WO2023016127A1 - 相位板、摄像头模组和移动终端 - Google Patents

相位板、摄像头模组和移动终端 Download PDF

Info

Publication number
WO2023016127A1
WO2023016127A1 PCT/CN2022/102754 CN2022102754W WO2023016127A1 WO 2023016127 A1 WO2023016127 A1 WO 2023016127A1 CN 2022102754 W CN2022102754 W CN 2022102754W WO 2023016127 A1 WO2023016127 A1 WO 2023016127A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
sub
light
silicon dioxide
phase plate
Prior art date
Application number
PCT/CN2022/102754
Other languages
English (en)
French (fr)
Inventor
谭耀成
韦怡
陈嘉伟
张海裕
高玉婵
吴青峻
李响
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023016127A1 publication Critical patent/WO2023016127A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • G02B5/1871Transmissive phase gratings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present application relates to the field of computer technology, in particular to a phase plate, a camera module and a mobile terminal.
  • the mobile terminal when the mobile terminal is shooting, it can realize high-magnification object imaging, but the disadvantage is that the depth of field is very small when imaging, especially when shooting an uneven object, some areas in the captured image will be clear Some areas are blurred and there is a problem of small depth of field.
  • Various embodiments according to the present application provide a phase plate, a camera module and a mobile terminal.
  • phase plate includes a light-shielding member, the light-shielding member is arranged on the phase plate to form a light-shielding region; the phase plate has a light-passing region, and the light-shielding region surrounds the light-passing region, so The light-passing region has a diffractive microstructure, and when the light passes through the light-passing region, the diffractive microstructure modulates the phase of the light.
  • the phase plate further includes a light-transmitting substrate, the diffractive microstructure is disposed on one side of the light-transmitting substrate, and the light-shielding member covers the light-transmitting substrate and/or the diffractive microstructure. structure to form the light-shielding region in the phase plate.
  • the phase plate further includes an anti-reflection film, and the anti-reflection film covers the light-transmitting substrate and/or the diffractive microstructure located in the light-passing region, and covers the Light-transmitting substrate in shaded areas.
  • the anti-reflection film includes multiple layers of silicon dioxide sub-films and multiple layers of titanium dioxide sub-films, and the silicon dioxide sub-films and the titanium dioxide sub-films are alternately stacked.
  • the silicon dioxide sub-film and the titanium dioxide sub-film have a total of 7 layers, and the first layer to the seventh layer are: silicon dioxide sub-film, titanium dioxide sub-film, silicon dioxide sub-film, titanium dioxide sub-film , silicon dioxide sub-film, titanium dioxide sub-film, silicon dioxide sub-film.
  • the shading member includes a stacked single-layer chromium sub-film, a multi-layer silicon dioxide sub-film and a multi-layer chromium trioxide sub-film; the single-layer chromium sub-film is arranged on the shading member
  • the central layer of the single-layer chromium sub-film includes multiple layers of silicon dioxide sub-films and chromium trioxide sub-films alternately stacked on both sides of the single-layer chromium sub-film, and each layer of sub-films arranged on both sides of the single-layer chromium sub-film Arranged in mirror image.
  • the single-layer chromium sub-film, the multi-layer silicon dioxide sub-film and the multi-layer chromium trioxide sub-film have a total of 21 layers, and the first layer to the 21st layer are sequentially: silicon dioxide sub-film, three-layer chromium trioxide sub-film Dichromium oxide sub-film, silicon dioxide sub-film, dichromium trioxide sub-film, silicon dioxide sub-film, dichromium trioxide sub-film, silicon dioxide sub-film, dichromium trioxide sub-film, silicon dioxide sub-film, dichromium trioxide sub-film, silicon dioxide sub-film, dichromium trioxide sub-film Chromium Subfilm, Chromium Subfilm, Dichromium Trioxide Subfilm, Silicon Dioxide Subfilm, Dichromium Trioxide Subfilm, Silicon Dioxide Subfilm, Dichromium Trioxide Subfilm, Silicon Dioxide Subfilm, Dichromium Trioxide Subfilm, Silicon Dioxide Subfilm, Dichromium Trioxide Subfilm, silicon dioxide sub-film
  • the thickness of the light-transmitting substrate ranges from 0.15mm to 1.5mm, and the height of the diffractive microstructure in the thickness direction of the light-transmitting substrate ranges from 2 ⁇ m to 20 ⁇ m .
  • the transparent substrate is made of glass, or the transparent substrate is made of resin.
  • the side of the light-transmitting substrate facing away from the diffractive microstructure is a plane or a spherical surface.
  • the surface of the phase plate perpendicular to the direction of the optical axis is circular or square.
  • a camera module including a photosensitive element, a filter and a plurality of lenses
  • the camera module also includes a phase plate as described above; the phase plate, a plurality of lenses, a filter and the photosensitive element are sequentially are arranged in the same optical axis direction, and the phase plate, the plurality of lenses and the light filter are all located on the light-sensing side of the light-sensing element.
  • a mobile terminal includes the aforementioned camera module.
  • the phase plate includes a shading member, the shading member is arranged on the phase plate to form a shading area, and the shading area surrounds the light-transmitting area to form an aperture stop effect, so that the light can pass through Increases depth of field when imaging after a light area.
  • the diffraction microstructure of the phase plate can be used to modulate the phase of the light, so that the depth of field can be increased and the shooting effect can be improved.
  • Fig. 1 is a schematic structural diagram of a mobile terminal in an embodiment.
  • Fig. 2 is a schematic structural diagram of a camera module in an embodiment.
  • Fig. 3 is a schematic structural diagram of a phase plate in an embodiment.
  • Fig. 4 is a schematic structural diagram of a phase plate in another embodiment.
  • Fig. 5 is a schematic structural diagram of a phase plate in another embodiment.
  • Fig. 6 is a schematic structural diagram of a phase plate in another embodiment.
  • Fig. 7 is a schematic structural diagram of a phase plate in another embodiment.
  • Fig. 8 is a schematic structural diagram of a phase plate in another embodiment.
  • Fig. 9 is a schematic structural diagram of a phase plate in another embodiment.
  • Fig. 10 is a schematic structural diagram of a phase plate in another embodiment.
  • Fig. 11 is a schematic structural diagram of a phase plate in another embodiment.
  • Fig. 12 is a schematic diagram of the effect of the shading member in one embodiment.
  • Fig. 13 is a schematic diagram of the anti-reflection effect of the light-shielding member and the anti-reflection film in one embodiment.
  • FIG. 14 is a flow chart of a method for fabricating a phase plate in an embodiment.
  • FIG. 15 is a schematic structural diagram of a mobile terminal provided by an embodiment of the present application.
  • first, second and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element. For example, a first region could be termed a second region, and, similarly, a second region could be termed a first region, without departing from the scope of the present application. Both the first area and the second area are areas, but they are not the same area.
  • terminal equipment refers to a device capable of receiving and/or sending communication signals, including but not limited to, connected via any one or several of the following connection methods:
  • connection via wired lines such as public switched telephone network (Public Switched Telephone Networks, PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, direct cable connection;
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • wireless interface such as cellular network, wireless local area network (Wireless Local Area Network, WLAN), digital TV network such as DVB-H network, satellite network, AM-FM broadcast transmitter.
  • wireless local area network Wireless Local Area Network, WLAN
  • digital TV network such as DVB-H network
  • satellite network AM-FM broadcast transmitter.
  • a terminal device arranged to communicate over a wireless interface may be referred to as a "mobile terminal".
  • mobile terminals include, but are not limited to, the following electronic devices:
  • PCS Personal Communications System
  • the mobile terminal 10 is a smart phone
  • the mobile terminal 10 includes a camera module 100 and a housing 200
  • the camera module 100 is disposed on the housing 200 .
  • the camera module 100 can be used to perform a shooting function.
  • the camera module 100 can perform the function of a front camera, and the user can perform operations such as Selfie and video call through the camera module 100 .
  • the camera module 100 can perform the function of a rear camera, and the user can perform operations such as macro shooting and video recording through the camera module 100 .
  • the mobile terminal 10 may be a tablet computer, a notebook computer, or the like.
  • This application takes the camera module 100 of a smart phone as an example for illustration, but it can be understood that the camera module 100 disclosed in this application is also applicable to other types of mobile terminals 10 .
  • the camera module 100 includes a photosensitive element 208, a filter 206, a plurality of lenses 204 and a phase plate 202;
  • the optical axis is arranged, and the phase plate 202 , the plurality of lenses 204 and the filter 206 are all located on the light-sensing side of the light-sensing element 208 .
  • the number of lenses 204 can be set as required, for example, there can be two or more lenses 204, for example, four lenses are set in the camera module 110 shown in FIG. 2 . In other implementation manners, 5 or 6 lenses may also be set in the camera module.
  • the lens 112 can be a convex lens or a concave lens, wherein the convex lens has positive refractive power, and the concave lens has negative refractive power.
  • the number and arrangement of the lenses 112 in the camera module can be adapted to the corresponding shooting needs. Taking four lenses 112 arranged in the camera module as an example, in the direction from the object side to the image side, the first lens, the second lens, the third lens and the fourth lens are sequentially arranged in the camera module along the direction of the optical axis , wherein the first lens and the third lens have positive refractive power, and the second lens and the fourth lens have negative refractive power.
  • the filter 206 may be an infrared cut filter (IRCF, IR filter).
  • the photosensitive element 208 is arranged along the optical axis direction of the lens 204, and the phase plate 202 and the plurality of lenses 204 are located on the photosensitive side of the photosensitive element 208, so that the external light passes through the phase plate 202 and the plurality of lenses 204. Enter the photosensitive element 208 for imaging.
  • the type of photosensitive element 208 may include a CCD (Charge Coupled) element, a CMOS (Complementary Metal Oxide Conductor) device, a photodiode, and the like.
  • the photosensitive element 208 may be a color light sensor, a monochrome light sensor, an infrared light sensor, a grayscale sensor, and the like.
  • the camera module 110 is used to process light so that the processed light enters the photosensitive element 208 to meet the imaging requirements of the photosensitive element 208 .
  • the photosensitive element 208 can be integrated on the circuit board by patching, and the optical filter 206 can be arranged between the camera module 110 and the photosensitive element 208, so that the infrared light that has a bad influence on the imaging effect can be filtered out by the optical filter 206.
  • phase plate 202 in the camera module 110 has many possibilities. Specifically, the phase plate 202 can be set between two adjacent lenses 204, or can be set on one side of all the lenses, and is not limited to this.
  • the camera module 100 may be a macro lens module, a super macro lens module, a telephoto lens module, a wide-angle lens module, etc., and is not limited here.
  • the macro lens module and the super macro lens module are special lenses used for macro photography, and are mainly used for shooting very small objects, such as flowers and insects.
  • a telephoto lens module refers to a photographic lens with a longer focal length than a standard lens.
  • the wide-angle lens module is a photographic lens with a shorter focal length than a standard lens, a larger viewing angle than a standard lens, a longer focal length than a fisheye lens, and a smaller viewing angle than a fisheye lens.
  • the distance between the shooting object and the lens is less than 1cm (centimeter), and the lens that can magnify the object by more than 30 times is a super macro lens module.
  • the camera module includes a phase plate with an aperture diaphragm effect, through which the degree of diffusion of imaging can be controlled, thereby improving the depth of field of imaging.
  • the point spread function (PSF, Point spread function) can be used to control the degree of dispersion of the imaging object distance relative to the optimal object distance through the phase plate, that is to say, for a long period before and after the optimal imaging object distance
  • the imaging resolution of the scene in the range is close, that is, the imaging depth of field is increased.
  • the point spread function also known as the point spread function.
  • the mobile terminal can also combine the image processing algorithm to generate an image with a wider imaging range, which can obtain a clear image with a greater probability, and improve the clarity and accuracy of the image captured by the camera module.
  • image processing algorithms include but are not limited to subject recognition algorithms, face detection algorithms, beautification algorithms, pixel interpolation algorithms, deconvolution or deep learning algorithms, etc.
  • Figure 3 is a schematic diagram of a cross-section of a phase plate in one embodiment.
  • the phase plate 202 includes a shading member 304, and the shading member 304 is arranged on the phase plate 202 to form a light-shielding region; the phase plate 202 has a light-passing region, and the light-shielding region surrounds the light-passing region, and the light-passing region has a diffractive microstructure 302.
  • the diffractive microstructure 302 modulates the phase of the light.
  • the shade 304 is a member for blocking light.
  • the light-shielding member 304 may specifically be a light-shielding film, a light-shielding plate, a light-shielding cloth, etc., and is not limited thereto. If the light-shielding element 304 is a light-shielding film, then coat the light-shielding film on the phase plate 202; The light-shielding element 304 is disposed on the phase plate 202 , and the area covered by the light-shielding element 304 on the phase plate 202 is a light-shielding area.
  • the light-passing region is a region in the phase plate 202 through which light can pass.
  • the light-passing area and the light-shielding area do not overlap each other, and the light-passing area plus the light-shielding area can form the entire area of the phase plate 202 .
  • the size of the light-transmitting area can be set as required.
  • the size of the light-transmitting area may be a square with a side length of 1.1 mm (millimeter), or a circle with a radius of 2.2 mm, etc., but is not limited thereto.
  • the two sides of the phase plate perpendicular to the direction of the optical axis have light-transmitting areas, and the light-shielding area surrounds the light-transmitting area, and surrounds the light-transmitting area on one of the sides, or surrounds both sides. Clear area.
  • the light-shielding area surrounds the light-transmitting area, which can realize the aperture stop effect.
  • the smaller the light-transmitting area the greater the imaging depth of light after the light penetrates the light-transmitting area; the larger the light-transmitting area, the smaller the imaging depth of the light passing through the light-transmitting area.
  • the depth of field refers to the front and back distance range of the subject measured by imaging that can obtain clear images at the front of the camera or other imagers.
  • the larger the depth of field the larger the range of clear imaging of the object to be photographed, and the greater the probability of being able to capture a clear image.
  • the diffractive microstructure 302 is formed on one side of the light-transmitting substrate 113a, and is used for modulating the phase of the light passing through the light-transmitting area, so as to increase the depth of field during macro shooting, thereby improving the effect of macro shooting.
  • Diffractive microstructure 302 may be a phase plane.
  • the diffractive microstructure 302 is made of glass or resin.
  • the height of the vertex, a and b are preset parameters.
  • the central vertex refers to the central point where the central symmetry lies. Dropout refers to the distance from the center vertex.
  • the values of a and b can be set as required, and the values of a and b can be the same or different.
  • the coordinates of the diffractive microstructure are the same as those of the phase plate.
  • the mechanical center coordinates of the diffractive microstructure may be (0,0).
  • the size and shape of the phase plate can be set as required.
  • the phase plate can be a circle with a diameter of 1 mm, or a square with a side length of 1 mm.
  • the above-mentioned phase plate 202, the phase plate 202 includes a shading member 304, the shading member 304 is arranged on the phase plate 202 to form a light-shielding area, and the light-shielding area surrounds the light-transmitting area to form an aperture stop effect, so that the light can pass through the light.
  • the diffraction microstructure of the phase plate can be used to modulate the phase of the light, so that the depth of field can be increased and the shooting effect can be improved.
  • FIG. 4 is a schematic diagram of a cross-section of a phase plate in another embodiment.
  • the phase plate 202 also includes a light-transmitting substrate 402, the diffractive microstructure 302 is arranged on one side of the light-transmitting substrate 402, and the light-shielding member 304 covers the light-transmitting substrate 402 and/or the diffractive microstructure 302, so that the phase plate In step 202, a light-shielding region is formed.
  • the light-transmitting substrate 402 is on the millimeter scale, and the diffractive microstructure 302 is on the micron scale, so as to ensure the strength of the overall structure and at the same time provide a better diffraction effect to adjust the phase of light to meet the shooting needs of large depth of field.
  • the thickness h of the transparent substrate 402 ranges from 0.15 mm to 1.5 mm, such as 0.15 mm, 0.5 mm, 1.05 mm, 1.15 mm or 1.5 mm.
  • the height d of the diffractive microstructure 302 in the thickness direction of the transparent substrate 402 ranges from 2 ⁇ m to 20 ⁇ m (micrometer), such as 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m or 20 ⁇ m.
  • the transparent base 402 is made of glass or resin.
  • the side of the light-transmitting substrate 402 facing away from the diffractive microstructure 302 is a plane or spherical surface, and the side facing the diffractive microstructure 302 is a plane.
  • the shape of the light-transmitting substrate 402 is not limited here. In other embodiments, the side of the transparent substrate 402 facing away from the diffractive microstructure 302 may also be an aspherical surface.
  • the shape of the surface of the phase plate 202 perpendicular to the direction of the optical axis can be set as required. For example, the surface of the phase plate 202 perpendicular to the direction of the optical axis is circular or square.
  • the shading member 304 covers the transparent substrate 402 and is on the same side as the diffractive microstructure 302 of the transparent substrate 402 .
  • the shading member 304 covers the transparent substrate 402 and is on a different side from the diffractive microstructure 302 of the transparent substrate 402 .
  • the shading member 304 covers the light-transmitting substrate 402 and the diffractive microstructure 302 .
  • the shading member 304 covers the transparent substrate 402 and is located between the transparent substrate 402 and the diffractive microstructure 302 .
  • the shading member 304 covers the diffractive microstructure 302 .
  • the shading member 304 covers both sides of the light-transmitting substrate 402 perpendicular to the direction of the optical axis.
  • the shading member 304 covers the light-transmitting substrate 402 and the diffractive microstructure 302 , and on the other side facing away from the diffractive microstructure 302 On the side, the shading member 304 covers the light-transmitting base 402 .
  • the shading member 304 covers the light-transmitting substrate 402 and is located between the light-transmitting substrate 402 and the diffractive microstructure 302 .
  • the shading member 304 covers the transparent substrate 402 .
  • the phase plate 202 further includes an anti-reflection film, and the anti-reflection film covers the light-transmitting substrate 402 and/or the diffractive microstructure 302 in the light-transmitting region, and covers the light-transmitting substrate 402 in the light-shielding region.
  • the main function of the anti-reflection coating is to reduce or eliminate the reflected light from optical surfaces such as lenses, prisms, and flat mirrors, thereby increasing the light transmission of these components and reducing or eliminating the stray light of the system.
  • the antireflection film covers the transparent substrate 402 in the light-transmissive area and covers the transparent substrate 402 in the light-shielding area.
  • the anti-reflection film covers the diffractive microstructure 302 in the light-transmitting area, and covers the light-transmitting substrate 402 in the light-shielding area.
  • the anti-reflection film covers the light-transmitting substrate 402 and the diffractive microstructure 302 in the light-transmitting region, and covers the light-transmitting substrate 402 in the light-shielding region.
  • both sides of the phase plate perpendicular to the direction of the optical axis have light-transmitting regions.
  • the light-transmitting area on one side can be covered with an anti-reflection film, and the light-transmitting areas on both sides can also be covered with an anti-reflection film.
  • the anti-reflection coating when the light passes through the light-passing area, can reduce or eliminate reflected light or stray light, thereby obtaining More light allows more information to be obtained during subsequent imaging, and the imaging is clearer.
  • the anti-reflection film includes multiple layers of silicon dioxide sub-films and multiple layers of titanium dioxide sub-films, and the silicon dioxide sub-films and titanium dioxide sub-films are alternately stacked.
  • the material of the silicon dioxide sub-film is silicon dioxide (SIO2)
  • the material of the titanium dioxide sub-film is titanium dioxide (TIO2).
  • the number of layers of the silicon dioxide sub-film and the titanium dioxide sub-film can be set as required, and the thickness of each layer of the sub-film can also be set as required, which is not limited.
  • the silicon dioxide sub-film and the titanium dioxide sub-film have seven layers in total, and the first layer to the seventh layer are sequentially: silicon dioxide sub-film, titanium dioxide sub-film, silicon dioxide sub-film, titanium dioxide sub-film, silicon dioxide sub-film , Titanium dioxide sub-film, silicon dioxide sub-film.
  • each silicon dioxide sub-film or titanium dioxide sub-film can be set as required.
  • the thicknesses of the first layer to the seventh layer are: 176.13, 12.84, 35.07, 45.0, 14.98, 33.06, 91.88nm (nanometer), as shown in Table 1:
  • the shading member includes a single-layer chromium sub-film, a multi-layer silicon dioxide sub-film and a multi-layer chromium trioxide sub-film that are stacked; Both sides of the sub-film include multiple layers of silicon dioxide sub-films and chromium trioxide sub-films alternately stacked on each other, and the sub-films arranged on both sides of the single-layer chromium sub-film are arranged in mirror images.
  • the material of the chrome sub-film is chromium (CR), and the chrome sub-film is a single-layer film, that is, the number of layers of the chromium sub-film is 1, and is arranged in the center layer of the light-shielding member.
  • the material of the silicon dioxide sub-film is silicon dioxide (SIO2), and the material of the dichromium trioxide sub-film is dichromium trioxide (CR2O3).
  • the number of layers of the silicon dioxide sub-film and the dichromium trioxide sub-film can be set as required, and the thickness of the chromium sub-film and each layer of sub-film can also be set according to needs, which is not limited.
  • the single-layer chromium sub-film, the multi-layer silicon dioxide sub-film and the multi-layer chromium trioxide sub-film have 21 layers in total, and the first layer to the 21st layer are sequentially: silicon dioxide sub-film, chromium trioxide Subfilm, silicon dioxide subfilm, dichromium trioxide subfilm, silicon dioxide subfilm, dichromium trioxide subfilm, silicon dioxide subfilm, dichromium trioxide subfilm, silicon dioxide subfilm, dichromium trioxide subfilm , chromium sub-film, chromium trioxide sub-film, silicon dioxide sub-film, chromium trioxide sub-film, silicon dioxide sub-film, chromium trioxide sub-film, silicon dioxide sub-film, chromium trioxide sub-film, dioxide Silicon sub-film, chromium trioxide sub-film, silicon dioxide sub-film.
  • the thickness of the chromium sub-film can be set as required, and the thickness of each silicon dioxide sub-film or chromium trioxide sub-film can be set as required.
  • the thicknesses of the first layer to the 21st layer are: 34.52, 19.35, 50.47, 25.38, 19.5, 249.78, 15, 136.91, 81.3, 56.73, 120, 54.05, 79.73, 255.0, 15.83, 149.08, 15.0, 132.86, 31.1, 15.39, 22.23nm (nanometer), as shown in Table 2:
  • Fig. 12 is a schematic diagram of the effect of the shading member in one embodiment.
  • the shading effect of the shading member can be represented by optical density (OD).
  • OD optical density
  • Optical density is a measure of the characteristic of an object absorbing light, that is, the ratio of incident light to reflected light or transmitted light, and is often expressed as the decimal logarithm of the reciprocal of transmittance or reflectance.
  • the optical density of the visible light band with a wavelength (wavelength) of 400-700 nanometers (nm) is 6-11, reaching the extinction standard (OD5) of conventional SOMA light-shielding sheets.
  • Fig. 13 is a schematic diagram of the anti-reflection effect of the light-shielding member and the anti-reflection film in one embodiment. As shown in FIG. 13 , anti-reflection curves on both sides of the phase plate 202 are shown. The reflectance (reflectance) of the visible light band with a wavelength (wavelength) of 400-700 nanometers (nm) is all within 1%, effectively playing the effect of anti-reflection.
  • the present application also provides a method for manufacturing a phase plate 202, as shown in FIG. 14 , including the following operations:
  • Operation 1402 covering the first area of at least one side of the light-transmitting member with photoresist, and covering the second area except the first area with a light-shielding member to form a light-shielding area, and the light-shielding area surrounds the first area; the first area and The second area is located on the same side of the light-transmitting member.
  • the light-transmitting member refers to a part that can transmit light.
  • the light-transmitting member may be a light-transmitting plate, a light-transmitting film, and the like.
  • the light-transmitting member can be made of glass or resin.
  • the first area refers to the area covered with photoresist.
  • the second area is an area other than the first area in the same side of the first area.
  • the second area is the area covering the light shielding member 304, that is, the light shielding area.
  • Photoresist refers to a light-sensitive mixed liquid composed of photosensitive resin, sensitizer and solvent, which is used as an anti-corrosion coating material during the photolithography process.
  • the light-shielding area surrounds the first area to form an aperture stop effect, which can increase the imaging depth of field after the light passes through the light-transmitting area.
  • one side of the light-transmitting member includes the first region, and the second region is on the same side as the first region, that is, the side of the light-transmitting member including the first region also includes the second region.
  • both sides of the light-transmitting member include the first region, and the second region is on the same side as the first region, that is, both sides of the light-transmitting member also include the second region.
  • the two sides of the phase plate perpendicular to the direction of the optical axis have light-transmitting areas, and the light-shielding area surrounds the light-transmitting area, and surrounds the light-transmitting area on one of the sides, or surrounds both sides. Clear area.
  • the light-shielding area surrounds the light-transmitting area, which can realize the aperture stop effect.
  • the smaller the light-transmitting area the greater the imaging depth of light after the light penetrates the light-transmitting area; the larger the light-transmitting area, the smaller the imaging depth of the light passing through the light-transmitting area.
  • the depth of field refers to the front and back distance range of the subject measured by imaging that can obtain clear images at the front of the camera or other imagers.
  • the larger the depth of field the larger the range of clear imaging of the object to be photographed, and the greater the probability of being able to capture a clear image.
  • Operation 1404 removing the photoresist to obtain a light-passing area, and setting a diffractive microstructure in the light-passing area to obtain a phase plate.
  • the diffractive microstructure 302 is a microstructure with a diffractive function.
  • the pattern of the diffractive microstructure 302 can be set as required.
  • the computer equipment obtains a preset pattern of the diffractive microstructure 302 , and sets the pattern in the light-passing area to form the diffractive microstructure 302 . After the diffractive microstructure 302 is arranged in the light-passing region, the phase plate 202 can be obtained.
  • the light-transmitting element adopts the millimeter scale
  • the diffractive microstructure 302 adopts the micron scale, so as to ensure the strength of the overall structure and at the same time provide a better diffraction effect to adjust the phase of light to meet the shooting needs of large depth of field.
  • the thickness h of the light-transmitting member ranges from 0.15mm to 1.5mm, such as 0.15mm, 0.5mm, 1.05mm, 1.15mm or 1.5mm.
  • the height d of the diffractive microstructure 302 in the thickness direction of the light-transmitting member ranges from 2 ⁇ m to 20 ⁇ m, such as 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m or 20 ⁇ m.
  • the light-transmitting member is made of glass or resin.
  • the side of the light-transmitting element facing away from the diffractive microstructure 302 is a plane or a spherical surface, and the shape of the light-transmitting element is not limited here.
  • the cross section of the phase plate 202 is circular or square.
  • the first area on at least one side of the light-transmitting member is covered with photoresist
  • the second area other than the first area is covered with a light-shielding member 304 to form a light-shielding area
  • the light-shielding area surrounds the first area to form a light-shielding area.
  • the aperture diaphragm effect is formed, which can increase the depth of field of the image after the light penetrates the light-transmitting area.
  • the diffraction microstructure of the phase plate can be used to modulate the phase of the light, so that the depth of field can be increased and the shooting effect can be improved.
  • the photolithography pattern before the first region of at least one side of the light-transmitting member is covered with photoresist, it further includes: performing a photolithography pattern on the light-transmitting member using a lift-off process to obtain a photolithography pattern.
  • the light-transmitting member; the first area on at least one side of the light-transmitting member having the photolithography pattern is covered with photoresist.
  • the photolithography pattern can be set as required, which is not limited here.
  • the phase plate 202 after the phase plate 202 is obtained by setting the diffractive microstructure 302 in the light-passing area, it further includes: on the light-transmitting member and/or the diffractive micro-structure 302 in the light-passing area, and the light-transmitting element in the light-shielding area The parts are covered with anti-reflection film.
  • the main function of the anti-reflection coating is to reduce or eliminate the reflected light from optical surfaces such as lenses, prisms, and flat mirrors, thereby increasing the light transmission of these components and reducing or eliminating the stray light of the system.
  • the anti-reflection film covers the light-transmitting element in the light-transmitting area and the light-transmitting element in the light-shielding area. In another embodiment, the anti-reflection film covers the diffractive microstructure 302 in the light-transmitting area and the light-transmitting member in the light-shielding area. In another embodiment, the anti-reflection film covers the light-transmitting element and the diffractive microstructure 302 in the light-passing area, and the light-transmitting element in the light-shielding area.
  • both sides of the phase plate perpendicular to the direction of the optical axis have light-transmitting regions.
  • the light-transmitting area on one side can be covered with an anti-reflection film, and the light-transmitting areas on both sides can also be covered with an anti-reflection film.
  • the light-transmitting member and/or the diffractive microstructure 302 in the light-passing area when the light passes through the light-passing area, the anti-reflection coating can reduce or eliminate reflected light or stray light, thereby obtaining more With more light, more information can be obtained during subsequent imaging, and the imaging is clearer.
  • the anti-reflection film includes multiple layers of silicon dioxide sub-films and multiple layers of titanium dioxide sub-films, and the silicon dioxide sub-films and titanium dioxide sub-films are alternately stacked.
  • the material of the silicon dioxide sub-film is silicon dioxide (SIO2)
  • the material of the titanium dioxide sub-film is titanium dioxide (TIO2).
  • the number of layers of the silicon dioxide sub-film and the titanium dioxide sub-film can be set as required, and the thickness of each layer of the sub-film can also be set as required, which is not limited.
  • the silicon dioxide sub-film and the titanium dioxide sub-film have seven layers in total, and the first layer to the seventh layer are sequentially: silicon dioxide sub-film, titanium dioxide sub-film, silicon dioxide sub-film, titanium dioxide sub-film, silicon dioxide sub-film , Titanium dioxide sub-film, silicon dioxide sub-film.
  • each silicon dioxide sub-film or titanium dioxide sub-film can be set as required.
  • the thicknesses of the first layer to the seventh layer are: 176.13, 12.84, 35.07, 45.0, 14.98, 33.06, 91.88 nm (nm).
  • the shading member includes a single-layer chromium sub-film, a multi-layer silicon dioxide sub-film and a multi-layer chromium trioxide sub-film that are stacked; Both sides of the sub-film include multiple layers of silicon dioxide sub-films and chromium trioxide sub-films alternately stacked on each other, and the sub-films arranged on both sides of the single-layer chromium sub-film are arranged in mirror images.
  • the material of the chrome sub-film is chromium (CR), and the chrome sub-film is a single-layer film, that is, the number of layers of the chromium sub-film is 1, and is arranged in the center layer of the light-shielding member.
  • the material of the silicon dioxide sub-film is silicon dioxide (SIO2), and the material of the dichromium trioxide sub-film is dichromium trioxide (CR2O3).
  • the number of layers of the silicon dioxide sub-film and the dichromium trioxide sub-film can be set as required, and the thickness of the chromium sub-film and each layer of sub-film can also be set according to needs, which is not limited.
  • the single-layer chromium sub-film, the multi-layer silicon dioxide sub-film and the multi-layer chromium trioxide sub-film have 21 layers in total, and the first layer to the 21st layer are sequentially: silicon dioxide sub-film, chromium trioxide Subfilm, silicon dioxide subfilm, dichromium trioxide subfilm, silicon dioxide subfilm, dichromium trioxide subfilm, silicon dioxide subfilm, dichromium trioxide subfilm, silicon dioxide subfilm, dichromium trioxide subfilm , chromium sub-film, chromium trioxide sub-film, silicon dioxide sub-film, chromium trioxide sub-film, silicon dioxide sub-film, chromium trioxide sub-film, silicon dioxide sub-film, chromium trioxide sub-film, dioxide Silicon sub-film, chromium trioxide sub-film, silicon dioxide sub-film.
  • the thickness of the chromium sub-film can be set as required, and the thickness of each silicon dioxide sub-film or chromium trioxide sub-film can be set as required.
  • the thicknesses of the first layer to the 21st layer are: 34.52, 9.35, 50.47, 25.38, 19.5, 249.78, 15, 136.91, 81.3, 56.73, 150, 54.05, 79.73, 255.0, 15.83, 149.08, 15.0, 132.86, 31.1, 15.39, 22.23 nm (nano).
  • FIG. 15 is a schematic structural diagram of a mobile terminal provided by an embodiment of the present application.
  • the mobile terminal 10 may include a radio frequency (RF, Radio Frequency) circuit 1501, a memory 1502 including one or more computer-readable storage media, an input unit 1503, a display unit 1504, a sensor 1505, an audio circuit 1506, a wireless fidelity ( WiFi, Wireless Fidelity) module 1507, including a processor 1508 with one or more processing cores, and a power supply 1509 and other components.
  • RF Radio Frequency
  • a memory 1502 including one or more computer-readable storage media
  • an input unit 1503 a display unit 1504
  • a sensor 1505 an audio circuit 1506, a wireless fidelity ( WiFi, Wireless Fidelity) module 1507, including a processor 1508 with one or more processing cores, and a power supply 1509 and other components.
  • WiFi Wireless Fidelity
  • the radio frequency circuit 1501 can be used to send and receive information, or to receive and send signals during a call. In particular, after receiving the downlink information from the base station, it is processed by one or more processors 1508; in addition, the uplink data is sent to the base station .
  • the radio frequency circuit 1501 includes but is not limited to an antenna, at least one amplifier, a tuner, one or more oscillators, a Subscriber Identity Module (SIM, Subscriber Identity Module) card, a transceiver, a coupler, a low noise amplifier (LNA, Low Noise Amplifier), duplexer, etc.
  • SIM Subscriber Identity Module
  • LNA Low Noise Amplifier
  • the wireless communication can use any communication standard or protocol, including but not limited to Global System for Mobile Communications (GSM, Global System of Mobile communication), General Packet Radio Service (GPRS, General Packet Radio Service), Code Division Multiple Access (CDMA, Code Division Multiple Access), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), Long Term Evolution (LTE, Long Term Evolution), email, Short Message Service (SMS, Short Messaging Service), etc.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SMS Short Message Service
  • Memory 1502 may be used to store applications and data.
  • the application programs stored in the memory 1502 include executable codes. Applications can be composed of various functional modules.
  • the processor 1508 executes various functional applications and data processing by running the application programs stored in the memory 1502 .
  • the memory 1502 can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system, at least one application program required by a function (such as a sound playback function, an image playback function, etc.); Data created using the mobile terminal 10 (such as audio data, phone book, etc.) and the like.
  • the memory 1502 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the memory 1502 may also include a memory controller to provide access to the memory 1502 by the processor 1508 and the input unit 1503 .
  • the input unit 1503 can be used to receive input numbers, character information or user characteristic information (such as fingerprints), and generate keyboard, mouse, joystick, optical or trackball signal input related to user settings and function control.
  • the input unit 1503 may include a touch-sensitive surface as well as other input devices.
  • a touch-sensitive surface also known as a touch display or trackpad, collects user touch operations on or near it (for example, the user uses a finger, stylus, etc. any suitable object or accessory on the touch-sensitive surface or on the touch-sensitive Operation near the surface), and drive the corresponding connection device according to the preset program.
  • the touch-sensitive surface may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and sends it to the to the processor 1508, and can receive and execute commands sent by the processor 1508.
  • the display unit 1504 can be used to display information input by or provided to the user and various graphical user interfaces of the mobile terminal 10. These graphical user interfaces can be composed of graphics, text, icons, videos and any combination thereof.
  • the display unit 1504 may include the above-mentioned liquid crystal panel.
  • the touch-sensitive surface may cover the liquid crystal panel, and when the touch-sensitive surface detects a touch operation on or near it, the touch operation is sent to the processor 1508 to determine the type of the touch event, and then the processor 1508 displays the touch event on the liquid crystal according to the type of the touch event. The corresponding visual output is provided on the panel.
  • the touch-sensitive surface and the liquid crystal panel are used as two independent components to realize the input and input functions
  • the touch-sensitive surface and the liquid crystal panel can be integrated to realize the input and output functions.
  • the touch screen may include an input unit 1503 and a display unit 1504 .
  • the mobile terminal 10 may also include at least one sensor 1505, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the liquid crystal panel according to the brightness of the ambient light, and the proximity sensor may turn off the liquid crystal panel and/or or backlight.
  • the gravitational acceleration sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used for applications that recognize the attitude of mobile phones (such as horizontal and vertical screen switching, related games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, knocking), etc.; as for other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc. that can be configured in mobile terminal 10, here No longer.
  • the audio circuit 1506 can provide an audio interface between the user and the mobile terminal 10 through speakers and microphones.
  • the audio circuit 1506 can convert the received audio data into an electrical signal, transmit it to the speaker, and the speaker converts it into a sound signal for output; on the other hand, the microphone converts the collected sound signal into an electrical signal, which is converted into
  • the audio data after being processed by the audio data output processor 1508, is sent to another mobile terminal 10 through the radio frequency circuit 1501, or the audio data is output to the memory 1502 for further processing.
  • the audio circuit 1506 may also include an earphone socket to provide communication between an external earphone and the mobile terminal 10 .
  • Wireless Fidelity belongs to the short-distance wireless transmission technology.
  • the mobile terminal 10 can help users send and receive emails, browse web pages, and access streaming media through the wireless fidelity module 1507. It provides users with wireless broadband Internet access.
  • Fig. 15 shows the Wi-Fi module 1507, it can be understood that it is not an essential component of the mobile terminal 10, and can be completely omitted as required without changing the essence of the invention.
  • the processor 1508 is the control center of the mobile terminal 10. It uses various interfaces and lines to connect various parts of the entire mobile terminal 10. By running or executing the application program stored in the memory 1502 and calling the data stored in the memory 1502, the processor 1508 executes Various functions and processing data of the mobile terminal 10, so as to monitor the mobile terminal 10 as a whole.
  • the processor 1508 may include one or more processing cores; preferably, the processor 1508 may integrate an application processor and a modem processor, wherein the application processor mainly processes operating systems, user interfaces, and application programs, etc. , the modem processor mainly handles wireless communications. It can be understood that the foregoing modem processor may not be integrated into the processor 1508 .
  • the mobile terminal 10 also includes a power supply 1509 for powering various components.
  • the power supply 1509 can be logically connected to the processor 1508 through a power management system, so as to implement functions such as management of charging, discharging, and power consumption management through the power management system.
  • the power supply 1509 may also include one or more DC or AC power supplies, recharging systems, power failure detection circuits, power converters or inverters, power status indicators and other arbitrary components.
  • the mobile terminal 10 may also include a Bluetooth module, etc., which will not be repeated here.
  • each of the above modules may be implemented as an independent entity, or may be combined arbitrarily as the same or several entities.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种相位板(202),相位板(202)包括遮光件(304),遮光件(304)设于相位板(202)上以形成遮光区域;相位板(202)具有通光区域,遮光区域环绕通光区域,通光区域具有衍射微结构(302),当光线穿过通光区域时,衍射微结构(302)调制光线的相位。

Description

相位板、摄像头模组和移动终端
相关申请的交叉引用
本申请要求于2021年08月13日提交中国专利局、申请号为202110930285.9、发明名称为“相位板、摄像头模组和移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,特别是涉及一种相位板、摄像头模组和移动终端。
背景技术
随着消费者对手机、平板电脑、智能手表等移动终端的拍照功能的要求越来越高,市面上各种移动终端都配置摄像头等图像采集装置。
然而,移动终端在拍摄时,可以实现高放大倍率的物体成像,但是带来的坏处是成像时景深非常小,特别是拍一个凹凸不平的物体时,会导致拍摄得到的图像中有的区域清晰有的区域模糊,存在景深较小的问题。
发明内容
根据本申请的各种实施例提供一种相位板、摄像头模组和移动终端。
一种相位板,所述相位板包括遮光件,所述遮光件设于所述相位板上以形成遮光区域;所述相位板具有通光区域,所述遮光区域环绕所述通光区域,所述通光区域具有衍射微结构,当光线穿透所述通光区域时,所述衍射微结构调制光线的相位。
在其中一个实施例中,所述相位板还包括透光基底,所述衍射微结构设于所述透光基底的一侧,所述遮光件覆盖所述透光基底和/或所述衍射微结构,以在所述相位板中形成所述遮光区域。
在其中一个实施例中,所述相位板还包括减反膜,所述减反膜覆盖位于所述通光区域中的所述透光基底和/或所述衍射微结构,以及覆盖位于所述遮光区域中的透光基底。
在其中一个实施例中,所述减反膜包括多层二氧化硅子膜和多层二氧化钛子膜,所述二氧化硅子膜和所述二氧化钛子膜彼此交替地层叠设置。
在其中一个实施例中,所述二氧化硅子膜和所述二氧化钛子膜共7层,第1层至第7层依次为:二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜。
在其中一个实施例中,所述遮光件包括层叠设置的单层铬子膜、多层二氧化硅子膜和多层三氧化二铬子膜;所述单层铬子膜设置于所述遮光件的中心层,所述单层铬子膜两侧面均包括多层彼此交替层叠设置的二氧化硅子膜和三氧化二铬子膜,并且所述单层铬子膜两侧面设置的各层子膜呈镜像排列。
在其中一个实施例中,所述单层铬子膜、多层二氧化硅子膜和多层三氧化二铬子膜共21层,第1层至第21层依次为:二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、铬子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜。
在其中一个实施例中,所述透光基底的厚度的取值范围为0.15mm~1.5mm,所述衍射微结构在所述透光基底的厚度方向上的高度的取值范围为2μm~20μm。
在其中一个实施例中,所述透光基底为玻璃材质,或者,所述透光基底为树脂材质。
在其中一个实施例中,所述透光基底的背向所述衍射微结构的一侧为平面或球面。
在其中一个实施例中,所述相位板垂直于光轴方向的面呈圆形或方形。
一种摄像头模组,包括感光元件、滤光片和多个透镜,所述摄像头模组还包括如上述的相位板;所述相位板、多个透镜、滤光片和所述感光元件依次沿同一光轴方向排列,且所述相位板、多个所述透镜和所述滤光片均位于所述感光元件的感光侧。
一种移动终端,包括上述的摄像头模组。
上述相位板、摄像头模组和移动终端,相位板包括遮光件,遮光件设于相位板上以形成遮光区域,并且遮光区域环绕通光区域以形成孔径光阑效果,从而可以在光线穿透通光区域后成像时增大景深。同时又可以利用相位板的衍射微结构来对光线进行相位调制,从而可以加大拍摄时的景深,改善拍摄效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中移动终端的结构示意图。
图2为一个实施例中摄像头模组的结构示意图。
图3为一个实施例中相位板的结构示意图。
图4为另一个实施例中相位板的结构示意图。
图5为另一个实施例中相位板的结构示意图。
图6为另一个实施例中相位板的结构示意图。
图7为另一个实施例中相位板的结构示意图。
图8为另一个实施例中相位板的结构示意图。
图9为另一个实施例中相位板的结构示意图。
图10为另一个实施例中相位板的结构示意图。
图11为另一个实施例中相位板的结构示意图。
图12为一个实施例中遮光件的效果示意图。
图13为一个实施例中遮光件和减反膜的减反效果示意图。
图14为一个实施例中相位板的制作方法的流程图。
图15为本申请实施例提供的移动终端的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一区域称为第二区域,且类似地,可将第二区域称为第一区域。第一区域和第二区域两者都是区域,但其不是同一区域。
作为在此使用的“终端设备”指包括但不限于经由以下任意一种或者数种连接方式连接的能够接收和/或发送通信信号的装置:
(1)经由有线线路连接方式,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;
(2)经由无线接口方式,如蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器。
被设置成通过无线接口通信的终端设备可以被称为“移动终端”。移动终端的示例包括但不限于以下电子装置:
(1)卫星电话或蜂窝电话;
(2)可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;
(3)无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历、配备有全球定位***(Global Positioning System,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);
(4)常规膝上型和/或掌上型接收器;
(5)常规膝上型和/或掌上型无线电电话收发器等。
参考图1,在一些实施方式中,移动终端10为智能手机,移动终端10包括摄像头模组100和壳体200,摄像头模组100设置于壳体200。摄像头模组100可用于执行拍摄功能。例如,在一些实施方式中,摄像头模组100能够执行前置摄像头的功能,用户可以通过摄像头模组100进行自拍、视频通话等操作。在另一些实施方式中,摄像头模组100能够执行后置摄像头的功能,用户可以通过摄像头模组100进行微距拍摄、视频录制等操作。在其他实施方式中,移动终端10可以为平板电脑、笔记本电脑等。本申请以智能手机的摄像头模组100为例进行说明,但可以理解的是,本申请公开的摄像头模组100,对于其他类型的移动终端10也是适用的。
结合图2所示,摄像头模组100中包括感光元件208、滤光片206、多个透镜204和相位板202;相位板202、多个透镜204、滤光片206和感光元件208依次沿同一光轴方向排列,且相位板202、多个透镜204和滤光片206均位于感光元件208的感光侧。其中,透镜204的数量可以根据需要设置,例如透镜204可以为2个或2个以上,例如,图2示出的摄像头模组110中设置有4个透镜。在其他实施方式中,摄像头模组内还可以设置5个或6个透镜。
需要特别指出的是,透镜112可以是凸透镜或凹透镜,其中,凸透镜具有正屈光力,凹透镜具有负屈光力。摄像头模组内透镜112的数量及排布方式,只要能够适应相应的拍摄需要即可。以摄像头模组内设置有4个透镜112为例,在物侧至像侧方向上,摄像头模组内沿光轴方向依次排布有第一透镜、第二透镜、第三透镜和第四透镜,其中,第一透镜和第三透镜具有正屈光力,第二透镜和第四透镜具有负屈光力。滤光片206可以是红外截止滤光片(IRCF,IR filter)。
需要特别指出的是,感光元件208沿透镜204的光轴方向设置,且相位板202和多个透镜204均位于感光元件208的感光侧,以便于外界光线经过相位板202和多个透镜204后进入感光元件208进行成像。
感光元件208的类型可以包括CCD(电荷耦合)元件、CMOS(互补金属氧化物导体)器件和光敏二极管等。从色彩来划分,感光元件208可以是彩色光传感器、单色光传感器、红外光传感器和灰度传感器等。摄像头模组110用于对光线进行处理,使得处理后的光线进入感光元件208,以满足感光元件208成像需要。感光元件208可以通过贴片的方式集成于电路板,摄像头模组110与感光元件208之间可以设置滤光片206,从而利用滤光片206滤去对成像效果产生不良影响的红外光。
相位板202在摄像头模组110中的设置位置具有多种可能,具体地,相位板202可以是设置在两个相邻的透镜204之间,也可以是设置在所有透镜的一侧,不限于此。
摄像头模组100可以是微距镜头模组、超微距镜头模组、长焦镜头模组、广角镜头模组等,在此并不限定。其中,微距镜头模组和超微距镜头模组均是用作微距摄影的特殊镜头,主要用于拍摄十分细微的物体,如花卉及昆虫等。长焦距镜头模组是指比标准镜头的焦距长的摄影镜头。广角镜头模组是一种焦距短于标准镜头、视角大于标准镜头、焦距长于鱼眼镜头、视角小于鱼眼镜头的摄影镜头。其中,拍摄物体与镜头距离小于1cm(厘米),并且能够将物体放大30倍以上的镜头为超微距镜头模组。
摄像头模组中包括具有孔径光阑效果的相位板,通过相位板对成像的弥散程度进行控制,从而可以提高成像的景深。其中,通过相位板采用点扩散函数(PSF,Point spread function)可以对成像物距相对最佳物距的偏离弥散的程度进行很好的控制,也就是说对于最佳成像物距前后很长一段范围内的景物成像清晰度都是接近的,即增大了成像的景深。其中,对光学***来讲,输入物为一点光源时其输出像的光场分布,称为点扩散函数,也称点扩展函数。
进一步地,移动终端还可以结合图像处理算法,生成成像清晰范围更大的图像,可以更大概率得到清晰的图像,提高摄像头模组拍摄的图像的清晰度和准确度。其中,图像处理算法包括但不限于主体识别算法、人脸检测算法、美颜算法、像素插值算法、解卷积或深度学习算法等。
图3为一个实施例中相位板横截面的示意图。如图3所示,相位板202包括遮光件304,遮光件304设于相位板202上以形成遮光区域;相位板202具有通光区域,遮光区域环绕通光区域,通光区域具有衍射微结构302,当光线穿透通光区域时,衍射微结构302调制光线的相位。
遮光件304是用于遮住光线的部件。遮光件304具体可以是遮光膜、遮光板、遮光布等,不限于此。若遮光件304是遮光膜,则在相位板202上镀上遮光膜;若遮光件304是遮光板或遮光布,则在相位板202上贴附遮光板或遮光布。遮光件304设于相位板202上,遮光件304在相位板202上所遮住的区域为遮光区域。
通光区域是相位板202中可以通过光线的区域。通光区域和遮光区域互不重叠,并且通光区域加上遮光区域,可以形成相位板202的整个区域。通光区域的大小可以根据需要进行设置。例如,通光区域的大小可以是边长为1.1mm(毫米)的正方形,或者半径为2.2mm的圆形等,不限于此。
可以理解的是,相位板垂直于光轴方向的两侧面上,均具有通光区域,而遮光区域环绕通光区域,在其中一个侧面上环绕通光区域,也可以在两个侧面上均环绕通光区域。
遮光区域环绕通光区域,可以实现孔径光阑效果。通光区域越小,则光线穿透通光区域后成像的景深越大;通光区域越大,则光线穿透通光区域后成像的景深越小。其中,景深,是指在摄像头或其他成像器前沿能够取得清晰图像的成像所测定的被摄物体前后距离范围。景深越大,则被拍摄物体成像清晰的范围越大,能够拍摄出清晰图像的概率也越大。
衍射微结构302形成于透光基底113a一侧,并用于调制穿透通光区域的光线的相位,以加大微距拍摄时的景深,从而改善微距拍摄效果。衍射微结构302可以是相位面。衍射微结构302为玻璃材质或树脂材质。
衍射微结构的相位分布公式为z=ax 3+by 3;其中,x和y是衍射微结构的坐标,z是衍射微结构沿光轴方向在坐标为(x,y)的位置时距离中心顶点的矢高,a和b是预设参数。中心顶点指的是中心对称所在的中心点。失高指的是距离中心顶点的距离。a和b的数值可以根据需要进行设置,a和b的数值可以相同,也可以不同。a和b为正数,例如,a=0.03,b=0.03。
衍射微结构的坐标和相位板的坐标相同。衍射微结构的机械中心坐标可以为(0,0)。相位板的大小和形状均可以根据需要进行设置。例如,相位板可以为直径1mm的圆形,也可以为边长1mm的正方形。
上述的相位板202,相位板202包括遮光件304,遮光件304设于相位板202上以形成遮光区域,并且遮光区域环绕通光区域以形成孔径光阑效果,从而可以在光线穿透通光区域后成像时增大景深。同时又可以利用相位板的衍射微结构来对光线进行相位调制,从而可以加大拍摄时的景深,改善拍摄效果。
图4为另一个实施例中相位板的横截面的示意图。如图4所示,相位板202还包括透光 基底402,衍射微结构302设于透光基底402的一侧,遮光件304覆盖透光基底402和/或衍射微结构302,以在相位板202中形成遮光区域。
透光基底402采取毫米级,衍射微结构302采取微米级,从而确保整体结构强度的同时,也能够提供较好的衍射效果,以实现调整光线的相位,从而满足大景深的拍摄需要。例如,结合图4所示,透光基底402的厚度h的取值范围为0.15mm~1.5mm,比如0.15mm、0.5mm、1.05mm、1.15mm或1.5mm。衍射微结构302在透光基底402的厚度方向上的高度d的取值范围为2μm~20μm(微米),比如2μm、5μm、10μm、15μm或20μm。
透光基底402为玻璃材质或树脂材质。透光基底402的背向衍射微结构302的一侧为平面或球面,朝向衍射微结构302的一侧为平面,对于透光基底402的形态,在此不做限定。在其他实施例中,透光基底402的背向衍射微结构302的一侧也可以为非球面。相位板202垂直于光轴方向的面的形状可以根据需要进行设置。例如,相位板202垂直于光轴方向的面呈圆形或方形。
在一种实施方式中,如图4所示,遮光件304覆盖在透光基底402上,并且与透光基底402的衍射微结构302处于同一侧。
在另一种实施方式中,如图5所示,遮光件304覆盖在透光基底402上,并且与透光基底402的衍射微结构302处于不同侧。
在另一种实施方式中,如图6所示,遮光件304覆盖在透光基底402和衍射微结构302上。
在另一个实施方式中,如图7所示,遮光件304覆盖在透光基底402上,并且处于透光基底402和衍射微结构302之间。
在另一个实施方式中,如图8所示,遮光件304覆盖在衍射微结构302上。
在另一个实施方式中,如图9所示,遮光件304覆盖在透光基底402垂直于光轴方向的两侧面上。
在另一个实施方式中,如图10所示,在朝向衍射微结构302的一侧面上,遮光件304覆盖在透光基底402和衍射微结构302上,在背向衍射微结构302的另一侧面上,遮光件304覆盖在透光基底402上。
在另一个实施方式中,如图11所示,在朝向衍射微结构302的一侧面上,遮光件304覆盖在透光基底402上,并且处于透光基底402和衍射微结构302之间,在背向衍射微结构302的另一侧面上,遮光件304覆盖在透光基底402上。
在一个实施例中,相位板202还包括减反膜,减反膜覆盖位于通光区域中的透光基底402和/或衍射微结构302,以及覆盖位于遮光区域中的透光基底402。
减反膜,主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除***的杂散光。
在一种实施方式中,减反膜覆盖位于通光区域中的透光基底402以及覆盖位于遮光区域中的透光基底402。
在另一个实施方式中,减反膜覆盖位于通光区域中的衍射微结构302,以及覆盖位于遮光区域中的透光基底402。
在另一个实施例中,减反膜覆盖位于通光区域中的透光基底402和衍射微结构302,以及覆盖位于遮光区域中的透光基底402。
其中,相位板垂直于光轴方向的两侧面上,均具有通光区域。在其中一个侧面的通光区域可以覆盖减反膜,在两个侧面的通光区域上也可以均覆盖减反膜。
在本实施例中,在通光区域中的透光基底402和/或衍射微结构302,则光线穿透通光区域时,减反膜可以减少或消除反射光或杂散光,从而可以获取到更多的光线,使得后续成像时获取到更多的信息,成像更加清晰。
在一个实施例中,减反膜包括多层二氧化硅子膜和多层二氧化钛子膜,二氧化硅子膜和二氧化钛子膜彼此交替地层叠设置。
其中,二氧化硅子膜的材料为二氧化硅(SIO2),二氧化钛子膜的材料为二氧化钛(TIO2)。二氧化硅子膜和二氧化钛子膜的层数可以根据需要进行设置,每一层子膜的厚度也可以根据需要进行设置,并不限定。
在一个实施例中,二氧化硅子膜和二氧化钛子膜共7层,第1层至第7层依次为:二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜。
其中,每一层二氧化硅子膜或二氧化钛子膜的厚度均可以根据需要进行设置。例如,第1层至第7层的厚度依次是:176.13、12.84、35.07、45.0、14.98、33.06、91.88nm(纳米),如表1所示:
表1
层数 1 2 3 4 5 6 7
材料 SIO2 TIO2 SIO2 TIO2 SIO2 TIO2 SIO2
厚度(nm) 176.13 12.84 35.07 45.0 14.98 33.06 91.88
在一个实施例中,遮光件包括层叠设置的单层铬子膜、多层二氧化硅子膜和多层三氧化二铬子膜;单层铬子膜设置于遮光件的中心层,单层铬子膜两侧面均包括多层彼此交替层叠设置的二氧化硅子膜和三氧化二铬子膜,并且单层铬子膜两侧面设置的各层子膜呈镜像排列。
其中,铬子膜的材料为铬(CR),铬子膜为单层膜,即铬子膜的层数为1,并且设置于遮光件的中心层。二氧化硅子膜的材料为二氧化硅(SIO2),三氧化二铬子膜的材料为三氧化二铬(CR2O3)。二氧化硅子膜和三氧化二铬子膜的层数可以根据需要进行设置,铬子膜、每一层子膜的厚度也可以根据需要进行设置,并不限定。
在一个实施例中,单层铬子膜、多层二氧化硅子膜和多层三氧化二铬子膜共21层,第1层至第21层依次为:二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、铬子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜。
其中,铬子膜的厚度可以根据需要进行设置,每一层二氧化硅子膜或三氧化二铬子膜的厚度均可以根据需要进行设置。例如,第1层至第21层的厚度依次是:34.52、19.35、50.47、25.38、19.5、249.78、15、136.91、81.3、56.73、120、54.05、79.73、255.0、15.83、149.08、15.0、132.86、31.1、15.39、22.23nm(纳米),如表2所示:
表2
层数 材料 厚度(nm) 层数 材料 厚度(nm)
1 SIO2 34.52 12 CR2O3 54.05
2 CR2O3 19.35 13 SIO2 79.73
3 SIO2 50.47 14 CR2O3 255.0
4 CR2O3 25.38 15 SIO2 15.83
5 SIO2 19.5 16 CR2O3 149.08
6 CR2O3 249.78 17 SIO2 15.0
7 SIO2 15 18 CR2O3 132.86
8 CR2O3 136.91 19 SIO2 31.1
9 SIO2 81.3 20 CR2O3 15.39
10 CR2O3 56.73 21 SIO2 22.23
11 CR 120      
图12为一个实施例中遮光件的效果示意图。遮光件的遮光效果可以采用光学密度(optical density,OD)进行表示。光学密度是物体吸收光线的特性量度,即入射光量与反射光量或透射光量之比,常用透射率或反射率倒数的十进对数表示。如图12所示,波长为(wavelength)400-700纳米(nm)的可见光波段的光学密度处于6-11,达到了常规SOMA遮光片的消光标准(OD5)。
图13为一个实施例中遮光件和减反膜的减反效果示意图。如图13所示为相位板202的两侧的减反曲线。波长为(wavelength)400-700纳米(nm)的可见光波段的反射率(reflectance)均在1%以内,有效起到了减反射的效果。
本申请还提供了一种相位板202的制作方法,如图14所示,包括以下操作:
操作1402,在透光件的至少一侧的第一区域覆盖光刻胶,在除第一区域外的第二区域覆盖遮光件以形成遮光区域,并且遮光区域环绕第一区域;第一区域和第二区域位于透光件的同一侧。
透光件指的是能够透过光线的部件。透光件可以是透光板、透光膜等。透光件可以为玻璃材质或者树脂材质。
第一区域指的是覆盖光刻胶的区域。第二区域是在第一区域的同一侧中,除第一区域之外的其他区域。第二区域是覆盖遮光件304的区域,即遮光区域。
光刻胶指的是在光刻工艺过程中用作抗腐蚀涂层材料,由感光树脂、增感剂和溶剂等组成的对光敏感的混合液体。
遮光区域环绕第一区域以形成孔径光阑效果,可以在光线穿透通光区域后增大成像的景深。
在一种实施方式中,透光件的其中一侧包括第一区域,第二区域与第一区域处于同一侧,即透光件包括有第一区域的一侧也包括有第二区域。在另一种实施方式中,透光件的两侧均包括第一区域,第二区域与第一区域处于同一侧,即透光件的两侧也均包括有第二区域。
可以理解的是,相位板垂直于光轴方向的两侧面上,均具有通光区域,而遮光区域环绕通光区域,在其中一个侧面上环绕通光区域,也可以在两个侧面上均环绕通光区域。
遮光区域环绕通光区域,可以实现孔径光阑效果。通光区域越小,则光线穿透通光区域后成像的景深越大;通光区域越大,则光线穿透通光区域后成像的景深越小。其中,景深,是指在摄像头或其他成像器前沿能够取得清晰图像的成像所测定的被摄物体前后距离范围。景深越大,则被拍摄物体成像清晰的范围越大,能够拍摄出清晰图像的概率也越大。
操作1404,去除光刻胶,得到通光区域,在通光区域设置衍射微结构,得到相位板。
衍射是指信号波遇到障碍物时偏离原来直线传播的物理现象。衍射微结构302是具有衍射功能的微结构。衍射微结构302的图形可以根据需要进行设置。计算机设备获取预设的衍射微结构302的图形,在通光区域中设置该图形以形成衍射微结构302。在通光区域设置衍射微结构302后,可以得到相位板202。
透光件采取毫米级,衍射微结构302采取微米级,从而确保整体结构强度的同时,也能够提供较好的衍射效果,以实现调整光线的相位,从而满足大景深的拍摄需要。例如,透光件的厚度h的取值范围为0.15mm~1.5mm,比如0.15mm、0.5mm、1.05mm、1.15mm或1.5mm。衍射微结构302在透光件的厚度方向上的高度d的取值范围为2μm~20μm,比如2μm、5μm、10μm、15μm或20μm。
透光件为玻璃材质或树脂材质。透光件的背向衍射微结构302的一侧为平面或球面,对于透光件的形态,在此不做限定。相位板202的横截面为圆形或方形。
在本实施例中,在透光件的至少一侧的第一区域覆盖光刻胶,在除第一区域外的第二区 域覆盖遮光件304以形成遮光区域,并且遮光区域环绕第一区域以形成孔径光阑效果,可以在光线穿透通光区域后增大成像的景深。同时又可以利用相位板的衍射微结构来对光线进行相位调制,从而可以加大拍摄时的景深,改善拍摄效果。
在一个实施例中,在透光件的至少一侧的第一区域覆盖光刻胶之前,还包括:在透光件上采用剥离工艺(lift-off)做光刻图形,得到具有光刻图形的透光件;在具有光刻图形的透光件的至少一侧的第一区域覆盖光刻胶。其中,光刻图形可以根据需要进行设置,在此不做限定。
在一个实施例中,在通光区域设置衍射微结构302,得到相位板202之后,还包括:在通光区域中的透光件和/或衍射微结构302上,以及遮光区域中的透光件上覆盖减反膜。
减反膜,主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除***的杂散光。
在一种实施方式中,减反膜覆盖位于通光区域中的透光件,以及遮光区域中的透光件上。在另一个实施方式中,减反膜覆盖位于通光区域中的衍射微结构302,以及遮光区域中的透光件上。在另一个实施例中,减反膜覆盖位于通光区域中的透光件和衍射微结构302,以及遮光区域中的透光件上。
其中,相位板垂直于光轴方向的两侧面上,均具有通光区域。在其中一个侧面的通光区域可以覆盖减反膜,在两个侧面的通光区域上也可以均覆盖减反膜。
在本实施例中,在通光区域中的透光件和/或衍射微结构302,则光线穿透通光区域时,减反膜可以减少或消除反射光或杂散光,从而可以获取到更多的光线,使得后续成像时获取到更多的信息,成像更加清晰。
在一个实施例中,减反膜包括多层二氧化硅子膜和多层二氧化钛子膜,二氧化硅子膜和二氧化钛子膜彼此交替地层叠设置。
其中,二氧化硅子膜的材料为二氧化硅(SIO2),二氧化钛子膜的材料为二氧化钛(TIO2)。二氧化硅子膜和二氧化钛子膜的层数可以根据需要进行设置,每一层子膜的厚度也可以根据需要进行设置,并不限定。
在一个实施例中,二氧化硅子膜和二氧化钛子膜共7层,第1层至第7层依次为:二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜。
其中,每一层二氧化硅子膜或二氧化钛子膜的厚度均可以根据需要进行设置。例如,第1层至第7层的厚度依次是:176.13、12.84、35.07、45.0、14.98、33.06、91.88nm(纳米)。
在一个实施例中,遮光件包括层叠设置的单层铬子膜、多层二氧化硅子膜和多层三氧化二铬子膜;单层铬子膜设置于遮光件的中心层,单层铬子膜两侧面均包括多层彼此交替层叠设置的二氧化硅子膜和三氧化二铬子膜,并且单层铬子膜两侧面设置的各层子膜呈镜像排列。
其中,铬子膜的材料为铬(CR),铬子膜为单层膜,即铬子膜的层数为1,并且设置于遮光件的中心层。二氧化硅子膜的材料为二氧化硅(SIO2),三氧化二铬子膜的材料为三氧化二铬(CR2O3)。二氧化硅子膜和三氧化二铬子膜的层数可以根据需要进行设置,铬子膜、每一层子膜的厚度也可以根据需要进行设置,并不限定。
在一个实施例中,单层铬子膜、多层二氧化硅子膜和多层三氧化二铬子膜共21层,第1层至第21层依次为:二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、铬子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜。
其中,铬子膜的厚度可以根据需要进行设置,每一层二氧化硅子膜或三氧化二铬子膜的厚度均可以根据需要进行设置。例如,第1层至第21层的厚度依次是:34.52、9.35、50.47、 25.38、19.5、249.78、15、136.91、81.3、56.73、150、54.05、79.73、255.0、15.83、149.08、15.0、132.86、31.1、15.39、22.23nm(纳米)。
应该理解的是,虽然图14的流程图中的各个操作按照箭头的指示依次显示,但是这些操作并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些操作的执行并没有严格的顺序限制,这些操作可以以其它的顺序执行。而且,图14中的至少一部分操作可以包括多个子操作或者多个阶段,这些子操作或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子操作或者阶段的执行顺序也不必然是依次进行,而是可以与其它操作或者其它操作的子操作或者阶段的至少一部分轮流或者交替地执行。
参考图15,图15为本申请实施例提供的移动终端的结构示意图。该移动终端10可以包括射频(RF,Radio Frequency)电路1501、包括有一个或一个以上计算机可读存储介质的存储器1502、输入单元1503、显示单元1504、传感器1505、音频电路1506、无线保真(WiFi,Wireless Fidelity)模块1507、包括有一个或者一个以上处理核心的处理器1508、以及电源1509等部件。本领域技术人员可以理解,图15中示出的移动终端10结构并不构成对移动终端10的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
射频电路1501可用于收发信息,或通话过程中信号的接收和发送,特别地,将基站的下行信息接收后,交由一个或者一个以上处理器1508处理;另外,将涉及上行的数据发送给基站。通常,射频电路1501包括但不限于天线、至少一个放大器、调谐器、一个或多个振荡器、用户身份模块(SIM,Subscriber Identity Module)卡、收发信机、耦合器、低噪声放大器(LNA,Low Noise Amplifier)、双工器等。此外,射频电路1501还可以通过无线通信与网络和其他设备通信。该无线通信可以使用任一通信标准或协议,包括但不限于全球移动通信***(GSM,Global System of Mobile communication)、通用分组无线服务(GPRS,General Packet Radio Service)、码分多址(CDMA,Code Division Multiple Access)、宽带码分多址(WCDMA,Wideband Code Division Multiple Access)、长期演进(LTE,Long Term Evolution)、电子邮件、短消息服务(SMS,Short Messaging Service)等。
存储器1502可用于存储应用程序和数据。存储器1502存储的应用程序中包含有可执行代码。应用程序可以组成各种功能模块。处理器1508通过运行存储在存储器1502的应用程序,从而执行各种功能应用以及数据处理。存储器1502可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据移动终端10的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1502可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器1502还可以包括存储器控制器,以提供处理器1508和输入单元1503对存储器1502的访问。
输入单元1503可用于接收输入的数字、字符信息或用户特征信息(比如指纹),以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。具体地,在一个具体的实施例中,输入单元1503可包括触敏表面以及其他输入设备。触敏表面,也称为触摸显示屏或者触控板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触敏表面上或在触敏表面附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触敏表面可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1508,并能接收处理器1508发来的命令并加以执行。
显示单元1504可用于显示由用户输入的信息或提供给用户的信息以及移动终端10的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。 显示单元1504可包括上述的液晶面板。
进一步的,触敏表面可覆盖液晶面板,当触敏表面检测到在其上或附近的触摸操作后,传送给处理器1508以确定触摸事件的类型,随后处理器1508根据触摸事件的类型在液晶面板上提供相应的视觉输出。
虽然在图15中,触敏表面与液晶面板是作为两个独立的部件来实现输入和输入功能,但是在某些实施例中,可以将触敏表面与液晶面板集成而实现输入和输出功能。可以理解的是,触摸显示屏可以包括输入单元1503和显示单元1504。
移动终端10还可包括至少一种传感器1505,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节液晶面板的亮度,接近传感器可在移动终端10移动到耳边时,关闭液晶面板和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于移动终端10还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1506可通过扬声器、传声器提供用户与移动终端10之间的音频接口。音频电路1506可将接收到的音频数据转换成电信号,传输到扬声器,由扬声器转换为声音信号输出;另一方面,传声器将收集的声音信号转换为电信号,由音频电路1506接收后转换为音频数据,再将音频数据输出处理器1508处理后,经射频电路1501以发送给比如另一移动终端10,或者将音频数据输出至存储器1502以便进一步处理。音频电路1506还可能包括耳机座,以提供外设耳机与移动终端10的通信。
无线保真(WiFi)属于短距离无线传输技术,移动终端10通过无线保真模块1507可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图15示出了无线保真模块1507,但是可以理解的是,其并不属于移动终端10的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器1508是移动终端10的控制中心,利用各种接口和线路连接整个移动终端10的各个部分,通过运行或执行存储在存储器1502内的应用程序,以及调用存储在存储器1502内的数据,执行移动终端10的各种功能和处理数据,从而对移动终端10进行整体监控。可选的,处理器1508可包括一个或多个处理核心;优选的,处理器1508可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1508中。
移动终端10还包括给各个部件供电的电源1509。优选的,电源1509可以通过电源管理***与处理器1508逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。电源1509还可以包括一个或一个以上的直流或交流电源、再充电***、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
尽管图15中未示出,移动终端10还可以包括蓝牙模块等,在此不再赘述。具体实施时,以上各个模块可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个模块的具体实施可参见前面的方法实施例,在此不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种相位板,所述相位板包括遮光件,所述遮光件设于所述相位板上以形成遮光区域;所述相位板具有通光区域,所述遮光区域环绕所述通光区域,所述通光区域具有衍射微结构,当光线穿透所述通光区域时,所述衍射微结构调制光线的相位。
  2. 根据权利要求1所述的相位板,所述相位板还包括透光基底,所述衍射微结构设于所述透光基底的一侧,所述遮光件覆盖所述透光基底和/或所述衍射微结构,以在所述相位板中形成所述遮光区域。
  3. 根据权利要求2所述的相位板,所述相位板还包括减反膜,所述减反膜覆盖位于所述通光区域中的所述透光基底和/或所述衍射微结构,以及覆盖位于所述遮光区域中的透光基底。
  4. 根据权利要求3所述的相位板,所述减反膜包括多层二氧化硅子膜和多层二氧化钛子膜,所述二氧化硅子膜和所述二氧化钛子膜彼此交替地层叠设置。
  5. 根据权利要求4所述的相位板,所述二氧化硅子膜和所述二氧化钛子膜共7层,第1层至第7层依次为:二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜。
  6. 根据权利要求1至5中任一项所述的相位板,所述遮光件包括层叠设置的单层铬子膜、多层二氧化硅子膜和多层三氧化二铬子膜;所述单层铬子膜设置于所述遮光件的中心层,所述单层铬子膜两侧面均包括多层彼此交替层叠设置的二氧化硅子膜和三氧化二铬子膜,并且所述单层铬子膜两侧面设置的各层子膜呈镜像排列。
  7. 根据权利要求6所述的相位板,所述单层铬子膜、多层二氧化硅子膜和多层三氧化二铬子膜共21层,第1层至第21层依次为:二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、铬子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜、三氧化二铬子膜、二氧化硅子膜。
  8. 根据权利要求1至5中任一项所述的相位板,所述透光基底的厚度的取值范围为0.15mm~1.5mm,所述衍射微结构在所述透光基底的厚度方向上的高度的取值范围为2μm~20μm。
  9. 根据权利要求1至5中任一项所述的相位板,所述透光基底为玻璃材质,或者,所述透光基底为树脂材质。
  10. 根据权利要求1至5中所述的相位板,所述透光基底的背向所述衍射微结构的一侧为平面或球面。
  11. 根据权利要求1至5中所述的相位板,所述相位板垂直于光轴方向的面呈圆形或方形。
  12. 一种摄像头模组,包括感光元件、滤光片和多个透镜,所述摄像头模组还包括一种相位板;所述相位板包括遮光件,所述遮光件设于所述相位板上以形成遮光区域;所述相位板具有通光区域,所述遮光区域环绕所述通光区域,所述通光区域具有衍射微结构,当光线穿透所述通光区域时,所述衍射微结构调制光线的相位;所述相位板、多个透镜、滤光片和所述感光元件依次沿同一光轴方向排列,且所述相位板、多个所述透镜和所述滤光片均位于所述感光元件的感光侧。
  13. 根据权利要求12所述的摄像头模组,所述相位板还包括透光基底,所述衍射微结构设于所述透光基底的一侧,所述遮光件覆盖所述透光基底和/或所述衍射微结构,以在所述相位板中形成所述遮光区域。
  14. 根据权利要求13所述的摄像头模组,所述相位板还包括减反膜,所述减反膜覆盖位于所述通光区域中的所述透光基底和/或所述衍射微结构,以及覆盖位于所述遮光区域中的透 光基底。
  15. 根据权利要求14所述的摄像头模组,所述减反膜包括多层二氧化硅子膜和多层二氧化钛子膜,所述二氧化硅子膜和所述二氧化钛子膜彼此交替地层叠设置。
  16. 根据权利要求15所述的摄像头模组,所述二氧化硅子膜和所述二氧化钛子膜共7层,第1层至第7层依次为:二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜、二氧化钛子膜、二氧化硅子膜。
  17. 根据权利要求12至16中任一项所述的摄像头模组,所述遮光件包括层叠设置的单层铬子膜、多层二氧化硅子膜和多层三氧化二铬子膜;所述单层铬子膜设置于所述遮光件的中心层,所述单层铬子膜两侧面均包括多层彼此交替层叠设置的二氧化硅子膜和三氧化二铬子膜,并且所述单层铬子膜两侧面设置的各层子膜呈镜像排列。
  18. 根据权利要求12至16中任一项所述的摄像头模组,所述透光基底的厚度的取值范围为0.15mm~1.5mm,所述衍射微结构在所述透光基底的厚度方向上的高度的取值范围为2μm~20μm。
  19. 根据权利要求12至16中任一项所述的摄像头模组,所述透光基底为玻璃材质,或者,所述透光基底为树脂材质。
  20. 一种移动终端,包括权利要求12至19任一项所述的摄像头模组。
PCT/CN2022/102754 2021-08-13 2022-06-30 相位板、摄像头模组和移动终端 WO2023016127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110930285.9A CN113671618A (zh) 2021-08-13 2021-08-13 相位板、摄像头模组和移动终端
CN202110930285.9 2021-08-13

Publications (1)

Publication Number Publication Date
WO2023016127A1 true WO2023016127A1 (zh) 2023-02-16

Family

ID=78542702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102754 WO2023016127A1 (zh) 2021-08-13 2022-06-30 相位板、摄像头模组和移动终端

Country Status (2)

Country Link
CN (1) CN113671618A (zh)
WO (1) WO2023016127A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671618A (zh) * 2021-08-13 2021-11-19 Oppo广东移动通信有限公司 相位板、摄像头模组和移动终端
CN114415268B (zh) * 2022-01-28 2024-07-12 宁波舜宇奥来技术有限公司 光学相位板的制作方法
CN114911036A (zh) * 2022-05-18 2022-08-16 Oppo广东移动通信有限公司 镜头及电子设备
CN114966938A (zh) * 2022-05-25 2022-08-30 Oppo广东移动通信有限公司 相位板的制作方法、相位板和电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137355A1 (ja) * 2005-06-20 2006-12-28 Riverbell Co., Ltd. 多焦点レンズおよび撮像システム
CN101443689A (zh) * 2006-05-15 2009-05-27 松下电器产业株式会社 衍射摄像透镜和衍射摄像透镜光学***及使用其的摄像装置
CN102576105A (zh) * 2010-08-19 2012-07-11 松下电器产业株式会社 衍射光栅透镜和使用了它的摄像装置
JP2016218285A (ja) * 2015-05-21 2016-12-22 株式会社リコー レンズユニットおよび撮像装置
CN107483805A (zh) * 2017-10-18 2017-12-15 信利光电股份有限公司 一种摄像装置及电子设备
CN113671618A (zh) * 2021-08-13 2021-11-19 Oppo广东移动通信有限公司 相位板、摄像头模组和移动终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200713460A (en) * 2005-09-22 2007-04-01 Adv Lcd Tech Dev Ct Co Ltd Phase modulation device, phase modulation device fabrication method, crystallization apparatus, and crystallization method
CN106154797B (zh) * 2016-09-09 2018-12-18 京东方科技集团股份有限公司 一种全息显示面板、全息显示装置及其显示方法
CN111650681A (zh) * 2020-06-24 2020-09-11 欧菲微电子技术有限公司 衍射光学元件、tof深度传感器、光学***及装置
TWM602642U (zh) * 2020-07-30 2020-10-11 大立光電股份有限公司 影像鏡組及智慧型手機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137355A1 (ja) * 2005-06-20 2006-12-28 Riverbell Co., Ltd. 多焦点レンズおよび撮像システム
CN101443689A (zh) * 2006-05-15 2009-05-27 松下电器产业株式会社 衍射摄像透镜和衍射摄像透镜光学***及使用其的摄像装置
CN102576105A (zh) * 2010-08-19 2012-07-11 松下电器产业株式会社 衍射光栅透镜和使用了它的摄像装置
JP2016218285A (ja) * 2015-05-21 2016-12-22 株式会社リコー レンズユニットおよび撮像装置
CN107483805A (zh) * 2017-10-18 2017-12-15 信利光电股份有限公司 一种摄像装置及电子设备
CN113671618A (zh) * 2021-08-13 2021-11-19 Oppo广东移动通信有限公司 相位板、摄像头模组和移动终端

Also Published As

Publication number Publication date
CN113671618A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2023016127A1 (zh) 相位板、摄像头模组和移动终端
US11899186B2 (en) Folded lens system
JP6945744B2 (ja) 撮影方法、装置、およびデバイス
CN113472976B (zh) 微距成像的方法及终端
US11095812B2 (en) Image processing method, apparatus, and device
JP6035450B2 (ja) 光学素子の製造方法
EP3264144A1 (en) Camera module and terminal
WO2018233373A1 (zh) 一种图像处理方法、装置与设备
WO2022100295A1 (zh) 电子设备、摄像装置及其滤光片
JP2021530875A (ja) イメージセンサ及び移動端末
WO2016038935A1 (ja) 撮像光学系及び撮像装置
CN212727179U (zh) 摄像头模组、对焦机构及电子设备
US12041394B2 (en) Imaging system
US12032146B2 (en) Camera lens system
CN216052402U (zh) 微距镜头模组、图像采集装置及移动终端
CN110602370B (zh) 摄像头模组和终端设备
CN117836689A (zh) 镜头组件和包括镜头组件的电子装置
CN117608055B (zh) 光学***、拍摄模组及电子设备
US20210033824A1 (en) Lens System
CN219068268U (zh) 盖板、摄像头模组和智能终端
CN220108110U (zh) 摄像模组及智能终端
CN112468617B (zh) 电子设备
US10935850B1 (en) Display panel, manufacturing method, and electronic device
WO2024027374A1 (zh) 隐藏信息显示方法、设备、芯片***、介质及程序产品
US20230121915A1 (en) Lens assembly and electronic device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE