WO2023016100A1 - 传输路径的控制方法、装置、终端及存储介质 - Google Patents

传输路径的控制方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2023016100A1
WO2023016100A1 PCT/CN2022/100839 CN2022100839W WO2023016100A1 WO 2023016100 A1 WO2023016100 A1 WO 2023016100A1 CN 2022100839 W CN2022100839 W CN 2022100839W WO 2023016100 A1 WO2023016100 A1 WO 2023016100A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission path
antenna
adjustment
path
mode
Prior art date
Application number
PCT/CN2022/100839
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22855085.1A priority Critical patent/EP4376323A1/en
Publication of WO2023016100A1 publication Critical patent/WO2023016100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and in particular to a transmission path control method, device, terminal and storage medium.
  • the radio frequency chip of the terminal With more and more terminal standards and frequency bands, there are also many transmission paths between the radio frequency chip of the terminal and the antenna. Due to the limited space of the mobile phone, the number of antennas is also limited, that is, many frequency bands will share one antenna, so the setting of the transmission path involves the RF switching or combining devices in the terminal, and each device has an impact on the transmission performance of the transmission path, thus affecting the entire Communication Systems.
  • Some terminals use the method of fixing a single radio frequency transmission path to control the transmission path. Since the transmission path is fixed, the resource loss in the transmission path is also fixed. Even if there is a transmission path with less loss during the transmission process, the terminal cannot switch .
  • the main purpose of the embodiments of the present application is to provide a transmission path control method, device, terminal, and storage medium.
  • the embodiment of the present application provides a transmission path control method, including the following steps: detecting the service requirements and/or network characteristics of the current terminal; according to the currently detected service requirements and/or network characteristics, matching corresponding The transmission path adjustment mode; adjust the transmission path from the radio frequency chip to the antenna according to the matching transmission path adjustment mode; wherein, the number of devices passed by the adjusted transmission path is less than the number of devices passed by the transmission path before adjustment, or the number of devices passed by the adjusted transmission path
  • the RF conduction path and routing are shorter than the RF conduction path and routing before adjustment, or the antenna coverage frequency band corresponding to the adjusted antenna path is less than the antenna coverage frequency band corresponding to the antenna path before adjustment, and the transmission path includes the RF conduction path and antenna path, the antenna path is used for antenna selection.
  • an embodiment of the present application further provides a transmission path control device, including: a detection module configured to detect the service requirements and/or network characteristics of the current terminal; a matching module configured to detect The business requirements and/or network characteristics match the corresponding transmission path adjustment mode; the adjustment module is set to adjust the transmission path from the radio frequency chip to the antenna according to the matching transmission path adjustment mode; wherein, the adjusted transmission path passes through The number of devices is less than the number of devices passed by the transmission path before adjustment, or the adjusted RF conduction path and traces are shorter than those before adjustment, or the antenna coverage frequency band corresponding to the adjusted antenna path is less than that before adjustment
  • the antenna path corresponds to the frequency band covered by the antenna, and the transmission path includes a radio frequency conduction path and an antenna path, and the antenna path is used for antenna selection.
  • an embodiment of the present application further provides a terminal, including: at least one processor; a memory connected to the at least one processor in communication; the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by at least one processor Executed by a processor, so that at least one processor can execute the above transmission path control method.
  • an embodiment of the present application further provides a computer-readable storage medium storing a computer program, and implementing the above transmission path control method when the computer program is executed by a processor.
  • FIG. 1 is a schematic flowchart of a method for controlling a transmission path provided according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a transmission path structure of a radio frequency front-end module provided according to an embodiment of the present application
  • Fig. 3 is a schematic diagram of the RX MIMO reception service transmission path provided according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a transmission path passing through a landmark device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of RFFLESS line adjustment provided according to an embodiment of the present application.
  • FIG. 6 is a first structural schematic diagram of a control device for a transmission path provided according to an embodiment of the present application.
  • FIG. 7 is a second structural schematic diagram of a control device for a transmission path provided according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an RFFLESS program unit device provided according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of acquiring parameters by an adaptive control unit according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a terminal provided according to an embodiment of the present application.
  • the embodiment of the present application relates to a method for controlling a transmission path, as shown in FIG. 1 , including the following steps:
  • Step 101 detecting the service requirements and/or network characteristics of the current terminal
  • Step 102 matching the corresponding transmission path adjustment mode according to the currently detected service requirements and/or network characteristics
  • Step 103 adjust the transmission path from the radio frequency chip to the antenna according to the matching transmission path adjustment mode; wherein, the number of devices passed by the adjusted transmission path is smaller than the number of devices passed by the transmission path before adjustment, or the adjusted radio frequency conduction path and the routing is shorter than the RF conduction path and routing before adjustment, or the antenna coverage frequency band corresponding to the adjusted antenna path is less than the antenna coverage frequency band corresponding to the antenna path before adjustment, the transmission path includes the RF conduction path and the antenna path, the antenna Paths are used for antenna selection.
  • the transmission path control method of this embodiment is applied to wireless communication terminals, such as mobile phones, tablets, notebook computers, and the like. Due to the increasingly complex functions of the terminal, for example, the same mobile phone must be compatible with most of the functions of cellular mobile communication, WIFI, Bluetooth, and Global Positioning System (Global Positioning System, referred to as "GPS”) at the same time, and it needs to meet the requirements of 2G/3G/4G/ 5G frequency band requirements, covering frequency bands ranging from 600M-6GHZ. In order to pursue a higher data transmission rate, it is also necessary to implement Multiple Input Multiple Output (“MIMO”), that is, multi-antenna and multi-carrier aggregation (Carrier Aggregation, "CA”) technology.
  • MIMO Multiple Input Multiple Output
  • CA Carrier Aggregation
  • Each frequency band such as the B1 frequency band, is divided into four MIMO channels: main set, diversity, main MIMO, and sub-MIMO. Each channel is divided into four MIMO channels due to different physical devices. More than 4-20 branch paths, so there may be more than 20 RF transmission paths in each frequency band.
  • the transmission path of the terminal also includes the transmission path of the RF front-end module as shown in Figure 2.
  • the transmission path controlled by the terminal in this application refers to the transmission path in the RF front-end module, from the RF chip to the antenna or test point (Test socket), also includes the pre-stage switch, intermediate stage low noise amplifier (Low Noise Amplifier, referred to as "LNA”), post-stage switch, open-line switch, etc.
  • LNA Low Noise Amplifier
  • the transmission path contains many switches, filters, etc., and in order to be compatible with coexistence requirements such as carrier aggregation, some RF switching or combining devices are needed, such as 3P3T switches, DP4T switches, SPDT switches, NPNT (multi-pole multi-throw switches) , duplexer (DIPLEXER), frequency divider (TRIPLEXER), and some extractors, power dividers, combiners, etc., which will cause large losses, so many transmission paths are often in RF performance and data performance. Not optimal.
  • the transmission path is fixed and single.
  • the terminal cannot switch the path through the bypass mode. Therefore, even in some usage scenarios, the resource loss of the transmission path is high, and the transmission path cannot be changed.
  • PCB printed circuit Board
  • the corresponding transmission path adjustment mode is matched, and the transmission path from the radio frequency chip to the antenna is adjusted according to the matched transmission path adjustment mode.
  • Devices are bound to be accompanied by system resource loss, and the number of devices passed by the adjusted transmission path is smaller than the number of devices passed by the transmission path before adjustment, or the adjusted RF conduction path and wiring are shorter than the pre-adjusted RF conduction path and Routing, or the antenna coverage frequency band corresponding to the adjusted antenna path is less than the antenna coverage frequency band corresponding to the antenna path before adjustment.
  • the transmission path includes the RF conduction path and the antenna path.
  • the antenna path is used for antenna selection, so the adjusted transmission path
  • the performance of the transmission path is higher than that of the transmission path before adjustment, therefore, the resource loss of the transmission path after adjustment is smaller than the resource loss of the transmission path before adjustment, thereby reducing the resource loss of the communication system.
  • step 101 the terminal detects service requirements and/or network characteristics of the current terminal.
  • the terminal uses the antenna to receive the communication signal from the base station, after filtering, signal amplification and other processing, it enters the RF main chip for frequency conversion, and then transmits it to the baseband processing chip.
  • the baseband chip performs analog-digital processing on the signal to convert into corresponding network parameters, such as network type (such as GSM, WCDMA, CDMA, LTE, NR, etc.), cell information (such as Cell info, PCI, etc.), frequency band (such as B1/B3/N78/N41, etc.), channel Number (Arfcn) or center frequency point, and signal quality parameters, such as signal strength (such as RSSI, RSRP), signal-to-noise ratio SNR, channel quality indicator CQI, uplink transmit power, and scheduling parameters such as DLRI data flow number, uplink MCS , downlink MCS, SRS polling mechanism and so on.
  • network parameters such as network type (such as GSM, WCDMA, CDMA, LTE, NR, etc.), cell information (
  • the terminal can obtain the difference in network signal quality under different transmission paths, so as to perform corresponding transmission path control.
  • the terminal will configure the keywords corresponding to the network parameters into a corresponding log LOG mask set, collect, filter and summarize through the system, obtain key parameters and then report them.
  • the network characteristics include the network environment and/or the path loss of the transmission path, wherein the network environment includes one of the following network parameter indicators or any combination thereof: working frequency band, working frequency point, wireless signal strength, uplink and downlink call quality , data throughput, bit error rate.
  • the terminal controls the transmission path according to various network parameter indications and any combination thereof, so that the adjusted transmission path can fit the network condition of the terminal and meet the actual use needs of the terminal.
  • the terminal uses the baseband chip to collect the working mode of the radio frequency chip, and extracts key parameters and information, such as air interface LOG information and service reporting information, by detecting the wireless parameter log of the current terminal in communication.
  • the service requirements include diversity mode, MIMO mode, multi-carrier aggregation CA mode, non-CA mode, down-antenna mode, non-down-antenna mode, independent networking SA mode, non-independent networking NSA mode, There is any one or any combination of harmonic intermodulation interference mode, no harmonic intermodulation interference mode, head-hand mode, free space mode, coexistence mode, and no coexistence mode.
  • the above demand information specifically includes air interface LOG information and service reporting information, such as receiving RX MIMO mode, specifically RX1, RX2, RX3, RX4 and other modes, and CA and non-CA modes specifically include uplink CA, downlink CA, 2CA, 3CA, 4CA , 5CA, etc.
  • the lower antenna and non-lower antenna modes specifically include the upper and lower antenna ASDIV switching mode and non-switching mode, the mode with and without harmonic intermodulation interference
  • the head-hand and free space modes specifically include own space
  • Call modes such as left and right head and hands
  • coexistence mode and non-coexistence mode specifically include LTE, NR, WIFI and other coexistence modes.
  • the adjusted transmission path can meet the service requirements of the terminal and meet the actual use needs of the terminal.
  • the terminal matches the corresponding transmission path adjustment mode according to the currently detected service requirements and/or network characteristics. Specifically, when the transmission path control method of this embodiment is enabled, the terminal collects the LOG parameter set in real time, and analyzes the parameters of different transmission paths at different times for comparison. The terminal according to the detection and comparison results, according to the current network quality, service According to the demand, the insertion loss of each path system, the interference detection situation, the use of the upper and lower antennas, perform calculations, match and select the most appropriate adjustment mode and parameters.
  • the terminal can perform the corresponding transmission path adjustment mode, and the loss (Loss) of the large path is small, or the loss (Loss) is small.
  • the path loss of each path is increased to achieve balanced loss of each path, use the same receiving level, and improve the terminal data throughput performance.
  • the terminal queries the transmission path adjustment mode corresponding to the currently detected service requirements and/or network characteristics in the preset mapping relationship to obtain the matching transmission path adjustment mode, wherein the mapping relationship is used to store the service requirements And/or the corresponding relationship between the network feature and the transmission path adjustment mode.
  • the terminal may pre-calculate the system loss of the required transmission path, and acquire a correspondingly set transmission path adjustment mode.
  • the terminal can pre-set the transmission path adjustment mode through two calculation methods.
  • the first one is to model the individual losses of each radio frequency path, device, and wiring
  • the unit loss is superimposed to form a system loss.
  • the B3 frequency band is sent from the transceiver chip, and then passes through the LNA, the first-level switch, the surface acoustic wave device (Surface Acoustic Wave, referred to as "SAW”), the SP2T switch, Diplexer, DPDT, 3P3T switch to the target test socket, the loss of these device units plus the loss of intermediate wiring and punching is the overall system loss.
  • SAW Surface Acoustic Wave
  • the second method is that the terminal uses automatic gain control (Automatic Gain Control, referred to as "AGC”) level scanning and reference signal receiving power (Reference Signal Receiving Power, RSRP) self-scanning, or R&D signaling test scanning to test all transmission paths
  • AGC Automatic Gain Control
  • RSRP Reference Signal Receiving Power
  • a matching transmission path adjustment mode is obtained. Since the mapping relationship is used to store service requirements and The corresponding relationship between/or network characteristics and the transmission path adjustment mode, that is, the service requirements and/or network characteristics, and the transmission path adjustment mode are mapped and stored in advance, so that the terminal can control the transmission path according to the current According to business requirements and/or network characteristics, the matching transmission path adjustment mode can be obtained by querying, so that the terminal can self-adaptively select the transmission path and reduce the resource consumption of the communication system.
  • the terminal adjusts the transmission path from the radio frequency chip to the antenna according to the matching transmission path adjustment mode; wherein, the number of devices passed by the adjusted transmission path is smaller than the number of devices passed by the transmission path before adjustment, or the adjusted
  • the RF conduction path and routing are shorter than the RF conduction path and routing before adjustment, or the antenna coverage frequency band corresponding to the adjusted antenna path is less than the antenna coverage frequency band corresponding to the antenna path before adjustment, and the transmission path includes the RF conduction path and antenna
  • the antenna path is used for antenna selection, that is, the performance of the adjusted transmission path is higher than that of the unadjusted transmission path.
  • the adjustment of the transmission path by the terminal may be any one of passive components, active components, lines, antennas and any combination thereof.
  • the adjustment of passive components can be SAW and LTCC filters, switches (SPDT, DPDT, SP3T, SPNT, 3P3T, 4T4T, NPNT, etc.), nplexer frequency dividers (Diplexer, Triplexer, muplexer), extractors, traps Any one or more adjustments of devices such as oscilloscopes, duplexers, triplexers, and couplers.
  • the line of the conventional transmission path needs to pass through many intermediate devices.
  • holes will be drilled through layers.
  • the loss of long traces and small holes will also be large.
  • This implementation For example, use the line adjustment to select the transmission line according to the current network situation and business requirements, so as to reduce the loss caused by the large hole in the line.
  • the bottom antenna needs to be switched from the bottom to the top due to the poor grip performance of the bottom antenna, and because the transmit signal comes out of the radio frequency integrated circuit (RFIC) transceiver chip , after PA power amplifier amplification, RF front-end switch, front-end lower antenna switch, and then through long wiring and punching (ie Line1, Via1, Line2, Via2, Line3 in the figure), to the upper antenna switch, and finally to the top
  • RFIC radio frequency integrated circuit
  • the efficiency advantage ratio of the top antenna is offset by the conduction power.
  • the line adjustment function can be called, switched by the switch, bypassing the switching devices compatible with other purposes, directly from the front end of the PA module, through the RFLESS line Line4 to the target test socket, thereby reducing the long wiring and punching loss, and reaching the top of the lift The purpose of the maximum transmission power, and then optimize the uplink communication quality of NR.
  • RFLESS is a new circuit design concept proposed in this embodiment.
  • some circuits, modules, devices, and wiring in the radio frequency link are real-time and automatically Adaptively skip (BYPASS) or omit to achieve the idea of targeted reconfiguration of circuit design.
  • BYPASS Adaptively skip
  • the RF transceiver signals are switched to the RFLESS transmission path to save path loss and device insertion loss, so as to enhance the transmission power and receive sensitivity, and then achieve The purpose of improving call quality and data throughput performance.
  • the RFLESS here includes passive device RFLESS, RF front-end module RFLESS, chip internal RFLESS, front-end module external RFLESS, SAW and LTCC filters, etc., switching devices (SPDT, DPDT, SP3T, SPNT, 3P3T, 4T4T, NPNT) RFLESS, nplexer frequency divider (Diplexer, Triplexer, mulplexer) RFLESS, extractor, notch filter RFLESS, RF routing path (microstrip/stripline) RFLESS, etc.
  • the transmission path can be adjusted so that the resource loss of the adjusted transmission path is less than that of the pre-adjusted transmission path. loss, thereby reducing the resource loss of the communication system.
  • the terminal can obtain the priority of each adjustment type according to the matching transmission path adjustment mode, and preferentially adopt the adjustment type with the highest priority , to adjust the transmission path. If the performance of the adjusted transmission path does not meet the preset requirements, the adjustment type of the next priority will be used in the order of priority from high to low to adjust the transmission path until the adjusted The performance of the transmission path meets the preset requirements.
  • the adjustment type with the highest priority is given priority to adjust the transmission path. If the performance of the adjusted transmission path is not If the preset requirements are met, the adjustment type of the next priority will be used to adjust the transmission path in the order of priority from high to low until the performance of the adjusted transmission path meets the preset requirements, which can be realized according to different needs. Customize the priority of different adjustment types, and switch the adjustment type according to the order of priority when the priority adjustment type is not suitable, so that the adjustment of the transmission path can be completed as soon as possible, shortening the adjustment time and reducing resource consumption during the adjustment process.
  • the terminal may invoke a preset radio frequency driver according to a matching transmission path adjustment mode, wherein the radio frequency driver is configured to adjust the transmission path in a set adjustment manner.
  • the radio frequency driver is configured to adjust the transmission path in a set adjustment manner.
  • a default radio frequency driver program which is set to control the terminal to use the default transmission path to transmit through each radio frequency front-end device.
  • the radio frequency driver by setting the radio frequency driver to configure and turn on a special transmission path, the corresponding signal can be controlled by the program unit to go through a specific path channel, for example, CA business traffic goes through the CA channel, and non-CA business traffic goes through the non-CA channel without interference Service traffic uses the SAWLESS channel, and interfering service traffic uses the SAW channel.
  • Radio frequency antennas For terminal antennas, most of the traditional radio frequency antennas are integrated with many frequency bands, such as NR and LTE combined, NR and WIFI combined, NR and LTE and GPS combined, one of these combined circuits is combined into Antenna, and the combiner itself has a certain loss. At the same time, in order to be compatible with the efficiency of NR and LTE, WIFI, and GPS standards, or compatible with single LTE and NR multi-band efficiency, the performance of each resonance frequency point is not the highest. In this embodiment, three RFLESS antenna adjustment working modes are provided. Method 1, for the single-network RFLESS antenna mode, it is mainly aimed at the scenario of multi-combined antennas.
  • the control module will first control the combiner to bypass to the specified NR path, and at the same time control the antenna parasitic length and coupling point to the NR only standard range.
  • Method 2 single-frequency RFLESS antenna mode, mainly for the scenario of single-mode without combining channels but multi-band, if the network and service module detects that the current service is the China Mobile B41 mode, detect that the surrounding cells or previous cells have not roamed to other
  • the control module will control the antenna parasitic length and coupling point to the B41 independent frequency band, and even resonate to A specific frequency point, so that the antenna efficiency of the specific frequency point can be maximized.
  • Mode 3 single-point RFLESS antenna mode, mainly for wide bandwidth NR frequency bands, such as frequency bands N77/N78/N79, the frequency spans are 3300-3800MHz, 3300-4200MHz and 4400-5000MHz respectively, if the terminal detects that the current terminal is working in A specific frequency point, or a fixed channel, such as the frequency point of N78 is 3700MHz, by detecting that the working bandwidth of the current frequency band is 100M, the resonant frequency point and working bandwidth of the antenna can be reduced to the currently specified frequency point and bandwidth Within the range, in order to improve the antenna efficiency and standing wave ratio of the current working channel and frequency point, that is, the working frequency point of the antenna is locked to the single-point working mode instead of the broadband working mode, that is, the current antenna coverage and supported frequency points do not need Covers the entire frequency range, and tunes or changes the antenna matching form for the current frequency band and specific working channel frequency points.
  • the terminal invokes the preset radio frequency driver according to the matching transmission path adjustment mode. Since the radio frequency driver is set to adjust the transmission path in a set adjustment mode, it can be implemented according to different needs.
  • the transmission path adjustment mode can customize different RF drivers to realize the self-adaptive selection of the transmission path by the terminal.
  • the solution of this embodiment can match the corresponding transmission path adjustment mode according to the currently detected service requirements and/or network characteristics, and adjust the transmission path from the radio frequency chip to the antenna according to the matching transmission path adjustment mode.
  • a device is bound to be accompanied by system resource loss, and the number of devices passed by the adjusted transmission path is smaller than the number of devices passed by the transmission path before adjustment, or the adjusted RF conduction path and traces are shorter than the pre-adjusted RF conduction path and routing, or the antenna coverage frequency band corresponding to the adjusted antenna path is less than the antenna coverage frequency band corresponding to the antenna path before adjustment, the transmission path includes a radio frequency conduction path and an antenna path, and the antenna path antenna is selected.
  • the performance of the adjusted transmission path is higher than that of the unadjusted transmission path. Therefore, the resource loss of the adjusted transmission path is smaller than the resource loss of the unadjusted transmission path, thereby reducing the resource loss of the communication system.
  • the embodiment of the present application also relates to a transmission path control device, as shown in FIG. 6 , including:
  • a detection module 601 configured to detect service requirements and/or network characteristics of the current terminal
  • the matching module 602 is configured to match the corresponding transmission path adjustment mode according to the currently detected service requirements and/or network characteristics;
  • the adjustment module 603 is configured to adjust the transmission path from the radio frequency chip to the antenna according to the matching transmission path adjustment mode; wherein, the number of devices passed by the adjusted transmission path is smaller than the number of devices passed by the transmission path before adjustment, or after adjustment
  • the RF conduction path and routing of the antenna path are shorter than the RF conduction path and routing before adjustment, or the antenna coverage frequency band corresponding to the adjusted antenna path is less than the antenna coverage frequency band corresponding to the antenna path before adjustment, and the transmission path includes RF conduction path and Antenna path, the antenna path is used for antenna selection. That is, the performance of the transmission path after adjustment is higher than the performance of the transmission path before adjustment.
  • the adjustment to the transmission path from the radio frequency chip to the antenna includes adjustment types of one of the following or any combination thereof: adjustment of passive components, adjustment of active components, line adjustment, and antenna adjustment.
  • the adjustment module 603 is further configured to obtain the priority of each adjustment type according to the matching transmission path adjustment mode if the adjustment of the transmission path from the radio frequency chip to the antenna includes multiple adjustment types, and adopt The adjustment type with the highest priority is used to adjust the transmission path. If the performance of the adjusted transmission path does not meet the preset requirements, the adjustment type with the next priority will be used in the order of priority from high to low to adjust the transmission path. Adjustment is performed until the performance of the adjusted transmission path meets the preset requirement.
  • the adjustment module 603 is further configured to invoke a preset radio frequency driver according to the matching transmission path adjustment mode, wherein the radio frequency driver is configured to adjust the transmission path in a set adjustment manner.
  • the matching module 602 is further configured to query the transmission path adjustment mode corresponding to the currently detected service requirements and/or network characteristics in the preset mapping relationship to obtain a matching transmission path adjustment mode, wherein, The mapping relationship is used to store the correspondence between service requirements and/or network characteristics and transmission path adjustment modes.
  • the service requirements include one or any combination of the following, diversity mode, multiple input multiple output MIMO mode, multi carrier aggregation CA mode, non-CA mode, down-antenna mode, non-down-antenna mode, independent networking SA mode , Non-independent networking NSA mode, with harmonic intermodulation interference mode, without harmonic intermodulation interference mode, head-hand mode, free space mode, with coexistence mode, without coexistence mode.
  • the network characteristics include the network environment and/or the path loss of the transmission path, wherein the network environment includes one of the following network parameter indicators or any combination thereof: working frequency band, working frequency point, wireless signal strength, uplink and downlink call quality , data throughput, bit error rate.
  • the detection module 601 includes an L1 network detection unit, an L2 service detection unit, an L3 path loss calculation unit, and a matching module 602, which includes an L4 RFFLESS pattern matching unit, and an adjustment module 603, Contains L5 parameter storage unit, L6 RFESS program unit, L7 adaptive control unit, L8 RFLESS passive unit, L9 RFLESS active unit, L10 RFLESS line unit, L11 RFLESS antenna unit.
  • the L1 network detection unit is connected to the pattern matching unit L4, and is set to detect the network environment of the terminal (including working frequency band, frequency point, wireless signal strength, uplink and downlink call quality, data throughput, bit error rate and other network parameters) index). For example, if the N78 frequency band of the 5G network takes the normal path A, the current signal strength is -90, 4*4mimo only has 3 data streams to transmit, and the downlink MCS is up to 21, and the RFFLESS path B, the corresponding signal strength is -85, 4 *4mimo only has 4 data streams to transmit, and the downlink MCS is up to 27, which indicates that RFLES path B is better, and the terminal should switch to B path to work.
  • the network environment of the terminal including working frequency band, frequency point, wireless signal strength, uplink and downlink call quality, data throughput, bit error rate and other network parameters.
  • the L2 service detection unit is connected to the pattern matching unit L4, and is set to detect the service requirements of the terminal (including main diversity mode or mimo mode, CA and non-CA mode, down-antenna and non-down-antenna mode, NSA and SA mode, harmonic HIM interference and no HIM interference modes, head-hand and free-space modes, coexistence and no coexistence modes, etc.).
  • the L3 path loss calculation unit is connected to the pattern matching unit L4 and is configured to calculate the system loss of the required communication path.
  • the L4 mode matching unit is connected to the self-adaptive control unit L7, and is configured to match and select an appropriate RFFLESS adjustment mode and method according to the above detection and calculation results.
  • the L5 parameter storage unit is connected to the self-adaptive control unit L7, and is set as the storage of each RFLESS model parameter, test parameter, calibration parameter and control parameter (such as the loss parameter storage of each device, chip, module, wiring, punching, etc. ). At the same time, the L5 parameter storage unit is also set to control subsequent units to start and close the storage of RFFLESS action parameters, and is set to store RFFLESS calibration parameters.
  • the L6RFLESS program unit is connected with the self-adaptive control unit L7, and is set as the call of the RFFLESS radio frequency driver.
  • non-CA combination 2CA combination
  • 3CA combination 3CA combination
  • 4CA combination 4CA combination
  • the non-CA combination (B1) does not need to go through a double or multiple switch, dipLexer or tripLexer, while the 2CA combination (B1_B3) needs to go through a double switch, and the 3CA combination (B1_B3_B7) needs to go through a double switch and a dipLexer.
  • the 4CA combination (B1_B3_B7_B20) requires a double switch and a tripLexer.
  • the business requirement unit can detect the current CA combination according to different business requirements, adaptively call the corresponding RFC program, and then control the adjustment of RFLESS devices under different CA combinations.
  • the L7 self-adaptive control unit is connected with each RFFLESS adjustment unit, and is set to adjust and control the adaptive RFFLESS algorithm and hardware according to the current network conditions and business requirements (including the adjustment control of the RFFLESS passive unit, the adjustment control of the RFFLESS active unit, Adjustment control of RFLESS path unit, adjustment control of RFLESS antenna unit).
  • the adaptive control program will perform targeted adaptive RFFLESS adjustment control according to the following business requirements and network characteristics until the wireless call performance, uplink and downlink throughput, bit error rate, etc. meet the target requirements.
  • the adaptive control program is also responsible for the selection of which RFLESS adjustment measures are specifically selected.
  • the network parameters detected by the current network detection unit and the service parameters detected by the service detection unit are combined to compare before and after the change. Which part of the above four parts plays a major role in the parameter change value of ? If it is related to front-end insertion loss, call the passive adjustment unit first; if it is related to the CA and the bypass circuit in the unit, call the active unit first; if it is related to up and down switching, call the path adjustment unit first; if it is related to antenna performance, give priority to calling Call up the antenna adjustment unit. If the relevant parameters are not obvious or there are many, the above four adjustments can be adjusted one by one, or in combination of two or more, until the network performance requirements are met.
  • the L8 RFFLESS passive adjustment unit is connected to the self-adaptive control unit L7, and is set to adjust and control the passive unit's RFFLESS according to the current network conditions and business requirements.
  • the L9 RFFLESS active adjustment unit is connected to the self-adaptive control unit L7, and is set to adjust and control the RFLES of the active unit according to the current network conditions and business requirements.
  • the L10 RFFLESS line adjustment unit is connected to the self-adaptive control unit L7, and is set to adjust and control the RFLESS of the routing line according to the current network conditions and business requirements.
  • the L11 RFFLESS antenna adjustment unit is connected to the adaptive control unit L7, and is set to adjust and control the RFLESs of the antenna unit according to the current network conditions and business requirements.
  • This embodiment can solve the problem of low sensitivity of the current radio frequency channel transmission path and configuration through the terminal RFFLESS circuit and algorithm improvement, can reduce system path loss, can improve the balance of each path, enhance signal strength, improve antenna performance, and then improve The user's communication and data service performance to improve the handheld call rate, call drop rate and data service.
  • the terminal can perform RFFLESS control on the SRS: since terminals N41 and N78 are 4*4 MIMO, each frequency band will have 4 radio frequency transmission paths, TX, DRX, PRX-MIMO and DRX-MIMO, and N41 corresponds to four Antennas A1, A2, A3, and A4, and N78 correspond to four antennas A5, A6, A7, and A8 respectively; in terms of circuit design, a compatible design is required between the antenna paths of N41 and N78, which is realized by an antenna switch, such as SP2T , 3P3T, 4P4T, etc. When the performance of the N78 antenna is not good, or when the N78 antenna is affected, it can be switched to the corresponding path antenna of the N41.
  • an antenna switch such as SP2T , 3P3T, 4P4T, etc.
  • the terminal can perform anti-interference RFFLESS control: when LTE B3 is used as the ENDC anchor point, the second harmonic of B3 will fall on the corresponding channel frequency point of the N78 frequency band, which will cause the receiving sensitivity of the N78 to deteriorate, and the N78 and N78
  • the path interference unit calculates all the above-mentioned combinations, and then selects the combined path with the least interference as the final ENDC working path.
  • the terminal can perform balanced path RFFLESS control: when the N78 is working at high-speed throughput 4*4 MIMO, the signal strength of the four channels must be relatively balanced, otherwise the throughput performance will be reduced due to imbalance.
  • the path of NR N78 has seven paths: M1, M2, M3, M4, M5, M6, and M7. If the original default path strengths are R1, R2, R3, and R4, which are unbalanced in comparison, you can switch to more balanced paths R1, R3, R5, and R7 to improve the balance and throughput of each channel.
  • This embodiment provides an RFLESS 5G terminal device, which uses a service and interference detection algorithm to calculate the path loss from the chip VCO to each test socket, and can accurately detect the loss of each path, and then collect the received signal strength value , the signal balance of each MIMO, and interference, etc., and select the best internal or external radio frequency path. It can also select the RFLESS transmission path in real time according to the current upper and lower antenna switching situation, left and right hand and grip posture, so that the terminal can always be in the optimal radio frequency and antenna transmission path with low loss and high gain, so as to improve the user's call quality and data throughput performance.
  • the embodiment of the present application also relates to a terminal, as shown in FIG. 10 , including: at least one processor 1001; a memory 1002 communicatively connected to the at least one processor; instructions, the instructions are executed by at least one processor 1001 in the method for controlling the transmission path in any of the above-mentioned embodiments.
  • the memory 1002 and the processor 1001 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 1001 and various circuits of the memory 1002 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the information processed by the processor 1001 is transmitted on the wireless medium through the antenna.
  • the antenna also receives information and transmits the information to the processor 1001 .
  • the processor 1001 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management and other control functions. Instead, the memory 1002 may be configured to store information used by the processor when performing operations.
  • Embodiments of the present application relate to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the program is stored in a storage medium, and includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种传输路径的控制方法、装置、终端及存储介质。本申请中,传输路径的控制方法,包括:检测当前终端的业务需求和/或网络特征(101);根据当前检测到的业务需求和/或网络特征,匹配对应的传输路径调整模式(102);根据匹配的传输路径调整模式对射频芯片至天线的传输路径进行调整(103);其中,调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,传输路径包括射频传导路径和天线路径,天线路径用于天线选择。

Description

传输路径的控制方法、装置、终端及存储介质
相关申请的交叉引用
本申请基于申请号为202110910008.1、申请日为2021年8月9日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域,特别涉及一种传输路径的控制方法、装置、终端及存储介质。
背景技术
随着通信技术的发展和演进,如何提高发射功率和接收灵敏度,以提高终端的无线射频和天线性能,减小通信***的资源损耗成为亟待解决的问题。
随着终端制式和频段越来越多,导致终端的射频芯片至天线之间的传输路径也非常多。而由于手机空间有限,天线数量也有限制,即很多频段会共用一个天线,因此传输路径的设置涉及终端中的射频切换或合路器件,各器件都对传输路径的传输性能存在影响,从而影响整个通信***。一些终端采用固定单一的射频传输路径的方法来控制传输路径,由于传输路径是固定的,传输路径中的资源损耗也是固定的,即使传输过程中存在损耗更小的传输路径,终端也不能进行切换。
因此,需要一种解决方案解决终端如何实现自适应选择传输路径,减少通信***的资源损耗。
发明内容
本申请实施例的主要目的在于提出一种传输路径的控制方法、装置、终端及存储介质。
为实现上述目的,本申请实施例提供了一种传输路径的控制方法,包括以下步骤:检测当前终端的业务需求和/或网络特征;根据当前检测到的业务需求和/或网络特征,匹配对应的传输路径调整模式;根据匹配的传输路径调整模式对射频芯片至天线的传输路径进行调整;其中,调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,传输路径包括射频传导路径和天线路径,天线路径用于天线选择。
为实现上述目的,本申请实施例还提供了一种传输路径的控制装置,包括:检测模块,被设置为检测当前终端的业务需求和/或网络特征;匹配模块,被设置为根据当前检测到的业务需求和/或网络特征,匹配对应的传输路径调整模式;调整模块,被设置为根据匹配的传输路径调整模式对射频芯片至天线的传输路径进行调整;其中,调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,传输路径包括射频传导路径和天线路径,天线路径用于天线选择。
为实现上述目的,本申请实施例还提供了一种终端,包括:至少一个处理器;与至少一 个处理器通信连接的存储器;存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述传输路径的控制方法。
为实现上述目的,本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述传输路径的控制方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请一实施例提供的传输路径的控制方法流程示意图;
图2是根据本申请一实施例提供的射频前端模块传输路径结构示意图;
图3是根据本申请一实施例提供的RX MIMO接收业务传输路径示意图;
图4是根据本申请一实施例提供的传输路径经过路标器件示意图;
图5是根据本申请一实施例提供的RFLESS线路调整示意图;
图6是根据本申请一实施例提供的传输路径的控制装置结构示意图一;
图7是根据本申请一实施例提供的传输路径的控制装置结构示意图二;
图8是根据本申请一实施例提供的RFLESS程序单元器件示意图;
图9是根据本申请一实施例提供的自适应控制单元获取参数示意图;
图10是根据本申请一实施例提供的终端结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的实施例涉及一种传输路径的控制方法,如图1所示,包括以下步骤:
步骤101,检测当前终端的业务需求和/或网络特征;
步骤102,根据当前检测到的业务需求和/或网络特征,匹配对应的传输路径调整模式;
步骤103,根据匹配的传输路径调整模式对射频芯片至天线的传输路径进行调整;其中,调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,传输路径包括射频传导路径和天线路径,天线路径用于天线选择。
本实施例的传输路径的控制方法,应用于无线通讯的终端,例如手机、平板、笔记本电脑等等。由于终端的功能日益复杂,例如,同一部手机要同时兼容蜂窝移动通信、WIFI、蓝牙、全球定位***(Global Positioning System,简称“GPS”)中的大部分功能,需要满足2G/3G/4G/5G的频段需求,覆盖频段从600M-6GHZ不等。为了追求更高的数据传输数率, 还需要实现多进多出(Multiple Input Multiple Output,简称“MIMO”)即多天线和多载波聚合(Carrier Aggregation,简称“CA”)技术。手机的频段会有30多个,天线10多个,每个频段例如B1频段又分为主集、分集、主MIMO和分MIMO四个MIMO通道,每个通道由于物理器件的不同,又会分成4-20多个分支路径,所以每个频段的射频传输路径可能有20多个。
终端的传输路径除了天线路径,还包括如图2所示的射频前端模块传输路径,本申请中终端控制的传输路径,即是指射频前端模块中的传输路径,从射频芯片至天线或者测试点(测试座),还包括之间的前级开关、中间级低噪声放大器(Low Noise Amplifier,简称“LNA”)、后级开关,开线切换开关等。由于传输路径中包含很多开关,滤波器等,同时为了兼容载波聚合等共存需求,需要用到一些射频切换或合路器件,如3P3T开关、DP4T开关、SPDT开关、NPNT(多刀多掷开关)、双工器(DIPLEXER)、分频器(TRIPLEXER),还有一些萃取器、功分器、合路器等,从而会导致损耗较大,所以许多传输路径在射频性能和数据性能上也往往不是最优的。
一些终端中,传输路径是固定单一的,当路径存在异常或由于其他需求时,终端无法通过旁路模式切换路径,要实现传输路径的旁路模式,只能通过重新对终端设置兼容电路更改贴片料单实现,因此,即使在一些使用场景下,传输路径的资源损耗较高,也无法更改传输路径。同时由于射频通道和传输路径的数量较多,需要各通道、传输路径走线及布局在面积有限的印制电路板(Printed Circuit Board,简称“PCB”)上,使其既满足一定的兼容性要求,又要满足一定的隔离度要求,以满足数据吞吐量和用户感受,从而导致整个传输路径的在设置时要考虑的因素较多,设置过程复杂。
本实施例中,根据当前检测到的业务需求和/或网络特征,匹配对应的传输路径调整模式,根据匹配的传输路径调整模式对射频芯片至天线的传输路径进行调整,由于传输路径每经过一个器件,必然伴随着***的资源损耗,而调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,传输路径包括射频传导路径和天线路径,天线路径用于天线选择,所以调整后的传输路径的性能高于调整前的传输路径的性能,因此,调整后的传输路径的资源损耗小于调整前的传输路径的资源损耗,从而减少通信***的资源损耗。
下面对本实施例的传输路径的控制方法实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
在步骤101中,终端检测当前终端的业务需求和/或网络特征。
具体地,对于网络特征的检测,终端使用天线接收来自基站的通讯信号,经过滤波、信号放大等处理后进入射频主芯片变频,再传输给基带处理芯片,基带芯片将信号进行模数处理,换算成对应的网络参数,例如,如网络类型(如GSM、WCDMA、CDMA、LTE、NR等)、小区信息(如Cell info、PCI等)、频段(如B1/B3/N78/N41等)、信道号(Arfcn)或中心频点,以及信号质量参数,如信号强度(如RSSI、RSRP)、信噪比SNR、信道质量指示CQI、上行发射功率,还包括调度参数如DLRI数据流数、上行MCS、下行MCS、SRS轮询机制等等。终端通过对这些网络参数进行采集和对比,可得到不同传输路径下的网络信号质量差异,从而进行对应的传输路径控制。终端会将网络参数对应的关键字配置成相应的日志 LOG掩码集,通过***采集、过滤、汇总,得到关键参数然后上报。
在一个例子中,网络特征包括网络环境和/或传输路径的路径损耗,其中,网络环境包括以下网络参数指标之一或其任意组合:工作频段、工作频点、无线信号强度、上下行通话质量、数据吞吐量、误码率。
本实施例中,终端通过根据各种网络参数指示及其任意组合,进行传输路径的控制,可以使得调整后的传输路径贴合终端的网络情况,符合终端实际使用需要。
对于业务需求的检测,终端使用基带芯片采集射频芯片的工作模式,通过检测当前终端在通讯中的无线参数LOG,提取关键性参数及信息,例如,空口LOG信息和业务上报信息等。
在一个例子中,业务需求包括分集模式、多输入多输出MIMO模式、多载波聚合CA模式、非CA模式、下天线模式、非下天线模式、独立组网SA模式、非独立组网NSA模式、有谐波互调干扰模式、无谐波互调干扰模式、头手模式、自由空间模式、有共存模式、无共存模式中的任意一种或者任意组合。其中,上述需求信息具体有空口LOG信息和业务上报信息,如接收RX MIMO模式,具体RX1、RX2、RX3、RX4等模式,CA和非CA模式具体包括上行CA、下行CA、2CA、3CA、4CA、5CA等,下天线和非下天线模式具体包括上下天线ASDIV切换模式和非切换模式,有谐波互调干扰和没谐波互调干扰模式,头手和自由空间模式具体包括自有空间,左右头手等通话模式,有共存和没共存模式具体包括LTE、NR、WIFI等共存模式。
本实施例中,通过根据各种业务需求及其任意组合进行传输路径的控制,可以使得调整后的传输路径贴合终端的业务需求,符合终端实际使用需要。
在步骤102中,终端根据当前检测到的业务需求和/或网络特征,匹配对应的传输路径调整模式。具体地,当启用本实施例的传输路径的控制方法后,终端实时采集LOG参数集,并分析不同传输路径的不同时间的进行参数对比,终端根据检测及对比结果,根据当前的网络质量、业务需求、各路径***插损、干扰检测情况、上下天线的使用情况、进行计算,匹配选择最合适的调整模式及参数。
例如,以RX MIMO接收业务为例,如图3所示,4G和5G的传输路径非常多,不同传输路径的路径损耗不一样,不同传输路径性能相差大,就会导致信道均衡性差,如果一个4*4MIMO的四条通道性能不均衡,接收到的RSRP信号电平将不一致,严重时直接会影响双流或四流下的MIMO吞吐性能,即调制性能低,会导致误码率高,进而导致吞吐速率低。因此,当检测到当前终端处于4*4MIMO业务,且四路的RSRP不一致时,终端可以进行对应的传输路径调整模式,将丢失(Loss)大的路径损耗较小,或将丢失(Loss)小的路径损耗增大,以达到各路径损耗均衡,使用接收电平也一致,提高终端数据吞吐性能的目的。
在一个例子中,终端在预设的映射关系中查询与当前检测到的业务需求和/或网络特征对应的传输路径调整模式,得到匹配的传输路径调整模,其中,映射关系用于存储业务需求和/或网络特征,与传输路径调整模式的对应关系。
具体地,终端可以预先计算所需传输路径的***损耗,获取对应设置的传输路径调整模式。其中,终端可以通过两种计算方式,预先设置好传输路径调整模式,第一种是将各射频路径,器件,走线包括打孔的单个损耗建立成模型,统计当前经过哪些路标器件,将各单元损耗叠加起来,形成***损耗,如图4所示,B3频段从收发芯片发出,依次经过LNA、一 级开关、声表面波器件(Surface Acoustic Wave,简称“SAW”)、SP2T开关、Diplexer、DPDT、3P3T开关到目标测试座,这些器件单元的Loss加上中间走线,打孔的损耗,即是总体***损耗。由于***损耗中各单元元素的损耗,在频点确认,板材及线宽确定的前提下,都是已知的,因此,只要检测到经过的器件就可以计算出传输路径总体的损耗值。第二种方法是终端通过自动增益控制(Automatic Gain Control,简称“AGC”)电平扫描和参考信号接收功率(Reference Signal Receiving Power,RSRP)自扫描,或研发信令测试扫描,测试所有传输路径的***损耗,例如从芯片口A到测试点B,经过路径1,***损耗插损为S1ab,经过路径2,***损耗插损为S2ab,经过路径3,***损耗插损为S3ab,经过路径4,***损耗插损为S4ab,上述4个插损值写入保存在终端中以备调用。
本实施例中,通过在预设的映射关系中查询与当前检测到的业务需求和/或网络特征对应的传输路径调整模式,得到匹配的传输路径调整模式,由于映射关系用于存储业务需求和/或网络特征,与传输路径调整模式的对应关系,即,预先将业务需求和/或网络特征,与传输路径调整模式进行映射存储,供终端在实际对传输路径进行控制时,可以根据当前的业务需求和/或网络特征,查询获取到匹配的传输路径调整模式,实现终端自适应选择传输路径,减少通信***的资源损耗。
在步骤103中,终端根据匹配的传输路径调整模式对射频芯片至天线的传输路径进行调整;其中,调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,传输路径包括射频传导路径和天线路径,天线路径用于天线选择,即调整后的传输路径的性能高于调整前的传输路径的性能。
具体地,终端对传输路径进行调整可以是对无源器件、有源器件、线路、天线中的任意一种及其任意组合。
其中,无源器件的调整可以是对SAW及LTCC滤波器、开关(SPDT、DPDT、SP3T、SPNT、3P3T、4T4T、NPNT等)、nplexer分频器(Diplexer、Triplexer、mulplexer)、萃取器、陷波器、双工器、三工器、耦合器等器件的任意一种或多种的调整。
常规传输路径的线路需要经过很多中间器件,同时由于PCB走线空间的限制,还会穿层打孔,除了器件损耗增加,长走线和小孔,大孔的损耗也会很大,本实施例使用线路的调整,通过当前的网络情况和业务需求,选择传输线路,以减少由于走线大孔带来的损耗。例如,如图5所示,如果终端当前是处于头手模式,底部天线由于手握性能比较差,NR发射天线需要从底部切换到顶部,而由于发射信号从射频集成电路(RFIC)收发芯片出来,经过PA功放放大、射频前端开关、前级下天线切换开关、再经过长走线和打孔(即图中的Line1、Via1、Line2、Via2、Line3),到上天线切换开关,最后到顶部测试点及天线后,整体损耗非常大,即传导功率降低很多,如在底部的功率有24dBm,而顶部只有22dBm,此时,即顶部天线的效率优势比被传导功率抵消掉,此时,就可以调用线路调整功能,通过开关切换,绕开途径兼容其他目的的开关器件,直接从PA模组前端,经过RFLESS线路Line4到目标测试座,从而减少了长走线和打孔损耗,达到提升顶部最大发射功率的目的,进而优化了NR的上行通讯质量。
RFLESS,是本实施例新提出的一种电路设计概念,通过业务、性能、场景、干扰、天线,CA或MIMO需求,将射频链路中的部分电路、模组、器件、走线实时、自适应地跳过(BYPASS) 或省去,达到有针对性的重构电路设计的思想。主要通过芯片,模组,分离电路等的兼容电路或射频驱动软件设计,让射频收发信号切换到RFLESS传输路径上去,以节省路径损耗,器件插损,达到增强发射功率和提升接收灵敏度,进而达到提升通话质量和数据吞吐性能的目的。这里的RFLESS包含无源器件RFLESS、射频前端模组RFLESS、芯片内部RFLESS、前端模组外部RFLESS、SAW及LTCC滤波器等的RFLESS、开关器件的(SPDT、DPDT、SP3T、SPNT、3P3T、4T4T、NPNT)的RFLESS、nplexer分频器(Diplexer、Triplexer、mulplexer)的RFLESS、萃取器、陷波器的RFLESS、射频走线路径(微带线/带状线)的RFLESS等。
本实施例中,通过对无源器件、有源器件、线路、天线及其任意组合的调整,可以实现对传输路径进行调整,使调整后的传输路径的资源损耗小于调整前的传输路径的资源损耗,从而减少通信***的资源损耗。
在一个例子中,若对射频芯片至天线的传输路径进行的调整包括多个调整类型,则终端可以根据匹配的传输路径调整模式,获取各调整类型的优先级,优先采用优先级最高的调整类型,对传输路径进行调整,若调整后的传输路径的性能未满足预设要求,则按优先级从高到低的顺序,采用下一优先级的调整类型,对传输路径进行调整,直至调整后的传输路径的性能满足预设要求。
本实施例中,通过设置调整模式及传输路径调整模式对应的调整类型的优先级,调整传输路径时优先采用优先级最高的调整类型,对传输路径进行调整,若调整后的传输路径的性能未满足预设要求,则按优先级从高到低的顺序,采用下一优先级的调整类型,对传输路径进行调整,直至调整后的传输路径的性能满足预设要求,可以实现按照不同需要,定制不同的调整类型优先级,并在优先的调整类型不合适时,按优先级顺序切换调整类型,可以使传输路径的调整尽快完成,缩短调整耗费时间,减少调整过程中的资源损耗。
在一个例子中,终端可以根据匹配的传输路径调整模式,调用预设的射频驱动程序,其中,射频驱动程序被设置为对传输路径以设定的调整方式进行调整。在终端内部,预设有默认的射频驱动程序,被设置为控制终端使用默认传输路径传输,经过各射频前端器件。而这些路径往往没有针对终端的不同使用场景进行分别设置,往往损耗大且不适用于手机弱信号场景,或者不能满足对应的业务场景需求。本实施例中,通过设置射频驱动程序配置导通专门的传输路径,可以通过程序单元控制对应信号走特定的路径通道,例如CA业务流量走CA通道,非CA业务流量走非CA通道,没有干扰业务流量走SAWLESS通道,有干扰业务流量走SAW通道等。
对于终端天线,传统的射频天线大部分是集成了很多频段的,如NR和LTE合路、NR和WIFI合路、NR和LTE及GPS合路,这些合路一则通过合路器,合并到天线,而合路器本身有一定的损耗。同时,天线为了兼容NR和LTE、WIFI、GPS各制式的效率,或兼容单LTE和NR多频段的效率,每个谐振频点的性能不是最高。本实施例中,提供了三种RFLESS天线调节工作模式。方式一,对于单网RFLESS天线模式,主要针对多合路天线的场景,如果网络和业务模块侦测到当前的业务是SA NR only模式,而此时不需要用到LTE、WIFI、蓝牙和GPS,则控制模块会先控制合路器bypass到指定NR路径,同时控制天线寄生长度及耦合点到NR only制式范围。方式二,单频RFLESS天线模式,主要针对单制式无合路但多频段的场景,如果网络和业务模块侦测到当前的业务是中移B41模式,侦测周围小区或既往小区没有漫游到其他LTE频段的可能,即这段时间只会用到B41而不需要用到LTE B1、B3、 B5、B8等频段,则控制模块会控制天线寄生长度及耦合点到B41独立频段,甚至可以谐振到特定的频点,从而让特定频点的天线效率达到最高。方式三,单点RFLESS天线模式,主要针对宽带宽的NR频段,如频段N77/N78/N79,频率跨度分别为3300-3800MHz、3300-4200MHz和4400-5000MHz,如果终端检测到当前终端的工作在某个特定频点,或某个固定的信道,如N78的频点3700MHz,通过检测当前频段的工作带宽为100M,将可将天线的谐振频点及工作带宽缩减到当前指定的频点及带宽范围内,以提升当前工作信道、频点的天线效率及驻波比,即将天线的工作频点锁定到单点工作模式,而不是宽频工作模式,即当前的天线的覆盖及支持的频点不用覆盖全频段范围,而针对当前频段,具体工作的信道频点而调谐或改变天线匹配形式。
本实施例中,终端根据匹配的传输路径调整模式,调用预设的射频驱动程序,由于射频驱动程序被设置为对传输路径以设定的调整方式进行调整,从而可以实现按照不同需要,为不同的传输路径调整模式,定制不同的射频驱动程序,实现终端自适应选择传输路径。本实施例的方案可根据当前检测到的业务需求和/或网络特征,匹配对应的传输路径调整模式,根据匹配的传输路径调整模式对射频芯片至天线的传输路径进行调整,由于传输路径每经过一个器件,必然伴随着***的资源损耗,而调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,传输路径包括射频传导路径和天线路径,天线路径天线选择。此外,调整后的传输路径的性能高于调整前的传输路径的性能,因此,调整后的传输路径的资源损耗小于调整前的传输路径的资源损耗,从而减少通信***的资源损耗。
本申请的实施例还涉及一种传输路径的控制装置,如图6所示,包括:
检测模块601,被设置为检测当前终端的业务需求和/或网络特征;
匹配模块602,被设置为根据当前检测到的业务需求和/或网络特征,匹配对应的传输路径调整模式;
调整模块603,被设置为根据匹配的传输路径调整模式对射频芯片至天线的传输路径进行调整;其中,调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,传输路径包括射频传导路径和天线路径,天线路径用于天线选择。即调整后的传输路径的性能高于调整前的传输路径的性能。
在一个例子中,对射频芯片至天线的传输路径进行的调整包括以下之一或其任意组合的调整类型:无源器件的调整、有源器件的调整、线路调整、天线调整。
在一个例子中,调整模块603,还被设置为若对射频芯片至天线的传输路径进行的调整包括多个调整类型,则根据匹配的传输路径调整模式,获取各调整类型的优先级,优先采用优先级最高的调整类型,对传输路径进行调整,若调整后的传输路径的性能未满足预设要求,则按优先级从高到低的顺序,采用下一优先级的调整类型,对传输路径进行调整,直至调整后的传输路径的性能满足预设要求。
在一个例子中,调整模块603,还被设置为根据匹配的传输路径调整模式,调用预设的 射频驱动程序,其中,射频驱动程序被设置为对传输路径以设定的调整方式进行调整。
在一个例子中,匹配模块602,还被设置为在预设的映射关系中查询与当前检测到的业务需求和/或网络特征对应的传输路径调整模式,得到匹配的传输路径调整模式,其中,映射关系用于存储业务需求和/或网络特征,与传输路径调整模式的对应关系。
在一个例子中,业务需求包括以下之一或其任意组合,分集模式、多输入多输出MIMO模式、多载波聚合CA模式、非CA模式、下天线模式、非下天线模式、独立组网SA模式、非独立组网NSA模式、有谐波互调干扰模式、无谐波互调干扰模式、头手模式、自由空间模式、有共存模式、无共存模式。
在一个例子中,网络特征包括网络环境和/或传输路径的路径损耗,其中,网络环境包括以下网络参数指标之一或其任意组合:工作频段、工作频点、无线信号强度、上下行通话质量、数据吞吐量、误码率。
在一个例子中,如图7所示,检测模块601,包含有L1网络侦测单元,L2业务检测单元,L3路径损耗计算单元,匹配模块602,包含有L4 RFLESS模式匹配单元,调整模块603,包含有L5参数储存单元,L6 RFESS程序单元,L7自适应控制单元,L8 RFLESS无源单元,L9 RFLESS有源单元,L10 RFLESS线路单元,L11 RFLESS天线单元。
其中,L1网络侦测单元和模式匹配单元L4相连,被设置为侦测终端的网络环境(包括工作频段,频点,无线信号强度,上下行通话质量,数据吞吐量,误码率等网络参数指标)。例如,5G网络N78频段如走正常路径A,当前的信号强度为-90,4*4mimo只有3个数据流传输,下行MCS最高21,而走RFLESS路径B,对应的信号强度为-85,4*4mimo只有4个数据流传输,下行MCS最高27,则表明RFLESS路径B较好,终端应该切换到B路径下工作。
L2业务检测单元和模式匹配单元L4相连,被设置为侦测终端的业务需求(包括主分集模式或mimo模式,CA和非CA模式,下天线和非下天线模式,NSA和SA模式,有谐波互调干扰和没谐波互调干扰模式,头手和自由空间模式,有共存和没共存模式等)。L3路径损耗计算单元和模式匹配单元L4相连,被设置为计算所需通讯路径的***损耗。L4模式匹配单元和自适应控制单元L7相连,被设置为根据上述侦测及计算结果,匹配选择合适的RFLESS调整模式及方法。L5参数储存单元和自适应控制单元L7相连,被设置为各RFLESS模型参数,测试参数,校准参数和控制参数的存储(如各器件、芯片,模组,走线,打孔等的损耗参数存储)。同时,L5参数储存单元也被设置为控制后续各单元启动和关闭RFLESS动作参数的存储,以及被设置为RFLESS校准参数的存储。
L6RFLESS程序单元和自适应控制单元L7相连,被设置为RFLESS射频驱动程序的调用。例如,以LTE B1-B3-B7-B20的CA组合业务为例,如图8所示,非CA组合,2CA组合,3CA组合,4CA组合,所经过的器件不一样。非CA组合(B1)不需要经过双开或多开开关,dipLexer或tripLexer,而2CA组合(B1_B3)需要经过一个双开开关,3CA(B1_B3_B7)组合需要经过一个双开开关,外加一个dipLexer。4CA组合(B1_B3_B7_B20)需要结果一个双开开关和一个tripLexer。业务需求单元可以根据不同业务需求,检测当前的CA组合,自适应调用对应的RFC程序,进而控制不同CA组合下的RFLESS器件调节。
L7自适应控制单元与各RFLESS调节单元相连,被设置为根据当前网络情况和业务需求的自适应RFLESS算法及硬件的调整控制(包括RFLESS无源单元的调节控制、RFLESS有源单元的调节控制、RFLESS路径单元的调节控制、RFLESS天线单元的调节控制)。如图9 所示,自适应控制程序会根据下面的业务需求及网络特征,进行有针对性的自适应RFLESS调节控制,直到无线通话性能,上下行吞吐,误码率等达到目标要求。
在实际工作过程中,自适应控制程序还负责具体选取何种RFLESS调节措施的选取。如上,有无源,有源,路径,天线四种调节措施,而在实际应用中,会结合当前的网络侦测单元检测到的网络参数,及业务检测单元检测到的业务参数,对比改变前后的参数变化值,是上述四个部分的哪一部分在起主要的作用。如果是如前端插损相关,优先调用无源调节单元,如果是CA及单元内bypass电路有关,优先调用有源单元,如果是上下切换有关,优先调用路径调节单元,如果是天线性能相关,优先调用天线调节单元。如果相关参数不明显或比较多,上述四个调节可以逐一调节,也可以是两两组合,也更多个组合一起使用,直到满足网络性能需求。
L8 RFLESS无源调整单元与自适应控制单元L7相连,被设置为根据当前网络情况和业务需求的无源单元的RFLESS调整控制。L9 RFLESS有源调整单元与自适应控制单元L7相连,被设置为根据当前网络情况和业务需求的有源单元的RFLESS调整控制。L10 RFLESS线路调整单元与自适应控制单元L7相连,被设置为根据当前网络情况和业务需求的走线线路的RFLESS调整控制。L11 RFLESS天线调节单元与自适应控制单元L7相连,被设置为根据当前网络情况和业务需求的天线单元的RFLESS调整控制。
本实施例通过终端RFLESS电路及算法改进,能解决当前射频通道传输路径及配置灵敏度不高的问题,能减少***路径损耗,能提升各路径的均衡性,增强信号强度,改善天线性能,进而改善用户的通讯和数据业务性能,以提升手持的通话率,掉话率和数据业务。
在一个例子中,终端可以对SRS进行RFLESS控制:终端N41和N78由于是4*4MIMO,每个频段会有4个射频传输路径,TX、DRX、PRX-MIMO和DRX-MIMO,N41分别对应四个天线A1、A2、A3和A4,N78分别对应四个天线A5、A6、A7和A8;在电路设计上,N41和N78的天线路径之间需要做兼容设计,通过天线开关来实现,如SP2T、3P3T、4P4T等。当N78天线性能不好时,或当N78天线收到影响时,可以切换到N41的对应路径天线上去。
在一个例子中,终端可以进行抗干扰RFLESS控制:当LTE B3作为ENDC锚点时,B3的二次谐波会落到N78频段的对应信道频点上,从而导致N78的接收灵敏度恶化,N78和LTE B3的之间的隔离度越高,作为双连接下的谐波或互调影响就越小。如LTE B3的路径有L1、L2、L3、L4、L5、L6、L7共7条,其中B3的TX有G1和G2两条,N78的PRX有NP1、NP2、NP3、NP4共4条,则路径干扰单元会将所有的上述所有的组合都计算一遍,然后选择干扰最小的组合路径作为最后的ENDC工作路径。
在一个例子中,终端可以进行均衡路径RFLESS控制:当N78工作在高速吞吐4*4MIMO时,四个通道的信号强度必须相对均衡,不然吞吐性能就有由于失衡而降低。如NR N78的路径有M1、M2、M3、M4、M5、M6、M7共7条路径,检测对应的接收信号强度RSRP或RSSI值分别为R1、R1、R3、R4、R5、R6、R7、如果原来默认的路径强度是R1、R2、R3、R4、而比较起来不均衡,则可切换到更均衡的路径R1、R3、R5、R7上去,以提高各通道的均衡性和吞吐量。
本实施例提供一种RFLESS的5G终端装置,使用业务及干扰侦测算法,计算从芯片VCO到各测试座之间的路径损耗,可以精准地检测出各路径的损耗,再采集接收信号强度值,各 路MIMO的信号均衡性,及干扰等,从优选择最佳内部或外部射频路径。还能根据当前的上下天线切换情况,左右头手及握姿情况,实时选择RFLESS传输路径,使得终端可以始终处于低损耗、高增益的最优的射频和天线传输路径,以提升用户的通话质量和数据吞吐性能。
本申请的实施例还涉及一种终端,如图10所示,包括:至少一个处理器1001;与至少一个处理器通信连接的存储器1002;其中,存储器1002存储有可被至少一个处理器1001执行的指令,指令被至少一个处理器1001执行上述的任一实施例的传输路径的控制方法。
其中,存储器1002和处理器1001采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器1001和存储器1002的各种电路连接在一起。总线还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1001处理的信息通过天线在无线介质上进行传输。在一些实施方式中,天线还接收信息并将信息传送给处理器1001。
处理器1001负责管理总线和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器1002可以被被设置为存储处理器在执行操作时所使用的信息。
本申请的实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (10)

  1. 一种传输路径的控制方法,包括:
    检测当前终端的业务需求和/或网络特征;
    根据当前检测到的所述业务需求和/或网络特征,匹配对应的传输路径调整模式;
    根据匹配的所述传输路径调整模式对射频芯片至天线的传输路径进行调整;其中,调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,所述传输路径包括所述射频传导路径和所述天线路径,所述天线路径用于天线选择。
  2. 根据权利要求1所述的传输路径的控制方法,其中,所述对射频芯片至天线的传输路径进行的调整包括以下至少之一的调整类型:
    无源器件的调整;或有源器件的调整;或线路调整;或天线调整。
  3. 根据权利要求2所述的传输路径的控制方法,其中,所述根据匹配的所述传输路径调整模式对射频芯片至天线的传输路径进行调整,包括:
    若对射频芯片至天线的传输路径进行的调整包括多个调整类型,则根据匹配的所述传输路径调整模式,获取各所述调整类型的优先级;
    优先采用优先级最高的调整类型,对所述传输路径进行调整;
    若调整后的传输路径的性能未满足预设要求,则按优先级从高到低的顺序,采用下一优先级的调整类型,对所述传输路径进行调整,直至调整后的传输路径的性能满足所述预设要求。
  4. 根据权利要求2所述的传输路径的控制方法,其中,所述根据匹配的所述传输路径调整模式对射频芯片至天线的传输路径进行调整,包括:
    根据匹配的所述传输路径调整模式,调用预设的射频驱动程序;
    其中,所述射频驱动程序被设置为对所述传输路径以设定的调整方式进行调整。
  5. 根据权利要求1所述的传输路径的控制方法,其中,所述根据当前检测到的所述业务需求和/或网络特征,匹配对应的传输路径调整模式,包括:
    在预设的映射关系中查询与当前检测到的所述业务需求和/或网络特征对应的传输路径调整模式,得到所述匹配的传输路径调整模式;
    其中,所述映射关系用于存储业务需求和/或网络特征,与传输路径调整模式的对应关系。
  6. 根据权利要求1至5中任一项所述的传输路径的控制方法,其中,所述业务需求包括以下至少之一:
    分集模式;或多输入多输出MIMO模式;或多载波聚合CA模式;或非CA模式;或下天线模式;或非下天线模式;或独立组网SA模式;或非独立组网NSA模式;或有谐波互调 干扰模式;或无谐波互调干扰模式;或头手模式;或自由空间模式;或有共存模式;或无共存模式。
  7. 根据权利要求1至5中任一项所述的传输路径的控制方法,其中,所述网络特征包括网络环境和/或传输路径的路径损耗;
    其中,所述网络环境包括以下网络参数指标至少之一:工作频段;或工作频点;或无线信号强度;或上下行通话质量;或数据吞吐量;或误码率。
  8. 一种传输路径的控制装置,包括:
    检测模块,被设置为检测当前终端的业务需求和/或网络特征;
    匹配模块,被设置为根据当前检测到的所述业务需求和/或网络特征,匹配对应的传输路径调整模式;
    调整模块,被设置为根据匹配的所述传输路径调整模式对射频芯片至天线的传输路径进行调整;其中,调整后的传输路径经过的器件数量小于调整前的传输路径经过的器件数量,或调整后的射频传导路径及走线短于调整前的射频传导路径及走线,或调整后的天线路径对应的天线覆盖频段少于调整前的天线路径对应的天线覆盖频段,所述传输路径包括所述射频传导路径和所述天线路径,所述天线路径用于天线选择。
  9. 一种终端,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至7中任一项所述的传输路径的控制方法。
  10. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的传输路径的控制方法。
PCT/CN2022/100839 2021-08-09 2022-06-23 传输路径的控制方法、装置、终端及存储介质 WO2023016100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22855085.1A EP4376323A1 (en) 2021-08-09 2022-06-23 Transmission path control method and apparatus, and terminal and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110910008.1 2021-08-09
CN202110910008.1A CN115707059A (zh) 2021-08-09 2021-08-09 传输路径的控制方法、装置、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2023016100A1 true WO2023016100A1 (zh) 2023-02-16

Family

ID=85179353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100839 WO2023016100A1 (zh) 2021-08-09 2022-06-23 传输路径的控制方法、装置、终端及存储介质

Country Status (3)

Country Link
EP (1) EP4376323A1 (zh)
CN (1) CN115707059A (zh)
WO (1) WO2023016100A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151969A (zh) * 2017-06-16 2019-01-04 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
US20200343964A1 (en) * 2019-04-29 2020-10-29 Wilson Electronics, Llc Adjusting repeater gain based on antenna feedback path loss
US20210036792A1 (en) * 2018-04-16 2021-02-04 Commscope Technologies Llc Real-time propagation analysis for communications systems
CN112703782A (zh) * 2018-07-11 2021-04-23 三星电子株式会社 用于车辆到车辆通信中的多天线传输的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151969A (zh) * 2017-06-16 2019-01-04 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
US20210036792A1 (en) * 2018-04-16 2021-02-04 Commscope Technologies Llc Real-time propagation analysis for communications systems
CN112703782A (zh) * 2018-07-11 2021-04-23 三星电子株式会社 用于车辆到车辆通信中的多天线传输的方法和设备
US20200343964A1 (en) * 2019-04-29 2020-10-29 Wilson Electronics, Llc Adjusting repeater gain based on antenna feedback path loss

Also Published As

Publication number Publication date
EP4376323A1 (en) 2024-05-29
CN115707059A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CN113285732B (zh) 射频***、天线切换方法和通信设备
WO2021057215A1 (zh) 传输路径选择方法、装置及存储介质
CN107104685B (zh) 一种扩展lte b41频段带宽的移动终端及其方法
US20230035731A1 (en) Communication Link Adjustment Method and Apparatus, Electronic Device, and Readable Medium
CN104618527B (zh) 天线切换装置和移动通讯终端
CN104617979B (zh) 移动通讯方法
CN102510270A (zh) 双工器、射频前端模块、多模终端和双工器的滤波方法
CN110971245B (zh) 射频电路及其控制方法、移动终端
CN117914376A (zh) 发射模组、射频***及电子设备
CN209057208U (zh) 接收模组及相关产品
WO2022160306A1 (zh) 一种无线通信装置及其天线切换方法
CN102420632A (zh) 射频前端模块、多模终端和多模终端发送信号的方法
EP4220971A1 (en) Radio frequency drx device, radio frequency system, and communication apparatus
CN104619046B (zh) 移动通讯终端
CN203537445U (zh) 天线切换装置和移动通讯终端
WO2023016100A1 (zh) 传输路径的控制方法、装置、终端及存储介质
CN115361035A (zh) 射频***、通信设备、通信控制方法及通信控制装置
CN114614838A (zh) 射频***及通信设备
CN203596927U (zh) 移动通讯终端
CN104618975B (zh) Lte ps连接状态下实现2g/3g电路域被叫业务的方法
CN114374968A (zh) 终端能力上报方法、装置及设备
WO2024139590A1 (zh) 终端网络抗互扰调节方法、终端、计算机可读存储介质
CN104618939B (zh) Lte ps连接状态下实现2g/3g电路域主叫业务的方法
CN218734301U (zh) 射频***及通信设备
CN218679064U (zh) 射频前端模组及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024506276

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022855085

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022855085

Country of ref document: EP

Effective date: 20240223

NENP Non-entry into the national phase

Ref country code: DE