WO2023013616A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2023013616A1
WO2023013616A1 PCT/JP2022/029573 JP2022029573W WO2023013616A1 WO 2023013616 A1 WO2023013616 A1 WO 2023013616A1 JP 2022029573 W JP2022029573 W JP 2022029573W WO 2023013616 A1 WO2023013616 A1 WO 2023013616A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
value
heat exchanger
flow rate
outdoor
Prior art date
Application number
PCT/JP2022/029573
Other languages
French (fr)
Japanese (ja)
Inventor
尚志 前田
隆平 加治
智己 廣川
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP22853035.8A priority Critical patent/EP4382829A1/en
Priority to CN202280051711.4A priority patent/CN117716184A/en
Publication of WO2023013616A1 publication Critical patent/WO2023013616A1/en
Priority to US18/430,758 priority patent/US20240175613A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-128628
  • the flow rate of the refrigerant is adjusted based on the temperature of the refrigerant flowing through the refrigerant flow paths, and heat exchange is performed.
  • the refrigeration cycle device of the first aspect includes a heat exchanger, a plurality of flow rate adjustment units, and a control unit.
  • the heat exchanger has a plurality of refrigerant flow paths including a first refrigerant flow path and a second refrigerant flow path.
  • the plurality of flow rate adjusting units adjust the flow rate of the coolant flowing through each coolant channel.
  • the controller adjusts the flow rate of the coolant flowing through the coolant channel by controlling the opening degree of the flow rate adjuster.
  • the controller controls the opening degree of each flow rate regulator based on the first value or the second value.
  • the first value is a value representative of the overall efficiency of the refrigeration cycle.
  • the second value is a value representative of the overall efficiency of the heat exchanger.
  • the controller controls the opening degree of each flow rate regulator based on the first value or the second value.
  • the first value is a value representative of the overall efficiency of the refrigeration cycle.
  • the second value is a value representative of the overall efficiency of the heat exchanger.
  • the refrigeration cycle device of the second aspect is the refrigeration cycle device of the first aspect, and the first value includes the power consumption value of the compressor that compresses the refrigerant or the pressure value of the refrigerant flowing through the heat exchanger.
  • the refrigeration cycle device of the second aspect can estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
  • a refrigeration cycle device is the refrigeration cycle device according to either the first aspect or the second aspect, wherein the second value is the refrigerant exiting the first refrigerant flow path and the refrigerant exiting the second refrigerant flow path. and the outlet temperature of the heat exchanger after the combined refrigerant.
  • the refrigeration cycle device of the third aspect can estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
  • a refrigeration cycle device is the refrigeration cycle device according to either the second aspect or the third aspect, wherein the first value or the second value is the temperature of the air that exchanges heat with the refrigerant in the heat exchanger, further includes
  • the refrigeration cycle device of the fourth aspect can more accurately estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the second aspect to the fourth aspect, wherein the first value or the second value determines the flow of air that exchanges heat with the refrigerant in the heat exchanger. It further includes the number of revolutions of the fan to generate.
  • the refrigeration cycle device of the fifth aspect can more accurately estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
  • the refrigeration cycle device of the sixth aspect is the refrigeration cycle device of any one of the second to fifth aspects, wherein the first value or the second value further includes the rotation speed of the compressor.
  • the refrigeration cycle device of the sixth aspect can more accurately estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant flow path.
  • a refrigeration cycle device is the refrigeration cycle device according to any one of the second aspect to the sixth aspect, wherein the first value or the second value further determines the degree of opening of an expansion valve that adjusts the flow rate of the refrigerant. include.
  • the refrigeration cycle device of the seventh aspect can more accurately estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to seventh aspects and further includes a learning device.
  • the learning device learns by associating a combination of the opening degrees of the plurality of flow rate adjusting units with a first value or a second value when the opening degrees of the plurality of flow rate adjusting units are the combination of the opening degrees.
  • the learning device classifies combinations of opening degrees according to the heat exchange capacity of the heat exchangers estimated from the first value or the second value.
  • the control unit controls the opening degrees of the respective flow rate adjusting units using a combination of opening degrees classified by the learning device into classes in which the heat exchange capacity of the heat exchangers is higher than a predetermined value.
  • the refrigeration cycle device of the eighth aspect uses machine learning to increase the heat exchange capacity of the heat exchanger (reduce the drift of the refrigerant flowing through the heat exchanger). can be calculated
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to seventh aspects, and further includes a learning device.
  • the learning device learns by associating a combination of the opening degrees of the plurality of flow rate adjusting units with a first value or a second value when the opening degrees of the plurality of flow rate adjusting units are the combination of the opening degrees.
  • the learning device calculates a combination of opening degrees that increases the heat exchange capacity of the heat exchanger estimated from the first value or the second value.
  • the control unit uses the combination of opening degrees calculated by the learning device to control the opening degrees of the respective flow rate adjusting units.
  • the refrigeration cycle apparatus of the ninth aspect can efficiently calculate the combination of the opening degrees of the flow control units with high heat exchange capacity of the heat exchangers.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device;
  • FIG. It is a schematic block diagram of an outdoor heat exchanger.
  • 3 is a control block diagram of the air conditioner;
  • FIG. 3 is a control block diagram of the learning device;
  • FIG. 4 is a diagram for explaining the learning process of the learning device;
  • 6 is a flowchart for explaining flow rate adjustment processing;
  • 6 is a flowchart for explaining flow rate adjustment processing; It is a schematic block diagram of the indoor heat exchanger in the modification 1E.
  • the refrigeration cycle device 1 constitutes a vapor compression refrigeration cycle, and performs air conditioning (cooling or heating) of a target space.
  • the refrigeration cycle device 1 is a so-called building multi-type air conditioning system.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 1. As shown in FIG. As shown in FIG. 1 , the refrigeration cycle device 1 mainly has an air conditioner 2 and a learning device 10 .
  • the air conditioner 2 has an indoor unit 20 and an outdoor unit 30.
  • the indoor unit 20 and the outdoor unit 30 are connected via a liquid refrigerant communication pipe 51 and a gas refrigerant communication pipe 52 to form a refrigerant circuit 50 .
  • the indoor unit 20 and the outdoor unit 30 are communicably connected by a communication line 81 .
  • the outdoor unit 30 and the learning device 10 are communicably connected by a communication line 82 .
  • the refrigerant flow paths 333a to 333i may be referred to as the refrigerant flow path 333 and the like when they are not distinguished from each other.
  • the indoor unit 20 is installed in a space to be air-conditioned, such as a room in a building where the refrigeration cycle device 1 is installed.
  • the indoor unit 20 is, for example, a ceiling-embedded unit, a ceiling-suspended unit, a floor-standing unit, or the like.
  • the indoor unit 20 mainly includes an indoor heat exchanger 21, an indoor fan 22, an indoor expansion valve 23, an indoor controller 29, an indoor temperature sensor 61, and a gas side temperature sensor 62. , and a liquid-side temperature sensor 63 .
  • the indoor unit 20 connects a liquid refrigerant pipe 53a that connects the liquid side end of the indoor heat exchanger 21 and the liquid refrigerant communication pipe 51, and a gas side end of the indoor heat exchanger 21 and the gas refrigerant communication pipe 52. It has a gas refrigerant pipe 53b.
  • (2-1-1) Indoor heat exchanger
  • the structure of the indoor heat exchanger 21 is not limited, for example, a cross fin composed of a heat transfer tube (not shown) and a large number of fins (not shown) fin-and-tube heat exchanger.
  • the indoor heat exchanger 21 exchanges heat between the refrigerant flowing through the indoor heat exchanger 21 and the air in the target space.
  • the indoor heat exchanger 21 functions as an evaporator during cooling operation and as a condenser during heating operation.
  • the indoor fan 22 sucks air in the target space into the indoor unit 20, supplies it to the indoor heat exchanger 21, and heat-exchanges the air with the refrigerant in the indoor heat exchanger 21, Supply to the target space.
  • the indoor fan 22 is, for example, a centrifugal fan such as a turbo fan or a sirocco fan.
  • the indoor fan 22 is driven by an indoor fan motor 22m.
  • the rotation speed of the indoor fan motor 22m can be controlled by an inverter.
  • the indoor expansion valve 23 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the liquid refrigerant pipe 53a.
  • the indoor expansion valve 23 is provided in the liquid refrigerant pipe 53a.
  • the indoor expansion valve 23 is an electronic expansion valve whose degree of opening can be adjusted.
  • the indoor temperature sensor 61 measures the temperature of the air (room temperature) in the target space.
  • the indoor temperature sensor 61 is provided near the air inlet of the indoor unit 20 .
  • the gas-side temperature sensor 62 measures the temperature of the refrigerant flowing through the gas refrigerant pipe 53b.
  • the gas side temperature sensor 62 is provided in the gas refrigerant pipe 53b.
  • the liquid side temperature sensor 63 measures the temperature of the refrigerant flowing through the liquid refrigerant pipe 53a.
  • the liquid side temperature sensor 63 is provided in the liquid refrigerant pipe 53a.
  • the indoor temperature sensor 61, the gas side temperature sensor 62, and the liquid side temperature sensor 63 are, for example, thermistors.
  • the indoor control section 29 controls the operation of each section that constitutes the indoor unit 20 .
  • the indoor controller 29 is electrically connected to various devices of the indoor unit 20, including the indoor expansion valve 23 and the indoor fan motor 22m.
  • the indoor controller 29 is communicably connected to various sensors provided in the indoor unit 20, including the indoor temperature sensor 61, the gas-side temperature sensor 62, and the liquid-side temperature sensor 63.
  • the indoor control unit 29 has a control arithmetic device, a storage device, and a network interface device.
  • the control arithmetic device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM and flash memory.
  • the control arithmetic device reads out a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part that constitutes the indoor unit 20 . Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • the network interface device is configured to communicate with the outdoor unit 30 via the communication line 81.
  • FIG. Also, the indoor controller 29 has a timer.
  • the indoor control unit 29 is configured to be able to receive various signals transmitted from an operating remote controller (not shown).
  • the various signals include, for example, signals for instructing start and stop of operation and signals for various settings.
  • Signals related to various settings include, for example, signals related to set temperature and set humidity.
  • the indoor control unit 29 exchanges control signals, measurement signals, signals related to various settings, etc. with the outdoor control unit 39 of the outdoor unit 30 via the communication line 81 .
  • the indoor controller 29 and the outdoor controller 39 cooperate to function as a controller 70 . Functions of the control unit 70 will be described later.
  • the outdoor unit 30 is installed outside the target space, such as on the roof of the building where the refrigeration cycle device 1 is installed.
  • the outdoor unit 30 mainly includes a compressor 31, a flow path switching valve 32, an outdoor heat exchanger 33, an outdoor expansion valve 34, an accumulator 35, an outdoor fan 36, and a liquid side A closing valve 37, a gas side closing valve 38, an outdoor control unit 39, a suction pressure sensor 64, a discharge pressure sensor 65, an outdoor temperature sensor 66, a gas side temperature sensor 67, a liquid side temperature sensor 68, have
  • the outdoor unit 30 also has a suction pipe 54a, a discharge pipe 54b, a first gas refrigerant pipe 54c, a liquid refrigerant pipe 54d, and a second gas refrigerant pipe 54e.
  • the suction pipe 54 a connects the flow path switching valve 32 and the suction side of the compressor 31 .
  • An accumulator 35 is provided in the intake pipe 54a.
  • the discharge pipe 54 b connects the discharge side of the compressor 31 and the flow path switching valve 32 .
  • the first gas refrigerant pipe 54 c connects the flow switching valve 32 and the gas side of the outdoor heat exchanger 33 .
  • the liquid refrigerant pipe 54 d connects the liquid side of the outdoor heat exchanger 33 and the liquid refrigerant communication pipe 51 .
  • An outdoor expansion valve 34 is provided in the liquid refrigerant pipe 54d.
  • a liquid-side shut-off valve 37 is provided at the connecting portion between the liquid refrigerant pipe 54 d and the liquid refrigerant communication pipe 51 .
  • the second gas refrigerant pipe 54 e connects the flow path switching valve 32 and the gas refrigerant communication pipe 52 .
  • a gas side shutoff valve 38 is provided at the connecting portion between the second gas refrigerant pipe 54 e and the gas refrigerant communication pipe 52 .
  • the compressor 31 sucks low-pressure refrigerant in the refrigeration cycle from the suction pipe 54a, compresses the refrigerant with a compression mechanism (not shown), and compresses the refrigerant. It is a device that discharges the discharged refrigerant to the discharge pipe 54b.
  • the compressor 31 is, for example, a volumetric compressor such as a rotary type or a scroll type.
  • a compression mechanism of the compressor 31 is driven by a compressor motor 31m.
  • the rotation speed of the compressor motor 31m can be controlled by an inverter.
  • the channel switching valve 32 is a mechanism that switches the coolant channel between the first state and the second state.
  • the suction pipe 54a communicates with the second gas refrigerant pipe 54e
  • the discharge pipe 54b communicates with the first gas refrigerant pipe 54e, as indicated by the solid line in the flow path switching valve 32 in FIG. It communicates with the gas refrigerant pipe 54c.
  • the flow path switching valve 32 is in the second state, as indicated by the dashed line in the flow path switching valve 32 in FIG. It communicates with the gas refrigerant pipe 54e.
  • the channel switching valve 32 puts the coolant channel in the first state during the cooling operation. At this time, the refrigerant discharged from the compressor 31 flows through the refrigerant circuit 50 in order of the outdoor heat exchanger 33, the outdoor expansion valve 34, the indoor expansion valve 23, and the indoor heat exchanger 21, and returns to the compressor 31. .
  • the outdoor heat exchanger 33 functions as a condenser and the indoor heat exchanger 21 functions as an evaporator.
  • the channel switching valve 32 puts the coolant channel in the second state during the heating operation.
  • the refrigerant discharged from the compressor 31 flows through the refrigerant circuit 50 in order of the indoor heat exchanger 21, the indoor expansion valve 23, the outdoor expansion valve 34, and the outdoor heat exchanger 33, and returns to the compressor 31.
  • the outdoor heat exchanger 33 functions as an evaporator and the indoor heat exchanger 21 functions as a condenser.
  • FIG. 2 is a schematic diagram of the outdoor heat exchanger 33. As shown in FIG. As shown in FIG. 2, the outdoor heat exchanger 33 mainly has a heat exchanger body 331 and a plurality of flow rate adjusting units 332a to 332i.
  • the heat exchanger main body 331 has a plurality of refrigerant flow paths 333 a to 333 i including a first refrigerant flow path 333 and a second refrigerant flow path 333 . As shown in FIG. 2, the heat exchanger main body 331 is divided into a plurality of sections 331a-331i, and refrigerant flow paths 333a-333i pass through the respective sections 331a-331i.
  • the heat exchanger main body 331 exchanges heat between the refrigerant flowing through the refrigerant flow path 333 and the outdoor air.
  • the heat exchanger main body 331 functions as a condenser during cooling operation, and functions as an evaporator during heating operation.
  • the flow adjusting section 332 adjusts the flow rate of the coolant flowing through the coolant channel 333 .
  • the flow rate adjusting units 332a to 332i adjust the flow rate of the refrigerant flowing through the refrigerant flow paths 333a to 333i so that the temperature and pressure of the refrigerant flowing through the refrigerant flow paths 333a to 333i are uniform. Adjust the flow rate.
  • the flow rate adjusters 332a to 332i adjust the flow rate of the coolant flowing through the coolant flow paths 333a to 333i so that the coolant flowing through the coolant flow paths 333a to 333i is not deviated.
  • the flow rate adjusting section 332 is configured so that the degree of opening can be adjusted.
  • the flow divider 334 is connected from the outdoor expansion valve 34 side to the outdoor heat exchanger 33 (in the direction of the solid arrow in FIG. 2) during heating operation.
  • the refrigerant that has flowed in is divided into the refrigerant flow paths 333a to 333i.
  • the flow divider 334 flows from the compressor 31 side into the outdoor heat exchanger 33 (in the direction of the dashed arrow in FIG. 2) during cooling operation, and is divided into the refrigerant flow paths 333a to 333i by the header 335, which will be described later. merge the refrigerant.
  • the header 335 flows into the outdoor heat exchanger 33 from the side of the outdoor expansion valve 34 (in the direction of the solid arrow in FIG. 2) during heating operation. , the refrigerant diverted to the refrigerant flow paths 333a to 333i by the flow divider 334 are merged. Further, during cooling operation, the header 335 divides the refrigerant that has flowed from the compressor 31 side into the outdoor heat exchanger 33 (in the direction of the dashed arrow in FIG. 2) into the refrigerant flow paths 333a to 333i.
  • the outdoor expansion valve 34 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the liquid refrigerant pipe 54d.
  • the outdoor expansion valve 34 is an electronic expansion valve whose degree of opening can be adjusted.
  • the accumulator 35 is a container having a gas-liquid separation function to separate the inflowing refrigerant into gas refrigerant and liquid refrigerant.
  • the refrigerant flowing into the accumulator 35 is separated into gas refrigerant and liquid refrigerant, and the gas refrigerant collected in the upper space flows into the compressor 31 .
  • the outdoor fan 36 sucks outdoor air into the outdoor unit 30, supplies it to the outdoor heat exchanger 33, and heat-exchanges the outdoor air with the refrigerant in the outdoor heat exchanger 33. , are fans for discharging the air to the outside of the outdoor unit 30 .
  • the outdoor fan 36 is, for example, an axial fan such as a propeller fan.
  • the outdoor fan 36 is driven by an outdoor fan motor 36m.
  • the rotation speed of the outdoor fan motor 36m can be controlled by an inverter.
  • the suction pressure sensor 64 is a sensor that measures the suction pressure.
  • the suction pressure sensor 64 is provided on the suction pipe 54a. Suction pressure is the low pressure value of the refrigeration cycle.
  • the discharge pressure sensor 65 is a sensor that measures the discharge pressure.
  • the discharge pressure sensor 65 is provided on the discharge pipe 54b.
  • the discharge pressure is the high pressure value of the refrigeration cycle.
  • the outdoor temperature sensor 66 measures the temperature of the air outside the target space (outdoor temperature).
  • the outdoor temperature sensor 66 is provided near the air inlet of the outdoor unit 30 .
  • the gas-side temperature sensor 67 measures the temperature of the refrigerant flowing through the first gas refrigerant pipe 54c.
  • the gas side temperature sensor 67 is provided in the first gas refrigerant pipe 54c.
  • the liquid side temperature sensor 68 measures the temperature of the refrigerant flowing through the liquid refrigerant pipe 54d.
  • the liquid side temperature sensor 63 is provided on the liquid refrigerant pipe 54d.
  • the outdoor temperature sensor 66, the gas side temperature sensor 67, and the liquid side temperature sensor 68 are, for example, thermistors.
  • the gas side shutoff valve 38 is a valve provided at the connecting portion between the second gas refrigerant pipe 54 e and the gas refrigerant communication pipe 52 .
  • the liquid-side shut-off valve 37 and the gas-side shut-off valve 38 are, for example, manually operated valves.
  • the outdoor control section 39 controls the operation of each section that constitutes the outdoor unit 30 .
  • the outdoor control section 39 is electrically connected to various devices of the outdoor unit 30, including the compressor motor 31m, the flow path switching valve 32, the flow rate adjusting section 332, the outdoor expansion valve 34, and the outdoor fan motor 36m. .
  • the outdoor control unit 39 communicates with various sensors provided in the outdoor unit 30, including the suction pressure sensor 64, the discharge pressure sensor 65, the outdoor temperature sensor 66, the gas side temperature sensor 67, and the liquid side temperature sensor 68. connected as possible.
  • the outdoor control unit 39 has a control arithmetic device, a storage device, and two network interface devices.
  • the control arithmetic device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM and flash memory.
  • the control arithmetic unit reads out a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part that constitutes the outdoor unit 30 . Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • One network interface device is configured to communicate with the indoor unit 20 via the communication line 81 .
  • the other network interface device is configured to communicate with learning device 10 via communication line 82 .
  • the outdoor controller 39 has a timer.
  • the outdoor control section 39 exchanges control signals, measurement signals, signals related to various settings, etc. with the indoor control section 29 of the indoor unit 20 via the communication line 81 .
  • the outdoor control unit 39 exchanges control signals, measurement signals, signals related to various settings, etc. with the learning control unit 19 of the learning device 10 via the communication line 82 .
  • the outdoor controller 39 and the indoor controller 29 cooperate to function as a controller 70 . Functions of the control unit 70 will be described later.
  • control unit 70 is composed of the indoor control unit 29 and the outdoor control unit 39 .
  • FIG. 3 is a control block diagram of the air conditioner 2.
  • the control unit 70 includes an indoor temperature sensor 61, a gas side temperature sensor 62, a liquid side temperature sensor 63, a suction pressure sensor 64, a discharge pressure sensor 65, an outdoor temperature sensor 66, a gas side temperature sensor 67, and the liquid-side temperature sensor 68 are communicably connected.
  • the control unit 70 receives measurement signals transmitted from various sensors.
  • the control unit 70 is electrically connected to the indoor expansion valve 23, the indoor fan motor 22m, the compressor motor 31m, the flow path switching valve 32, the flow rate adjusting unit 332, the outdoor expansion valve 34, and the outdoor fan motor 36m.
  • the control unit 70 controls the indoor expansion valve 23, the indoor fan motor 22m, the compressor motor 31m, the flow path switching valve 32, the flow rate adjusting unit, and the control signal transmitted from the operation remote controller based on the measurement signals of various sensors. 332, the outdoor expansion valve 34, and the outdoor fan motor 36m.
  • the control unit 70 mainly performs cooling operation and heating operation.
  • the controller 70 opens the outdoor expansion valve 34 step by step, and adjusts the degree of opening of the indoor expansion valve 23 so that the degree of superheat of the refrigerant at the gas-side outlet of the indoor heat exchanger 21 reaches a predetermined target degree of superheat. .
  • the degree of superheat of the refrigerant at the gas side outlet of the indoor heat exchanger 21 can be obtained, for example, by subtracting the evaporation temperature converted from the measured value (suction pressure) of the suction pressure sensor 64 from the measured value of the gas side temperature sensor 62. Calculated.
  • control unit 70 controls the operating capacity of the compressor 31 so that the evaporation temperature converted from the measured value of the suction pressure sensor 64 approaches a predetermined target evaporation temperature. Control of the operating capacity of the compressor 31 is performed by controlling the rotational speed of the compressor motor 31m.
  • control unit 70 cooperates with the learning device 10 to control the opening degrees of the flow rate adjustment units 332a to 332i, thereby adjusting the flow rate of the refrigerant flowing through the refrigerant flow paths 333a to 333i (hereinafter referred to as flow rate adjustment sometimes referred to as processing).
  • the controller 70 controls the opening degrees of the respective flow rate regulators 332a to 332i based on the first value.
  • the first value is a value representative of the overall efficiency of the refrigeration cycle.
  • the first value is the pressure value of the refrigerant flowing through the outdoor heat exchanger 33 (hereinafter sometimes referred to as the outdoor pressure value), the temperature of the air heat-exchanging with the refrigerant in the outdoor heat exchanger 33 (hereinafter sometimes referred to as the outdoor temperature), and the rotation speed of the outdoor fan motor 36m (hereinafter sometimes referred to as the outdoor fan rotation speed).
  • the outdoor pressure value in the cooling operation is the pressure value on the high pressure side.
  • the outdoor pressure value in the cooling operation is acquired from the discharge pressure sensor 65, for example.
  • the outdoor temperature is acquired from the outdoor temperature sensor 66, for example.
  • the control unit 70 receives information (hereinafter sometimes referred to as opening information) about the setting range of the opening of the flow rate adjusting units 332a to 332i from the learning device 10 every predetermined time T2 (for example, 24 hours). .) is received.
  • the control unit 70 sets the opening degrees of the flow rate adjusting units 332a to 332i every predetermined time T1 (for example, 10 minutes) within the setting range of the received opening information.
  • the control section 70 changes the opening degrees of the flow rate adjusting sections 332a to 332i within the set range of the opening degree information every predetermined time T1.
  • the control unit 70 waits until the pressure and temperature of the refrigerant and the operation of various devices are stabilized (until the air conditioner 2 is in a steady state), After the air conditioner 2 reaches a steady state, the opening degrees of the flow rate adjusting units 332a to 332i and the outdoor pressure values (hereinafter sometimes referred to as learning data 131) at that time are sent to the learning device 10. Send.
  • the controller 70 determines that the air conditioner 2 is in a steady state when the outdoor temperature and the outdoor fan rotation speed are stabilized. In other words, of the first values, the outdoor temperature and the outdoor fan rotation speed are used to determine whether the air conditioner 2 is in a steady state.
  • control unit 70 controls various devices so that the room temperature of the target space approaches the set temperature, so that the refrigerant flows through the refrigerant circuit 50 as follows during cooling operation.
  • the high-pressure gas refrigerant flows through the first gas refrigerant pipe 54 c via the channel switching valve 32 and is sent to the outdoor heat exchanger 33 .
  • the high-pressure gas refrigerant sent to the outdoor heat exchanger 33 flows into the header 335 and then branches to the refrigerant flow paths 333a to 333i.
  • the refrigerant flowing through the branched refrigerant flow paths 333a to 333i exchanges heat with the outdoor air supplied by the outdoor fan 36 in the heat exchanger main body 331, and is condensed into a high-pressure liquid refrigerant.
  • the flow rate of the refrigerant flowing through the refrigerant flow paths 333a to 333i after passing through the heat exchanger main body 331 is adjusted by the flow rate adjusting units 332a to 332i so as not to cause drift.
  • the refrigerant flowing through the refrigerant flow paths 333a to 333i that have passed through the flow rate adjusting portions 332a to 332i joins at the flow divider 334 and flows out of the outdoor heat exchanger 33.
  • the high-pressure liquid refrigerant that has passed through the outdoor heat exchanger 33 flows through the liquid refrigerant pipe 54 d, passes through the outdoor expansion valve 34 , and is sent to the indoor unit 20 .
  • the high-pressure liquid refrigerant sent to the indoor unit 20 is decompressed by the indoor expansion valve 23 to near the suction pressure of the compressor 31 and sent to the indoor heat exchanger 21 as a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant exchanges heat with the air in the target space supplied to the indoor heat exchanger 21 by the indoor fan 22, and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the outdoor unit 30 via the gas refrigerant communication pipe 52 and flows into the accumulator 35 via the flow path switching valve 32 .
  • the low-pressure gas refrigerant that has flowed into the accumulator 35 is sucked into the compressor 31 again.
  • the temperature of the air supplied to the indoor heat exchanger 21 is lowered by heat exchange with the refrigerant flowing through the indoor heat exchanger 21, and the air cooled by the indoor heat exchanger 21 is blown out to the target space.
  • the control unit 70 adjusts the degree of opening of the indoor expansion valve 23 so that the degree of supercooling of the refrigerant at the liquid-side outlet of the indoor heat exchanger 21 reaches a predetermined target degree of supercooling.
  • the degree of supercooling of the refrigerant at the liquid side outlet of the indoor heat exchanger 21 is obtained, for example, by subtracting the measured value of the liquid side temperature sensor 63 from the condensation temperature converted from the measured value (discharge pressure) of the discharge pressure sensor 65. Calculated.
  • controller 70 adjusts the opening degree of the outdoor expansion valve 34 so that the refrigerant flowing into the outdoor heat exchanger 33 is decompressed to a pressure that can evaporate in the outdoor heat exchanger 33 .
  • control unit 70 controls the operating capacity of the compressor 31 so that the condensation temperature converted from the measured value of the discharge pressure sensor 65 approaches a predetermined target condensation temperature. Control of the operating capacity of the compressor 31 is performed by controlling the rotational speed of the compressor motor 31m.
  • control unit 70 cooperates with the learning device 10 to control the opening degrees of the flow rate adjusting units 332a to 332i, thereby adjusting the flow rate of the refrigerant flowing through the refrigerant flow paths 333a to 333i. adjust.
  • the outdoor pressure value in the heating operation is the pressure value on the low pressure side.
  • the outdoor pressure value in the heating operation is obtained from the suction pressure sensor 64, for example.
  • the controller 70 controls various devices so that the room temperature of the target space approaches the set temperature, so that the refrigerant flows through the refrigerant circuit 50 as follows during heating operation.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 31 and compressed by the compressor 31 to become the high-pressure gas refrigerant in the refrigeration cycle.
  • the high-pressure gas refrigerant is sent to the indoor heat exchanger 21 via the flow path switching valve 32, exchanges heat with the air in the target space supplied by the indoor fan 22, and condenses to become a high-pressure liquid refrigerant. .
  • the temperature of the air supplied to the indoor heat exchanger 21 rises by exchanging heat with the refrigerant flowing through the indoor heat exchanger 21, and the air heated by the indoor heat exchanger 21 is blown out into the target space.
  • the high-pressure liquid refrigerant that has passed through the indoor heat exchanger 21 passes through the indoor expansion valve 23 and is decompressed.
  • the refrigerant decompressed by the indoor expansion valve 23 is sent to the outdoor unit 30 via the liquid refrigerant communication pipe 51 and flows into the liquid refrigerant pipe 54d.
  • the refrigerant flowing through the liquid refrigerant pipe 54 d is decompressed to near the suction pressure of the compressor 31 when passing through the outdoor expansion valve 34 , becomes a gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 33 .
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 33 flows into the flow divider 334, and then is divided into the refrigerant flow paths 333a to 333i.
  • the flow rate of the refrigerant flowing through the branched refrigerant flow paths 333a to 333i is adjusted by the flow rate adjusting units 332a to 332i so as not to cause drift.
  • the refrigerant flowing through the refrigerant flow paths 333a to 333i that has passed through the flow rate adjusting units 332a to 332i exchanges heat with the outdoor air supplied by the outdoor fan 36 in the heat exchanger body 331, evaporates, and becomes a low-pressure gas. It becomes a refrigerant.
  • the low-pressure gas refrigerant that has flowed into the accumulator 35 is sucked into the compressor 31 again.
  • FIG. 4 is a control block diagram of the learning device 10. As shown in FIG. As shown in FIG. 4 , the learning device 10 mainly includes a learning input section 11 , a learning display section 12 , a learning storage section 13 , a learning communication section 14 and a learning control section 19 .
  • the learning input unit 11 is a keyboard and mouse. Various commands and various information to the learning device 10 can be input using the learning input unit 11 .
  • the learning display section 12 is a monitor.
  • the learning display unit 12 can display, for example, the learning data 131 and the learning status.
  • the learning storage unit 13 is a storage device such as RAM, ROM, and HDD (Hard Disk Drive).
  • the learning storage unit 13 stores programs executed by the learning control unit 19, data necessary for executing the programs, and the like.
  • the learning storage unit 13 particularly stores learning data 131 and a learning model 132, which will be described later.
  • Table 1 below shows an example of the learning data 131 in the cooling operation.
  • One record of the learning data 131 corresponds to the control unit 70 setting the opening degrees of the flow rate adjusting units 332a to 332i once.
  • the items "opening degree a" to “opening degree i” indicate the opening degrees of the flow rate adjusting units 332a to 332i set by the control unit 70, respectively.
  • the learning communication unit 14 is a network interface device for communicating via the communication line 82 .
  • the learning control unit 19 is a processor such as a CPU or GPU.
  • the learning control unit 19 reads and executes programs stored in the learning storage unit 13 to implement various functions of the learning device 10 . Further, the learning control unit 19 can write the calculation result to the learning storage unit 13 and read information stored in the learning storage unit 13 according to the program. Also, the learning control unit 19 has a timer.
  • the learning control unit 19 associates the combination of the opening degrees of the plurality of flow rate adjusting sections 332a to 332i with the outdoor pressure value when the opening degrees of the plurality of flow rate adjusting sections 332a to 332i are the combination of the opening degrees. to learn.
  • the learning control unit 19 uses learning data 131 as shown in Table 1 to create a learning model 132 .
  • the learning model 132 of this embodiment is a classification model.
  • a neural network, a logistic regression, a support vector machine, or the like, for example, can be used for the learning model 132 of this embodiment.
  • the learning control unit 19 estimates the heat exchange capacity of the outdoor heat exchanger 33 from the outdoor pressure value. In the case of cooling operation, it is estimated that the smaller the outdoor pressure value (the pressure value on the high pressure side), the higher the heat exchange capacity of the outdoor heat exchanger 33 . Therefore, the learning control unit 19 designates, for example, a predetermined ratio (for example, 20%) from the record with the smallest outdoor pressure value among the records of the learning data 131, and the heat of the outdoor heat exchanger 33 in these records. It is presumed that the heat exchange capacity of the outdoor heat exchanger 33 for other records is low, while the heat exchange capacity is high.
  • a predetermined ratio for example, 20%
  • the learning control unit 19 designates, for example, a predetermined ratio (for example, 20%) from records having the largest outdoor pressure values among the records of the learning data 131, and the heat of the outdoor heat exchanger 33 in these records. It is presumed that the heat exchange capacity of the outdoor heat exchanger 33 for other records is low, while the heat exchange capacity is high.
  • Table 2 below is an example in which the learning data 131 of Table 1 is preprocessed.
  • Table 1 shows the learning data 131 in the cooling operation, so in Table 2, the smaller the outdoor pressure value, the more likely the heat exchange capacity is "high".
  • the learning control unit 19 classifies the combination of opening degrees of the flow rate adjusting units 332a to 332i according to the heat exchange capacity of the outdoor heat exchanger 33 estimated from the outdoor pressure value.
  • the learning control unit 19 uses the combination of the opening degrees of the flow rate adjusting units 332a to 332i as an explanatory variable and the heat exchange capacity as an objective variable to create the learning model 132.
  • the learning control unit 19 creates an opening space where each point represents a combination of the openings of the flow rate adjusting units 332a to 332i (here, a nine-dimensional space whose axes are the values of the openings a to i. ) into a region where the heat exchange capacity is estimated to be “high” and a region where the heat exchange capacity is estimated to be “low”.
  • FIG. 5 is a diagram for explaining the learning process of the learning device 10.
  • FIG. 5 shows only a two-dimensional plane consisting of the “opening degree a” axis and the “opening degree b” axis in the nine-dimensional opening space.
  • FIG. 5 shows a state in which the opening space is divided into regions R1 and R2 by the boundary BR1 of the learning model 132.
  • FIG. A region R1 (hatched) indicates a region where the heat exchange capacity is estimated to be “high”.
  • a region R2 indicates a region where the heat exchange capacity is estimated to be "low”.
  • the learning control unit 19 transmits information about the area to the control unit 70 as opening degree information.
  • the opening degree information is information about a combination of opening degrees of the flow rate adjusting units 332a to 332i classified by the learning device 10 into a class in which the heat exchange capacity of the outdoor heat exchanger 33 is higher than a predetermined value. .
  • the control unit 70 controls the flow rate adjusting units 332a to 332a to 332i opening is controlled.
  • the control unit 70 transmits the learning data 131 to the learning device 10 each time the opening degrees of the flow rate adjusting units 332a to 332i are set.
  • four points corresponding to newly received records of learning data 131 are plotted in region R1.
  • hatched points indicate that the heat exchange capacity is “high”.
  • the learning control unit 19 creates the learning model 132 again based on the new learning data 131.
  • the lower left diagram of FIG. 5 shows a state in which the opening space is divided into regions R3 and R4 by a boundary BR2 based on the recreated learning model 132 .
  • a region R3 (hatched) indicates a region where the heat exchange capacity is estimated to be “high”.
  • a region R4 indicates a region where the heat exchange capacity is estimated to be "low”.
  • step S1 the control unit 70 starts the cooling operation or the heating operation according to an instruction from the operation remote controller or the like.
  • step S1 the control unit 70 determines whether or not new opening information has been received from the learning device 10, as shown in step S2. When new opening information is received, the process proceeds to step S3. If new opening information has not been received, the process proceeds to step S4.
  • control unit 70 updates the old opening information with the new opening information received from the learning device 10.
  • control unit 70 sets the opening degrees of the flow rate adjusting units 332a to 332i within the range of the opening degree information.
  • step S5 the control unit 70 waits until the air conditioner 2 reaches a steady state.
  • control unit 70 transmits the learning data 131 to the learning device 10 as shown in step S6.
  • step S6 the control unit 70 waits for a predetermined time T1 as shown in step S7.
  • Predetermined time T1 is, for example, 10 minutes. After the predetermined time T1 has elapsed, the process proceeds to step S2, and the control unit 70 again determines whether or not new opening information has been received from the learning device 10.
  • the learning control unit 19 determines whether or not the learning data 131 has been received from the air conditioner 2, as shown in step S8. When learning data 131 is received, the process proceeds to step S9. If the learning data 131 has not been received, the process proceeds to step S10.
  • the learning control unit 19 When proceeding from step S8 to step S9, the learning control unit 19 accumulates the received learning data 131 in the learning storage unit 13.
  • the learning control unit 19 determines whether or not the predetermined time T2 has elapsed.
  • the predetermined time T2 is, for example, 24 hours. If the predetermined time T2 has passed, the process proceeds to step S11. If the predetermined time T2 has not elapsed, the process proceeds to step S8, and the learning control unit 19 determines again whether or not the learning data 131 has been received from the air conditioner 2.
  • the learning control unit 19 When proceeding from step S10 to step S11, the learning control unit 19 creates a learning model 132 based on the accumulated learning data 131.
  • step S11 the learning control unit 19 transmits opening degree information based on the created learning model 132 to the air conditioner 2 as shown in step S12.
  • step S12 the learning control unit 19 deletes the old learning data 131 used to create the learning model 132, as shown in step S13.
  • step S13 the learning control unit 19 accumulates new learning data 131 again as shown in steps S8 and S9.
  • control unit 70 and the learning control unit 19 continue this process until the cooling operation or heating operation is stopped by an instruction from the operation remote controller.
  • the refrigeration cycle apparatus 1 of this embodiment includes a heat exchanger main body 331, a plurality of flow rate adjustment units 332a to 332i, and a control unit 70.
  • the heat exchanger body 331 has a plurality of refrigerant flow paths 333 a - 333 i including a first refrigerant flow path 333 and a second refrigerant flow path 333 .
  • the plurality of flow rate adjusting units 332a-332i adjust the flow rate of the coolant flowing through each of the coolant flow paths 333a-333i.
  • the controller 70 adjusts the flow rate of the coolant flowing through the coolant channel 333 by controlling the opening degree of the flow rate adjuster 332 .
  • the controller 70 controls the opening degrees of the respective flow rate regulators 332a to 332i based on the first value.
  • the first value is a value representative of the overall efficiency of the refrigeration cycle.
  • the control section 70 controls the opening degrees of the respective flow rate adjusting sections 332a to 332i based on the first value.
  • the first value is a value representative of the overall efficiency of the refrigeration cycle.
  • the refrigeration cycle device 1 uses a number of sensors smaller than the number of refrigerant flow paths 333 to adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i, and the refrigerant flowing through the outdoor heat exchanger 33. can be prevented from drifting.
  • the first value includes the pressure value of refrigerant flowing through the indoor heat exchanger 21 (during cooling operation) or the outdoor heat exchanger 33 (during heating operation).
  • the refrigerating cycle device 1 can estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
  • the first value further includes the temperature of air heat-exchanging with the refrigerant in the outdoor heat exchanger 33 .
  • the refrigerating cycle device 1 can more accurately estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
  • the first value further includes the rotation speed of the outdoor fan motor 36m in the outdoor heat exchanger 33.
  • the refrigerating cycle device 1 can more accurately estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
  • the refrigeration cycle device 1 of this embodiment further includes a learning device 10 .
  • the learning device 10 associates a combination of opening degrees of the plurality of flow rate adjusting units 332a to 332i with a first value when the opening degrees of the plurality of flow rate adjusting units 332a to 332i are the combination of opening degrees. learn.
  • the learning device 10 classifies the combinations of opening degrees according to the heat exchange capacity of the outdoor heat exchanger 33 estimated from the first value.
  • the control unit 70 adjusts the opening degrees of the respective flow rate adjusting units 332a to 332i using combinations of opening degrees classified by the learning device 10 into classes in which the heat exchange capacity of the outdoor heat exchanger 33 is higher than a predetermined value. Control.
  • the refrigeration cycle device 1 of the present embodiment uses machine learning to increase the heat exchange capacity of the outdoor heat exchanger 33 (reduce the drift of the refrigerant flowing through the outdoor heat exchanger 33). can be efficiently calculated.
  • the outdoor pressure value is used as the first value for estimating the heat exchange capacity of the outdoor heat exchanger 33 .
  • the power consumption value of the compressor 31 may be used instead of the outdoor pressure value.
  • the learning control unit 19 designates, for example, a predetermined ratio (for example, 20%) from the record of the learning data 131 in descending order of the power consumption value of the compressor 31, and outdoor heat exchange of these records. It is presumed that the heat exchange capacity of the record holder 33 is high, and that the heat exchange capacity of the outdoor heat exchanger 33 of the other records is low.
  • both the outdoor pressure value and the power consumption value of the compressor 31 are used as the first value, for example, one of them is used to determine whether the air conditioner 2 is in a steady state. may be used.
  • the first values are the outdoor pressure value, the outdoor temperature, and the outdoor fan speed.
  • the first value may further include the rotation speed of the compressor motor 31m and the opening degree of the outdoor expansion valve 34.
  • the rotational speed of the compressor motor 31m and the degree of opening of the outdoor expansion valve 34 are used, for example, to determine whether the air conditioner 2 is in a steady state.
  • the refrigeration cycle device 1 can more accurately estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
  • the controller 70 controls the opening degrees of the respective flow rate regulators 332a to 332i based on the first value.
  • the control unit 70 may control the opening degree of each of the flow rate adjusting units 332a to 332i based on the second value.
  • the second value is a value representing the overall efficiency of the outdoor heat exchanger 33 .
  • the second value is the outlet temperature of the outdoor heat exchanger 33 after the refrigerant exiting the first refrigerant flow path 333 and the refrigerant exiting the second refrigerant flow path 333 join together (hereinafter referred to as It may be described as outdoor outlet temperature.), outdoor temperature, and outdoor fan rotation speed.
  • the refrigerating cycle device 1 can estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
  • the outdoor outlet temperature in cooling operation is the condensation temperature.
  • the outdoor outlet temperature in the cooling operation is acquired from the liquid side temperature sensor 68, for example.
  • the outdoor outlet temperature in heating operation is the evaporation temperature.
  • the outdoor outlet temperature in heating operation is acquired from the gas-side temperature sensor 67, for example.
  • the second value may further include the number of revolutions of the compressor motor 31m and the degree of opening of the outdoor expansion valve 34.
  • the outdoor heat exchanger 33 has a plurality of flow dividers 334 (although there is one in this embodiment)
  • the liquid side temperature sensor 68 is installed at each outlet, these liquid
  • the average of the measured values of the side temperature sensor 68 may be used as the outdoor outlet temperature in the cooling operation.
  • the control unit 70 receives opening degree information from the learning device 10 every predetermined time T2.
  • the control unit 70 sets the opening degrees of the flow rate adjusting units 332a to 332i every predetermined time T1 within the setting range of the received opening information.
  • the control unit 70 waits until the air conditioner 2 is in a steady state every time the opening degrees of the flow rate adjusting units 332a to 332i are set, and after the air conditioner 2 is in a steady state, the flow rate adjusting unit at that time
  • the opening degrees of 332a to 332i and the outdoor outlet temperature (these become the learning data 131) are transmitted to the learning device 10.
  • control unit 70 determines that the air conditioner 2 is in a steady state when the outdoor temperature and the outdoor fan rotation speed are stabilized.
  • the control unit 70 may further determine that the air conditioner 2 is in a steady state when the rotational speed of the compressor motor 31m and the opening degree of the outdoor expansion valve 34 are stabilized.
  • the learning control unit 19 estimates the heat exchange capacity of the outdoor heat exchanger 33 from the outdoor outlet temperature. In the case of cooling operation, it is assumed that the lower the outdoor outlet temperature, the higher the heat exchange capacity of the outdoor heat exchanger 33 . Therefore, the learning control unit 19 designates, for example, a predetermined ratio (for example, 20%) from the record with the lowest outdoor outlet temperature among the records of the learning data 131, and the heat of the outdoor heat exchanger 33 in these records. It is presumed that the heat exchange capacity of the outdoor heat exchanger 33 for other records is low, while the heat exchange capacity is high. In the case of heating operation, it is estimated that the higher the outdoor outlet temperature, the higher the heat exchange capacity of the outdoor heat exchanger 33 .
  • a predetermined ratio for example, 20%
  • the learning control unit 19 designates, for example, a predetermined percentage (for example, 20%) from the record of the learning data 131 with the highest outdoor outlet temperature, and the heat of the outdoor heat exchanger 33 in these records. It is presumed that the heat exchange capacity of the outdoor heat exchanger 33 for other records is low, while the heat exchange capacity is high.
  • a predetermined percentage for example, 20%
  • the learning control unit 19 uses the classification learning model 132 .
  • the learning control unit 19 may use the regression learning model 133 .
  • the regression learning model 133 can use, for example, a neural network, linear regression, or the like.
  • the first value is the outdoor pressure value, the outdoor temperature, and the outdoor fan rotation speed.
  • the second value is the outdoor outlet temperature, the outdoor temperature, and the outdoor fan speed.
  • the learning control unit 19 in advance, the combination of the opening degrees of the plurality of flow rate adjusting units 332a to 332i and the outdoor pressure value when the opening degrees of the plurality of flow rate adjusting units 332a to 332i are the combination of the opening degrees Alternatively, it is learned in association with the outdoor outlet temperature.
  • the learning control unit 19 creates the learning model 133 in advance using the combination of the opening degrees of the flow rate adjusting units 332a to 332i as explanatory variables and the outdoor pressure value or the outdoor outlet temperature as objective variables.
  • the control unit 70 determines in advance the initial values of the opening degrees of the flow rate adjusting units 332a to 332i when starting the cooling operation or the heating operation.
  • step S101 the control unit 70 starts the cooling operation or the heating operation according to an instruction or the like from the operating remote controller.
  • step S102 the control unit 70 sets the opening degrees of the flow rate adjusting units 332a to 332i to initial values.
  • step S103 the control unit 70 waits until the air conditioner 2 reaches a steady state.
  • the control unit 70 determines that the air conditioner 2 is in a steady state when the outdoor temperature and the outdoor fan rotation speed are stabilized.
  • control unit 70 transmits the learning data 131 to the learning device 10 as shown in step S104.
  • control unit 70 transmits to the learning device 10 the combination of the opening degrees of the flow rate adjusting units 332a to 332i and the outdoor pressure value or the outdoor outlet temperature when the air conditioner 2 is in a steady state. .
  • the learning control unit 19 Upon receiving the learning data 131 from the air conditioner 2, the learning control unit 19 updates the learning model 133 using the learning data 131 as shown in step S105.
  • step S106 the learning control unit 19 determines the combination of the opening degrees of the flow rate adjusting units 332a to 332i in the learning data 131 received from the learning device 10 (hereinafter referred to as the reference opening degree). ) and the updated learning model 133, the heat exchange capacity of the outdoor heat exchanger 33 estimated from the outdoor pressure value or the outdoor outlet temperature is increased. ⁇ 332i opening combinations are calculated. Specifically, the learning control unit 19 selects the best point ( The optimum openings of the flow rate adjusting units 332a to 332i) are calculated.
  • the neighborhood point where the lowest outdoor pressure value is estimated is set to the neighborhood point where the highest outdoor pressure value is estimated in the heating operation. Let the point be the best point. Further, when the learning model 133 estimates the outdoor outlet temperature, the neighboring point at which the lowest outdoor outlet temperature is estimated in the cooling operation, and the neighboring point at which the highest outdoor outlet temperature is estimated in the heating operation are selected as the best. point.
  • step S106 the learning control unit 19 transmits the best combination of the opening degrees of the flow rate adjusting units 332a to 332i to the air conditioner 2 as shown in step S107.
  • control unit 70 When the control unit 70 receives the combination of the opening degrees of the flow rate adjusting units 332a to 332i from the learning device 10, it waits for a predetermined time T3 as shown in step S108.
  • Predetermined time T3 is, for example, 10 minutes.
  • step S109 the control unit 70 uses the combination of opening degrees calculated by the learning device 10 to control the opening degrees of the respective flow rate adjusting units 332a to 332i. In other words, the control unit 70 sets the combination of opening degrees received from the learning device 10 to the flow rate adjusting units 332a to 332i.
  • step S109 the control unit 70 waits until the air conditioner 2 reaches a steady state again.
  • control unit 70 and the learning control unit 19 continue this process until the cooling operation or heating operation is stopped by an instruction from the operation remote controller.
  • the control unit 70 controls the opening degrees of the respective flow rate adjusting units 332a to 332i so that the refrigerant flowing through the refrigerant flow paths 333a to 333i of the outdoor heat exchanger 33 does not drift.
  • the control unit 70 further performs indoor heat exchange.
  • the opening degrees of the respective flow rate adjusters 212a to 212i may be controlled so that the refrigerant flowing through the refrigerant flow paths 213a to 213i of the device 21 does not drift.
  • FIG. 8 is a schematic configuration diagram of the indoor heat exchanger 21 in this modification. As shown in FIG. 8, the indoor heat exchanger 21 mainly has a heat exchanger main body 211 and a plurality of flow control units 212a to 212i.
  • the heat exchanger main body 211 has a plurality of refrigerant flow paths 213a-213i including a first refrigerant flow path 213 and a second refrigerant flow path 213. As shown in FIG. 8, the heat exchanger main body 211 is divided into a plurality of sections 211a-211i, and refrigerant flow paths 213a-213i pass through the respective sections 211a-211i.
  • the heat exchanger main body 211 exchanges heat between the refrigerant flowing through the refrigerant flow path 213 and the air in the target space.
  • the heat exchanger main body 211 functions as an evaporator during cooling operation, and functions as a condenser during heating operation.
  • the flow rate adjusting unit 212 adjusts the flow rate of the coolant flowing through the coolant channel 213 .
  • the flow rate adjusting units 212a to 212i adjust the flow rate of the refrigerant flowing through the refrigerant flow paths 213a to 213i so that the temperature and pressure of the refrigerant flowing through the refrigerant flow paths 213a to 213i are uniform. Adjust the flow rate.
  • the flow rate adjusting units 212a to 212i adjust the flow rate of the coolant flowing through the coolant flow paths 213a to 213i so that the coolant flowing through the coolant flow paths 213a to 213i does not drift.
  • the flow rate adjusting section 212 is configured so that the opening degree can be adjusted.
  • the flow divider 214 diverts the refrigerant that has flowed from the compressor 31 side into the indoor heat exchanger 21 (in the direction of the solid line arrows in FIG. 8) into the refrigerant flow paths 213a to 213i during the heating operation. divert.
  • the flow divider 214 flows into the indoor heat exchanger 21 from the side of the indoor expansion valve 23 (in the direction of the dashed arrow in FIG. 8), and is divided into the refrigerant flow paths 213a to 213i by the header 215, which will be described later. merge the refrigerants.
  • the header 215 flows from the compressor 31 side into the indoor heat exchanger 21 (in the direction of the solid line arrow in FIG. 8) during heating operation, and the flow divider 214 causes refrigerant flow paths 213a to 213i. merge the refrigerant diverted to Further, during cooling operation, the header 215 divides the refrigerant that has flowed from the indoor expansion valve 23 side into the indoor heat exchanger 21 (in the direction of the dashed arrow in FIG. 8) into the refrigerant flow paths 213a to 213i.
  • the control unit 70 cooperates with the learning device 10 to control the opening degrees of the flow rate adjustment units 212a to 212i, thereby adjusting the flow rate of the refrigerant flowing through the refrigerant flow paths 213a to 213i. to adjust.
  • the first value is The pressure value of the refrigerant flowing through the indoor heat exchanger 21 (hereinafter sometimes referred to as the indoor pressure value), the temperature of the air that exchanges heat with the refrigerant in the indoor heat exchanger 21 (hereinafter also referred to as the indoor temperature) ), and the number of revolutions of the indoor fan motor 22m (hereinafter sometimes referred to as the number of revolutions of the indoor fan).
  • the first value may further include the number of revolutions of the compressor motor 31m and the degree of opening of the indoor expansion valve 23 .
  • the indoor pressure value in cooling operation is the pressure value on the low pressure side.
  • the indoor pressure value in the cooling operation is obtained from the suction pressure sensor 64, for example.
  • the room temperature is acquired from the room temperature sensor 61, for example. In the case of cooling operation, it is presumed that the higher the indoor pressure value, the higher the heat exchange capacity of the indoor heat exchanger 21 .
  • the indoor pressure value in heating operation is the pressure value on the high pressure side.
  • the indoor pressure value in the heating operation is acquired from the discharge pressure sensor 65, for example. In the case of heating operation, it is estimated that the smaller the indoor pressure value, the higher the heat exchange capacity of the indoor heat exchanger 21 .
  • control unit 70 can determine that the air conditioner 2 has reached a steady state when the indoor temperature and the indoor fan rotation speed are stabilized.
  • the control unit 70 may further determine that the air conditioner 2 is in a steady state when the rotational speed of the compressor motor 31m and the opening degree of the indoor expansion valve 23 are stabilized.
  • the second value is The temperature at the outlet of the indoor heat exchanger 21 after the refrigerant exiting the first refrigerant flow path 213 and the refrigerant exiting the second refrigerant flow path 213 join (hereinafter, sometimes referred to as indoor outlet temperature). ), indoor temperature, and indoor fan speed.
  • the second value may further include the number of revolutions of the compressor motor 31m and the degree of opening of the indoor expansion valve 23 .
  • the indoor outlet temperature in cooling operation is the evaporation temperature.
  • the indoor outlet temperature in the cooling operation is obtained from the gas-side temperature sensor 62, for example. In the case of cooling operation, it is assumed that the higher the indoor outlet temperature, the higher the heat exchange capacity of the indoor heat exchanger 21 .
  • the indoor outlet temperature in heating operation is the condensing temperature.
  • the indoor outlet temperature in the heating operation is obtained from the liquid-side temperature sensor 63, for example. In the case of heating operation, it is estimated that the lower the indoor outlet temperature, the higher the heat exchange capacity of the indoor heat exchanger 21 .
  • control unit 70 can determine that the air conditioner 2 has reached a steady state when the indoor temperature and the indoor fan rotation speed are stabilized.
  • the control unit 70 may further determine that the air conditioner 2 is in a steady state when the rotational speed of the compressor motor 31m and the opening degree of the indoor expansion valve 23 are stabilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

When adjusting the flow rate of a refrigerant flowing through refrigerant flow paths on the basis of the temperature of the refrigerant, there is the problem that a temperature sensor is needed for each refrigerant flow path. This refrigeration cycle device comprises a heat exchanger main body (331), a plurality of flow rate adjustment units (332a-332i), and a control unit. The heat exchanger main body (331) has a plurality of refrigerant flow paths (333a-333i), including a first refrigerant flow path (333) and a second refrigerant flow path (333). The flow rate adjustment units (332) adjust the flows rates of the refrigerant flowing through the refrigerant flow paths (333). The control unit controls the opening degree of the flow rate adjustment units (332), thereby adjusting the flow rate of the refrigerant flowing through the refrigerant flow paths (333). The control unit controls the opening degree of the flow rate adjustment units (332) on the basis of a first value or a second value. The first value is a value representing the total efficiency of the refrigeration cycle. The second value is a value representing the total efficiency of the heat exchanger main body (331).

Description

冷凍サイクル装置refrigeration cycle equipment
 冷凍サイクル装置に関する。 Regarding the refrigeration cycle equipment.
 特許文献1(特開2008-128628)に示されているように、複数の冷媒流路を有する熱交換器において、冷媒流路を流れる冷媒の温度に基づいて冷媒の流量を調整し、熱交換器を流れる冷媒の偏流を防止する技術がある。 As shown in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-128628), in a heat exchanger having a plurality of refrigerant flow paths, the flow rate of the refrigerant is adjusted based on the temperature of the refrigerant flowing through the refrigerant flow paths, and heat exchange is performed. There is a technique to prevent the drift of the refrigerant flowing through the vessel.
 特許文献1のように、冷媒流路を流れる冷媒の温度に基づいて冷媒の流量を調整する場合、冷媒流路ごとに温度センサが必要になる、という課題がある。 As in Patent Document 1, when adjusting the flow rate of the coolant based on the temperature of the coolant flowing through the coolant channels, there is a problem that a temperature sensor is required for each coolant channel.
 第1観点の冷凍サイクル装置は、熱交換器と、複数の流量調整部と、制御部と、を備える。熱交換器は、第1冷媒流路、及び第2冷媒流路を含む、複数の冷媒流路を有する。複数の流量調整部は、それぞれの冷媒流路を流れる冷媒の流量を調整する。制御部は、流量調整部の開度を制御することにより、冷媒流路を流れる冷媒の流量を調整する。制御部は、第1値、又は第2値、に基づいて、それぞれの流量調整部の開度を制御する。第1値は、冷凍サイクルの全体効率を代表する値である。第2値は、熱交換器の全体効率を代表する値である。 The refrigeration cycle device of the first aspect includes a heat exchanger, a plurality of flow rate adjustment units, and a control unit. The heat exchanger has a plurality of refrigerant flow paths including a first refrigerant flow path and a second refrigerant flow path. The plurality of flow rate adjusting units adjust the flow rate of the coolant flowing through each coolant channel. The controller adjusts the flow rate of the coolant flowing through the coolant channel by controlling the opening degree of the flow rate adjuster. The controller controls the opening degree of each flow rate regulator based on the first value or the second value. The first value is a value representative of the overall efficiency of the refrigeration cycle. The second value is a value representative of the overall efficiency of the heat exchanger.
 第1観点の冷凍サイクル装置では、制御部は、第1値、又は第2値、に基づいて、それぞれの流量調整部の開度を制御する。第1値は、冷凍サイクルの全体効率を代表する値である。第2値は、熱交換器の全体効率を代表する値である。その結果、冷凍サイクル装置は、冷媒流路の数よりも少ない数のセンサを用いて、それぞれの冷媒流路を流れる冷媒の流量を調整し、熱交換器を流れる冷媒の偏流を防止することができる。 In the refrigeration cycle apparatus of the first aspect, the controller controls the opening degree of each flow rate regulator based on the first value or the second value. The first value is a value representative of the overall efficiency of the refrigeration cycle. The second value is a value representative of the overall efficiency of the heat exchanger. As a result, the refrigerating cycle apparatus uses a number of sensors that is smaller than the number of refrigerant flow paths to adjust the flow rate of the refrigerant flowing through each refrigerant flow path, thereby preventing uneven flow of the refrigerant flowing through the heat exchanger. can.
 第2観点の冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、第1値は、冷媒を圧縮する圧縮機の消費電力値、又は熱交換器を流れる冷媒の圧力値、を含む。 The refrigeration cycle device of the second aspect is the refrigeration cycle device of the first aspect, and the first value includes the power consumption value of the compressor that compresses the refrigerant or the pressure value of the refrigerant flowing through the heat exchanger.
 第2観点の冷凍サイクル装置は、このような構成により、熱交換器を流れる冷媒の偏流状態を推測して、それぞれの冷媒流路を流れる冷媒の流量を調整することができる。 With such a configuration, the refrigeration cycle device of the second aspect can estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
 第3観点の冷凍サイクル装置は、第1観点又は第2観点のいずれかの冷凍サイクル装置であって、第2値は、第1冷媒流路を出た冷媒と、第2冷媒流路を出た冷媒と、が合流した後の熱交換器の出口温度、を含む。 A refrigeration cycle device according to a third aspect is the refrigeration cycle device according to either the first aspect or the second aspect, wherein the second value is the refrigerant exiting the first refrigerant flow path and the refrigerant exiting the second refrigerant flow path. and the outlet temperature of the heat exchanger after the combined refrigerant.
 第3観点の冷凍サイクル装置は、このような構成により、熱交換器を流れる冷媒の偏流状態を推測して、それぞれの冷媒流路を流れる冷媒の流量を調整することができる。 With such a configuration, the refrigeration cycle device of the third aspect can estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
 第4観点の冷凍サイクル装置は、第2観点又は第3観点のいずれかの冷凍サイクル装置であって、第1値又は第2値は、熱交換器において、冷媒と熱交換する空気の温度、をさらに含む。 A refrigeration cycle device according to a fourth aspect is the refrigeration cycle device according to either the second aspect or the third aspect, wherein the first value or the second value is the temperature of the air that exchanges heat with the refrigerant in the heat exchanger, further includes
 第4観点の冷凍サイクル装置は、このような構成により、熱交換器を流れる冷媒の偏流状態をより精度良く推測して、それぞれの冷媒流路を流れる冷媒の流量を調整することができる。 With such a configuration, the refrigeration cycle device of the fourth aspect can more accurately estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
 第5観点の冷凍サイクル装置は、第2観点から第4観点のいずれかの冷凍サイクル装置であって、第1値又は第2値は、熱交換器において、冷媒と熱交換する空気の流れを生成するファンの回転数、をさらに含む。 A refrigeration cycle device according to a fifth aspect is the refrigeration cycle device according to any one of the second aspect to the fourth aspect, wherein the first value or the second value determines the flow of air that exchanges heat with the refrigerant in the heat exchanger. It further includes the number of revolutions of the fan to generate.
 第5観点の冷凍サイクル装置は、このような構成により、熱交換器を流れる冷媒の偏流状態をより精度良く推測して、それぞれの冷媒流路を流れる冷媒の流量を調整することができる。 With such a configuration, the refrigeration cycle device of the fifth aspect can more accurately estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
 第6観点の冷凍サイクル装置は、第2観点から第5観点のいずれかの冷凍サイクル装置であって、第1値又は第2値は、圧縮機の回転数、をさらに含む。 The refrigeration cycle device of the sixth aspect is the refrigeration cycle device of any one of the second to fifth aspects, wherein the first value or the second value further includes the rotation speed of the compressor.
 第6観点の冷凍サイクル装置は、このような構成により、熱交換器を流れる冷媒の偏流状態をより精度良く推測して、それぞれの冷媒流路を流れる冷媒の流量を調整することができる。 With such a configuration, the refrigeration cycle device of the sixth aspect can more accurately estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant flow path.
 第7観点の冷凍サイクル装置は、第2観点から第6観点のいずれかの冷凍サイクル装置であって、第1値又は第2値は、冷媒の流量を調整する膨張弁の開度、をさらに含む。 A refrigeration cycle device according to a seventh aspect is the refrigeration cycle device according to any one of the second aspect to the sixth aspect, wherein the first value or the second value further determines the degree of opening of an expansion valve that adjusts the flow rate of the refrigerant. include.
 第7観点の冷凍サイクル装置は、このような構成により、熱交換器を流れる冷媒の偏流状態をより精度良く推測して、それぞれの冷媒流路を流れる冷媒の流量を調整することができる。 With such a configuration, the refrigeration cycle device of the seventh aspect can more accurately estimate the drift state of the refrigerant flowing through the heat exchanger and adjust the flow rate of the refrigerant flowing through each refrigerant channel.
 第8観点の冷凍サイクル装置は、第1観点から第7観点のいずれかの冷凍サイクル装置であって、学習装置をさらに備える。学習装置は、複数の流量調整部の開度の組合せと、複数の流量調整部の開度が当該開度の組合せであるときの第1値又は第2値と、を対応付けて学習する。学習装置は、第1値又は第2値から推測される熱交換器の熱交換能力の高さ、に応じて、開度の組合せを分類する。制御部は、学習装置によって熱交換器の熱交換能力が所定の値よりも高いクラスに分類された開度の組合せを用いて、それぞれの流量調整部の開度を制御する。 A refrigeration cycle apparatus according to an eighth aspect is the refrigeration cycle apparatus according to any one of the first to seventh aspects and further includes a learning device. The learning device learns by associating a combination of the opening degrees of the plurality of flow rate adjusting units with a first value or a second value when the opening degrees of the plurality of flow rate adjusting units are the combination of the opening degrees. The learning device classifies combinations of opening degrees according to the heat exchange capacity of the heat exchangers estimated from the first value or the second value. The control unit controls the opening degrees of the respective flow rate adjusting units using a combination of opening degrees classified by the learning device into classes in which the heat exchange capacity of the heat exchangers is higher than a predetermined value.
 第8観点の冷凍サイクル装置は、機械学習を用いることにより、熱交換器の熱交換能力が高くなる(熱交換器を流れる冷媒の偏流が少なくなる)流量調整部の開度の組合せを、効率的に算出することができる。 The refrigeration cycle device of the eighth aspect uses machine learning to increase the heat exchange capacity of the heat exchanger (reduce the drift of the refrigerant flowing through the heat exchanger). can be calculated
 第9観点の冷凍サイクル装置は、第1観点から第7観点のいずれかの冷凍サイクル装置であって、学習装置をさらに備える。学習装置は、複数の流量調整部の開度の組合せと、複数の流量調整部の開度が当該開度の組合せであるときの第1値又は第2値と、を対応付けて学習する。学習装置は、第1値又は第2値から推測される熱交換器の熱交換能力、が高くなるような開度の組合せを算出する。制御部は、学習装置によって算出された開度の組合せを用いて、それぞれの流量調整部の開度を制御する。 A refrigeration cycle apparatus according to a ninth aspect is the refrigeration cycle apparatus according to any one of the first to seventh aspects, and further includes a learning device. The learning device learns by associating a combination of the opening degrees of the plurality of flow rate adjusting units with a first value or a second value when the opening degrees of the plurality of flow rate adjusting units are the combination of the opening degrees. The learning device calculates a combination of opening degrees that increases the heat exchange capacity of the heat exchanger estimated from the first value or the second value. The control unit uses the combination of opening degrees calculated by the learning device to control the opening degrees of the respective flow rate adjusting units.
 第9観点の冷凍サイクル装置は、機械学習を用いることにより、熱交換器の熱交換能力が高い流量調整部の開度の組合せを、効率的に算出することができる。 By using machine learning, the refrigeration cycle apparatus of the ninth aspect can efficiently calculate the combination of the opening degrees of the flow control units with high heat exchange capacity of the heat exchangers.
冷凍サイクル装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle device; FIG. 室外熱交換器の概略構成図である。It is a schematic block diagram of an outdoor heat exchanger. 空気調和装置の制御ブロック図である。3 is a control block diagram of the air conditioner; FIG. 学習装置の制御ブロック図である。3 is a control block diagram of the learning device; FIG. 学習装置の学習過程を説明するための図である。FIG. 4 is a diagram for explaining the learning process of the learning device; 流量調整処理を説明するためのフローチャートである。6 is a flowchart for explaining flow rate adjustment processing; 流量調整処理を説明するためのフローチャートである。6 is a flowchart for explaining flow rate adjustment processing; 変形例1Eにおける室内熱交換器の概略構成図である。It is a schematic block diagram of the indoor heat exchanger in the modification 1E.
 (1)全体構成
 冷凍サイクル装置1は、蒸気圧縮式の冷凍サイクルを構成し、対象空間の空気調和(冷房又は暖房)を行う。本実施形態では、冷凍サイクル装置1は、いわゆるビル用マルチ式空気調和システムである。図1は、冷凍サイクル装置1の概略構成図である。図1に示すように、冷凍サイクル装置1は、主として、空気調和装置2と、学習装置10と、を有する。
(1) Overall Configuration The refrigeration cycle device 1 constitutes a vapor compression refrigeration cycle, and performs air conditioning (cooling or heating) of a target space. In this embodiment, the refrigeration cycle device 1 is a so-called building multi-type air conditioning system. FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 1. As shown in FIG. As shown in FIG. 1 , the refrigeration cycle device 1 mainly has an air conditioner 2 and a learning device 10 .
 空気調和装置2は、室内ユニット20と、室外ユニット30と、を有する。室内ユニット20と、室外ユニット30とは、液冷媒連絡配管51及びガス冷媒連絡配管52を介して接続されることで、冷媒回路50を構成している。また、室内ユニット20と、室外ユニット30とは、通信線81によって、通信可能に接続されている。また、室外ユニット30と、学習装置10とは、通信線82によって、通信可能に接続されている。 The air conditioner 2 has an indoor unit 20 and an outdoor unit 30. The indoor unit 20 and the outdoor unit 30 are connected via a liquid refrigerant communication pipe 51 and a gas refrigerant communication pipe 52 to form a refrigerant circuit 50 . Also, the indoor unit 20 and the outdoor unit 30 are communicably connected by a communication line 81 . Also, the outdoor unit 30 and the learning device 10 are communicably connected by a communication line 82 .
 以下、例えば、冷媒流路333a~333i等について、これらを区別しない場合は、冷媒流路333等と記載することがある。 Hereinafter, for example, the refrigerant flow paths 333a to 333i may be referred to as the refrigerant flow path 333 and the like when they are not distinguished from each other.
 (2)詳細構成
 (2-1)室内ユニット
 室内ユニット20は、冷凍サイクル装置1が設置される建物の室内等、空気調和の対象空間に設置される。室内ユニット20は、例えば、天井埋込型のユニットや、天井吊下型のユニットや、床置型のユニット等である。図1に示すように、室内ユニット20は、主として、室内熱交換器21と、室内ファン22と、室内膨張弁23と、室内制御部29と、室内温度センサ61と、ガス側温度センサ62と、液側温度センサ63と、を有する。また、室内ユニット20は、室内熱交換器21の液側端と液冷媒連絡配管51とを接続する液冷媒配管53aと、室内熱交換器21のガス側端とガス冷媒連絡配管52とを接続するガス冷媒配管53bとを有する。
(2) Detailed Configuration (2-1) Indoor Unit The indoor unit 20 is installed in a space to be air-conditioned, such as a room in a building where the refrigeration cycle device 1 is installed. The indoor unit 20 is, for example, a ceiling-embedded unit, a ceiling-suspended unit, a floor-standing unit, or the like. As shown in FIG. 1, the indoor unit 20 mainly includes an indoor heat exchanger 21, an indoor fan 22, an indoor expansion valve 23, an indoor controller 29, an indoor temperature sensor 61, and a gas side temperature sensor 62. , and a liquid-side temperature sensor 63 . In addition, the indoor unit 20 connects a liquid refrigerant pipe 53a that connects the liquid side end of the indoor heat exchanger 21 and the liquid refrigerant communication pipe 51, and a gas side end of the indoor heat exchanger 21 and the gas refrigerant communication pipe 52. It has a gas refrigerant pipe 53b.
 (2-1-1)室内熱交換器
 室内熱交換器21は、構造を限定するものではないが、例えば、伝熱管(図示省略)と多数のフィン(図示省略)とにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器である。室内熱交換器21は、室内熱交換器21を流れる冷媒と、対象空間の空気と、の間で熱交換を行う。
(2-1-1) Indoor heat exchanger Although the structure of the indoor heat exchanger 21 is not limited, for example, a cross fin composed of a heat transfer tube (not shown) and a large number of fins (not shown) fin-and-tube heat exchanger. The indoor heat exchanger 21 exchanges heat between the refrigerant flowing through the indoor heat exchanger 21 and the air in the target space.
 室内熱交換器21は、冷房運転の際には蒸発器として機能し、暖房運転の際には凝縮器として機能する。 The indoor heat exchanger 21 functions as an evaporator during cooling operation and as a condenser during heating operation.
 (2-1-2)室内ファン
 室内ファン22は、室内ユニット20内に対象空間の空気を吸入して室内熱交換器21に供給し、室内熱交換器21において冷媒と熱交換した空気を、対象空間へと供給する。室内ファン22は、例えば、ターボファンやシロッコファン等の遠心ファンである。室内ファン22は、室内ファンモータ22mによって駆動される。室内ファンモータ22mの回転数は、インバータにより制御可能である。
(2-1-2) Indoor fan The indoor fan 22 sucks air in the target space into the indoor unit 20, supplies it to the indoor heat exchanger 21, and heat-exchanges the air with the refrigerant in the indoor heat exchanger 21, Supply to the target space. The indoor fan 22 is, for example, a centrifugal fan such as a turbo fan or a sirocco fan. The indoor fan 22 is driven by an indoor fan motor 22m. The rotation speed of the indoor fan motor 22m can be controlled by an inverter.
 (2-1-3)室内膨張弁
 室内膨張弁23は、液冷媒配管53aを流れる冷媒の圧力や流量を調節するための機構である。室内膨張弁23は、液冷媒配管53aに設けられる。本実施形態では、室内膨張弁23は、開度調節が可能な電子膨張弁である。
(2-1-3) Indoor Expansion Valve The indoor expansion valve 23 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the liquid refrigerant pipe 53a. The indoor expansion valve 23 is provided in the liquid refrigerant pipe 53a. In this embodiment, the indoor expansion valve 23 is an electronic expansion valve whose degree of opening can be adjusted.
 (2-1-4)センサ
 室内温度センサ61は、対象空間の空気の温度(室温)を測定する。室内温度センサ61は、室内ユニット20の空気の吸入口付近に設けられている。
(2-1-4) Sensor The indoor temperature sensor 61 measures the temperature of the air (room temperature) in the target space. The indoor temperature sensor 61 is provided near the air inlet of the indoor unit 20 .
 ガス側温度センサ62は、ガス冷媒配管53bを流れる冷媒の温度を計測する。ガス側温度センサ62は、ガス冷媒配管53bに設けられている。 The gas-side temperature sensor 62 measures the temperature of the refrigerant flowing through the gas refrigerant pipe 53b. The gas side temperature sensor 62 is provided in the gas refrigerant pipe 53b.
 液側温度センサ63は、液冷媒配管53aを流れる冷媒の温度を計測する。液側温度センサ63は、液冷媒配管53aに設けられている。 The liquid side temperature sensor 63 measures the temperature of the refrigerant flowing through the liquid refrigerant pipe 53a. The liquid side temperature sensor 63 is provided in the liquid refrigerant pipe 53a.
 室内温度センサ61、ガス側温度センサ62、及び液側温度センサ63は、例えば、サーミスタである。 The indoor temperature sensor 61, the gas side temperature sensor 62, and the liquid side temperature sensor 63 are, for example, thermistors.
 (2-1-5)室内制御部
 室内制御部29は、室内ユニット20を構成する各部の動作を制御する。
(2-1-5) Indoor Control Section The indoor control section 29 controls the operation of each section that constitutes the indoor unit 20 .
 室内制御部29は、室内膨張弁23、及び室内ファンモータ22mを含む、室内ユニット20が有する各種機器と電気的に接続されている。また、室内制御部29は、室内温度センサ61、ガス側温度センサ62、及び液側温度センサ63を含む、室内ユニット20に設けられている各種センサと通信可能に接続されている。 The indoor controller 29 is electrically connected to various devices of the indoor unit 20, including the indoor expansion valve 23 and the indoor fan motor 22m. In addition, the indoor controller 29 is communicably connected to various sensors provided in the indoor unit 20, including the indoor temperature sensor 61, the gas-side temperature sensor 62, and the liquid-side temperature sensor 63.
 室内制御部29は、制御演算装置、記憶装置、及びネットワークインターフェイス機器を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM及びフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、室内ユニット20を構成する各部の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。ネットワークインターフェイス機器は、通信線81を介して、室外ユニット30と通信を行うように構成されている。また、室内制御部29は、タイマーを有する。 The indoor control unit 29 has a control arithmetic device, a storage device, and a network interface device. The control arithmetic device is a processor such as a CPU or GPU. The storage device is a storage medium such as RAM, ROM and flash memory. The control arithmetic device reads out a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part that constitutes the indoor unit 20 . Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program. The network interface device is configured to communicate with the outdoor unit 30 via the communication line 81. FIG. Also, the indoor controller 29 has a timer.
 室内制御部29は、操作用リモコン(図示省略)から送信される各種信号を、受信可能に構成されている。各種信号には、例えば、運転の開始及び停止を指示する信号や、各種設定に関する信号が含まれる。各種設定に関する信号には、例えば、設定温度や設定湿度に関する信号が含まれる。また、室内制御部29は、通信線81を介して、室外ユニット30の室外制御部39との間で、制御信号、計測信号、各種設定に関する信号等のやりとりを行う。 The indoor control unit 29 is configured to be able to receive various signals transmitted from an operating remote controller (not shown). The various signals include, for example, signals for instructing start and stop of operation and signals for various settings. Signals related to various settings include, for example, signals related to set temperature and set humidity. In addition, the indoor control unit 29 exchanges control signals, measurement signals, signals related to various settings, etc. with the outdoor control unit 39 of the outdoor unit 30 via the communication line 81 .
 室内制御部29と、室外制御部39とは、協働して制御部70として機能する。制御部70の機能については後述する。 The indoor controller 29 and the outdoor controller 39 cooperate to function as a controller 70 . Functions of the control unit 70 will be described later.
 (2-2)室外ユニット
 室外ユニット30は、冷凍サイクル装置1が設置される建物の屋上等、対象空間の室外に設置される。図1に示すように、室外ユニット30は、主として、圧縮機31と、流路切換弁32と、室外熱交換器33と、室外膨張弁34と、アキュムレータ35と、室外ファン36と、液側閉鎖弁37と、ガス側閉鎖弁38と、室外制御部39と、吸入圧力センサ64と、吐出圧力センサ65と、室外温度センサ66と、ガス側温度センサ67と、液側温度センサ68と、を有する。また、室外ユニット30は、吸入管54aと、吐出管54bと、第1ガス冷媒管54cと、液冷媒管54dと、第2ガス冷媒管54eと、を有する。
(2-2) Outdoor Unit The outdoor unit 30 is installed outside the target space, such as on the roof of the building where the refrigeration cycle device 1 is installed. As shown in FIG. 1, the outdoor unit 30 mainly includes a compressor 31, a flow path switching valve 32, an outdoor heat exchanger 33, an outdoor expansion valve 34, an accumulator 35, an outdoor fan 36, and a liquid side A closing valve 37, a gas side closing valve 38, an outdoor control unit 39, a suction pressure sensor 64, a discharge pressure sensor 65, an outdoor temperature sensor 66, a gas side temperature sensor 67, a liquid side temperature sensor 68, have The outdoor unit 30 also has a suction pipe 54a, a discharge pipe 54b, a first gas refrigerant pipe 54c, a liquid refrigerant pipe 54d, and a second gas refrigerant pipe 54e.
 図1に示すように、吸入管54aは、流路切換弁32と圧縮機31の吸入側とを接続する。吸入管54aには、アキュムレータ35が設けられる。吐出管54bは、圧縮機31の吐出側と流路切換弁32とを接続する。第1ガス冷媒管54cは、流路切換弁32と室外熱交換器33のガス側とを接続する。液冷媒管54dは、室外熱交換器33の液側と液冷媒連絡配管51とを接続する。液冷媒管54dには、室外膨張弁34が設けられている。液冷媒管54dと液冷媒連絡配管51との接続部には、液側閉鎖弁37が設けられている。第2ガス冷媒管54eは、流路切換弁32とガス冷媒連絡配管52とを接続する。第2ガス冷媒管54eとガス冷媒連絡配管52との接続部には、ガス側閉鎖弁38が設けられている。 As shown in FIG. 1 , the suction pipe 54 a connects the flow path switching valve 32 and the suction side of the compressor 31 . An accumulator 35 is provided in the intake pipe 54a. The discharge pipe 54 b connects the discharge side of the compressor 31 and the flow path switching valve 32 . The first gas refrigerant pipe 54 c connects the flow switching valve 32 and the gas side of the outdoor heat exchanger 33 . The liquid refrigerant pipe 54 d connects the liquid side of the outdoor heat exchanger 33 and the liquid refrigerant communication pipe 51 . An outdoor expansion valve 34 is provided in the liquid refrigerant pipe 54d. A liquid-side shut-off valve 37 is provided at the connecting portion between the liquid refrigerant pipe 54 d and the liquid refrigerant communication pipe 51 . The second gas refrigerant pipe 54 e connects the flow path switching valve 32 and the gas refrigerant communication pipe 52 . A gas side shutoff valve 38 is provided at the connecting portion between the second gas refrigerant pipe 54 e and the gas refrigerant communication pipe 52 .
 (2-2-1)圧縮機
 図1に示すように、圧縮機31は、吸入管54aから冷凍サイクルにおける低圧の冷媒を吸入し、圧縮機構(図示せず)で冷媒を圧縮して、圧縮した冷媒を吐出管54bへと吐出する機器である。
(2-2-1) Compressor As shown in FIG. 1, the compressor 31 sucks low-pressure refrigerant in the refrigeration cycle from the suction pipe 54a, compresses the refrigerant with a compression mechanism (not shown), and compresses the refrigerant. It is a device that discharges the discharged refrigerant to the discharge pipe 54b.
 圧縮機31は、例えば、ロータリ式やスクロール式等の容積圧縮機である。圧縮機31の圧縮機構は、圧縮機モータ31mによって駆動される。圧縮機モータ31mの回転数は、インバータにより制御可能である。 The compressor 31 is, for example, a volumetric compressor such as a rotary type or a scroll type. A compression mechanism of the compressor 31 is driven by a compressor motor 31m. The rotation speed of the compressor motor 31m can be controlled by an inverter.
 (2-2-2)流路切換弁
 流路切換弁32は、冷媒の流路を、第1状態と第2状態との間で切り換える機構である。流路切換弁32は、第1状態のとき、図1の流路切換弁32内の実線で示されるように、吸入管54aを第2ガス冷媒管54eと連通させ、吐出管54bを第1ガス冷媒管54cと連通させる。流路切換弁32は、第2状態のとき、図1の流路切換弁32内の破線で示されるように、吸入管54aを第1ガス冷媒管54cと連通させ、吐出管54bを第2ガス冷媒管54eと連通させる。
(2-2-2) Channel Switching Valve The channel switching valve 32 is a mechanism that switches the coolant channel between the first state and the second state. When the flow path switching valve 32 is in the first state, the suction pipe 54a communicates with the second gas refrigerant pipe 54e, and the discharge pipe 54b communicates with the first gas refrigerant pipe 54e, as indicated by the solid line in the flow path switching valve 32 in FIG. It communicates with the gas refrigerant pipe 54c. When the flow path switching valve 32 is in the second state, as indicated by the dashed line in the flow path switching valve 32 in FIG. It communicates with the gas refrigerant pipe 54e.
 流路切換弁32は、冷房運転時には、冷媒の流路を第1状態とする。このとき、圧縮機31から吐出される冷媒は、冷媒回路50内を、室外熱交換器33、室外膨張弁34、室内膨張弁23、室内熱交換器21の順に流れ、圧縮機31へと戻る。第1状態では、室外熱交換器33は凝縮器として機能し、室内熱交換器21は蒸発器として機能する。 The channel switching valve 32 puts the coolant channel in the first state during the cooling operation. At this time, the refrigerant discharged from the compressor 31 flows through the refrigerant circuit 50 in order of the outdoor heat exchanger 33, the outdoor expansion valve 34, the indoor expansion valve 23, and the indoor heat exchanger 21, and returns to the compressor 31. . In the first state, the outdoor heat exchanger 33 functions as a condenser and the indoor heat exchanger 21 functions as an evaporator.
 流路切換弁32は、暖房運転時には、冷媒の流路を第2状態とする。このとき、圧縮機31から吐出される冷媒は、冷媒回路50内を、室内熱交換器21、室内膨張弁23、室外膨張弁34、室外熱交換器33の順に流れ、圧縮機31へと戻る。第2状態では、室外熱交換器33は蒸発器として機能し、室内熱交換器21は凝縮器として機能する。 The channel switching valve 32 puts the coolant channel in the second state during the heating operation. At this time, the refrigerant discharged from the compressor 31 flows through the refrigerant circuit 50 in order of the indoor heat exchanger 21, the indoor expansion valve 23, the outdoor expansion valve 34, and the outdoor heat exchanger 33, and returns to the compressor 31. . In the second state, the outdoor heat exchanger 33 functions as an evaporator and the indoor heat exchanger 21 functions as a condenser.
 (2-2-3)室外熱交換器
 図2は、室外熱交換器33の概略構成図である。図2に示すように、室外熱交換器33は、主として、熱交換器本体331と、複数の流量調整部332a~332iと、を有する。
(2-2-3) Outdoor Heat Exchanger FIG. 2 is a schematic diagram of the outdoor heat exchanger 33. As shown in FIG. As shown in FIG. 2, the outdoor heat exchanger 33 mainly has a heat exchanger body 331 and a plurality of flow rate adjusting units 332a to 332i.
 (2-2-3-1)熱交換器本体
 熱交換器本体331は、第1冷媒流路333、及び第2冷媒流路333を含む、複数の冷媒流路333a~333iを有する。図2に示すように、熱交換器本体331は、複数の区画331a~331iに分割され、それぞれの区画331a~331iを、冷媒流路333a~333iが通過する。熱交換器本体331は、冷媒流路333を流れる冷媒と、室外の空気と、の間で熱交換を行う。熱交換器本体331は、冷房運転の際には凝縮器として機能し、暖房運転の際には蒸発器として機能する。
(2-2-3-1) Heat Exchanger Main Body The heat exchanger main body 331 has a plurality of refrigerant flow paths 333 a to 333 i including a first refrigerant flow path 333 and a second refrigerant flow path 333 . As shown in FIG. 2, the heat exchanger main body 331 is divided into a plurality of sections 331a-331i, and refrigerant flow paths 333a-333i pass through the respective sections 331a-331i. The heat exchanger main body 331 exchanges heat between the refrigerant flowing through the refrigerant flow path 333 and the outdoor air. The heat exchanger main body 331 functions as a condenser during cooling operation, and functions as an evaporator during heating operation.
 (2-2-3-2)流量調整部
 流量調整部332は、冷媒流路333を流れる冷媒の流量を調整する。具体的には、図2に示すように、流量調整部332a~332iは、冷媒流路333a~333iを流れる冷媒の温度や圧力が均一になるように、冷媒流路333a~333iを流れる冷媒の流量を調整する。言い換えると、流量調整部332a~332iは、冷媒流路333a~333iを流れる冷媒に偏流が生じないように、冷媒流路333a~333iを流れる冷媒の流量を調整する。流量調整部332は、開度調節が可能であるように構成されている。
(2-2-3-2) Flow Adjusting Section The flow adjusting section 332 adjusts the flow rate of the coolant flowing through the coolant channel 333 . Specifically, as shown in FIG. 2, the flow rate adjusting units 332a to 332i adjust the flow rate of the refrigerant flowing through the refrigerant flow paths 333a to 333i so that the temperature and pressure of the refrigerant flowing through the refrigerant flow paths 333a to 333i are uniform. Adjust the flow rate. In other words, the flow rate adjusters 332a to 332i adjust the flow rate of the coolant flowing through the coolant flow paths 333a to 333i so that the coolant flowing through the coolant flow paths 333a to 333i is not deviated. The flow rate adjusting section 332 is configured so that the degree of opening can be adjusted.
 (2-2-3-3)分流器
 図2に示すように、分流器334は、暖房運転時には、室外膨張弁34側から室外熱交換器33に(図2中の実線矢印の向きに)流入した冷媒を、冷媒流路333a~333iに分流させる。また、分流器334は、冷房運転時には、圧縮機31側から室外熱交換器33に(図2中の破線矢印の向きに)流入し、後述するヘッダ335によって冷媒流路333a~333iに分流された冷媒を合流させる。
(2-2-3-3) Flow Diverter As shown in FIG. 2, the flow divider 334 is connected from the outdoor expansion valve 34 side to the outdoor heat exchanger 33 (in the direction of the solid arrow in FIG. 2) during heating operation. The refrigerant that has flowed in is divided into the refrigerant flow paths 333a to 333i. Further, the flow divider 334 flows from the compressor 31 side into the outdoor heat exchanger 33 (in the direction of the dashed arrow in FIG. 2) during cooling operation, and is divided into the refrigerant flow paths 333a to 333i by the header 335, which will be described later. merge the refrigerant.
 (2-2-3―4)ヘッダ
 図2に示すように、ヘッダ335は、暖房運転時には、室外膨張弁34側から室外熱交換器33に(図2中の実線矢印の向きに)流入し、分流器334によって冷媒流路333a~333iに分流された冷媒を合流させる。また、ヘッダ335は、冷房運転時には、圧縮機31側から室外熱交換器33に(図2中の破線矢印の向きに)流入した冷媒を、冷媒流路333a~333iに分流させる。
(2-2-3-4) Header As shown in FIG. 2, the header 335 flows into the outdoor heat exchanger 33 from the side of the outdoor expansion valve 34 (in the direction of the solid arrow in FIG. 2) during heating operation. , the refrigerant diverted to the refrigerant flow paths 333a to 333i by the flow divider 334 are merged. Further, during cooling operation, the header 335 divides the refrigerant that has flowed from the compressor 31 side into the outdoor heat exchanger 33 (in the direction of the dashed arrow in FIG. 2) into the refrigerant flow paths 333a to 333i.
 (2-2-4)室外膨張弁
 室外膨張弁34は、液冷媒管54dを流れる冷媒の圧力や流量を調節するための機構である。本実施形態では、室外膨張弁34は、開度調節が可能な電子膨張弁である。
(2-2-4) Outdoor Expansion Valve The outdoor expansion valve 34 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the liquid refrigerant pipe 54d. In this embodiment, the outdoor expansion valve 34 is an electronic expansion valve whose degree of opening can be adjusted.
 (2-2-5)アキュムレータ
 アキュムレータ35は、流入する冷媒を、ガス冷媒と液冷媒とに分ける気液分離機能を有する容器である。アキュムレータ35に流入する冷媒は、ガス冷媒と液冷媒とに分離され、上部空間に集まるガス冷媒が圧縮機31へと流入する。
(2-2-5) Accumulator The accumulator 35 is a container having a gas-liquid separation function to separate the inflowing refrigerant into gas refrigerant and liquid refrigerant. The refrigerant flowing into the accumulator 35 is separated into gas refrigerant and liquid refrigerant, and the gas refrigerant collected in the upper space flows into the compressor 31 .
 (2-2-6)室外ファン
 室外ファン36は、室外ユニット30内に室外の空気を吸入して室外熱交換器33に供給し、室外熱交換器33において冷媒と熱交換した室外の空気を、室外ユニット30の外に排出するファンである。室外ファン36は、例えばプロペラファン等の軸流ファンである。室外ファン36は、室外ファンモータ36mによって駆動される。室外ファンモータ36mの回転数は、インバータにより制御可能である。
(2-2-6) Outdoor Fan The outdoor fan 36 sucks outdoor air into the outdoor unit 30, supplies it to the outdoor heat exchanger 33, and heat-exchanges the outdoor air with the refrigerant in the outdoor heat exchanger 33. , are fans for discharging the air to the outside of the outdoor unit 30 . The outdoor fan 36 is, for example, an axial fan such as a propeller fan. The outdoor fan 36 is driven by an outdoor fan motor 36m. The rotation speed of the outdoor fan motor 36m can be controlled by an inverter.
 (2-2-7)センサ
 吸入圧力センサ64は、吸入圧力を計測するセンサである。吸入圧力センサ64は、吸入管54aに設けられている。吸入圧力は、冷凍サイクルの低圧の値である。
(2-2-7) Sensor The suction pressure sensor 64 is a sensor that measures the suction pressure. The suction pressure sensor 64 is provided on the suction pipe 54a. Suction pressure is the low pressure value of the refrigeration cycle.
 吐出圧力センサ65は、吐出圧力を計測するセンサである。吐出圧力センサ65は、吐出管54bに設けられている。吐出圧力は、冷凍サイクルの高圧の値である。 The discharge pressure sensor 65 is a sensor that measures the discharge pressure. The discharge pressure sensor 65 is provided on the discharge pipe 54b. The discharge pressure is the high pressure value of the refrigeration cycle.
 室外温度センサ66は、対象空間の室外の空気の温度(室外温度)を測定する。室外温度センサ66は、室外ユニット30の空気の吸入口付近に設けられている。 The outdoor temperature sensor 66 measures the temperature of the air outside the target space (outdoor temperature). The outdoor temperature sensor 66 is provided near the air inlet of the outdoor unit 30 .
 ガス側温度センサ67は、第1ガス冷媒管54cを流れる冷媒の温度を計測する。ガス側温度センサ67は、第1ガス冷媒管54cに設けられている。 The gas-side temperature sensor 67 measures the temperature of the refrigerant flowing through the first gas refrigerant pipe 54c. The gas side temperature sensor 67 is provided in the first gas refrigerant pipe 54c.
 液側温度センサ68は、液冷媒管54dを流れる冷媒の温度を計測する。液側温度センサ63は、液冷媒管54dに設けられている。 The liquid side temperature sensor 68 measures the temperature of the refrigerant flowing through the liquid refrigerant pipe 54d. The liquid side temperature sensor 63 is provided on the liquid refrigerant pipe 54d.
 室外温度センサ66、ガス側温度センサ67、及び液側温度センサ68は、例えば、サーミスタである。 The outdoor temperature sensor 66, the gas side temperature sensor 67, and the liquid side temperature sensor 68 are, for example, thermistors.
 (2-2-8)液側閉鎖弁及びガス側閉鎖弁
 図1に示すように、液側閉鎖弁37は、液冷媒管54dと液冷媒連絡配管51との接続部に設けられた弁である。ガス側閉鎖弁38は、第2ガス冷媒管54eとガス冷媒連絡配管52との接続部に設けられた弁である。液側閉鎖弁37及びガス側閉鎖弁38は、例えば、手動で操作される弁である。
(2-2-8) Liquid-side shut-off valve and gas-side shut-off valve As shown in FIG. be. The gas side shutoff valve 38 is a valve provided at the connecting portion between the second gas refrigerant pipe 54 e and the gas refrigerant communication pipe 52 . The liquid-side shut-off valve 37 and the gas-side shut-off valve 38 are, for example, manually operated valves.
 (2-2-9)室外制御部
 室外制御部39は、室外ユニット30を構成する各部の動作を制御する。
(2-2-9) Outdoor Control Section The outdoor control section 39 controls the operation of each section that constitutes the outdoor unit 30 .
 室外制御部39は、圧縮機モータ31m、流路切換弁32、流量調整部332、室外膨張弁34、及び室外ファンモータ36mを含む、室外ユニット30が有する各種機器に電気的に接続されている。また、室外制御部39は、吸入圧力センサ64、吐出圧力センサ65、室外温度センサ66、ガス側温度センサ67、及び液側温度センサ68を含む、室外ユニット30に設けられている各種センサと通信可能に接続されている。 The outdoor control section 39 is electrically connected to various devices of the outdoor unit 30, including the compressor motor 31m, the flow path switching valve 32, the flow rate adjusting section 332, the outdoor expansion valve 34, and the outdoor fan motor 36m. . In addition, the outdoor control unit 39 communicates with various sensors provided in the outdoor unit 30, including the suction pressure sensor 64, the discharge pressure sensor 65, the outdoor temperature sensor 66, the gas side temperature sensor 67, and the liquid side temperature sensor 68. connected as possible.
 室外制御部39は、制御演算装置、記憶装置、及び2つのネットワークインターフェイス機器を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM及びフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、室外ユニット30を構成する各部の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。一方のネットワークインターフェイス機器は、通信線81を介して、室内ユニット20と通信を行うように構成されている。他方のネットワークインターフェイス機器は、通信線82を介して、学習装置10と通信を行うように構成されている。また、室外制御部39は、タイマーを有する。 The outdoor control unit 39 has a control arithmetic device, a storage device, and two network interface devices. The control arithmetic device is a processor such as a CPU or GPU. The storage device is a storage medium such as RAM, ROM and flash memory. The control arithmetic unit reads out a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part that constitutes the outdoor unit 30 . Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program. One network interface device is configured to communicate with the indoor unit 20 via the communication line 81 . The other network interface device is configured to communicate with learning device 10 via communication line 82 . In addition, the outdoor controller 39 has a timer.
 室外制御部39は、通信線81を介して、室内ユニット20の室内制御部29との間で、制御信号、計測信号、各種設定に関する信号等のやりとりを行う。また、室外制御部39は、通信線82を介して、学習装置10の学習制御部19との間で、制御信号、計測信号、各種設定に関する信号等のやりとりを行う。 The outdoor control section 39 exchanges control signals, measurement signals, signals related to various settings, etc. with the indoor control section 29 of the indoor unit 20 via the communication line 81 . In addition, the outdoor control unit 39 exchanges control signals, measurement signals, signals related to various settings, etc. with the learning control unit 19 of the learning device 10 via the communication line 82 .
 室外制御部39と、室内制御部29とは、協働して制御部70として機能する。制御部70の機能については後述する。 The outdoor controller 39 and the indoor controller 29 cooperate to function as a controller 70 . Functions of the control unit 70 will be described later.
 (2-3)制御部
 制御部70は、室内制御部29と、室外制御部39と、から構成される。
(2-3) Control Unit The control unit 70 is composed of the indoor control unit 29 and the outdoor control unit 39 .
 図3は、空気調和装置2の制御ブロック図である。図3に示すように、制御部70は、室内温度センサ61、ガス側温度センサ62、液側温度センサ63、吸入圧力センサ64、吐出圧力センサ65、室外温度センサ66、ガス側温度センサ67、及び液側温度センサ68と通信可能に接続されている。制御部70は、各種センサの送信する計測信号を受信する。また、制御部70は、室内膨張弁23、室内ファンモータ22m、圧縮機モータ31m、流路切換弁32、流量調整部332、室外膨張弁34、及び室外ファンモータ36mと電気的に接続されている。制御部70は、操作用リモコンから送信される制御信号に応じて、各種センサの計測信号に基づき、室内膨張弁23、室内ファンモータ22m、圧縮機モータ31m、流路切換弁32、流量調整部332、室外膨張弁34、及び室外ファンモータ36mを含む、空気調和装置2の各種機器の動作を制御する。 FIG. 3 is a control block diagram of the air conditioner 2. As shown in FIG. As shown in FIG. 3, the control unit 70 includes an indoor temperature sensor 61, a gas side temperature sensor 62, a liquid side temperature sensor 63, a suction pressure sensor 64, a discharge pressure sensor 65, an outdoor temperature sensor 66, a gas side temperature sensor 67, and the liquid-side temperature sensor 68 are communicably connected. The control unit 70 receives measurement signals transmitted from various sensors. In addition, the control unit 70 is electrically connected to the indoor expansion valve 23, the indoor fan motor 22m, the compressor motor 31m, the flow path switching valve 32, the flow rate adjusting unit 332, the outdoor expansion valve 34, and the outdoor fan motor 36m. there is The control unit 70 controls the indoor expansion valve 23, the indoor fan motor 22m, the compressor motor 31m, the flow path switching valve 32, the flow rate adjusting unit, and the control signal transmitted from the operation remote controller based on the measurement signals of various sensors. 332, the outdoor expansion valve 34, and the outdoor fan motor 36m.
 制御部70は、主として、冷房運転と、暖房運転とを行う。 The control unit 70 mainly performs cooling operation and heating operation.
 (2-3-1)冷房運転
 制御部70は、操作用リモコンから、室内ユニット20に冷房運転を行わせる旨の指示を受けると、流路切換弁32内が、図1の実線で示された状態になるように流路切換弁32を制御する。このとき、冷媒の流路は、第1状態となる。
(2-3-1) Cooling Operation When the controller 70 receives an instruction from the operation remote control to cause the indoor unit 20 to perform the cooling operation, the inside of the flow path switching valve 32 is shown by the solid line in FIG. The flow path switching valve 32 is controlled so as to be in the state of At this time, the coolant passage is in the first state.
 制御部70は、室外膨張弁34を段階的に開けると共に、室内熱交換器21のガス側出口における冷媒の過熱度が所定の目標過熱度になるように、室内膨張弁23を開度調節する。室内熱交換器21のガス側出口における冷媒の過熱度は、例えば、ガス側温度センサ62の計測値から、吸入圧力センサ64の計測値(吸入圧力)から換算される蒸発温度を、差し引くことで算出される。 The controller 70 opens the outdoor expansion valve 34 step by step, and adjusts the degree of opening of the indoor expansion valve 23 so that the degree of superheat of the refrigerant at the gas-side outlet of the indoor heat exchanger 21 reaches a predetermined target degree of superheat. . The degree of superheat of the refrigerant at the gas side outlet of the indoor heat exchanger 21 can be obtained, for example, by subtracting the evaporation temperature converted from the measured value (suction pressure) of the suction pressure sensor 64 from the measured value of the gas side temperature sensor 62. Calculated.
 また、制御部70は、吸入圧力センサ64の計測値から換算される蒸発温度が所定の目標蒸発温度に近づくように、圧縮機31の運転容量を制御する。圧縮機31の運転容量の制御は、圧縮機モータ31mの回転数を制御することにより行われる。 Also, the control unit 70 controls the operating capacity of the compressor 31 so that the evaporation temperature converted from the measured value of the suction pressure sensor 64 approaches a predetermined target evaporation temperature. Control of the operating capacity of the compressor 31 is performed by controlling the rotational speed of the compressor motor 31m.
 また、制御部70は、学習装置10と協働して、流量調整部332a~332iの開度を制御することにより、冷媒流路333a~333iを流れる冷媒の流量を調整する(以下、流量調整処理と記載することがある。)。制御部70は、第1値に基づいて、それぞれの流量調整部332a~332iの開度を制御する。第1値は、冷凍サイクルの全体効率を代表する値である。本実施形態では、第1値は、室外熱交換器33を流れる冷媒の圧力値(以下、室外圧力値と記載することがある。)、室外熱交換器33において冷媒と熱交換する空気の温度(以下、室外温度と記載することがある。)、及び室外ファンモータ36mの回転数(以下、室外ファン回転数と記載することがある。)、である。冷房運転における室外圧力値は、高圧側の圧力値である。冷房運転における室外圧力値は、例えば、吐出圧力センサ65から取得する。室外温度は、例えば、室外温度センサ66から取得する。 In addition, the control unit 70 cooperates with the learning device 10 to control the opening degrees of the flow rate adjustment units 332a to 332i, thereby adjusting the flow rate of the refrigerant flowing through the refrigerant flow paths 333a to 333i (hereinafter referred to as flow rate adjustment sometimes referred to as processing). The controller 70 controls the opening degrees of the respective flow rate regulators 332a to 332i based on the first value. The first value is a value representative of the overall efficiency of the refrigeration cycle. In the present embodiment, the first value is the pressure value of the refrigerant flowing through the outdoor heat exchanger 33 (hereinafter sometimes referred to as the outdoor pressure value), the temperature of the air heat-exchanging with the refrigerant in the outdoor heat exchanger 33 (hereinafter sometimes referred to as the outdoor temperature), and the rotation speed of the outdoor fan motor 36m (hereinafter sometimes referred to as the outdoor fan rotation speed). The outdoor pressure value in the cooling operation is the pressure value on the high pressure side. The outdoor pressure value in the cooling operation is acquired from the discharge pressure sensor 65, for example. The outdoor temperature is acquired from the outdoor temperature sensor 66, for example.
 制御部70は、学習装置10から、所定時間T2(例えば、24時間。)ごとに、流量調整部332a~332iの開度の設定範囲についての情報(以下、開度情報と記載することがある。)を受信する。制御部70は、受信した開度情報の設定範囲内において、所定時間T1(例えば、10分。)ごとに、流量調整部332a~332iの開度を設定する。言い換えると、制御部70は、所定時間T1ごとに、開度情報の設定範囲内で、流量調整部332a~332iの開度を変更していく。制御部70は、流量調整部332a~332iの開度を設定する度に、冷媒の圧力や温度、及び各種機器の動作が安定するまで(空気調和装置2が定常状態となるまで)待機し、空気調和装置2が定常状態になった後、その時の流量調整部332a~332iの開度、及び室外圧力値(以下、これらを学習データ131と記載することがある。)を、学習装置10に送信する。本実施形態では、制御部70は、室外温度、及び室外ファン回転数が安定したときに、空気調和装置2が定常状態となったと判断する。言い換えると、第1値の内、室外温度、及び室外ファン回転数は、空気調和装置2が定常状態であるか否かを判定するために用いられる。 The control unit 70 receives information (hereinafter sometimes referred to as opening information) about the setting range of the opening of the flow rate adjusting units 332a to 332i from the learning device 10 every predetermined time T2 (for example, 24 hours). .) is received. The control unit 70 sets the opening degrees of the flow rate adjusting units 332a to 332i every predetermined time T1 (for example, 10 minutes) within the setting range of the received opening information. In other words, the control section 70 changes the opening degrees of the flow rate adjusting sections 332a to 332i within the set range of the opening degree information every predetermined time T1. Each time the control unit 70 sets the opening degrees of the flow rate adjusting units 332a to 332i, the control unit 70 waits until the pressure and temperature of the refrigerant and the operation of various devices are stabilized (until the air conditioner 2 is in a steady state), After the air conditioner 2 reaches a steady state, the opening degrees of the flow rate adjusting units 332a to 332i and the outdoor pressure values (hereinafter sometimes referred to as learning data 131) at that time are sent to the learning device 10. Send. In the present embodiment, the controller 70 determines that the air conditioner 2 is in a steady state when the outdoor temperature and the outdoor fan rotation speed are stabilized. In other words, of the first values, the outdoor temperature and the outdoor fan rotation speed are used to determine whether the air conditioner 2 is in a steady state.
 以上のように、対象空間の室温を設定温度に近づけるように、制御部70が各種機器を制御することで、冷房運転時には冷媒回路50を以下のように冷媒が流れる。 As described above, the control unit 70 controls various devices so that the room temperature of the target space approaches the set temperature, so that the refrigerant flows through the refrigerant circuit 50 as follows during cooling operation.
 圧縮機31が起動されると、冷凍サイクルにおける低圧のガス冷媒が圧縮機31に吸入され、圧縮機31で圧縮されて冷凍サイクルにおける高圧のガス冷媒となる。 When the compressor 31 is started, the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 31 and compressed by the compressor 31 to become the high-pressure gas refrigerant in the refrigeration cycle.
 高圧のガス冷媒は、流路切換弁32を経由して、第1ガス冷媒管54cを流れ、室外熱交換器33に送られる。室外熱交換器33に送られた高圧のガス冷媒は、ヘッダ335に流入した後、冷媒流路333a~333iに分流する。分流した冷媒流路333a~333iを流れる冷媒は、熱交換器本体331内において、室外ファン36によって供給される室外の空気と熱交換を行って凝縮し、高圧の液冷媒となる。熱交換器本体331を通過した冷媒流路333a~333iを流れる冷媒は、偏流が生じないように、流量調整部332a~332iによって流量が調整される。流量調整部332a~332iを通過した冷媒流路333a~333iを流れる冷媒は、分流器334で合流して、室外熱交換器33から流出する。室外熱交換器33を通過した高圧の液冷媒は、液冷媒管54dを流れ、室外膨張弁34を通過し、室内ユニット20に送られる。 The high-pressure gas refrigerant flows through the first gas refrigerant pipe 54 c via the channel switching valve 32 and is sent to the outdoor heat exchanger 33 . The high-pressure gas refrigerant sent to the outdoor heat exchanger 33 flows into the header 335 and then branches to the refrigerant flow paths 333a to 333i. The refrigerant flowing through the branched refrigerant flow paths 333a to 333i exchanges heat with the outdoor air supplied by the outdoor fan 36 in the heat exchanger main body 331, and is condensed into a high-pressure liquid refrigerant. The flow rate of the refrigerant flowing through the refrigerant flow paths 333a to 333i after passing through the heat exchanger main body 331 is adjusted by the flow rate adjusting units 332a to 332i so as not to cause drift. The refrigerant flowing through the refrigerant flow paths 333a to 333i that have passed through the flow rate adjusting portions 332a to 332i joins at the flow divider 334 and flows out of the outdoor heat exchanger 33. FIG. The high-pressure liquid refrigerant that has passed through the outdoor heat exchanger 33 flows through the liquid refrigerant pipe 54 d, passes through the outdoor expansion valve 34 , and is sent to the indoor unit 20 .
 室内ユニット20に送られた高圧の液冷媒は、室内膨張弁23において圧縮機31の吸入圧力近くまで減圧され、気液二相状態の冷媒となって室内熱交換器21に送られる。気液二相状態の冷媒は、室内熱交換器21において、室内ファン22により室内熱交換器21へと供給される対象空間の空気と熱交換を行って蒸発し、低圧のガス冷媒となる。低圧のガス冷媒は、ガス冷媒連絡配管52を経由して室外ユニット30に送られ、流路切換弁32を経由してアキュムレータ35に流入する。アキュムレータ35に流入した低圧のガス冷媒は、再び、圧縮機31に吸入される。室内熱交換器21に供給された空気の温度は、室内熱交換器21を流れる冷媒と熱交換することで低下し、室内熱交換器21で冷却された空気が対象空間に吹き出す。 The high-pressure liquid refrigerant sent to the indoor unit 20 is decompressed by the indoor expansion valve 23 to near the suction pressure of the compressor 31 and sent to the indoor heat exchanger 21 as a gas-liquid two-phase refrigerant. In the indoor heat exchanger 21, the gas-liquid two-phase refrigerant exchanges heat with the air in the target space supplied to the indoor heat exchanger 21 by the indoor fan 22, and evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant is sent to the outdoor unit 30 via the gas refrigerant communication pipe 52 and flows into the accumulator 35 via the flow path switching valve 32 . The low-pressure gas refrigerant that has flowed into the accumulator 35 is sucked into the compressor 31 again. The temperature of the air supplied to the indoor heat exchanger 21 is lowered by heat exchange with the refrigerant flowing through the indoor heat exchanger 21, and the air cooled by the indoor heat exchanger 21 is blown out to the target space.
 (2-3-2)暖房運転
 制御部70は、操作用リモコンから、室内ユニット20に暖房運転を行わせる旨の指示を受けると、流路切換弁32内が、図1の破線で示された状態になるように流路切換弁32を制御する。このとき、冷媒の流路は、第2状態となる。
(2-3-2) Heating Operation When the controller 70 receives an instruction from the operation remote control to cause the indoor unit 20 to perform the heating operation, the inside of the flow path switching valve 32 is shown by the dashed line in FIG. The flow path switching valve 32 is controlled so as to be in the state of At this time, the coolant passage is in the second state.
 制御部70は、室内熱交換器21の液側出口における冷媒の過冷却度が所定の目標過冷却度になるように、室内膨張弁23を開度調節する。室内熱交換器21の液側出口における冷媒の過冷却度は、例えば、吐出圧力センサ65の計測値(吐出圧力)から換算される凝縮温度から、液側温度センサ63の計測値を差し引くことで算出される。 The control unit 70 adjusts the degree of opening of the indoor expansion valve 23 so that the degree of supercooling of the refrigerant at the liquid-side outlet of the indoor heat exchanger 21 reaches a predetermined target degree of supercooling. The degree of supercooling of the refrigerant at the liquid side outlet of the indoor heat exchanger 21 is obtained, for example, by subtracting the measured value of the liquid side temperature sensor 63 from the condensation temperature converted from the measured value (discharge pressure) of the discharge pressure sensor 65. Calculated.
 また、制御部70は、室外熱交換器33に流入する冷媒が、室外熱交換器33において蒸発可能な圧力まで減圧されるように、室外膨張弁34を開度調節する。 In addition, the controller 70 adjusts the opening degree of the outdoor expansion valve 34 so that the refrigerant flowing into the outdoor heat exchanger 33 is decompressed to a pressure that can evaporate in the outdoor heat exchanger 33 .
 また、制御部70は、吐出圧力センサ65の計測値から換算される凝縮温度が所定の目標凝縮温度に近づくように、圧縮機31の運転容量を制御する。圧縮機31の運転容量の制御は、圧縮機モータ31mの回転数を制御により行われる。 Also, the control unit 70 controls the operating capacity of the compressor 31 so that the condensation temperature converted from the measured value of the discharge pressure sensor 65 approaches a predetermined target condensation temperature. Control of the operating capacity of the compressor 31 is performed by controlling the rotational speed of the compressor motor 31m.
 また、制御部70は、冷房運転時と同様に、学習装置10と協働して、流量調整部332a~332iの開度を制御することにより、冷媒流路333a~333iを流れる冷媒の流量を調整する。但し、暖房運転における室外圧力値は、低圧側の圧力値である。暖房運転における室外圧力値は、例えば、吸入圧力センサ64から取得する。 In addition, as in the cooling operation, the control unit 70 cooperates with the learning device 10 to control the opening degrees of the flow rate adjusting units 332a to 332i, thereby adjusting the flow rate of the refrigerant flowing through the refrigerant flow paths 333a to 333i. adjust. However, the outdoor pressure value in the heating operation is the pressure value on the low pressure side. The outdoor pressure value in the heating operation is obtained from the suction pressure sensor 64, for example.
 以上のように、対象空間の室温を設定温度に近づけるように、制御部70が各種機器を制御することで、暖房運転時には冷媒回路50を以下のように冷媒が流れる。 As described above, the controller 70 controls various devices so that the room temperature of the target space approaches the set temperature, so that the refrigerant flows through the refrigerant circuit 50 as follows during heating operation.
 圧縮機31が起動されると、冷凍サイクルにおける低圧のガス冷媒が圧縮機31に吸入され、圧縮機31で圧縮されて冷凍サイクルにおける高圧のガス冷媒となる。高圧のガス冷媒は、流路切換弁32を経由して室内熱交換器21に送られ、室内ファン22によって供給される対象空間の空気と熱交換を行って凝縮し、高圧の液冷媒となる。室内熱交換器21へと供給された空気の温度は、室内熱交換器21を流れる冷媒と熱交換することで上昇し、室内熱交換器21で加熱された空気が対象空間に吹き出す。室内熱交換器21を通過した高圧の液冷媒は、室内膨張弁23を通過して減圧される。室内膨張弁23において減圧された冷媒は、液冷媒連絡配管51を経由して室外ユニット30に送られ、液冷媒管54dに流入する。液冷媒管54dを流れる冷媒は、室外膨張弁34を通過する際に圧縮機31の吸入圧力近くまで減圧され、気液二相状態の冷媒となって室外熱交換器33に流入する。室外熱交換器33に流入した低圧の気液二相状態の冷媒は、分流器334に流入した後、冷媒流路333a~333iに分流する。分流した冷媒流路333a~333iを流れる冷媒は、偏流が生じないように、流量調整部332a~332iによって流量が調整される。流量調整部332a~332iを通過した冷媒流路333a~333iを流れる冷媒は、熱交換器本体331内において、室外ファン36によって供給される室外の空気と熱交換を行って蒸発し、低圧のガス冷媒となる。熱交換器本体331を通過した冷媒流路333a~333iを流れる冷媒は、ヘッダ335で合流して、室外熱交換器33から流出する。室外熱交換器33を通過した低圧のガス冷媒は、流路切換弁32を経由してアキュムレータ35に流入する。アキュムレータ35に流入した低圧のガス冷媒は、再び、圧縮機31に吸入される。 When the compressor 31 is started, the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 31 and compressed by the compressor 31 to become the high-pressure gas refrigerant in the refrigeration cycle. The high-pressure gas refrigerant is sent to the indoor heat exchanger 21 via the flow path switching valve 32, exchanges heat with the air in the target space supplied by the indoor fan 22, and condenses to become a high-pressure liquid refrigerant. . The temperature of the air supplied to the indoor heat exchanger 21 rises by exchanging heat with the refrigerant flowing through the indoor heat exchanger 21, and the air heated by the indoor heat exchanger 21 is blown out into the target space. The high-pressure liquid refrigerant that has passed through the indoor heat exchanger 21 passes through the indoor expansion valve 23 and is decompressed. The refrigerant decompressed by the indoor expansion valve 23 is sent to the outdoor unit 30 via the liquid refrigerant communication pipe 51 and flows into the liquid refrigerant pipe 54d. The refrigerant flowing through the liquid refrigerant pipe 54 d is decompressed to near the suction pressure of the compressor 31 when passing through the outdoor expansion valve 34 , becomes a gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 33 . The low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 33 flows into the flow divider 334, and then is divided into the refrigerant flow paths 333a to 333i. The flow rate of the refrigerant flowing through the branched refrigerant flow paths 333a to 333i is adjusted by the flow rate adjusting units 332a to 332i so as not to cause drift. The refrigerant flowing through the refrigerant flow paths 333a to 333i that has passed through the flow rate adjusting units 332a to 332i exchanges heat with the outdoor air supplied by the outdoor fan 36 in the heat exchanger body 331, evaporates, and becomes a low-pressure gas. It becomes a refrigerant. The refrigerant flowing through the refrigerant passages 333 a to 333 i that has passed through the heat exchanger main body 331 joins at the header 335 and flows out of the outdoor heat exchanger 33 . The low-pressure gas refrigerant that has passed through the outdoor heat exchanger 33 flows into the accumulator 35 via the flow path switching valve 32 . The low-pressure gas refrigerant that has flowed into the accumulator 35 is sucked into the compressor 31 again.
 (2-4)学習装置
 学習装置10は、冷媒流路333a~333iを流れる冷媒に偏流が生じないように、制御部70と協働して、流量調整部332a~332iの適切な開度を学習する。本実施形態では、学習装置10は、建物のサーバルーム等に設置されるコンピュータである。しかし、学習装置10は、クラウド上のデータセンタ等に設置されてもよい。この場合、通信線82は、インターネット等の回線を含む。図4は、学習装置10の制御ブロック図である。図4に示すように、学習装置10は、主として、学習入力部11と、学習表示部12と、学習記憶部13と、学習通信部14と、学習制御部19と、を有する。
(2-4) Learning Device The learning device 10 cooperates with the control section 70 to adjust the appropriate opening degrees of the flow rate adjusting sections 332a to 332i so that the refrigerant flowing through the refrigerant flow paths 333a to 333i does not drift. learn. In this embodiment, the learning device 10 is a computer installed in a building server room or the like. However, the learning device 10 may be installed in a data center or the like on the cloud. In this case, the communication line 82 includes lines such as the Internet. FIG. 4 is a control block diagram of the learning device 10. As shown in FIG. As shown in FIG. 4 , the learning device 10 mainly includes a learning input section 11 , a learning display section 12 , a learning storage section 13 , a learning communication section 14 and a learning control section 19 .
 (2-4-1)学習入力部
 学習入力部11は、キーボード及びマウスである。学習装置10に対する各種指令や各種情報は、学習入力部11を用いて入力することができる。
(2-4-1) Learning Input Unit The learning input unit 11 is a keyboard and mouse. Various commands and various information to the learning device 10 can be input using the learning input unit 11 .
 (2-4-2)学習表示部
 学習表示部12は、モニターである。学習表示部12には、例えば、学習データ131や、学習状況等を表示することができる。
(2-4-2) Learning display section The learning display section 12 is a monitor. The learning display unit 12 can display, for example, the learning data 131 and the learning status.
 (2-4-3)学習記憶部
 学習記憶部13は、RAM、ROM及びHDD(ハードディスクドライブ)等の記憶装置である。学習記憶部13は、学習制御部19が実行するプログラムや、プログラムの実行に必要なデータ等を記憶している。
(2-4-3) Learning Storage Unit The learning storage unit 13 is a storage device such as RAM, ROM, and HDD (Hard Disk Drive). The learning storage unit 13 stores programs executed by the learning control unit 19, data necessary for executing the programs, and the like.
 学習記憶部13は、特に、学習データ131と、後述する学習モデル132と、を記憶する。以下の表1は、冷房運転における学習データ131の一例を示したものである。 The learning storage unit 13 particularly stores learning data 131 and a learning model 132, which will be described later. Table 1 below shows an example of the learning data 131 in the cooling operation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 学習データ131の1レコードは、制御部70が流量調整部332a~332iの開度を1回設定したことに対応する。表1において、項目「開度a」~「開度i」はそれぞれ、制御部70が設定した流量調整部332a~332iの開度を示している。 One record of the learning data 131 corresponds to the control unit 70 setting the opening degrees of the flow rate adjusting units 332a to 332i once. In Table 1, the items "opening degree a" to "opening degree i" indicate the opening degrees of the flow rate adjusting units 332a to 332i set by the control unit 70, respectively.
 (2-4-4)学習通信部
 学習通信部14は、通信線82を介して通信を行うためのネットワークインターフェイス機器である。
(2-4-4) Learning Communication Unit The learning communication unit 14 is a network interface device for communicating via the communication line 82 .
 (2-4-5)学習制御部
 学習制御部19は、CPUやGPU等のプロセッサである。学習制御部19は、学習記憶部13に記憶されているプログラムを読み込んで実行し、学習装置10の様々な機能を実現する。また、学習制御部19は、プログラムに従って、演算結果を学習記憶部13に書き込んだり、学習記憶部13に記憶されている情報を読み出したりすることができる。また、学習制御部19は、タイマーを有する。
(2-4-5) Learning Control Unit The learning control unit 19 is a processor such as a CPU or GPU. The learning control unit 19 reads and executes programs stored in the learning storage unit 13 to implement various functions of the learning device 10 . Further, the learning control unit 19 can write the calculation result to the learning storage unit 13 and read information stored in the learning storage unit 13 according to the program. Also, the learning control unit 19 has a timer.
 学習制御部19は、複数の流量調整部332a~332iの開度の組合せと、複数の流量調整部332a~332iの開度が当該開度の組合せであるときの室外圧力値と、を対応付けて学習する。言い換えると、学習制御部19は、表1に示すような学習データ131を用いて、学習モデル132を作成する。本実施形態の学習モデル132は、分類型のモデルである。本実施形態の学習モデル132には、例えば、ニューラルネットワーク、ロジスティック回帰、及びサポートベクトルマシン等を用いることができる。 The learning control unit 19 associates the combination of the opening degrees of the plurality of flow rate adjusting sections 332a to 332i with the outdoor pressure value when the opening degrees of the plurality of flow rate adjusting sections 332a to 332i are the combination of the opening degrees. to learn. In other words, the learning control unit 19 uses learning data 131 as shown in Table 1 to create a learning model 132 . The learning model 132 of this embodiment is a classification model. A neural network, a logistic regression, a support vector machine, or the like, for example, can be used for the learning model 132 of this embodiment.
 具体的には、まず、学習制御部19は、前処理として、室外圧力値から、室外熱交換器33の熱交換能力の高さを推測する。冷房運転の場合、室外圧力値(高圧側の圧力値)が小さい程、室外熱交換器33の熱交換能力は高いと推測される。そのため、学習制御部19は、例えば、学習データ131のレコードの内、室外圧力値が小さいものから所定の割合(例えば、20%。)を指定し、これらのレコードの室外熱交換器33の熱交換能力は高い、それ以外のレコードの室外熱交換器33の熱交換能力は低い、と推測する。暖房運転の場合、室外圧力値(低圧側の圧力値)が大きい程、室外熱交換器33の熱交換能力は高いと推測される。そのため、学習制御部19は、例えば、学習データ131のレコードの内、室外圧力値が大きいものから所定の割合(例えば、20%。)を指定し、これらのレコードの室外熱交換器33の熱交換能力は高い、それ以外のレコードの室外熱交換器33の熱交換能力は低い、と推測する。以下の表2は、表1の学習データ131に、前処理を行った一例である。 Specifically, first, as preprocessing, the learning control unit 19 estimates the heat exchange capacity of the outdoor heat exchanger 33 from the outdoor pressure value. In the case of cooling operation, it is estimated that the smaller the outdoor pressure value (the pressure value on the high pressure side), the higher the heat exchange capacity of the outdoor heat exchanger 33 . Therefore, the learning control unit 19 designates, for example, a predetermined ratio (for example, 20%) from the record with the smallest outdoor pressure value among the records of the learning data 131, and the heat of the outdoor heat exchanger 33 in these records. It is presumed that the heat exchange capacity of the outdoor heat exchanger 33 for other records is low, while the heat exchange capacity is high. In the case of heating operation, it is presumed that the higher the outdoor pressure value (pressure value on the low pressure side), the higher the heat exchange capacity of the outdoor heat exchanger 33 . Therefore, the learning control unit 19 designates, for example, a predetermined ratio (for example, 20%) from records having the largest outdoor pressure values among the records of the learning data 131, and the heat of the outdoor heat exchanger 33 in these records. It is presumed that the heat exchange capacity of the outdoor heat exchanger 33 for other records is low, while the heat exchange capacity is high. Table 2 below is an example in which the learning data 131 of Table 1 is preprocessed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1は、冷房運転における学習データ131であるため、表2では、室外圧力値が小さいもの程、熱交換能力が「高」となりやすい。 Table 1 shows the learning data 131 in the cooling operation, so in Table 2, the smaller the outdoor pressure value, the more likely the heat exchange capacity is "high".
 次に、学習制御部19は、室外圧力値から推測される室外熱交換器33の熱交換能力の高さ、に応じて、流量調整部332a~332iの開度の組合せを分類する。言い換えると、学習制御部19は、流量調整部332a~332iの開度の組合せを説明変数とし、熱交換能力を目的変数として、学習モデル132を作成し、流量調整部332a~332iの開度の組合せを分類する。さらに言い換えると、学習制御部19は、各点が流量調整部332a~332iの開度の組合せを表す開度空間(ここでは、開度a~開度iの値を軸とする9次元空間。)を、熱交換能力が「高」であると推定される領域と、熱交換能力が「低」であると推定される領域と、に分割する学習モデル132を作成する。 Next, the learning control unit 19 classifies the combination of opening degrees of the flow rate adjusting units 332a to 332i according to the heat exchange capacity of the outdoor heat exchanger 33 estimated from the outdoor pressure value. In other words, the learning control unit 19 uses the combination of the opening degrees of the flow rate adjusting units 332a to 332i as an explanatory variable and the heat exchange capacity as an objective variable to create the learning model 132. Classify combinations. In other words, the learning control unit 19 creates an opening space where each point represents a combination of the openings of the flow rate adjusting units 332a to 332i (here, a nine-dimensional space whose axes are the values of the openings a to i. ) into a region where the heat exchange capacity is estimated to be “high” and a region where the heat exchange capacity is estimated to be “low”.
 図5は、学習装置10の学習過程を説明するための図である。図5では、視覚化のため、9次元の開度空間の内、「開度a」軸と「開度b」軸とからなる2次元平面のみを示している。 FIG. 5 is a diagram for explaining the learning process of the learning device 10. FIG. For visualization purposes, FIG. 5 shows only a two-dimensional plane consisting of the “opening degree a” axis and the “opening degree b” axis in the nine-dimensional opening space.
 図5の左上図には、学習データ131の各レコードの「開度a」と「開度b」の値に対応して、4つの点がプロットされている。図5の左上図において、内部がハッチングされている点は、熱交換能力が「高」であることを示す。内部がハッチングされていない点は、熱交換能力が「低」であることを示す。 In the upper left diagram of FIG. 5, four points are plotted corresponding to the values of "opening degree a" and "opening degree b" of each record of the learning data 131. In the upper left diagram of FIG. 5 , hatched points indicate that the heat exchange capacity is “high”. A point where the inside is not hatched indicates that the heat exchange capacity is "low".
 図5の中央上図は、学習モデル132による境界BR1によって、開度空間が、領域R1と領域R2とに分割された状態を示す。(ハッチングされている)領域R1は、熱交換能力が「高」であると推定される領域を示す。領域R2は、熱交換能力が「低」であると推定される領域を示す。 The upper center diagram of FIG. 5 shows a state in which the opening space is divided into regions R1 and R2 by the boundary BR1 of the learning model 132. FIG. A region R1 (hatched) indicates a region where the heat exchange capacity is estimated to be “high”. A region R2 indicates a region where the heat exchange capacity is estimated to be "low".
 学習制御部19は、熱交換能力が「高」であると推定される領域(領域R1)が定まると、当該領域についての情報を、開度情報として、制御部70に送信する。言い換えると、開度情報は、学習装置10によって室外熱交換器33の熱交換能力が所定の値よりも高いクラスに分類された、流量調整部332a~332iの開度の組合せについての情報である。 When the area (area R1) in which the heat exchange capacity is estimated to be "high" is determined, the learning control unit 19 transmits information about the area to the control unit 70 as opening degree information. In other words, the opening degree information is information about a combination of opening degrees of the flow rate adjusting units 332a to 332i classified by the learning device 10 into a class in which the heat exchange capacity of the outdoor heat exchanger 33 is higher than a predetermined value. .
 その後、制御部70は、学習装置10から受信した開度情報を用いて、熱交換能力が「高」であると推定される領域(領域R1)の範囲内で、それぞれの流量調整部332a~332iの開度を制御する。制御部70は、流量調整部332a~332iの開度を設定する度に、学習データ131を、学習装置10に送信する。図5の右上図では、新しく受信した学習データ131のレコードに対応する4つの点が、領域R1にプロットされている。図5の右上図において、内部がハッチングされている点は、熱交換能力が「高」であることを示す。 After that, using the opening degree information received from the learning device 10, the control unit 70 controls the flow rate adjusting units 332a to 332a to 332i opening is controlled. The control unit 70 transmits the learning data 131 to the learning device 10 each time the opening degrees of the flow rate adjusting units 332a to 332i are set. In the upper right diagram of FIG. 5, four points corresponding to newly received records of learning data 131 are plotted in region R1. In the upper right diagram of FIG. 5 , hatched points indicate that the heat exchange capacity is “high”.
 学習制御部19は、新たな学習データ131に基づいて、再度、学習モデル132を作成する。図5の左下図は、再度作成した学習モデル132による境界BR2によって、開度空間が、領域R3と領域R4とに分割された状態を示す。(ハッチングされている)領域R3は、熱交換能力が「高」であると推定される領域を示す。領域R4は、熱交換能力が「低」であると推定される領域を示す。 The learning control unit 19 creates the learning model 132 again based on the new learning data 131. The lower left diagram of FIG. 5 shows a state in which the opening space is divided into regions R3 and R4 by a boundary BR2 based on the recreated learning model 132 . A region R3 (hatched) indicates a region where the heat exchange capacity is estimated to be “high”. A region R4 indicates a region where the heat exchange capacity is estimated to be "low".
 (3)流量調整処理
 流量調整処理の一例を、図6のフローチャートを用いて説明する。
(3) Flow rate adjustment process An example of flow rate adjustment process will be described with reference to the flowchart of FIG.
 ステップS1に示すように、制御部70は、操作用リモコンからの指示等により、冷房運転又は暖房運転を開始する。 As shown in step S1, the control unit 70 starts the cooling operation or the heating operation according to an instruction from the operation remote controller or the like.
 ステップS1を終えると、ステップS2に示すように、制御部70は、新しい開度情報を学習装置10から受信したか否かを判定する。新しい開度情報を受信した場合、ステップS3に進む。新しい開度情報を受信していない場合、ステップS4に進む。 After completing step S1, the control unit 70 determines whether or not new opening information has been received from the learning device 10, as shown in step S2. When new opening information is received, the process proceeds to step S3. If new opening information has not been received, the process proceeds to step S4.
 ステップS2からステップS3に進むと、制御部70は、学習装置10から受信した新しい開度情報によって、古い開度情報を更新する。 When proceeding from step S2 to step S3, the control unit 70 updates the old opening information with the new opening information received from the learning device 10.
 ステップS2からステップS4に進むと、又はステップS3を終えると、制御部70は、開度情報の範囲内で、流量調整部332a~332iの開度を設定する。 When proceeding from step S2 to step S4 or when step S3 is completed, the control unit 70 sets the opening degrees of the flow rate adjusting units 332a to 332i within the range of the opening degree information.
 ステップS4を終えると、ステップS5に示すように、制御部70は、空気調和装置2が定常状態となるまで待機する。 After completing step S4, as shown in step S5, the control unit 70 waits until the air conditioner 2 reaches a steady state.
 ステップS5を終えると、ステップS6に示すように、制御部70は、学習データ131を、学習装置10に送信する。 After completing step S5, the control unit 70 transmits the learning data 131 to the learning device 10 as shown in step S6.
 ステップS6を終えると、ステップS7に示すように、制御部70は、所定時間T1待機する。所定時間T1は、例えば、10分である。所定時間T1が経過すると、ステップS2に進み、制御部70は再び、新しい開度情報を学習装置10から受信したか否かを判定する。 After completing step S6, the control unit 70 waits for a predetermined time T1 as shown in step S7. Predetermined time T1 is, for example, 10 minutes. After the predetermined time T1 has elapsed, the process proceeds to step S2, and the control unit 70 again determines whether or not new opening information has been received from the learning device 10. FIG.
 一方、学習制御部19は、ステップS8に示すように、空気調和装置2から学習データ131を受信したか否かを判定する。学習データ131を受信した場合、ステップS9に進む。学習データ131を受信していない場合、ステップS10に進む。 On the other hand, the learning control unit 19 determines whether or not the learning data 131 has been received from the air conditioner 2, as shown in step S8. When learning data 131 is received, the process proceeds to step S9. If the learning data 131 has not been received, the process proceeds to step S10.
 ステップS8からステップS9に進むと、学習制御部19は、受信した学習データ131を、学習記憶部13に蓄積する。 When proceeding from step S8 to step S9, the learning control unit 19 accumulates the received learning data 131 in the learning storage unit 13.
 ステップS8からステップS10に進むと、又はステップS9を終えると、学習制御部19は、所定時間T2が経過したか否かを判定する。所定時間T2は、例えば、24時間である。所定時間T2が経過した場合、ステップS11に進む。所定時間T2が経過していない場合、ステップS8に進み、学習制御部19は再び、空気調和装置2から学習データ131を受信したか否かを判定する。 When the process proceeds from step S8 to step S10 or when step S9 is completed, the learning control unit 19 determines whether or not the predetermined time T2 has elapsed. The predetermined time T2 is, for example, 24 hours. If the predetermined time T2 has passed, the process proceeds to step S11. If the predetermined time T2 has not elapsed, the process proceeds to step S8, and the learning control unit 19 determines again whether or not the learning data 131 has been received from the air conditioner 2.
 ステップS10からステップS11に進むと、学習制御部19は、蓄積された学習データ131に基づいて、学習モデル132を作成する。 When proceeding from step S10 to step S11, the learning control unit 19 creates a learning model 132 based on the accumulated learning data 131.
 ステップS11を終えると、ステップS12に示すように、学習制御部19は、作成した学習モデル132に基づく開度情報を、空気調和装置2に送信する。 After completing step S11, the learning control unit 19 transmits opening degree information based on the created learning model 132 to the air conditioner 2 as shown in step S12.
 ステップS12を終えると、ステップS13に示すように、学習制御部19は、学習モデル132を作成するために使用した古い学習データ131を削除する。 After completing step S12, the learning control unit 19 deletes the old learning data 131 used to create the learning model 132, as shown in step S13.
 ステップS13を終えると、ステップS8やステップS9に示すように、学習制御部19は、再び新しい学習データ131を蓄積していく。 After completing step S13, the learning control unit 19 accumulates new learning data 131 again as shown in steps S8 and S9.
 制御部70、及び学習制御部19は、操作用リモコンからの指示等により、冷房運転又は暖房運転が停止されるまで、本処理を継続する。 The control unit 70 and the learning control unit 19 continue this process until the cooling operation or heating operation is stopped by an instruction from the operation remote controller.
 (4)特徴
 (4-1)
 従来、複数の冷媒流路を有する熱交換器において、冷媒流路を流れる冷媒の温度に基づいて冷媒の流量を調整し、熱交換器を流れる冷媒の偏流を防止する技術がある。
(4) Features (4-1)
2. Description of the Related Art Conventionally, in a heat exchanger having a plurality of refrigerant flow paths, there is a technique for adjusting the flow rate of refrigerant based on the temperature of the refrigerant flowing through the refrigerant flow paths to prevent drift of the refrigerant flowing through the heat exchanger.
 従来の技術では、冷媒流路を流れる冷媒の温度に基づいて冷媒の流量を調整する場合、冷媒流路ごとに温度センサが必要になる、という課題がある。 With the conventional technology, there is a problem that a temperature sensor is required for each refrigerant flow path when adjusting the flow rate of the refrigerant based on the temperature of the refrigerant flowing through the refrigerant flow path.
 本実施形態の冷凍サイクル装置1は、熱交換器本体331と、複数の流量調整部332a~332iと、制御部70と、を備える。熱交換器本体331は、第1冷媒流路333、及び第2冷媒流路333を含む、複数の冷媒流路333a~333iを有する。複数の流量調整部332a~332iは、それぞれの冷媒流路333a~333iを流れる冷媒の流量を調整する。制御部70は、流量調整部332の開度を制御することにより、冷媒流路333を流れる冷媒の流量を調整する。制御部70は、第1値に基づいて、それぞれの流量調整部332a~332iの開度を制御する。第1値は、冷凍サイクルの全体効率を代表する値である。 The refrigeration cycle apparatus 1 of this embodiment includes a heat exchanger main body 331, a plurality of flow rate adjustment units 332a to 332i, and a control unit 70. The heat exchanger body 331 has a plurality of refrigerant flow paths 333 a - 333 i including a first refrigerant flow path 333 and a second refrigerant flow path 333 . The plurality of flow rate adjusting units 332a-332i adjust the flow rate of the coolant flowing through each of the coolant flow paths 333a-333i. The controller 70 adjusts the flow rate of the coolant flowing through the coolant channel 333 by controlling the opening degree of the flow rate adjuster 332 . The controller 70 controls the opening degrees of the respective flow rate regulators 332a to 332i based on the first value. The first value is a value representative of the overall efficiency of the refrigeration cycle.
 本実施形態の冷凍サイクル装置1では、制御部70は、第1値に基づいて、それぞれの流量調整部332a~332iの開度を制御する。第1値は、冷凍サイクルの全体効率を代表する値である。その結果、冷凍サイクル装置1は、冷媒流路333の数よりも少ない数のセンサを用いて、それぞれの冷媒流路333a~333iを流れる冷媒の流量を調整し、室外熱交換器33を流れる冷媒の偏流を防止することができる。 In the refrigeration cycle apparatus 1 of the present embodiment, the control section 70 controls the opening degrees of the respective flow rate adjusting sections 332a to 332i based on the first value. The first value is a value representative of the overall efficiency of the refrigeration cycle. As a result, the refrigeration cycle device 1 uses a number of sensors smaller than the number of refrigerant flow paths 333 to adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i, and the refrigerant flowing through the outdoor heat exchanger 33. can be prevented from drifting.
 (4-2)
 本実施形態の冷凍サイクル装置1では、第1値は、室内熱交換器21(冷房運転時)、又は室外熱交換器33(暖房運転時)を流れる冷媒の圧力値、を含む。その結果、冷凍サイクル装置1は、室外熱交換器33を流れる冷媒の偏流状態を推測して、それぞれの冷媒流路333a~333iを流れる冷媒の流量を調整することができる。
(4-2)
In the refrigeration cycle apparatus 1 of the present embodiment, the first value includes the pressure value of refrigerant flowing through the indoor heat exchanger 21 (during cooling operation) or the outdoor heat exchanger 33 (during heating operation). As a result, the refrigerating cycle device 1 can estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
 (4-3)
 本実施形態の冷凍サイクル装置1では、第1値は、室外熱交換器33において、冷媒と熱交換する空気の温度、をさらに含む。その結果、冷凍サイクル装置1は、室外熱交換器33を流れる冷媒の偏流状態をより精度良く推測して、それぞれの冷媒流路333a~333iを流れる冷媒の流量を調整することができる。
(4-3)
In the refrigeration cycle apparatus 1 of the present embodiment, the first value further includes the temperature of air heat-exchanging with the refrigerant in the outdoor heat exchanger 33 . As a result, the refrigerating cycle device 1 can more accurately estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
 (4-4)
 本実施形態の冷凍サイクル装置1では、第1値は、室外熱交換器33において、室外ファンモータ36mの回転数、をさらに含む。その結果、冷凍サイクル装置1は、室外熱交換器33を流れる冷媒の偏流状態をより精度良く推測して、それぞれの冷媒流路333a~333iを流れる冷媒の流量を調整することができる。
(4-4)
In the refrigeration cycle apparatus 1 of the present embodiment, the first value further includes the rotation speed of the outdoor fan motor 36m in the outdoor heat exchanger 33. As a result, the refrigerating cycle device 1 can more accurately estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
 (4-5)
 本実施形態の冷凍サイクル装置1は、学習装置10をさらに備える。学習装置10は、複数の流量調整部332a~332iの開度の組合せと、複数の流量調整部332a~332iの開度が当該開度の組合せであるときの第1値と、を対応付けて学習する。学習装置10は、第1値から推測される室外熱交換器33の熱交換能力の高さ、に応じて、開度の組合せを分類する。制御部70は、学習装置10によって室外熱交換器33の熱交換能力が所定の値よりも高いクラスに分類された開度の組合せを用いて、それぞれの流量調整部332a~332iの開度を制御する。
(4-5)
The refrigeration cycle device 1 of this embodiment further includes a learning device 10 . The learning device 10 associates a combination of opening degrees of the plurality of flow rate adjusting units 332a to 332i with a first value when the opening degrees of the plurality of flow rate adjusting units 332a to 332i are the combination of opening degrees. learn. The learning device 10 classifies the combinations of opening degrees according to the heat exchange capacity of the outdoor heat exchanger 33 estimated from the first value. The control unit 70 adjusts the opening degrees of the respective flow rate adjusting units 332a to 332i using combinations of opening degrees classified by the learning device 10 into classes in which the heat exchange capacity of the outdoor heat exchanger 33 is higher than a predetermined value. Control.
 本実施形態の冷凍サイクル装置1は、機械学習を用いることにより、室外熱交換器33の熱交換能力が高くなる(室外熱交換器33を流れる冷媒の偏流が少なくなる)流量調整部332a~332iの開度の組合せを、効率的に算出することができる。 The refrigeration cycle device 1 of the present embodiment uses machine learning to increase the heat exchange capacity of the outdoor heat exchanger 33 (reduce the drift of the refrigerant flowing through the outdoor heat exchanger 33). can be efficiently calculated.
 (5)変形例
 (5-1)変形例1A
 本実施形態では、室外熱交換器33の熱交換能力を推測するための第1値として、室外圧力値を用いた。しかし、室外熱交換器33の熱交換能力を推測するための第1値として、室外圧力値の代わりに、圧縮機31の消費電力値を用いてもよい。
(5) Modification (5-1) Modification 1A
In this embodiment, the outdoor pressure value is used as the first value for estimating the heat exchange capacity of the outdoor heat exchanger 33 . However, as the first value for estimating the heat exchange capacity of the outdoor heat exchanger 33, the power consumption value of the compressor 31 may be used instead of the outdoor pressure value.
 冷房運転及び暖房運転のいずれにおいても、圧縮機31の消費電力値が小さい程、室外熱交換器33の熱交換能力は高いと推測される。そのため、学習制御部19は、例えば、学習データ131のレコードの内、圧縮機31の消費電力値が小さいものから所定の割合(例えば、20%。)を指定し、これらのレコードの室外熱交換器33の熱交換能力は高い、それ以外のレコードの室外熱交換器33の熱交換能力は低い、と推測する。 In both cooling operation and heating operation, it is estimated that the smaller the power consumption value of the compressor 31, the higher the heat exchange capacity of the outdoor heat exchanger 33. Therefore, the learning control unit 19 designates, for example, a predetermined ratio (for example, 20%) from the record of the learning data 131 in descending order of the power consumption value of the compressor 31, and outdoor heat exchange of these records. It is presumed that the heat exchange capacity of the record holder 33 is high, and that the heat exchange capacity of the outdoor heat exchanger 33 of the other records is low.
 第1値として、室外圧力値と、圧縮機31の消費電力値と、の両方を用いる場合は、例えば、どちらか一方を、空気調和装置2が定常状態であるか否かを判定するために用いてもよい。 When both the outdoor pressure value and the power consumption value of the compressor 31 are used as the first value, for example, one of them is used to determine whether the air conditioner 2 is in a steady state. may be used.
 (5-2)変形例1B
 本実施形態では、第1値は、室外圧力値、室外温度、及び室外ファン回転数であった。しかし、第1値は、さらに、圧縮機モータ31mの回転数、及び室外膨張弁34の開度、を含んでもよい。圧縮機モータ31mの回転数、及び室外膨張弁34の開度は、例えば、空気調和装置2が定常状態であるか否かを判定するために用いられる。
(5-2) Modification 1B
In this embodiment, the first values are the outdoor pressure value, the outdoor temperature, and the outdoor fan speed. However, the first value may further include the rotation speed of the compressor motor 31m and the opening degree of the outdoor expansion valve 34. The rotational speed of the compressor motor 31m and the degree of opening of the outdoor expansion valve 34 are used, for example, to determine whether the air conditioner 2 is in a steady state.
 その結果、冷凍サイクル装置1は、室外熱交換器33を流れる冷媒の偏流状態をより精度良く推測して、それぞれの冷媒流路333a~333iを流れる冷媒の流量を調整することができる。 As a result, the refrigeration cycle device 1 can more accurately estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
 (5-3)変形例1C
 本実施形態では、制御部70は、第1値に基づいて、それぞれの流量調整部332a~332iの開度を制御した。しかし、制御部70は、第2値に基づいて、それぞれの流量調整部332a~332iの開度を制御してもよい。第2値は、室外熱交換器33の全体効率を代表する値である。本変形例では、第2値は、第1冷媒流路333を出た冷媒と、第2冷媒流路333を出た冷媒と、が合流した後の室外熱交換器33の出口温度(以下、室外出口温度と記載することがある。)、室外温度、及び室外ファン回転数である。その結果、冷凍サイクル装置1は、室外熱交換器33を流れる冷媒の偏流状態を推測して、それぞれの冷媒流路333a~333iを流れる冷媒の流量を調整することができる。
(5-3) Modification 1C
In this embodiment, the controller 70 controls the opening degrees of the respective flow rate regulators 332a to 332i based on the first value. However, the control unit 70 may control the opening degree of each of the flow rate adjusting units 332a to 332i based on the second value. The second value is a value representing the overall efficiency of the outdoor heat exchanger 33 . In this modified example, the second value is the outlet temperature of the outdoor heat exchanger 33 after the refrigerant exiting the first refrigerant flow path 333 and the refrigerant exiting the second refrigerant flow path 333 join together (hereinafter referred to as It may be described as outdoor outlet temperature.), outdoor temperature, and outdoor fan rotation speed. As a result, the refrigerating cycle device 1 can estimate the drift state of the refrigerant flowing through the outdoor heat exchanger 33 and adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths 333a to 333i.
 冷房運転における室外出口温度は、凝縮温度である。冷房運転における室外出口温度は、例えば、液側温度センサ68から取得する。暖房運転における室外出口温度は、蒸発温度である。暖房運転における室外出口温度は、例えば、ガス側温度センサ67から取得する。第2値は、さらに、圧縮機モータ31mの回転数、及び室外膨張弁34の開度、を含んでもよい。なお、例えば、室外熱交換器33が、(本実施形態では1つであるが)複数の分流器334を有し、それぞれの出口に液側温度センサ68が設置されている場合、これらの液側温度センサ68の測定値の平均を、冷房運転における室外出口温度としてもよい。 The outdoor outlet temperature in cooling operation is the condensation temperature. The outdoor outlet temperature in the cooling operation is acquired from the liquid side temperature sensor 68, for example. The outdoor outlet temperature in heating operation is the evaporation temperature. The outdoor outlet temperature in heating operation is acquired from the gas-side temperature sensor 67, for example. The second value may further include the number of revolutions of the compressor motor 31m and the degree of opening of the outdoor expansion valve 34. In addition, for example, when the outdoor heat exchanger 33 has a plurality of flow dividers 334 (although there is one in this embodiment), and the liquid side temperature sensor 68 is installed at each outlet, these liquid The average of the measured values of the side temperature sensor 68 may be used as the outdoor outlet temperature in the cooling operation.
 制御部70は、第1値の場合と同様に、学習装置10から、所定時間T2ごとに、開度情報を受信する。制御部70は、受信した開度情報の設定範囲内において、所定時間T1ごとに、流量調整部332a~332iの開度を設定する。制御部70は、流量調整部332a~332iの開度を設定する度に、空気調和装置2が定常状態となるまで待機し、空気調和装置2が定常状態になった後、その時の流量調整部332a~332iの開度、及び室外出口温度(これらが、学習データ131となる。)を、学習装置10に送信する。本変形例では、制御部70は、室外温度、及び室外ファン回転数が安定したときに、空気調和装置2が定常状態となったと判断する。制御部70は、さらに、圧縮機モータ31mの回転数、及び室外膨張弁34の開度が安定したときに、空気調和装置2が定常状態となったと判断してもよい。 As with the first value, the control unit 70 receives opening degree information from the learning device 10 every predetermined time T2. The control unit 70 sets the opening degrees of the flow rate adjusting units 332a to 332i every predetermined time T1 within the setting range of the received opening information. The control unit 70 waits until the air conditioner 2 is in a steady state every time the opening degrees of the flow rate adjusting units 332a to 332i are set, and after the air conditioner 2 is in a steady state, the flow rate adjusting unit at that time The opening degrees of 332a to 332i and the outdoor outlet temperature (these become the learning data 131) are transmitted to the learning device 10. FIG. In this modified example, the control unit 70 determines that the air conditioner 2 is in a steady state when the outdoor temperature and the outdoor fan rotation speed are stabilized. The control unit 70 may further determine that the air conditioner 2 is in a steady state when the rotational speed of the compressor motor 31m and the opening degree of the outdoor expansion valve 34 are stabilized.
 学習制御部19は、室外出口温度から、室外熱交換器33の熱交換能力の高さを推測する。冷房運転の場合、室外出口温度が低い程、室外熱交換器33の熱交換能力は高いと推測される。そのため、学習制御部19は、例えば、学習データ131のレコードの内、室外出口温度が低いものから所定の割合(例えば、20%。)を指定し、これらのレコードの室外熱交換器33の熱交換能力は高い、それ以外のレコードの室外熱交換器33の熱交換能力は低い、と推測する。暖房運転の場合、室外出口温度が高い程、室外熱交換器33の熱交換能力は高いと推測される。そのため、学習制御部19は、例えば、学習データ131のレコードの内、室外出口温度が高いものから所定の割合(例えば、20%。)を指定し、これらのレコードの室外熱交換器33の熱交換能力は高い、それ以外のレコードの室外熱交換器33の熱交換能力は低い、と推測する。 The learning control unit 19 estimates the heat exchange capacity of the outdoor heat exchanger 33 from the outdoor outlet temperature. In the case of cooling operation, it is assumed that the lower the outdoor outlet temperature, the higher the heat exchange capacity of the outdoor heat exchanger 33 . Therefore, the learning control unit 19 designates, for example, a predetermined ratio (for example, 20%) from the record with the lowest outdoor outlet temperature among the records of the learning data 131, and the heat of the outdoor heat exchanger 33 in these records. It is presumed that the heat exchange capacity of the outdoor heat exchanger 33 for other records is low, while the heat exchange capacity is high. In the case of heating operation, it is estimated that the higher the outdoor outlet temperature, the higher the heat exchange capacity of the outdoor heat exchanger 33 . Therefore, the learning control unit 19 designates, for example, a predetermined percentage (for example, 20%) from the record of the learning data 131 with the highest outdoor outlet temperature, and the heat of the outdoor heat exchanger 33 in these records. It is presumed that the heat exchange capacity of the outdoor heat exchanger 33 for other records is low, while the heat exchange capacity is high.
 (5-4)変形例1D
 本実施形態では、学習制御部19は、分類型の学習モデル132を使用した。しかし、学習制御部19は、回帰型の学習モデル133を使用してもよい。回帰型の学習モデル133は、例えば、ニューラルネットワーク、線形回帰等を用いることができる。
(5-4) Modification 1D
In this embodiment, the learning control unit 19 uses the classification learning model 132 . However, the learning control unit 19 may use the regression learning model 133 . The regression learning model 133 can use, for example, a neural network, linear regression, or the like.
 以下、回帰型の学習モデル133を使用する場合における流量調整処理の一例を、図7のフローチャートを用いて説明する。 An example of the flow rate adjustment process when using the regression learning model 133 will be described below with reference to the flowchart of FIG.
 前提として、制御部70が、第1値に基づいて、それぞれの流量調整部332a~332iの開度を制御する場合、第1値は、室外圧力値、室外温度、及び室外ファン回転数とする。制御部70が、第2値に基づいて、それぞれの流量調整部332a~332iの開度を制御する場合、第2値は、室外出口温度、室外温度、及び室外ファン回転数とする。 As a premise, when the control unit 70 controls the opening degree of each of the flow rate adjusting units 332a to 332i based on the first value, the first value is the outdoor pressure value, the outdoor temperature, and the outdoor fan rotation speed. . When the control unit 70 controls the opening degrees of the respective flow rate adjusting units 332a to 332i based on the second value, the second value is the outdoor outlet temperature, the outdoor temperature, and the outdoor fan speed.
 また、学習制御部19は、事前に、複数の流量調整部332a~332iの開度の組合せと、複数の流量調整部332a~332iの開度が当該開度の組合せであるときの室外圧力値又は室外出口温度と、を対応付けて学習しておく。言い換えると、学習制御部19は、事前に、流量調整部332a~332iの開度の組合せを説明変数とし、室外圧力値又は室外出口温度を目的変数として、学習モデル133を作成しておく。また、制御部70は、事前に、冷房運転又は暖房運転を開始する際の、流量調整部332a~332iの開度の初期値を決定しておく。 In addition, the learning control unit 19, in advance, the combination of the opening degrees of the plurality of flow rate adjusting units 332a to 332i and the outdoor pressure value when the opening degrees of the plurality of flow rate adjusting units 332a to 332i are the combination of the opening degrees Alternatively, it is learned in association with the outdoor outlet temperature. In other words, the learning control unit 19 creates the learning model 133 in advance using the combination of the opening degrees of the flow rate adjusting units 332a to 332i as explanatory variables and the outdoor pressure value or the outdoor outlet temperature as objective variables. Further, the control unit 70 determines in advance the initial values of the opening degrees of the flow rate adjusting units 332a to 332i when starting the cooling operation or the heating operation.
 ステップS101に示すように、制御部70は、操作用リモコンからの指示等により、冷房運転又は暖房運転を開始する。  As shown in step S101, the control unit 70 starts the cooling operation or the heating operation according to an instruction or the like from the operating remote controller.
 ステップS101を終えると、ステップS102に示すように、制御部70は、流量調整部332a~332iの開度を、初期値に設定する。 After completing step S101, as shown in step S102, the control unit 70 sets the opening degrees of the flow rate adjusting units 332a to 332i to initial values.
 ステップS102を終えると、ステップS103に示すように、制御部70は、空気調和装置2が定常状態となるまで待機する。本変形例では、制御部70は、室外温度、及び室外ファン回転数が安定したときに、空気調和装置2が定常状態となったと判断する。 After completing step S102, as shown in step S103, the control unit 70 waits until the air conditioner 2 reaches a steady state. In this modified example, the control unit 70 determines that the air conditioner 2 is in a steady state when the outdoor temperature and the outdoor fan rotation speed are stabilized.
 ステップS103を終えると、ステップS104に示すように、制御部70は、学習データ131を、学習装置10に送信する。言い換えると、制御部70は、空気調和装置2が定常状態となった時の、流量調整部332a~332iの開度の組合せと、室外圧力値又は室外出口温度と、を学習装置10に送信する。 After completing step S103, the control unit 70 transmits the learning data 131 to the learning device 10 as shown in step S104. In other words, the control unit 70 transmits to the learning device 10 the combination of the opening degrees of the flow rate adjusting units 332a to 332i and the outdoor pressure value or the outdoor outlet temperature when the air conditioner 2 is in a steady state. .
 学習制御部19は、空気調和装置2から学習データ131を受信すると、ステップS105に示すように、当該学習データ131を用いて、学習モデル133を更新する。 Upon receiving the learning data 131 from the air conditioner 2, the learning control unit 19 updates the learning model 133 using the learning data 131 as shown in step S105.
 ステップS105を終えると、ステップS106に示すように、学習制御部19は、学習装置10から受信した学習データ131の中の流量調整部332a~332iの開度の組合せ(以下、基準開度と記載することがある。)と、更新した学習モデル133と、に基づいて、室外圧力値又は室外出口温度から推測される室外熱交換器33の熱交換能力、が高くなるような、流量調整部332a~332iの開度の組合せを算出する。具体的には、学習制御部19は、開度空間において、基準開度に対応する点の近傍点の中から、最も室外熱交換器33の熱交換能力が高いと推測される最良の点(最良の流量調整部332a~332iの開度)を算出する。さらに、具体的には、学習モデル133が室外圧力値を推定する場合、冷房運転においては最も低い室外圧力値が推定される近傍点を、暖房運転においては最も高い室外圧力値が推定される近傍点を、最良の点とする。また、学習モデル133が室外出口温度を推定する場合、冷房運転においては最も低い室外出口温度が推定される近傍点を、暖房運転においては最も高い室外出口温度が推定される近傍点を、最良の点とする。 After completing step S105, as shown in step S106, the learning control unit 19 determines the combination of the opening degrees of the flow rate adjusting units 332a to 332i in the learning data 131 received from the learning device 10 (hereinafter referred to as the reference opening degree). ) and the updated learning model 133, the heat exchange capacity of the outdoor heat exchanger 33 estimated from the outdoor pressure value or the outdoor outlet temperature is increased. ∼332i opening combinations are calculated. Specifically, the learning control unit 19 selects the best point ( The optimum openings of the flow rate adjusting units 332a to 332i) are calculated. Further, specifically, when the learning model 133 estimates the outdoor pressure value, in the cooling operation, the neighborhood point where the lowest outdoor pressure value is estimated is set to the neighborhood point where the highest outdoor pressure value is estimated in the heating operation. Let the point be the best point. Further, when the learning model 133 estimates the outdoor outlet temperature, the neighboring point at which the lowest outdoor outlet temperature is estimated in the cooling operation, and the neighboring point at which the highest outdoor outlet temperature is estimated in the heating operation are selected as the best. point.
 ステップS106を終えると、ステップS107に示すように、学習制御部19は、最良の流量調整部332a~332iの開度の組合せを、空気調和装置2に送信する。 After completing step S106, the learning control unit 19 transmits the best combination of the opening degrees of the flow rate adjusting units 332a to 332i to the air conditioner 2 as shown in step S107.
 制御部70は、学習装置10から、流量調整部332a~332iの開度の組合せを受信すると、ステップS108に示すように、所定時間T3待機する。所定時間T3は、例えば、10分である。 When the control unit 70 receives the combination of the opening degrees of the flow rate adjusting units 332a to 332i from the learning device 10, it waits for a predetermined time T3 as shown in step S108. Predetermined time T3 is, for example, 10 minutes.
 ステップS108を終えると、ステップS109に示すように、制御部70は、学習装置10によって算出された開度の組合せを用いて、それぞれの流量調整部332a~332iの開度を制御する。言い換えると、制御部70は、学習装置10から受信した開度の組合せを、流量調整部332a~332iに設定する。 After completing step S108, as shown in step S109, the control unit 70 uses the combination of opening degrees calculated by the learning device 10 to control the opening degrees of the respective flow rate adjusting units 332a to 332i. In other words, the control unit 70 sets the combination of opening degrees received from the learning device 10 to the flow rate adjusting units 332a to 332i.
 ステップS109を終えると、ステップS103に示すように、制御部70は、再び空気調和装置2が定常状態となるまで待機する。 After completing step S109, as shown in step S103, the control unit 70 waits until the air conditioner 2 reaches a steady state again.
 制御部70、及び学習制御部19は、操作用リモコンからの指示等により、冷房運転又は暖房運転が停止されるまで、本処理を継続する。 The control unit 70 and the learning control unit 19 continue this process until the cooling operation or heating operation is stopped by an instruction from the operation remote controller.
 (5-5)変形例1E
 本実施形態では、制御部70は、室外熱交換器33の冷媒流路333a~333iを流れる冷媒に偏流が生じないように、それぞれの流量調整部332a~332iの開度を制御した。しかし、室内熱交換器21が、室外熱交換器33と同様に、複数の流量調整部212a~212i、及び複数の冷媒流路213a~213iを有する場合、制御部70は、さらに、室内熱交換器21の冷媒流路213a~213iを流れる冷媒に偏流が生じないように、それぞれの流量調整部212a~212iの開度を制御してもよい。
(5-5) Modification 1E
In this embodiment, the control unit 70 controls the opening degrees of the respective flow rate adjusting units 332a to 332i so that the refrigerant flowing through the refrigerant flow paths 333a to 333i of the outdoor heat exchanger 33 does not drift. However, if the indoor heat exchanger 21 has a plurality of flow rate adjusting units 212a to 212i and a plurality of refrigerant flow paths 213a to 213i like the outdoor heat exchanger 33, the control unit 70 further performs indoor heat exchange. The opening degrees of the respective flow rate adjusters 212a to 212i may be controlled so that the refrigerant flowing through the refrigerant flow paths 213a to 213i of the device 21 does not drift.
 (5-5-1)室内熱交換器の構成
 図8は、本変形例における室内熱交換器21の概略構成図である。図8に示すように、室内熱交換器21は、主として、熱交換器本体211と、複数の流量調整部212a~212iと、を有する。
(5-5-1) Configuration of Indoor Heat Exchanger FIG. 8 is a schematic configuration diagram of the indoor heat exchanger 21 in this modification. As shown in FIG. 8, the indoor heat exchanger 21 mainly has a heat exchanger main body 211 and a plurality of flow control units 212a to 212i.
 熱交換器本体211は、第1冷媒流路213、及び第2冷媒流路213を含む、複数の冷媒流路213a~213iを有する。図8に示すように、熱交換器本体211は、複数の区画211a~211iに分割され、それぞれの区画211a~211iを、冷媒流路213a~213iが通過する。熱交換器本体211は、冷媒流路213を流れる冷媒と、対象空間の空気と、の間で熱交換を行う。熱交換器本体211は、冷房運転の際には蒸発器として機能し、暖房運転の際には凝縮器として機能する。 The heat exchanger main body 211 has a plurality of refrigerant flow paths 213a-213i including a first refrigerant flow path 213 and a second refrigerant flow path 213. As shown in FIG. 8, the heat exchanger main body 211 is divided into a plurality of sections 211a-211i, and refrigerant flow paths 213a-213i pass through the respective sections 211a-211i. The heat exchanger main body 211 exchanges heat between the refrigerant flowing through the refrigerant flow path 213 and the air in the target space. The heat exchanger main body 211 functions as an evaporator during cooling operation, and functions as a condenser during heating operation.
 流量調整部212は、冷媒流路213を流れる冷媒の流量を調整する。具体的には、図8に示すように、流量調整部212a~212iは、冷媒流路213a~213iを流れる冷媒の温度や圧力が均一になるように、冷媒流路213a~213iを流れる冷媒の流量を調整する。言い換えると、流量調整部212a~212iは、冷媒流路213a~213iを流れる冷媒に偏流が生じないように、冷媒流路213a~213iを流れる冷媒の流量を調整する。流量調整部212は、開度調節が可能であるように構成されている。 The flow rate adjusting unit 212 adjusts the flow rate of the coolant flowing through the coolant channel 213 . Specifically, as shown in FIG. 8, the flow rate adjusting units 212a to 212i adjust the flow rate of the refrigerant flowing through the refrigerant flow paths 213a to 213i so that the temperature and pressure of the refrigerant flowing through the refrigerant flow paths 213a to 213i are uniform. Adjust the flow rate. In other words, the flow rate adjusting units 212a to 212i adjust the flow rate of the coolant flowing through the coolant flow paths 213a to 213i so that the coolant flowing through the coolant flow paths 213a to 213i does not drift. The flow rate adjusting section 212 is configured so that the opening degree can be adjusted.
 分流器214は、図8に示すように、暖房運転時には、圧縮機31側から室内熱交換器21に(図8中の実線矢印の向きに)流入した冷媒を、冷媒流路213a~213iに分流させる。また、分流器214は、冷房運転時には、室内膨張弁23側から室内熱交換器21に(図8中の破線矢印の向きに)流入し、後述するヘッダ215によって冷媒流路213a~213iに分流された冷媒を合流させる。 As shown in FIG. 8, the flow divider 214 diverts the refrigerant that has flowed from the compressor 31 side into the indoor heat exchanger 21 (in the direction of the solid line arrows in FIG. 8) into the refrigerant flow paths 213a to 213i during the heating operation. divert. During cooling operation, the flow divider 214 flows into the indoor heat exchanger 21 from the side of the indoor expansion valve 23 (in the direction of the dashed arrow in FIG. 8), and is divided into the refrigerant flow paths 213a to 213i by the header 215, which will be described later. merge the refrigerants.
 ヘッダ215は、図8に示すように、暖房運転時には、圧縮機31側から室内熱交換器21に(図8中の実線矢印の向きに)流入し、分流器214によって冷媒流路213a~213iに分流された冷媒を合流させる。また、ヘッダ215は、冷房運転時には、室内膨張弁23側から室内熱交換器21に(図8中の破線矢印の向きに)流入した冷媒を、冷媒流路213a~213iに分流させる。 As shown in FIG. 8, the header 215 flows from the compressor 31 side into the indoor heat exchanger 21 (in the direction of the solid line arrow in FIG. 8) during heating operation, and the flow divider 214 causes refrigerant flow paths 213a to 213i. merge the refrigerant diverted to Further, during cooling operation, the header 215 divides the refrigerant that has flowed from the indoor expansion valve 23 side into the indoor heat exchanger 21 (in the direction of the dashed arrow in FIG. 8) into the refrigerant flow paths 213a to 213i.
 (5-5-2)流量調整処理
 制御部70は、学習装置10と協働して、流量調整部212a~212iの開度を制御することにより、冷媒流路213a~213iを流れる冷媒の流量を調整する。
(5-5-2) Flow rate adjustment process The control unit 70 cooperates with the learning device 10 to control the opening degrees of the flow rate adjustment units 212a to 212i, thereby adjusting the flow rate of the refrigerant flowing through the refrigerant flow paths 213a to 213i. to adjust.
 (5-5-2-1)第1値に基づく流量調整処理
 制御部70が、第1値に基づいて、それぞれの流量調整部212a~212iの開度を制御する場合、第1値は、室内熱交換器21を流れる冷媒の圧力値(以下、室内圧力値と記載することがある。)、室内熱交換器21において冷媒と熱交換する空気の温度(以下、室内温度と記載することがある。)、及び室内ファンモータ22mの回転数(以下、室内ファン回転数と記載することがある。)、とすることができる。第1値は、さらに、圧縮機モータ31mの回転数、及び室内膨張弁23の開度、を含んでもよい。
(5-5-2-1) Flow rate adjustment process based on first value When the control unit 70 controls the opening degrees of the respective flow rate adjustment units 212a to 212i based on the first value, the first value is The pressure value of the refrigerant flowing through the indoor heat exchanger 21 (hereinafter sometimes referred to as the indoor pressure value), the temperature of the air that exchanges heat with the refrigerant in the indoor heat exchanger 21 (hereinafter also referred to as the indoor temperature) ), and the number of revolutions of the indoor fan motor 22m (hereinafter sometimes referred to as the number of revolutions of the indoor fan). The first value may further include the number of revolutions of the compressor motor 31m and the degree of opening of the indoor expansion valve 23 .
 冷房運転における室内圧力値は、低圧側の圧力値である。冷房運転における室内圧力値は、例えば、吸入圧力センサ64から取得する。室内温度は、例えば、室内温度センサ61から取得する。冷房運転の場合、室内圧力値が大きい程、室内熱交換器21の熱交換能力は高いと推測される。 The indoor pressure value in cooling operation is the pressure value on the low pressure side. The indoor pressure value in the cooling operation is obtained from the suction pressure sensor 64, for example. The room temperature is acquired from the room temperature sensor 61, for example. In the case of cooling operation, it is presumed that the higher the indoor pressure value, the higher the heat exchange capacity of the indoor heat exchanger 21 .
 暖房運転における室内圧力値は、高圧側の圧力値である。暖房運転における室内圧力値は、例えば、吐出圧力センサ65から取得する。暖房運転の場合、室内圧力値が小さい程、室内熱交換器21の熱交換能力は高いと推測される。 The indoor pressure value in heating operation is the pressure value on the high pressure side. The indoor pressure value in the heating operation is acquired from the discharge pressure sensor 65, for example. In the case of heating operation, it is estimated that the smaller the indoor pressure value, the higher the heat exchange capacity of the indoor heat exchanger 21 .
 冷房運転及び暖房運転のいずれにおいても、制御部70は、室内温度、及び室内ファン回転数が安定したときに、空気調和装置2が定常状態となったと判断することができる。制御部70は、さらに、圧縮機モータ31mの回転数、及び室内膨張弁23の開度が安定したときに、空気調和装置2が定常状態となったと判断してもよい。 In both cooling operation and heating operation, the control unit 70 can determine that the air conditioner 2 has reached a steady state when the indoor temperature and the indoor fan rotation speed are stabilized. The control unit 70 may further determine that the air conditioner 2 is in a steady state when the rotational speed of the compressor motor 31m and the opening degree of the indoor expansion valve 23 are stabilized.
 (5-5-2-2)第2値に基づく流量調整処理
 制御部70が、第2値に基づいて、それぞれの流量調整部212a~212iの開度を制御する場合、第2値は、第1冷媒流路213を出た冷媒と、第2冷媒流路213を出た冷媒と、が合流した後の室内熱交換器21の出口温度(以下、室内出口温度と記載することがある。)、室内温度、及び室内ファン回転数、とすることができる。第2値は、さらに、圧縮機モータ31mの回転数、及び室内膨張弁23の開度、を含んでもよい。
(5-5-2-2) Flow rate adjustment process based on second value When the controller 70 controls the opening degrees of the respective flow rate adjusters 212a to 212i based on the second value, the second value is The temperature at the outlet of the indoor heat exchanger 21 after the refrigerant exiting the first refrigerant flow path 213 and the refrigerant exiting the second refrigerant flow path 213 join (hereinafter, sometimes referred to as indoor outlet temperature). ), indoor temperature, and indoor fan speed. The second value may further include the number of revolutions of the compressor motor 31m and the degree of opening of the indoor expansion valve 23 .
 冷房運転における室内出口温度は、蒸発温度である。冷房運転における室内出口温度は、例えば、ガス側温度センサ62から取得する。冷房運転の場合、室内出口温度が高い程、室内熱交換器21の熱交換能力は高いと推測される。 The indoor outlet temperature in cooling operation is the evaporation temperature. The indoor outlet temperature in the cooling operation is obtained from the gas-side temperature sensor 62, for example. In the case of cooling operation, it is assumed that the higher the indoor outlet temperature, the higher the heat exchange capacity of the indoor heat exchanger 21 .
 暖房運転における室内出口温度は、凝縮温度である。暖房運転における室内出口温度は、例えば、液側温度センサ63から取得する。暖房運転の場合、室内出口温度が低い程、室内熱交換器21の熱交換能力は高いと推測される。 The indoor outlet temperature in heating operation is the condensing temperature. The indoor outlet temperature in the heating operation is obtained from the liquid-side temperature sensor 63, for example. In the case of heating operation, it is estimated that the lower the indoor outlet temperature, the higher the heat exchange capacity of the indoor heat exchanger 21 .
 冷房運転及び暖房運転のいずれにおいても、制御部70は、室内温度、及び室内ファン回転数が安定したときに、空気調和装置2が定常状態となったと判断することができる。制御部70は、さらに、圧縮機モータ31mの回転数、及び室内膨張弁23の開度が安定したときに、空気調和装置2が定常状態となったと判断してもよい。 In both cooling operation and heating operation, the control unit 70 can determine that the air conditioner 2 has reached a steady state when the indoor temperature and the indoor fan rotation speed are stabilized. The control unit 70 may further determine that the air conditioner 2 is in a steady state when the rotational speed of the compressor motor 31m and the opening degree of the indoor expansion valve 23 are stabilized.
 (5-6)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
(5-6)
Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
 1       冷凍サイクル装置
 10      学習装置
 23      室内膨張弁(膨張弁)
 31      圧縮機
 34      室外膨張弁(膨張弁)
 70      制御部
 211,331 熱交換器本体(熱交換器)
 212,332 流量調整部
 213,333 冷媒流路
1 refrigeration cycle device 10 learning device 23 indoor expansion valve (expansion valve)
31 compressor 34 outdoor expansion valve (expansion valve)
70 control unit 211, 331 heat exchanger body (heat exchanger)
212, 332 flow rate adjusting section 213, 333 refrigerant channel
特開2008-128628JP 2008-128628

Claims (9)

  1.  第1冷媒流路(333,213)、及び第2冷媒流路(333,213)を含む、複数の冷媒流路(333a~333i,213a~213i)を有する、熱交換器(331,211)と、
     それぞれの前記冷媒流路を流れる冷媒の流量を調整する、複数の流量調整部(332a~332i,212a~212i)と、
     制御部(70)と、
    を備え、
     前記制御部は、
     前記流量調整部の開度を制御することにより、前記冷媒流路を流れる冷媒の流量を調整し、
     冷凍サイクルの全体効率を代表する値である第1値、又は前記熱交換器の全体効率を代表する値である第2値、に基づいて、それぞれの前記流量調整部の開度を制御する、
    冷凍サイクル装置(1)。
    A heat exchanger (331, 211) having a plurality of refrigerant flow paths (333a-333i, 213a-213i) including first refrigerant flow paths (333, 213) and second refrigerant flow paths (333, 213) and,
    a plurality of flow rate adjustment units (332a to 332i, 212a to 212i) that adjust the flow rate of the refrigerant flowing through each of the refrigerant flow paths;
    a control unit (70);
    with
    The control unit
    By controlling the opening degree of the flow rate adjusting unit, the flow rate of the coolant flowing through the coolant flow path is adjusted,
    Based on a first value that is a value representing the overall efficiency of the refrigeration cycle, or a second value that is a value representing the overall efficiency of the heat exchanger, the opening degree of each of the flow rate adjustment units is controlled,
    A refrigeration cycle device (1).
  2.  前記第1値は、冷媒を圧縮する圧縮機(31)の消費電力値、又は前記熱交換器を流れる冷媒の圧力値、を含む、
    請求項1に記載の冷凍サイクル装置(1)。
    The first value includes a power consumption value of the compressor (31) that compresses the refrigerant or a pressure value of the refrigerant flowing through the heat exchanger,
    A refrigeration cycle apparatus (1) according to claim 1.
  3.  前記第2値は、前記第1冷媒流路を出た冷媒と、前記第2冷媒流路を出た冷媒と、が合流した後の前記熱交換器の出口温度、を含む、
    請求項1又は2に記載の冷凍サイクル装置(1)。
    The second value includes an outlet temperature of the heat exchanger after the refrigerant exiting the first refrigerant flow path and the refrigerant exiting the second refrigerant flow path join together.
    The refrigeration cycle device (1) according to claim 1 or 2.
  4.  前記第1値又は前記第2値は、前記熱交換器において、冷媒と熱交換する空気の温度、をさらに含む、
    請求項2又は3に記載の冷凍サイクル装置(1)。
    The first value or the second value further includes a temperature of air that exchanges heat with a refrigerant in the heat exchanger,
    The refrigeration cycle device (1) according to claim 2 or 3.
  5.  前記第1値又は前記第2値は、前記熱交換器において、冷媒と熱交換する空気の流れを生成するファン(36,22)の回転数、をさらに含む、
    請求項2から4のいずれか1つに記載の冷凍サイクル装置(1)。
    The first value or the second value further includes the number of revolutions of a fan (36, 22) that generates a flow of air that exchanges heat with a refrigerant in the heat exchanger;
    A refrigeration cycle apparatus (1) according to any one of claims 2 to 4.
  6.  前記第1値又は第2値は、前記圧縮機の回転数、をさらに含む、
    請求項2から5のいずれか1つに記載の冷凍サイクル装置(1)。
    The first value or the second value further includes the rotation speed of the compressor,
    A refrigeration cycle apparatus (1) according to any one of claims 2 to 5.
  7.  前記第1値又は第2値は、冷媒の流量を調整する膨張弁(34,23)の開度、をさらに含む、
    請求項2から6のいずれか1つに記載の冷凍サイクル装置(1)。
    The first value or the second value further includes an opening degree of an expansion valve (34, 23) that adjusts the flow rate of the refrigerant,
    A refrigeration cycle apparatus (1) according to any one of claims 2 to 6.
  8.  複数の前記流量調整部の開度の組合せと、複数の前記流量調整部の開度が当該前記開度の組合せであるときの前記第1値又は前記第2値と、を対応付けて学習する学習装置(10)、
    をさらに備え、
     前記学習装置は、前記第1値又は前記第2値から推測される前記熱交換器の熱交換能力の高さ、に応じて、前記開度の組合せを分類し、
     前記制御部は、前記学習装置によって前記熱交換器の熱交換能力が所定の値よりも高いクラスに分類された前記開度の組合せを用いて、それぞれの前記流量調整部の開度を制御する、
    請求項1から7のいずれか1つに記載の冷凍サイクル装置(1)。
    Learning by associating a combination of the opening degrees of the plurality of flow rate adjusting units with the first value or the second value when the opening degrees of the plurality of flow rate adjusting units are the combination of the opening degrees a learning device (10),
    further comprising
    The learning device classifies the combination of opening degrees according to the level of the heat exchange capacity of the heat exchanger estimated from the first value or the second value,
    The control unit controls the opening of each of the flow rate adjusting units using the combinations of the openings classified by the learning device into classes in which the heat exchange capacity of the heat exchanger is higher than a predetermined value. ,
    A refrigeration cycle apparatus (1) according to any one of claims 1 to 7.
  9.  複数の前記流量調整部の開度の組合せと、複数の前記流量調整部の開度が当該前記開度の組合せであるときの前記第1値又は前記第2値と、を対応付けて学習する学習装置(10)、
    をさらに備え、
     前記学習装置は、前記第1値又は前記第2値から推測される前記熱交換器の熱交換能力、が高くなるような前記開度の組合せを算出し、
     前記制御部は、前記学習装置によって算出された前記開度の組合せを用いて、それぞれの前記流量調整部の開度を制御する、
    請求項1から7のいずれか1つに記載の冷凍サイクル装置(1)。
    Learning by associating a combination of the opening degrees of the plurality of flow rate adjusting units with the first value or the second value when the opening degrees of the plurality of flow rate adjusting units are the combination of the opening degrees a learning device (10),
    further comprising
    The learning device calculates a combination of the opening degrees that increases the heat exchange capacity of the heat exchanger estimated from the first value or the second value,
    The control unit uses the combination of the opening degrees calculated by the learning device to control the opening degrees of the respective flow rate adjusting units.
    A refrigeration cycle apparatus (1) according to any one of claims 1 to 7.
PCT/JP2022/029573 2021-08-05 2022-08-02 Refrigeration cycle device WO2023013616A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22853035.8A EP4382829A1 (en) 2021-08-05 2022-08-02 Refrigeration cycle device
CN202280051711.4A CN117716184A (en) 2021-08-05 2022-08-02 Refrigeration cycle device
US18/430,758 US20240175613A1 (en) 2021-08-05 2024-02-02 Refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-129044 2021-08-05
JP2021129044A JP2023023475A (en) 2021-08-05 2021-08-05 Refrigeration cycle device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/430,758 Continuation US20240175613A1 (en) 2021-08-05 2024-02-02 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023013616A1 true WO2023013616A1 (en) 2023-02-09

Family

ID=85155672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029573 WO2023013616A1 (en) 2021-08-05 2022-08-02 Refrigeration cycle device

Country Status (5)

Country Link
US (1) US20240175613A1 (en)
EP (1) EP4382829A1 (en)
JP (1) JP2023023475A (en)
CN (1) CN117716184A (en)
WO (1) WO2023013616A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128628A (en) 2006-11-24 2008-06-05 Hitachi Appliances Inc Refrigerating device
JP2010164219A (en) * 2009-01-14 2010-07-29 Mitsubishi Electric Corp Air conditioner
WO2014103407A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Air-conditioning device
JP2016044826A (en) * 2014-08-20 2016-04-04 日立アプライアンス株式会社 Refrigeration cycle device
WO2017068909A1 (en) * 2015-10-21 2017-04-27 三菱電機株式会社 Air conditioner
US20200292200A1 (en) * 2019-03-15 2020-09-17 Carrier Corporation Control method for air conditioning system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936757B2 (en) * 1996-07-24 2007-06-27 東プレ株式会社 Air conditioner
JP2000018766A (en) * 1998-06-25 2000-01-18 Topre Corp Air conditioner
JP2007232265A (en) * 2006-02-28 2007-09-13 Daikin Ind Ltd Refrigeration unit
WO2009098899A1 (en) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. Refrigeration system
WO2009098900A1 (en) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. Refrigeration system
JP5447968B2 (en) * 2010-03-31 2014-03-19 株式会社富士通ゼネラル Heat pump equipment
JP5593809B2 (en) * 2010-04-28 2014-09-24 東京電力株式会社 Industrial heating system and control method thereof
JP5874754B2 (en) * 2014-01-31 2016-03-02 ダイキン工業株式会社 Refrigeration equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128628A (en) 2006-11-24 2008-06-05 Hitachi Appliances Inc Refrigerating device
JP2010164219A (en) * 2009-01-14 2010-07-29 Mitsubishi Electric Corp Air conditioner
WO2014103407A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Air-conditioning device
JP2016044826A (en) * 2014-08-20 2016-04-04 日立アプライアンス株式会社 Refrigeration cycle device
WO2017068909A1 (en) * 2015-10-21 2017-04-27 三菱電機株式会社 Air conditioner
US20200292200A1 (en) * 2019-03-15 2020-09-17 Carrier Corporation Control method for air conditioning system

Also Published As

Publication number Publication date
CN117716184A (en) 2024-03-15
JP2023023475A (en) 2023-02-16
US20240175613A1 (en) 2024-05-30
EP4382829A1 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
US20060123810A1 (en) Method for operating air conditioner
JP5094801B2 (en) Refrigeration cycle apparatus and air conditioner
JP6479210B2 (en) Air conditioning system and control method of air conditioning system
JP2008064439A (en) Air conditioner
CN110094858B (en) Control method and device of air conditioner electronic expansion valve, computer product and air conditioner
JP6332537B2 (en) Air conditioner
US7380411B2 (en) Heat source unit with switching means between heating and cooling
CN108351116A (en) Air conditioner
JP2016138666A (en) Air conditioner
JP5634248B2 (en) Air conditioner
WO2023013616A1 (en) Refrigeration cycle device
JP2018071864A (en) Air conditioner
JP4074422B2 (en) Air conditioner and its control method
JP7216309B2 (en) air conditioner
JP6938950B2 (en) Air conditioning system
JP7303449B2 (en) Air conditioning control device and air conditioning system
JP7406124B2 (en) air conditioner
WO2023013553A1 (en) Air-conditioning device
JP7216258B1 (en) air conditioner
JP7201496B2 (en) air conditioning system
JP4390870B2 (en) Air conditioner
JP2635452B2 (en) Multi-type air conditioner
JP7201495B2 (en) air conditioning system
JPH10300255A (en) Air conditioner
JP2023104428A (en) Air conditioner and control method for air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280051711.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022853035

Country of ref document: EP

Effective date: 20240305