの減少を抑制できて、十分な厚さを確保できるため、上記のガス透過抑制作用を確実に得ることができるとともに、耐熱ガスバリア層21による絶縁性も確実に得ることができる。 In the present embodiment, the original thickness of the resin (resin film) constituting the heat-resistant gas barrier layer 21 is defined as "da0", and the thickness when pressed under the conditions of 200° C., 0.2 MPa, and 5 sec is defined as "da1". It is preferable to configure so that the survival rate "da1/da0" is 0.9 or more, that is, to satisfy the relational expression A "1≧da1/da0≧0.9". This relational expression A corresponds to a configuration in which the thickness reduction rate of the heat-resistant gas barrier layer 21 is 10% or less when the exterior material 1 is thermally bonded. In this embodiment, when the above relational expression A is satisfied, even if the exterior material 1 is thermally bonded to seal the solid battery main body 5, reduction in the thickness of the heat-resistant gas barrier layer 21 can be suppressed. Since a sufficient thickness can be secured, the gas permeation suppressing action described above can be reliably obtained, and the heat-resistant gas barrier layer 21 can also reliably provide insulation.
 また本実施形態においては、耐熱ガスバリア層21を構成する樹脂として、シーラント層13を構成する樹脂よりも融点が10℃以上高いもの、より好ましくは20℃以上高いものを採用するのが好ましい。すなわち耐熱ガスバリア層21を高融点とした場合には、外装材1を熱接着する際に、シーラント層13を溶融させたとしても、耐熱ガスバリア層21の溶融流出を防止できるため、耐熱ガスバリア層21による、ガスの透過抑制作用や、絶縁性を確実に得ることができる。 In addition, in this embodiment, it is preferable to use a resin that has a melting point higher by 10°C or more, more preferably by 20°C or more, than that of the resin that forms the sealant layer 13, as the resin that forms the heat-resistant gas barrier layer 21. That is, when the heat-resistant gas barrier layer 21 has a high melting point, even if the sealant layer 13 is melted when the exterior material 1 is thermally bonded, the melt-outflow of the heat-resistant gas barrier layer 21 can be prevented. The effect of suppressing gas permeation and insulation can be reliably obtained.
 さらに本実施形態においては、耐熱ガスバリア層21は、絶縁破壊電圧が18kV/mm以上にするのが好ましい。すなわち耐熱ガスバリア層21の絶縁破壊電圧が特定値以上の場合には、十分な絶縁性を確実に確保することができる。換言すると、耐熱ガスバリア層21の絶縁破壊電圧が小さ過ぎる場合には、十分な絶縁性を確保できないおそれがある。 Furthermore, in this embodiment, the heat-resistant gas barrier layer 21 preferably has a dielectric breakdown voltage of 18 kV/mm or more. That is, when the dielectric breakdown voltage of the heat-resistant gas barrier layer 21 is equal to or higher than a specific value, it is possible to ensure sufficient insulation. In other words, if the dielectric breakdown voltage of the heat-resistant gas barrier layer 21 is too low, it may not be possible to ensure sufficient insulation.
 また本実施形態においては、耐熱ガスバリア層21の熱水収縮率を2%~10%に設定するのが好ましい。すなわちこの構成を採用する場合には、耐熱ガスバリア層21、ひいては外装材1の成形性が向上し、外装材1によって固体電池本体5を熱接着により封入した後も、高い絶縁性を維持することができる。換言すると、耐熱ガスバリア層21の熱水収縮率が上記の特定範囲を逸脱する場合には、良好な絶縁性を確保できないおそれがあり、好ましくない。 Further, in this embodiment, it is preferable to set the hot water shrinkage rate of the heat-resistant gas barrier layer 21 to 2% to 10%. That is, when this configuration is adopted, the moldability of the heat-resistant gas barrier layer 21 and, in turn, the exterior material 1 is improved, and high insulation is maintained even after the solid battery main body 5 is sealed with the exterior material 1 by thermal bonding. can be done. In other words, when the hot water shrinkage ratio of the heat-resistant gas barrier layer 21 deviates from the above specific range, there is a possibility that good insulation cannot be ensured, which is not preferable.
 本実施形態において、耐熱ガスバリア層21の熱水収縮率は、耐熱ガスバリア層21を構成する樹脂フィルム試験片(10cm×10cm)を95℃の熱水中に30分間浸漬した際の浸漬前後の試験片の延伸方向における寸法変化率である。本実施形態において、熱水収縮率は、浸漬処理前の延伸方向の寸法を「X」、浸漬処理後の延伸方向の寸法を「Y]として、次式で求めることができる。 In the present embodiment, the hot water shrinkage rate of the heat-resistant gas barrier layer 21 is measured by testing before and after immersing a resin film test piece (10 cm×10 cm) constituting the heat-resistant gas barrier layer 21 in hot water at 95° C. for 30 minutes. It is the dimensional change rate in the stretching direction of the piece. In this embodiment, the hot water shrinkage ratio can be obtained by the following formula, where "X" is the dimension in the stretching direction before the immersion treatment, and "Y" is the dimension in the stretching direction after the immersion treatment.
 熱水収縮率(%)={(X-Y)/X}×100
 ここで本実施形態においては、耐熱ガスバリア層21を構成する樹脂として、熱伝導率が0.2W/m・K以上のものを採用するのが好ましい。すなわちこの構成を採用する場合には、耐熱ガスバリア層21の伝熱性を十分に確保できるため、固体電池本体5の冷却性をより一層向上させることができる。
Hot water shrinkage (%) = {(XY)/X} x 100
Here, in this embodiment, it is preferable to employ a resin having a thermal conductivity of 0.2 W/m·K or more as the resin constituting the heat-resistant gas barrier layer 21 . That is, when adopting this configuration, the heat transfer property of the heat-resistant gas barrier layer 21 can be sufficiently ensured, so the cooling property of the solid battery main body 5 can be further improved.
 本実施形態において、耐熱ガスバリア層21を構成する樹脂フィルムは、90℃におけるヤング率が、流れ方向であるMD、MDに直交する方向であるTD共に、1GPa以上であり、好ましくは共に5GPa以上であるのが好ましい。すなわちこの構成を採用することによって、常温に限られず高温環境下であっても、耐熱ガスバリア層21、ひいては外装材1に所定の硬さを確保できるため、破損等の欠陥部が発生するのを防止することができる。 In the present embodiment, the resin film that constitutes the heat-resistant gas barrier layer 21 has a Young's modulus at 90° C. that is 1 GPa or more in both the machine direction MD and the direction perpendicular to the MD, and preferably 5 GPa or more. It is preferable to have That is, by adopting this configuration, the heat-resistant gas barrier layer 21 and, in turn, the exterior material 1 can be secured with a predetermined hardness not only at room temperature but also in a high temperature environment, so that defects such as breakage can be prevented. can be prevented.
 なお本実施形態では、耐熱ガスバリア層21において常温(25℃)でのヤング率は1.5GPa以上であるのが好ましい。 In this embodiment, the heat-resistant gas barrier layer 21 preferably has a Young's modulus of 1.5 GPa or more at room temperature (25°C).
 また本実施形態においては、耐熱ガスバリア層21が、90℃における引張破断強度がMDおよびTD共に100MPa以上、400MPa以下であるのが好ましい。すなわちこの構成を採用する場合には、高温下で固体電池本体5の膨張により内圧が高くなって外装材1が膨張したとしても、外装材1の破損を確実に防止することができる。 In addition, in the present embodiment, the heat-resistant gas barrier layer 21 preferably has a tensile breaking strength at 90°C of 100 MPa or more and 400 MPa or less in both MD and TD. That is, when adopting this configuration, even if the internal pressure increases due to the expansion of the solid battery main body 5 at a high temperature and the exterior material 1 expands, damage to the exterior material 1 can be reliably prevented.
 さらに本実施形態において、耐熱ガスバリア層21が、90℃における引張破断伸びMDおよびTD共に50%~200%である構成を採用するのが好ましい。すなわちこの構成を採用する場合には、高温下での内圧上昇により外装材1が膨張して伸長したとしても、外装材1の破損をより確実に防止することができる。 Furthermore, in the present embodiment, it is preferable that the heat-resistant gas barrier layer 21 has a structure in which both the tensile elongation at break MD and TD at 90°C are 50% to 200%. That is, when adopting this configuration, even if the exterior material 1 expands and elongates due to an increase in internal pressure at high temperatures, damage to the exterior material 1 can be prevented more reliably.
 なお本実施形態では、耐熱ガスバリア層21において常温(25℃)における引張破断強度は、150MPaであり、引張破断伸びは、50%~150%であるのが好ましい。 In this embodiment, the heat-resistant gas barrier layer 21 preferably has a tensile strength at break of 150 MPa and a tensile elongation at break of 50% to 150% at room temperature (25°C).
 また本実施形態では、シーラント層13を構成する樹脂(樹脂フィルム)において、元厚を「db0」として、200℃、0.2MPa、5secの条件で押圧したときの厚みを「db1」として、残存率「db1/db0」が0.1~0.5となるように、つまり「0.5≧db1/db0≧0.1」の関係式Bを満たすように構成するのが好ましい。この関係式Bは、外装材1を熱接着した際に、シーラント層13の厚みの減量率が50~90%であるという構成に相当するものである。そして本実施形態においては、上記の関係式Bを満たしている場合、外装材1を熱接着して固体電池本体5を封止した際に、シーラント層13の厚みをある程度確保できるため、シーラント層13による絶縁性も確保しつつ、タブリードや異物が存在していても、それらの外周隙間にシーラント層13の樹脂が回り込むことにより、十分な密封性を確実に得ることができる。 In the present embodiment, in the resin (resin film) constituting the sealant layer 13, the original thickness is "db0", and the thickness when pressed under the conditions of 200 ° C., 0.2 MPa, 5 sec is "db1". Preferably, the ratio "db1/db0" is 0.1 to 0.5, that is, the relational expression B of "0.5≧db1/db0≧0.1" is satisfied. This relational expression B corresponds to a structure in which the reduction rate of the thickness of the sealant layer 13 is 50 to 90% when the exterior material 1 is thermally bonded. In the present embodiment, when the above relational expression B is satisfied, the thickness of the sealant layer 13 can be secured to some extent when the solid battery main body 5 is sealed by thermally bonding the exterior material 1. Therefore, the sealant layer Even if there are tab leads or foreign matter, the resin of the sealant layer 13 flows into the peripheral gap between them while ensuring the insulation by 13, so that sufficient sealing performance can be reliably obtained.
 ここで本実施形態において、外装材1のシーラント層13をJIS K7126-1に準拠する硫化水素ガス透過度が100{cc・mm/(m・D・MPa)}以下の樹脂によって構成するのが好ましい。すなわちシーラント層13の硫化水素ガス透過度を上記の特定値以下に設定した場合には、上記の耐熱ガスバリア層21による硫化水素ガスの透過抑制作用に、シーラント層13による硫化水素ガスの透過抑制作用が相俟って、硫化水素ガスが外部に漏出するのをより一層確実に防止することができる。 Here, in the present embodiment, the sealant layer 13 of the exterior material 1 is made of a resin having a hydrogen sulfide gas permeability of 100 {cc·mm/(m 2 ·D·MPa)} or less according to JIS K7126-1. is preferred. That is, when the hydrogen sulfide gas permeability of the sealant layer 13 is set to the specific value or less, the heat-resistant gas barrier layer 21 suppresses permeation of hydrogen sulfide gas, and the sealant layer 13 suppresses permeation of hydrogen sulfide gas. Together, it is possible to more reliably prevent hydrogen sulfide gas from leaking to the outside.
 一方、本実施形態においては、外装材1の各層11~13,21の各間を貼り付けるための接着剤(接着剤層)としては、2液硬化型、エネルギー線(UV、X線等)硬化型等の硬化タイプを用いることができ、中でも、ウレタン系接着剤、オレフィン系接着剤、アクリル系接着剤、エポキシ系接着剤等を好適に用いることができる。さらに接着剤層4の厚さは2μm~5μmに設定されている。 On the other hand, in the present embodiment, the adhesive (adhesive layer) for bonding between the layers 11 to 13, 21 of the exterior material 1 is a two-liquid curing type, energy ray (UV, X-ray, etc.) A curing type such as a curing type can be used, and among them, a urethane-based adhesive, an olefin-based adhesive, an acrylic-based adhesive, an epoxy-based adhesive, etc. can be preferably used. Furthermore, the thickness of the adhesive layer 4 is set to 2 μm to 5 μm.
 以上のように本実施形態の全固体電池において、外装材1における金属箔層12およびシーラント層13間に耐熱ガスバリア層21を介在しているため、発生した硫化水素ガスが外部に漏出するのを確実に防止できる。さらに固体電池本体5を封止するにあたって、外装材1のシーラント層13を熱接着した際に、シーラント層13の樹脂が溶融流出して、シーラント層13による絶縁性が低下してとしても、耐熱ガスバリア層21が残存しているため、その耐熱バリア層21によって絶縁性を確実に確保することができる。 As described above, in the all-solid-state battery of the present embodiment, since the heat-resistant gas barrier layer 21 is interposed between the metal foil layer 12 and the sealant layer 13 in the exterior material 1, the generated hydrogen sulfide gas is prevented from leaking to the outside. It can definitely be prevented. Furthermore, when the sealant layer 13 of the exterior material 1 is heat-bonded to seal the solid battery main body 5, even if the resin of the sealant layer 13 melts and flows out and the insulation performance of the sealant layer 13 is reduced, the heat resistance is reduced. Since the gas barrier layer 21 remains, the heat-resistant barrier layer 21 can reliably ensure insulation.
 さらに耐熱ガスバリア層21の硫化水素ガス透過度を特定値に設定する場合には、上記の効果をより確実に得ることができる。 Further, when the hydrogen sulfide gas permeability of the heat-resistant gas barrier layer 21 is set to a specific value, the above effects can be obtained more reliably.
 また耐熱ガスバリア層21の絶縁破壊電圧を特定値に設定する場合には、高温環境下であっても、良好な絶縁性を確実に確保することができる。 Also, when the dielectric breakdown voltage of the heat-resistant gas barrier layer 21 is set to a specific value, it is possible to ensure good insulation even in a high-temperature environment.
 また耐熱ガスバリア層21の引張破断強度を特定値に設定する場合には、常温に限られず高温環境下であっても、耐熱ガスバリア層21、ひいては外装材1に破損等の欠陥部が発生するのを確実に防止することができ、特に高温環境下での動作信頼性に優れた全固体電池製品を提供することができる。 When the tensile strength at break of the heat-resistant gas barrier layer 21 is set to a specific value, the heat-resistant gas barrier layer 21 and, in turn, the exterior material 1 may be damaged or otherwise damaged not only at room temperature but also at high temperatures. can be reliably prevented, and an all-solid-state battery product having excellent operational reliability especially in a high-temperature environment can be provided.
 図3はこの発明の第1変形例である全固体電池を示す概略断面図、図4はその全固体電池の構成を模式化して示す分解図である。両図に示すように、この全固体電池において、外装材1は、最外側に配置される基材層11と、基材層11の内面側に、接着剤層を介して積層接着される金属箔層12と、金属箔層12の内面側に、接着剤層を介して積層接着される耐熱ガスバリア層21と、耐熱ガスバリア層21の内面側に、接着剤層4を介して積層接着されるシーラント層13とを備えている。 FIG. 3 is a schematic cross-sectional view showing an all-solid-state battery that is a first modified example of the present invention, and FIG. 4 is an exploded view schematically showing the configuration of the all-solid-state battery. As shown in both figures, in this all-solid-state battery, the exterior material 1 includes a base material layer 11 arranged on the outermost side, and a metal layer laminated and bonded to the inner surface side of the base material layer 11 via an adhesive layer. A foil layer 12, a heat-resistant gas barrier layer 21 laminated and bonded to the inner surface side of the metal foil layer 12 via an adhesive layer, and a heat-resistant gas barrier layer 21 laminated and bonded to the inner surface side of the heat-resistant gas barrier layer 21 via an adhesive layer 4. and a sealant layer 13 .
 またシーラント層13は、その外周縁部を除く中間部が除去されることにより開口部15が形成され、外周縁部のみに残存形成されている。この外装材1は、開口部15において接着剤層4も存在せず、開口部15を介して耐熱ガスバリア層21が内側に表出するように配置されている。 In addition, the sealant layer 13 has an opening 15 formed by removing the intermediate portion excluding the outer peripheral edge, and is left only on the outer peripheral edge. The exterior material 1 is arranged so that the adhesive layer 4 does not exist in the opening 15 and the heat-resistant gas barrier layer 21 is exposed inside through the opening 15 .
 第1変形例においては、矩形状に形成された2枚の(一対の)外装材1,1が、互いの外周縁部のシーラント層13同士を対向させるようにして、固体電池本体5を介して上下に重ね合わされて、シーラント層13,13同士が熱接着(ヒートシール)によって気密状態(封止状態)に接合一体化されることにより、外装材1,1からなる袋状のケーシング内に固体電池本体5が封止状態に収容された全固体電池が製作されるものである。 In the first modification, two (a pair of) exterior materials 1, 1 formed in a rectangular shape are arranged so that the sealant layers 13 at the outer peripheral edges of each other face each other, and the solid battery main body 5 is interposed between them. The sealant layers 13, 13 are joined together in an airtight state (sealed state) by heat bonding (heat sealing), and thus the bag-shaped casing made of the exterior materials 1, 1 An all-solid-state battery in which the solid-state battery main body 5 is accommodated in a sealed state is manufactured.
 この全固体電池においては、固体電池本体5に対応する部分に、外装材1の開口部15が配置されており、固体電池本体5の上下面が、上下の外装材1の耐熱ガスバリア層21に開口部15を通じて対向するように配置されている。 In this all-solid-state battery, the opening 15 of the exterior material 1 is arranged in a portion corresponding to the solid-state battery main body 5 , and the upper and lower surfaces of the solid-state battery body 5 are in contact with the heat-resistant gas barrier layers 21 of the upper and lower exterior materials 1 . They are arranged to face each other through the opening 15 .
 この第1変形例の全固体電池において他の構成は、上記実施形態の全固体電池と同様である。 Other configurations of the all-solid-state battery of the first modification are the same as those of the all-solid-state battery of the above embodiment.
 既述した通り、第1変形例の外装材1にはシーラント層13に開口部15が形成されている。この開口部15は、固体電池本体5に対応した部分に形成されており、シーラント層13は、ヒートシール部(封止部)に対応する部分に配置されている。 As described above, the exterior material 1 of the first modified example has the openings 15 formed in the sealant layer 13 . The opening 15 is formed in a portion corresponding to the solid battery main body 5, and the sealant layer 13 is arranged in a portion corresponding to the heat seal portion (sealing portion).
 また外装材1の開口部15においては、接着剤層4も設けられておらず、開口部15を介して耐熱ガスバリア層21が内側に表出(露出)し、全固体電池を作製した状態では、耐熱ガスバリア層21が固体電池本体5に対向するように、場合によっては少なくとも一部が対接するように配置されている。 In addition, the adhesive layer 4 is not provided in the opening 15 of the exterior material 1, and the heat-resistant gas barrier layer 21 is exposed (exposed) inside through the opening 15. , the heat-resistant gas barrier layer 21 is arranged so as to face the solid battery main body 5, and in some cases, so that at least a part thereof is in contact therewith.
 本実施形態にいて外装材1の開口部15は例えば、耐熱ガスバリア層21の全域に積層されたシーラント層13の中間部を切除することによって形成されるものであり、外周縁部のシーラント層13は残存形成されるものである。 In this embodiment, the opening 15 of the exterior material 1 is formed, for example, by cutting the intermediate portion of the sealant layer 13 laminated on the entire area of the heat-resistant gas barrier layer 21. is a residual formation.
 すなわち第1変形例において、シーラント層13を耐熱ガスバリア層21に形成する場合、耐熱ガスバリア層21としての樹脂フィルムの内面に、グラビアロール等で接着剤層4としての接着剤を塗工して、その接着剤層4を介して、シーラント層13としての樹脂フィルムを貼り付けるものであるが、グラビアロール等で耐熱ガスバリア層21に接着剤を塗工する際に、開口部形成予定領域に接着剤を塗布しない未塗工部を形成しておく。そしてこの接着剤未塗工部を有する耐熱ガスバリア層21に、シーラント層用の樹脂フィルムを貼り付けて乾燥する。その後、接着剤未塗工部のシーラント層用樹脂フィルムをレーザーカッターやロール刃等で切り取って開口部15を形成する(第1形成方法)。 That is, in the first modification, when the sealant layer 13 is formed on the heat-resistant gas barrier layer 21, the inner surface of the resin film serving as the heat-resistant gas barrier layer 21 is coated with an adhesive serving as the adhesive layer 4 using a gravure roll or the like. A resin film as the sealant layer 13 is pasted through the adhesive layer 4. When the adhesive is applied to the heat-resistant gas barrier layer 21 by a gravure roll or the like, the adhesive is applied to the region where the opening is to be formed. An uncoated portion is formed where is not applied. Then, a resin film for a sealant layer is adhered to the heat-resistant gas barrier layer 21 having the adhesive uncoated portion and dried. After that, the resin film for the sealant layer in the adhesive uncoated portion is cut off with a laser cutter, a roll blade, or the like to form the opening 15 (first forming method).
 第2形成方法としては、耐熱ガスバリア層21に接着剤を塗工する前に、耐熱ガスバリア層21における開口部形成予定領域に、離型紙を仮止め状態に取り付けて、その状態で耐熱ガスバリア層21に、グラビアロール等で接着剤を塗工して、シーラント層用の樹脂フィルムを貼り付けて乾燥する。その後、離型紙仮止め部に対応するシーラント層用樹脂フィルムを、接着剤および離型紙と共にロール刃等で切り取って開口部15を形成する。 As a second forming method, before the adhesive is applied to the heat-resistant gas barrier layer 21, release paper is temporarily attached to the region where the opening portion is to be formed in the heat-resistant gas barrier layer 21, and the heat-resistant gas barrier layer 21 is attached in that state. Then, an adhesive is applied using a gravure roll or the like, and a resin film for the sealant layer is adhered and dried. After that, the sealant layer resin film corresponding to the release paper temporary fixing portion is cut off together with the adhesive and the release paper with a roll blade or the like to form the opening 15 .
 他の形成方法としては、耐熱ガスバリア層21に、シーラント層用樹脂フィルムを接着する前にそのフィルムに、開口部15としての貫通孔を形成しておき、その開口部付きのシーラント層用樹脂フィルムを、耐熱ガスバリア層21に接着剤を介して貼り付ける方法(他の形成方法)等も考えられる。しかしながら、この他の形成方法では、接着剤を均等に塗布することが困難であり、開口部付きのシーラント層用樹脂フィルムを精度良く正確に貼り付けるのが困難である。従って第1変形例においては、上記第1および第2形成方法を採用するのが好ましい。 As another forming method, before the sealant layer resin film is adhered to the heat-resistant gas barrier layer 21, through holes are formed in the film as the openings 15, and the sealant layer resin film with the openings is formed. to the heat-resistant gas barrier layer 21 via an adhesive (another forming method). However, with other forming methods, it is difficult to evenly apply the adhesive, and it is difficult to precisely and accurately attach the sealant layer resin film having openings. Therefore, in the first modified example, it is preferable to employ the first and second forming methods.
 以上のように第1変形例の全固体電池によれば、外装材1における金属箔層12およびシーラント層13間に耐熱ガスバリア層21を形成するとともに、シーラント層13における固体電池本体5に対応する部分に、耐熱ガスバリア層21が表出する開口部15を形成しているため、固体電池本体5から発生する熱は、シーラント層13に遮られることなく、耐熱ガスバリア層21を介して金属箔層12に伝達して放熱される。従って十分な冷却性を確保することができ、高温による不具合を確実に防止することができる。 As described above, according to the all-solid-state battery of the first modification, the heat-resistant gas barrier layer 21 is formed between the metal foil layer 12 and the sealant layer 13 in the exterior material 1, and the sealant layer 13 corresponds to the solid-state battery main body 5. Since the opening 15 through which the heat-resistant gas barrier layer 21 is exposed is formed in the part, the heat generated from the solid battery main body 5 is not blocked by the sealant layer 13 and passes through the heat-resistant gas barrier layer 21 to the metal foil layer. 12 to dissipate the heat. Therefore, sufficient cooling performance can be ensured, and problems due to high temperatures can be reliably prevented.
 また第1変形例の全固体電池においては、固体電池本体5と金属箔層12との間にシーラント層13が存在しないものの、その間に絶縁性を有する耐熱ガスバリア層21が配置されているため、耐熱ガスバリア21によって絶縁性を確実に確保することができる。 In addition, in the all-solid-state battery of the first modification, although the sealant layer 13 does not exist between the solid-state battery main body 5 and the metal foil layer 12, the insulating heat-resistant gas barrier layer 21 is arranged therebetween. The heat-resistant gas barrier 21 can reliably ensure insulation.
 さらに第1変形例の全固体電池では、外装材1における固体電池本体5に対応する部分にシーラント層13が形成されていないため、その分、固体電池本体5を収容するためのスペースを大きく(厚く)することができる。従って本実施形態の全固体電池においては、従来の全固体電池と比較して、ケーシング(外装材1)の外形寸法を変更せずに、大きいサイズの固体電池本体5を収容できるため、薄型化を図りつつ、高出力化および高容量化を図ることができる。 Furthermore, in the all-solid-state battery of the first modification, the sealant layer 13 is not formed on the portion of the exterior material 1 corresponding to the solid-state battery main body 5, so the space for accommodating the solid-state battery main body 5 is increased accordingly ( thick). Therefore, in the all-solid-state battery of the present embodiment, compared with the conventional all-solid-state battery, the large-sized solid-state battery main body 5 can be accommodated without changing the external dimensions of the casing (the exterior material 1), so the thickness can be reduced. while achieving high output and high capacity.
 図5はこの発明の第2変形例である全固体電池を示す概略断面図である。同図に示すように第2変形例の全固体電池における外装材1は、最外側に配置される基材層11と、基材層11の内面側に積層される金属箔層12と、金属箔層12の内面側に積層される絶縁層としての耐熱ガスバリア層21と、耐熱ガスバリア層21の内面側に積層されるシーラント層13とを備える。さらに耐熱ガスバリア層21およびシーラント層13間には蒸着膜(蒸着層)22が設けられている。 FIG. 5 is a schematic cross-sectional view showing an all-solid-state battery that is a second modification of the invention. As shown in the figure, the exterior material 1 in the all-solid-state battery of the second modification includes a base material layer 11 arranged on the outermost side, a metal foil layer 12 laminated on the inner surface side of the base material layer 11, a metal A heat-resistant gas barrier layer 21 as an insulating layer laminated on the inner surface side of the foil layer 12 and a sealant layer 13 laminated on the inner surface side of the heat-resistant gas barrier layer 21 are provided. Furthermore, a deposited film (deposited layer) 22 is provided between the heat-resistant gas barrier layer 21 and the sealant layer 13 .
 第2変形例において、外装材1としては、第1~第3の3つの構成の外装材1a~1cを採用することができる。 In the second modified example, as the exterior material 1, exterior materials 1a to 1c having first to third configurations can be adopted.
 図6Aに示すように、第1外装材1aは、金属箔層12用の金属箔の外面に、基材層11用の樹脂フィルムが接着剤を介して積層接着され、金属箔層12の内面に、耐熱ガスバリア層21用の樹脂フィルムが接着剤を介して積層接着され、さらにその耐熱ガスバリア層21の内面には、蒸着膜22が蒸着され、その耐熱ガスバリア層21の内面である蒸着面に、接着剤層4を介して熱融着性樹脂のシーラント層13が積層接着されている。 As shown in FIG. 6A, the first exterior material 1a is formed by laminating and bonding a resin film for the base material layer 11 to the outer surface of the metal foil for the metal foil layer 12 via an adhesive. Then, a resin film for the heat-resistant gas barrier layer 21 is laminated and adhered via an adhesive, and a vapor-deposited film 22 is vapor-deposited on the inner surface of the heat-resistant gas barrier layer 21. , a sealant layer 13 of a heat-fusible resin is laminated and adhered via an adhesive layer 4 .
 また図6Bに示すように、第2外装材1bは、第1外装材1aと比較して、耐熱ガスバリア層21の内面に蒸着膜が形成されず、シーラント層13の外面に蒸着膜22が形成され、そのシーラント層13の蒸着面(外面)が、接着剤4を介して耐熱ガスバリア層21の内面に接着されている。 Further, as shown in FIG. 6B, in the second exterior material 1b, the vapor deposition film is not formed on the inner surface of the heat-resistant gas barrier layer 21, and the vapor deposition film 22 is formed on the outer surface of the sealant layer 13, as compared with the first exterior material 1a. The deposition surface (outer surface) of the sealant layer 13 is adhered to the inner surface of the heat-resistant gas barrier layer 21 via the adhesive 4 .
 また図6Cに示すように、第3外装材1cは、耐熱ガスバリア層21の内面およびシーラント層13の外面共に、蒸着膜22,22が形成されており、耐熱ガスバリア層21の蒸着面(内面)と、シーラント層13の蒸着面(外面)とが接着剤層4を介して接着されている。 In addition, as shown in FIG. 6C, the third exterior material 1c has vapor deposition films 22, 22 formed on both the inner surface of the heat-resistant gas barrier layer 21 and the outer surface of the sealant layer 13, and the vapor-deposited surface (inner surface) of the heat-resistant gas barrier layer 21 and the deposition surface (outer surface) of the sealant layer 13 are adhered via the adhesive layer 4 .
 第2変形例において、耐熱ガスバリア層21およびシーラント層13間を接着する接着剤層4を構成する接着剤としては、2液硬化型、UV(エネルギー線)硬化型等の硬化タイプを用いることができ、中でも、ウレタン系接着剤、オレフィン系接着剤、アクリル系接着剤、エポキシ系接着剤等を好適に用いることができる。さらに接着剤層4の厚さは2μm~5μmに設定されている。 In the second modification, as the adhesive constituting the adhesive layer 4 that bonds between the heat-resistant gas barrier layer 21 and the sealant layer 13, a curing type such as a two-liquid curing type or a UV (energy ray) curing type can be used. Among them, urethane-based adhesives, olefin-based adhesives, acrylic-based adhesives, epoxy-based adhesives, etc. can be preferably used. Furthermore, the thickness of the adhesive layer 4 is set to 2 μm to 5 μm.
 本実施形態では、このような接着剤を用いて、耐熱ガスバリア層21およびシーラント層13間をドライラミネート、ヒートラミネートによって接着するものである。 In this embodiment, such an adhesive is used to bond the heat-resistant gas barrier layer 21 and the sealant layer 13 by dry lamination or heat lamination.
 また第2変形例においては、接着剤層4の接着剤としては、蒸着膜22との接着性が良い酸変性ポリオレフィン系接着剤を用いることにより、耐熱ガスバリア層21およびシーラント層13間を確実に密着でき、成形時のデラミネーションの発生を有効に防止することができる。 In the second modification, the adhesive layer 4 is made of an acid-modified polyolefin-based adhesive that has good adhesion to the deposited film 22, so that the heat-resistant gas barrier layer 21 and the sealant layer 13 are reliably spaced apart. Adhesion can be achieved, and the occurrence of delamination during molding can be effectively prevented.
 なお、第2変形例においては、基材層11および金属箔層12間、金属箔層12および耐熱ガスバリア層21間を接着する接着剤として、上記接着剤層4の接着剤と同様の接着剤を好適に用いることができ、同様の厚さに設定するのが好ましい。 In the second modification, the same adhesive as the adhesive layer 4 is used as the adhesive for bonding between the base material layer 11 and the metal foil layer 12 and between the metal foil layer 12 and the heat-resistant gas barrier layer 21. can be preferably used, and it is preferable to set them to similar thicknesses.
 また第2変形例において、耐熱ガスバリア層21の内面および/またはシーラント層13の外面に形成される蒸着膜22は、アルミニウム、チタン、シリコン等の無機物、アルミナ、シリカ、酸化亜鉛等の無機酸化物、フッ化アルミニウム、フッ化マグネシウム等の金属フッ化物のうち、少なくともいずれか1種以上のものを採用することができる。 Further, in the second modification, the deposited film 22 formed on the inner surface of the heat-resistant gas barrier layer 21 and/or the outer surface of the sealant layer 13 is composed of inorganic substances such as aluminum, titanium and silicon, and inorganic oxides such as alumina, silica and zinc oxide. , aluminum fluoride, magnesium fluoride and the like, at least one of which can be employed.
 第2変形例において、蒸着膜22が形成されることによって、ガスバリア性をより向上させることができる。このため、外気の浸入を防止でき、その外気の水分と固体電池本体5の固体電解質との反応によって生じる硫化水素ガス自体の発生を防止できる上さらに、硫化水素ガスが発生しても、蒸着膜22のガスバリア性によって硫化水素ガスが外部に漏出するのを確実に防止することができる。 In the second modification, the gas barrier property can be further improved by forming the vapor deposition film 22 . Therefore, it is possible to prevent the infiltration of outside air, prevent the generation of hydrogen sulfide gas itself caused by the reaction between the moisture of the outside air and the solid electrolyte of the solid battery main body 5, and furthermore, even if the hydrogen sulfide gas is generated, the deposited film can be prevented. The gas barrier property of 22 can reliably prevent hydrogen sulfide gas from leaking to the outside.
 第2変形例において蒸着膜22は、厚みを50Å~10000Å、または5nm~1000nm、または0.005μm~1μmに設定するのが好ましい。すなわち厚みをこの範囲内に設定することにより、良好なガスバリア性を、より確実に確保することができる。換言すると、蒸着膜22の厚みが薄過ぎる場合には、良好なガスバリア性を得ることができず、好ましくない。蒸着膜22の厚みを必要以上に厚く形成しても、それに見合う効果を得ることができないばかりか、厚い蒸着膜22の形成に多大な時間を要し、生産効率の低下を来すおそれがあり、好ましくない。 In the second modified example, the vapor deposition film 22 preferably has a thickness of 50 Å to 10000 Å, or 5 nm to 1000 nm, or 0.005 μm to 1 μm. That is, by setting the thickness within this range, good gas barrier properties can be ensured more reliably. In other words, if the thickness of the deposited film 22 is too thin, good gas barrier properties cannot be obtained, which is not preferable. Even if the thickness of the vapor deposition film 22 is formed to be thicker than necessary, not only is it not possible to obtain the effect corresponding to the thickness, but also it takes a long time to form the thick vapor deposition film 22, which may lead to a decrease in production efficiency. , unfavorable.
 第2変形例において、蒸着膜22は、ドライコーティングによって蒸着して塗膜することによって形成することができる。ドライコーティングとしては、CVD法、PVD法(スパッタリング法、イオンビーム法等)等の周知の方法を採用することができる。 In the second modified example, the deposited film 22 can be formed by depositing and coating by dry coating. Well-known methods such as the CVD method and the PVD method (sputtering method, ion beam method, etc.) can be employed for the dry coating.
 この第2変形例の全固体電池において他の構成は、上記実施形態の全固体電池と同様である。 Other configurations of the all-solid-state battery of the second modification are the same as those of the all-solid-state battery of the above embodiment.
 以上のように第2変形例の全固体電池によれば、外装材1における耐熱ガスバリア層21およびシーラント層13間に蒸着膜22を設けているため、蒸着膜22により十分なガスバリア性を得ることができる。このため、外気の浸入を防止でき、その外気の水分と固体電池本体5の固体電解質との反応によって生じる硫化水素ガス自体の発生を防止できる上さらに、硫化水素ガスが発生しても、蒸着膜22のガスバリア性によって硫化水素ガスが外部に漏出するのを確実に防止することができる。 As described above, according to the all-solid-state battery of the second modification, since the deposited film 22 is provided between the heat-resistant gas barrier layer 21 and the sealant layer 13 in the exterior material 1, sufficient gas barrier properties can be obtained by the deposited film 22. can be done. Therefore, it is possible to prevent the infiltration of outside air, prevent the generation of hydrogen sulfide gas itself caused by the reaction between the moisture of the outside air and the solid electrolyte of the solid battery main body 5, and furthermore, even if the hydrogen sulfide gas is generated, the deposited film can be prevented. The gas barrier property of 22 can reliably prevent hydrogen sulfide gas from leaking to the outside.
 また第2変形例において、耐熱ガスバリア層21およびシーラント層13間に接着剤層4を設けているため、耐熱ガスバリア層21の内面や、シーラント層13の外面に蒸着膜22が形成されていようとも、耐熱ガスバリア層21およびシーラント層13間を確実に密着固定することができ、デラミネーションの発生を防止することができる。 In the second modification, since the adhesive layer 4 is provided between the heat-resistant gas barrier layer 21 and the sealant layer 13, even if the vapor-deposited film 22 is formed on the inner surface of the heat-resistant gas barrier layer 21 or the outer surface of the sealant layer 13, , the heat-resistant gas barrier layer 21 and the sealant layer 13 can be securely adhered and fixed, and the occurrence of delamination can be prevented.
 また第2変形例において第2および第3外装材1b,1cのように、シーラント層13側に蒸着膜22を形成する場合には、ガスバリア性の蒸着膜22をより内側(固体電池本体5側)に配置できるため、水分に対するバリア性をより一層向上させることができる。 Further, in the second modification, when the vapor deposition film 22 is formed on the sealant layer 13 side like the second and third exterior materials 1b and 1c, the gas barrier vapor deposition film 22 is placed further inside (on the solid battery main body 5 side). ), the barrier properties against moisture can be further improved.
 また第2変形例において第1および第3外装材1a,1cのように、耐熱ガスバリア層21側に蒸着膜22を形成する場合には、シーラント層13を熱融着する際に、接着剤層4の遮熱作用によって、熱による蒸着膜22の破壊が発生し難くなり、蒸着膜22によるガスバリア性を確実に確保することができる。 In addition, in the second modified example, when the deposited film 22 is formed on the heat-resistant gas barrier layer 21 side like the first and third exterior materials 1a and 1c, when the sealant layer 13 is heat-sealed, the adhesive layer Due to the heat shielding action of 4, the vapor deposition film 22 is less likely to be destroyed by heat, and the vapor barrier property of the vapor deposition film 22 can be reliably ensured.
 (1)第1実施例 (1) First embodiment
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例1a>
 (1-1)外装材の作製
 金属箔層12としての厚さ40μmのアルミニウム箔(A8021-O)の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/mであった。
<Example 1a>
(1-1) Preparation of exterior material On both sides of a 40 μm thick aluminum foil (A8021-O) as the metal foil layer 12, phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water After applying a chemical conversion treatment liquid containing alcohol, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
 次に、上記化成処理済みアルミニウム箔(金属箔層12)の一方の面(外面)に、2液硬化型のウレタン系接着剤(3μm)を介して、基材層11として厚さ15μmの二軸延伸6ナイロン(ONY-6)フィルムをドライラミネートした(貼り合わせた)。 Next, on one surface (outer surface) of the chemically treated aluminum foil (metal foil layer 12), a two-liquid curable urethane adhesive (3 μm) was applied as the base layer 11 to form two layers having a thickness of 15 μm. An axially oriented 6 nylon (ONY-6) film was dry laminated.
 次に表1に示すように、耐熱ガスバリア樹脂層21として、9μm厚のPETフィルムを上記ドライラミネート後のアルミニウム箔の他方の面(内面)に2液硬化型のウレタン系接着剤(3μm)を介して貼り合わせた。 Next, as shown in Table 1, as the heat-resistant gas barrier resin layer 21, a PET film having a thickness of 9 μm is applied to the other surface (inner surface) of the aluminum foil after the dry lamination, and a two-liquid curing type urethane adhesive (3 μm) is applied. pasted together through
 次に表1に示すように、シーラント層13として、滑剤(エルカ酸アミド等)を含有した20μm厚のCPPフィルムを2液硬化型のウレタン系接着剤(3μm)を介して上記ドライラミネート後のPETフィルム(耐熱ガスバリア層21)の内面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートして、外装材1を構成する積層体を得た。 Next, as shown in Table 1, as the sealant layer 13, a 20 μm thick CPP film containing a lubricant (erucamide or the like) is sandwiched between a two-liquid curing urethane adhesive (3 μm) after the dry lamination. Laminate constituting the exterior material 1 by being superimposed on the inner surface of the PET film (heat-resistant gas barrier layer 21) and sandwiched between a rubber nip roll and a lamination roll heated to 100° C. for dry lamination. got
 次にこの積層体を、ロール軸に巻き取り、しかる後、40℃で10日間エージングして、実施例1aの外装材試料を得た。 Next, this laminate was wound around a roll shaft and then aged at 40°C for 10 days to obtain an exterior material sample of Example 1a.
 (1-2)樹脂フィルムのHSガス透過度等の測定
 実施例1aの外装材試料を作製する際に使用した、PETフィルム(耐熱ガスバリア層21)およびCPPフィルム(シーラント層13)の硫化水素(HS)ガス透過度をJIS K7126-1に準拠して測定し、さらにPETフィルムの水蒸気ガス透過率をJIS K7129-1(感湿センサー法 40℃ 90%Rh)に準拠して測定した。その結果を表1に併せて示す。
(1-2) Measurement of H 2 S gas permeability of resin film Sulfurization of the PET film (heat-resistant gas barrier layer 21) and CPP film (sealant layer 13) used to prepare the exterior material sample of Example 1a Hydrogen (H 2 S) gas permeability was measured according to JIS K7126-1, and water vapor gas permeability of PET film was measured according to JIS K7129-1 (moisture sensor method, 40°C 90% Rh). bottom. The results are also shown in Table 1.
 (1-3)残存率の測定
 実施例1aの外装材試料を、幅15mm×長さ150mmの大きさに2枚切り出した後、これら一対の試料を互いの内側シーラント層同士で接触するように重ね合わせた状態で、テスター産業株式会社製のヒートシール装置(TP-701-A)を用いて、ヒートシール温度:200℃、シール圧:0.2MPa(ゲージ表示圧)、シール時間:2秒の条件にて片面加熱によりヒートシール(熱接着)を行い、実施例1aの残存率測定用試料を得た。
(1-3) Measurement of residual rate After cutting two pieces of the exterior material sample of Example 1a into a size of 15 mm in width × 150 mm in length, the pair of samples are brought into contact with each other at the inner sealant layers. In the superimposed state, using a heat sealing device (TP-701-A) manufactured by Tester Sangyo Co., Ltd., heat sealing temperature: 200 ° C., sealing pressure: 0.2 MPa (gauge display pressure), sealing time: 2 seconds Heat-sealing (thermal bonding) was performed by heating one side under the conditions of , to obtain a sample for measuring the residual rate of Example 1a.
 この残存率測定用試料において、シール部分を樹脂で固め、断面が現れるよう切断し、その断面部をSEMによって観察し、耐熱ガスバリア層21およびシーラント層13等の厚みを求めた。 In this residual ratio measurement sample, the seal portion was hardened with resin, cut so that the cross section appeared, and the cross section was observed by SEM to determine the thickness of the heat-resistant gas barrier layer 21, the sealant layer 13, and the like.
 そしてこのヒートシール後の層厚みと、ヒートシール前の外装材試料の層厚みを基に、耐熱ガスバリア層21の残存率「da1/da0」およびシーラント層13の残存率「db1/db0」を測定した(上記関係式A,B参照)。その結果を表1に併せて示す。 Based on the layer thickness after heat sealing and the layer thickness of the exterior material sample before heat sealing, the residual rate "da1/da0" of the heat-resistant gas barrier layer 21 and the residual rate "db1/db0" of the sealant layer 13 were measured. (see above relational expressions A and B). The results are also shown in Table 1.
 (1-4)シール強度の測定 (1-4) Measurement of seal strength
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1aの外装材試料を、幅15mm×長さ150mmの大きさに2枚切り出した後、これら一対の試料を互いの内側シーラント層同士で接触するように重ね合わせた状態で、テスター産業株式会社製のヒートシール装置(TP-701-A)を用いて、ヒートシール温度:200℃、シール圧:0.2MPa(ゲージ表示圧)、シール時間:2秒の条件にて片面加熱によりヒートシール(熱接着)を行い、実施例1aのシール強度評価用試料を得た。 After cutting out two pieces of the exterior material sample of Example 1a to a size of 15 mm in width and 150 mm in length, the pair of samples were superimposed so that the inner sealant layers of each other were in contact with each other. Using a heat sealing device (TP-701-A) manufactured by the company, heat sealing is performed by heating one side under the conditions of heat sealing temperature: 200 ° C, sealing pressure: 0.2 MPa (gauge display pressure), sealing time: 2 seconds (Thermal adhesion) was performed to obtain a sample for seal strength evaluation of Example 1a.
 このシール強度評価用試料について、JIS Z0238-1998に準拠して島津アクセス社製ストログラフ(AGS-5kNX)を使用して、当該シール強度評価用試料をシール部分の内側シーラント層同士で引張速度100mm/分でT字剥離させたときの剥離強度を測定し、これをシール強度(N/15mm幅)とした。その結果を表2に示す。 For this seal strength evaluation sample, a strograph (AGS-5kNX) manufactured by Shimadzu Access Co., Ltd. was used in accordance with JIS Z0238-1998, and the seal strength evaluation sample was pulled between the inner sealant layers of the seal portion at a tensile speed of 100 mm. The peel strength at the time of T-shaped peeling was measured at 1/min, and this was defined as the seal strength (N/15 mm width). Table 2 shows the results.
 (1-5)絶縁抵抗値の測定(絶縁性の評価)
 図7および図8に示すように実施例1aの外装材試料1を、縦100mm×横50mmの大きさに2枚切り出した。これら一対の外装材試料1,1を互いのシーラント層13を対向させて接触するように重ね合わせた。その一方、10mm幅、100μm厚のアルミニウム箔製のタブリード3を、その両面側に50μm厚の酸変性ポリプロピレンフィルム製のタブフィルム31を配置しつつ、上記一対の外装材試料1,1間に挟み込むように配置した。この際、タブリード3の一部が一対の外装材試料1,1間に配置され、残りの部分が一対の外装材試料1,1の端縁から外側に引き出されるように配置した。この未接着の試料を、その外装材試料1,1の上下両面から両面加熱式のヒートシーラーで、シール幅5mm、200℃、0.2MPaの条件で2秒間シーラント層同士の熱融着を行って、絶縁性評価用試料を得た。
(1-5) Measurement of insulation resistance value (evaluation of insulation)
As shown in FIGS. 7 and 8, two pieces each having a size of 100 mm long×50 mm wide were cut out of the exterior material sample 1 of Example 1a. These pair of exterior material samples 1, 1 were superimposed so that the sealant layers 13 of each were opposed to each other and were in contact with each other. On the other hand, a tab lead 3 made of aluminum foil with a width of 10 mm and a thickness of 100 μm is sandwiched between the pair of exterior material samples 1, 1 while a tab film 31 made of an acid-modified polypropylene film with a thickness of 50 μm is placed on both sides thereof. placed like this. At this time, a portion of the tab lead 3 was arranged between the pair of exterior material samples 1, 1, and the remaining portion was arranged so as to be pulled out from the edges of the pair of exterior material samples 1, 1. This unbonded sample was heat-sealed between the sealant layers for 2 seconds under conditions of a seal width of 5 mm, 200° C., and 0.2 MPa using a double-sided heating heat sealer from both upper and lower surfaces of the exterior material samples 1 and 1. Thus, a sample for insulation evaluation was obtained.
 なお図7の絶縁性評価用試料の平面図においては、発明の理解を容易にするため、熱接着部(ヒートシール部)131に斜線によるハッチングを施している。また図8の絶縁性評価用試料の断面図においては、構造を理解し易いように、耐熱ガスバリア層13の記載を省略している。 In addition, in the plan view of the insulation evaluation sample in FIG. 7, the heat-bonded portion (heat-sealed portion) 131 is hatched with oblique lines in order to facilitate understanding of the invention. In addition, in the cross-sectional view of the insulation evaluation sample in FIG. 8, the illustration of the heat-resistant gas barrier layer 13 is omitted for easy understanding of the structure.
 続いて図7に示すように、絶縁性評価試料の長さ方向の端部において、基材層11として樹脂を一部剥がして金属箔層12としてのアルミニウム箔を部分的に露出させ、その露出部121において、外部からアルミニウム箔(金属箔層12)との導通を確保した。 Subsequently, as shown in FIG. 7, at the ends in the length direction of the insulation evaluation sample, the resin as the base material layer 11 is partially peeled off to partially expose the aluminum foil as the metal foil layer 12, and the exposed At the portion 121, electrical continuity with the aluminum foil (metal foil layer 12) was secured from the outside.
 そして、絶縁抵抗測定装置(日置電機社製:品番「HIOKI3154」)6の一方の端子を、上記絶縁性評価試料の露出部121における金属箔層12に結線し、他方の端子をタブリード3に接触させて回路を形成した後、その回路において25V、5秒の条件で金属箔層12およびタブリード3間に電圧印加を行って、抵抗値を測定して絶縁抵抗値とした。その結果を表2に併せて示す。 Then, one terminal of an insulation resistance measuring device (manufactured by Hioki Electric Co., Ltd.: product number “HIOKI3154”) 6 is connected to the metal foil layer 12 in the exposed portion 121 of the insulation evaluation sample, and the other terminal is brought into contact with the tab lead 3. After forming a circuit, a voltage was applied between the metal foil layer 12 and the tab lead 3 under the conditions of 25 V and 5 seconds in the circuit, and the resistance value was measured to obtain the insulation resistance value. The results are also shown in Table 2.
 (1-6)外装材のHSガス透過評価
 アルミニウム箔に代えて、厚さ9μmの銅箔(Cu箔)を用いて上記と同様に、実施例1aの銅箔型の外装材試料1を作製した。
(1-6) Evaluation of H 2 S gas permeation of exterior material Instead of the aluminum foil, a copper foil (Cu foil) having a thickness of 9 μm was used in the same manner as above, and the copper foil type exterior material sample 1 of Example 1a was used. was made.
 この銅箔型の外装材試料を30mm×50mmの大きさに2枚カットし、これら一対の外装材試料1,1を互いのシーラント層13を対向させて重ね合わせ、その重ね合わせた外装材試料1,1の3辺(3方)をヒートシール温度:200℃、シール圧:0.2MPa(ゲージ表示圧)、シール時間:2秒のシール条件でシールし3方袋を作製した。その後、その3方袋の開口部である1辺(30mmの辺)において、外装材試料1,1間に、注射針を挟んで上記と同じシール条件で開口部をシール(封止)し、注射針からHSガスを0.1MPa封入する(注射針は30mmの辺で挟む)。 This copper foil-type exterior material sample was cut into two sheets of a size of 30 mm × 50 mm, and these pair of exterior material samples 1, 1 were superimposed with the sealant layers 13 facing each other, and the superimposed exterior material sample Three sides (three sides) of 1 and 1 were sealed under the following sealing conditions: heat sealing temperature: 200°C, sealing pressure: 0.2 MPa (gauge display pressure), sealing time: 2 seconds to prepare a three-sided bag. After that, at one side (30 mm side) that is the opening of the three-sided bag, the injection needle is sandwiched between the outer packaging material samples 1 and 1, and the opening is sealed under the same sealing conditions as above, 0.1 MPa of H 2 S gas is sealed from the injection needle (the injection needle is sandwiched between 30 mm sides).
 ガスが封入されたら、ガスが抜けないように注射針を少し抜き、針の先端より内側を再度同じシール条件でヒートシールしてガスを完全に封入し、その後、注射針を抜き取ってガス封入袋を作製した。 Once the gas is filled, the needle is pulled out a little to prevent the gas from escaping, and the inside of the tip of the needle is heat-sealed again under the same sealing conditions to completely seal the gas. was made.
 そのガス封入袋を7日間、40℃の恒温槽で静置した後、ガス抜きを行い、封止部をはがして内部観察を行った。その観察により、Cu箔に変化が見られなかったものを「○」と評価し、封止部等に変色が見られたものを「×」と評価した。その結果を表2に併せて示す。 After the gas-filled bag was left in a constant temperature bath at 40°C for 7 days, the gas was removed, the sealed part was removed, and the inside was observed. By the observation, those in which no change was observed in the Cu foil were evaluated as "good", and those in which discoloration was observed in the sealing portion or the like were evaluated as "poor". The results are also shown in Table 2.
 <実施例2a>
 耐熱ガスバリア層21として、厚さ3μmのPETフィルムを用い、シーラント層13として、厚さ30μmのCPPフィルムを用いた以外は、上記実施例1aと同様にして実施例2aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 2a>
A sample of Example 2a was prepared in the same manner as in Example 1a except that a PET film with a thickness of 3 μm was used as the heat-resistant gas barrier layer 21 and a CPP film with a thickness of 30 μm was used as the sealant layer 13. was measured (evaluated). The results are also shown in Tables 1 and 2.
 <実施例3a>
 耐熱ガスバリア層21として、厚さ15μmのPETフィルムを用いた以外は、上記実施例1aと同様にして実施例3aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 3a>
A sample of Example 3a was prepared in the same manner as in Example 1a except that a PET film having a thickness of 15 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <実施例4a>
 耐熱ガスバリア層21として、厚さ25μmのPETフィルムを用いた以外は、上記実施例1aと同様にして実施例4aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 4a>
A sample of Example 4a was prepared in the same manner as in Example 1a except that a PET film having a thickness of 25 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <実施例5a>
 耐熱ガスバリア層21として、厚さ15μmのフィルムを用いた以外は、上記実施例1aと同様にして実施例5aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 5a>
A sample of Example 5a was prepared in the same manner as in Example 1a except that a film having a thickness of 15 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <実施例6a>
 耐熱ガスバリア層21として、厚さ5μmのフィルムを用いた以外は、上記実施例1aと同様にして実施例6aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 6a>
A sample of Example 6a was prepared in the same manner as in Example 1a except that a film having a thickness of 5 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <実施例7a>
 耐熱ガスバリア層21として、厚さ40μmのフィルムを用いた以外は、上記実施例1aと同様にして実施例7aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 7a>
A sample of Example 7a was prepared in the same manner as in Example 1a except that a film having a thickness of 40 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <実施例8a>
 シーラント層13として、厚さ60μmのCPPフィルムを用いた以外は、上記実施例1aと同様にして実施例8aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 8a>
A sample of Example 8a was prepared in the same manner as in Example 1a except that a CPP film having a thickness of 60 μm was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <実施例9a>
 シーラント層13として、厚さ60μmのHDPEフィルムを用いた以外は、上記実施例1aと同様にして実施例9aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 9a>
A sample of Example 9a was prepared in the same manner as in Example 1a except that an HDPE film having a thickness of 60 μm was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <実施例10a>
 シーラント層13として、厚さ60μmのLLDPEフィルムを用いた以外は、上記実施例1aと同様にして実施例10aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 10a>
A sample of Example 10a was prepared in the same manner as in Example 1a except that an LLDPE film having a thickness of 60 μm was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <実施例11a>
 シーラント層13として、厚さ10μmのCPPフィルムを用いた以外は、上記実施例1aと同様にして実施例11aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 11a>
A sample of Example 11a was prepared in the same manner as in Example 1a except that a CPP film having a thickness of 10 μm was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <実施例12a>
 耐熱ガスバリア層21として、厚さ20μmのセロハンフィルムを用い、シーラント層13として、厚さ10μmのCPPフィルムを用いた以外は、上記実施例1aと同様にして実施例12aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Example 12a>
A sample of Example 12a was prepared in the same manner as in Example 1a except that a cellophane film with a thickness of 20 μm was used as the heat-resistant gas barrier layer 21, and a CPP film with a thickness of 10 μm was used as the sealant layer 13. was measured (evaluated). The results are also shown in Tables 1 and 2.
 <比較例1a>
 耐熱ガスバリア層21を形成しなかったこと以外は、上記実施例1aと同様にして比較例1a試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Comparative Example 1a>
A sample of Comparative Example 1a was prepared in the same manner as in Example 1a, except that the heat-resistant gas barrier layer 21 was not formed, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <比較例2a>
 耐熱ガスバリア層21を形成せずに、シーラント層13として、厚さ25μmのCPPフィルムを用いた以外は、上記実施例1aと同様にして比較例2aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Comparative Example 2a>
A sample of Comparative Example 2a was prepared in the same manner as in Example 1a except that a CPP film having a thickness of 25 μm was used as the sealant layer 13 without forming the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. did The results are also shown in Tables 1 and 2.
 <比較例3a>
 耐熱ガスバリア層21として、厚さ30μmのOPPフィルムを用いた以外は、上記実施例1aと同様にして比較例3aの試料を作製し、同様の測定(評価)を行った。その結果を表1および表2に併せて示す。
<Comparative Example 3a>
A sample of Comparative Example 3a was prepared in the same manner as in Example 1a except that an OPP film having a thickness of 30 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Tables 1 and 2.
 <第1実施例の総評>
 表2から明らかなように、本発明に関連した実施例1a~12aの外装材試料は、絶縁性およびガス透過の全ての評価において優れた結果を得ることができた。
<Overview of the first embodiment>
As is clear from Table 2, the cladding material samples of Examples 1a to 12a related to the present invention were able to obtain excellent results in all evaluations of insulation properties and gas permeation.
 これに対し、本発明の要旨を逸脱する比較例1a~3aの外装材試料は、ガス透過の評価において良好な結果が得られず、絶縁性の評価においても一部で良好な結果を得ることができなった。 On the other hand, the exterior material samples of Comparative Examples 1a to 3a, which deviate from the gist of the present invention, did not obtain good results in the evaluation of gas permeation, and also obtained good results in part in the evaluation of insulation properties. I couldn't do it.
 (2)第2実施例 (2) Second embodiment
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <実施例1b>
 (2-1)外装材の作製
 金属箔層12としての厚さ40μmのアルミニウム箔(A8021-O)の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/mであった。
<Example 1b>
(2-1) Preparation of exterior material On both sides of a 40 μm thick aluminum foil (A8021-O) as the metal foil layer 12, phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water After applying a chemical conversion treatment liquid containing alcohol, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
 次に、上記化成処理済みアルミニウム箔(金属箔層12)の一方の面(外面)に、2液硬化型のウレタン系接着剤(3μm)を介して、基材層11として厚さ15μmの二軸延伸6ナイロンフィルムをドライラミネートした(貼り合わせた)。 Next, on one surface (outer surface) of the chemically treated aluminum foil (metal foil layer 12), a two-liquid curable urethane adhesive (3 μm) was applied as the base layer 11 to form two layers having a thickness of 15 μm. An axially stretched 6 nylon film was dry laminated (laminated).
 次に表3に示すように、耐熱ガスバリア層21として、9μm厚、融点225℃、絶縁破壊電圧19kV/mm、熱水収縮率5%のPA6の延伸フィルム(ONY-6フィルム)を準備し、その片面に、アルミニウムの厚さ20nmの蒸着膜を形成した。この蒸着膜付きのONY-6フィルムの非蒸着面側を、上記ドライラミネート後のアルミニウム箔の他方の面(内面)に2液硬化型のウレタン系接着剤(3μm)を介して貼り合わせた。 Next, as shown in Table 3, as the heat-resistant gas barrier layer 21, a stretched PA6 film (ONY-6 film) having a thickness of 9 μm, a melting point of 225° C., a dielectric breakdown voltage of 19 kV/mm, and a hot water shrinkage rate of 5% was prepared. A 20 nm-thick vapor deposition film of aluminum was formed on one side thereof. The non-vapor-deposited surface of the ONY-6 film with the vapor-deposited film was adhered to the other surface (inner surface) of the aluminum foil after the dry lamination via a two-liquid curing urethane adhesive (3 μm).
 次に表3示すように、シーラント層13として、滑剤(エルカ酸アミド等)を含有した厚さ20μm、融点が150℃のCPPフィルムを2液硬化型のウレタン系接着剤(3μm)を介して上記ドライラミネート後のONY-6フィルム(耐熱ガスバリア層21)の蒸着面(内面)に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートして、外装材1を構成する積層体を得た。 Next, as shown in Table 3, as the sealant layer 13, a CPP film having a thickness of 20 μm and a melting point of 150° C. containing a lubricant (erucamide or the like) is sandwiched through a two-component curable urethane adhesive (3 μm). It is dry-laminated by superimposing it on the deposition surface (inner surface) of the ONY-6 film (heat-resistant gas barrier layer 21) after dry lamination, sandwiching it between a rubber nip roll and a lamination roll heated to 100 ° C. and pressing it. Thus, a laminate constituting the exterior material 1 was obtained.
 次にこの積層体を、ロール軸に巻き取り、しかる後、40℃で10日間エージングして、実施例1bの外装材試料を得た。 Next, this laminate was wound around a roll shaft and then aged at 40°C for 10 days to obtain an exterior material sample of Example 1b.
 (2-2)絶縁破壊電圧の測定
 実施例1bにおける耐熱ガスバリア層21を構成する樹脂フィルムにおいて、蒸着膜形成前の状態で、JIS C2151に準拠して、絶縁破壊電圧を測定した。その結果を表3に併せて示す。
(2-2) Measurement of Dielectric Breakdown Voltage With respect to the resin film constituting the heat-resistant gas barrier layer 21 in Example 1b, the dielectric breakdown voltage was measured in accordance with JIS C2151 before forming the deposited film. The results are also shown in Table 3.
 (2-3)熱水収縮率の測定
 実施例1における耐熱ガスバリア層21を構成する樹脂フィルムにおいて、10cm×10cmの大きさの試験片を切り出し、その試験片を95℃の熱水中に30分間浸漬した際の浸漬前後の試験片の延伸方向における寸法変化率を次式で求めた。
(2-3) Measurement of Hot Water Shrinkage Ratio From the resin film constituting the heat-resistant gas barrier layer 21 in Example 1, a test piece measuring 10 cm×10 cm was cut out, and the test piece was immersed in hot water at 95° C. for 30 minutes. The dimensional change rate in the stretching direction of the test piece before and after the immersion for 1 minute was determined by the following equation.
 熱水収縮率(%)={(X-Y)/X}×100
 なおこの式において、「X」は浸漬処理前の延伸方向の寸法であり、「Y」は浸漬処理後の延伸方向の寸法である。
Hot water shrinkage (%) = {(XY)/X} x 100
In this formula, "X" is the dimension in the stretching direction before immersion treatment, and "Y" is the dimension in the stretching direction after immersion treatment.
 (2-4)シール強度の測定 (2-4) Measurement of seal strength
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1bの外装材試料において、上記(1-4)と同様にシール強度を測定した。その結果を表4に示す。 For the exterior material sample of Example 1b, the seal strength was measured in the same manner as in (1-4) above. Table 4 shows the results.
 (2-5)残存率の測定
 実施例1bの外装材試料において、上記(1-3)と同様に残存率を測定した。その結果を表4に示す。
(2-5) Measurement of residual rate The residual rate of the exterior material sample of Example 1b was measured in the same manner as in (1-3) above. Table 4 shows the results.
 (2-6)絶縁抵抗値の測定(絶縁性の評価)
 実施例1bの外装材試料において、上記(1-5)と同様に絶縁抵抗値を測定した。その結果を4に示す。
(2-6) Measurement of insulation resistance value (evaluation of insulation)
The insulation resistance value of the exterior material sample of Example 1b was measured in the same manner as in (1-5) above. The result is shown in 4.
 (2-7)成形性の評価
 実施例1bの外装材試料を、100mm×100mmの大きさに切り出して成形性評価用試料を得た。この成形性評価用試料に対し、25tのプレス機に取り付けた深絞り成形用金型を用いて、成形高さ(絞り深さ)を0.5mm単位で変化させて深絞り成形試験を行った。
(2-7) Evaluation of Formability The exterior material sample of Example 1b was cut into a size of 100 mm×100 mm to obtain a sample for formability evaluation. A deep drawing test was performed on this formability evaluation sample using a deep drawing mold attached to a 25t press machine while changing the forming height (drawing depth) in increments of 0.5 mm. .
 そして成形高さが7mm以上でも所定の成形性が得られた場合には「◎」と評価し、7mm以上では所定の成形性が得られなかったものの、5mm以上、7mm未満の範囲で所定の成形性が得られた場合には「〇」と評価し、5mm未満で所定の成形性が得られなかった場合には「×」と評価した。その結果を表4に併せて示す。 Then, when the predetermined moldability was obtained even if the molding height was 7 mm or more, it was evaluated as "⊚". When the moldability was obtained, it was evaluated as "◯", and when it was less than 5 mm and the predetermined moldability was not obtained, it was evaluated as "x". The results are also shown in Table 4.
 (2-8)蒸着膜付きのONY-6フィルムのHSガス透過評価
 実施例1bの外装材試料に用いられた蒸着膜付きのONY-6フィルム対し、JIS K7126に準拠して、HSガスの透過度を測定した。その結果を表4に併せて示す。
(2-8) Evaluation of H 2 S Gas Permeability of ONY-6 Film with Vapor Deposited Film Based on JIS K7126, H 2 The S gas permeability was measured. The results are also shown in Table 4.
 <第2実施例の総評>
 表4から明らかなように、本発明に関連した実施例1b~13bの外装材試料は、全ての評価において優れた結果を得ることができた。
<General review of the second embodiment>
As is clear from Table 4, the exterior material samples of Examples 1b to 13b related to the present invention were able to obtain excellent results in all evaluations.
 これに対し、本発明の要旨を逸脱する比較例1b~3bの外装材試料は、いずれかの評価において良好な結果を得ることができなかった。 On the other hand, the exterior material samples of Comparative Examples 1b to 3b, which deviate from the gist of the present invention, could not obtain good results in any of the evaluations.
 (3)第3実施例 (3) Third embodiment
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 <実施例1c>
 (3-1)外装材の作製
 金属箔層12としての厚さ40μmのアルミニウム箔(A8021-O)の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/mであった。
<Example 1c>
(3-1) Preparation of exterior material On both sides of a 40 μm thick aluminum foil (A8021-O) as the metal foil layer 12, phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water After applying a chemical conversion treatment liquid containing alcohol, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
 次に、上記化成処理済みアルミニウム箔(金属箔層12)の一方の面(外面)に、2液硬化型のウレタン系接着剤(3μm)を介して、基材層11として厚さ15μmの二軸延伸6ナイロン(ONY-6)フィルムをドライラミネートした(貼り合わせた)。 Next, on one surface (outer surface) of the chemically treated aluminum foil (metal foil layer 12), a two-liquid curable urethane adhesive (3 μm) was applied as the base layer 11 to form two layers having a thickness of 15 μm. An axially oriented 6 nylon (ONY-6) film was dry laminated.
 次に表1に示すように、上記ドライラミネート後のアルミニウム箔の他方の面(内面)に2液硬化型のウレタン系接着剤(3μm)を介して、耐熱ガスバリア層21として、厚さ9μmのPETフィルムをドライラミネートした。 Next, as shown in Table 1, a heat-resistant gas barrier layer 21 having a thickness of 9 μm was formed on the other surface (inner surface) of the aluminum foil after the dry lamination via a two-liquid curing type urethane adhesive (3 μm). A PET film was dry laminated.
 次に耐熱ガスバリア層21としてのPETフィルムの内面に、接着剤層4としての2液硬化型のウレタン系接着剤(3μm)をグラビア塗工した。この際、開口部形成予定領域である矩形形状部に、接着剤を塗工せず接着剤未塗工領域とし、開口部形成領域の外周部(ヒートシール部:シーラント層残存部)のみに接着剤を塗工した。 Next, the inner surface of the PET film as the heat-resistant gas barrier layer 21 was gravure-coated with a two-liquid curing urethane adhesive (3 μm) as the adhesive layer 4 . At this time, adhesive is not applied to the rectangular area where the opening is to be formed, leaving it as an uncoated area, and bonding only to the outer periphery of the opening forming area (heat-sealed area: remaining portion of sealant layer). agent was applied.
 次に、シーラント層13として、滑剤(エルカ酸アミド等)を含有した厚さ40μmのCPPフィルムを、上記接着剤が所要部のみに塗工された耐熱ガスバリア層21の内面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートして、外装材1を構成する積層体を得た。 Next, as the sealant layer 13, a 40 μm-thick CPP film containing a lubricant (erucamide or the like) is superimposed on the inner surface of the heat-resistant gas barrier layer 21 coated with the above-mentioned adhesive only on the required portions, and the rubber is coated. The laminate was sandwiched between a nip roll and a laminating roll heated to 100° C. and pressed to perform dry lamination, thereby obtaining a laminate constituting the exterior material 1 .
 次にこの積層体を、ロール軸に巻き取り、しかる後、40℃で10日間エージングし、そのエージング後の積層体に対し、接着剤未塗工部の外周縁部に沿ってレーザーカッターによって、シーラント層用のCPPフィルムを切り取って、シーラント層13に、その中間部に、開口部15を形成して実施例1cの外装材試料を得た。なお、この外装材試料においては、開口部15を介して耐熱ガスバリア層21が内面側に露出するように配置されている。 Next, this laminate is wound around a roll shaft and then aged at 40° C. for 10 days. The CPP film for the sealant layer was cut out, and an opening 15 was formed in the intermediate portion of the sealant layer 13 to obtain an exterior material sample of Example 1c. In addition, in this exterior material sample, the heat-resistant gas barrier layer 21 is arranged so as to be exposed to the inner surface side through the opening 15 .
 (3-2)水蒸気透過率の測定
 実施例1cの外装材試料を作製する際に使用した耐熱ガスバリア層21用の樹脂フィルムに対し、JIS K7129-1(感湿センサー法 40℃ 90%Rh)に準拠して、水蒸気透過率を測定した。その結果を表5に併せて示す。
(3-2) Measurement of Water Vapor Permeability JIS K7129-1 (moisture sensor method, 40° C. 90% Rh) was applied to the resin film for the heat-resistant gas barrier layer 21 used to prepare the exterior material sample of Example 1c. The water vapor transmission rate was measured according to. The results are also shown in Table 5.
 (3-3)熱伝導率の測定
 実施例1cの外装材試料を作製する際に使用した耐熱ガスバリア層21用の樹脂フィルムに対し、定常法の熱流計法(HFM法)にて熱伝導率を測定した。その結果を表5に併せて示す。
(3-3) Measurement of Thermal Conductivity The resin film for the heat-resistant gas barrier layer 21 used to prepare the exterior material sample of Example 1c was subjected to thermal conductivity measurement by a steady heat flow meter method (HFM method). was measured. The results are also shown in Table 5.
 (3-4).樹脂フィルムのHSガス透過度等の測定
 実施例1cの外装材試料を作製する際に使用した耐熱ガスバリア層21用の樹脂フィルムに対し、硫化水素(HS)ガス透過度をJIS K7126-1に準拠して測定した。その結果を表5に併せて示す。
(3-4). Measurement of H 2 S Gas Permeability of Resin Film The hydrogen sulfide (H 2 S) gas permeability of the resin film for the heat-resistant gas barrier layer 21 used to prepare the exterior material sample of Example 1c was measured according to JIS K7126. -1. The results are also shown in Table 5.
 (3-5)冷却性能(冷却効果)の評価
 100mm×100mmの大きさの実施例1cの外装材試料を2枚準備した。なおこの外装材試料における開口部15は正方形で60mm×60mmの大きさである。
(3-5) Evaluation of Cooling Performance (Cooling Effect) Two exterior material samples of Example 1c each having a size of 100 mm×100 mm were prepared. The opening 15 in this exterior material sample is square and has a size of 60 mm×60 mm.
 この2枚の外装材試料を、その開口部15側が内側になるように向い合せて重ね合わせ、その重ね合わせた2枚の外装材試料を、周囲4辺のうち3辺において端縁から10mmの位置に幅5mmでヒートシールを行って3方袋を作製した。 These two exterior material samples are superimposed so that the opening 15 side faces inward, and the two exterior material samples that have been superimposed are placed 10 mm from the edge on three of the four peripheral sides. A 3-sided bag was produced by heat-sealing at the position with a width of 5 mm.
 室温(25℃)の温度環境において、その3方袋に開口部から80℃の熱水を注入し、さらに温度計を挿入した後、開口部を目玉クリップで閉じて3分間の熱水の温度変化を測定した。その測定結果における熱水注入直後の温度と、3分間経過後の温度とを表5に併せて示す。 In a room temperature (25°C) temperature environment, pour hot water at 80°C from the opening into the three-sided bag, insert a thermometer, close the opening with an eye clip, and measure the temperature of the hot water for 3 minutes. change was measured. Table 5 also shows the temperature immediately after the injection of hot water and the temperature after 3 minutes in the measurement results.
 <実施例2c>
 耐熱ガスバリア層21として、ONY-6フィルムを用いた以外は、上記実施例1cと同様にして実施例2cの試料を作製し、同様の測定(評価)を行った。その結果を表5に併せて示す。
<Example 2c>
A sample of Example 2c was prepared in the same manner as in Example 1c except that an ONY-6 film was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 5.
 <実施例3c>
 耐熱ガスバリア層21として、OPPフィルム(2軸延伸ポリプロピレンフィルム)を用いた以外は、上記実施例1cと同様にして実施例3cの試料を作製し、同様の測定(評価)を行った。その結果を表5に併せて示す。
<Example 3c>
A sample of Example 3c was prepared in the same manner as in Example 1c except that an OPP film (biaxially oriented polypropylene film) was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 5.
 <比較例1c>
 耐熱ガスバリア層21の内面側全域にシーラント層13を形成し、つまりシーラント層13に開口部15を形成しなかった以外は、上記実施例1cと同様にして比較例1cの試料を作製し、同様の測定(評価)を行った。その結果を表5に併せて示す。
<Comparative Example 1c>
A sample of Comparative Example 1c was prepared in the same manner as in Example 1c except that the sealant layer 13 was formed over the entire inner surface of the heat-resistant gas barrier layer 21, that is, the sealant layer 13 did not have the openings 15. was measured (evaluated). The results are also shown in Table 5.
 <比較例2c>
 耐熱ガスバリア層21として、ONY-6フィルムを用いた以外は、上記比較例1cと同様にして比較例2cの試料を作製し、同様の測定(評価)を行った。その結果を表5に併せて示す。
<Comparative Example 2c>
A sample of Comparative Example 2c was prepared in the same manner as in Comparative Example 1c except that an ONY-6 film was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 5.
 <比較例3c>
 耐熱ガスバリア層21として、OPPフィルムを用いた以外は、上記比較例1cと同様にして比較例3cの試料を作製し、同様の測定(評価)を行った。その結果を表5に併せて示す。
<Comparative Example 3c>
A sample of Comparative Example 3c was prepared in the same manner as in Comparative Example 1c except that an OPP film was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 5.
 <第3実施例の総評>
 表5から明らかなように、本発明に関連した実施例1c~3cの外装材試料は、冷却性(冷却効果)に優れていた。
<Overview of the third embodiment>
As is clear from Table 5, the exterior material samples of Examples 1c to 3c related to the present invention were excellent in cooling properties (cooling effect).
 これに対し、本発明の要旨を逸脱する比較例1c~3cの外装材試料は、高い冷却性能を得ることができなかった。 On the other hand, the exterior material samples of Comparative Examples 1c to 3c, which deviate from the gist of the present invention, could not obtain high cooling performance.
 (4)第4実施例 (4) Fourth embodiment
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 <実施例1d>
 1.外装材の作製
 金属箔層12としての厚さ40μmのアルミニウム箔(A8021-O)の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/mであった。
<Example 1d>
1. Fabrication of exterior material On both sides of a 40 μm thick aluminum foil (A8021-O) as the metal foil layer 12, a chemical compound consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol was applied. After applying the treatment liquid, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
 次に、上記化成処理済みアルミニウム箔(金属箔層12)の一方の面(外面)に、2液硬化型のウレタン系接着剤(3μm)を介して、基材層11として厚さ15μmの二軸延伸6ナイロン(ONY-6)フィルムをドライラミネートした(貼り合わせた)。 Next, on one surface (outer surface) of the chemically treated aluminum foil (metal foil layer 12), a two-liquid curable urethane adhesive (3 μm) was applied as the base layer 11 to form two layers having a thickness of 15 μm. An axially oriented 6 nylon (ONY-6) film was dry laminated.
 次に表6に示すように、上記ドライラミネート後のアルミニウム箔の他方の面(内面)に、厚さ3μmの2液硬化型のウレタン系接着剤を介して、絶縁層21として厚さ9μmのOPPフィルム(2軸延伸ポリプロピレンフィルム)を貼り合わせた。 Next, as shown in Table 6, an insulating layer 21 having a thickness of 9 μm was applied to the other surface (inner surface) of the aluminum foil after the dry lamination via a two-liquid curing type urethane adhesive having a thickness of 3 μm. An OPP film (biaxially oriented polypropylene film) was laminated.
 次に、シーラント層13として、滑剤であるエルカ酸アミドを1000ppm含有した厚さ40μmのCPPフィルムを準備し、その片面(外面)に、厚さ20nmのアルミニウムの蒸着膜を形成した。この蒸着膜付きのCPPフィルムの蒸着面(外面)を、接着剤層4として厚さ2μmのマイレン酸変性ポリプロピレン系接着剤(MAPP)を介して、上記絶縁層21のCPPフィルムの内面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートして、外装材1を構成する積層体を得た。 Next, as the sealant layer 13, a CPP film with a thickness of 40 μm containing 1000 ppm of erucamide as a lubricant was prepared, and on one surface (outer surface) thereof, an aluminum deposition film with a thickness of 20 nm was formed. The vapor-deposited surface (outer surface) of the CPP film with the vapor-deposited film is superimposed on the inner surface of the CPP film of the insulating layer 21 via a maleic acid-modified polypropylene adhesive (MAPP) having a thickness of 2 μm as the adhesive layer 4. Then, it was sandwiched between a rubber nip roll and a lamination roll heated to 100° C., and dry-laminated to obtain a laminate constituting the exterior material 1 .
 次にこの積層体を、ロール軸に巻き取り、しかる後、40℃で10日間エージングして、実施例1dの外装材試料を得た。 Next, this laminate was wound around a roll shaft and then aged at 40°C for 10 days to obtain an exterior material sample of Example 1d.
 なお表6において、括弧付きの数値は各層の厚さを示し、単位はμmである。 In Table 6, the values in parentheses indicate the thickness of each layer, and the unit is μm.
 (4-2)シール強度の測定 (4-2) Measurement of seal strength
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1dの外装材試料において、上記(1-4)と同様にシール強度を測定した。その結果を表7に示す。 For the exterior material sample of Example 1d, the seal strength was measured in the same manner as in (1-4) above. Table 7 shows the results.
 (4-3)外装材の水蒸気(水分)透過評価
 実施例1dの外装材試料を30mm×50mmの大きさに2枚カットし、これら一対の外装材試料1,1を互いのシーラント層13を対向させて重ね合わせ、その重ね合わせた外装材試料1,1の3辺(3方)をヒートシール温度:200℃、シール圧:0.2MPa(ゲージ表示圧)、シール時間:2秒のシール条件でシールし3方袋を作製した。続いて、その3方袋に塩化カルシウムを「Mc(g)」加え(目安は3g)、その後、3方袋の開口部を上記と同じシール条件で封止した。
(4-3) Evaluation of Water Vapor (Moisture) Permeability of Exterior Material Two exterior material samples of Example 1d were cut into a size of 30 mm × 50 mm, and these pair of exterior material samples 1, 1 were attached to each other with the sealant layer 13. The three sides (three sides) of the laminated exterior material samples 1 and 1 were heat-sealed at a temperature of 200°C, a sealing pressure of 0.2 MPa (gauge display pressure), and a sealing time of 2 seconds. It was sealed under the conditions to prepare a three-sided bag. Subsequently, "Mc (g)" of calcium chloride was added to the three-sided bag (3 g as a guideline), and then the opening of the three-sided bag was sealed under the same sealing conditions as above.
 そして封止直後の重量「M0(g)」を電子天秤で測定し、7日間、80℃×90%Rhの恒温恒湿槽にて静置した後、処理後の重量「M1(g)」を測定し重量変化(増加量)を、以下の関係式に基づいて確認した。その結果を表7合わせて示す。 Then, the weight "M0 (g)" immediately after sealing was measured with an electronic balance, and after standing in a constant temperature and humidity chamber of 80 ° C. × 90% Rh for 7 days, the weight "M1 (g)" after processing. was measured and the weight change (increased amount) was confirmed based on the following relational expression. The results are also shown in Table 7.
 重量変化(%)=(M1-M0)/Mc
 (4-4)成形性の評価
 実施例1dの外装材試料において、上記(2-7)と同様に成形性を評価した。その結果を表7に併せて示す。
Weight change (%) = (M1-M0) / Mc
(4-4) Evaluation of formability The formability of the exterior material sample of Example 1d was evaluated in the same manner as in (2-7) above. The results are also shown in Table 7.
 (4-5)外装材のHSガス透過評価
 実施例1dの外装材試料において、上記(1-6)と同様にH2Sガス透過性を評価した。その結果を表7に併せて示す。
(4-5) Evaluation of H 2 S Gas Permeability of Exterior Material The H2S gas permeability of the exterior material sample of Example 1d was evaluated in the same manner as in (1-6) above. The results are also shown in Table 7.
 <実施例2d>
 表6に示すように絶縁層21として厚さ9μmのONY-6フィルムを用い、接着剤として厚さ2μmの2液硬化型ウレタン接着剤(PU)を用いた以外は、上記実施例1dと同様にして実施例2dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 2d>
As shown in Table 6, the same as Example 1d above except that a 9 μm thick ONY-6 film was used as the insulating layer 21 and a 2 μm thick two-liquid curing urethane adhesive (PU) was used as the adhesive. Then, a sample of Example 2d was prepared, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例3d>
 表6に示すように、絶縁層21として厚さ9μmのONY-6フィルムを用い、接着剤として厚さ2μmの2液硬化型ウレタン接着剤(PU)を用い、蒸着膜22の厚さを5nmとした以外は、上記実施例1dと同様にして実施例3dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 3d>
As shown in Table 6, a 9 μm thick ONY-6 film is used as the insulating layer 21, a 2 μm thick two-liquid curable urethane adhesive (PU) is used as the adhesive, and the deposited film 22 is 5 nm thick. A sample of Example 3d was prepared in the same manner as in Example 1d except for the above, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例4d>
 表6に示すように、蒸着膜22の厚さを500nmとした以外は、上記実施例1dと同様にして実施例4dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 4d>
As shown in Table 6, a sample of Example 4d was produced in the same manner as in Example 1d except that the thickness of the deposited film 22 was set to 500 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例5d>
 表6に示すように、蒸着膜22の厚さを1000nmとした以外は、上記実施例1dと同様にして実施例5dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 5d>
As shown in Table 6, a sample of Example 5d was produced in the same manner as in Example 1d except that the thickness of the deposited film 22 was set to 1000 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例6d>
 表6に示すように、蒸着膜22の厚さを1200nmとした以外は、上記実施例1dと同様にして実施例6dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 6d>
As shown in Table 6, a sample of Example 6d was produced in the same manner as in Example 1d except that the thickness of the deposited film 22 was set to 1200 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例7d>
 表6に示すように、接着剤として厚さ2μmの2液硬化型ウレタン接着剤(PU)を用い、蒸着膜22を厚さ20nmのアルミナ(Al)とした以外は、上記実施例1dと同様にして実施例7dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 7d>
As shown in Table 6, except that a two-liquid curing type urethane adhesive (PU) having a thickness of 2 μm was used as the adhesive, and the deposited film 22 was made of alumina (Al 2 O 3 ) having a thickness of 20 nm, A sample of Example 7d was prepared in the same manner as in 1d, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例8d>
 表6に示すように、絶縁層21用のOPPフィルムの内面に、厚さ20nmのアルミニウムの蒸着膜22を形成し、接着剤として厚さ2μmの2液硬化型ウレタン接着剤(PU)を用い、さらにシーラント層13用のCPPフィルムには蒸着膜を形成しなかった以外は、上記実施例1dと同様にして実施例8dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 8d>
As shown in Table 6, a 20 nm-thick aluminum deposition film 22 is formed on the inner surface of the OPP film for the insulating layer 21, and a 2-μm-thick two-liquid curing urethane adhesive (PU) is used as the adhesive. Further, a sample of Example 8d was produced in the same manner as in Example 1d except that no deposited film was formed on the CPP film for the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例9d>
 表6に示すように、絶縁層21としてONY-6フィルムを用いた以外は、上記実施例8dと同様にして実施例9dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 9d>
As shown in Table 6, a sample of Example 9d was produced in the same manner as in Example 8d except that an ONY-6 film was used as the insulating layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例10d>
 表6に示すように、蒸着膜22の厚さを5nmとした以外は、上記実施例8dと同様にして実施例10dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 10d>
As shown in Table 6, a sample of Example 10d was produced in the same manner as in Example 8d except that the thickness of the deposited film 22 was set to 5 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例11d>
 表6に示すように、蒸着膜22の厚さを1000nmとした以外は、上記実施例8dと同様にして実施例11dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 11d>
As shown in Table 6, a sample of Example 11d was produced in the same manner as in Example 8d except that the thickness of the deposited film 22 was set to 1000 nm, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例12d>
 表6に示すように、絶縁層21用のOPPフィルムの内面に、厚さ20nmのアルミニウムの蒸着膜22を形成した以外は、上記実施例1dと同様にして実施例12dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 12d>
As shown in Table 6, a sample of Example 12d was prepared in the same manner as in Example 1d above, except that an aluminum vapor deposition film 22 having a thickness of 20 nm was formed on the inner surface of the OPP film for the insulating layer 21. A similar measurement (evaluation) was performed. The results are also shown in Table 7.
 <実施例13d>
 表6に示すように、絶縁層21として厚さ9μmのONY-6フィルムの内面に、厚さ20nmのアルミニウムの蒸着膜22を形成し、接着剤として厚さ2μmの2液硬化型ウレタン接着剤(PU)を用いた以外は、上記実施例1dと同様にして実施例13dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Example 13d>
As shown in Table 6, an aluminum deposition film 22 having a thickness of 20 nm was formed on the inner surface of ONY-6 film having a thickness of 9 μm as the insulating layer 21, and a two-component curable urethane adhesive having a thickness of 2 μm was used as the adhesive. A sample of Example 13d was prepared in the same manner as in Example 1d except that (PU) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <比較例1d>
 表6に示すように、蒸着膜22を一切形成せずに、接着剤として厚さ2μmの酸変性ポリプロピレン(酸変性PP)を用いた以外は、上記実施例1dと同様にして比較例1の試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Comparative Example 1d>
As shown in Table 6, Comparative Example 1 was prepared in the same manner as in Example 1d above, except that an acid-modified polypropylene (acid-modified PP) having a thickness of 2 μm was used as an adhesive without forming any deposited film 22. A sample was prepared and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <比較例2d>
 表6に示すように、絶縁層21として厚さ9μmのONY-6フィルムを用い、接着剤として厚さ2μmの2液硬化型ウレタン接着剤(PU)を用いた以外は、上記比較例1dと同様にして比較例2dの試料を作製し、同様の測定(評価)を行った。その結果を表7に併せて示す。
<Comparative Example 2d>
As shown in Table 6, a 9 μm thick ONY-6 film was used as the insulating layer 21, and a 2 μm thick two-liquid curable urethane adhesive (PU) was used as the adhesive. A sample of Comparative Example 2d was prepared in the same manner, and the same measurement (evaluation) was performed. The results are also shown in Table 7.
 <第4実施例の総評>
 表7から明らかなように、本発明に関連した実施例1d~13dの外装材試料は、全ての評価において優れた結果を得ることができた。
<Overview of the fourth embodiment>
As is clear from Table 7, the exterior material samples of Examples 1d to 13d related to the present invention were able to obtain excellent results in all evaluations.
 これに対し、本発明の要旨を逸脱する比較例1d,2dの外装材試料は、いずれかの評価において良好な結果を得ることができなかった。 On the other hand, the exterior material samples of Comparative Examples 1d and 2d, which deviate from the gist of the present invention, could not obtain good results in any of the evaluations.
 (5)第5実施例 (5) Fifth embodiment
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <実施例1e>
 (5-1)外装材の作製
 上記実施例1aと同様にして、実施例1eの外装材試料を得た。
<Example 1e>
(5-1) Fabrication of Exterior Material An exterior material sample of Example 1e was obtained in the same manner as in Example 1a.
 2.ヤング率、引張破断強度および引張破断伸びの測定
 実施例1eの外装材試料を作製する際に使用したPETフィルム(耐熱ガスバリア層21)に対し、JIS K7127-1999に準拠して、MDおよびTD共に、90℃でのヤング率、引張破断強度および引張破断伸びをそれぞれ測定した。すなわち耐熱ガスバリア層用のPETフィルムを、幅15mm×長さ100mmの大きさに切り出して試験片を作製し、その試験片に対して、島津製作所製ストログラフ(AGS-5kNX)を使用して90℃雰囲気下で、引張速度200mm/分で引張試験を行ってヤング率(MPa)、引張破断強度(MPa)、引張破断伸び(%)を測定した。表8に示すように、実施例1eの耐熱ガスバリア層用のPETフィルムにおいて、ヤング率は、MDが3.6GPa、TDが3.2GPaであり、引張破断強度は、MDが190MPa、TDが210MPaであり、引張破断伸びは、MDが120%、TDが110%である。
2. Measurement of Young's modulus, tensile strength at break and tensile elongation at break Both MD and TD were measured in accordance with JIS K7127-1999 for the PET film (heat-resistant gas barrier layer 21) used to prepare the exterior material sample of Example 1e. , Young's modulus at 90° C., tensile strength at break and tensile elongation at break were measured respectively. That is, a PET film for a heat-resistant gas barrier layer was cut into a size of 15 mm in width and 100 mm in length to prepare a test piece. C. atmosphere, a tensile test was performed at a tensile speed of 200 mm/min to measure Young's modulus (MPa), tensile strength at break (MPa), and tensile elongation at break (%). As shown in Table 8, in the heat-resistant gas barrier layer PET film of Example 1e, the Young's modulus was 3.6 GPa in MD and 3.2 GPa in TD, and the tensile strength at break was 190 MPa in MD and 210 MPa in TD. and the tensile elongation at break is 120% in MD and 110% in TD.
 (5-3)高温突き刺し性の評価
 実施例1eの外装材試料の突刺し強さをJIS Z1707:1997に準拠して90℃雰囲気下で測定した。その測定方法(突刺し強さ試験方法)は次のとおりである。
(5-3) Evaluation of high-temperature puncture resistance The puncture strength of the exterior material sample of Example 1e was measured in an atmosphere of 90°C in accordance with JIS Z1707:1997. The measurement method (penetration strength test method) is as follows.
 所定の大きさの外装材試料を試験片として固定し、直径1.0mm、先端形状半径0.5mmの半円形の針を毎分50±5mmの速度で突き刺し、針が貫通するまでの最大応力を測定した。試験片の数は5個であり、その平均値を突刺し強さとした。その結果を表8に併せて示す。 An exterior material sample of a predetermined size is fixed as a test piece, and a semicircular needle with a diameter of 1.0 mm and a tip shape radius of 0.5 mm is pierced at a speed of 50 ± 5 mm per minute, and the maximum stress until the needle penetrates. was measured. The number of test pieces was 5, and the average value was taken as the puncture strength. The results are also shown in Table 8.
 (5-4)成形性の評価
 実施例1eの外装材試料において、上記(2-7)と同様に成形性を評価した。その結果を表8に併せて示す。
(5-4) Evaluation of Formability The moldability of the exterior material sample of Example 1e was evaluated in the same manner as in (2-7) above. The results are also shown in Table 8.
 (5-5)シール強度の測定
 実施例1eの外装材試料において、上記(1-4)と同様にシール強度を測定した。その結果を表8に併せて示す。
(5-5) Measurement of Seal Strength The seal strength of the exterior material sample of Example 1e was measured in the same manner as in (1-4) above. The results are also shown in Table 8.
 <実施例2e>
 耐熱ガスバリア層21として、ヤング率がMD:1.5GPa、TD:1.2GPa、引張破断強度がMD:210MPa、TD:240MPa、引張破断伸びがMD:140%、TD:120%の二軸延伸6ナイロンフィルム(ONY-6フィルム)を用いた以外は、上記実施例1eと同様にして実施例2eの試料を作製し、同様の測定(評価)を行った。その結果を表8に併せて示す。
<Example 2e>
The heat-resistant gas barrier layer 21 is biaxially oriented with a Young's modulus of MD: 1.5 GPa, TD: 1.2 GPa, a tensile strength at break of MD: 210 MPa, TD: 240 MPa, and a tensile elongation at break of MD: 140%, TD: 120%. A sample of Example 2e was prepared in the same manner as in Example 1e except that a 6 nylon film (ONY-6 film) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
 <実施例3e>
 耐熱ガスバリア層21として、厚さ15μmのフィルムを用いた以外は、上記実施例2eと同様にして実施例3eの試料を作製し、同様の測定(評価)を行った。その結果を表8に併せて示す。
<Example 3e>
A sample of Example 3e was prepared in the same manner as in Example 2e except that a film having a thickness of 15 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
 <実施例4e>
 耐熱ガスバリア層21として、厚さ25μmのフィルムを用いた以外は、上記実施例2eと同様にして実施例4eの試料を作製し、同様の測定(評価)を行った。その結果を表8に併せて示す。
<Example 4e>
A sample of Example 4e was prepared in the same manner as in Example 2e except that a film having a thickness of 25 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
 <実施例5e>
 耐熱ガスバリア層21として、ヤング率がMD:3.4GPa、TD:3.1GPa、引張破断強度がMD:200MPa、TD:220MPa、引張破断伸びがMD:130%、TD:125%のPETフィルムを用いた以外は、上記実施例1eと同様にして実施例5eの試料を作製し、同様の測定(評価)を行った。その結果を表8に併せて示す。
<Example 5e>
As the heat-resistant gas barrier layer 21, a PET film having Young's modulus MD: 3.4 GPa, TD: 3.1 GPa, tensile strength at break MD: 200 MPa, TD: 220 MPa, and tensile elongation at break MD: 130%, TD: 125%. A sample of Example 5e was prepared in the same manner as in Example 1e, except that it was used, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
 なお実施例5eにおいて、PETフィルムのヤング率、引張破断強度および引張破断伸びは、フィルム作成時の条件を調整し、結晶化度を変えることで実施例1eと異ならせるようにした。 In Example 5e, the Young's modulus, tensile strength at break, and tensile elongation at break of the PET film were made different from those in Example 1e by adjusting the conditions during film production and changing the degree of crystallinity.
 <実施例6e>
 耐熱ガスバリア層21として、ヤング率がMD:1.1GPa、TD:1.6GPa、引張破断強度がMD:90MPa、TD:160MPa、引張破断伸びがMD:140%、TD:80%の2軸延伸ポリプロピレンフィルム(OPPフィルム)を用いた以外は、上記実施例1eと同様にして実施例6eの試料を作製し、同様の測定(評価)を行った。その結果を表8に併せて示す。
<Example 6e>
The heat-resistant gas barrier layer 21 is biaxially stretched with a Young's modulus of MD: 1.1 GPa, TD: 1.6 GPa, a tensile strength at break of MD: 90 MPa, TD: 160 MPa, and a tensile elongation at break of MD: 140%, TD: 80%. A sample of Example 6e was prepared in the same manner as in Example 1e except that a polypropylene film (OPP film) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
 <実施例7e>
 シーラント層13として、厚さ10μmのCPPフィルムを用いた以外は、上記実施例1eと同様にして実施例7eの試料を作製し、同様の測定(評価)を行った。その結果を表8に併せて示す。
<Example 7e>
A sample of Example 7e was prepared in the same manner as in Example 1e except that a CPP film having a thickness of 10 μm was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
 <実施例8e>
 シーラント層13として、厚さ100μmのCPPフィルムを用いた以外は、上記実施例1eと同様にして実施例8eの試料を作製し、同様の測定(評価)を行った。その結果を表8に併せて示す。
<Example 8e>
A sample of Example 8e was prepared in the same manner as in Example 1e except that a CPP film having a thickness of 100 μm was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
 <比較例1e>
 耐熱ガスバリア層21として、ヤング率がMD:0.9GPa、TD:1.5GPa、引張破断強度がMD:80MPa、TD:150MPa、引張破断伸がMD:150%、TD:80%のOPPフィルムを用いた以外は、上記実施例6eと同様にして比較例1eの試料を作製し、同様の測定(評価)を行った。その結果を表8に併せて示す。
<Comparative Example 1e>
As the heat-resistant gas barrier layer 21, an OPP film having Young's modulus MD: 0.9 GPa, TD: 1.5 GPa, tensile strength at break MD: 80 MPa, TD: 150 MPa, and tensile elongation at break MD: 150%, TD: 80%. A sample of Comparative Example 1e was prepared in the same manner as in Example 6e, except that it was used, and the same measurement (evaluation) was performed. The results are also shown in Table 8.
 なお比較例1eにおいて、OPPフィルムのヤング率、引張破断強度および引張破断伸びは、フィルム作成時の条件を調整し、結晶化度を変えることで実施例6eと異ならせるようにした。 In Comparative Example 1e, the Young's modulus, tensile strength at break, and tensile elongation at break of the OPP film were made different from those in Example 6e by adjusting the conditions during film production and changing the degree of crystallinity.
 <第5実施例の総評>
 表8から明らかなように、本発明に関連した実施例1e~8eの外装材試料は、90℃での突き刺し性に優れており、高温環境下で破損等の欠陥部が生じ難いと考えられる。
<Overview of the fifth embodiment>
As is clear from Table 8, the exterior material samples of Examples 1e to 8e related to the present invention are excellent in puncture resistance at 90 ° C., and it is considered that defects such as breakage are unlikely to occur in high temperature environments. .
 これに対し、本発明の要旨を逸脱する比較例1の外装材試料は、90℃での突き刺し性に劣っており、高温環境下においては、実施例1e~8eのものと比較して、破損等の欠陥部が発生し易いと考えられる。 On the other hand, the exterior material sample of Comparative Example 1, which deviates from the gist of the present invention, is inferior in piercing resistance at 90° C., and is damaged in a high-temperature environment compared to Examples 1e to 8e. It is thought that such defects are likely to occur.
 本願は、2021年8月11日付で出願された日本国特許出願の特願2021-131016号、2021年8月16日付で出願された日本国特許出願の特願2021-132355号、2021年8月16日付で出願された日本国特許出願の特願2021-132360号、2021年8月16日付で出願された日本国特許出願の特願2021-132362号および2021年8月17日付で出願された日本国特許出願の特願2021-132728号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application is Japanese Patent Application No. 2021-131016 filed on August 11, 2021, Japanese Patent Application No. 2021-132355 filed on August 16, 2021, 2021 8 Japanese Patent Application No. 2021-132360 filed on August 16, 2021, Japanese Patent Application No. 2021-132362 filed on August 16, 2021 and filed on August 17, 2021 This is accompanied by a priority claim of Japanese Patent Application No. 2021-132728 of the Japanese patent application, and the disclosure content thereof constitutes a part of the present application as it is.
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used herein are used as terms of description and not of limitation, as any equivalent of the features shown and described herein. are not to be excluded, and variations within the claimed scope of the invention are permissible.
 この発明の全固体電池用外装材は、固体電池本体を収容するためのケーシングの材料として好適に用いることができる。 The all-solid-state battery exterior material of the present invention can be suitably used as a casing material for housing the solid-state battery main body.
1,1a,1b,1c:外装材
11:基材層
12:金属箔層
13:シーラント層
15:開口部
21:耐熱ガスバリア層
22:蒸着膜
4:接着剤層
5:固体電池本体
1, 1a, 1b, 1c: exterior material 11: base material layer 12: metal foil layer 13: sealant layer 15: opening 21: heat-resistant gas barrier layer 22: deposited film 4: adhesive layer 5: solid battery body

Claims (22)

  1.  基材層と、前記基材層の内面側に積層された金属箔層と、前記金属箔層の内面側に積層されたシーラント層とを備え、固体電池本体を封入するための全固体電池用外装材であって、
     前記金属箔層と前記シーラント層との間に樹脂製の耐熱ガスバリア層が設けられていることを特徴とする全固体電池用外装材。
    A base material layer, a metal foil layer laminated on the inner surface side of the base material layer, and a sealant layer laminated on the inner surface side of the metal foil layer, for enclosing a solid battery main body. As an exterior material,
    An exterior material for an all-solid-state battery, wherein a resin-made heat-resistant gas barrier layer is provided between the metal foil layer and the sealant layer.
  2.  前記耐熱ガスバリア層は、JIS K7126-1に準拠して測定された硫化水素ガス透過度が15{cc・mm/(m・D・MPa)}以下に設定されている請求項1に記載の全固体電池用外装材。 2. The heat-resistant gas barrier layer according to claim 1, wherein the hydrogen sulfide gas permeability measured in accordance with JIS K7126-1 is set to 15 {cc·mm/(m 2 ·D·MPa)} or less. Exterior material for all-solid-state batteries.
  3.  前記耐熱ガスバリア層を構成する樹脂は、元厚を「da0」として、200℃、0.2MPa、5secの条件で押圧したときの厚みを「da1」として、
     1≧da1/da0≧0.9
    の関係式を満たすように構成されている請求項2に記載の全固体電池用外装材。
    The resin constituting the heat-resistant gas barrier layer has an original thickness of "da0" and a thickness of "da1" when pressed under conditions of 200°C, 0.2 MPa, and 5 sec.
    1≧da1/da0≧0.9
    3. The exterior material for an all-solid-state battery according to claim 2, which is configured to satisfy the relational expression.
  4.  前記耐熱ガスバリア層は、厚さが3μm~50μmに設定されている請求項2または3に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 2 or 3, wherein the heat-resistant gas barrier layer has a thickness of 3 µm to 50 µm.
  5.  前記シーラント層は、硫化水素ガス透過度が100{cc・mm/(m・D・MPa)}以下の樹脂によって構成されている請求項2~4のいずれか1項に記載の全固体電池用外装材。 The all-solid-state battery according to any one of claims 2 to 4, wherein the sealant layer is made of a resin having a hydrogen sulfide gas permeability of 100 {cc·mm/(m 2 ·D · MPa)} or less. exterior material.
  6.  前記シーラント層を構成する樹脂は、元厚を「db0」として、200℃、0.2MPa、5secの条件で押圧したときの厚みを「db1」として、
     0.5≧db1/db0≧0.1
    の関係式を満たすように構成されている請求項2~5のいずれか1項に記載の全固体電池用外装材。
    The resin constituting the sealant layer has an original thickness of "db0" and a thickness of "db1" when pressed under the conditions of 200 ° C., 0.2 MPa, 5 sec,
    0.5≧db1/db0≧0.1
    The exterior material for an all-solid-state battery according to any one of claims 2 to 5, which is configured to satisfy the relational expression.
  7.  前記耐熱ガスバリア層を構成する樹脂は、JIS K7129-1(感湿センサー法 40℃ 90%Rh)に準拠して測定された水蒸気ガス透過率が50(g/m/day)以下である請求項2~6のいずれか1項に記載の全固体電池用外装材。 The resin constituting the heat-resistant gas barrier layer has a water vapor gas permeability of 50 (g/m 2 /day) or less measured according to JIS K7129-1 (moisture sensor method, 40°C, 90% Rh). The exterior material for an all-solid battery according to any one of Items 2 to 6.
  8.  前記耐熱ガスバリア層は、前記シーラント層よりも20℃以上融点が高い絶縁性の樹脂によって構成され、
     前記耐熱ガスバリア層は、絶縁破壊電圧が18kV/mm以上である請求項1~7のいずれか1項に記載の全固体電池用外装材。
    The heat-resistant gas barrier layer is made of an insulating resin having a melting point higher than that of the sealant layer by 20° C. or more,
    The exterior material for an all-solid-state battery according to any one of claims 1 to 7, wherein the heat-resistant gas barrier layer has a dielectric breakdown voltage of 18 kV/mm or more.
  9.  前記耐熱ガスバリア層を構成する樹脂は、熱水収縮率が2%~10%である請求項8に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 8, wherein the resin constituting the heat-resistant gas barrier layer has a hot water shrinkage rate of 2% to 10%.
  10.  前記耐熱ガスバリア層を構成する樹脂は、ポリアミドである請求項8または9に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 8 or 9, wherein the resin constituting the heat-resistant gas barrier layer is polyamide.
  11.  前記シーラント層における固体電池本体に対応する部分に開口部が設けられ、その開口部において、前記耐熱ガスバリア層が内面側に表出するように配置されている請求項1~10のいずれか1項に記載の全固体電池用外装材。 11. The sealant layer according to any one of claims 1 to 10, wherein an opening is provided in a portion corresponding to the solid battery main body, and the heat-resistant gas barrier layer is arranged so as to be exposed to the inner surface side in the opening. 2. The exterior material for an all-solid-state battery according to .
  12.  前記耐熱ガスバリア層は、前記シーラント層よりも10℃以上融点が高い樹脂によって構成されている請求項11に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 11, wherein the heat-resistant gas barrier layer is made of a resin having a melting point higher than that of the sealant layer by 10°C or more.
  13.  前記耐熱ガスバリア層を構成する樹脂は、熱伝導率が0.2W/m・K以上である請求項11または12に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 11 or 12, wherein the resin constituting the heat-resistant gas barrier layer has a thermal conductivity of 0.2 W/m·K or more.
  14.  前記耐熱ガスバリア層と前記シーラント層との間に、蒸着膜が設けられ、
     前記蒸着膜は、金属、金属酸化物、金属フッ化物の少なくともいずれか1つによって構成されている請求項1に記載の全固体電池用外装材。
    A deposited film is provided between the heat-resistant gas barrier layer and the sealant layer,
    The exterior material for an all-solid-state battery according to claim 1, wherein the vapor-deposited film is composed of at least one of metal, metal oxide, and metal fluoride.
  15.  前記蒸着膜の厚さが5nm~1000nmに設定されている請求項14に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 14, wherein the vapor deposition film has a thickness of 5 nm to 1000 nm.
  16.  前記耐熱ガスバリア層と前記シーラント層との間に接着剤層が設けられている請求項14または15に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 14 or 15, wherein an adhesive layer is provided between the heat-resistant gas barrier layer and the sealant layer.
  17.  前記シーラント層における前記接着剤層との接触面に前記蒸着膜が設けられている請求項16に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 16, wherein the vapor-deposited film is provided on the contact surface of the sealant layer with the adhesive layer.
  18.  前記耐熱ガスバリア層における前記接着剤層との接触面に前記蒸着膜が設けられている請求項16または17に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 16 or 17, wherein the vapor-deposited film is provided on a contact surface of the heat-resistant gas barrier layer with the adhesive layer.
  19.  前記耐熱ガスバリア層は、90℃におけるヤング率がMDおよびTD共に1GPa以上である請求項1~18のいずれか1項に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to any one of claims 1 to 18, wherein the heat-resistant gas barrier layer has a Young's modulus of 1 GPa or more in both MD and TD at 90°C.
  20.  前記耐熱ガスバリア層は、90℃における引張破断強度がMDおよびTD共に100MPa以上である請求項19に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 19, wherein the heat-resistant gas barrier layer has a tensile breaking strength of 100 MPa or more at 90°C in both MD and TD.
  21.  前記耐熱ガスバリア層は、90℃における引張破断伸びがMDおよびTD共に50%~200%である請求項19または20に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 19 or 20, wherein the heat-resistant gas barrier layer has a tensile elongation at break of 50% to 200% in both MD and TD at 90°C.
  22.  請求項1~21のいずれか1項に記載の全固体電池用外装材に、固体電池本体が封入されていることを特徴とする全固体電池。 An all-solid-state battery, wherein a solid-state battery main body is enclosed in the all-solid-state battery exterior material according to any one of claims 1 to 21.
PCT/JP2022/025347 2021-08-11 2022-06-24 Outer package material for all-solid-state batteries, and all-solid-state battery WO2023017683A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280055728.7A CN117813719A (en) 2021-08-11 2022-06-24 All-solid-state battery exterior member and all-solid-state battery
KR1020247003717A KR20240027809A (en) 2021-08-11 2022-06-24 Exterior materials for all-solid-state batteries and all-solid-state batteries

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2021131016 2021-08-11
JP2021-131016 2021-08-11
JP2021-132362 2021-08-16
JP2021-132360 2021-08-16
JP2021132362A JP2023026915A (en) 2021-08-16 2021-08-16 Sheath material for all-solid battery, and all-solid battery
JP2021132360 2021-08-16
JP2021132355A JP2023026910A (en) 2021-08-16 2021-08-16 Sheath material for all-solid battery, and all-solid battery
JP2021-132355 2021-08-16
JP2021-132728 2021-08-17
JP2021132728 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023017683A1 true WO2023017683A1 (en) 2023-02-16

Family

ID=85199924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025347 WO2023017683A1 (en) 2021-08-11 2022-06-24 Outer package material for all-solid-state batteries, and all-solid-state battery

Country Status (2)

Country Link
KR (1) KR20240027809A (en)
WO (1) WO2023017683A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160057A (en) * 1996-11-22 1998-06-16 Inst Fr Petrole Sheath having limited pearmiability and its adaptation to pressure pipe
WO2018198461A1 (en) * 2017-04-26 2018-11-01 昭和電工株式会社 Lithium ion secondary battery
JP2019212433A (en) * 2018-06-01 2019-12-12 大日本印刷株式会社 Battery packaging material, manufacturing method thereof, winding body of battery packaging material, and battery
JP2020188020A (en) * 2019-01-23 2020-11-19 大日本印刷株式会社 Exterior material for all-solid battery, method for manufacturing the same and all-solid battery
JP2020537291A (en) * 2018-08-29 2020-12-17 エルジー・ケム・リミテッド Pouch type secondary battery and pouch for secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153456A1 (en) 2019-01-23 2020-07-30 大日本印刷株式会社 Exterior material for all-solid-state battery, method for manufacturing same, and all-solid-state battery
JP7356257B2 (en) 2019-05-10 2023-10-04 共同印刷株式会社 Laminate sheet for sulfide-based all-solid-state batteries and laminate pack using the same
JP2020187835A (en) 2019-05-10 2020-11-19 昭和電工パッケージング株式会社 Outer packaging material for power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160057A (en) * 1996-11-22 1998-06-16 Inst Fr Petrole Sheath having limited pearmiability and its adaptation to pressure pipe
WO2018198461A1 (en) * 2017-04-26 2018-11-01 昭和電工株式会社 Lithium ion secondary battery
JP2019212433A (en) * 2018-06-01 2019-12-12 大日本印刷株式会社 Battery packaging material, manufacturing method thereof, winding body of battery packaging material, and battery
JP2020537291A (en) * 2018-08-29 2020-12-17 エルジー・ケム・リミテッド Pouch type secondary battery and pouch for secondary battery
JP2020188020A (en) * 2019-01-23 2020-11-19 大日本印刷株式会社 Exterior material for all-solid battery, method for manufacturing the same and all-solid battery

Also Published As

Publication number Publication date
KR20240027809A (en) 2024-03-04

Similar Documents

Publication Publication Date Title
EP1353390B1 (en) Battery device and lead wire film
JP7415921B2 (en) Resin film for terminals and power storage device using the same
KR102195195B1 (en) Outer casing material for battery and battery
JP5169112B2 (en) Flat type electrochemical cell metal terminal sealing adhesive sheet
JP5347411B2 (en) Packaging materials for electrochemical cells
KR102507154B1 (en) Terminal coating resin film for secondary cell, tab member for secondary cell, and secondary cell
KR102076372B1 (en) External body for electrochemical devices
JP7381528B2 (en) Exterior material for power storage devices and power storage devices
TW201315592A (en) Covering material for battery and lithium-ion rechargeable battery
JP2013218991A (en) Secondary battery
JP2024026062A (en) Outer packaging material for all-solid-state batteries
CN107204406B (en) Outer packaging material for electricity storage device and electricity storage device
JP4923338B2 (en) Battery packaging materials
JP4580499B2 (en) Lithium-ion battery tab sealing method
KR102351865B1 (en) Exterior material for electrical storage device and electrical storage device
JP2003007267A (en) Packaging material for battery
JP2003051291A (en) Packaging material for cell, and the cell using the same
JP4508477B2 (en) Battery lead wire film and battery packaging material using the same
WO2023017683A1 (en) Outer package material for all-solid-state batteries, and all-solid-state battery
JP5889045B2 (en) Laminated metal foil for laser welding
WO2023017837A1 (en) Outer package material for all-solid-state batteries, and all-solid-state battery
WO2023022088A1 (en) Sheathing material for all-solid-state battery and all-solid-state battery
WO2023022087A1 (en) All-solid-state battery sheathing material and all-solid-state battery
KR102567577B1 (en) Outer material for power storage device power storage device
JP2023026910A (en) Sheath material for all-solid battery, and all-solid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247003717

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE