WO2023013511A1 - Cylinder device and control valve device - Google Patents

Cylinder device and control valve device Download PDF

Info

Publication number
WO2023013511A1
WO2023013511A1 PCT/JP2022/029054 JP2022029054W WO2023013511A1 WO 2023013511 A1 WO2023013511 A1 WO 2023013511A1 JP 2022029054 W JP2022029054 W JP 2022029054W WO 2023013511 A1 WO2023013511 A1 WO 2023013511A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
piston
passage
valve
control valve
Prior art date
Application number
PCT/JP2022/029054
Other languages
French (fr)
Japanese (ja)
Inventor
祐太 山口
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2023540296A priority Critical patent/JPWO2023013511A5/en
Priority to KR1020247001890A priority patent/KR20240022632A/en
Priority to DE112022003790.3T priority patent/DE112022003790T5/en
Priority to CN202280047511.1A priority patent/CN117642564A/en
Publication of WO2023013511A1 publication Critical patent/WO2023013511A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity

Definitions

  • the present invention relates to a cylinder device capable of adjusting damping force characteristics and a control valve device assembled to the cylinder device.
  • Patent Document 1 discloses a shock absorber equipped with a frequency sensitive damping valve device.
  • the shock absorber described in Patent Document 1 (hereinafter referred to as "conventional cylinder device") adjusts the load deflection characteristics by varying the hardness of the rubber of the seal ring 15, so the load deflection characteristics can be adjusted freely. low.
  • One of the objects of the present invention is to provide a frequency sensitive cylinder device with improved flexibility in adjusting load deflection characteristics and a control valve device assembled to the cylinder device.
  • a cylinder device includes a cylinder in which a working fluid is enclosed, a piston slidably provided in the cylinder and partitioning the inside of the cylinder, one end side connected to the piston, and the other a piston rod whose end extends outside the cylinder; a first passage through which a working fluid flows out due to movement of the piston; a second passage provided in parallel with the first passage; and a second passage provided in the first passage.
  • damping force generating mechanism a case member formed in a cylindrical shape with a bottom and through which a shaft-shaped member penetrates, the shaft-shaped member penetrates, and is provided inside the case member so as to face the bottom of the case member, a movable member movable by a working fluid in the case member; a first chamber and a second chamber formed by dividing the inside of the case member by the movable member; a hole, a bypass passage provided in parallel with the first through-hole, a second damping force generating mechanism provided in the bypass passage and opened when the pressure in the first chamber reaches a predetermined pressure, and an elastic body provided between the case member and the moving member for suppressing movement of the moving member.
  • a control valve device is a control valve device that is attached to a cylinder device and that controls a flow of working fluid generated by movement of a piston of the cylinder device with an actuator, the control valve device comprising a first passage and a second passage provided in parallel with the first passage; a first damping force generating mechanism provided in the first passage; an actuator for adjusting the damping force generated by the first damping force generating mechanism;
  • a case member formed in a cylindrical shape through which a shaft-shaped member penetrates; a movable member, a first chamber and a second chamber formed by partitioning the inside of the case member by the moving member, a first through hole passing through the bottom of the case member, and the first through hole a bypass passage provided in parallel; a second damping force generating mechanism provided in the bypass passage and opened when the pressure in the first chamber reaches a predetermined pressure; and between the case member and the moving member. and an elastic body that is provided in and suppresses movement of the moving member.
  • FIG. 2 is an enlarged view of a rebound damping force generating mechanism in FIG. 1; 2 is an enlarged view of a compression-side damping force generating mechanism, a pilot valve, and a fail-safe valve in FIG. 1; FIG. It is a top view of a contraction side pilot case.
  • FIG. 5 is a diagram showing a cross section taken along line AA in FIG. 4; It is a figure which expands and shows the principal part of the cylinder apparatus which concerns on 2nd Embodiment. It is explanatory drawing of the damping force generation mechanism of the cylinder apparatus which concerns on 3rd Embodiment.
  • FIG. 8 is an enlarged view of a main part in FIG.
  • FIG. 1 shows a so-called piston built-in type damping force adjustment type cylinder device in which a damping force generating mechanism 110 (control valve device) is built in a cylinder 2 .
  • the cylinder device 1 has a double cylinder structure in which an outer cylinder 3 is provided outside the cylinder 2 .
  • the cylinder device 1 is slidably fitted in a cylinder 2, and a piston 5 that divides the inside of the cylinder 2 into two chambers, a cylinder upper chamber 2A (first chamber) and a cylinder lower chamber 2B (second chamber).
  • a piston rod 6 having one end connected to the piston 5 and the other end (the upper side in FIG. 1) extending outside the cylinder 2; and a damping force generating mechanism 110 that communicates in two directions and controls the flow of the working fluid that accompanies the movement of the piston 5 to vary the damping force characteristics.
  • a reservoir 4 is formed between the cylinder 2 and the outer cylinder 3 .
  • the piston 5 has an extension side passage 7 (first passage) whose upper end side opens to the cylinder upper chamber 2A, and a contraction side passage 8 (second passage) whose lower end side opens to the cylinder lower chamber 2B.
  • a base valve 21 that separates the cylinder lower chamber 2B and the reservoir 4 is provided at the lower end of the cylinder 2 .
  • the base valve 21 is provided with passages 22 and 23 that communicate the cylinder lower chamber 2B and the reservoir 4 .
  • the passage 22 is provided with a check valve 24 that allows oil (working fluid) to flow from the reservoir 4 side to the cylinder lower chamber 2B side.
  • the passage 23 is provided with a disk valve 25 that opens when the pressure of the hydraulic fluid on the side of the cylinder lower chamber 2B reaches the set pressure, and releases the pressure (fluid) on the side of the cylinder lower chamber 2B to the reservoir 4 side. be done.
  • the working fluid the cylinder 2 is filled with oil, and the reservoir 4 is filled with oil and gas.
  • a bottom cap 50 is joined to the lower end of the outer cylinder 3 .
  • the damping force generating mechanism 110 consists of a valve mechanism section and a solenoid 81 (actuator).
  • the valve mechanism includes a piston bolt 31 having a shaft portion 32 inserted through the shaft hole 9 of the piston 5 , an extension side damping force generating mechanism 111 for controlling the flow of working fluid in the extension side passage 7 , and a compression side passage 8 . and a compression-side damping force generating mechanism 171 that controls the flow of the working fluid.
  • a common passage 51 is formed in the piston bolt 31 .
  • the common passage 51 has an axial passage coaxial with the shaft portion 32 of the piston bolt 31 .
  • the axial passages are composed of an axial passage 52 whose upper end opens into the head portion 33 of the piston bolt 31, an axial passage 54 whose lower end is closed, and an axial passage 53 formed between the axial passages 52 and 54. , have As for the inner diameter of the axial passages, the axial passage 53 has the largest inner diameter, and the axial passages 52 and 54 have smaller inner diameters in this order.
  • the extension-side damping force generating mechanism 111 has an extension-side main valve 112 which abuts on an annular seat portion 114 formed on the lower end surface of the piston 5 so as to be separable and seatable.
  • the seat portion 114 is formed outside (peripheral side) the opening of the extension-side passage 7 .
  • the extension-side damping force generating mechanism 111 has a bottomed cylindrical extension-side pilot case 131 (case member) attached to the shaft portion 32 of the piston bolt 31 .
  • the extension-side pilot case 131 has a bottom portion 132 and a cylindrical portion 133 opening on the piston 5 side.
  • An annular packing 115 made of an elastic material is baked on the extension side main valve 112 .
  • Packing 115 contacts the opening side (“upper side” in FIG. 2 ) of inner peripheral surface 134 of cylindrical portion 133 of extension-side pilot case 131 over the entire circumference.
  • an annular extension-side back pressure chamber 113 is formed between the extension-side main valve 112 and the extension-side pilot case 131 .
  • the pressure in the extension-side back pressure chamber 113 acts on the extension-side main valve 112 in the valve-closing direction.
  • the extension-side damping force generating mechanism 111 extends from the axial passage 54 to a radial passage 56 formed in the shaft portion 32 of the piston bolt 31 and an annular passage formed between the shaft portion 32 of the piston bolt 31 and the piston 5. It has a check valve 117 that allows the working fluid to flow through the passage 116 to the extension side passage 7 .
  • the check valve 117 abuts on an annular seat portion 118 formed on the lower end surface of the piston 5 so as to be separable and seatable.
  • the seat portion 118 is formed inside (on the inner peripheral side) of the opening of the extension-side passage 7 .
  • the check valve 117 is formed with an orifice 119 that communicates the extension side passage 7 and the axial passage 54 .
  • a moving body 151 (moving member) consisting of an annular spool is provided in the extension-side back pressure chamber 113 .
  • the moving body 151 is supported by a check valve 153 and a disk valve 157 (elastic body).
  • the outer peripheral portion 155 (outer peripheral surface 163) of the moving body 151 is slidably fitted to the bottom portion 132 side (“lower side” in FIG. 2) of the cylindrical portion 133 (inner peripheral surface 134) of the extension side pilot case 131. be.
  • a metal seal seals between the moving body 151 (outer peripheral surface 163) and the extension side pilot case 131 (inner peripheral surface 134).
  • the moving body 151, the check valve 153 and the disk valve 157 divide the extension-side back pressure chamber 113 into a first chamber 121 on the side of the piston 5 ("upper side” in FIG. 2) and a first chamber 121 on the side opposite to the piston 5 ("lower side” in FIG. 2). side”) and the second chamber 122.
  • the inner peripheral portion of the check valve 153 is clamped between the piston 5 and an annular boss 160 provided on the outer periphery of the shaft portion 32 of the piston bolt 31 .
  • a spacer 161 Between the piston 5 and the boss 160, a spacer 161, an inner peripheral portion of the extension side main valve, a plurality of spacers 162, and an inner peripheral portion of the check valve 153 are arranged in this order from the piston 5 side.
  • the inner periphery of disc valve 157 which is a disc-shaped member, is clamped between boss 160 and the inner periphery of extension-side pilot case 131 .
  • a constant gap 152 is formed between the boss 160 and an inner peripheral surface 163 (facing surface) of the moving body 151 .
  • the check valve 153 abuts on an annular seat portion 154 formed on the side of the piston 5 of the moving body 151 (the "upper side” in FIG. 2) so that it can be seated and removed.
  • the check valve 153 retains the pressure (pilot pressure) in the first chamber 121 of the extension-side back pressure chamber 113 , and the pressure from the axial passage 54 to the radial passage 57 formed in the shaft portion 32 of the piston bolt 31 . , the width across flat portion 35 (bypass passage) formed in the shaft portion 32 of the piston bolt 31, and the orifice 156 formed in the check valve 153 to the first chamber 121 of the extension side back pressure chamber 113. Allow working fluid flow.
  • the pressure in the first chamber 121 of the extension-side back pressure chamber 113 acts on the portion (surface) of the moving body 151 on the outer peripheral side of the seat portion 154 .
  • the piston 5 side of the outer peripheral portion 155 of the moving body 151 is lower than the inner peripheral portion where the seat portion 154 is formed in order to avoid interference with the packing 115 of the extension side main valve 112 .
  • the disk valve 157 abuts on an annular seat portion 158 formed on the side opposite to the piston 5 (the "lower side” in FIG. 2) near the outer peripheral portion 155 of the moving body 151 so that it can be seated and removed.
  • the disc valve 157 is configured by stacking a plurality of discs with different outer diameters ("four" in this embodiment, one or more discs with the same outer diameter may be stacked).
  • the pressure in the second chamber 122 of the extension-side back pressure chamber 113 acts on the portion (surface) of the moving body 151 on the outer peripheral side of the seat portion 158 .
  • a concave portion 165 is formed inside (inner peripheral side) of the seat portion 158 of the moving body 151 .
  • a constant gap 166 is formed between the recess 165 and the disc valve 157 .
  • the second chamber 122 of the extension-side back pressure chamber 113 is provided below the cylinder by a plurality of passages 137 (first through holes) formed in the bottom portion 132 of the extension-side pilot case 131 (only “two" are shown in FIG. 2). It communicates with chamber 2B.
  • Each passage 137 opens into an annular seat surface 138 formed on the piston 5 side of the outer peripheral portion 135 of the bottom portion 132 of the extension-side pilot case 131 .
  • a concave portion 139 is formed between the seat surface 138 and the inner peripheral portion of the bottom portion 132 on the inner peripheral side.
  • an annular protrusion 167 is formed on the outer peripheral edge 155 of the moving body 151 and protrudes toward the seat surface 138 of the extension-side pilot case 131 ("lower side" in FIG. 2).
  • the protrusion 167 contacts the seat surface 138 of the extension side pilot case 131 when the moving body 151 moves toward the anti-piston 5 side against the elastic force of the disc valve 157 , thereby By closing the opening on the side, communication between the second chamber 122 of the extension side back pressure chamber 113 and the cylinder lower chamber 2B is cut off.
  • the check valve 153 is formed via the second chamber 122 of the extension-side back pressure chamber 113, the gaps 166 and 152, the passage 168, and the first chamber 121.
  • An orifice 159 communicating with the orifice 156 is formed.
  • a disk valve 157 is arranged on the inner peripheral side of the convex portion 167 of the moving body 151 .
  • a disk valve 123 (second damping force generating mechanism) is provided on the side of the extension-side pilot case 131 opposite to the piston 5 .
  • the outer peripheral edge of the disc valve 123 is removably seated on an annular seat 124 formed on the outer peripheral portion 135 of the expansion pilot case 131 on the opposite side of the piston 5 (“lower side” in FIG. 2).
  • the seat portion 124 is arranged near the opening of the passage 137 on the side opposite to the piston 5 .
  • the inner peripheral portion of the disk valve 123 is clamped between the inner peripheral portion of the extension side pilot case 131 and the nut 17 screwed onto the shaft portion 32 of the piston bolt 31 .
  • a disk valve 123, a spacer 19, and a washer 18 are arranged in order from the piston 5 side ("upper side" in FIG. 2).
  • the moving body 151 moves against the elastic force of the disc valve 157 toward the side opposite to the piston 5, and the check valve 153 is released from the seat portion 154 .
  • the working fluid (pressure) in the first chamber 121 of the extension-side back pressure chamber 113 flows through the orifice 156 formed in the check valve 153 and the width across flat portion 35 formed in the shaft portion 32 of the piston bolt 31.
  • a plurality of notches 140 (only “two" are shown in FIG. 2) formed in the inner peripheral portion of the extension-side pilot case 131, and between the inner peripheral portion of the extension-side pilot case 131 and the seat portion 124.
  • the disc valve 123 Via the formed annular recess 141, the disc valve 123 is opened to flow (release) to the cylinder lower chamber 2B.
  • the disc valve 123 (second damping force generating mechanism) provides resistance to the flow of working fluid from the extension-side back pressure chamber 113 to the cylinder lower chamber 2B.
  • the working fluid (pressure) in the cylinder lower chamber 2B is transferred through the passage 137 (back pressure introduction passage) formed in the extension side pilot case 131, the orifice 159 formed in the seat portion 158 of the moving body 151, and a passage 168 (second through hole) that penetrates the moving body 151 in the axial direction (“vertical direction” in FIG. 2), and the gap 152, the check valve 153 is opened, and the extension side back pressure chamber 113 is introduced into the first chamber 121 of the cylinder lower chamber 2B, the expansion-side main valve 112 is prevented from being opened by the pressure in the cylinder lower chamber 2B.
  • the compression side damping force generating mechanism 171 has a compression side main valve 172 which abuts on an annular seat portion 174 formed on the upper end surface of the piston 5 so as to be separable and seatable.
  • the seat portion 174 is formed outside the opening of the contraction-side passage 8 .
  • the compression side damping force generating mechanism 171 has a bottomed cylindrical compression side pilot case 191 attached to the shaft portion 32 of the piston bolt 31 .
  • the compression side pilot case 191 has a bottom portion 192 and a cylindrical portion 193 that opens on the side of the piston 5 (“lower side” in FIG. 3).
  • An annular packing 175 made of an elastic material is baked on the compression side main valve 172 .
  • the packing 175 contacts the inner peripheral surface 194 of the cylindrical portion 193 of the contraction-side pilot case 191 over the entire circumference.
  • an annular compression side back pressure chamber 173 is formed between the compression side main valve 172 and the compression side pilot case 191 .
  • the pressure in the compression side back pressure chamber 173 acts on the compression side main valve 172 in the valve closing direction.
  • the compression-side damping force generating mechanism 171 extends from the axial passage 52 to the radial passage 55 formed in the shaft portion 32 of the piston bolt 31, the width across flat portion 36 formed in the shaft portion 32 of the piston bolt 31, the piston bolt It has a check valve 177 that allows the working fluid to flow into the contraction side passage 8 via an annular passage 176 formed between the shaft portion 32 of 31 and the piston 5 .
  • the check valve 177 abuts on an annular seat portion 178 formed on the upper end surface of the piston 5 so as to be separable and seatable.
  • the seat portion 178 is formed inside (on the inner peripheral side) of the opening of the contraction-side passage 8 .
  • the check valve 177 is formed with an orifice 179 that communicates the contraction side passage 8 and the axial passage 52 .
  • a check valve 180 is provided on the piston 5 side of the compression side pilot case 191 ("lower side" in FIG. 3). An outer peripheral edge of the check valve 180 abuts on an annular seat portion 181 formed in the compression side pilot case 191 so as to be separable and seatable.
  • the check valve 180 extends from the cylinder lower chamber 2B through the orifice 179 formed in the check valve 177, the width across flat portion 36 formed in the shaft portion 32 of the piston bolt 31, and the orifice formed in the check valve 180. 182 to allow the working fluid to flow into the compression side back pressure chamber 173 .
  • check valve 180 spacer 183, retainer 184, spacer 185, compression side main A valve 172, a spacer 186 and a check valve 177 are arranged.
  • a disc valve 187 (relief valve) is provided on the side of the compression side pilot case 191 opposite to the piston 5 ("upper side” in FIG. 3).
  • the disk valve 187 is a relief valve that opens when the pressure in the compression side back pressure chamber 173 reaches a predetermined pressure, and releases the working fluid (pressure) in the compression side back pressure chamber 173 to the cylinder upper chamber 2A. .
  • the disc valve 187 and the compression side pilot case 191 are partitioned by fan-shaped seats 196 arranged around the shaft hole 195 of the compression side pilot case 191 at regular intervals.
  • a plurality of (“five” in this embodiment) pressure receiving chambers 197 are formed.
  • a seat portion 198 is formed in the center of each seat portion 196 to contact the disc valve 187 .
  • Each pressure receiving chamber 197 includes a notch 199 formed in the inner peripheral portion of the compression side pilot case 191, a width across flat portion 36 formed in the shaft portion 32 of the piston bolt 31, and an orifice 182 formed in the check valve 180. , to the compression side back pressure chamber 173 via the check valve 180 .
  • a seat portion 200 extending in the circumferential direction is formed between a pair of adjacent seat portions 196 .
  • a pressure receiving chamber 201 defined by a seat portion 200 and a pair of seat portions 196 is formed between the disc valve 187 and the compression side pilot case 191 .
  • the pressure receiving chamber 201 communicates with the cylinder upper chamber 2A through a notch 202 formed in the seat portion 200 .
  • a passage 203 is formed in the contraction-side pilot case 191 so as to pass through the bottom portion 192 in the axial direction (“vertical direction” in FIG. 5).
  • the passage 203 has an upper end opened to the pressure receiving chamber 201 and a lower end opened to an annular recess 204 formed inside (inner peripheral side) of the seat portion 181 .
  • the pilot valve 61 has a valve spool 62 slidably provided in the common passage 51 and a seat portion 63 formed around the opening peripheral edge of the axial passage 54 .
  • the valve spool 62 is formed of a solid shaft and has a sliding portion 64 inserted into the axial passage 52 and a valve body 65 contacting the seat portion 63 in a separable manner.
  • a head 67 is formed at the upper end of the valve spool 62 .
  • An outer flange-shaped spring receiver 68 is formed at the lower end of the head 67 .
  • the spring receiver 68 is connected to the inner peripheral portion of a spring disk 69 that biases the valve body 65 in the valve opening direction.
  • An annular first chamber 37 is formed on the outer periphery of the upper end of the valve spool 62 on the side opposite to the piston 5 ("upper side" in FIG. 3) of the head 33 of the piston bolt 31 .
  • a bottomed cylindrical cap 38 with an open upper end is attached to the outer periphery of the head 33 of the piston bolt 31 .
  • An annular seal member 39 seals between the cap 38 and the head 33 of the piston bolt 31 .
  • An annular second chamber 40 is formed between the cap 38 and the head 33 of the piston bolt 31 .
  • a shaft hole 41 of the cap 38 through which the shaft portion 32 of the piston bolt 31 is inserted communicates with the width across flat portion 36 formed on the shaft portion 32 .
  • a disc valve 42 Between the head 33 of the piston bolt 31 and the cap 38, a disc valve 42, a spacer 43, and a retainer 44 are provided in this order from the head 33 side.
  • a disc valve 42 , a spacer 43 and a retainer 44 are provided within the second chamber 40 .
  • the disc valve 42 is a reverse valve that allows the working fluid to flow from the first chamber 37 to the second chamber 40 via a plurality of passages 45 (only “two" are shown in FIG. 3) formed in the head 33 . It is a stop valve.
  • the outer peripheral edge of the disk valve 42 abuts on an annular seat portion 46 formed on the head portion 33 of the piston bolt 31 so as to be separable and seatable.
  • the seat portion 46 is provided outside (peripheral side) of the opening of the passage 45 .
  • the inner peripheral edge of the retainer 44 is provided with a plurality of pieces (“two pieces in FIG. ) are formed.
  • a retainer 48 is provided between the cap 38 and the disc valve 187 .
  • a fail-safe valve 71 is configured in the first chamber 37 formed in the head 33 of the piston bolt 31 .
  • the fail-safe valve 71 has a seat portion (in the present embodiment, the “inner peripheral portion of the spring disk 69”) against which the spring receiver 68 (valve body) of the head portion 67 of the valve spool 62 abuts in a separable manner.
  • the outer peripheral edge of the spring disc 69 is held between the head 33 of the piston bolt 31 and the core 84 of the solenoid 81 .
  • a notch 66 having a width across flats is formed in the valve body 65 of the valve spool 62 .
  • the valve spool 62 moves in the valve opening direction of the pilot valve 61 (upward in FIG. 3), and the valve body 65 is fitted into the axial passage 52. be.
  • a pair of orifices 72 (only one is shown in FIG. 3) communicating between the axial passages 52 and 53 is formed between the valve body 65 and the axial passage 52 .
  • valve body 65 of the valve spool 62 when the coil 82 is energized, the valve body 65 of the valve spool 62 is seated on the seat portion 63, and the pilot valve 61 is closed.
  • the valve spool 62 receives the pressure on the side of the axial passage 54 from the circular pressure-receiving surface having the same area as the opening area of the axial passage 54.
  • the portion 64 receives the pressure on the side of the axial passage 52 by an annular pressure receiving surface having the same area as the cross-sectional area of the sliding portion 64 minus the cross-sectional area of the neck portion (reference numeral omitted) of the valve body 65 .
  • the opening pressure of the pilot valve 61 can be adjusted by controlling the energization of the coil 82 .
  • the biasing force of the spring disk 69 and the thrust generated by the plunger 86 are balanced, and the valve body 65 is separated from the seat portion 63 by a certain distance.
  • the solenoid 81 has a solenoid mechanism, a yoke 87, and a coil 82 (armature coil).
  • the solenoid mechanism section has an operating rod 83, a plunger 86 (armature) fixed to the outer periphery of the operating rod 83, and vertically divided cores 85 and 84.
  • the cores 85 and 84 are held coaxially by a holder 88 with a constant vertical spacing.
  • the operating rod 83 is guided in the axial direction (“vertical direction” in FIG. 1) by bushes 90 and 91 attached to the core lid 89 and a bush 91 attached to the core 84 .
  • An intra-rod passage 92 is formed in the operating rod 83 .
  • a seal member 93 seals between the lower end of the bottomed cylindrical yoke 87 and the core 84 .
  • An annular passage 94 is formed between the cylindrical portion 34 of the piston bolt 31 and the lower end portion of the core 84 .
  • the annular passage 94 communicates with the cylinder upper chamber 2A through a plurality of passages 95 (only “two” are shown in FIG. 1) provided in the cylindrical portion 34 of the piston bolt 31 .
  • a spool back pressure chamber 96 is formed inside the core 84 of the solenoid 81 (outer periphery of the head 67 of the valve spool 62).
  • the spool back pressure chamber 96 communicates with a rod back pressure chamber 97 formed inside the core lid 89 via a notch (reference numeral omitted) formed in the operating rod 83 and an intra-rod passage 97 .
  • the upper end of the yoke 87 is connected to the lower end of the piston rod 6 . That is, the lower end of piston rod 6 is connected to piston 5 via yoke 87 and piston bolt 31 .
  • a cable 101 is inserted through the hollow portion 10 (axial hole) of the piston rod 6 .
  • a cable 101 is connected to terminals 104 and 105 of a solenoid 81 by electric wires 102 and 103 projecting from the lower end side opening of the hollow portion 10 of the piston rod 6 .
  • terminal 104 is connected to the positive terminal of coil 82 and terminal 105 is connected to the negative terminal of coil 82 .
  • electric wires 102 and 103 projecting from the upper end opening of the hollow portion 10 of the piston rod 6 are connected to a connector (not shown) on the vehicle side (power supply device side).
  • the damping force generating mechanism 110 functions as a valve opening control mechanism
  • the working fluid in the cylinder upper chamber 2A is in the low moving speed range of the piston 5 in the extension stroke (hereinafter referred to as "piston speed").
  • the orifice 119 formed in the check valve 117, the annular passage 116, the radial passage 56, the axial passage 54, the radial passage 57, the width across flat portion 35, and the orifice 156 the extension side It is introduced into the first chamber 121 of the back pressure chamber 113 .
  • the working fluid in the cylinder upper chamber 2A passes through the notch 202, the pressure receiving chamber 201, the passage 203, and the recess 204, opens the check valve 180, and is introduced into the compression side back pressure chamber 173. be done. This prevents the compression side main valve 172 from opening due to the pressure in the cylinder upper chamber 2A during the extension stroke.
  • the working fluid introduced into the compression side back pressure chamber 173 during the extension stroke passes through the orifice 182, the width across flat portion 36, the check valve 177, and the compression side passage 8, and flows into the cylinder lower chamber 2B.
  • the orifice characteristic of the orifice 182 and the valve characteristic damping force of the check valve 177 are obtained.
  • the working fluid in the cylinder lower chamber 2B is introduced into the compression side back pressure chamber 173 via the compression side passage 8, the orifice 179, the width across flat portion 36, and the orifice 182.
  • the working fluid in the cylinder lower chamber 2B flows through the passage 137 formed in the extension-side pilot case 131, the second chamber 122, the orifice 159 formed in the seat portion 158, and the passage formed in the moving body 151. 168 , the check valve 153 is opened and the fuel is introduced into the extension-side back pressure chamber 113 . This prevents the extension side main valve 112 from opening due to the pressure in the cylinder lower chamber 2B during the compression stroke.
  • the damping force generating mechanism 110 in the first embodiment functions as a variable damping force mechanism that varies the damping force according to the piston frequency even if the piston speed is the same.
  • the amplitude of the piston 5 is small when the piston frequency is high.
  • the amount of deflection of the disc valve 157 (elastic body) is small.
  • the moving body 151 moves toward the counter-piston 5 side and the seat portion 154 leaves the check valve 153. Since the convex portion 167 of the outer peripheral portion 155 of the body 151 is not seated on the seat surface 138 of the extension side pilot case 131, the second chamber 122 of the extension side back pressure chamber 113 communicates with the cylinder lower chamber 2B.
  • the working fluid in the second chamber 122 flows into the cylinder lower chamber 2B, and the volume of the first chamber 121 increases, so the pressure rise in the first chamber 121 is suppressed.
  • the extension side main valve 112 is easily opened, and the damping force characteristic of the extension side damping force generating mechanism 111 (first damping force generating mechanism) becomes soft.
  • the hard characteristic disk valve 123 (second damping force generating mechanism) does not open.
  • the working fluid in the extension-side back pressure chamber 113 flows through the orifice 156 formed in the check valve 153 and the piston.
  • the disk valve 123 (second damping force generating mechanism) is opened via the width across flat portion 35 formed on the shaft portion 32 of the bolt 31, the notch 140 formed on the extension side pilot case 131, and the recess 141. and flows into the cylinder lower chamber 2B. At this time, the disk valve 123 generates a hard characteristic damping force.
  • the piston frequency varies the flow area by the orifice 119 formed in the check valve 117 and the orifice 156 formed in the check valve 153. It can be adjusted by varying the flow rate of the working fluid introduced into the pressure chamber 113 . Further, the valve opening pressure of the extension side main valve 112 can be adjusted by varying the disk rigidity of the extension side main valve 112 when the piston frequency is high. On the other hand, the valve opening pressure of the extension side main valve 112 can be adjusted by varying the disk rigidity of the disk valve 123 (second damping force generating mechanism) when the piston frequency is low.
  • the conventional cylinder device adjusts the load deflection characteristics of the moving body by varying the hardness of the rubber of the seal ring, the moving body affects the transient characteristics (switching from hard damping force to soft damping force).
  • the degree of freedom of the load deflection characteristics is low, and there is room for improvement.
  • the piston frequency can be adjusted by varying the flow area of the orifice 119 formed in the check valve 117 and the orifice 156 formed in the check valve 153, and the piston frequency can be freely adjusted. degree can be improved.
  • the damping force generation mechanism is equal to the axial length of the adjustment mechanism.
  • the shaft length of (the control valve device) was increased, and the cylinder device was increased in size, making it difficult to install it in a small vehicle.
  • the extension-side back pressure chamber 113 is divided into a first chamber 121 on the side of the piston 5 and a second chamber 122 on the side opposite to the piston 5 by a moving body 151 (moving member).
  • a passage 137 (first through hole) for communicating the second chamber 122 and the cylinder lower chamber 2B is formed in the bottom portion 132 of the side pilot case 131, and the convex portion 167 of the outer peripheral portion 155 of the moving body 151 extends through the extension side pilot case 131.
  • the second chamber 122 and the cylinder lower chamber 2B are brought into contact with the seat surface 138 so that they can be seated and detached, thereby controlling the communication between the second chamber 122 and the cylinder lower chamber 2B. ), and by extension, an increase in the axial length of the cylinder device 1 can be suppressed.
  • a metal seal is used to seal between the outer peripheral surface 163 of the moving body 151 and the inner peripheral surface 134 of the extension side pilot case 131, thereby
  • the pressure chamber 113 is divided into a first chamber 121 on the side of the piston 5 and a second chamber 122 on the side opposite to the piston 5 .
  • an annular seal is provided between the outer peripheral surface 163 of the moving body 151 (moving member) and the inner peripheral surface 134 of the extension side pilot case 131 .
  • a damping force generating mechanism 110 (control valve device) is configured by sealing with a ring 212 (for example, an “O-ring” or the like).
  • the seal ring 212 is attached to an annular seal groove 213 formed in the outer peripheral surface 163 of the moving body 151 .
  • the damping force generating mechanism 221 (control valve device) in the third embodiment does not include the common passage 51, the pilot valve 61, and the solenoid 81 in contrast to the damping force generating mechanism 110 in the first embodiment.
  • the head 33 of the piston bolt 31 is directly connected to the lower end of the piston rod 6 .
  • the extension-side back pressure chamber 113 formed in the extension-side pilot case 131 is divided into a first chamber 121 on the side of the piston 5 and a second chamber 122 on the side opposite to the piston 5 by a free valve 251 (moving member).
  • the free valve 251 consists of a disk with packing having an annular disk 252 and an annular elastic seal member 253 fixed to the outer peripheral edge of the disk 252 .
  • the elastic seal member 253 has a lip portion 254 provided on the piston 5 side of the disk 252 (“upper side” in FIG. 8). The lip portion 254 is slidably brought into contact with the small inner diameter portion 231 formed on the cylindrical portion 133 of the extension pilot case 131 on the side opposite to the piston 5 (“lower side” in FIG. 8).
  • the elastic seal member 253 has an annular seal portion 255 (elastic body) whose tip portion 256 (lower end) abuts against the seat surface 138 of the bottom portion 132 of the extension side pilot case 131 .
  • the annular seal portion 255 is formed such that a cross section taken along the axial plane of the disk 252 (the plane including the axis of the piston bolt 31) tapers toward the tip portion 256.
  • each passage 137 is opened outside (peripheral side) the contact portion of the elastic seal member 253 with the tip portion 256 of the annular seal portion 255 .
  • An annular third chamber 230 is formed between the annular elastic seal member 253 and the bottom portion 132 of the extension side pilot case 131 and the small inner diameter portion 231 of the cylindrical portion 133 .
  • the third chamber 230 has a substantially right-angled triangular cross-section taken along the axial plane of the disk 252 .
  • the second chamber 122 of the extension-side back pressure chamber 113 includes a notch 257 formed in the tip portion 256 of the annular seal portion 255 of the elastic seal member 252, the third chamber 230, and the extension-side pilot case 121. It communicates with the cylinder lower chamber 2B via the passage 137 .
  • the disk 252 of the free valve 251 is supported by the annular pilot case retainer 241 and the annular disk 258 so as to be movable in the axial direction of the piston bolt 31 ("vertical direction" in FIG. 8).
  • the shaft portion 32 of the piston bolt 31 is inserted into the inner diameter portion of the disc 258 .
  • the outer diameter of disc 258 is greater than the inner diameter of disc 252 of free valve 251 .
  • the inner peripheral edge of the disc 252 of the free valve 251 is received by the outer peripheral edge of the disc 258 .
  • the contact portion 259 between the disk 252 and the disk 258 of the free valve 151 extends from the cylinder lower chamber 2B through the passage 137, the third chamber 230, the notch 257 formed in the annular seal portion 255, and the second chamber 122. It functions as a check valve that allows the working fluid to flow through to the first chamber 121 of the extension-side back pressure chamber 113 and as a second through hole that allows communication between the first chamber 121 and the second chamber 122 .
  • Pilot case retainer 241 is provided in first chamber 121 of extension-side back pressure chamber 113 .
  • An annular seat portion 243 is formed on the outer peripheral edge portion of the pilot case retainer 241 on the side opposite to the piston 5 (“lower side” in FIG. 8). The seat portion 243 receives the vicinity of the elastic seal member 253 of the disk 252 of the free valve 251 .
  • An annular recess 245 is formed between the inner peripheral portion of the pilot case retainer 241 and the seat portion 243 .
  • a plurality of recesses 245 (in FIG. 8, The first chamber 121 and the second chamber 122 are communicated with each other by the notch 246 and the notch 243 (only “two" are shown).
  • the pilot case retainer 241 is provided between the extension side main valve 112 and the extension side pilot case 131 . Between the inner peripheral portion of the extension side main valve 112 and the inner peripheral portion of the pilot case retainer 241, a plurality of (“two” in this embodiment) are provided in order from the piston 5 side (“upper side” in FIG. 8). Spacers 222, disk valves 223, one spacer 222 and disk 225 are arranged. In the disk valve 223, the working fluid in the cylinder upper chamber 2A passes through the extension side passage 7 (first passage), the orifice 119 formed in the check valve 117, and the shaft portion 32 of the piston bolt 31 during the extension stroke. An orifice 224 is formed through the width across flats portion 35 to introduce into the first chamber 121 of the extension side back pressure chamber 113 .
  • a spacer 226, a spacer 227, a disk 258, and a disk 228 are arranged in this order from the piston 5 side.
  • the spacer 227 has the same plate thickness as the disc 252 of the free valve 251 and is arranged on the inner circumference of the disc 252 of the free valve 251 .
  • the outer diameter of the spacer 227 is smaller than the inner diameter of the disk 252 of the free valve 251 . Thereby, an annular gap 229 is formed between the spacer 227 and the disk 252 .
  • the damping force generating mechanism 110 in the third embodiment functions as a variable damping force mechanism that varies the damping force according to the piston frequency even if the piston speed is the same.
  • the amplitude of the piston 5 is small when the piston frequency is high.
  • the deflection amount of the free valve 251 is small.
  • the second chamber of the extension-side back pressure chamber 113 communicates with the cylinder lower chamber 2B via the notch 257 formed in the annular seal portion 255, the third chamber 230, and the passage 137.
  • the working fluid in the second chamber 122 flows into the cylinder lower chamber 2B, and the volume of the first chamber 121 increases, so the pressure rise in the first chamber 121 is suppressed.
  • the extension side main valve 112 is easily opened, and the damping force characteristic of the extension side damping force generating mechanism 111 (first damping force generating mechanism) becomes soft.
  • the hard characteristic disk valve 123 (second damping force generating mechanism) does not open.
  • the working fluid in the extension-side back pressure chamber 113 flows through the orifice 224 formed in the disk valve 223 and the piston bolt.
  • the disk valve 123 (second damping force generating mechanism) is opened via the width across flat portion 35 formed on the shaft portion 32 of 31, the notch 140 formed on the extension side pilot case 131, and the recess 141. and flows into the cylinder lower chamber 2B. At this time, the disk valve 123 generates a hard characteristic damping force.
  • the piston frequency varies the flow area of the orifice 119 formed in the check valve 117 and the orifice 224 formed in the disk valve 223, that is, the pressure from the cylinder upper chamber 2A to the extension side back pressure It can be adjusted by varying the flow rate of the working fluid introduced into the chamber 113 .
  • the valve opening pressure of the extension side main valve 112 can be adjusted by varying the disk rigidity of the extension side main valve 112 when the piston frequency is high.
  • the valve opening pressure of the extension side main valve 112 can be adjusted by varying the disk rigidity of the disk valve 123 (second damping force generating mechanism) when the piston frequency is low.
  • the compression side damping force generating mechanism 235 of the damping force generating mechanism 221 in the third embodiment has the same structure and operation as the conventional conventional compression side damping force generating mechanism, so the description of the specification will be simplified. Therefore, the detailed description of the compression-side damping force generating mechanism 235 is omitted.
  • a damping force generating mechanism 261 (control valve device) according to the fourth embodiment includes a common passage 51, a pilot valve 61, and a solenoid 81 in contrast to the damping force generating mechanism 110 according to the first embodiment, as in the third embodiment. do not have.
  • the head 33 (see FIG. 7) of the piston bolt 31 is directly connected to the lower end of the piston rod 6 (see FIG. 7).
  • the damping force generating mechanism 110 in the first embodiment, the movement of the moving body 151 (moving member) toward the side opposite to the piston 5 is suppressed by the disk valve 157 (elastic body). .
  • the elastic member 262 protrudes toward the side opposite to the piston 5 (“lower side” in FIG. 9), and the tip (lower end) contacts the seat surface 138 formed on the outer peripheral portion 135 of the extension-side pilot case 131. be done.
  • the elastic member 262 is formed such that a cross section taken along the axial plane of the moving body 151 (the plane including the axis of the piston bolt 31) tapers toward the tip.
  • the length (height) of the elastic member 262 in the axial direction (“vertical direction” in FIG. 9) is equal to the length in the radial direction (the same length as the width of the convex portion 167 of the outer peripheral portion 155 of the moving body 151). is longer than
  • a passage 263 is formed in the bottom portion 132 of the extension side pilot case 131 to communicate the second chamber 122 of the extension side back pressure chamber 113 with the cylinder lower chamber 2B.
  • the second chamber 122 side of the passage 263 is opened inside (inner peripheral side) of the portion of the seat surface 138 with which the elastic member 262 abuts.
  • the movement of the moving body 151 (moving member) to the side opposite to the piston 5 (“downward” in FIG. 9) is controlled by the disk valve 157 and the moving body 151. It is configured to be suppressed by two elastic bodies, namely, an annular elastic member 262 fixed to the outer peripheral portion 155 of the.
  • the damping force generating mechanism 271 (control valve device) in the fifth embodiment
  • the movement of the moving body 151 (moving member) to the side opposite to the piston 5 (“lower side” in FIG. 10) is controlled by the disk valve 157. and the coil spring 272.
  • Coil spring 272 is interposed between convex portion 167 of outer peripheral portion 155 of moving body 151 and bottom portion 132 of extension-side pilot case 131 .
  • the movement of the moving body 151 (moving member) to the side opposite to the piston 5 (“lower side” in FIG. 10) is controlled by the disk valve 157 and the coil spring 272. and two elastic bodies.
  • the damping force generating mechanism 281 (control valve device) in the sixth embodiment
  • the movement of the moving body 151 (moving member) to the side opposite to the piston 5 (“lower side” in FIG. 11) is controlled by the disk valve 157. and the disk spring 282.
  • the disc spring 282 is interposed between the outer peripheral portion 155 of the moving body 151 and the bottom portion 132 of the extension side pilot case 131 .
  • the second chamber 122 of the extension side back pressure chamber 113 and the cylinder lower chamber 2B are formed in the bottom portion 132 of the extension side pilot case 131 as in the first embodiment (see FIG. 2). (only “two" are shown).
  • a damping force generating mechanism 291 (control valve device) in the seventh embodiment has a common passage 51, a pilot valve 61, and a solenoid 81 in contrast to the damping force generating mechanism 110 in the first embodiment, as in the third to sixth embodiments. does not have In the damping force generating mechanism 291, the head 33 (see FIG. 7) of the piston bolt 31 is directly connected to the lower end of the piston rod 6 (see FIG. 7).
  • the pressure (pilot pressure).
  • the mechanism functioning as the check valve 153 of the damping force generating mechanism 110 of the first embodiment is placed on the disc valve 123 (second damping force generating mechanism) side. established.
  • An annular disc valve 292 is provided in the first chamber 121 of the extension-side back pressure chamber 113 .
  • the shaft portion 32 of the piston bolt 31 is inserted into the inner diameter portion of the disc valve 292 .
  • the outer diameter of the disc valve 292 is smaller than the outer diameter of the annular seat portion 154 formed on the moving body 151 .
  • the inner periphery of disk valve 292 is clamped between spacer 162 and retainer 294 .
  • the disc valve 292 is formed with an orifice 293 that communicates between the first chamber 121 of the extension-side back pressure chamber 113 and the width across flat portion 35 formed on the shaft portion 32 of the piston bolt 31 .
  • the retainer 294 is arranged between the disc valve 292 and the boss 160, and the shaft portion 32 of the piston bolt 31 is inserted into its inner diameter portion.
  • the outer diameter of retainer 294 is larger than the outer diameter of boss 160 .
  • An annular recess 295 is formed on the inner peripheral edge of the moving body 151 on the side of the piston 5 (“upper side” in FIG. 12). The concave portion 295 of the moving body 151 is received by the surface of the outer peripheral portion of the retainer 294 on the side opposite to the piston 5 .
  • a An orifice passage 296 is formed to communicate between the annular recess 141 and the cylinder lower chamber 2B.
  • a disk valve 297 , a retainer 299 , and a check valve 300 are arranged in order from the piston 5 side (“upper side” in FIG. 12 ) between the inner peripheral portion of the extension-side pilot case 131 and the disk valve 123 .
  • the check valve 300 allows the working fluid to flow from the cylinder lower chamber 2B to the recess 141 via the orifice passage 296 .
  • the disc valve 297 is formed with an orifice 298 that communicates between the width across flat portion 35 formed on the shaft portion 32 of the piston bolt 31 and the annular recess 141 .
  • the working fluid in the cylinder upper chamber 2A passes through the width across flat portion 35 formed in the shaft portion 32 of the piston bolt 31 and the orifice 293 formed in the disc valve 292. and introduced into the first chamber 121 of the extension-side back pressure chamber 113 .
  • the pressure (pilot pressure) in the first chamber 121 is maintained by the check valve 300 blocking the opening of the orifice passage 296 .
  • the disc valve 123 is opened.
  • the working fluid in the cylinder lower chamber 2B passes through the orifice passage 296 to open the check valve 300, and the annular recess 141, the orifice 298 formed in the disc valve 297, and the shaft of the piston bolt 31 It is introduced into the first chamber of the extension side back pressure chamber 113 via the width across flats portion 35 formed in the portion 32 and the orifice 293 formed in the disc valve 292 .
  • the expansion side main valve 122 from opening due to an increase in pressure in the cylinder lower chamber 2B.
  • the frequency adjustment mechanism having the moving body 151 is applied to the rebound damping force generating mechanism 111, but only the compression damping force generating mechanism 171 or the rebound damping force is applied.
  • a frequency adjustment mechanism can be applied to both the generating mechanism 111 and the compression-side damping force generating mechanism 171 .
  • the damping force generating mechanisms 221, 261, 271, 281, and 291 are configured by providing the common passage 51, the pilot valve 61, and the solenoid 81 as in the first to second embodiments. can do.
  • the damping force generating mechanism 291 can be configured by providing the seal ring 212 on the outer peripheral portion 155 of the moving body 151 as in the second embodiment.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

According to the present invention, an orifice formed in a check valve and the flow passage area of the orifice formed in the check valve are made variable to enable a piston frequency to be adjusted, thereby making it possible to improve the degree of freedom in the adjustment of the piston frequency.

Description

シリンダ装置及び制御弁装置Cylinder device and control valve device
 本発明は、減衰力特性を調整可能なシリンダ装置及び該シリンダ装置に組付けられる制御弁装置に関する。 The present invention relates to a cylinder device capable of adjusting damping force characteristics and a control valve device assembled to the cylinder device.
 特許文献1には、周波数感応型減衰バルブ装置を備えたショックアブソーバが開示されている。 Patent Document 1 discloses a shock absorber equipped with a frequency sensitive damping valve device.
特表2018-533703号公報Japanese Patent Publication No. 2018-533703
 特許文献1に記載のショックアブソーバ(以下「従来のシリンダ装置」と称する)は、荷重撓み特性をシールリング15のゴムの硬度を可変させることで調整するので、荷重撓み特性の調整の自由度が低い。 The shock absorber described in Patent Document 1 (hereinafter referred to as "conventional cylinder device") adjusts the load deflection characteristics by varying the hardness of the rubber of the seal ring 15, so the load deflection characteristics can be adjusted freely. low.
 本発明の目的の一つは、荷重撓み特性の調整の自由度を向上させた周波数感応型シリンダ装置及び該シリンダ装置に組付けられる制御弁装置を提供することにある。 One of the objects of the present invention is to provide a frequency sensitive cylinder device with improved flexibility in adjusting load deflection characteristics and a control valve device assembled to the cylinder device.
 本発明の一実施形態に係るシリンダ装置は、作動流体が封入されるシリンダと、前記シリンダ内に摺動可能に設けられ、前記シリンダ内を区画するピストンと、一端側が前記ピストンに連結され、他端側が前記シリンダの外部へ延出するピストンロッドと、前記ピストンの移動により作動流体が流れ出す第1通路と、前記第1通路と並列に設けられる第2通路と、前記第1通路に設けられる第1減衰力発生機構と、有底筒状に形成され、軸状部材が貫通するケース部材と、前記軸状部材が貫通し、前記ケース部材内で前記ケース部材の底部に対向して設けられ、前記ケース部材内の作動流体により移動可能な移動部材と、前記ケース部材内を前記移動部材により区画して形成される第1室及び第2室と、前記ケース部材の底部を貫通する第1貫通孔と、前記第1貫通孔と並列に設けられるバイパス通路と、前記バイパス通路に設けられ、前記第1室内の圧力が所定圧力に達したときに開弁する第2減衰力発生機構と、前記ケース部材と前記移動部材との間に設けられ、前記移動部材の移動を抑制する弾性体と、を有する。
 また、本発明の一実施形態に係る制御弁装置は、シリンダ装置に取り付けられ、前記シリンダ装置のピストンの移動により生じる作動流体の流れをアクチュエータにより制御する制御弁装置であって、第1通路と、前記第1通路と並列に設けられる第2通路と、前記第1通路に設けられる第1減衰力発生機構と、前記第1減衰力発生機構が発生する減衰力を調整するアクチュエータと、有底筒状に形成され、軸状部材が貫通するケース部材と、前記軸状部材が貫通し、前記ケース部材内で前記ケース部材の底部に対向して設けられ、前記ケース部材内の作動流体により移動可能な移動部材と、前記ケース部材内を前記移動部材により区画して形成される第1室及び第2室と、前記ケース部材の底部を貫通する第1貫通孔と、前記第1貫通孔と並列に設けられるバイパス通路と、前記バイパス通路に設けられ、前記第1室内の圧力が所定圧力に達したときに開弁する第2減衰力発生機構と、前記ケース部材と前記移動部材との間に設けられ、前記移動部材の移動を抑制する弾性体と、を有する。
A cylinder device according to an embodiment of the present invention includes a cylinder in which a working fluid is enclosed, a piston slidably provided in the cylinder and partitioning the inside of the cylinder, one end side connected to the piston, and the other a piston rod whose end extends outside the cylinder; a first passage through which a working fluid flows out due to movement of the piston; a second passage provided in parallel with the first passage; and a second passage provided in the first passage. 1 damping force generating mechanism, a case member formed in a cylindrical shape with a bottom and through which a shaft-shaped member penetrates, the shaft-shaped member penetrates, and is provided inside the case member so as to face the bottom of the case member, a movable member movable by a working fluid in the case member; a first chamber and a second chamber formed by dividing the inside of the case member by the movable member; a hole, a bypass passage provided in parallel with the first through-hole, a second damping force generating mechanism provided in the bypass passage and opened when the pressure in the first chamber reaches a predetermined pressure, and an elastic body provided between the case member and the moving member for suppressing movement of the moving member.
A control valve device according to an embodiment of the present invention is a control valve device that is attached to a cylinder device and that controls a flow of working fluid generated by movement of a piston of the cylinder device with an actuator, the control valve device comprising a first passage and a second passage provided in parallel with the first passage; a first damping force generating mechanism provided in the first passage; an actuator for adjusting the damping force generated by the first damping force generating mechanism; A case member formed in a cylindrical shape through which a shaft-shaped member penetrates; a movable member, a first chamber and a second chamber formed by partitioning the inside of the case member by the moving member, a first through hole passing through the bottom of the case member, and the first through hole a bypass passage provided in parallel; a second damping force generating mechanism provided in the bypass passage and opened when the pressure in the first chamber reaches a predetermined pressure; and between the case member and the moving member. and an elastic body that is provided in and suppresses movement of the moving member.
 本発明の一実施形態によれば、周波数感応型シリンダ装置及び該シリンダ装置に組付けられる制御弁装置における荷重撓み特性の調整の自由度を向上させることができる。 According to one embodiment of the present invention, it is possible to improve the degree of freedom in adjusting the load deflection characteristics of the frequency sensitive cylinder device and the control valve device assembled to the cylinder device.
第1実施形態に係るシリンダ装置の説明図である。It is an explanatory view of a cylinder device concerning a 1st embodiment. 図1における伸び側減衰力発生機構を拡大して示す図である。FIG. 2 is an enlarged view of a rebound damping force generating mechanism in FIG. 1; 図1における縮み側減衰力発生機構、パイロットバルブ、及びフェイルセーフバルブを拡大して示す図である。2 is an enlarged view of a compression-side damping force generating mechanism, a pilot valve, and a fail-safe valve in FIG. 1; FIG. 縮み側パイロットケースの平面図である。It is a top view of a contraction side pilot case. 図4におけるA-A断面を示す図である。FIG. 5 is a diagram showing a cross section taken along line AA in FIG. 4; 第2実施形態に係るシリンダ装置の要部を拡大して示す図である。It is a figure which expands and shows the principal part of the cylinder apparatus which concerns on 2nd Embodiment. 第3実施形態に係るシリンダ装置の減衰力発生機構の説明図である。It is explanatory drawing of the damping force generation mechanism of the cylinder apparatus which concerns on 3rd Embodiment. 図7における要部を拡大して示す図である。FIG. 8 is an enlarged view of a main part in FIG. 7; 第4実施形態に係るシリンダ装置の減衰力発生機構の説明図である。It is explanatory drawing of the damping force generation mechanism of the cylinder apparatus which concerns on 4th Embodiment. 第5実施形態に係るシリンダ装置の減衰力発生機構の説明図である。It is explanatory drawing of the damping force generation mechanism of the cylinder apparatus which concerns on 5th Embodiment. 第6実施形態に係るシリンダ装置の減衰力発生機構の説明図である。It is explanatory drawing of the damping force generation mechanism of the cylinder apparatus which concerns on 6th Embodiment. 第7実施形態に係るシリンダ装置の減衰力発生機構の説明図である。It is explanatory drawing of the damping force generation mechanism of the cylinder apparatus which concerns on 7th Embodiment.
(第1実施形態)
 本発明の第1実施形態を添付した図を参照して説明する。
 便宜上、図1における上下方向をそのまま「上下方向」と称する。図1に、減衰力発生機構110(制御弁装置)がシリンダ2に内蔵された、所謂、ピストン内蔵型の減衰力調整式シリンダ装置を示す。
(First embodiment)
A first embodiment of the present invention will be described with reference to the accompanying drawings.
For the sake of convenience, the vertical direction in FIG. 1 will be referred to as the "vertical direction" as it is. FIG. 1 shows a so-called piston built-in type damping force adjustment type cylinder device in which a damping force generating mechanism 110 (control valve device) is built in a cylinder 2 .
 図1に示されるように、シリンダ装置1は、シリンダ2の外側に外筒3が設けられた複筒構造をなす。シリンダ装置1は、シリンダ2内に摺動可能に嵌装され、シリンダ2内をシリンダ上室2A(第1室)とシリンダ下室2B(第2室)との2室に区画するピストン5と、一端側がピストン5に連結され、他端側(図1における上側)がシリンダ2の外部へ延出されるピストンロッド6と、ピストンロッド6に固定され、シリンダ上室2Aとシリンダ下室2Bとを双方向へ流通可能に連通し、ピストン5の移動に伴う作動流体の流れを制御して減衰力特性を可変する減衰力発生機構110と、を備える。 As shown in FIG. 1, the cylinder device 1 has a double cylinder structure in which an outer cylinder 3 is provided outside the cylinder 2 . The cylinder device 1 is slidably fitted in a cylinder 2, and a piston 5 that divides the inside of the cylinder 2 into two chambers, a cylinder upper chamber 2A (first chamber) and a cylinder lower chamber 2B (second chamber). , a piston rod 6 having one end connected to the piston 5 and the other end (the upper side in FIG. 1) extending outside the cylinder 2; and a damping force generating mechanism 110 that communicates in two directions and controls the flow of the working fluid that accompanies the movement of the piston 5 to vary the damping force characteristics.
 シリンダ2と外筒3との間には、リザーバ4が形成される。ピストン5は、上端側がシリンダ上室2Aに開口する伸び側通路7(第1通路)と、下端側がシリンダ下室2Bに開口する縮み側通路8(第2通路)と、を有する。シリンダ2の下端部には、シリンダ下室2Bとリザーバ4とを区画するベースバルブ21が設けられる。ベースバルブ21には、シリンダ下室2Bとリザーバ4とを連通する通路22,23が設けられる。 A reservoir 4 is formed between the cylinder 2 and the outer cylinder 3 . The piston 5 has an extension side passage 7 (first passage) whose upper end side opens to the cylinder upper chamber 2A, and a contraction side passage 8 (second passage) whose lower end side opens to the cylinder lower chamber 2B. A base valve 21 that separates the cylinder lower chamber 2B and the reservoir 4 is provided at the lower end of the cylinder 2 . The base valve 21 is provided with passages 22 and 23 that communicate the cylinder lower chamber 2B and the reservoir 4 .
 通路22には、リザーバ4側からシリンダ下室2B側への油液(作動流体)の流通を許容する逆止弁24が設けられる。他方、通路23には、シリンダ下室2B側の油液の圧力が設定圧力に達することで開弁し、シリンダ下室2B側の圧力(油液)をリザーバ4側へ逃がすディスクバルブ25が設けられる。なお、作動流体として、シリンダ2内には油液が封入され、リザーバ4内には油液およびガスが封入される。また、外筒3の下端にはボトムキャップ50が接合される。 The passage 22 is provided with a check valve 24 that allows oil (working fluid) to flow from the reservoir 4 side to the cylinder lower chamber 2B side. On the other hand, the passage 23 is provided with a disk valve 25 that opens when the pressure of the hydraulic fluid on the side of the cylinder lower chamber 2B reaches the set pressure, and releases the pressure (fluid) on the side of the cylinder lower chamber 2B to the reservoir 4 side. be done. As the working fluid, the cylinder 2 is filled with oil, and the reservoir 4 is filled with oil and gas. A bottom cap 50 is joined to the lower end of the outer cylinder 3 .
 減衰力発生機構110は、バルブ機構部とソレノイド81(アクチュエータ)とからなる。バルブ機構部は、軸部32がピストン5の軸孔9に挿通されるピストンボルト31と、伸び側通路7の作動流体の流れを制御する伸び側減衰力発生機構111と、縮み側通路8の作動流体の流れを制御する縮み側減衰力発生機構171と、を有する。 The damping force generating mechanism 110 consists of a valve mechanism section and a solenoid 81 (actuator). The valve mechanism includes a piston bolt 31 having a shaft portion 32 inserted through the shaft hole 9 of the piston 5 , an extension side damping force generating mechanism 111 for controlling the flow of working fluid in the extension side passage 7 , and a compression side passage 8 . and a compression-side damping force generating mechanism 171 that controls the flow of the working fluid.
 ピストンボルト31には、共通通路51が形成される。共通通路51は、ピストンボルト31の軸部32と同軸の軸方向通路を有する。軸方向通路は、上端がピストンボルト31の頭部33に開口する軸方向通路52と、下端が閉塞された軸方向通路54と、軸方向通路52,54間に形成された軸方向通路53と、を有する。軸方向通路の内径は、軸方向通路53が最も大きく、軸方向通路52、軸方向通路54の順に小さくなる。 A common passage 51 is formed in the piston bolt 31 . The common passage 51 has an axial passage coaxial with the shaft portion 32 of the piston bolt 31 . The axial passages are composed of an axial passage 52 whose upper end opens into the head portion 33 of the piston bolt 31, an axial passage 54 whose lower end is closed, and an axial passage 53 formed between the axial passages 52 and 54. , have As for the inner diameter of the axial passages, the axial passage 53 has the largest inner diameter, and the axial passages 52 and 54 have smaller inner diameters in this order.
 図2に示されるように、伸び側減衰力発生機構111は、ピストン5の下端面に形成された環状のシート部114に離着座可能に当接される伸び側メインバルブ112を有する。シート部114は、伸び側通路7の開口よりも外側(外周側)に形成される。伸び側減衰力発生機構111は、ピストンボルト31の軸部32に取り付けられる有底円筒形の伸び側パイロットケース131(ケース部材)を有する。伸び側パイロットケース131は、底部132と、ピストン5側が開口する円筒部133と、を有する。 As shown in FIG. 2, the extension-side damping force generating mechanism 111 has an extension-side main valve 112 which abuts on an annular seat portion 114 formed on the lower end surface of the piston 5 so as to be separable and seatable. The seat portion 114 is formed outside (peripheral side) the opening of the extension-side passage 7 . The extension-side damping force generating mechanism 111 has a bottomed cylindrical extension-side pilot case 131 (case member) attached to the shaft portion 32 of the piston bolt 31 . The extension-side pilot case 131 has a bottom portion 132 and a cylindrical portion 133 opening on the piston 5 side.
 伸び側メインバルブ112には、弾性体からなる環状のパッキン115が焼き付けられる。パッキン115は、伸び側パイロットケース131の円筒部133の内周面134の開口側(図2における「上側」)に全周にわたって接触する。これにより、伸び側メインバルブ112と伸び側パイロットケース131との間には、環状の伸び側背圧室113が形成される。伸び側背圧室113内の圧力は、伸び側メインバルブ112に対して閉弁方向へ作用する。 An annular packing 115 made of an elastic material is baked on the extension side main valve 112 . Packing 115 contacts the opening side (“upper side” in FIG. 2 ) of inner peripheral surface 134 of cylindrical portion 133 of extension-side pilot case 131 over the entire circumference. As a result, an annular extension-side back pressure chamber 113 is formed between the extension-side main valve 112 and the extension-side pilot case 131 . The pressure in the extension-side back pressure chamber 113 acts on the extension-side main valve 112 in the valve-closing direction.
 伸び側減衰力発生機構111は、軸方向通路54から、ピストンボルト31の軸部32に形成された径方向通路56、及びピストンボルト31の軸部32とピストン5との間に形成された環状通路116を経由して伸び側通路7へ流れる作動流体の流れを許容する逆止弁117を有する。逆止弁117は、ピストン5の下端面に形成された環状のシート部118に離着座可能に当接される。シート部118は、伸び側通路7の開口よりも内側(内周側)に形成される。逆止弁117には、伸び側通路7と軸方向通路54とを連通するオリフィス119が形成される。 The extension-side damping force generating mechanism 111 extends from the axial passage 54 to a radial passage 56 formed in the shaft portion 32 of the piston bolt 31 and an annular passage formed between the shaft portion 32 of the piston bolt 31 and the piston 5. It has a check valve 117 that allows the working fluid to flow through the passage 116 to the extension side passage 7 . The check valve 117 abuts on an annular seat portion 118 formed on the lower end surface of the piston 5 so as to be separable and seatable. The seat portion 118 is formed inside (on the inner peripheral side) of the opening of the extension-side passage 7 . The check valve 117 is formed with an orifice 119 that communicates the extension side passage 7 and the axial passage 54 .
 伸び側背圧室113内には、環状のスプールからなる移動体151(移動部材)が設けられる。移動体151は、逆止弁153とディスクバルブ157(弾性体)とにより支持される。移動体151の外周部155(外周面163)は、伸び側パイロットケース131の円筒部133(内周面134)の底部132側(図2における「下側」)に摺動可能に嵌合される。移動体151(外周面163)と伸び側パイロットケース131(内周面134)との間はメタルシールによりシールされる。移動体151並びに逆止弁153及びディスクバルブ157は、伸び側背圧室113を、ピストン5側(図2における「上側」)の第1室121と、反ピストン5側(図2における「下側」)の第2室122と、に区画する。 A moving body 151 (moving member) consisting of an annular spool is provided in the extension-side back pressure chamber 113 . The moving body 151 is supported by a check valve 153 and a disk valve 157 (elastic body). The outer peripheral portion 155 (outer peripheral surface 163) of the moving body 151 is slidably fitted to the bottom portion 132 side (“lower side” in FIG. 2) of the cylindrical portion 133 (inner peripheral surface 134) of the extension side pilot case 131. be. A metal seal seals between the moving body 151 (outer peripheral surface 163) and the extension side pilot case 131 (inner peripheral surface 134). The moving body 151, the check valve 153 and the disk valve 157 divide the extension-side back pressure chamber 113 into a first chamber 121 on the side of the piston 5 ("upper side" in FIG. 2) and a first chamber 121 on the side opposite to the piston 5 ("lower side" in FIG. 2). side") and the second chamber 122.
 逆止弁153の内周部は、ピストンボルト31の軸部32の外周に設けられた環状のボス160とピストン5との間でクランプされる。ピストン5とボス160との間には、ピストン5側から順に、スペーサ161、伸び側メインバルブの内周部、複数枚のスペーサ162、及び逆止弁153の内周部が配置される。他方、ディスク状部材であるディスクバルブ157の内周部は、ボス160と伸び側パイロットケース131の内周部との間でクランプされる。ボス160と移動体151の内周面163(対向面)との間には、一定の隙間152が形成される。 The inner peripheral portion of the check valve 153 is clamped between the piston 5 and an annular boss 160 provided on the outer periphery of the shaft portion 32 of the piston bolt 31 . Between the piston 5 and the boss 160, a spacer 161, an inner peripheral portion of the extension side main valve, a plurality of spacers 162, and an inner peripheral portion of the check valve 153 are arranged in this order from the piston 5 side. On the other hand, the inner periphery of disc valve 157 , which is a disc-shaped member, is clamped between boss 160 and the inner periphery of extension-side pilot case 131 . A constant gap 152 is formed between the boss 160 and an inner peripheral surface 163 (facing surface) of the moving body 151 .
 逆止弁153は、移動体151のピストン5側(図2における「上側」)に形成された環状のシート部154に離着座可能に当接される。逆止弁153は、伸び側背圧室113の第1室121内の圧力(パイロット圧)を保持するとともに、軸方向通路54から、ピストンボルト31の軸部32に形成された径方向通路57、ピストンボルト31の軸部32に形成された二面幅部35(バイパス通路)、及び逆止弁153に形成されたオリフィス156を経由して伸び側背圧室113の第1室121へ流れる作動流体の流れを許容する。伸び側背圧室113の第1室121内の圧力は、移動体151のシート部154よりも外周側の部分(面)に作用する。移動体151の外周部155のピストン5側は、伸び側メインバルブ112のパッキン115との干渉を回避するため、シート部154が形成された内周側部分よりも低くなっている。 The check valve 153 abuts on an annular seat portion 154 formed on the side of the piston 5 of the moving body 151 (the "upper side" in FIG. 2) so that it can be seated and removed. The check valve 153 retains the pressure (pilot pressure) in the first chamber 121 of the extension-side back pressure chamber 113 , and the pressure from the axial passage 54 to the radial passage 57 formed in the shaft portion 32 of the piston bolt 31 . , the width across flat portion 35 (bypass passage) formed in the shaft portion 32 of the piston bolt 31, and the orifice 156 formed in the check valve 153 to the first chamber 121 of the extension side back pressure chamber 113. Allow working fluid flow. The pressure in the first chamber 121 of the extension-side back pressure chamber 113 acts on the portion (surface) of the moving body 151 on the outer peripheral side of the seat portion 154 . The piston 5 side of the outer peripheral portion 155 of the moving body 151 is lower than the inner peripheral portion where the seat portion 154 is formed in order to avoid interference with the packing 115 of the extension side main valve 112 .
 ディスクバルブ157は、移動体151の外周部155近傍の反ピストン5側(図2における「下側」)に形成された環状のシート部158に離着座可能に当接される。ディスクバルブ157は、外径が異なるディスクを複数枚(本実施形態では「4枚」、外径が同一のディスクを1枚以上積層することでも可)積層することにより構成される。伸び側背圧室113の第2室122内の圧力は、移動体151のシート部158よりも外周側の部分(面)に作用する。移動体151のシート部158の内側(内周側)には、凹部165が形成される。凹部165とディスクバルブ157との間には、一定の隙間166が形成される。 The disk valve 157 abuts on an annular seat portion 158 formed on the side opposite to the piston 5 (the "lower side" in FIG. 2) near the outer peripheral portion 155 of the moving body 151 so that it can be seated and removed. The disc valve 157 is configured by stacking a plurality of discs with different outer diameters ("four" in this embodiment, one or more discs with the same outer diameter may be stacked). The pressure in the second chamber 122 of the extension-side back pressure chamber 113 acts on the portion (surface) of the moving body 151 on the outer peripheral side of the seat portion 158 . A concave portion 165 is formed inside (inner peripheral side) of the seat portion 158 of the moving body 151 . A constant gap 166 is formed between the recess 165 and the disc valve 157 .
 伸び側背圧室113の第2室122は、伸び側パイロットケース131の底部132に形成された複数本(図2に「2本」のみ表示)の通路137(第1貫通孔)によりシリンダ下室2Bに連通される。各通路137は、伸び側パイロットケース131の底部132の外周部135のピストン5側に形成された環状のシート面138に開口される。なお、シート面138よりも内周側には、底部132の内周部との間に凹部139が形成される。 The second chamber 122 of the extension-side back pressure chamber 113 is provided below the cylinder by a plurality of passages 137 (first through holes) formed in the bottom portion 132 of the extension-side pilot case 131 (only "two" are shown in FIG. 2). It communicates with chamber 2B. Each passage 137 opens into an annular seat surface 138 formed on the piston 5 side of the outer peripheral portion 135 of the bottom portion 132 of the extension-side pilot case 131 . A concave portion 139 is formed between the seat surface 138 and the inner peripheral portion of the bottom portion 132 on the inner peripheral side.
 一方、移動体151の外周縁部155には、伸び側パイロットケース131のシート面138側(図2における「下側」)へ突出する環状の凸部167が形成される。凸部167は、ディスクバルブ157の弾性力に抗して移動体151が反ピストン5側へ移動したときに、伸び側パイロットケース131のシート面138に当接することで、各通路137のピストン5側の開口を閉塞し、伸び側背圧室113の第2室122とシリンダ下室2Bとの連通を遮断する。なお、移動体151のシート部158には、伸び側背圧室113の第2室122と、隙間166及び隙間152、通路168、及び第1室121を経由して逆止弁153に形成されたオリフィス156とを連通するオリフィス159が形成される。また、移動体151の凸部167の内周側には、ディスクバルブ157が配置される。 On the other hand, an annular protrusion 167 is formed on the outer peripheral edge 155 of the moving body 151 and protrudes toward the seat surface 138 of the extension-side pilot case 131 ("lower side" in FIG. 2). The protrusion 167 contacts the seat surface 138 of the extension side pilot case 131 when the moving body 151 moves toward the anti-piston 5 side against the elastic force of the disc valve 157 , thereby By closing the opening on the side, communication between the second chamber 122 of the extension side back pressure chamber 113 and the cylinder lower chamber 2B is cut off. In the seat portion 158 of the moving body 151, the check valve 153 is formed via the second chamber 122 of the extension-side back pressure chamber 113, the gaps 166 and 152, the passage 168, and the first chamber 121. An orifice 159 communicating with the orifice 156 is formed. A disk valve 157 is arranged on the inner peripheral side of the convex portion 167 of the moving body 151 .
 伸び側パイロットケース131の反ピストン5側には、ディスクバルブ123(第2減衰力発生機構)が設けられる。ディスクバルブ123の外周縁部は、伸び側パイロットケース131の外周部135の反ピストン5側(図2における「下側」)に形成された環状のシート部124に離着座可能に着座される。シート部124は、通路137の反ピストン5側の開口近傍に配置される。ディスクバルブ123の内周部は、伸び側パイロットケース131の内周部とピストンボルト31の軸部32に螺合されたナット17との間でクランプされる。伸び側パイロットケース131とナット17との間には、ピストン5側(図2における「上側」)から順に、ディスクバルブ123、スペーサ19、及びワッシャ18が配置される。 A disk valve 123 (second damping force generating mechanism) is provided on the side of the extension-side pilot case 131 opposite to the piston 5 . The outer peripheral edge of the disc valve 123 is removably seated on an annular seat 124 formed on the outer peripheral portion 135 of the expansion pilot case 131 on the opposite side of the piston 5 (“lower side” in FIG. 2). The seat portion 124 is arranged near the opening of the passage 137 on the side opposite to the piston 5 . The inner peripheral portion of the disk valve 123 is clamped between the inner peripheral portion of the extension side pilot case 131 and the nut 17 screwed onto the shaft portion 32 of the piston bolt 31 . Between the extension side pilot case 131 and the nut 17, a disk valve 123, a spacer 19, and a washer 18 are arranged in order from the piston 5 side ("upper side" in FIG. 2).
 そして、伸び側背圧室113の第1室121内の圧力が一定の圧力に達すると、ディスクバルブ157の弾性力に抗して移動体151が反ピストン5側へ移動し、逆止弁153がシート部154から離座される。このとき、伸び側背圧室113の第1室121内の作動流体(圧力)は、逆止弁153に形成されたオリフィス156、ピストンボルト31の軸部32に形成された二面幅部35、伸び側パイロットケース131の内周部に形成された複数個(図2に「2個」のみ表示)の切欠き140、及び伸び側パイロットケース131の内周部とシート部124との間に形成された環状の凹部141を経由し、ディスクバルブ123を開弁させてシリンダ下室2Bへ流れる(逃がされる)。ディスクバルブ123(第2減衰力発生機構)は、伸び側背圧室113からシリンダ下室2Bへの作動流体の流れに対して抵抗力を付与する。 Then, when the pressure in the first chamber 121 of the extension-side back pressure chamber 113 reaches a certain pressure, the moving body 151 moves against the elastic force of the disc valve 157 toward the side opposite to the piston 5, and the check valve 153 is released from the seat portion 154 . At this time, the working fluid (pressure) in the first chamber 121 of the extension-side back pressure chamber 113 flows through the orifice 156 formed in the check valve 153 and the width across flat portion 35 formed in the shaft portion 32 of the piston bolt 31. , a plurality of notches 140 (only "two" are shown in FIG. 2) formed in the inner peripheral portion of the extension-side pilot case 131, and between the inner peripheral portion of the extension-side pilot case 131 and the seat portion 124. Via the formed annular recess 141, the disc valve 123 is opened to flow (release) to the cylinder lower chamber 2B. The disc valve 123 (second damping force generating mechanism) provides resistance to the flow of working fluid from the extension-side back pressure chamber 113 to the cylinder lower chamber 2B.
 一方、縮み行程時には、シリンダ下室2Bの作動流体(圧力)を、伸び側パイロットケース131に形成された通路137(背圧導入通路)、移動体151のシート部158に形成されたオリフィス159、及び移動体151を軸方向(図2における「上下方向」)へ貫通する通路168(第2貫通孔)、及び隙間152を経由し、逆止弁153を開弁させて伸び側背圧室113の第1室121に導入することにより、シリンダ下室2Bの圧力で伸び側メインバルブ112が開弁されることを抑止する。 On the other hand, during the compression stroke, the working fluid (pressure) in the cylinder lower chamber 2B is transferred through the passage 137 (back pressure introduction passage) formed in the extension side pilot case 131, the orifice 159 formed in the seat portion 158 of the moving body 151, and a passage 168 (second through hole) that penetrates the moving body 151 in the axial direction (“vertical direction” in FIG. 2), and the gap 152, the check valve 153 is opened, and the extension side back pressure chamber 113 is introduced into the first chamber 121 of the cylinder lower chamber 2B, the expansion-side main valve 112 is prevented from being opened by the pressure in the cylinder lower chamber 2B.
 図3に示されるように、縮み側減衰力発生機構171は、ピストン5の上端面に形成された環状のシート部174に離着座可能に当接される縮み側メインバルブ172を有する。シート部174は、縮み側通路8の開口よりも外側に形成される。縮み側減衰力発生機構171は、ピストンボルト31の軸部32に取り付けられる有底円筒形の縮み側パイロットケース191を有する。縮み側パイロットケース191は、底部192と、ピストン5側(図3における「下側」)が開口する円筒部193と、を有する。 As shown in FIG. 3, the compression side damping force generating mechanism 171 has a compression side main valve 172 which abuts on an annular seat portion 174 formed on the upper end surface of the piston 5 so as to be separable and seatable. The seat portion 174 is formed outside the opening of the contraction-side passage 8 . The compression side damping force generating mechanism 171 has a bottomed cylindrical compression side pilot case 191 attached to the shaft portion 32 of the piston bolt 31 . The compression side pilot case 191 has a bottom portion 192 and a cylindrical portion 193 that opens on the side of the piston 5 (“lower side” in FIG. 3).
 縮み側メインバルブ172には、弾性体からなる環状のパッキン175が焼き付けられる。パッキン175は、縮み側パイロットケース191の円筒部193の内周面194に全周にわたって接触する。これにより、縮み側メインバルブ172と縮み側パイロットケース191との間には、環状の縮み側背圧室173が形成される。縮み側背圧室173内の圧力は、縮み側メインバルブ172に対して閉弁方向へ作用する。 An annular packing 175 made of an elastic material is baked on the compression side main valve 172 . The packing 175 contacts the inner peripheral surface 194 of the cylindrical portion 193 of the contraction-side pilot case 191 over the entire circumference. Thereby, an annular compression side back pressure chamber 173 is formed between the compression side main valve 172 and the compression side pilot case 191 . The pressure in the compression side back pressure chamber 173 acts on the compression side main valve 172 in the valve closing direction.
 縮み側減衰力発生機構171は、軸方向通路52から、ピストンボルト31の軸部32に形成された径方向通路55、ピストンボルト31の軸部32に形成された二面幅部36、ピストンボルト31の軸部32とピストン5との間に形成された環状通路176を経由して縮み側通路8へ流れる作動流体の流れを許容する逆止弁177を有する。逆止弁177は、ピストン5の上端面に形成された環状のシート部178に離着座可能に当接される。シート部178は、縮み側通路8の開口よりも内側(内周側)に形成される。逆止弁177には、縮み側通路8と軸方向通路52とを連通するオリフィス179が形成される。 The compression-side damping force generating mechanism 171 extends from the axial passage 52 to the radial passage 55 formed in the shaft portion 32 of the piston bolt 31, the width across flat portion 36 formed in the shaft portion 32 of the piston bolt 31, the piston bolt It has a check valve 177 that allows the working fluid to flow into the contraction side passage 8 via an annular passage 176 formed between the shaft portion 32 of 31 and the piston 5 . The check valve 177 abuts on an annular seat portion 178 formed on the upper end surface of the piston 5 so as to be separable and seatable. The seat portion 178 is formed inside (on the inner peripheral side) of the opening of the contraction-side passage 8 . The check valve 177 is formed with an orifice 179 that communicates the contraction side passage 8 and the axial passage 52 .
 縮み側パイロットケース191のピストン5側(図3における「下側」)には、逆止弁180が設けられる。逆止弁180の外周縁部は、縮み側パイロットケース191に形成された環状のシート部181に離着座可能に当接される。逆止弁180は、シリンダ下室2Bから、逆止弁177に形成されたオリフィス179、ピストンボルト31の軸部32に形成された二面幅部36、及び逆止弁180に形成されたオリフィス182を経由して縮み側背圧室173へ流れる作動流体の流れを許容する。なお、縮み側パイロットケース191の内周部とピストン5の内周部との間には、縮み側パイロットケース191側から順に、逆止弁180、スペーサ183、リテーナ184、スペーサ185、縮み側メインバルブ172、スペーサ186、及び逆止弁177が配置される。 A check valve 180 is provided on the piston 5 side of the compression side pilot case 191 ("lower side" in FIG. 3). An outer peripheral edge of the check valve 180 abuts on an annular seat portion 181 formed in the compression side pilot case 191 so as to be separable and seatable. The check valve 180 extends from the cylinder lower chamber 2B through the orifice 179 formed in the check valve 177, the width across flat portion 36 formed in the shaft portion 32 of the piston bolt 31, and the orifice formed in the check valve 180. 182 to allow the working fluid to flow into the compression side back pressure chamber 173 . Between the inner circumference of the compression side pilot case 191 and the inner circumference of the piston 5, check valve 180, spacer 183, retainer 184, spacer 185, compression side main A valve 172, a spacer 186 and a check valve 177 are arranged.
 縮み側パイロットケース191の反ピストン5側(図3における「上側」)には、ディスクバルブ187(リリーフ弁)が設けられる。ディスクバルブ187は、縮み側背圧室173内の圧力が所定圧力に達したときに開弁し、縮み側背圧室173内の作動流体(圧力)をシリンダ上室2Aへ逃がすリリーフ弁である。 A disc valve 187 (relief valve) is provided on the side of the compression side pilot case 191 opposite to the piston 5 ("upper side" in FIG. 3). The disk valve 187 is a relief valve that opens when the pressure in the compression side back pressure chamber 173 reaches a predetermined pressure, and releases the working fluid (pressure) in the compression side back pressure chamber 173 to the cylinder upper chamber 2A. .
 図4、図5を参照すると、ディスクバルブ187と縮み側パイロットケース191との間には、縮み側パイロットケース191の軸孔195の周囲に等間隔で配置された扇形のシート部196により区画された複数個(本実施形態では「5個」)の受圧室197が形成される。各シート部196の中央には、ディスクバルブ187に当接される座部198が形成される。各受圧室197は、縮み側パイロットケース191の内周部に形成された切欠き199、ピストンボルト31の軸部32に形成された二面幅部36、逆止弁180に形成されたオリフィス182、逆止弁180を経由して縮み側背圧室173に連通される。 4 and 5, the disc valve 187 and the compression side pilot case 191 are partitioned by fan-shaped seats 196 arranged around the shaft hole 195 of the compression side pilot case 191 at regular intervals. A plurality of (“five” in this embodiment) pressure receiving chambers 197 are formed. A seat portion 198 is formed in the center of each seat portion 196 to contact the disc valve 187 . Each pressure receiving chamber 197 includes a notch 199 formed in the inner peripheral portion of the compression side pilot case 191, a width across flat portion 36 formed in the shaft portion 32 of the piston bolt 31, and an orifice 182 formed in the check valve 180. , to the compression side back pressure chamber 173 via the check valve 180 .
 一対の隣接するシート部196間には、周方向へ延びるシート部200が形成される。ディスクバルブ187と縮み側パイロットケース191との間には、シート部200及び一対のシート部196により区画された受圧室201が形成される。受圧室201は、シート部200に形成された切欠き202によりシリンダ上室2Aに連通される。縮み側パイロットケース191には、底部192を軸方向(図5における「上下方向」)へ貫通する通路203が形成される。通路203は、上端が受圧室201に開口され、下端がシート部181の内側(内周側)に形成された環状の凹部204に開口される。なお、切欠き202の流路面積を可変することで、伸び行程時に、シリンダ上室2Aから縮み側背圧室173へ導入する作動流体の流量を調整することができる。 A seat portion 200 extending in the circumferential direction is formed between a pair of adjacent seat portions 196 . A pressure receiving chamber 201 defined by a seat portion 200 and a pair of seat portions 196 is formed between the disc valve 187 and the compression side pilot case 191 . The pressure receiving chamber 201 communicates with the cylinder upper chamber 2A through a notch 202 formed in the seat portion 200 . A passage 203 is formed in the contraction-side pilot case 191 so as to pass through the bottom portion 192 in the axial direction (“vertical direction” in FIG. 5). The passage 203 has an upper end opened to the pressure receiving chamber 201 and a lower end opened to an annular recess 204 formed inside (inner peripheral side) of the seat portion 181 . By varying the flow path area of the notch 202, it is possible to adjust the flow rate of the working fluid introduced from the cylinder upper chamber 2A to the compression side back pressure chamber 173 during the extension stroke.
 図3に示されるように、共通通路51内の作動流体の流れは、パイロットバルブ61により制御される。パイロットバルブ61は、共通通路51に摺動可能に設けられたバルブスプール62と、軸方向通路54の開口周縁に形成されたシート部63と、を有する。バルブスプール62は、中実軸からなり、軸方向通路52に挿入される摺動部64と、シート部63に離着座可能に当接する弁体65と、を有する。 As shown in FIG. 3, the flow of working fluid in common passage 51 is controlled by pilot valve 61 . The pilot valve 61 has a valve spool 62 slidably provided in the common passage 51 and a seat portion 63 formed around the opening peripheral edge of the axial passage 54 . The valve spool 62 is formed of a solid shaft and has a sliding portion 64 inserted into the axial passage 52 and a valve body 65 contacting the seat portion 63 in a separable manner.
 バルブスプール62の上端には、頭部67が形成される。頭部67の下端部には、外フランジ形のスプリング受68が形成される。スプリング受68には、弁体65を開弁方向へ付勢するスプリングディスク69の内周部が接続される。後述するソレノイド81のコイル82に対する制御電流が0Aのとき(フェイル時)、バルブスプール62の頭部67は、スプリングディスク69の付勢力(ばね力)により、後述するソレノイド81の作動ロッド83の下端に当接される(押し付けられる)。 A head 67 is formed at the upper end of the valve spool 62 . An outer flange-shaped spring receiver 68 is formed at the lower end of the head 67 . The spring receiver 68 is connected to the inner peripheral portion of a spring disk 69 that biases the valve body 65 in the valve opening direction. When the control current to the coil 82 of the solenoid 81 described later is 0A (during failure), the head 67 of the valve spool 62 is moved by the biasing force (spring force) of the spring disk 69 to the lower end of the operating rod 83 of the solenoid 81 described later. is abutted (pressed) against.
 ピストンボルト31の頭部33の反ピストン5側(図3における「上側」)の、バルブスプール62の上端部外周には、環状の第1室37が形成される。ピストンボルト31の頭部33の外周には、上端側が開口する有底円筒形のキャップ38が取り付けられる。キャップ38とピストンボルト31の頭部33との間は、環状のシール部材39によりシールされる。キャップ38とピストンボルト31の頭部33との間には、環状の第2室40が形成される。キャップ38の、ピストンボルト31の軸部32を挿通させる軸孔41は、軸部32に形成された二面幅部36に連通される。 An annular first chamber 37 is formed on the outer periphery of the upper end of the valve spool 62 on the side opposite to the piston 5 ("upper side" in FIG. 3) of the head 33 of the piston bolt 31 . A bottomed cylindrical cap 38 with an open upper end is attached to the outer periphery of the head 33 of the piston bolt 31 . An annular seal member 39 seals between the cap 38 and the head 33 of the piston bolt 31 . An annular second chamber 40 is formed between the cap 38 and the head 33 of the piston bolt 31 . A shaft hole 41 of the cap 38 through which the shaft portion 32 of the piston bolt 31 is inserted communicates with the width across flat portion 36 formed on the shaft portion 32 .
 ピストンボルト31の頭部33とキャップ38との間には、頭部33側から順に、ディスクバルブ42、スペーサ43、及びリテーナ44が設けられる。ディスクバルブ42、スペーサ43、及びリテーナ44は、第2室40内に設けられる。ディスクバルブ42は、頭部33に形成された複数本(図3では「2本」のみ表示)の通路45を経由する第1室37から第2室40への作動流体の流れを許容する逆止弁である。 Between the head 33 of the piston bolt 31 and the cap 38, a disc valve 42, a spacer 43, and a retainer 44 are provided in this order from the head 33 side. A disc valve 42 , a spacer 43 and a retainer 44 are provided within the second chamber 40 . The disc valve 42 is a reverse valve that allows the working fluid to flow from the first chamber 37 to the second chamber 40 via a plurality of passages 45 (only "two" are shown in FIG. 3) formed in the head 33 . It is a stop valve.
 ディスクバルブ42の外周縁部は、ピストンボルト31の頭部33に形成された環状のシート部46に離着座可能に当接する。シート部46は、通路45の開口よりも外側(外周側)に設けられる。リテーナ44の内周縁部には、第2室40を、ピストンボルト31の軸部32に形成された二面幅部36及びキャップ38の軸孔41に連通させる複数個(図3では「2個」のみ表示)の切欠き47が形成される。キャップ38とディスクバルブ187との間には、リテーナ48が設けられる。 The outer peripheral edge of the disk valve 42 abuts on an annular seat portion 46 formed on the head portion 33 of the piston bolt 31 so as to be separable and seatable. The seat portion 46 is provided outside (peripheral side) of the opening of the passage 45 . The inner peripheral edge of the retainer 44 is provided with a plurality of pieces (“two pieces in FIG. ) are formed. A retainer 48 is provided between the cap 38 and the disc valve 187 .
 ピストンボルト31の頭部33に形成された第1室37には、フェイルセーフバルブ71が構成される。フェイルセーフバルブ71は、バルブスプール62の頭部67のスプリング受68(弁体)が離着座可能に当接するシート部(本実施形態では「スプリングディスク69の内周部」)を有する。スプリングディスク69の外周縁部は、ピストンボルト31の頭部33と、ソレノイド81のコア84との間で保持される。 A fail-safe valve 71 is configured in the first chamber 37 formed in the head 33 of the piston bolt 31 . The fail-safe valve 71 has a seat portion (in the present embodiment, the “inner peripheral portion of the spring disk 69”) against which the spring receiver 68 (valve body) of the head portion 67 of the valve spool 62 abuts in a separable manner. The outer peripheral edge of the spring disc 69 is held between the head 33 of the piston bolt 31 and the core 84 of the solenoid 81 .
 バルブスプール62の弁体65には、二面幅からなる切欠き66(図3に1つのみ表示)が形成される。そして、コイル82に対する制御電流が0Aのとき(フェイル時)、バルブスプール62がパイロットバルブ61の開弁方向(図3における上方向)へ移動し、弁体65が軸方向通路52に嵌合される。これにより、弁体65と軸方向通路52との間には、軸方向通路52,53間を連通する一対のオリフィス72(図3に1つのみ表示)が形成される。 A notch 66 having a width across flats (only one is shown in FIG. 3) is formed in the valve body 65 of the valve spool 62 . When the control current to the coil 82 is 0 A (failure), the valve spool 62 moves in the valve opening direction of the pilot valve 61 (upward in FIG. 3), and the valve body 65 is fitted into the axial passage 52. be. Thereby, a pair of orifices 72 (only one is shown in FIG. 3) communicating between the axial passages 52 and 53 is formed between the valve body 65 and the axial passage 52 .
 図1、図3を参照すると、コイル82への通電時には、バルブスプール62の弁体65がシート部63に着座し、パイロットバルブ61が閉弁される。このパイロットバルブ61の閉弁状態では、バルブスプール62は、弁体65が、軸方向通路54の開口面積と同一面積の円形の受圧面により軸方向通路54側の圧力を受け、他方、摺動部64が、摺動部64の断面積から弁体65の首部(符号省略)の断面積を差し引いた面積と同一面積の環状の受圧面により軸方向通路52側の圧力を受ける。ここで、パイロットバルブ61の開弁圧力は、コイル82への通電を制御することで調節することができる。コイル82への通電の電流値が小さいソフトモード時には、スプリングディスク69の付勢力とプランジャ86が発生する推力とが平衡し、弁体65がシート部63から一定の距離だけ離間した状態となる。 1 and 3, when the coil 82 is energized, the valve body 65 of the valve spool 62 is seated on the seat portion 63, and the pilot valve 61 is closed. In the closed state of the pilot valve 61, the valve spool 62 receives the pressure on the side of the axial passage 54 from the circular pressure-receiving surface having the same area as the opening area of the axial passage 54. The portion 64 receives the pressure on the side of the axial passage 52 by an annular pressure receiving surface having the same area as the cross-sectional area of the sliding portion 64 minus the cross-sectional area of the neck portion (reference numeral omitted) of the valve body 65 . Here, the opening pressure of the pilot valve 61 can be adjusted by controlling the energization of the coil 82 . In the soft mode in which the current value for energizing the coil 82 is small, the biasing force of the spring disk 69 and the thrust generated by the plunger 86 are balanced, and the valve body 65 is separated from the seat portion 63 by a certain distance.
 図1に示されるように、ソレノイド81は、ソレノイド機構部、ヨーク87、及びコイル82(アーマチュアコイル)を有する。ソレノイド機構部は、作動ロッド83と、作動ロッド83の外周に固定されたプランジャ86(アーマチュア)と、上下に分割されたコア85,84と、を有する。コア85,84は、ホルダ88により同軸に且つ上下方向へ一定間隔をあけて保持される。作動ロッド83は、コア蓋体89に取り付けられたブッシュ90,91及びコア84に取り付けられたブッシュ91により、軸方向(図1における「上下方向」)へ案内される。作動ロッド83には、ロッド内通路92が形成される。 As shown in FIG. 1, the solenoid 81 has a solenoid mechanism, a yoke 87, and a coil 82 (armature coil). The solenoid mechanism section has an operating rod 83, a plunger 86 (armature) fixed to the outer periphery of the operating rod 83, and vertically divided cores 85 and 84. The cores 85 and 84 are held coaxially by a holder 88 with a constant vertical spacing. The operating rod 83 is guided in the axial direction (“vertical direction” in FIG. 1) by bushes 90 and 91 attached to the core lid 89 and a bush 91 attached to the core 84 . An intra-rod passage 92 is formed in the operating rod 83 .
 有底円筒形のヨーク87の下端部とコア84との間は、シール部材93によりシールされる。ピストンボルト31の円筒部34とコア84の下端部との間には、環状通路94が形成される。環状通路94は、ピストンボルト31の円筒部34に設けられた複数本(図1では「2本」のみ表示)の通路95によりシリンダ上室2Aに連通される。ソレノイド81のコア84の内側(バルブスプール62の頭部67の外周)には、スプール背圧室96が形成される。スプール背圧室96は、作動ロッド83に形成された切欠き(符号省略)及びロッド内通路97を経由して、コア蓋体89の内側に形成されたロッド背圧室97に連通される。なお、ヨーク87の上端部には、ピストンロッド6の下端部が連結される。即ち、ピストンロッド6の下端は、ヨーク87及びピストンボルト31を介してピストン5に連結される。 A seal member 93 seals between the lower end of the bottomed cylindrical yoke 87 and the core 84 . An annular passage 94 is formed between the cylindrical portion 34 of the piston bolt 31 and the lower end portion of the core 84 . The annular passage 94 communicates with the cylinder upper chamber 2A through a plurality of passages 95 (only “two” are shown in FIG. 1) provided in the cylindrical portion 34 of the piston bolt 31 . A spool back pressure chamber 96 is formed inside the core 84 of the solenoid 81 (outer periphery of the head 67 of the valve spool 62). The spool back pressure chamber 96 communicates with a rod back pressure chamber 97 formed inside the core lid 89 via a notch (reference numeral omitted) formed in the operating rod 83 and an intra-rod passage 97 . The upper end of the yoke 87 is connected to the lower end of the piston rod 6 . That is, the lower end of piston rod 6 is connected to piston 5 via yoke 87 and piston bolt 31 .
 図1に示されるように、ピストンロッド6の中空部10(軸孔)には、ケーブル101が挿通される。ケーブル101は、ピストンロッド6の中空部10の下端側開口から突出させた電線102,103が、ソレノイド81のターミナル104,105に接続される。ここで、ターミナル104はコイル82の正極端子に接続され、ターミナル105はコイル82の負極端子に接続される。また、ケーブル101は、ピストンロッド6の中空部10の上端側開口から突出させた電線102,103が、車両側(電力供給装置側)のコネクタ(図示省略)に接続される。 As shown in FIG. 1, a cable 101 is inserted through the hollow portion 10 (axial hole) of the piston rod 6 . A cable 101 is connected to terminals 104 and 105 of a solenoid 81 by electric wires 102 and 103 projecting from the lower end side opening of the hollow portion 10 of the piston rod 6 . Here, terminal 104 is connected to the positive terminal of coil 82 and terminal 105 is connected to the negative terminal of coil 82 . In the cable 101, electric wires 102 and 103 projecting from the upper end opening of the hollow portion 10 of the piston rod 6 are connected to a connector (not shown) on the vehicle side (power supply device side).
 ここで、減衰力発生機構110が開弁制御機構として機能するとき、伸び行程におけるピストン5の移動速度(以下「ピストン速度」と称する)の低速域には、シリンダ上室2Aの作動流体が、伸び側通路7、逆止弁117に形成されたオリフィス119、環状通路116、径方向通路56、軸方向通路54、径方向通路57、二面幅部35、及びオリフィス156を経由し、伸び側背圧室113の第1室121へ導入される。 Here, when the damping force generating mechanism 110 functions as a valve opening control mechanism, the working fluid in the cylinder upper chamber 2A is in the low moving speed range of the piston 5 in the extension stroke (hereinafter referred to as "piston speed"). Through the extension side passage 7, the orifice 119 formed in the check valve 117, the annular passage 116, the radial passage 56, the axial passage 54, the radial passage 57, the width across flat portion 35, and the orifice 156, the extension side It is introduced into the first chamber 121 of the back pressure chamber 113 .
 そして、伸び行程時には、シリンダ上室2Aの作動流体が、切欠き202、受圧室201、通路203、及び凹部204を経由し、逆止弁180を開弁させて縮み側背圧室173へ導入される。これにより、伸び行程時に、縮み側メインバルブ172がシリンダ上室2Aの圧力により開弁することが抑止される。 During the extension stroke, the working fluid in the cylinder upper chamber 2A passes through the notch 202, the pressure receiving chamber 201, the passage 203, and the recess 204, opens the check valve 180, and is introduced into the compression side back pressure chamber 173. be done. This prevents the compression side main valve 172 from opening due to the pressure in the cylinder upper chamber 2A during the extension stroke.
 伸び行程時に縮み側背圧室173に導入された作動流体は、オリフィス182、二面幅部36、逆止弁177、及び縮み側通路8を経由し、シリンダ下室2Bへ流れるので、伸び側メインバルブ112の開弁前、即ち、ピストン速度の低速域には、オリフィス182によるオリフィス特性及び逆止弁177によるバルブ特性の減衰力が得られる。 The working fluid introduced into the compression side back pressure chamber 173 during the extension stroke passes through the orifice 182, the width across flat portion 36, the check valve 177, and the compression side passage 8, and flows into the cylinder lower chamber 2B. Before the main valve 112 is opened, that is, in the low piston speed region, the orifice characteristic of the orifice 182 and the valve characteristic damping force of the check valve 177 are obtained.
 縮み行程時には、シリンダ下室2Bの作動流体が、縮み側通路8、オリフィス179、二面幅部36、及びオリフィス182を経由し、縮み側背圧室173へ導入される。そして、縮み行程時には、シリンダ下室2B作動流体が、伸び側パイロットケース131に形成された通路137、第2室122、シート部158に形成されたオリフィス159、及び移動体151に形成された通路168を経由し、逆止弁153を開弁させて伸び側背圧室113へ導入される。これにより、縮み行程時に、伸び側メインバルブ112がシリンダ下室2Bの圧力により開弁することが抑止される。 During the compression stroke, the working fluid in the cylinder lower chamber 2B is introduced into the compression side back pressure chamber 173 via the compression side passage 8, the orifice 179, the width across flat portion 36, and the orifice 182. During the compression stroke, the working fluid in the cylinder lower chamber 2B flows through the passage 137 formed in the extension-side pilot case 131, the second chamber 122, the orifice 159 formed in the seat portion 158, and the passage formed in the moving body 151. 168 , the check valve 153 is opened and the fuel is introduced into the extension-side back pressure chamber 113 . This prevents the extension side main valve 112 from opening due to the pressure in the cylinder lower chamber 2B during the compression stroke.
 一方、第1実施形態における減衰力発生機構110は、ピストン速度が同じであっても、ピストン周波数に応じて減衰力を可変させる減衰力可変機構として機能する。ピストン周波数が高いとき、ピストン5の振幅は小さい。このようなピストン周波数が高いときの伸び行程時には、ディスクバルブ157(弾性体)の撓み量が小さい。 On the other hand, the damping force generating mechanism 110 in the first embodiment functions as a variable damping force mechanism that varies the damping force according to the piston frequency even if the piston speed is the same. The amplitude of the piston 5 is small when the piston frequency is high. During the extension stroke when the piston frequency is high, the amount of deflection of the disc valve 157 (elastic body) is small.
 このとき、伸び側背圧室113の第1室121に作動流体が導入されると、移動体151が反ピストン5側へ移動してシート部154が逆止弁153から離座するが、移動体151の外周部155の凸部167は伸び側パイロットケース131のシート面138に着座しないため、伸び側背圧室113の第2室122はシリンダ下室2Bと連通される。 At this time, when the working fluid is introduced into the first chamber 121 of the extension-side back pressure chamber 113, the moving body 151 moves toward the counter-piston 5 side and the seat portion 154 leaves the check valve 153. Since the convex portion 167 of the outer peripheral portion 155 of the body 151 is not seated on the seat surface 138 of the extension side pilot case 131, the second chamber 122 of the extension side back pressure chamber 113 communicates with the cylinder lower chamber 2B.
 これにより、第2室122の作動流体がシリンダ下室2Bへ流れることで、第1室121の容積が増えるため、第1室121の圧力上昇が抑制される。その結果、伸び側メインバルブ112が開弁し易くなり、伸び側減衰力発生機構111(第1減衰力発生機構)の減衰力特性がソフトになる。このとき、ハード特性のディスクバルブ123(第2減衰力発生機構)は開弁しない。 As a result, the working fluid in the second chamber 122 flows into the cylinder lower chamber 2B, and the volume of the first chamber 121 increases, so the pressure rise in the first chamber 121 is suppressed. As a result, the extension side main valve 112 is easily opened, and the damping force characteristic of the extension side damping force generating mechanism 111 (first damping force generating mechanism) becomes soft. At this time, the hard characteristic disk valve 123 (second damping force generating mechanism) does not open.
 そして、ピストン周波数が低いとき、ピストン5の振幅は大きい。このようなピストン周波数が低いときの伸び行程時には、ディスクバルブ157(弾性体)の撓み量が大きい。このとき、伸び側背圧室113の第1室121に作動流体が導入されると、移動体151が反ピストン5側へ移動し、移動体151の外周部155の凸部167が伸び側パイロットケース131のシート面138に着座する。これにより、伸び側背圧室113の第2室122とシリンダ下室2Bとの連通が遮断され、第1室121の圧力が上昇するので、伸び側減衰力発生機構111(第1減衰力発生機構)の伸び側メインバルブ112の開弁圧力が高くなる。 And when the piston frequency is low, the amplitude of the piston 5 is large. During the extension stroke when the piston frequency is low, the amount of deflection of the disc valve 157 (elastic body) is large. At this time, when the working fluid is introduced into the first chamber 121 of the extension-side back pressure chamber 113, the moving body 151 moves toward the anti-piston 5 side, and the convex portion 167 of the outer peripheral portion 155 of the moving body 151 moves toward the extension-side pilot. The user sits on the seat surface 138 of the case 131 . As a result, the communication between the second chamber 122 of the extension side back pressure chamber 113 and the cylinder lower chamber 2B is blocked, and the pressure in the first chamber 121 is increased. mechanism), the opening pressure of the extension side main valve 112 increases.
 ピストン周波数が低いときの伸び行程時に、伸び側背圧室113内の圧力が所定圧力に達すると、伸び側背圧室113内の作動流体は、逆止弁153に形成されたオリフィス156、ピストンボルト31の軸部32に形成された二面幅部35、伸び側パイロットケース131に形成された切欠き140、及び凹部141を経由し、ディスクバルブ123(第2減衰力発生機構)を開弁させてシリンダ下室2Bへ流れる。このとき、ディスクバルブ123によるハード特性の減衰力を発生する。 During the extension stroke when the piston frequency is low, when the pressure in the extension-side back pressure chamber 113 reaches a predetermined pressure, the working fluid in the extension-side back pressure chamber 113 flows through the orifice 156 formed in the check valve 153 and the piston. The disk valve 123 (second damping force generating mechanism) is opened via the width across flat portion 35 formed on the shaft portion 32 of the bolt 31, the notch 140 formed on the extension side pilot case 131, and the recess 141. and flows into the cylinder lower chamber 2B. At this time, the disk valve 123 generates a hard characteristic damping force.
 第1実施形態では、ピストン周波数は、逆止弁117に形成されたオリフィス119、及び逆止弁153に形成されたオリフィス156により流路面積を可変する、即ち、シリンダ上室2Aから伸び側背圧室113に導入する作動流体の流量を可変することにより調整することができる。また、伸び側メインバルブ112の開弁圧力は、ピストン周波数が高いとき、伸び側メインバルブ112のディスク剛性を可変させることで調整することができる。他方、伸び側メインバルブ112の開弁圧力は、ピストン周波数が低いとき、ディスクバルブ123(第2減衰力発生機構)のディスク剛性を可変させることで調整することができる。 In the first embodiment, the piston frequency varies the flow area by the orifice 119 formed in the check valve 117 and the orifice 156 formed in the check valve 153. It can be adjusted by varying the flow rate of the working fluid introduced into the pressure chamber 113 . Further, the valve opening pressure of the extension side main valve 112 can be adjusted by varying the disk rigidity of the extension side main valve 112 when the piston frequency is high. On the other hand, the valve opening pressure of the extension side main valve 112 can be adjusted by varying the disk rigidity of the disk valve 123 (second damping force generating mechanism) when the piston frequency is low.
 ここで、前記従来のシリンダ装置は、移動体の荷重撓み特性をシールリングのゴムの硬度を可変することで調整するため、過渡特性(ハード減衰力からソフト減衰力の切り替わり)に影響する移動体の荷重撓み特性の自由度が低く、改善の余地があった。 Here, since the conventional cylinder device adjusts the load deflection characteristics of the moving body by varying the hardness of the rubber of the seal ring, the moving body affects the transient characteristics (switching from hard damping force to soft damping force). The degree of freedom of the load deflection characteristics is low, and there is room for improvement.
 これに対し、第1実施形態では、ディスクバルブ157のバルブ積層方法を変えることにより移動体の荷重撓み特性を細かく調整することが可能であり、移動体の荷重撓み特性の調整の自由度を向上させることができる。また、逆止弁117に形成されたオリフィス119、及び逆止弁153に形成されたオリフィス156の流路面積を可変することでピストン周波数を調整することが可能であり、ピストン周波数の調整の自由度を向上させることができる。 On the other hand, in the first embodiment, by changing the valve stacking method of the disc valve 157, it is possible to finely adjust the load deflection characteristics of the moving body, thereby improving the degree of freedom in adjusting the load deflection characteristics of the moving body. can be made In addition, the piston frequency can be adjusted by varying the flow area of the orifice 119 formed in the check valve 117 and the orifice 156 formed in the check valve 153, and the piston frequency can be freely adjusted. degree can be improved.
 また、従来のシリンダ装置における調整機構(周波数感応部)を、第1実施形態のようなピストン内蔵型の減衰力調整式シリンダ装置に適用した場合、調整機構の軸長の分だけ減衰力発生機構(制御弁装置)の軸長が長くなり、シリンダ装置が大型化し、小型車両への配置が困難であった。 Further, when the adjustment mechanism (frequency sensitive part) in the conventional cylinder device is applied to the damping force adjustment type cylinder device with built-in piston as in the first embodiment, the damping force generation mechanism is equal to the axial length of the adjustment mechanism. The shaft length of (the control valve device) was increased, and the cylinder device was increased in size, making it difficult to install it in a small vehicle.
 これに対し、第1実施形態では、伸び側背圧室113を、移動体151(移動部材)によりピストン5側の第1室121と反ピストン5側の第2室122とに区画し、伸び側パイロットケース131の底部132に第2室122とシリンダ下室2Bとを連通させる通路137(第1貫通孔)を形成し、移動体151の外周部155の凸部167を伸び側パイロットケース131のシート面138に離着座可能に当接させることで、第2室122とシリンダ下室2Bとの連通を制御するように構成したので、伸び側減衰力発生機構111(第1減衰力発生機構)、延いてはシリンダ装置1の軸長が長くなることを抑制することができる。 In contrast, in the first embodiment, the extension-side back pressure chamber 113 is divided into a first chamber 121 on the side of the piston 5 and a second chamber 122 on the side opposite to the piston 5 by a moving body 151 (moving member). A passage 137 (first through hole) for communicating the second chamber 122 and the cylinder lower chamber 2B is formed in the bottom portion 132 of the side pilot case 131, and the convex portion 167 of the outer peripheral portion 155 of the moving body 151 extends through the extension side pilot case 131. The second chamber 122 and the cylinder lower chamber 2B are brought into contact with the seat surface 138 so that they can be seated and detached, thereby controlling the communication between the second chamber 122 and the cylinder lower chamber 2B. ), and by extension, an increase in the axial length of the cylinder device 1 can be suppressed.
(第2実施形態)
 次に、図6を参照して第2実施形態を説明する。
 なお、第1実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG.
Note that the same designations and reference numerals are used for common parts with the first embodiment, and redundant explanations are omitted.
 第1実施形態における減衰力発生機構110(図2参照)では、移動体151の外周面163と伸び側パイロットケース131の内周面134との間をメタルシールによりシールすることで、伸び側背圧室113をピストン5側の第1室121と反ピストン5側の第2室122とに区画した。 In the damping force generating mechanism 110 (see FIG. 2) according to the first embodiment, a metal seal is used to seal between the outer peripheral surface 163 of the moving body 151 and the inner peripheral surface 134 of the extension side pilot case 131, thereby The pressure chamber 113 is divided into a first chamber 121 on the side of the piston 5 and a second chamber 122 on the side opposite to the piston 5 .
 これに対し、第2実施形態における減衰力発生機構211(制御弁装置)では、移動体151(移動部材)の外周面163と伸び側パイロットケース131の内周面134との間を環状のシールリング212(例えば「Oリング」等)によりシールすることで、減衰力発生機構110(制御弁装置)を構成した。シールリング212は、移動体151の外周面163に形成された環状のシール溝213に取り付けられる。
 第2実施形態によれば、前述した第1実施形態と同等の作用効果を奏する。
On the other hand, in the damping force generating mechanism 211 (control valve device) in the second embodiment, an annular seal is provided between the outer peripheral surface 163 of the moving body 151 (moving member) and the inner peripheral surface 134 of the extension side pilot case 131 . A damping force generating mechanism 110 (control valve device) is configured by sealing with a ring 212 (for example, an “O-ring” or the like). The seal ring 212 is attached to an annular seal groove 213 formed in the outer peripheral surface 163 of the moving body 151 .
According to 2nd Embodiment, there exists an effect equivalent to 1st Embodiment mentioned above.
(第3実施形態)
 次に、図7、図8を参照して第3実施形態を説明する。
 なお、第1乃至第2実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. 7 and 8. FIG.
Note that the same designations and reference numerals are used for common parts with the first and second embodiments, and redundant explanations are omitted.
 第3実施形態における減衰力発生機構221(制御弁装置)は、第1実施形態における減衰力発生機構110に対し、共通通路51、パイロットバルブ61、及びソレノイド81を備えていない。減衰力発生機構221では、ピストンボルト31の頭部33がピストンロッド6の下端に直接連結される。伸び側パイロットケース131に形成された伸び側背圧室113は、フリーバルブ251(移動部材)により、ピストン5側の第1室121と反ピストン5側の第2室122とに区画される。 The damping force generating mechanism 221 (control valve device) in the third embodiment does not include the common passage 51, the pilot valve 61, and the solenoid 81 in contrast to the damping force generating mechanism 110 in the first embodiment. In the damping force generating mechanism 221 , the head 33 of the piston bolt 31 is directly connected to the lower end of the piston rod 6 . The extension-side back pressure chamber 113 formed in the extension-side pilot case 131 is divided into a first chamber 121 on the side of the piston 5 and a second chamber 122 on the side opposite to the piston 5 by a free valve 251 (moving member).
 フリーバルブ251は、円環形のディスク252と、ディスク252の外周縁部に固着された環状の弾性シール部材253と、を有するパッキン付きディスクからなる。弾性シール部材253は、ディスク252のピストン5側(図8における「上側」)に設けられたリップ部254を有する。リップ部254は、伸び側パイロットケース131の円筒部133の反ピストン5側(図8における「下側」)に形成された小内径部231に摺動可能に当接される。 The free valve 251 consists of a disk with packing having an annular disk 252 and an annular elastic seal member 253 fixed to the outer peripheral edge of the disk 252 . The elastic seal member 253 has a lip portion 254 provided on the piston 5 side of the disk 252 (“upper side” in FIG. 8). The lip portion 254 is slidably brought into contact with the small inner diameter portion 231 formed on the cylindrical portion 133 of the extension pilot case 131 on the side opposite to the piston 5 (“lower side” in FIG. 8).
 弾性シール部材253は、先端部256(下端)が伸び側パイロットケース131の底部132のシート面138に当接される環状シール部255(弾性体)を有する。環状シール部255は、ディスク252の軸平面(ピストンボルト31の軸線を含む平面)による断面が、先端部256に向かってテーパ状に形成される。伸び側パイロットケース131のシート面138における、弾性シール部材253の環状シール部255の先端部256との当接部の外側(外周側)には、各通路137が開口される。 The elastic seal member 253 has an annular seal portion 255 (elastic body) whose tip portion 256 (lower end) abuts against the seat surface 138 of the bottom portion 132 of the extension side pilot case 131 . The annular seal portion 255 is formed such that a cross section taken along the axial plane of the disk 252 (the plane including the axis of the piston bolt 31) tapers toward the tip portion 256. As shown in FIG. On the seat surface 138 of the extension-side pilot case 131 , each passage 137 is opened outside (peripheral side) the contact portion of the elastic seal member 253 with the tip portion 256 of the annular seal portion 255 .
 環状の弾性シール部材253と、伸び側パイロットケース131の底部132及び円筒部133の小内径部231との間には、環状の第3室230が形成される。第3室230は、ディスク252の軸平面による断面が略直角三角形に形成される。伸び側背圧室113の第2室122は、弾性シール部材252の環状シール部255の先端部256に形成された切欠き257、第3室230、及び伸び側パイロットケース121に形成された各通路137を経由し、シリンダ下室2Bに連通される。 An annular third chamber 230 is formed between the annular elastic seal member 253 and the bottom portion 132 of the extension side pilot case 131 and the small inner diameter portion 231 of the cylindrical portion 133 . The third chamber 230 has a substantially right-angled triangular cross-section taken along the axial plane of the disk 252 . The second chamber 122 of the extension-side back pressure chamber 113 includes a notch 257 formed in the tip portion 256 of the annular seal portion 255 of the elastic seal member 252, the third chamber 230, and the extension-side pilot case 121. It communicates with the cylinder lower chamber 2B via the passage 137 .
 フリーバルブ251のディスク252は、環状のパイロットケースリテーナ241と円環形のディスク258とにより、ピストンボルト31の軸方向(図8における「上下方向」)へ移動可能に支持される。ディスク258の内径部には、ピストンボルト31の軸部32が挿入される。ディスク258の外径は、フリーバルブ251のディスク252の内径よりも大きい。これにより、フリーバルブ251のディスク252の内周縁部が、ディスク258の外周縁部により受けられる。 The disk 252 of the free valve 251 is supported by the annular pilot case retainer 241 and the annular disk 258 so as to be movable in the axial direction of the piston bolt 31 ("vertical direction" in FIG. 8). The shaft portion 32 of the piston bolt 31 is inserted into the inner diameter portion of the disc 258 . The outer diameter of disc 258 is greater than the inner diameter of disc 252 of free valve 251 . As a result, the inner peripheral edge of the disc 252 of the free valve 251 is received by the outer peripheral edge of the disc 258 .
 なお、フリーバルブ151のディスク252とディスク258との接触部259は、シリンダ下室2Bから、通路137、第3室230、環状シール部255に形成された切欠き257、及び第2室122を経由して伸び側背圧室113の第1室121へ流れる作動流体の流れを許容する逆止弁、及び第1室121と第2室122とを連通可能な第2貫通孔として機能する。 The contact portion 259 between the disk 252 and the disk 258 of the free valve 151 extends from the cylinder lower chamber 2B through the passage 137, the third chamber 230, the notch 257 formed in the annular seal portion 255, and the second chamber 122. It functions as a check valve that allows the working fluid to flow through to the first chamber 121 of the extension-side back pressure chamber 113 and as a second through hole that allows communication between the first chamber 121 and the second chamber 122 .
 パイロットケースリテーナ241の軸孔242には、ピストンボルト31の軸部32が挿入される。パイロットケースリテーナ241は、伸び側背圧室113の第1室121内に設けられる。パイロットケースリテーナ241の反ピストン5側(図8における「下側」)の外周縁部には、環状のシート部243が形成される。シート部243は、フリーバルブ251のディスク252の弾性シール部材253近傍を受ける。 The shaft portion 32 of the piston bolt 31 is inserted into the shaft hole 242 of the pilot case retainer 241 . Pilot case retainer 241 is provided in first chamber 121 of extension-side back pressure chamber 113 . An annular seat portion 243 is formed on the outer peripheral edge portion of the pilot case retainer 241 on the side opposite to the piston 5 (“lower side” in FIG. 8). The seat portion 243 receives the vicinity of the elastic seal member 253 of the disk 252 of the free valve 251 .
 パイロットケースリテーナ241の内周部とシート部243との間には、環状の凹部245が形成される。なお、凹部245は、フリーバルブ251のディスク252の内周縁部がパイロットケースリテーナ241の内周部に当接されたとき、パイロットケースリテーナ241の内周部に形成された複数個(図8では「2個」のみ表示)の切欠き246、及び切欠き243により第1室121と第2室122が連通される。 An annular recess 245 is formed between the inner peripheral portion of the pilot case retainer 241 and the seat portion 243 . A plurality of recesses 245 (in FIG. 8, The first chamber 121 and the second chamber 122 are communicated with each other by the notch 246 and the notch 243 (only "two" are shown).
 パイロットケースリテーナ241は、伸び側メインバルブ112と伸び側パイロットケース131との間に設けられる。伸び側メインバルブ112の内周部とパイロットケースリテーナ241の内周部との間には、ピストン5側(図8における「上側」)から順に、複数枚(本実施形態では「2枚」)のスペーサ222、ディスクバルブ223、1枚のスペーサ222、及びディスク225が配置される。ディスクバルブ223には、伸び行程時に、シリンダ上室2Aの作動流体を、伸び側通路7(第1通路)、逆止弁117に形成されたオリフィス119、及びピストンボルト31の軸部32に形成された二面幅部35を経由して伸び側背圧室113の第1室121に導入するオリフィス224が形成される。 The pilot case retainer 241 is provided between the extension side main valve 112 and the extension side pilot case 131 . Between the inner peripheral portion of the extension side main valve 112 and the inner peripheral portion of the pilot case retainer 241, a plurality of (“two” in this embodiment) are provided in order from the piston 5 side (“upper side” in FIG. 8). spacers 222, disk valves 223, one spacer 222 and disk 225 are arranged. In the disk valve 223, the working fluid in the cylinder upper chamber 2A passes through the extension side passage 7 (first passage), the orifice 119 formed in the check valve 117, and the shaft portion 32 of the piston bolt 31 during the extension stroke. An orifice 224 is formed through the width across flats portion 35 to introduce into the first chamber 121 of the extension side back pressure chamber 113 .
 一方、パイロットケースリテーナ241の内周部と伸び側パイロットケース131の内周部との間には、ピストン5側から順に、スペーサ226、スペーサ227、ディスク258、及びディスク228が配置される。スペーサ227は、フリーバルブ251のディスク252と同一の板厚を有し、フリーバルブ251のディスク252の内周に配置される。また、スペーサ227の外径はフリーバルブ251のディスク252の内径よりも小さい。これにより、スペーサ227とディスク252との間には、環状の隙間229が形成される。 On the other hand, between the inner circumference of the pilot case retainer 241 and the inner circumference of the extension side pilot case 131, a spacer 226, a spacer 227, a disk 258, and a disk 228 are arranged in this order from the piston 5 side. The spacer 227 has the same plate thickness as the disc 252 of the free valve 251 and is arranged on the inner circumference of the disc 252 of the free valve 251 . Also, the outer diameter of the spacer 227 is smaller than the inner diameter of the disk 252 of the free valve 251 . Thereby, an annular gap 229 is formed between the spacer 227 and the disk 252 .
 第3実施形態における減衰力発生機構110は、ピストン速度が同じであっても、ピストン周波数に応じて減衰力を可変させる減衰力可変機構として機能する。ピストン周波数が高いとき、ピストン5の振幅は小さい。このようなピストン周波数が高いときの伸び行程時には、フリーバルブ251の撓み量が小さい。このとき、伸び側背圧室113の第2室は、環状シール部255に形成された切欠き257、第3室230、及び通路137を経由してシリンダ下室2Bに連通される。 The damping force generating mechanism 110 in the third embodiment functions as a variable damping force mechanism that varies the damping force according to the piston frequency even if the piston speed is the same. The amplitude of the piston 5 is small when the piston frequency is high. During the extension stroke when the piston frequency is high, the deflection amount of the free valve 251 is small. At this time, the second chamber of the extension-side back pressure chamber 113 communicates with the cylinder lower chamber 2B via the notch 257 formed in the annular seal portion 255, the third chamber 230, and the passage 137.
 これにより、第2室122の作動流体がシリンダ下室2Bへ流れることで、第1室121の容積が増えるため、第1室121の圧力上昇が抑制される。その結果、伸び側メインバルブ112が開弁し易くなり、伸び側減衰力発生機構111(第1減衰力発生機構)の減衰力特性がソフトになる。このとき、ハード特性のディスクバルブ123(第2減衰力発生機構)は開弁しない。 As a result, the working fluid in the second chamber 122 flows into the cylinder lower chamber 2B, and the volume of the first chamber 121 increases, so the pressure rise in the first chamber 121 is suppressed. As a result, the extension side main valve 112 is easily opened, and the damping force characteristic of the extension side damping force generating mechanism 111 (first damping force generating mechanism) becomes soft. At this time, the hard characteristic disk valve 123 (second damping force generating mechanism) does not open.
 そして、ピストン周波数が低いとき、ピストン5の振幅は大きい。このようなピストン周波数が低いときの伸び行程時には、フリーバルブ251の撓み量が大きい。このとき、伸び側背圧室113の第1室121に作動流体が導入されると、フリーバルブ251の弾性シール部材253が通路137の開口を閉塞する。これにより、伸び側背圧室113の第2室122とシリンダ下室2Bとの連通が遮断され、第1室121の圧力が上昇するので、伸び側減衰力発生機構111(第1減衰力発生機構)の伸び側メインバルブ112の開弁圧力が高くなる。 And when the piston frequency is low, the amplitude of the piston 5 is large. During the extension stroke when the piston frequency is low, the amount of deflection of the free valve 251 is large. At this time, when the working fluid is introduced into the first chamber 121 of the extension-side back pressure chamber 113 , the elastic seal member 253 of the free valve 251 blocks the opening of the passage 137 . As a result, the communication between the second chamber 122 of the extension side back pressure chamber 113 and the cylinder lower chamber 2B is blocked, and the pressure in the first chamber 121 is increased. mechanism), the opening pressure of the extension side main valve 112 increases.
 ピストン周波数が低いときの伸び行程時に、伸び側背圧室113内の圧力が所定圧力に達すると、伸び側背圧室113内の作動流体は、ディスクバルブ223に形成されたオリフィス224、ピストンボルト31の軸部32に形成された二面幅部35、伸び側パイロットケース131に形成された切欠き140、及び凹部141を経由し、ディスクバルブ123(第2減衰力発生機構)を開弁させてシリンダ下室2Bへ流れる。このとき、ディスクバルブ123によるハード特性の減衰力を発生する。 During the extension stroke when the piston frequency is low, when the pressure in the extension-side back pressure chamber 113 reaches a predetermined pressure, the working fluid in the extension-side back pressure chamber 113 flows through the orifice 224 formed in the disk valve 223 and the piston bolt. The disk valve 123 (second damping force generating mechanism) is opened via the width across flat portion 35 formed on the shaft portion 32 of 31, the notch 140 formed on the extension side pilot case 131, and the recess 141. and flows into the cylinder lower chamber 2B. At this time, the disk valve 123 generates a hard characteristic damping force.
 第3実施形態では、ピストン周波数は、逆止弁117に形成されたオリフィス119、及びディスクバルブ223に形成されるオリフィス224の流路面積を可変する、即ち、シリンダ上室2Aから伸び側背圧室113に導入する作動流体の流量を可変することにより調整することができる。また、伸び側メインバルブ112の開弁圧力は、ピストン周波数が高いとき、伸び側メインバルブ112のディスク剛性を可変させることで調整することができる。他方、伸び側メインバルブ112の開弁圧力は、ピストン周波数が低いとき、ディスクバルブ123(第2減衰力発生機構)のディスク剛性を可変させることで調整することができる。 In the third embodiment, the piston frequency varies the flow area of the orifice 119 formed in the check valve 117 and the orifice 224 formed in the disk valve 223, that is, the pressure from the cylinder upper chamber 2A to the extension side back pressure It can be adjusted by varying the flow rate of the working fluid introduced into the chamber 113 . Further, the valve opening pressure of the extension side main valve 112 can be adjusted by varying the disk rigidity of the extension side main valve 112 when the piston frequency is high. On the other hand, the valve opening pressure of the extension side main valve 112 can be adjusted by varying the disk rigidity of the disk valve 123 (second damping force generating mechanism) when the piston frequency is low.
 なお、第3実施形態における減衰力発生機構221の、縮み側減衰力発生機構235は、従来のコンベンショナルな縮み側減衰力発生機構と構造及び作用が同一であるため、明細書の記載を簡潔にすることを目的とし、縮み側減衰力発生機構235の詳細な説明を省略する。 The compression side damping force generating mechanism 235 of the damping force generating mechanism 221 in the third embodiment has the same structure and operation as the conventional conventional compression side damping force generating mechanism, so the description of the specification will be simplified. Therefore, the detailed description of the compression-side damping force generating mechanism 235 is omitted.
 第3実施形態によれば、前述した第1及び第2実施形態と同等の作用効果を奏する。 According to the third embodiment, effects equivalent to those of the first and second embodiments described above are achieved.
(第4実施形態)
 次に、図9を参照して第4実施形態を説明する。
 なお、第1乃至第3実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG.
Note that the same designations and reference numerals are used for common parts with the first to third embodiments, and redundant explanations are omitted.
 第4実施形態における減衰力発生機構261(制御弁装置)は、第3実施形態同様、第1実施形態における減衰力発生機構110に対し、共通通路51、パイロットバルブ61、及びソレノイド81を備えていない。減衰力発生機構261では、ピストンボルト31の頭部33(図7参照)がピストンロッド6(図7参照)の下端に直接連結される。 A damping force generating mechanism 261 (control valve device) according to the fourth embodiment includes a common passage 51, a pilot valve 61, and a solenoid 81 in contrast to the damping force generating mechanism 110 according to the first embodiment, as in the third embodiment. do not have. In the damping force generating mechanism 261, the head 33 (see FIG. 7) of the piston bolt 31 is directly connected to the lower end of the piston rod 6 (see FIG. 7).
 また、第1実施形態における減衰力発生機構110(図2参照)では、移動体151(移動部材)の反ピストン5側への移動を、ディスクバルブ157(弾性体)により抑制するように構成した。 Further, in the damping force generating mechanism 110 (see FIG. 2) in the first embodiment, the movement of the moving body 151 (moving member) toward the side opposite to the piston 5 is suppressed by the disk valve 157 (elastic body). .
 これに対し、第4実施形態における減衰力発生機構261では、移動体151(移動部材)の反ピストン5側(図9における「下側」)への移動を、ディスクバルブ157と移動体151の外周部155に固着された環状の弾性部材262との2つの弾性体により抑制するように構成される。 On the other hand, in the damping force generating mechanism 261 in the fourth embodiment, the movement of the moving body 151 (moving member) to the side opposite to the piston 5 (“lower side” in FIG. It is configured to be restrained by two elastic bodies, an annular elastic member 262 fixed to the outer peripheral portion 155 .
 弾性部材262(弾性体)は、反ピストン5側(図9における「下側」)へ突出し、先端部(下端)が伸び側パイロットケース131の外周部135に形成されたシート面138に当接される。弾性部材262は、移動体151の軸平面(ピストンボルト31の軸線を含む平面)による断面が、先端に向かってテーパ状に形成される。また、弾性部材262は、軸方向(図9における「上下方向」)の長さ(高さ)が、径方向の長さ(移動体151の外周部155の凸部167の幅同一長さ)よりも長くなっている。 The elastic member 262 (elastic body) protrudes toward the side opposite to the piston 5 (“lower side” in FIG. 9), and the tip (lower end) contacts the seat surface 138 formed on the outer peripheral portion 135 of the extension-side pilot case 131. be done. The elastic member 262 is formed such that a cross section taken along the axial plane of the moving body 151 (the plane including the axis of the piston bolt 31) tapers toward the tip. The length (height) of the elastic member 262 in the axial direction (“vertical direction” in FIG. 9) is equal to the length in the radial direction (the same length as the width of the convex portion 167 of the outer peripheral portion 155 of the moving body 151). is longer than
 伸び側パイロットケース131の底部132には、伸び側背圧室113の第2室122をシリンダ下室2Bに連通させる通路263が形成される。通路263の第2室122側は、シート面138の、弾性部材262が当接する部分よりも内側(内周側)に開口される。 A passage 263 is formed in the bottom portion 132 of the extension side pilot case 131 to communicate the second chamber 122 of the extension side back pressure chamber 113 with the cylinder lower chamber 2B. The second chamber 122 side of the passage 263 is opened inside (inner peripheral side) of the portion of the seat surface 138 with which the elastic member 262 abuts.
 第4実施形態によれば、前述した第1乃至第3実施形態と同等の作用効果を奏する。 According to the fourth embodiment, effects equivalent to those of the above-described first to third embodiments are achieved.
(第5実施形態)
 次に、図10を参照して第5実施形態を説明する。
 なお、第1乃至第4実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG.
Note that the same designations and reference numerals are used for common parts with the first to fourth embodiments, and redundant explanations are omitted.
 第4実施形態における減衰力発生機構261(図9参照)では、移動体151(移動部材)の反ピストン5側(図9における「下側」)への移動を、ディスクバルブ157と移動体151の外周部155に固着された環状の弾性部材262との2つの弾性体により抑制するように構成した。 In the damping force generating mechanism 261 (see FIG. 9) in the fourth embodiment, the movement of the moving body 151 (moving member) to the side opposite to the piston 5 (“downward” in FIG. 9) is controlled by the disk valve 157 and the moving body 151. It is configured to be suppressed by two elastic bodies, namely, an annular elastic member 262 fixed to the outer peripheral portion 155 of the.
 これに対し、第5実施形態における減衰力発生機構271(制御弁装置)では、移動体151(移動部材)の反ピストン5側(図10における「下側」)への移動を、ディスクバルブ157とコイルばね272との2つの弾性体により抑制するように構成した。コイルばね272は、移動体151の外周部155の凸部167と伸び側パイロットケース131の底部132との間に介装される。 On the other hand, in the damping force generating mechanism 271 (control valve device) in the fifth embodiment, the movement of the moving body 151 (moving member) to the side opposite to the piston 5 (“lower side” in FIG. 10) is controlled by the disk valve 157. and the coil spring 272. Coil spring 272 is interposed between convex portion 167 of outer peripheral portion 155 of moving body 151 and bottom portion 132 of extension-side pilot case 131 .
 第5実施形態によれば、前述した第1乃至第4実施形態と同等の作用効果を奏する。 According to the fifth embodiment, effects equivalent to those of the first to fourth embodiments described above are achieved.
(第6実施形態)
 次に、図11を参照して第6実施形態を説明する。
 なお、第1乃至第5実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG.
Note that the same designations and reference numerals are used for common parts with the first to fifth embodiments, and redundant explanations are omitted.
 第5実施形態における減衰力発生機構271(図10参照)では、移動体151(移動部材)の反ピストン5側(図10における「下側」)への移動を、ディスクバルブ157とコイルばね272との2つの弾性体により抑制するように構成した。 In the damping force generating mechanism 271 (see FIG. 10) in the fifth embodiment, the movement of the moving body 151 (moving member) to the side opposite to the piston 5 (“lower side” in FIG. 10) is controlled by the disk valve 157 and the coil spring 272. and two elastic bodies.
 これに対し、第6実施形態における減衰力発生機構281(制御弁装置)では、移動体151(移動部材)の反ピストン5側(図11における「下側」)への移動を、ディスクバルブ157と皿ばね282との2つの弾性体により抑制するように構成した。皿ばね282は、移動体151の外周部155と伸び側パイロットケース131の底部132との間に介装される。なお、伸び側背圧室113の第2室122とシリンダ下室2Bとは、第1実施形態(図2参照)同様、伸び側パイロットケース131の底部132に形成された複数本(図11では「2本」のみ表示)の通路137により連通される。 On the other hand, in the damping force generating mechanism 281 (control valve device) in the sixth embodiment, the movement of the moving body 151 (moving member) to the side opposite to the piston 5 (“lower side” in FIG. 11) is controlled by the disk valve 157. and the disk spring 282. The disc spring 282 is interposed between the outer peripheral portion 155 of the moving body 151 and the bottom portion 132 of the extension side pilot case 131 . The second chamber 122 of the extension side back pressure chamber 113 and the cylinder lower chamber 2B are formed in the bottom portion 132 of the extension side pilot case 131 as in the first embodiment (see FIG. 2). (only "two" are shown).
 第6実施形態によれば、前述した第1乃至第5実施形態と同等の作用効果を奏する。
(第7実施形態)
 次に、図12を参照して第7実施形態を説明する。
 なお、第1乃至第6実施形態との共通部分については、同一の称呼及び符号を用い、重複する説明を省略する。
According to the sixth embodiment, effects equivalent to those of the first to fifth embodiments described above are obtained.
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIG.
Note that the same designations and reference numerals are used for common parts with the first to sixth embodiments, and redundant explanations are omitted.
 第7実施形態における減衰力発生機構291(制御弁装置)は、第3乃至第6実施形態同様、第1実施形態における減衰力発生機構110に対し、共通通路51、パイロットバルブ61、及びソレノイド81を備えていない。減衰力発生機構291では、ピストンボルト31の頭部33(図7参照)がピストンロッド6(図7参照)の下端に直接連結される。 A damping force generating mechanism 291 (control valve device) in the seventh embodiment has a common passage 51, a pilot valve 61, and a solenoid 81 in contrast to the damping force generating mechanism 110 in the first embodiment, as in the third to sixth embodiments. does not have In the damping force generating mechanism 291, the head 33 (see FIG. 7) of the piston bolt 31 is directly connected to the lower end of the piston rod 6 (see FIG. 7).
 第1実施形態における減衰力発生機構110では、伸び側背圧室113の第1室121内に設けられた逆止弁153により、伸び側背圧室113の第1室121内の圧力(パイロット圧)を保持するように構成した。 In the damping force generating mechanism 110 according to the first embodiment, the pressure (pilot pressure).
 これに対し、第7実施形態における減衰力発生機構291では、第1実施形態における減衰力発生機構110の逆止弁153として機能する機構を、ディスクバルブ123(第2減衰力発生機構)側に設けた。 On the other hand, in the damping force generating mechanism 291 of the seventh embodiment, the mechanism functioning as the check valve 153 of the damping force generating mechanism 110 of the first embodiment is placed on the disc valve 123 (second damping force generating mechanism) side. established.
 伸び側背圧室113の第1室121には、円環形のディスクバルブ292が設けられる。ディスクバルブ292の内径部には、ピストンボルト31の軸部32が挿入される。ディスクバルブ292の外径は、移動体151に形成された環状のシート部154の外径よりも小さい。ディスクバルブ292の内周部は、スペーサ162とリテーナ294との間でクランプされる。ディスクバルブ292には、伸び側背圧室113の第1室121とピストンボルト31の軸部32に形成された二面幅部35とを連通するオリフィス293が形成される。 An annular disc valve 292 is provided in the first chamber 121 of the extension-side back pressure chamber 113 . The shaft portion 32 of the piston bolt 31 is inserted into the inner diameter portion of the disc valve 292 . The outer diameter of the disc valve 292 is smaller than the outer diameter of the annular seat portion 154 formed on the moving body 151 . The inner periphery of disk valve 292 is clamped between spacer 162 and retainer 294 . The disc valve 292 is formed with an orifice 293 that communicates between the first chamber 121 of the extension-side back pressure chamber 113 and the width across flat portion 35 formed on the shaft portion 32 of the piston bolt 31 .
 リテーナ294は、ディスクバルブ292とボス160との間に配置され、内径部にはピストンボルト31の軸部32が挿入される。リテーナ294の外径は、ボス160の外径よりも大きい。移動体151の内周縁部のピストン5側(図12における「上側」)には、環状の凹部295が形成される。移動体151の凹部295は、リテーナ294の外周部の反ピストン5側の面により受けられる。 The retainer 294 is arranged between the disc valve 292 and the boss 160, and the shaft portion 32 of the piston bolt 31 is inserted into its inner diameter portion. The outer diameter of retainer 294 is larger than the outer diameter of boss 160 . An annular recess 295 is formed on the inner peripheral edge of the moving body 151 on the side of the piston 5 (“upper side” in FIG. 12). The concave portion 295 of the moving body 151 is received by the surface of the outer peripheral portion of the retainer 294 on the side opposite to the piston 5 .
 同一の複数枚(第7実施形態では「4枚」)のディスクを積層することで構成されたディスクバルブ123には、伸び側パイロットケース131のシート部124の内側(内周側)に形成された環状の凹部141とシリンダ下室2Bとを連通するオリフィス通路296が形成される。伸び側パイロットケース131の内周部とディスクバルブ123との間には、ピストン5側(図12における「上側」)から順に、ディスクバルブ297、リテーナ299、及び逆止弁300が配置される。 In the disc valve 123 constructed by stacking a plurality of identical discs (“four discs” in the seventh embodiment), a An orifice passage 296 is formed to communicate between the annular recess 141 and the cylinder lower chamber 2B. A disk valve 297 , a retainer 299 , and a check valve 300 are arranged in order from the piston 5 side (“upper side” in FIG. 12 ) between the inner peripheral portion of the extension-side pilot case 131 and the disk valve 123 .
 逆止弁300は、シリンダ下室2Bからオリフィス通路296を経由して凹部141へ流れる作動流体の流れを許容する。ディスクバルブ297には、ピストンボルト31の軸部32に形成された二面幅部35と環状の凹部141とを連通するオリフィス298が形成される。 The check valve 300 allows the working fluid to flow from the cylinder lower chamber 2B to the recess 141 via the orifice passage 296 . The disc valve 297 is formed with an orifice 298 that communicates between the width across flat portion 35 formed on the shaft portion 32 of the piston bolt 31 and the annular recess 141 .
 そして、伸び行程時には、シリンダ上室2A(図1参照)の作動流体が、ピストンボルト31の軸部32に形成された二面幅部35、及びディスクバルブ292に形成されたオリフィス293を経由して伸び側背圧室113の第1室121に導入される。このとき、第1室121の圧力(パイロット圧)は、逆止弁300がオリフィス通路296の開口を遮断することで保持される。第1室121内の圧力が上昇して所定圧力に達すると、ディスクバルブ123が開弁される。 During the extension stroke, the working fluid in the cylinder upper chamber 2A (see FIG. 1) passes through the width across flat portion 35 formed in the shaft portion 32 of the piston bolt 31 and the orifice 293 formed in the disc valve 292. and introduced into the first chamber 121 of the extension-side back pressure chamber 113 . At this time, the pressure (pilot pressure) in the first chamber 121 is maintained by the check valve 300 blocking the opening of the orifice passage 296 . When the pressure in the first chamber 121 rises and reaches a predetermined pressure, the disc valve 123 is opened.
 また、縮み行程時には、シリンダ下室2Bの作動流体が、オリフィス通路296を通って逆止弁300を開弁させ、環状の凹部141、ディスクバルブ297に形成されたオリフィス298、ピストンボルト31の軸部32に形成された二面幅部35、及びディスクバルブ292に形成されたオリフィス293を経由して伸び側背圧室113の第1室へ導入される。これにより、伸び側メインバルブ122がシリンダ下室2B内の圧力上昇により開弁されることを抑止することができる。 During the compression stroke, the working fluid in the cylinder lower chamber 2B passes through the orifice passage 296 to open the check valve 300, and the annular recess 141, the orifice 298 formed in the disc valve 297, and the shaft of the piston bolt 31 It is introduced into the first chamber of the extension side back pressure chamber 113 via the width across flats portion 35 formed in the portion 32 and the orifice 293 formed in the disc valve 292 . As a result, it is possible to prevent the expansion side main valve 122 from opening due to an increase in pressure in the cylinder lower chamber 2B.
 第7実施形態によれば、前述した第1乃至第6実施形態と同等の作用効果を奏する。 According to the seventh embodiment, effects equivalent to those of the first to sixth embodiments described above are achieved.
 なお、第1乃至第7実施形態では、伸び側減衰力発生機構111に移動体151(移動部材)を有する周波数調整機構を適用したが、縮み側減衰力発生機構171のみ、或いは伸び側減衰力発生機構111及び縮み側減衰力発生機構171の両方に、周波数調整機構を適用することができる。
 また、第3乃至第7実施形態は、第1乃至第2実施形態同様、共通通路51、パイロットバルブ61、及びソレノイド81を設けて減衰力発生機構221、261、271、281、及び291を構成することができる。
 また、第7実施形態は、移動体151の外周部155に、第2実施形態同様、シールリング212を設けることで、減衰力発生機構291を構成することができる。
In the first to seventh embodiments, the frequency adjustment mechanism having the moving body 151 (moving member) is applied to the rebound damping force generating mechanism 111, but only the compression damping force generating mechanism 171 or the rebound damping force is applied. A frequency adjustment mechanism can be applied to both the generating mechanism 111 and the compression-side damping force generating mechanism 171 .
Further, in the third to seventh embodiments, the damping force generating mechanisms 221, 261, 271, 281, and 291 are configured by providing the common passage 51, the pilot valve 61, and the solenoid 81 as in the first to second embodiments. can do.
Further, in the seventh embodiment, the damping force generating mechanism 291 can be configured by providing the seal ring 212 on the outer peripheral portion 155 of the moving body 151 as in the second embodiment.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.
 本願は、2021年8月2日付出願の日本国特許出願第2021-126693号に基づく優先権を主張する。2021年8月2日付出願の日本国特許出願第2021-126693号の明細書、特許請求の範囲、図面、および要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2021-126693 filed on August 2, 2021. The entire disclosure, including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2021-126693 filed on August 2, 2021, is incorporated herein by reference in its entirety.
1 シリンダ装置、2 シリンダ、5 ピストン、7 伸び側通路(第1通路)、8 縮み側通路(第2通路)、35 二面幅部(バイパス通路)、111 伸び側減衰力発生機構(第1減衰力発生機構)、121 第1室、122 第2室、123 ディスクバルブ(第2減衰力発生機構)、131 伸び側パイロットケース(ケース部材)、137 通路(第1貫通孔)、151 移動体(移動部材)、157 ディスクバルブ(弾性体) 1 cylinder device, 2 cylinder, 5 piston, 7 extension side passage (first passage), 8 compression side passage (second passage), 35 width across flat portion (bypass passage), 111 extension side damping force generating mechanism (first damping force generating mechanism), 121 first chamber, 122 second chamber, 123 disc valve (second damping force generating mechanism), 131 extension side pilot case (case member), 137 passage (first through hole), 151 moving body (moving member), 157 disk valve (elastic body)

Claims (11)

  1.  シリンダ装置であって、
     作動流体が封入されるシリンダと、
     前記シリンダ内に摺動可能に設けられ、前記シリンダ内を区画するピストンと、
     一端側が前記ピストンに連結され、他端側が前記シリンダの外部へ延出するピストンロッドと、
     前記ピストンの移動により作動流体が流れ出す第1通路と、
     前記第1通路と並列に設けられる第2通路と、
     前記第1通路に設けられる第1減衰力発生機構と、
     有底筒状に形成され、軸状部材が貫通するケース部材と、
     前記軸状部材が貫通し、前記ケース部材内で前記ケース部材の底部に対向して設けられ、前記ケース部材内の作動流体により移動可能な移動部材と、
     前記ケース部材内を前記移動部材により区画して形成される第1室及び第2室と、
     前記ケース部材の底部を貫通する第1貫通孔と、
     前記第1貫通孔と並列に設けられるバイパス通路と、
     前記バイパス通路に設けられ、前記第1室内の圧力が所定圧力に達したときに開弁する第2減衰力発生機構と、
     前記ケース部材と前記移動部材との間に設けられ、前記移動部材の移動を抑制する弾性体と、を有するシリンダ装置。
    A cylinder device,
    a cylinder in which the working fluid is sealed;
    a piston slidably provided in the cylinder and partitioning the inside of the cylinder;
    a piston rod having one end connected to the piston and the other end extending to the outside of the cylinder;
    a first passage through which the working fluid flows due to movement of the piston;
    a second passage provided in parallel with the first passage;
    a first damping force generating mechanism provided in the first passage;
    a case member formed in a cylindrical shape with a bottom through which the shaft-like member penetrates;
    a moving member that is provided inside the case member so as to face the bottom portion of the case member through which the shaft-like member penetrates, and that is movable by a working fluid inside the case member;
    a first chamber and a second chamber formed by dividing the inside of the case member by the moving member;
    a first through hole penetrating through the bottom of the case member;
    a bypass passage provided in parallel with the first through hole;
    a second damping force generating mechanism that is provided in the bypass passage and opens when the pressure in the first chamber reaches a predetermined pressure;
    and an elastic body provided between the case member and the moving member to suppress movement of the moving member.
  2.  請求項1に記載のシリンダ装置であって、
     前記第1減衰力発生機構が発生する減衰力を調整するアクチュエータをさらに有するシリンダ装置。
    The cylinder device according to claim 1,
    A cylinder device further comprising an actuator that adjusts the damping force generated by the first damping force generating mechanism.
  3.  シリンダ装置に取り付けられ、前記シリンダ装置のピストンの移動により生じる作動流体の流れをアクチュエータにより制御する制御弁装置であって、
     第1通路と、
     前記第1通路と並列に設けられる第2通路と、
     前記第1通路に設けられる第1減衰力発生機構と、
     前記第1減衰力発生機構が発生する減衰力を調整するアクチュエータと、
     有底筒状に形成され、軸状部材が貫通するケース部材と、
     前記軸状部材が貫通し、前記ケース部材内で前記ケース部材の底部に対向して設けられ、前記ケース部材内の作動流体により移動可能な移動部材と、
     前記ケース部材内を前記移動部材により区画して形成される第1室及び第2室と、
     前記ケース部材の底部を貫通する第1貫通孔と、
     前記第1貫通孔と並列に設けられるバイパス通路と、
     前記バイパス通路に設けられ、前記第1室内の圧力が所定圧力に達したときに開弁する第2減衰力発生機構と、
     前記ケース部材と前記移動部材との間に設けられ、前記移動部材の移動を抑制する弾性体と、を有する制御弁装置。
    A control valve device that is attached to a cylinder device and controls a flow of working fluid generated by movement of a piston of the cylinder device with an actuator,
    a first passage;
    a second passage provided in parallel with the first passage;
    a first damping force generating mechanism provided in the first passage;
    an actuator that adjusts the damping force generated by the first damping force generating mechanism;
    a case member formed in a cylindrical shape with a bottom through which the shaft-like member penetrates;
    a moving member that is provided inside the case member so as to face the bottom portion of the case member through which the shaft-like member penetrates, and that is movable by a working fluid inside the case member;
    a first chamber and a second chamber formed by dividing the inside of the case member by the moving member;
    a first through hole penetrating through the bottom of the case member;
    a bypass passage provided in parallel with the first through hole;
    a second damping force generating mechanism that is provided in the bypass passage and opens when the pressure in the first chamber reaches a predetermined pressure;
    and an elastic body provided between the case member and the moving member to suppress movement of the moving member.
  4.  請求項3に記載の制御弁装置であって、
     前記移動部材には、前記第1室と前記第2室とを連通可能な第2貫通孔が形成され、
     前記第2貫通孔には、前記ピストンが一方向へ移動したときに前記第1室と前記第2室とを連通し、前記ピストンが他方向へ移動したときに前記第1室と前記第2室との連通を遮断する逆止弁が設けられる制御弁装置。
    A control valve device according to claim 3,
    The moving member is formed with a second through hole that allows communication between the first chamber and the second chamber,
    The second through hole communicates the first chamber and the second chamber when the piston moves in one direction, and communicates the first chamber and the second chamber when the piston moves in the other direction. A control valve device provided with a check valve that blocks communication with the chamber.
  5.  請求項3又は4に記載の制御弁装置であって、
     前記移動部材は、環状のスプールである制御弁装置。
    The control valve device according to claim 3 or 4,
    The control valve device, wherein the moving member is an annular spool.
  6.  請求項3又は4に記載の制御弁装置であって、
     前記移動部材は、パッキン付きディスクである制御弁装置。
    The control valve device according to claim 3 or 4,
    The control valve device, wherein the moving member is a disc with packing.
  7.  請求項3乃至5のいずれかに記載の制御弁装置であって、
     前記弾性体は、ディスク状部材である制御弁装置。
    The control valve device according to any one of claims 3 to 5,
    The control valve device, wherein the elastic body is a disk-shaped member.
  8.  請求項7に記載の制御弁装置であって、
     前記ディスク状部材は、複数枚のディスクを積層して構成される制御弁装置。
    A control valve device according to claim 7,
    The disc-shaped member is a control valve device configured by laminating a plurality of discs.
  9.  請求項8に記載の制御弁装置であって、
     前記複数枚のディスクは、異径ディスクである制御弁装置。
    A control valve device according to claim 8,
    The control valve device, wherein the plurality of discs are different diameter discs.
  10.  請求項7乃至9のいずれかに記載の制御弁装置であって、
     前記弾性体は、ばねを含む制御弁装置。
    The control valve device according to any one of claims 7 to 9,
    The control valve device, wherein the elastic body includes a spring.
  11.  請求項7乃至9のいずれかに記載の制御弁装置であって、
     前記弾性体は、前記移動部材に設けられたシールリングを含む制御弁装置。
    The control valve device according to any one of claims 7 to 9,
    The control valve device, wherein the elastic body includes a seal ring provided on the moving member.
PCT/JP2022/029054 2021-08-02 2022-07-28 Cylinder device and control valve device WO2023013511A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023540296A JPWO2023013511A5 (en) 2022-07-28 control valve device
KR1020247001890A KR20240022632A (en) 2021-08-02 2022-07-28 Cylinder device and control valve device
DE112022003790.3T DE112022003790T5 (en) 2021-08-02 2022-07-28 CYLINDER DEVICE AND CONTROL VALVE DEVICE
CN202280047511.1A CN117642564A (en) 2021-08-02 2022-07-28 Cylinder device and control valve device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-126693 2021-08-02
JP2021126693 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023013511A1 true WO2023013511A1 (en) 2023-02-09

Family

ID=85154473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029054 WO2023013511A1 (en) 2021-08-02 2022-07-28 Cylinder device and control valve device

Country Status (4)

Country Link
KR (1) KR20240022632A (en)
CN (1) CN117642564A (en)
DE (1) DE112022003790T5 (en)
WO (1) WO2023013511A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150276005A1 (en) * 2014-03-28 2015-10-01 Mando Corporation Piston assembly for shock absorber
WO2017047661A1 (en) * 2015-09-14 2017-03-23 日立オートモティブシステムズ株式会社 Shock absorber
WO2018164167A1 (en) * 2017-03-10 2018-09-13 日立オートモティブシステムズ株式会社 Damper
JP2021021436A (en) * 2019-07-26 2021-02-18 日立オートモティブシステムズ株式会社 Attenuation force adjustment-type shock absorber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220707B4 (en) 2015-10-23 2022-06-02 Zf Friedrichshafen Ag Control arrangement for a frequency-dependent damping valve device of a vibration damper, and method for plastic deformation of the pot bottom of the control arrangement.
JP7321953B2 (en) 2020-02-17 2023-08-07 株式会社神戸製鋼所 Automatic welding system, welding method, learning device, method for generating learned model, learned model, estimation device, estimation method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150276005A1 (en) * 2014-03-28 2015-10-01 Mando Corporation Piston assembly for shock absorber
WO2017047661A1 (en) * 2015-09-14 2017-03-23 日立オートモティブシステムズ株式会社 Shock absorber
WO2018164167A1 (en) * 2017-03-10 2018-09-13 日立オートモティブシステムズ株式会社 Damper
JP2021021436A (en) * 2019-07-26 2021-02-18 日立オートモティブシステムズ株式会社 Attenuation force adjustment-type shock absorber

Also Published As

Publication number Publication date
JPWO2023013511A1 (en) 2023-02-09
DE112022003790T5 (en) 2024-06-20
KR20240022632A (en) 2024-02-20
CN117642564A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
KR101730286B1 (en) Damping valve
JP6762416B2 (en) Damping force adjustable shock absorber
JP7182592B2 (en) buffer
US9810280B2 (en) Damping valve
JP7182656B2 (en) Mechanism used for shock absorbers
JP5809801B2 (en) Shock absorber
KR20180113596A (en) Damping force adjusting buffer
KR102223705B1 (en) buffer
WO2019130682A1 (en) Shock absorber and solenoid
WO2023013511A1 (en) Cylinder device and control valve device
US20010002639A1 (en) Solenoid apparatus for use in hydraulic shock absorber
JP7485579B2 (en) Damping valves and shock absorbers
WO2020246315A1 (en) Damping force adjustment type shock absorber
WO2022209576A1 (en) Shock absorber and valve device
JP7069353B2 (en) Buffer
JP7012884B2 (en) Buffer
JP2021021438A (en) Attenuation force adjustment-type shock absorber
WO2022249623A1 (en) Shock absorber and method for manufacturing shock absorber
JP2021021436A (en) Attenuation force adjustment-type shock absorber
WO2022215400A1 (en) Shock absorber
JP2022152580A (en) buffer
JP7093734B2 (en) Shock absorber
WO2022168817A1 (en) Shock absorber
CN116234994A (en) Buffer device
JP2021050782A (en) Attenuation force adjustment type shock absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540296

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280047511.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247001890

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001890

Country of ref document: KR