WO2023013418A1 - Multi-wavelength light source module - Google Patents

Multi-wavelength light source module Download PDF

Info

Publication number
WO2023013418A1
WO2023013418A1 PCT/JP2022/028206 JP2022028206W WO2023013418A1 WO 2023013418 A1 WO2023013418 A1 WO 2023013418A1 JP 2022028206 W JP2022028206 W JP 2022028206W WO 2023013418 A1 WO2023013418 A1 WO 2023013418A1
Authority
WO
WIPO (PCT)
Prior art keywords
sets
light source
source module
lenses
semiconductor laser
Prior art date
Application number
PCT/JP2022/028206
Other languages
French (fr)
Japanese (ja)
Inventor
浩 浅香
茂生 林
克哉 左文字
雅幸 畑
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Publication of WO2023013418A1 publication Critical patent/WO2023013418A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present disclosure relates to a multi-wavelength light source module.
  • a multi-wavelength light source module having a plurality of semiconductor laser chips that emit lights of different colors is known (for example, Patent Document 1).
  • a multi-wavelength light source module described in Patent Document 1 includes a red semiconductor laser chip, a green semiconductor laser chip, and a blue semiconductor laser chip.
  • the polarization direction of the emitted light of a general red semiconductor laser chip and the fast axis direction (that is, the direction in which the light spreads at a large angle) are parallel, and the general green semiconductor laser chip and blue semiconductor laser chip emit light.
  • the polarization direction of incident light is perpendicular to the fast axis direction.
  • each semiconductor laser chip is arranged such that the optical axis direction of the red semiconductor laser chip is perpendicular to the optical axis directions of the green semiconductor laser chip and the blue semiconductor laser chip. are placed. Accordingly, in the multi-wavelength light source module described in Patent Document 1, the polarization direction of red light contained in the emitted light is aligned with the polarization directions of green light and blue light.
  • the light used in, for example, a time-resolved projector equipped with a single liquid crystal is required to have a uniform polarization direction and high power.
  • the present disclosure is intended to solve such problems, and aims to provide a multi-wavelength light source module that emits light with uniform polarization directions and high power.
  • one aspect of the multi-wavelength light source module includes a base having a main surface, and a plurality of first sets and a plurality of second sets arranged on the main surface.
  • each of the plurality of first sets includes a first semiconductor laser chip having a first optical axis parallel to the main surface and emitting a first light in a first wavelength band; and a first mirror that reflects in a direction normal to the plane, each of the plurality of second sets having a second optical axis parallel to the major plane and a second wavelength different from the first wavelength band.
  • a second semiconductor laser chip that emits a band of second light
  • a second mirror that reflects the second light in a direction perpendicular to the main surface, wherein the first optical axis is parallel to the main surface.
  • the second optical axis is parallel to a second direction parallel to the principal surface;
  • the second direction is a direction perpendicular to the first direction;
  • the polarization direction of the first light propagating from the first semiconductor laser chip to the first mirror and the polarization direction of the second light propagating from the second semiconductor laser chip to the second mirror are orthogonal.
  • FIG. 1 is a plan view of a multi-wavelength light source module according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of the multi-wavelength light source module according to Embodiment 1.
  • FIG. FIG. 3 is a plan view of the multi-wavelength light source module according to Embodiment 1 with the lid removed.
  • FIG. 4 is a schematic diagram showing an outline of a far-field image of the first semiconductor laser chip according to Embodiment 1.
  • FIG. FIG. 5 is a diagram showing how the first light propagates from the first semiconductor laser chip according to the first embodiment.
  • FIG. 6 is a diagram showing how the second light propagates from the second semiconductor laser chip according to the first embodiment.
  • FIG. 7 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to Embodiment 1.
  • FIG. FIG. 8 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the second embodiment.
  • FIG. 9 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the third embodiment.
  • FIG. 10 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the fourth embodiment.
  • FIG. 11 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the fifth embodiment.
  • FIG. 12 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the sixth embodiment.
  • FIG. 13 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to Embodiment 7.
  • FIG. 14 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the eighth embodiment.
  • FIG. 15 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the ninth embodiment.
  • 16 is a plan view of the multi-wavelength light source module according to the modification of the first embodiment, with the cover removed.
  • FIG. 17 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the modification of the second embodiment.
  • FIG. 18 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the modification of Embodiment 7.
  • FIG. 14 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the eighth embodiment.
  • FIG. 15 is a plan view showing the layout of each module and wiring in
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, the scales and the like are not always the same in each drawing.
  • symbol is attached
  • Embodiment 1 A multi-wavelength light source module according to Embodiment 1 will be described.
  • FIG. 1 and 2 are a plan view and a cross-sectional view, respectively, of a multi-wavelength light source module 10 according to this embodiment.
  • FIG. 2 shows a part of the cross section taken along line II-II of FIG.
  • FIG. 3 is a plan view showing the multi-wavelength light source module 10 according to the present embodiment with the cover 40 removed.
  • the outline of each lens of the lid 40 is indicated by a dashed line. 2 and 3, wiring for supplying electric power to each semiconductor laser chip included in the multi-wavelength light source module 10 is omitted.
  • the multi-wavelength light source module 10 is a device that emits light in multiple wavelength bands.
  • the multi-wavelength light source module 10 comprises a base 20, a plurality of first sets 11a-11j, and a plurality of second sets 12a-12d.
  • the multi-wavelength light source module 10 further comprises a plurality of third sets 13a-13d, a lid 40 and a frame member 30. As shown in FIG.
  • the base 20 shown in FIGS. 1-3 is a member on which the plurality of first sets 11a-11j and the plurality of second sets 12a-12d are arranged.
  • the base 20 has a planar main surface 21 .
  • the base 20 is a substrate having a substantially rectangular plate-like shape.
  • the base 20 is made of a material with high thermal conductivity, and also functions as a heat dissipation member that dissipates heat generated in the plurality of first sets 11a to 11j.
  • the material of the base 20 is, for example, a metal material, a ceramic material, or the like.
  • the base 20 is preferably made of a material with high thermal conductivity such as a metal material. Examples of metal materials that have high thermal conductivity and are practical for the base 20 include Cu and Al.
  • the base 20 is a Cu substrate made of Cu.
  • the frame member 30 shown in FIGS. 1-3 is an annular member surrounding the plurality of first sets 11a-11j and the plurality of second sets 12a-12d.
  • the frame member 30 is erected on the main surface 21 of the base 20 and functions as part of a container that houses the plurality of first sets 11a-11j and the plurality of second sets 12a-12d.
  • the frame member 30 also has a function of supporting the lid 40 .
  • the frame member 30 is sandwiched between the base 20 and the lid 40 .
  • a plurality of first sets 11a to 11j and a plurality of second sets 12a to 12d are arranged in a space surrounded by the base 20, the frame member 30, and the lid .
  • the space surrounded by the frame member 30, the base 20, and the lid 40 is hermetically sealed.
  • the frame member 30 has current terminals for supplying current to the plurality of first sets 11a-11j, the plurality of second sets 12a-12d, and the like. Specifically, as shown in FIG. 1, the frame member 30 includes two first positive current terminals 91p, two first negative current terminals 91n, and one second positive current terminal 92p. , a second negative current terminal 92n, a third positive current terminal 93p, and a third negative current terminal 93n. 2 and 3 for explaining the arrangement of each set, members for current supply such as current terminals are omitted in order to avoid complication of the drawing. Members for current supply such as current terminals will be described later.
  • the frame member 30 is made of, for example, a metal such as Fe, an alloy, or the like. When the frame member 30 has a current terminal, an insulating member is arranged around the current terminal.
  • Each of the plurality of first sets 11a-11j has a first semiconductor laser chip 51 and a first mirror 61. As shown in FIG. In this embodiment, each of the ten first sets 11a to 11j further has a first submount 71 arranged on the main surface 21 and on which the first semiconductor laser chip 51 is arranged.
  • the plurality of first sets 11a to 11j are arranged in the second direction out of the first and second directions parallel to the main surface 21 and perpendicular to each other. Specifically, the first sets 11a-11e and the first sets 11f-11j are arranged in the second direction, respectively. In other words, the first sets 11a-11j are arranged in a matrix of 2 rows and 5 columns.
  • the first semiconductor laser chip 51 is a laser chip that has a first optical axis parallel to the main surface 21 and emits a first light in a first wavelength band.
  • the first optical axis is parallel to the first direction parallel to principal surface 21 .
  • the first wavelength band includes at least part of the wavelength band (about 590 nm or more and 780 nm or less) including red light. That is, the first semiconductor laser chip 51 is a red semiconductor laser chip.
  • the oscillation wavelength of the first semiconductor laser chip 51 which is a red semiconductor laser chip, may be 590 nm or more and 650 nm or less.
  • the first semiconductor laser chip 51 has an emission surface from which the first light L11, which is laser light, is emitted.
  • the optical axis of the first light L11 (that is, the first optical axis) is parallel to the main surface 21 of the base 20 .
  • the first light L11 is indicated by a dashed arrow, and this dashed arrow indicates the optical axis of the first light L11, and the actual first light L11 is divergent light with a width.
  • the first semiconductor laser chip 51 directs the first light beam away from the regions where the second sets 12a to 12d and the third sets 13a to 13d are arranged. L11 is emitted.
  • the first semiconductor laser chip 51 is elongated with the first optical axis as its longitudinal direction.
  • the length of the first semiconductor laser chip 51 in the direction of the first optical axis is 1200 ⁇ m, but it is not limited to this.
  • the first semiconductor laser chip 51 is mounted on the upper surface of the first submount 71 (that is, the surface opposite to the main surface 21). Specifically, the first semiconductor laser chip 51 is mounted on a p-side connection electrode (not shown) on the first submount 71 . In this embodiment, the first semiconductor laser chip 51 is mounted on the first submount 71 by junction-down mounting. A p-side electrode of the first semiconductor laser chip 51 is connected to a p-side connection electrode on the first submount 71 .
  • the p-side connection electrode on the first submount 71 is an example of a p-side connection electrode for supplying current to the first semiconductor laser chip 51 .
  • the n-side connection electrode of the first semiconductor laser chip 51 is an example of an n-side connection electrode for supplying current to the first semiconductor laser chip 51 .
  • the mounting form of the first semiconductor laser chip 51 is not limited to this, and may be mounted on the first submount 71 by junction-up mounting. In this case, current is supplied to the first semiconductor laser chip 51 from the n-side connection electrode on the first submount 71 and the p-side electrode of the first semiconductor laser chip 51 .
  • the first semiconductor laser chip 51 and the first submount 71 constitute a first submodule, and each of the first submodules has a p-side connection for supplying power to the first semiconductor laser chip 51. It has an electrode and an n-side connection electrode.
  • the first semiconductor laser chip 51 is mounted so that the emission surface for emitting the first light L11 protrudes from the end surface of the first submount 71 on the light emission side. That is, the first semiconductor laser chip 51 protrudes from the end surface of the first submount 71 , and the emission surface of the first semiconductor laser chip 51 is positioned closer to the first semiconductor laser than the end surface of the first submount 71 on the light emission side. It is located on the light emitting side of the chip 51 .
  • the amount of protrusion of the first semiconductor laser chip 51 (that is, the distance from the end surface of the first submount 71 on the light emitting side to the emission surface of the first semiconductor laser chip 51) is, for example, 5 ⁇ m or more and 20 ⁇ m or less. is not limited to In this embodiment, the protrusion amount of the first semiconductor laser chip 51 is 10 ⁇ m.
  • the polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 is the third direction perpendicular to the main surface 21 .
  • "parallel” is not limited to a completely parallel state, but also includes a substantially parallel state.
  • the state in which the first optical axis is parallel to the main surface 21 includes a state in which the inclination of the first optical axis with respect to the main surface 21 is 5° or less.
  • vertical is not limited to a completely vertical state, and includes a substantially vertical state.
  • the state in which the polarization direction of the first light L11 is perpendicular to the main surface 21 includes a state in which the inclination of the polarization direction of the first light L11 with respect to the normal to the main surface 21 is 5° or less.
  • the first semiconductor laser chip 51 is a semiconductor laser chip having an active layer made of a GaInP-based semiconductor.
  • the active layer of the first semiconductor laser chip 51 includes a tensile strained quantum well layer.
  • the first semiconductor laser chip 51 oscillates in TM mode.
  • the first semiconductor laser chip 51 is mounted such that the main surface of the active layer of the first semiconductor laser chip 51 is parallel to the main surface 21 .
  • the first mirror 61 is an optical element that reflects the first light L11 in a direction perpendicular to the main surface 21.
  • the first mirror 61 is an element having a first reflecting surface 61a that reflects the first light L11 from the first semiconductor laser chip 51, as shown in FIG.
  • the first mirror 61 is arranged at a position corresponding to the first lens 41 of the lid 40 .
  • the first reflecting surface 61 a is arranged to face the emission surface of the first semiconductor laser chip 51 .
  • the first mirror 61 is a plane mirror having a planar first reflecting surface 61a.
  • the first reflecting surface 61a is inclined at 45° with respect to the first optical axis direction.
  • the direction perpendicular to the first reflecting surface 61a is inclined at 45° with respect to the first optical axis direction.
  • the first light L11 is reflected by the first reflecting surface 61a and propagates from the first mirror 61 toward the lid 40 as the first reflected light L12.
  • the first reflected light L12 is indicated by a dashed arrow, but this dashed arrow indicates the optical axis of the first reflected light L12, and the actual first reflected light L12 has a width. Divergent light.
  • the first mirror 61 is mounted on the main surface 21 of the base 20 with a metallic bonding material.
  • the positional relationship between the first mirror 61 and the first semiconductor laser chip 51 is the same in all the first sets 11a to 11j.
  • the distances from the emission surface of the first semiconductor laser chip 51 to the first mirror 61 are all the same, and the optical axis of the first light L11 of the first semiconductor laser chip 51 (that is, the first optical axis)
  • the height from the surface 21 and the height from the main surface 21 of the first reflecting surface 61a are all the same.
  • the first submount 71 is a support member arranged on the main surface 21 and on which the first semiconductor laser chip 51 is arranged.
  • the first submount 71 is arranged between the main surface 21 and the first semiconductor laser chip 51, as shown in FIG.
  • the first submount 71 also functions as a heat sink for dissipating heat generated by the first semiconductor laser chip 51 . Therefore, the material of the first submount 71 may be either a conductive material or an insulating material, but preferably a material with high thermal conductivity. The thermal conductivity of the first submount 71 may be, for example, 150 W/(m ⁇ K) or more.
  • the first submount 71 is made of a ceramic such as aluminum nitride (AlN) or polycrystalline silicon carbide (SiC), a metal material such as Cu, or a single crystal diamond or polycrystalline diamond. . In this embodiment, the first submount 71 is made of AlN.
  • the shape of the first submount 71 is, for example, a rectangular parallelepiped, the shape is not limited to this.
  • a conductive material it is preferable to prevent electrical connection between the semiconductor laser chip and the conductive base by, for example, forming an insulating material on the mounting surface.
  • the first submount 71 is, for example, bonded to the main surface 21 of the base 20 using a metallic bonding material. That is, the first submount 71 is mounted without forming a fixing hole or the like in the base 20 . Therefore, the submount 50 can be mounted on the base 20 without degrading the heat dissipation characteristics of the base 20 .
  • Each of the plurality of second sets 12 a - 12 d has a second semiconductor laser chip 52 and a second mirror 62 .
  • each of the four second sets 12a-12d further has a second submount 72 arranged on the main surface 21 and on which the second semiconductor laser chip 52 is arranged.
  • a plurality of second sets 12a-12d are arranged in a line in a second direction.
  • the second semiconductor laser chip 52 is a laser chip that has a second optical axis parallel to the main surface 21 and emits second light in a second wavelength band different from the first wavelength band.
  • the second optical axis is parallel to the second direction.
  • the second wavelength band includes at least part of the wavelength band (about 490 nm or more and 580 nm or less) including green light. That is, the second semiconductor laser chip 52 is a green semiconductor laser chip.
  • the second wavelength band may be at least partially different from the first wavelength band. That is, the second wavelength band may include part of the first wavelength band.
  • the second semiconductor laser chip 52 has an emission surface through which the second light, which is laser light, is emitted.
  • the second light is divergent light with a width similar to that of the first light.
  • the second semiconductor laser chip 52 emits the second light from left to right in FIG.
  • the second semiconductor laser chip 52 is elongated with the second optical axis as its longitudinal direction.
  • the length of the second semiconductor laser chip 52 in the direction of the second optical axis is 1200 ⁇ m, but it is not limited to this.
  • the second semiconductor laser chip 52 is mounted on the top surface of the second submount 72 . Specifically, the second semiconductor laser chip 52 is mounted on a p-side connection electrode (not shown) on the second submount 72 . In this embodiment, the second semiconductor laser chip 52 is mounted on the second submount 72 by junction-down mounting. A p-side electrode of the second semiconductor laser chip 52 is connected to a p-side connection electrode on the second submount 72 .
  • the p-side connection electrode on the second submount 72 is an example of a p-side connection electrode for supplying current to the second semiconductor laser chip 52 .
  • the n-side connection electrode of the second semiconductor laser chip 52 is an example of an n-side connection electrode for supplying current to the second semiconductor laser chip 52 .
  • the mounting form of the second semiconductor laser chip 52 is not limited to this, and may be mounted on the second submount 72 by junction-up mounting.
  • the second semiconductor laser chip 52 and the second submount 72 constitute a second submodule, and each of the second submodules has a p-side connection for supplying power to the second semiconductor laser chip 52. It has an electrode and an n-side connection electrode.
  • the second semiconductor laser chip 52 is mounted so that the emission surface protrudes from the end face of the second submount 72 on the light emission side, similarly to the first semiconductor laser chip 51 .
  • the polarization direction of the second light propagating from the second semiconductor laser chip 52 to the second mirror 62 is the first direction parallel to the main surface 21 .
  • the second semiconductor laser chip 52 is a semiconductor laser chip having an active layer made of a GaInN-based semiconductor.
  • the second semiconductor laser chip 52 oscillates in TE mode.
  • the second semiconductor laser chip 52 is mounted such that the main surface of the active layer of the second semiconductor laser chip 52 is parallel to the main surface 21 .
  • the second mirror 62 is an optical element that reflects the second light in a direction perpendicular to the main surface 21 .
  • the second mirror 62 is an element having a second reflecting surface 62a that reflects the second light from the second semiconductor laser chip 52, as shown in FIG.
  • the second mirror 62 is arranged at a position corresponding to the second lens 42 of the lid 40 .
  • the second reflecting surface 62 a is arranged to face the emission surface of the second semiconductor laser chip 52 .
  • the second mirror 62 is a plane mirror having a planar second reflecting surface 62a.
  • the second reflecting surface 62a is inclined at 45° with respect to the second optical axis direction.
  • the direction perpendicular to the second reflecting surface 62a is inclined at 45° with respect to the second optical axis direction.
  • the second light is reflected by the second reflecting surface 62a and propagates from the second mirror 62 toward the lid 40 as second reflected light.
  • the second reflected light is divergent light.
  • the second mirror 62 is mounted on the main surface 21 of the base 20.
  • the positional relationship between the second mirror 62 and the second semiconductor laser chip 52 is the same in all of the second sets 12a-12d.
  • the distances from the emission surface of the second semiconductor laser chip 52 to the second mirror 62 are all the same, and the height of the optical axis of the second light of the second semiconductor laser chip 52 from the main surface 21 and the second reflection
  • the heights of the surfaces 62a from the main surface 21 are all the same.
  • the second submount 72 is a support member arranged on the main surface 21 and on which the second semiconductor laser chip 52 is arranged.
  • the second submount 72 is arranged between the main surface 21 and the second semiconductor laser chip 52 .
  • the second submount 72 like the first submount 71, also functions as a heat sink.
  • the material and shape of the second submount 72 and the mounting structure on the main surface 21 are the same as those of the first submount 71 .
  • Each of the plurality of third sets 13 a - 13 d has a third semiconductor laser chip 53 and a third mirror 63 .
  • each of the four third sets 13a-13d further has a third submount 73 arranged on the major surface 21 and on which the third semiconductor laser chip 53 is arranged.
  • the plurality of third sets 13a-13d are arranged in a row in the second direction.
  • the third semiconductor laser chip 53 is a laser chip that has a third optical axis parallel to the main surface 21 and emits third light in a third wavelength band different from the first and second wavelength bands.
  • the third optical axis is parallel to the second direction.
  • the third wavelength band includes at least part of the wavelength band (approximately 380 nm or more and 490 nm or less) including blue light. That is, the third semiconductor laser chip 53 is a blue semiconductor laser chip.
  • the third wavelength band may be at least partially different from the first and second wavelength bands. That is, the third wavelength band may include a portion of at least one of the first wavelength band and the second wavelength band.
  • the third semiconductor laser chip 53 has an emission surface for emitting third light, which is laser light.
  • the third light is divergent light having a width similar to the first light and the second light.
  • the third semiconductor laser chip 53 emits the third light from left to right in FIG.
  • the third semiconductor laser chip 53 has a long shape with the third optical axis as its longitudinal direction.
  • the length of the third semiconductor laser chip 53 in the direction of the third optical axis is 1200 ⁇ m, but it is not limited to this.
  • the third semiconductor laser chip 53 is mounted on the top surface of the third submount 73 . Specifically, the third semiconductor laser chip 53 is mounted on a p-side connection electrode (not shown) on the third submount 73 . In this embodiment, the third semiconductor laser chip 53 is mounted on the third submount 73 by junction-down mounting. A p-side electrode of the third semiconductor laser chip 53 is connected to a p-side connection electrode on the third submount 73 .
  • the p-side connection electrode on the third submount 73 is an example of a p-side connection electrode for supplying current to the third semiconductor laser chip 53 .
  • the n-side connection electrode of the third semiconductor laser chip 53 is an example of an n-side connection electrode for supplying current to the third semiconductor laser chip 53 .
  • the mounting form of the third semiconductor laser chip 53 is not limited to this, and may be mounted on the third submount 73 by junction-up mounting.
  • the third semiconductor laser chip 53 and the third submount 73 constitute a third submodule, and each of the third submodules has a p-side connection for supplying power to the third semiconductor laser chip 53. It has an electrode and an n-side connection electrode.
  • the third semiconductor laser chip 53 is mounted so that the emission surface protrudes from the end surface of the third submount 73 on the light emission side, similarly to the first semiconductor laser chip 51 and the second semiconductor laser chip 52 .
  • the polarization direction of the third light propagating from the third semiconductor laser chip 53 to the third mirror 63 is the first direction parallel to the main surface 21 .
  • the third semiconductor laser chip 53 is a semiconductor laser chip having an active layer made of a GaInN semiconductor.
  • the third semiconductor laser chip 53 oscillates in TE mode.
  • the third semiconductor laser chip 53 is mounted such that the main surface of the active layer of the third semiconductor laser chip 53 is parallel to the main surface 21 .
  • the third mirror 63 is an optical element that reflects the third light in a direction perpendicular to the main surface 21 .
  • the third mirror 63 is an element having a third reflecting surface 63a that reflects the third light from the third semiconductor laser chip 53, as shown in FIG.
  • the third mirror 63 is arranged at a position corresponding to the third lens 43 of the lid 40 .
  • the third reflecting surface 63 a is arranged to face the emission surface of the third semiconductor laser chip 53 .
  • the third mirror 63 is a plane mirror having a planar third reflecting surface 63a.
  • the third reflecting surface 63a is inclined at 45° with respect to the third optical axis direction.
  • the direction perpendicular to the third reflecting surface 63a is inclined at 45° with respect to the third optical axis direction.
  • the third light is reflected by the third reflecting surface 63a and propagates from the third mirror 63 toward the lid 40 as the third reflected light.
  • the third reflected light is divergent light.
  • the third mirror 63 is mounted on the main surface 21 of the base 20.
  • the positional relationship between the third mirror 63 and the third semiconductor laser chip 53 is the same in all the third sets 13a to 13d.
  • the distances from the emission surface of the third semiconductor laser chip 53 to the third mirror 63 are all the same, and the height of the optical axis of the third light of the third semiconductor laser chip 53 from the main surface 21 and the third reflection All the heights from the main surface 21 of the surface 63a are the same.
  • the third submount 73 is a support member arranged on the main surface 21 and on which the third semiconductor laser chip 53 is arranged.
  • the third submount 73 is arranged between the main surface 21 and the third semiconductor laser chip 53 .
  • the third submount 73 like the first submount 71, also functions as a heat sink.
  • the material and shape of the third submount 73 as well as the mounting structure on the main surface 21 are the same as those of the first submount 71 .
  • the lid 40 shown in FIGS. 1 and 2 is an optical member at least partially translucent.
  • the lid body 40 is supported by the frame member 30 and functions as a lid for the area surrounded by the frame member 30 .
  • the lid 40 is made of a translucent member such as glass.
  • the lid 40 has a plurality of first lenses 41 , a plurality of second lenses 42 and a plurality of third lenses 43 . Each lens may be integrally formed, or may be formed detachably from the lid 40 .
  • the space between the lid 40 and the frame member 30 is airtightly sealed. In this embodiment, the space between the lid 40 and the frame member 30 is airtightly sealed, but it is not necessarily airtightly sealed. Also, the lid 40 does not necessarily have to cover the entire opening of the frame member 30 .
  • the first light L11 reflected by the first mirror 61 is incident on each of the plurality of first lenses 41, as shown in FIG.
  • each of the multiple first lenses 41 receives the first reflected light L12 that is the first light L11 reflected by the first reflecting surface 61 a of the first mirror 61 .
  • each of the multiple first lenses 41 collimates the first reflected light L12 and outputs it as the first output light L13.
  • the multiple first lenses 41 are all spherical lenses having the same focal length.
  • the number of first lenses 41 is equal to the number of first sets 11a-11j. In this embodiment, the number of first lenses 41 is ten.
  • Each of the plurality of first lenses 41 is arranged at a position facing the first reflecting surface 61a. Therefore, the plurality of first lenses 41 are arranged in two rows in the second direction, similar to the plurality of first sets 11a to 11j.
  • the second light reflected by the second mirror 62 is incident on each of the plurality of second lenses 42 .
  • each of the plurality of second lenses 42 receives the second reflected light, which is the second light reflected by the second reflecting surface 62 a of the second mirror 62 .
  • each of the plurality of second lenses 42 collimates the second reflected light and outputs it as second output light.
  • the plurality of second lenses 42 are all spherical lenses having the same focal length.
  • the number of second lenses 42 is equal to the number of second sets 12a-12d. In this embodiment, the number of the plurality of second lenses 42 is four.
  • Each of the plurality of second lenses 42 is arranged at a position facing the second reflecting surface 62a. Accordingly, the plurality of second lenses 42 are arranged in a row in the second direction, similar to the plurality of second sets 12a-12d.
  • the third light reflected by the third mirror 63 is incident on each of the plurality of third lenses 43 .
  • each of the plurality of third lenses 43 receives the third reflected light, which is the third light reflected by the third reflecting surface 63 a of the third mirror 63 .
  • each of the plurality of third lenses 43 collimates the third reflected light and outputs it as third output light.
  • the multiple third lenses 43 are all spherical lenses having the same focal length.
  • the number of the plurality of third lenses 43 is equal to the number of the third sets 13a-13d. In this embodiment, the number of the plurality of third lenses 43 is four.
  • Each of the plurality of third lenses 43 is arranged at a position facing the third reflecting surface 63a. Therefore, the plurality of third lenses 43 are arranged in a row in the second direction, similar to the plurality of third sets 13a-13d.
  • the lid 40 has a lens area 44 in which a plurality of first lenses 41, a plurality of second lenses 42, and a plurality of third lenses 43 are arranged.
  • lens region 44 has a rectangular shape.
  • the lens area 44 may be defined as an arbitrary area in which the ratio of the area where each lens is arranged is 90% or more, for example.
  • the lens area 44 may be defined by an area surrounded by the envelopes of the plurality of first lenses 41 , the plurality of second lenses 42 , and the plurality of third lenses 43 .
  • FIG. 4 is a schematic diagram showing an outline of a far-field image (FFP) of the first semiconductor laser chip 51 according to this embodiment.
  • FIG. 5 is a diagram showing how the first light L11 propagates from the first semiconductor laser chip 51 according to this embodiment.
  • FIG. 5 shows a cross section passing through the first optical axis and perpendicular to the second direction. Also, in FIG. 5, the optical axes of the first light L11 and the first reflected light L12 are indicated by dashed arrows.
  • the first semiconductor laser chip 51 includes semiconductor laminates stacked in the third direction shown in FIG.
  • the first light L11 emitted from the emission surface of the first semiconductor laser chip 51 has a larger spread angle in the third direction parallel to the stacking direction than in the second direction perpendicular to the stacking direction.
  • the axis along the third direction in which the spread angle of the first light L11 is large is the fast axis Af
  • the axis parallel to the second direction perpendicular to the first optical axis and the fast axis Af of the first light L11 is the slow axis As. is.
  • the polarization direction is parallel to the fast axis Af.
  • the polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 is parallel to the third direction.
  • the fast axis Af and the polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 are perpendicular to the main surface 21 of the base 20 .
  • Such first light L11 is reflected by the first reflecting surface 61a of the first mirror 61 and propagates in the third direction perpendicular to the main surface 21 as the first reflected light L12.
  • the direction of the fast axis Af also changes.
  • the fast axis Af of the first reflected light L12 is parallel to the first direction as shown in FIG. Since the polarization direction of the first reflected light L12 is parallel to the fast axis Af, it is parallel to the first direction.
  • FIG. 6 is a diagram showing how the second light L21 propagates from the second semiconductor laser chip 52 according to this embodiment.
  • FIG. 6 shows a cross section passing through the second optical axis and perpendicular to the first direction. Also, in FIG. 6, the optical axes of the second light L21 and the second reflected light L22 are indicated by dashed arrows.
  • the second semiconductor laser chip 52 includes semiconductor laminates stacked in the third direction.
  • the second light L21 emitted from the emission surface of the second semiconductor laser chip 52 has a larger spread angle in the third direction parallel to the stacking direction than in the second direction perpendicular to the stacking direction.
  • the axis along the third direction in which the spread angle of the second light L21 is large is the fast axis Af, and the axis parallel to the first direction perpendicular to the second optical axis and the fast axis Af of the second light L21 is the slow axis As. is.
  • the second semiconductor laser chip 52 which is a green semiconductor laser chip, the polarization direction is parallel to the slow axis As.
  • the polarization direction of the second light L21 propagating from the second semiconductor laser chip 52 to the second mirror 62 is parallel to the first direction.
  • the polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 and the polarization direction of the second light L21 propagating from the second semiconductor laser chip 52 to the second mirror 62 are , are orthogonal.
  • the slow axis As and the polarization direction of the second light L21 propagating from the second semiconductor laser chip 52 to the second mirror 62 are parallel to the main surface 21 of the base 20 .
  • Such second light L21 is reflected by the second reflecting surface 62a of the second mirror 62 and propagates in the third direction perpendicular to the main surface 21 as the second reflected light L22.
  • the direction of the fast axis Af changes, but the direction of the slow axis As does not change.
  • the slow axis As of the second reflected light L22 is parallel to the first direction as shown in FIG. Since the polarization direction of the second reflected light L22 is parallel to the slow axis As, it is parallel to the first direction.
  • the slow axis As and the polarization direction of the third light emitted from the third semiconductor laser chip 53 are parallel to the first direction, similarly to the second semiconductor laser chip 52.
  • the polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 and the polarization direction of the third light propagating from the third semiconductor laser chip 53 to the third mirror 63 are Orthogonal.
  • the third light is reflected by the third reflecting surface 63a of the third mirror 63 and propagates in the third direction perpendicular to the main surface 21 as the third reflected light.
  • the direction of the fast axis Af changes, but the direction of the slow axis As does not change. is parallel to the first direction.
  • the polarization directions of the first reflected light, the second reflected light, and the third reflected light are all parallel to the first direction.
  • the polarization directions of the first output light, the second output light, and the third output light are all parallel to the first direction.
  • the plurality of first semiconductor laser chips 51, the plurality of second semiconductor laser chips 52, and the plurality of third semiconductor laser chips 53 emit light. Therefore, high-power light is emitted from the multi-wavelength light source module including only the single first semiconductor laser chip 51, the single second semiconductor laser chip 52, and the single third semiconductor laser chip 53. can.
  • the multi-wavelength light source module 10 can emit light with uniform polarization directions and high power.
  • a multi-wavelength light source module 10 is suitable, for example, as a light source for a time-resolved projector with a single liquid crystal.
  • the multi-wavelength light source module 10 it is possible to obtain light with the same polarization direction, so it is possible to reduce light loss that occurs when the light from the multi-wavelength light source module 10 is filtered by the polarizing filter.
  • high-power light can be obtained, so that a time-resolved projector capable of projecting a brighter image can be realized.
  • the first light L11 has a beam diameter larger in the direction of the fast axis Af than in the direction of the slow axis As.
  • the first reflected light L12 also has a larger beam diameter in the direction of the fast axis Af than in the direction of the slow axis As. Therefore, as shown in FIGS. 1 and 3, the dimension in the direction of the slow axis As (that is, the second direction) of the first lens 41 on which the first reflected light L12 is incident is the direction of the fast axis Af (that is, the first direction).
  • the width in the second direction of each of the plurality of first lenses 41 may be smaller than the width in the first direction.
  • the ratio of the dimension in the fast axis Af direction and the dimension in the slow axis As direction of the first reflected light L12 of the first lens 41 is, for example, about 2:1 to 6:1.
  • the dimension of the first lens 41 in the direction of the slow axis As can be reduced.
  • the second lens 42 and the third lens 43 may also have smaller dimensions in the direction of the slow axis As of the second reflected light and the third reflected light, respectively. That is, the width in the first direction of each of the plurality of second lenses 42 may be smaller than the width in the second direction. Also, the width in the first direction of each of the plurality of third lenses 43 may be smaller than the width in the second direction.
  • the dimensions in the second direction of the first lens 41, the second lens 42 and the third lens 43 are different.
  • the number of the first lenses 41 arranged in a row in the second direction is the number of the second lenses 42 arranged in a row in the second direction, and the number of the third lenses 42 arranged in a row in the second direction. It may differ from the number of lenses 43 .
  • FIG. 7 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 10 according to this embodiment.
  • FIG. 7 shows a plan view of the multi-wavelength light source module 10 with the cover 40 removed.
  • the frame member 30 includes two first positive current terminals 91p for supplying current to each set arranged inside the frame member 30 from the outside of the frame member 30, and two positive current terminals 91p. a first negative current terminal 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, and a third negative current terminal 93n. Two first positive current terminals 91p, one second positive current terminal 92p, and one third positive current terminal 93p are connected to one end of the frame member 30 in the second direction (see FIG. 7). left end).
  • Each current terminal is a conductive member penetrating from the outside to the inside of the frame member 30 . If the frame member 30 is made of a conductive material, each current terminal and the frame member 30 are electrically insulated. A current is supplied to each semiconductor laser chip from the outside of the multi-wavelength light source module 10 using each of these current terminals.
  • the multi-wavelength light source module 10 includes four first set relay members 81, one second set relay member 82, and one third set relay member 83. further provide.
  • the first set relay member 81 is a member arranged at a position adjacent to the plurality of first sets 11a to 11j. In the present embodiment, the four first set relay members 81 are respectively arranged at positions adjacent to the first sets 11a, 11e, 11f, and 11j in the second direction.
  • the first set relay member 81 includes a conductive member 81e.
  • the configuration of the conductive member 81e is not particularly limited. For example, an Au film or the like can be used as the conductive member 81e.
  • the first set relay member 81 further includes an insulating member 81d.
  • the insulating member 81 d is a member containing an insulating material and arranged on the main surface 21 of the base 20 .
  • the insulating member 81d is not particularly limited as long as it can maintain electrical insulation between the base 20 and the conductive member 81e.
  • As the insulating member 81d for example, an insulating material such as AlN, SiC, SiN, or alumina can be used.
  • the conductive member 81e is arranged on the main surface 21 of the base 20 via the insulating member 81d. Thereby, electrical insulation between the conductive member 81e and the base 20 can be maintained.
  • the conductive member 81e is arranged on the upper surface of the insulating member 81d and joined to the base 20 with a metal-based joining material.
  • the second set relay member 82 is a member arranged at a position adjacent to the plurality of second sets 12a to 12d.
  • the second set relay member 82 is arranged adjacent to the plurality of second sets 12a to 12d in the first direction, and includes a plurality of conductive members 82e1 to 82e5.
  • the material of each of the conductive members 82e1 to 82e5 is the same as that of the conductive member 81e.
  • the second set relay member 82 further includes an insulating member 82d.
  • the insulating member 82 d is a member containing an insulating material and arranged on the main surface 21 of the base 20 .
  • the configuration of the insulating member 82d is similar to that of the insulating member 81d.
  • the insulating member 82d has an elongated shape extending in the second direction.
  • a plurality of conductive members 82e1 to 82e5 are arranged electrically insulated from each other on the upper surface of the insulating member 82d.
  • a plurality of conductive members 82e1 to 82e5 are arranged in the second direction.
  • the conductive member 82e1 is positioned adjacent to the second positive current terminal 92p and the second set 12a.
  • the conductive member 82e2 is arranged at a position adjacent to the second set 12a and the second set 12b.
  • the conductive member 82e3 is arranged at a position adjacent to the second set 12b and the second set 12c.
  • the conductive member 82e4 is arranged at a position adjacent to the second set 12c and the second set 12d.
  • the conductive member 82e5 is positioned adjacent to the second set 12d and the second negative current terminal 92n.
  • the second set relay member 82 may include a plurality of insulating members.
  • the second set relay member 82 may include a plurality of insulating members in which the plurality of conductive members 82e1 to 82e5 are respectively arranged.
  • the third set relay member 83 is a member arranged at a position adjacent to the plurality of third sets 13a to 13d.
  • the third set relay member 83 is arranged adjacent to the plurality of third sets 13a to 13d in the first direction, and includes a plurality of conductive members 83e1 to 83e5.
  • the material of each of the conductive members 83e1 to 83e5 is the same as that of the conductive member 81e.
  • the third set relay member 83 further includes an insulating member 83d.
  • the insulating member 83 d is a member containing an insulating material and arranged on the main surface 21 of the base 20 .
  • the configuration of the insulating member 83d is the same as the configuration of the insulating member 81d.
  • the insulating member 83d has an elongated shape extending in the second direction.
  • a plurality of conductive members 83e1 to 83e5 are arranged electrically insulated from each other on the upper surface of the insulating member 83d.
  • the plurality of conductive members 83e1 to 83e5 are arranged in the second direction.
  • the conductive member 83e1 is positioned adjacent to the third positive current terminal 93p and the third set 13a.
  • the conductive member 83e2 is arranged at a position adjacent to the third set 13a and the third set 13b.
  • the conductive member 83e3 is arranged at a position adjacent to the third set 13b and the third set 13c.
  • the conductive member 83e4 is arranged at a position adjacent to the third set 13c and the third set 13d.
  • the conductive member 83e5 is positioned adjacent to the third set 13d and the third negative current terminal 93n.
  • the third set relay member 83 may include a plurality of insulating members.
  • the third set relay member 83 may include a plurality of insulating members in which the plurality of conductive members 83e1 to 83e5 are respectively arranged.
  • a plurality of first sets 11a to 11j are electrically connected in series using a plurality of first wires W1.
  • the first wire W1 is a conductive wire.
  • the first wire W1 is not particularly limited as long as it is a conductive wire.
  • the first wire W1 is a wire containing Au.
  • the n-side connection electrode (not shown) of the first semiconductor laser chip 51 of the first set 11a and the p-side connection electrode 71e formed on the adjacent first submount 71 of the first set 11b are connected by one or more first wires W1.
  • the p-side connection electrode 71 e is electrically connected to a p-side electrode (not shown) of the first semiconductor laser chip 51 mounted on the first submount 71 .
  • the n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11a and the p-side electrodes of the first semiconductor laser chips 51 of the first set 11b are electrically connected.
  • the electrodes 71e are electrically connected to each other.
  • the n-side connection electrodes of the first semiconductor laser chips 51 of the first sets 11f, 11g, 11h and 11i and the p-side connections of the first submounts 71 of the first sets 11g, 11h, 11i and 11j adjacent to each other The electrodes 71e are electrically connected to each other.
  • the first positive current terminal 91p which is one of the two first positive current terminals 91p, and the p-side connection electrode 71e of the first set 11a are connected by a first wire W1 and one relay member 81 for the first set. and are electrically connected.
  • the single first set relay member 81 is arranged at a position adjacent to the first positive current terminal 91p and the first set 11a. A portion of the first positive electrode current terminal 91p located within the region surrounded by the frame member 30 and the conductive member 81e of the first set relay member 81 are connected by using one or more first wires W1. electrically connected.
  • the conductive member 81e of the first set relay member 81 and the p-side connection electrode 71e of the first set 11a are electrically connected using one or more first wires W1.
  • the other first positive current terminal 91p of the two first positive current terminals 91p and the p-side connection electrode 71e of the first set 11f are connected to one first set relay member 81 and the first set 11f. It is electrically connected using a wire W1.
  • One first negative current terminal 91n of the two first negative current terminals 91n and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11e are combined into one first set relay member 81. and the first wire W1.
  • the single first set relay member 81 is arranged at a position adjacent to the first negative current terminal 91n and the first set 11e.
  • a portion of the first negative current terminal 91n located within the region surrounded by the frame member 30 and the conductive member 81e of the first set relay member 81 are connected by using one or more first wires W1. electrically connected.
  • the conductive member 81e of the relay member 81 for the first set and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11e are electrically connected using one or more first wires W1.
  • the other first negative current terminal 91n of the two first negative current terminals 91n and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11j are combined into one for the first set. They are electrically connected using the relay member 81 and the first wire W1.
  • current can be supplied from one first positive current terminal 91p and one first negative current terminal 91n to the five first sets 11a to 11e electrically connected in series.
  • current can be supplied from one first positive current terminal 91p and one first negative current terminal 91n to the five first sets 11f to 11j electrically connected in series.
  • the plurality of second sets 12a to 12d are electrically connected in series using the plurality of second wires W2 and the relay member 82 for the second set.
  • the second wire W2 has the same configuration as the first wire W1.
  • the n-side connection electrodes (not shown) of the second semiconductor laser chips 52 of the second set 12a and the p-side connection electrodes 72e formed on the second submount 72 of the second set 12b are electrically connected using one or more second wires W2 and the conductive member 82e2 of the relay member 82 for the second set.
  • the n-side connection electrodes (not shown) of the second semiconductor laser chips 52 of the second set 12a and the conductive member 82e2 are connected by one or more second wires W2.
  • the conductive member 82e2 and the p-side connection electrode 72e of the second set 12b are connected by one or more second wires W2.
  • the p-side connection electrode 72 e is electrically connected to the p-side electrode (not shown) of the second semiconductor laser chip 52 mounted on the second submount 72 .
  • the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12a and the p-side electrodes of the second semiconductor laser chips 52 of the second set 12b are electrically connected.
  • the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12b and the p-side electrodes of the second semiconductor laser chips 52 of the second set 12c are connected to the second wire W2 and the conductive member 82e3.
  • n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12c and the p-side electrodes of the second semiconductor laser chips 52 of the second set 12d are connected using a second wire W2 and a conductive member 82e4. electrically connected.
  • the second positive electrode current terminal 92p and the p-side connection electrode 72e of the second set 12a are electrically connected using the second wire W2 and the relay member 82 for the second set.
  • the portion of the second positive electrode current terminal 92p located within the region surrounded by the frame member 30 and the conductive member 82e1 of the second set relay member 82 are one or more second terminals. They are electrically connected using a wire W2.
  • the conductive member 82e1 and the p-side connection electrode 72e of the second set 12a are electrically connected using one or more second wires W2.
  • the second negative electrode current terminal 92n and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12d are electrically connected using the second wire W2 and the relay member 82 for the second set. .
  • the portion of the second negative electrode current terminal 92n located within the region surrounded by the frame member 30 and the conductive member 82e5 of the second set relay member 82 are combined into one or more second terminals. They are electrically connected using a wire W2.
  • the conductive member 82e5 and the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12d are electrically connected using one or more second wires W2.
  • the plurality of third sets 13a to 13d are electrically connected in series using the plurality of third wires W3 and the relay member 83 for the third set.
  • the third wire W3 has the same configuration as the first wire W1.
  • the n-side connection electrode (not shown) of the third semiconductor laser chip 53 of the third set 13a and the p-side connection electrode 73e formed on the third submount 73 of the third set 13b are electrically connected using one or more third wires W3 and the conductive member 83e2 of the relay member 83 for the third set.
  • the n-side connection electrode (not shown) of the third semiconductor laser chip 53 of the third set 13a and the conductive member 83e2 are connected by one or more third wires W3.
  • the conductive member 83e2 and the p-side connection electrode 73e of the third set 13b are connected by one or more third wires W3.
  • the p-side connection electrode 73 e is electrically connected to a p-side electrode (not shown) of the third semiconductor laser chip 53 mounted on the third submount 73 .
  • the n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13a and the p-side electrodes of the third semiconductor laser chips 53 of the third set 13b are electrically connected.
  • the n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13b and the p-side electrodes of the third semiconductor laser chips 53 of the third set 13c are connected to the third wire W3 and the conductive member 83e3. are electrically connected using The n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13c and the p-side electrodes of the third semiconductor laser chips 53 of the third set 13d are connected using the third wire W3 and the conductive member 83e4. electrically connected.
  • the third positive current terminal 93p and the p-side connection electrode 73e of the third set 13a are electrically connected using the third wire W3 and the relay member 83 for the third set.
  • the portion of the third positive electrode current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 83e1 of the relay member 83 for the third set are connected to one or more third terminals. They are electrically connected using a wire W3.
  • the conductive member 83e1 and the p-side connection electrode 73e of the third set 13a are electrically connected using one or more third wires W3.
  • the third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13d are electrically connected using the third wire W3 and the relay member 83 for the third set. .
  • the portion of the third negative electrode current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 83e5 of the relay member 83 for the third set are combined into one or more third terminals. They are electrically connected using a wire W3.
  • the conductive member 83e5 and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13d are electrically connected using one or more third wires W3.
  • the plurality of second sets 12a-12d are arranged in the second direction, and the second optical axis of each of the plurality of second sets 12a-12d is parallel to the second direction.
  • the second mirror 62 is arranged between two adjacent second semiconductor laser chips 52 . Therefore, the second wire W2 for electrically connecting two adjacent second semiconductor laser chips 52, the second mirror 62 and the second light may interfere with each other.
  • two second semiconductor lasers adjacent to the plurality of second sets 12a to 12d are provided via the second set relay member 82 arranged at a position adjacent to the plurality of second sets 12a to 12d in the first direction. Since the chip 52 is electrically connected, interference between the second wire W2, the second mirror 62, and the second light can be suppressed.
  • the second set relay member 82 it is possible to reduce the amount of the second wire W2 used.
  • the second wire W2 contains Au as in the present embodiment, the cost can be reduced by reducing the amount of the second wire W2 used.
  • the second set relay member 82 and the conductive members 82e2 to 82e5 are arranged at positions adjacent to the second mirror 62 in the first direction.
  • two adjacent second semiconductor laser chips 52 can be electrically connected bypassing the second mirror 62, so that the second wire W2 can be connected more reliably. , the interference with the second mirror 62 and the second light can be suppressed.
  • the third wire W3 and the third set relay member 83 similarly to the plurality of second sets 12a to 12d, by using the third wire W3 and the third set relay member 83, the third wire W3 and the third set Interference with the mirror 63 and the third light can be suppressed.
  • the third set relay member 83 and the conductive members 83e2 to 83e5 are arranged at positions adjacent to the third mirror 63 in the first direction. By using such conductive members 83e2 to 83e5, interference between the third wire W3, the third mirror 63, and the third light can be suppressed more reliably.
  • Embodiment 2 A multi-wavelength light source module according to Embodiment 2 will be described.
  • the multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 10 according to the first embodiment mainly in the arrangement directions of the second set and the third set.
  • the multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 8, focusing on differences from the multi-wavelength light source module 10 according to the first embodiment.
  • FIG. 8 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 110 according to this embodiment.
  • FIG. 8 shows a plan view of the multi-wavelength light source module 110 with the lid removed.
  • the multi-wavelength light source module 110 includes a base 20, a plurality of first sets 11a-11h, and a plurality of second sets 12a-12d.
  • the multi-wavelength light source module 110 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 182a and 182b, and third set relay members 183a and 183b.
  • the multi-wavelength light source module 110 further includes lids having lenses arranged at positions corresponding to each set, as in the multi-wavelength light source module 10 according to the first embodiment. .
  • the plurality of first sets 11a to 11h according to the present embodiment are different in number from the first sets 11a to 11j according to the first embodiment, but have the same configuration except for the number.
  • the second optical axis of each of the plurality of second sets 12a-12d is parallel to the second direction, as in the first embodiment.
  • the plurality of second sets 12a-12d are arranged in a row in the first direction.
  • a plurality of second sets 12a-12d are electrically connected in series using a second wire W2.
  • a relay member or the like is not used between the two adjacent second semiconductor laser chips 52. They are electrically connected only by the second wire W2. As a result, the usage of the intermediate member and the second wire W2 can be reduced.
  • the second positive electrode current terminal 92p and the p-side connection electrode 72e of the second set 12d are electrically connected using the second wire W2 and the second set relay member 182b.
  • the second set relay member 182b is arranged at a position adjacent to the second set 12d in the second direction.
  • the second set relay member 182b includes a conductive member 182e2 and an insulating member 182d2.
  • the conductive member 182e2 is arranged on the upper surface of the insulating member 182d2.
  • a portion of the second positive electrode current terminal 92p located within the region surrounded by the frame member 30 and the conductive member 182e2 of the second set relay member 182b are connected using one or more second wires W2. electrically connected. Also, the conductive member 182e2 and the p-side connection electrode 72e of the second set 12d are electrically connected using one or more second wires W2.
  • the second negative electrode current terminal 92n and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12a are electrically connected using the second wire W2 and the second set relay member 182a.
  • the second set relay member 182a is arranged at a position adjacent to the second set 12a in the first direction.
  • the second set relay member 182a includes a conductive member 182e1 and an insulating member 182d1.
  • the conductive member 182e1 is arranged on the upper surface of the insulating member 182d1.
  • a portion of the second negative current terminal 92n located within the region surrounded by the frame member 30 and the conductive member 182e1 of the second set relay member 182a are connected by using one or more second wires W2. electrically connected. Also, the conductive member 182e1 and the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12a are electrically connected using one or more second wires W2. In this way, by using the second set relay member 182a adjacent to the second set 12a in the first direction, the usage amount of the second wire W2 can be reduced.
  • the third optical axis of each of the plurality of third sets 13a-13d is parallel to the second direction, as in the first embodiment.
  • the plurality of third sets 13a-13d are arranged in a row in the first direction.
  • the plurality of third sets 13a-13d are electrically connected in series using a third wire W3.
  • a relay member or the like is not used between the two adjacent third semiconductor laser chips 53. They are electrically connected only by the third wire W3. As a result, the usage of the intermediate member and the third wire W3 can be reduced.
  • the third positive current terminal 93p and the p-side connection electrode 73e of the third set 13d are electrically connected using the third wire W3 and the third set relay member 183b.
  • the third set relay member 183b is arranged at a position adjacent to the third set 13d in the first direction.
  • the third set relay member 183b includes a conductive member 183e2 and an insulating member 183d2.
  • the conductive member 183e2 is arranged on the upper surface of the insulating member 183d2.
  • a portion of the third positive current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 183e2 of the relay member 183b for the third set are connected using one or more third wires W3. electrically connected. Also, the conductive member 183e2 and the p-side connection electrode 73e of the third set 13d are electrically connected using one or more third wires W3. In this way, by using the third set relay member 183b adjacent to the third mirror 63 of the third set 13d in the first direction, the third wire W3, the third mirror 63 of the third set 13d and the third Interference with light can be suppressed. In addition, the usage of the third wire W3 can be reduced.
  • the third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13a are electrically connected using the third wire W3 and the third set relay member 183a.
  • the third set relay member 183a is arranged at a position adjacent to the third set 13a in the first direction.
  • the third set relay member 183a includes a conductive member 183e1 and an insulating member 183d1.
  • the conductive member 183e1 is arranged on the upper surface of the insulating member 183d1.
  • a portion of the third negative current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 183e1 of the third set relay member 183a are connected by using one or more third wires W3. electrically connected. Also, the conductive member 183e1 and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13a are electrically connected using one or more third wires W3. In this way, by using the third set relay member 183a adjacent to the third mirror 63 of the third set 13a in the first direction, the third wire W3, the third mirror 63 of the third set 13a and the third Interference with light can be suppressed. In addition, the usage of the third wire W3 can be reduced.
  • the polarization directions are aligned and high-power light can be emitted. .
  • Embodiment 3 A multi-wavelength light source module according to Embodiment 3 will be described.
  • the multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 110 according to the second embodiment mainly in the arrangement of the third set 13a-13d.
  • the multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 9, focusing on differences from the multi-wavelength light source module 110 according to the second embodiment.
  • FIG. 9 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 210 according to this embodiment.
  • FIG. 9 shows a plan view of the multi-wavelength light source module 210 with the lid removed.
  • the multi-wavelength light source module 210 includes a base 20, a plurality of first sets 11a-11h, and a plurality of second sets 12a-12d.
  • the multi-wavelength light source module 210 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 182a and 182b, and third set relay members 183c and 183d.
  • the multi-wavelength light source module 210 further includes lids having lenses arranged at positions corresponding to each set, as in the multi-wavelength light source module 10 according to the first embodiment. .
  • the third semiconductor laser chip 53 is closer to the end of the main surface 21 than the third mirror 63 in the direction of the third optical axis. placed in In other words, the third semiconductor laser chip 53 emits the third light from the outside to the inside of the area on the main surface 21 .
  • the third mirror 63 is not arranged between the third positive current terminal 93p and the third negative current terminal 93n arranged at the end of the main surface 21 and the third semiconductor laser chip 53 . Therefore, it is possible to suppress interference between the third wire W3 connecting each current terminal and the third semiconductor laser chip 53, the third mirror 63, and the third light.
  • the third positive current terminal 93p according to the present embodiment and the p-side connection electrode 73e of the third set 13d are electrically connected using the third wire W3 and the third set relay member 183d.
  • the third set relay member 183d is arranged at a position adjacent to the third set 13d in the second direction.
  • the third set relay member 183d includes a conductive member 183e4 and an insulating member 183d4.
  • the conductive member 183e4 is arranged on the upper surface of the insulating member 183d4.
  • a portion of the third positive electrode current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 183e4 of the third set relay member 183d are connected by using one or more third wires W3. electrically connected. Also, the conductive member 183e4 and the p-side connection electrode 73e of the third set 13d are electrically connected using one or more third wires W3.
  • the third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13a are electrically connected using the third wire W3 and the third set relay member 183c.
  • the third set relay member 183c is arranged at a position adjacent to the third set 13a in the first direction.
  • the third set relay member 183c includes a conductive member 183e3 and an insulating member 183d3.
  • the conductive member 183e3 is arranged on the upper surface of the insulating member 183d3.
  • a portion of the third negative current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 183e3 of the third set relay member 183c are connected by using one or more third wires W3. electrically connected. Also, the conductive member 183e3 and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13a are electrically connected using one or more third wires W3. In this way, by using the third set relay member 183c adjacent to the third set 13a in the first direction, the usage amount of the third wire W3 can be reduced.
  • the third semiconductor laser chip 53 is arranged closer to the end of the main surface 21 than the third mirror 63 in the direction of the third optical axis. Therefore, it is possible to suppress interference between the third wire W3 connecting each current terminal and the third semiconductor laser chip 53, the third mirror 63, and the third light. Also, the third set relay members 183c and 183d can be made smaller.
  • the second semiconductor laser chip 52 is located closer to the second mirror 62 than the second mirror 62 in the direction of the second optical axis. , are arranged near the edge of the main surface 21 . This can suppress interference between the second wire W2 connecting each current terminal and the second semiconductor laser chip 52, the second mirror 62, and the second light.
  • the polarization directions are aligned and high-power light can be emitted. .
  • Embodiment 4 A multi-wavelength light source module according to Embodiment 4 will be described.
  • the multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 10 according to the first embodiment mainly in the arrangement of the second sets 12a-12d and the third sets 13a-13d.
  • the multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 10, focusing on differences from the multi-wavelength light source module 10 according to the first embodiment.
  • FIG. 10 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 310 according to this embodiment.
  • FIG. 10 shows a plan view of the multi-wavelength light source module 310 with the lid removed.
  • a multi-wavelength light source module 310 includes a base 20, a plurality of first sets 11a-11j, and a plurality of second sets 12a-12d.
  • the multi-wavelength light source module 310 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 382a to 382c, and third set relay members 383a to 383c.
  • the multi-wavelength light source module 310 further includes lids having lenses arranged at positions corresponding to the respective sets, as in the multi-wavelength light source module 10 according to the first embodiment. .
  • the second set relay member 382a includes a conductive member 382e1 and an insulating member 382d1.
  • the conductive member 382e1 is arranged on the upper surface of the insulating member 382d1.
  • the second set relay member 382a is arranged at a position adjacent to the second set 12a in the first direction.
  • the second set relay member 382a is arranged at a position adjacent to the second positive electrode current terminal 92p.
  • the second set relay member 382b includes a conductive member 382e2 and an insulating member 382d2.
  • the conductive member 382e2 is arranged on the upper surface of the insulating member 382d2.
  • the second set relay member 382b extends in the second direction and is arranged at a position adjacent to the second sets 12b, 12c, and the third set 13a in the first direction via the third set relay member 383a. be done.
  • the second set relay member 382c includes a conductive member 382e3 and an insulating member 382d3.
  • the conductive member 382e3 is arranged on the upper surface of the insulating member 382d3.
  • the second set relay member 382c extends in the second direction and is arranged at a position adjacent to the second set 12d and the third set 13c in the first direction.
  • the second set relay member 382c is arranged at a position adjacent to the second negative current terminal 92n.
  • the third set relay member 383a includes a conductive member 383e1 and an insulating member 383d1.
  • the conductive member 383e1 is arranged on the upper surface of the insulating member 383d1.
  • the third set relay member 383a extends in the second direction and is arranged at a position adjacent to the second set 12b and the third set 13a in the first direction. Also, the third set relay member 383a is arranged at a position adjacent to the third positive electrode current terminal 93p.
  • the third set relay member 383b includes a conductive member 383e2 and an insulating member 383d2.
  • the conductive member 383e2 is arranged on the upper surface of the insulating member 383d2.
  • the third set relay member 383b extends in the second direction and is arranged at a position adjacent to the second set 12d, the third sets 13b and 13c in the first direction via the second set relay member 382c. be.
  • the third set relay member 383c includes a conductive member 383e3 and an insulating member 383d3.
  • the conductive member 383e3 is arranged on the upper surface of the insulating member 383d3.
  • the third set relay member 383c extends in the second direction and is arranged at a position adjacent to the third set 13d in the first direction. Also, the third set relay member 383c is arranged at a position adjacent to the third negative current terminal 93n.
  • the plurality of second sets 12a to 12d and the plurality of third sets are alternately arranged in the second direction.
  • a second set 12a, a third set 13b, a second set 12d, and a third set 13c are arranged in this order in the second direction.
  • a second set 12b, a third set 13a, a second set 12c, and a third set 13d are arranged in this order in the second direction.
  • the second sets 12a and 12b are arranged in the first direction, and the second sets 12c and 12d are arranged in the first direction.
  • the third sets 13a and 13b are arranged in a first direction and the third sets 13c and 13d are arranged in the first direction.
  • at least two second sets among the plurality of second sets 12a-12d may be arranged in the first direction.
  • At least two third sets among the plurality of third sets 13a-13d may be arranged in the first direction.
  • the second sets 12a-12d are electrically connected in series using the second wire W2 and the second set relay members 382a-382c.
  • the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12a and the p-side connection electrodes 72e of the second set 12b are connected by one or more second wires W2.
  • the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12b and the conductive members 382e2 of the relay members 382b for the second set are connected by one or more second wires W2.
  • the second wire W2 passes above the third set relay member 383a (that is, straddles the third set relay member 383a).
  • the third set relay member 383a is arranged between the second wire W2 and the main surface 21 . Therefore, the third set relay member 383a may be lower in height from the main surface 21 than the second set relay member 382b. This can suppress interference between the second wire W2 and the third set relay member 383a.
  • the conductive member 382e2 of the second set relay member 382b and the p-side connection electrode 72e of the second set 12c are connected by one or more second wires W2.
  • the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12c and the p-side connection electrodes 72e of the second set 12d are connected by one or more second wires W2.
  • the plurality of second sets 12a to 12d includes two second sets 12b and 12c adjacent in the second direction.
  • the second set relay member 382b is arranged at a position adjacent to the two second sets 12b and 12c in the first direction.
  • the n-side connection electrodes of the second semiconductor laser chip 52 of the second set 12b, one of the two second sets 12b and 12c, are combined with the p-side connection electrode 72e of the second set 12b. It is arranged between the relay member 382b and electrically connected to the second set relay member 382b using one or more second wires W2.
  • the p-side connection electrode 72e of the other second set 12c of the two second sets 12b and 12c is the n-side connection electrode of the second semiconductor laser chip 52 of the other second set 12c. It is arranged between the setting relay member 382b and electrically connected to the second setting relay member 382b.
  • the second positive electrode current terminal 92p and the p-side connection electrode 72e of the second set 12a are electrically connected using the second wire W2 and the second set relay member 382a. Specifically, the portion of the second positive electrode current terminal 92p located within the region surrounded by the frame member 30 and the conductive member 382e1 of the second set relay member 382a are combined into one or more second positive current terminals 92p. They are electrically connected using a wire W2. Also, the conductive member 382e1 and the p-side connection electrode 72e of the second set 12a are electrically connected using one or more second wires W2.
  • the second negative electrode current terminal 92n and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12d are electrically connected using the second wire W2 and the second set relay member 382c. .
  • the portion of the second negative electrode current terminal 92n located within the region surrounded by the frame member 30 and the conductive member 382e3 of the second set relay member 382c are combined into one or more second terminals. They are electrically connected using a wire W2.
  • the conductive member 382e3 and the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12d are electrically connected using one or more second wires W2.
  • the plurality of second sets 12a to 12d are electrically connected in series. Further, current can be supplied to the second set of four electrically connected in series 12a-12d from the second positive current terminal 92p and the second negative current terminal 92n. Further, by using the second set relay member 382b adjacent to the second sets 12b and 12c in the first direction and the second set relay member 382c adjacent to the second set 12d in the first direction, the second The usage amount of the wire W2 can be reduced. Further, the second set relay member 382b is arranged at a position adjacent to the second mirror 62 of the second set 12b in the first direction.
  • the second set relay member 382c is arranged at a position adjacent to the second mirror 62 of the second set 12d in the first direction.
  • the second semiconductor laser chips 52 of the second set 12b and the second semiconductor laser chips 52 of the second set 12c are electrically connected bypassing the second mirror 62.
  • the second semiconductor laser chip 52 and the second negative current terminal 92n can be electrically connected bypassing the second mirror 62.
  • FIG. Therefore, interference between the second wire W2, the second mirror 62, and the second light can be suppressed.
  • the third sets 13a-13d are electrically connected in series using the third wire W3 and the third set relay members 383a-383c.
  • the n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13a and the p-side connection electrodes 73e of the third set 13b are connected by one or more third wires W3.
  • the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13b and the conductive member 383e2 of the relay member 383b for the third set are connected by one or more third wires W3.
  • the conductive member 383e2 of the relay member 383b for the third set and the p-side connection electrode 73e of the third set 13c are connected by one or more third wires W3.
  • the n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13c and the p-side connection electrodes 73e of the third set 13d are connected by one or more third wires W3.
  • the third wire W3 passes above the second set relay member 382c (that is, straddles the second set relay member 382c).
  • the second set relay member 382c is arranged between the third wire W3 and the main surface 21 . Therefore, the second set relay member 382c may be lower in height from the main surface 21 than the third set relay member 383b. Thereby, interference between the third wire W3 and the second set relay member 382c can be suppressed.
  • the plurality of third sets 13a to 13d includes two third sets 13b and 13c adjacent in the second direction.
  • the third set relay member 383b is arranged at a position adjacent to the two third sets 13b and 13c in the first direction.
  • the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13b, one of the two third sets 13b and 13c, is connected to the p-side connection electrode 73e of the third set 13b. It is arranged between the relay member 383b and electrically connected to the third set relay member 383b using one or more third wires W3.
  • the p-side connection electrode 73e of the other third set 13c of the two third sets 13b and 13c is the n-side connection electrode of the third semiconductor laser chip 53 of the other third set 13c. It is arranged between the setting relay member 383b and electrically connected to the third set relay member 383b.
  • the third positive current terminal 93p and the p-side connection electrode 73e of the third set 13a are electrically connected using the third wire W3 and the third set relay member 383a.
  • the portion of the third positive electrode current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 383e1 of the relay member 383a for the third set are connected to one or more third terminals. They are electrically connected using a wire W3.
  • the conductive member 383e1 and the p-side connection electrode 73e of the third set 13a are electrically connected using one or more third wires W3.
  • the third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13d are electrically connected using the third wire W3 and the third set relay member 383c. Specifically, the portion of the third negative electrode current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 383e3 of the relay member 383c for the third set are combined into one or more third terminals. They are electrically connected using a wire W3. Also, the conductive member 383e3 and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13d are electrically connected using one or more third wires W3.
  • the plurality of third sets 13a to 13d are electrically connected in series. Also, current can be supplied to the third set 13a-13d of four electrically connected in series from the third positive current terminal 93p and the third negative current terminal 93n. Furthermore, the third set relay members 383a and 383b are arranged at positions adjacent to the third mirrors 63 of the third sets 13a and 13c in the first direction, respectively. By using such a third set relay member 383a, it is possible to bypass the third mirror 63 and electrically connect the third positive current terminal 93p and the third semiconductor laser chip 53 of the third set 13a.
  • the third semiconductor laser chip 53 of the third set 13b and the third semiconductor laser chip 53 of the third set 13c can be electrically connected. Therefore, interference between the third wire W3, the third mirror 63, and the third light can be suppressed.
  • the polarization directions are aligned and high-power light can be emitted. .
  • Embodiment 5 A multi-wavelength light source module according to Embodiment 5 will be described.
  • the multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 310 according to the fourth embodiment mainly in the arrangement of the first set 11a-11j.
  • the multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 11, focusing on differences from the multi-wavelength light source module 310 according to the fourth embodiment.
  • FIG. 11 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 410 according to this embodiment.
  • FIG. 11 shows a plan view of the multi-wavelength light source module 410 with the cover removed.
  • a multi-wavelength light source module 410 includes a base 20, a plurality of first sets 11a-11j, and a plurality of second sets 12a-12d.
  • the multi-wavelength light source module 410 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 382a to 382c, and third set relay members 383a to 383c.
  • the multi-wavelength light source module 410 further includes lids having lenses arranged at positions corresponding to the respective sets, as in the multi-wavelength light source module 10 according to the first embodiment. .
  • the plurality of first sets 11a to 11j includes a first group including one or more first sets 11a to 11e among the plurality of first sets, and a first A second group including one or more first sets 11a-11e included in the group and one or more different first sets 11f-11j, including a plurality of second sets 12a-12d and a plurality of third sets 13a 13d are positioned between the first and second groups.
  • each of the second sets 12a to 12d and each of the third sets 13a to 13d are alternately arranged in the second direction. It is also possible to suppress the bias in the intensity distribution of the light and the third light.
  • the polarization directions are aligned and high-power light can be emitted. .
  • Embodiment 6 A multi-wavelength light source module according to Embodiment 6 will be described.
  • the multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 410 according to the fifth embodiment mainly in the arrangement of the first set 11a-11e.
  • the multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 12, focusing on differences from the multi-wavelength light source module 410 according to the fourth embodiment.
  • FIG. 12 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 510 according to this embodiment.
  • FIG. 12 shows a plan view of the multi-wavelength light source module 510 with the lid removed.
  • a multi-wavelength light source module 510 includes a base 20, a plurality of first sets 11a-11j, and a plurality of second sets 12a-12d.
  • the multi-wavelength light source module 510 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 382a to 382c, and third set relay members 383a to 383c.
  • the multi-wavelength light source module 510 further includes lids having lenses arranged at positions corresponding to each set, as in the multi-wavelength light source module 10 according to Embodiment 1. .
  • the plurality of first sets 11a to 11j include one or more first sets 11a to 11e among the plurality of first sets. and a second group including one or more first sets 11f to 11j different from the one or more first sets 11a to 11e included in the first group, and a plurality of second sets 12a to 12d and a plurality of third sets 13a-13d are arranged between the first and second groups.
  • the first semiconductor laser chip 51 of each of the first sets 11a to 11j is positioned closer to the end of the main surface 21 of the base 20 than the first mirror 61 in the first direction. are placed.
  • disposing the first semiconductor laser chip 51 at a position close to the edge of the main surface 21 of the base 20 has better heat dissipation characteristics. Therefore, in this embodiment, it is possible to improve the heat dissipation characteristics of the first semiconductor laser chip 51 . Thereby, the characteristics of the first semiconductor laser chip 51 can be improved.
  • each set can be arranged symmetrically with respect to a straight line extending in the second direction. Thereby, the bias of the intensity distribution of the first light, the second light, and the third light can be further suppressed.
  • the polarization directions are aligned and high-power light can be emitted. .
  • Embodiment 7 A multi-wavelength light source module according to Embodiment 7 will be described.
  • the multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 410 according to the fifth embodiment mainly in the arrangement of each set.
  • the multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 13, focusing on differences from the multi-wavelength light source module 410 according to the fourth embodiment.
  • FIG. 13 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 610 according to this embodiment.
  • FIG. 13 shows a plan view of the multi-wavelength light source module 610 with the lid removed.
  • a multi-wavelength light source module 610 includes a base 20, a plurality of first sets 11a-11h, and a plurality of second sets 12a-12d.
  • the multi-wavelength light source module 610 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, two second positive current terminals 92p, two second negative current terminals 92n, two third positive current terminals 93p, two third negative current terminals 93n, a first wire W1, It further includes a second wire W2, a third wire W3, four first set relay members 81, second set relay members 382a to 382f, and third set relay members 383a to 383f.
  • the multi-wavelength light source module 610 further includes lids having lenses arranged at positions corresponding to each set, as in the multi-wavelength light source module 10 according to the first embodiment. .
  • the second set relay members 382d to 382f have the same configuration as the second set relay members 382a to 382c, respectively.
  • the third set relay members 383d to 383f have the same configuration as the third set relay members 383a to 383c.
  • the first sets 11a to 11d are electrically connected in series using the first wire W1 and the first set relay member 81, like the first sets 11a to 11e according to the fourth embodiment.
  • the first sets 11e to 11h are also electrically connected in series using the first wire W1 and the first set relay member 81, like the first sets 11a to 11e according to the fourth embodiment.
  • the second sets 12a and 12b are electrically connected in series using the second wire W2 and the second set relay members 382a to 382c, like the second sets 12b and 12c according to the fourth embodiment. be.
  • the second sets 12c and 12d are also electrically connected in series using the second wire W2 and the second set relay members 382d to 382f. be.
  • the third sets 13a and 13b are electrically connected in series using the third wire W3 and third set relay members 383a to 383c, like the third sets 13b and 13c according to the fourth embodiment. be.
  • the third sets 13c and 13d are also electrically connected in series using the third wire W3 and the third set relay members 383d to 383f, like the third sets 13b and 13c according to the fourth embodiment. be.
  • a multi-wavelength light source module 610 includes a plurality of units arranged in a matrix on the main surface 21 .
  • Each of the plurality of units includes at least one first set out of the plurality of first sets 11a-11h, at least one second set out of the plurality of second sets 12a-12d, and a plurality of third sets and a third set of at least one of 13a-13d.
  • the inside of the dashed frame shown in FIG. 13 corresponds to each unit.
  • the multi-wavelength light source module 610 includes units including first sets 11a and 11b, second set 12a and third set 13a, and first sets 11c and 11d, second set 12b and third set 13b.
  • the multi-wavelength light source module 610 has four units arranged in a matrix of two rows and two columns. By arranging a plurality of units in a matrix, each of which emits the first light, the second light, and the third light, the light from the multi-wavelength light source module 610 becomes the first light and the second light. , and the bias of the intensity distribution of the third light can be suppressed.
  • the first light may be emitted from the first set toward the area where the second set and the third set are arranged.
  • the first light may be emitted from the first sets 11a and 11b in a direction toward the area where the second set 12a and the third set 13a are arranged.
  • the first mirrors 61 of the first sets 11a and 11b can be brought closer to the second mirrors 62 of the second set 12a and the third mirrors 63 of the third set 13a.
  • the first light emitted from the multi-wavelength light source module 610 and the second light and the third light can be made close to each other. Therefore, the uniformity of the intensity distribution of light emitted from the multi-wavelength light source module 610 can be improved.
  • the polarization directions are aligned and high-power light can be emitted. .
  • each set of multi-wavelength light source modules 610 can also be expressed as follows.
  • the multi-wavelength light source module 610 comprises a plurality of first rows and a plurality of second rows. Each of the plurality of first rows includes a partial first set among the plurality of first sets 11a to 11h, and the partial first sets are arranged in a row.
  • the multi-wavelength light source module 610 comprises two first rows. One first row contains first sets 11a-11d arranged in a second direction, and the other first row contains first sets 11e-11h arranged in a second direction.
  • Each of the plurality of second columns includes a portion of the second sets of the plurality of second sets 12a-12d and a portion of the plurality of third sets 13a-13d of the third sets.
  • the part of the second set and the part of the third set are arranged in a row parallel to the arrangement direction of each of the plurality of first rows.
  • the multi-wavelength light source module 610 comprises two second rows.
  • One second row comprises a second set 12a and 12b and a third set 13a and 13b arranged in a second direction
  • the other first row comprises a second set arranged in a second direction.
  • Each of the plurality of first rows and each of the plurality of second rows are alternately arranged in a first direction perpendicular to the arrangement direction of each of the plurality of first rows.
  • the multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 10 according to the first embodiment mainly in the relationship between the arrangement direction of each set and the optical axis direction.
  • the multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 14, focusing on differences from the multi-wavelength light source module 110 according to the first embodiment.
  • FIG. 14 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 710 according to this embodiment.
  • FIG. 14 shows a plan view of the multi-wavelength light source module 710 with the lid removed.
  • a multi-wavelength light source module 710 includes a base 20, a plurality of first sets 11a-11c, and a plurality of second sets 12a-12c.
  • the multi-wavelength light source module 710 includes a plurality of third sets 13a-13c, a frame member 30, a first positive current terminal 91p, a first negative current terminal 91n, and a second positive current terminal 92p.
  • the multi-wavelength light source module 710 further includes lids having lenses arranged at positions corresponding to each set, like the multi-wavelength light source module 10 according to Embodiment 1. .
  • the outline of each lens included in the lid is indicated by a dashed line.
  • the second set relay member 782 and third set relay member 783 according to the present embodiment have the same configuration as the first set relay member 81 .
  • the lid according to this embodiment has three first lenses 741 , three second lenses 742 and three third lenses 743 .
  • the first optical axis of each of the first sets 11a-11c is parallel to the first direction, like the first sets 11a-11c according to the first embodiment.
  • the first direction is inclined with respect to the horizontal direction and the vertical direction of FIG.
  • the second optical axis of each of the second sets 12a-12c is parallel to the second direction, like the second sets 12a-12c according to the first embodiment.
  • the second direction is inclined with respect to the horizontal direction and the vertical direction of FIG.
  • the third optical axis of each of the third sets 13a-13c is parallel to the second direction, like the third sets 13a-13c according to the first embodiment.
  • the arrangement direction of the first sets 11a to 11c, the second sets 12a to 12c, and the third sets 13a to 13c is the horizontal direction in FIG. and inclined with respect to the second direction.
  • the arrangement direction of the first set 11a-11c is tilted with respect to the first optical axis.
  • the arrangement direction of the second sets 12a-12c is inclined with respect to the second optical axis.
  • the arrangement direction of the third sets 13a-13c is inclined with respect to the third optical axis.
  • the second mirror 62 of the second set 12a is in contact with the second submount 72 of the second set 12b adjacent to the second set 12a in the first direction.
  • a second mirror 62 of the second set 12b contacts a second submount 72 of the second set 12c adjacent to the second set 12b in the first direction.
  • the third mirror 63 of the third set 13a is in contact with the third submount 73 of the third set 13b adjacent to the third set 13a in the first direction.
  • the third mirror 63 of the third set 13b contacts the third submount 73 of the third set 13c adjacent to the third set 13b in the first direction.
  • the second sets 12b and 12c are in contact with the first sets 11a and 11b, respectively, in the first direction. Specifically, the second submount 72 of the second set 12b contacts the first mirror 61 of the first set 11a in the first direction. A second submount 72 of the second set 12c contacts the first mirror 61 of the first set 11b in a first direction.
  • the second sets 12a and 12b are in contact with the third sets 13b and 13c, respectively, in the first direction.
  • the second mirror 62 of the second set 12a contacts the third submount 73 of the third set 13b in the first direction.
  • a second mirror 62 of the second set 12b contacts a third submount 73 of the third set 13c in a first direction.
  • the gap between two adjacent sets can be reduced, so the area required for arranging each set can be further reduced.
  • the second set 12b contacts one first set 11a and one third set 13c, but two or more first sets and two or more second sets May contact with three sets. That is, at least one second set out of the plurality of second sets 12a to 12c includes at least one first set out of the plurality of first sets 11a to 11c and a plurality of third sets 13a to 13c. At least one of the third sets may be tangent in the first direction. At least one first set out of the plurality of first sets 11a to 11c includes at least one second set out of the plurality of second sets 12a to 12c and a plurality of third sets 13a to 13c. At least one of the third sets may be tangent in the first direction.
  • At least one third set out of the plurality of third sets 13a to 13c includes at least one first set out of the plurality of first sets 11a to 11c and at least one of the plurality of second sets 12a to 12c. It may be in contact with at least one second set of them in the first direction.
  • each lens of the lid may be appropriately designed according to the layout of each set as described above.
  • the shape of each of the three first lenses 741 included in the lid according to this embodiment is the shape of each of the three second lenses 742 and the shape of each of the three third lenses.
  • the shape of each of the lenses 743 is different.
  • the shape of each of the three second lenses 742 is different from the shape of each of the three third lenses 743 .
  • the first sets 11a to 11c are electrically connected in series using one or more first wires W1 and two first set relay members 81, similarly to the first sets 11a to 11e according to the first embodiment. Connected.
  • the second sets 12a-12c are electrically connected in series using one or more second wires W2 and two second set relay members 782, similar to the first sets 11a-11c.
  • the third sets 13a-13c are electrically connected in series using one or more third wires W3 and two third set relay members 783, similar to the first sets 11a-11c.
  • FIG. 14 shows the minimum number of first wire W1, second wire W2, and third wire W3 in order to avoid complication of the drawing, but the number of each wire is There may be more than the example shown in 14.
  • Embodiment 9 A multi-wavelength light source module according to Embodiment 9 will be described.
  • the multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 10 according to the first embodiment mainly in the arrangement direction of each set.
  • the multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 15, focusing on differences from the multi-wavelength light source module 10 according to the first embodiment.
  • FIG. 15 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module 810 according to the ninth embodiment.
  • FIG. 15 shows a plan view of the multi-wavelength light source module 810 with the lid removed.
  • a multi-wavelength light source module 810 includes a base 20, a plurality of first sets 11a-11h, and a plurality of second sets 12a-12e.
  • the multi-wavelength light source module 810 includes a plurality of third sets 13a-13e, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes two first set relay members 881 , two second set relay members 882 , and two third set relay members 883 .
  • the multi-wavelength light source module 810 further includes lids having lenses arranged at positions corresponding to each set, like the multi-wavelength light source module 10 according to Embodiment 1. .
  • Each of the plurality of first sets 11a to 11h according to the present embodiment includes a first semiconductor laser chip 51, a first mirror 61, and a first submount, similarly to each first set according to the first embodiment. 71.
  • the first optical axis of the first semiconductor laser chip 51 is parallel to the first direction parallel to the main surface 21, as in the first embodiment.
  • the horizontal direction in FIG. 15 is the first direction.
  • the plurality of first sets 11a-11h are arranged in a first direction. More specifically, the four first sets 11a-11d and the four first sets 11e-11h are each arranged in a row in the first direction. That is, the first sets 11a-11h are arranged in two rows in the first direction.
  • Each of the plurality of second sets 12a to 12e according to the present embodiment includes a second semiconductor laser chip 52, a second mirror 62, and a second submount, similarly to each second set according to the first embodiment. 72.
  • the second optical axis of the second semiconductor laser chip 52 is parallel to the second direction parallel to the main surface 21, as in the first embodiment.
  • the vertical direction in FIG. 15 is the second direction.
  • the second direction is a direction perpendicular to the first direction.
  • the plurality of second sets 12a-12e are arranged in a first direction. More specifically, the plurality of second sets 12a-12e are arranged in a row in the first direction.
  • Each of the plurality of third sets 13a to 13e according to the present embodiment includes a third semiconductor laser chip 53, a third mirror 63, and a third submount, similarly to each third set according to the first embodiment. 73.
  • the third optical axis of the third semiconductor laser chip 53 is parallel to the second direction parallel to the main surface 21, as in the first embodiment.
  • the plurality of third sets 13a-13e are arranged in the first direction. More specifically, the plurality of third sets 13a-13e are arranged in a row in the first direction.
  • the first set relay member 881 is a member arranged at a position adjacent to the plurality of first sets 11a to 11h.
  • one first set relay member 881 is arranged at a position adjacent to the plurality of first sets 11a to 11d in the second direction
  • the other first set relay member 881 is arranged at a position adjacent to the plurality of first sets 11a to 11d. They are arranged adjacent to the first sets 11e to 11h in the second direction.
  • the first set relay member 881 includes a plurality of conductive members 81e1 to 81e5.
  • the material of each of the conductive members 81e1 to 81e5 is the same as that of the conductive member 81e.
  • the first set relay member 881 further includes an insulating member 881d.
  • the insulating member 881 d is a member containing an insulating material and arranged on the main surface 21 of the base 20 .
  • the configuration of the insulating member 881d is the same as the configuration of the insulating member 81d.
  • the insulating member 881d has an elongated shape extending in the first direction.
  • a plurality of conductive members 82e1 to 81e5 are arranged electrically insulated from each other on the upper surface of the insulating member 881d.
  • the plurality of conductive members 81e1 to 81e5 are arranged in the first direction.
  • One conductive member 81e1 of the two conductive members 81e1 is arranged adjacent to the first positive current terminal 91p and the first set 11a.
  • the other conductive member 81e1 of the two conductive members 81e1 is arranged adjacent to the first positive current terminal 91p and the first set 11e.
  • One conductive member 81e2 of the two conductive members 81e2 is arranged at a position adjacent to the first set 11a and the first set 11b.
  • the other conductive member 81e2 of the two conductive members 81e2 is arranged at a position adjacent to the first set 11e and the first set 11f.
  • One conductive member 81e3 of the two conductive members 81e3 is arranged at a position adjacent to the first set 11b and the first set 11c.
  • the other conductive member 81e3 of the two conductive members 81e3 is arranged at a position adjacent to the first set 11f and the first set 11g.
  • One conductive member 81e4 of the two conductive members 81e4 is arranged at a position adjacent to the first set 11c and the first set 11d.
  • the other conductive member 81e4 of the two conductive members 81e4 is arranged at a position adjacent to the first set 11g and the first set 11h.
  • One of the two conductive members 81e5 is positioned adjacent to the first set 11d and the first negative current terminal 91n.
  • the other conductive member 81e5 of the two conductive members 81e5 is positioned adjacent to the first set 11h and the first negative current terminal 91n.
  • the first set relay member 881 may include a plurality of insulating members.
  • the first set relay member 881 may include a plurality of insulating members in which the plurality of conductive members 81e1 to 81e5 are respectively arranged.
  • the second set relay member 882 is a member arranged at a position adjacent to the plurality of second sets 12a to 12e.
  • the two second set relay members 882 are arranged at positions adjacent to the second sets 12a and 12e in the first direction.
  • the second set relay member 882 includes a conductive member 882e.
  • the configuration of the conductive member 882e is similar to that of the conductive member 81e.
  • the second set relay member 882 further includes an insulating member 882d.
  • the configuration of the insulating member 882d is similar to that of the insulating member 81d.
  • the third set relay member 883 is a member arranged at a position adjacent to the plurality of third sets 13a to 13e.
  • the two third set relay members 883 are arranged at positions adjacent to the third sets 13a and 13e in the first direction.
  • the third set relay member 883 includes a conductive member 883e.
  • the configuration of the conductive member 883e is similar to that of the conductive member 81e.
  • the third set relay member 883 further includes an insulating member 883d.
  • the configuration of the insulating member 883d is similar to that of the insulating member 81d.
  • the plurality of first sets 11a to 11d are electrically connected in series using the plurality of first wires W1 and the relay member 881 for the first set.
  • the above first wire W1 and the conductive member 81e2 of the relay member 881 for the first set are used to electrically connect.
  • the n-side connection electrode (not shown) of the first semiconductor laser chip 51 of the first set 11a and the conductive member 81e2 are connected by one or more first wires W1.
  • the conductive member 81e2 and the p-side connection electrode 71e of the first set 11b are connected by one or more first wires W1.
  • the p-side connection electrode 71 e is electrically connected to a p-side electrode (not shown) of the first semiconductor laser chip 51 mounted on the first submount 71 .
  • the n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11a and the p-side electrodes of the first semiconductor laser chips 51 of the first set 11b are electrically connected.
  • the n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11b and the p-side electrodes of the first semiconductor laser chips 51 of the first set 11c are connected to the first wire W1 and the conductive member 81e3. are electrically connected using The n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11c and the p-side electrodes of the first semiconductor laser chips 51 of the first set 11d are connected using the first wire W1 and the conductive member 81e4. electrically connected.
  • the plurality of first sets 11e to 11h are electrically connected in series using the plurality of first wires W1 and the first set relay member 881, like the plurality of first sets 11a to 11d.
  • the first positive current terminal 91p and the p-side connection electrode 71e of the first set 11a are electrically connected using the first wire W1 and the relay member 881 for the first set. Specifically, the portion of the first positive electrode current terminal 91p located within the region surrounded by the frame member 30 and the conductive member 81e1 of the first set relay member 881 are combined into one or more first positive current terminals 91p. They are electrically connected using a wire W1. Also, the conductive member 81e1 and the p-side connection electrode 71e of the first set 11a are electrically connected using one or more first wires W1. Similarly, the first positive current terminal 91p and the p-side connection electrode 71e of the first set 11e are electrically connected using the first wire W1 and the relay member 881 for the first set.
  • the first negative electrode current terminal 91n and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11d are electrically connected using the first wire W1 and the first set relay member 881. .
  • the portion of the first negative electrode current terminal 91n located within the region surrounded by the frame member 30 and the conductive member 81e5 of the first set relay member 881 are combined into one or more first electrode current terminals. They are electrically connected using a wire W1.
  • the conductive member 81e5 and the n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11d are electrically connected using one or more first wires W1.
  • the first negative electrode current terminal 91n and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11h are electrically connected using the first wire W1 and the relay member 881 for the first set. Connected.
  • the plurality of second sets 12a-12e are electrically connected in series using the plurality of second wires W2. Specifically, the n-side connection electrode (not shown) of the second semiconductor laser chip 52 of the second set 12a and the p-side connection electrode 72e formed on the adjacent second submount 72 of the second set 12b are connected by one or more second wires W2.
  • the p-side connection electrode 72 e is electrically connected to the p-side electrode (not shown) of the second semiconductor laser chip 52 mounted on the second submount 72 .
  • the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12a and the p-side electrodes of the second semiconductor laser chips 52 of the second set 12b are electrically connected.
  • the electrodes 72e are electrically connected to each other.
  • the second positive current terminal 92p and the p-side connection electrode 72e of the second set 12a are electrically connected using a second wire W2 and one relay member 882 for the second set.
  • the single second set relay member 882 is arranged at a position adjacent to the second positive current terminal 92p and the second set 12a.
  • a portion of the second positive electrode current terminal 92p located within the region surrounded by the frame member 30 and the conductive member 882e of the second set relay member 882 are connected using one or more second wires W2. electrically connected.
  • the conductive member 882e of the second set relay member 882 and the p-side connection electrode 72e of the second set 12a are electrically connected using one or more second wires W2.
  • the second negative electrode current terminal 92n and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12e are electrically connected using one second set relay member 882 and a second wire W2. be done.
  • the single second set relay member 882 is arranged at a position adjacent to the second negative current terminal 92n and the second set 12e. A portion of the second negative current terminal 92n located within the region surrounded by the frame member 30 and the conductive member 882e of the second set relay member 882 are connected by using one or more second wires W2. electrically connected.
  • the conductive member 882e of the second set relay member 882 and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12e are electrically connected using one or more second wires W2. be.
  • the plurality of third sets 13a-13e are electrically connected in series using the plurality of third wires W3.
  • the n-side connection electrode (not shown) of the third semiconductor laser chip 53 of the third set 13a and the p-side connection electrode 73e formed on the third submount 73 of the adjacent third set 13b are connected by one or more third wires W3.
  • the p-side connection electrode 73 e is electrically connected to a p-side electrode (not shown) of the third semiconductor laser chip 53 mounted on the third submount 73 .
  • the n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13a and the p-side electrodes of the third semiconductor laser chips 53 of the third set 13b are electrically connected.
  • the electrodes 73e are electrically connected to each other.
  • the third positive current terminal 93p and the p-side connection electrode 73e of the third set 13a are electrically connected using a third wire W3 and one relay member 883 for the third set.
  • the single third set relay member 883 is arranged at a position adjacent to the third positive current terminal 93p and the third set 13a.
  • a portion of the third positive electrode current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 883e of the relay member 883 for the third set are connected using one or more third wires W3. electrically connected.
  • the conductive member 883e of the relay member 883 for the third set and the p-side connection electrode 73e of the third set 13a are electrically connected using one or more third wires W3.
  • the third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13e are electrically connected using one third set relay member 883 and a third wire W3. be done.
  • the single third set relay member 883 is arranged adjacent to the third negative current terminal 93n and the third set 13e.
  • a portion of the third negative electrode current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 883e of the third set relay member 883 are connected by using one or more third wires W3. electrically connected.
  • the conductive member 883e of the relay member 883 for the third set and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13e are electrically connected using one or more third wires W3. be.
  • the multi-wavelength light source module 810 according to the present embodiment also has the same effect as the multi-wavelength light source module 10 according to the first embodiment.
  • the multi-wavelength light source module according to the present disclosure has been described based on each embodiment, but the present disclosure is not limited to each of the above embodiments.
  • each multi-wavelength light source module includes the frame member 30, but the frame member 30 is not an essential component of each light emitting element.
  • each lid of each multi-wavelength light source module may have a portion corresponding to the frame member.
  • each lid may be supported on the base 20 by a member other than the frame member 30 .
  • each set has one independent mirror, but the configuration of the mirrors is not limited to this.
  • the mirrors of each adjacent set may be integrated.
  • FIGS. 16 to 18 FIG. 16 is a plan view of the multi-wavelength light source module 10a according to the modification of the first embodiment, with the cover removed.
  • FIG. 17 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module 110a according to the modification of the second embodiment.
  • FIG. 18 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module 610a according to the modification of the seventh embodiment.
  • first sets of first sets adjacent in the second direction have first A mirror 61 is integrated.
  • the first mirrors 61 of the adjacent first sets are integrally formed.
  • the first mirrors 61 of the five first sets 11a to 11e and the first mirrors 61 of the five first sets 11f to 11j are integrated.
  • the first reflecting surfaces 61a of the plurality of integrated first mirrors 61 may be in the same plane.
  • the first reflecting surfaces 61a of the first mirrors 61 of the five first sets 11a to 11e and the first reflecting surfaces 61a of the first mirrors 61 of the five first sets 11f to 11j are They are in the same plane.
  • the second mirror 62 of one of the plurality of second sets 12a to 12d and the second mirror 62 of the plurality of third sets 13a to 13d and the third mirror 63 of one third set adjacent in the first direction may be integrated.
  • the second mirrors 62 of the second set 12a-12d and the third mirrors 63 of the third set 13a-13d are integrated.
  • the second set relay member 82 is provided with the first sets 11a to 11a, as in the first embodiment, in order to suppress interference with the second mirror 62 and the third mirror. 11j and the second set 12a-12d.
  • the integrated second reflecting surface 62a of the second mirror 62 and the third reflecting surface 63a of the third mirror 63 may be on the same plane.
  • the first reflecting surfaces 61a of the first mirrors 61 of the five first sets 11a to 11e and the first reflecting surfaces 61a of the first mirrors 61 of the five first sets 11f to 11j are They are in the same plane.
  • the multi-wavelength light source module 110a In the multi-wavelength light source module 110a according to the modification of the second embodiment, as shown in FIG. 17, four first sets 11a to 11d of the first mirrors 61 and the second The first mirrors 61 of the four first sets 11e to 11h adjacent in two directions are respectively integrated.
  • the first reflecting surfaces 61a of the first mirrors 61 of the four first sets 11a to 11d and the first reflecting surfaces 61a of the first mirrors 61 of the four first sets 11e to 11h are They are in the same plane.
  • a second set of four mirrors 12a-12d adjacent in the first direction and a third set of four mirrors 13a-13d adjacent in the first direction. are integrated with each other.
  • the second reflecting surfaces 62a of the second mirrors 62 of the four second sets 12a to 12d and the third reflecting surfaces 63a of the third mirrors 63 of the four third sets 13a to 13d are in the same plane.
  • a multi-wavelength light source module 610a In a multi-wavelength light source module 610a according to a modification of Embodiment 7, as shown in FIG. 18, two first sets 11a and 11b of first mirrors 61 and two A first set 11c and 11d of first mirrors 61, two first sets 11e and 11f of first mirrors 61, and two first sets 11g and 11h of first mirrors 61 are integrated respectively.
  • the first reflecting surfaces 61a of the first mirrors 61 of the two first sets 11a and 11b, the first reflecting surfaces 61a of the first mirrors 61 of the two first sets 11c and 11d, and two The first reflecting surfaces 61a of the first mirrors 61 of the first set 11e and 11f and the first reflecting surfaces 61a of the first mirrors 61 of the two first sets 11g and 11h are coplanar, respectively.
  • the second mirror 62 of the second set 12a and the third mirror 63 of the third set 13a adjacent in the second direction are integrated, and the second mirror 63 of the second set 12b is integrated.
  • the second mirror 62 and the third mirror 63 of the third set 13b are integrated, the second mirror 62 of the second set 12c and the third mirror 63 of the third set 13c are integrated, and the second The second mirror 62 of the set 12d and the third mirror 63 of the third set 13d are integrated.
  • the integrated second reflecting surface 62a of the second mirror 62 and the integrated third reflecting surface 63a of the third mirror 63 are in different planes.
  • a plurality of mirrors may be integrated.
  • the first mirrors 61 of the first sets 11a to 11e and the first mirrors 61 of the first sets 11f to 11j may be integrated.
  • second mirrors 62 of the second set 12a and 12b, second mirrors 62 of the second set 12c and 12d, third mirrors 63 of the third set 13a and 13b, and third mirrors of the third set 13c and 13d. 63 may be integrated respectively.
  • each submount of the multi-wavelength light source module according to each of the above embodiments is not an essential component.
  • Each semiconductor laser chip may be directly mounted on the base 20 . In this manner, each semiconductor laser chip may be mounted directly on the main surface 21 of the base 20 or via a submount.
  • each of the plurality of first sets has the same configuration, but they may have different configurations.
  • Each of the plurality of second sets may also have different configurations.
  • Each of the plurality of third sets may also have different configurations.
  • the first semiconductor laser chips of the plurality of arranged first sets emit the first light in the same direction.
  • a first semiconductor laser chip that emits the first light in the same direction and in the opposite direction may be included.
  • each relay member and the conductive members are arranged on the main surface 21 via the insulating member.
  • a conductive member may be directly arranged on the major surface 21 .
  • each relay member may not include an insulating member.
  • the layout of the plurality of first sets 11a to 11j according to Embodiment 5 or Embodiment 6, the plurality of second sets 12a to 12d and the plurality of third sets 13a to 13a according to Embodiment 1 13d layout may be combined.
  • the multi-wavelength light source module includes a plurality of first sets, a plurality of second sets, and a plurality of third sets, but the multi-wavelength light source module includes a plurality of third sets does not have to be That is, the multi-wavelength light source module may comprise only the plurality of first sets and the plurality of second sets among the plurality of first sets, the plurality of second sets and the plurality of third sets.
  • each of the plurality of first sets has a first semiconductor laser chip consisting of a GaInP semiconductor laser chip that emits a TM mode red laser
  • each of the second sets has a TE mode blue laser chip.
  • the multi-wavelength light source module may comprise multiple first sets, multiple second sets and only one third set.
  • each of the plurality of first sets has a first semiconductor laser chip composed of a GaInP-based semiconductor laser chip that emits a TM mode red laser
  • each of the plurality of second sets has a TE mode laser chip.
  • a second semiconductor laser chip comprising a GaInN semiconductor laser chip for emitting a green laser
  • a third set comprising a third semiconductor laser chip comprising a GaInN semiconductor laser chip for emitting a TE mode blue laser. good too.
  • the multi-wavelength light source module of the present disclosure can be applied to, for example, a time-resolved projector including a single liquid crystal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A multi-wavelength light source module (10) comprises a plurality of first sets and a plurality of second sets disposed on a major surface (21) of a base (20). The first sets include a first semiconductor laser chip (51) having a first optical axis parallel to the major surface (21) and emitting first light of a first wavelength band, and a first mirror (61) reflecting the first light in a direction perpendicular to the major surface (21). The second sets include a second semiconductor laser chip (52) having a second optical axis parallel to the major surface (21) and emitting second light of a second wavelength band different from the first wavelength band, and a second mirror (62) reflecting the second light in a direction perpendicular to the major surface (21). The first optical axis is perpendicular to the second optical axis. The polarization direction of the first light propagating from the first semiconductor laser chip (51) to the first mirror (61) and the polarization direction of the second light propagating from the second semiconductor laser chip (52) to the second mirror (62) are orthogonal to each other.

Description

多波長光源モジュールMulti-wavelength light source module
 本開示は、多波長光源モジュールに関する。 The present disclosure relates to a multi-wavelength light source module.
 従来、互いに異なる色の光を出射する複数の半導体レーザチップを有する多波長光源モジュールが知られている(例えば、特許文献1)。特許文献1に記載された多波長光源モジュールは、赤色半導体レーザチップと、緑色半導体レーザチップと、青色半導体レーザチップとを備える。一般的な赤色半導体レーザチップの出射光の偏光方向と、ファスト軸方向(つまり、光の広がり角が大きい方向)とは、平行であり、一般的な緑色半導体レーザチップ及び青色半導体レーザチップの出射光の偏光方向と、ファスト軸方向とは垂直である。 Conventionally, a multi-wavelength light source module having a plurality of semiconductor laser chips that emit lights of different colors is known (for example, Patent Document 1). A multi-wavelength light source module described in Patent Document 1 includes a red semiconductor laser chip, a green semiconductor laser chip, and a blue semiconductor laser chip. The polarization direction of the emitted light of a general red semiconductor laser chip and the fast axis direction (that is, the direction in which the light spreads at a large angle) are parallel, and the general green semiconductor laser chip and blue semiconductor laser chip emit light. The polarization direction of incident light is perpendicular to the fast axis direction.
 特許文献1に記載された多波長光源モジュールにおいては、赤色半導体レーザチップの光軸方向と、緑色半導体レーザチップ及び青色半導体レーザチップの光軸方向とが垂直になるように、各半導体レーザチップが配置されている。これにより、特許文献1に記載された多波長光源モジュールでは、出射光に含まれる赤色光の偏光方向と、緑色光及び青色光の偏光方向とを揃えようとしている。 In the multi-wavelength light source module described in Patent Document 1, each semiconductor laser chip is arranged such that the optical axis direction of the red semiconductor laser chip is perpendicular to the optical axis directions of the green semiconductor laser chip and the blue semiconductor laser chip. are placed. Accordingly, in the multi-wavelength light source module described in Patent Document 1, the polarization direction of red light contained in the emitted light is aligned with the polarization directions of green light and blue light.
特開2020-72116号公報Japanese Patent Application Laid-Open No. 2020-72116
 しかしながら、例えば、単一の液晶を備える時分解型プロジェクタなどで用いる光には、偏光方向が揃っていることに加えて、高パワーであることも求められている。 However, the light used in, for example, a time-resolved projector equipped with a single liquid crystal is required to have a uniform polarization direction and high power.
 本開示は、このような課題を解決するものであり、偏光方向が揃っていて、かつ、高パワーの光を出射する多波長光源モジュールを提供することを目的とする。 The present disclosure is intended to solve such problems, and aims to provide a multi-wavelength light source module that emits light with uniform polarization directions and high power.
 上記課題を解決するために、本開示に係る多波長光源モジュールの一態様は、主面を有する基台と、前記主面に配置される複数の第一セット及び複数の第二セットとを備え、前記複数の第一セットの各々は、前記主面に平行な第一光軸を有し、第一波長帯の第一光を出射する第一半導体レーザチップと、前記第一光を前記主面に垂直な方向に反射する第一ミラーとを有し、前記複数の第二セットの各々は、前記主面に平行な第二光軸を有し、前記第一波長帯と異なる第二波長帯の第二光を出射する第二半導体レーザチップと、前記第二光を前記主面に垂直な方向に反射する第二ミラーとを有し、前記第一光軸は、前記主面に平行な第一方向に平行であり、前記第二光軸は、前記主面に平行な第二方向に平行であり、前記第二方向は、前記第一方向に対して垂直な方向であり、前記第一半導体レーザチップから前記第一ミラーへ伝搬する前記第一光の偏光方向と、前記第二半導体レーザチップから前記第二ミラーへ伝搬する前記第二光の偏光方向とは、直交する。 In order to solve the above problems, one aspect of the multi-wavelength light source module according to the present disclosure includes a base having a main surface, and a plurality of first sets and a plurality of second sets arranged on the main surface. , each of the plurality of first sets includes a first semiconductor laser chip having a first optical axis parallel to the main surface and emitting a first light in a first wavelength band; and a first mirror that reflects in a direction normal to the plane, each of the plurality of second sets having a second optical axis parallel to the major plane and a second wavelength different from the first wavelength band. a second semiconductor laser chip that emits a band of second light; and a second mirror that reflects the second light in a direction perpendicular to the main surface, wherein the first optical axis is parallel to the main surface. the second optical axis is parallel to a second direction parallel to the principal surface; the second direction is a direction perpendicular to the first direction; The polarization direction of the first light propagating from the first semiconductor laser chip to the first mirror and the polarization direction of the second light propagating from the second semiconductor laser chip to the second mirror are orthogonal.
 本開示によれば、偏光方向が揃っており、かつ、高パワーの光を出射する多波長光源モジュールを提供できる。 According to the present disclosure, it is possible to provide a multi-wavelength light source module that has aligned polarization directions and emits high-power light.
図1は、実施の形態1に係る多波長光源モジュールの平面図である。FIG. 1 is a plan view of a multi-wavelength light source module according to Embodiment 1. FIG. 図2は、実施の形態1に係る多波長光源モジュールの断面図である。FIG. 2 is a cross-sectional view of the multi-wavelength light source module according to Embodiment 1. FIG. 図3は、実施の形態1に係る多波長光源モジュールの蓋体を取り外した状態を示す平面図である。FIG. 3 is a plan view of the multi-wavelength light source module according to Embodiment 1 with the lid removed. 図4は、実施の形態1に係る第一半導体レーザチップの遠視野像の概要を示す模式図である。FIG. 4 is a schematic diagram showing an outline of a far-field image of the first semiconductor laser chip according to Embodiment 1. FIG. 図5は、実施の形態1に係る第一半導体レーザチップからの第一光の伝搬の様子を示す図である。FIG. 5 is a diagram showing how the first light propagates from the first semiconductor laser chip according to the first embodiment. 図6は、実施の形態1に係る第二半導体レーザチップからの第二光の伝搬の様子を示す図である。FIG. 6 is a diagram showing how the second light propagates from the second semiconductor laser chip according to the first embodiment. 図7は、実施の形態1に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。7 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to Embodiment 1. FIG. 図8は、実施の形態2に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。FIG. 8 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the second embodiment. 図9は、実施の形態3に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。FIG. 9 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the third embodiment. 図10は、実施の形態4に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。FIG. 10 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the fourth embodiment. 図11は、実施の形態5に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。FIG. 11 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the fifth embodiment. 図12は、実施の形態6に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。FIG. 12 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the sixth embodiment. 図13は、実施の形態7に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。13 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to Embodiment 7. FIG. 図14は、実施の形態8に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。FIG. 14 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the eighth embodiment. 図15は、実施の形態9に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。FIG. 15 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the ninth embodiment. 図16は、実施の形態1の変形例に係る多波長光源モジュールの蓋体を取り外した状態を示す平面図である。16 is a plan view of the multi-wavelength light source module according to the modification of the first embodiment, with the cover removed. FIG. 図17は、実施の形態2の変形例に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。17 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the modification of the second embodiment. FIG. 図18は、実施の形態7の変形例に係る多波長光源モジュールにおける各モジュール及び配線のレイアウトを示す平面図である。18 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module according to the modification of Embodiment 7. FIG.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that each of the embodiments described below is a specific example of the present disclosure. Therefore, the numerical values, shapes, materials, constituent elements, and arrangement positions and connection forms of the constituent elements shown in the following embodiments are examples and are not intended to limit the present disclosure.
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, the scales and the like are not always the same in each drawing. In addition, in each figure, the same code|symbol is attached|subjected to the substantially same structure, and the overlapping description is abbreviate|omitted or simplified.
 (実施の形態1)
 実施の形態1に係る多波長光源モジュールについて説明する。
(Embodiment 1)
A multi-wavelength light source module according to Embodiment 1 will be described.
 [1-1.全体構成]
 まず、本実施の形態に係る多波長光源モジュールの全体構成について図1~図3を用いて説明する。図1及び図2は、それぞれ、本実施の形態に係る多波長光源モジュール10の平面図及び断面図である。図2には、図1のII-II線における断面の一部が示されている。図3は、本実施の形態に係る多波長光源モジュール10の蓋体40を取り外した状態を示す平面図である。なお、図3には、蓋体40が有する各レンズの輪郭が破線で示されている。また、図2及び図3においては、多波長光源モジュール10が備える各半導体レーザチップに電力を供給するための配線などは省略されている。
[1-1. overall structure]
First, the overall configuration of the multi-wavelength light source module according to this embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 and 2 are a plan view and a cross-sectional view, respectively, of a multi-wavelength light source module 10 according to this embodiment. FIG. 2 shows a part of the cross section taken along line II-II of FIG. FIG. 3 is a plan view showing the multi-wavelength light source module 10 according to the present embodiment with the cover 40 removed. In addition, in FIG. 3, the outline of each lens of the lid 40 is indicated by a dashed line. 2 and 3, wiring for supplying electric power to each semiconductor laser chip included in the multi-wavelength light source module 10 is omitted.
 本実施の形態に係る多波長光源モジュール10は、複数の波長帯の光を出射する装置である。多波長光源モジュール10は、基台20と、複数の第一セット11a~11jと、複数の第二セット12a~12dとを備える。本実施の形態では、多波長光源モジュール10は、複数の第三セット13a~13dと、蓋体40と、枠部材30とをさらに備える。 The multi-wavelength light source module 10 according to the present embodiment is a device that emits light in multiple wavelength bands. The multi-wavelength light source module 10 comprises a base 20, a plurality of first sets 11a-11j, and a plurality of second sets 12a-12d. In this embodiment, the multi-wavelength light source module 10 further comprises a plurality of third sets 13a-13d, a lid 40 and a frame member 30. As shown in FIG.
 図1~図3に示される基台20は、複数の第一セット11a~11j、及び、複数の第二セット12a~12dが配置される部材である。本実施の形態では、基台20は、平面状の主面21を有する。本実施の形態では、基台20は、略矩形の板状の形状を有する基板である。基台20は、熱伝導率が高い材料で形成され、複数の第一セット11a~11jなどで発生する熱を放散する放熱部材としても機能する。 The base 20 shown in FIGS. 1-3 is a member on which the plurality of first sets 11a-11j and the plurality of second sets 12a-12d are arranged. In this embodiment, the base 20 has a planar main surface 21 . In this embodiment, the base 20 is a substrate having a substantially rectangular plate-like shape. The base 20 is made of a material with high thermal conductivity, and also functions as a heat dissipation member that dissipates heat generated in the plurality of first sets 11a to 11j.
 基台20の素材は、例えば、金属材料、セラミック材料などである。各セットで発生する熱を効率良く基台20で放散するには、基台20は、金属材料などの熱伝導率の高い材料によって構成されているとよい。熱伝導率が高くて基台20として実用的な金属材料としては、例えばCu又はAlが挙げられる。本実施の形態において、基台20は、Cuによって構成されたCu基板である。 The material of the base 20 is, for example, a metal material, a ceramic material, or the like. In order to efficiently dissipate the heat generated in each set by the base 20, the base 20 is preferably made of a material with high thermal conductivity such as a metal material. Examples of metal materials that have high thermal conductivity and are practical for the base 20 include Cu and Al. In this embodiment, the base 20 is a Cu substrate made of Cu.
 図1~図3に示される枠部材30は、複数の第一セット11a~11j、及び、複数の第二セット12a~12dを囲む環状部材である。枠部材30は、基台20の主面21に立設され、複数の第一セット11a~11j、及び、複数の第二セット12a~12dを収納する容器の一部として機能する。また、枠部材30は、蓋体40を支持する機能も有する。枠部材30は、基台20と、蓋体40とに挟まれる。基台20と、枠部材30と、蓋体40とで囲まれた空間内に、複数の第一セット11a~11j、及び、複数の第二セット12a~12dが配置される。ここで、枠部材30と、基台20と、蓋体40とで囲まれた空間は、気密封止されている。枠部材30は、複数の第一セット11a~11j、複数の第二セット12a~12dなどに電流を供給するための電流端子を有する。具体的には、図1に示されるように、枠部材30は、2個の第一正極電流端子91pと、2個の第一負極電流端子91nと、1個の第二正極電流端子92pと、1個の第二負極電流端子92nと、1個の第三正極電流端子93pと、1個の第三負極電流端子93nとを有する。なお、図2及び図3のような各セットの配置などを説明するための図においては、図面の煩雑化を防ぐために、各電流端子などの電流供給のための部材の図示を省略する。各電流端子などの電流供給のための部材については、後述する。枠部材30は、例えば、Feなどの金属、合金などで形成される。枠部材30が、電流端子を備える場合には、電流端子の周囲には、絶縁性部材が配置される。 The frame member 30 shown in FIGS. 1-3 is an annular member surrounding the plurality of first sets 11a-11j and the plurality of second sets 12a-12d. The frame member 30 is erected on the main surface 21 of the base 20 and functions as part of a container that houses the plurality of first sets 11a-11j and the plurality of second sets 12a-12d. The frame member 30 also has a function of supporting the lid 40 . The frame member 30 is sandwiched between the base 20 and the lid 40 . A plurality of first sets 11a to 11j and a plurality of second sets 12a to 12d are arranged in a space surrounded by the base 20, the frame member 30, and the lid . Here, the space surrounded by the frame member 30, the base 20, and the lid 40 is hermetically sealed. The frame member 30 has current terminals for supplying current to the plurality of first sets 11a-11j, the plurality of second sets 12a-12d, and the like. Specifically, as shown in FIG. 1, the frame member 30 includes two first positive current terminals 91p, two first negative current terminals 91n, and one second positive current terminal 92p. , a second negative current terminal 92n, a third positive current terminal 93p, and a third negative current terminal 93n. 2 and 3 for explaining the arrangement of each set, members for current supply such as current terminals are omitted in order to avoid complication of the drawing. Members for current supply such as current terminals will be described later. The frame member 30 is made of, for example, a metal such as Fe, an alloy, or the like. When the frame member 30 has a current terminal, an insulating member is arranged around the current terminal.
 図3に示される複数の第一セット11a~11jは、基台20の主面21に配置される。複数の第一セット11a~11jの各々は、第一半導体レーザチップ51と、第一ミラー61とを有する。本実施の形態では、10個の第一セット11a~11jの各々は、主面21に配置され、第一半導体レーザチップ51が配置される第一サブマウント71をさらに有する。 A plurality of first sets 11a-11j shown in FIG. Each of the plurality of first sets 11a-11j has a first semiconductor laser chip 51 and a first mirror 61. As shown in FIG. In this embodiment, each of the ten first sets 11a to 11j further has a first submount 71 arranged on the main surface 21 and on which the first semiconductor laser chip 51 is arranged.
 複数の第一セット11a~11jは、主面21に平行で互いに垂直な第一方向及び第二方向のうち、第二方向に配列されている。具体的には、第一セット11a~11e、及び、第一セット11f~11jが、それぞれ第二方向に配列される。言い換えると、第一セット11a~11jは、2行5列の行列状に配置される。 The plurality of first sets 11a to 11j are arranged in the second direction out of the first and second directions parallel to the main surface 21 and perpendicular to each other. Specifically, the first sets 11a-11e and the first sets 11f-11j are arranged in the second direction, respectively. In other words, the first sets 11a-11j are arranged in a matrix of 2 rows and 5 columns.
 第一半導体レーザチップ51は、主面21に平行な第一光軸を有し、第一波長帯の第一光を出射するレーザチップである。本実施の形態では、第一光軸は、主面21に平行な第一方向に平行である。第一波長帯は、赤色光を含む波長帯(590nm以上、780nm以下程度)の少なくとも一部を含む。つまり、第一半導体レーザチップ51は、赤色半導体レーザチップである。赤色半導体レーザチップである第一半導体レーザチップ51の発振波長は、590nm以上、650nm以下であってもよい。 The first semiconductor laser chip 51 is a laser chip that has a first optical axis parallel to the main surface 21 and emits a first light in a first wavelength band. In the present embodiment, the first optical axis is parallel to the first direction parallel to principal surface 21 . The first wavelength band includes at least part of the wavelength band (about 590 nm or more and 780 nm or less) including red light. That is, the first semiconductor laser chip 51 is a red semiconductor laser chip. The oscillation wavelength of the first semiconductor laser chip 51, which is a red semiconductor laser chip, may be 590 nm or more and 650 nm or less.
 図2に示されるように、第一半導体レーザチップ51は、レーザ光である第一光L11を出射する出射面を有する。第一光L11の光軸(つまり第一光軸)は、基台20の主面21に平行である。ここで、第一光L11は破線矢印で示されているが、この破線矢印は第一光L11の光軸を示し、実際の第一光L11は幅を持つ発散光である。本実施の形態では、図3に示されるように、第一半導体レーザチップ51は、第二セット12a~12d、及び、第三セット13a~13dが配置されている領域から遠ざかる向きに第一光L11を出射する。 As shown in FIG. 2, the first semiconductor laser chip 51 has an emission surface from which the first light L11, which is laser light, is emitted. The optical axis of the first light L11 (that is, the first optical axis) is parallel to the main surface 21 of the base 20 . Here, the first light L11 is indicated by a dashed arrow, and this dashed arrow indicates the optical axis of the first light L11, and the actual first light L11 is divergent light with a width. In this embodiment, as shown in FIG. 3, the first semiconductor laser chip 51 directs the first light beam away from the regions where the second sets 12a to 12d and the third sets 13a to 13d are arranged. L11 is emitted.
 第一半導体レーザチップ51は、第一光軸を長手方向とする長尺状である。一例として、第一半導体レーザチップ51の第一光軸方向の長さは、1200μmであるが、これに限らない。 The first semiconductor laser chip 51 is elongated with the first optical axis as its longitudinal direction. As an example, the length of the first semiconductor laser chip 51 in the direction of the first optical axis is 1200 μm, but it is not limited to this.
 第一半導体レーザチップ51は、第一サブマウント71の上面(つまり、主面21と対向する面の裏側の面)に実装される。具体的には、第一半導体レーザチップ51は、第一サブマウント71上のp側接続電極(図示せず)に実装されている。本実施の形態において、第一半導体レーザチップ51は、ジャンクションダウン実装により第一サブマウント71に実装されている。第一半導体レーザチップ51のp側電極が、第一サブマウント71上のp側接続電極に接続される。第一サブマウント71上のp側接続電極は、第一半導体レーザチップ51に電流を供給するためのp側接続電極の一例である。また、第一半導体レーザチップ51のn側接続電極は、第一半導体レーザチップ51に電流を供給するためのn側接続電極の一例である。なお、第一半導体レーザチップ51の実装形態は、これに限るものではなく、ジャンクションアップ実装により第一サブマウント71に実装されていてもよい。この場合、第一サブマウント71上のn側接続電極と、第一半導体レーザチップ51のp側電極とから、第一半導体レーザチップ51に電流が供給される。 The first semiconductor laser chip 51 is mounted on the upper surface of the first submount 71 (that is, the surface opposite to the main surface 21). Specifically, the first semiconductor laser chip 51 is mounted on a p-side connection electrode (not shown) on the first submount 71 . In this embodiment, the first semiconductor laser chip 51 is mounted on the first submount 71 by junction-down mounting. A p-side electrode of the first semiconductor laser chip 51 is connected to a p-side connection electrode on the first submount 71 . The p-side connection electrode on the first submount 71 is an example of a p-side connection electrode for supplying current to the first semiconductor laser chip 51 . Also, the n-side connection electrode of the first semiconductor laser chip 51 is an example of an n-side connection electrode for supplying current to the first semiconductor laser chip 51 . The mounting form of the first semiconductor laser chip 51 is not limited to this, and may be mounted on the first submount 71 by junction-up mounting. In this case, current is supplied to the first semiconductor laser chip 51 from the n-side connection electrode on the first submount 71 and the p-side electrode of the first semiconductor laser chip 51 .
 このように、第一半導体レーザチップ51と第一サブマウント71とで第一サブモジュールを構成し、第一サブモジュールの各々は、第一半導体レーザチップ51に電力を供給するためのp側接続電極及びn側接続電極を有する。 Thus, the first semiconductor laser chip 51 and the first submount 71 constitute a first submodule, and each of the first submodules has a p-side connection for supplying power to the first semiconductor laser chip 51. It has an electrode and an n-side connection electrode.
 また、第一半導体レーザチップ51は、第一光L11を出射する出射面が第一サブマウント71の光出射側の端面からはみ出すように実装されている。つまり、第一半導体レーザチップ51は、第一サブマウント71の端面から突出しており、第一半導体レーザチップ51の出射面は、第一サブマウント71の光出射側の端面よりも第一半導体レーザチップ51の光出射側に位置している。第一半導体レーザチップ51の突出量(つまり、第一サブマウント71の光出射側の端面から第一半導体レーザチップ51の出射面までの距離)は、例えば、5μm以上20μm以下であるが、これに限らない。本実施の形態において、第一半導体レーザチップ51の突出量は、10μmである。 Also, the first semiconductor laser chip 51 is mounted so that the emission surface for emitting the first light L11 protrudes from the end surface of the first submount 71 on the light emission side. That is, the first semiconductor laser chip 51 protrudes from the end surface of the first submount 71 , and the emission surface of the first semiconductor laser chip 51 is positioned closer to the first semiconductor laser than the end surface of the first submount 71 on the light emission side. It is located on the light emitting side of the chip 51 . The amount of protrusion of the first semiconductor laser chip 51 (that is, the distance from the end surface of the first submount 71 on the light emitting side to the emission surface of the first semiconductor laser chip 51) is, for example, 5 μm or more and 20 μm or less. is not limited to In this embodiment, the protrusion amount of the first semiconductor laser chip 51 is 10 μm.
 第一半導体レーザチップ51から第一ミラー61へ伝搬する第一光L11の偏光方向は、主面21に垂直な第三方向である。ここで、平行とは、完全に平行な状態に限定されず、実質的に平行な状態も含む。例えば、第一光軸が主面21に平行な状態には、主面21に対する第一光軸の傾きが5°以下であるような状態も含まれる。また垂直とは、完全に垂直な状態に限定されず、実質的に垂直な状態も含む。例えば、第一光L11の偏光方向が主面21に垂直な状態には、主面21の法線に対する第一光L11の偏光方向の傾きが5°以下であるような状態も含まれる。以下で用いる平行及び垂直についても同様である。ここで、第一半導体レーザチップ51は、GaInP系半導体で形成された活性層を有する半導体レーザチップである。第一半導体レーザチップ51の活性層は、引っ張り歪の量子井戸層を含む。第一半導体レーザチップ51は、TMモードで発振する。第一半導体レーザチップ51の活性層の主面が主面21と平行となるように、第一半導体レーザチップ51は実装されている。 The polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 is the third direction perpendicular to the main surface 21 . Here, "parallel" is not limited to a completely parallel state, but also includes a substantially parallel state. For example, the state in which the first optical axis is parallel to the main surface 21 includes a state in which the inclination of the first optical axis with respect to the main surface 21 is 5° or less. Moreover, vertical is not limited to a completely vertical state, and includes a substantially vertical state. For example, the state in which the polarization direction of the first light L11 is perpendicular to the main surface 21 includes a state in which the inclination of the polarization direction of the first light L11 with respect to the normal to the main surface 21 is 5° or less. The same applies to parallel and perpendicular used below. Here, the first semiconductor laser chip 51 is a semiconductor laser chip having an active layer made of a GaInP-based semiconductor. The active layer of the first semiconductor laser chip 51 includes a tensile strained quantum well layer. The first semiconductor laser chip 51 oscillates in TM mode. The first semiconductor laser chip 51 is mounted such that the main surface of the active layer of the first semiconductor laser chip 51 is parallel to the main surface 21 .
 第一ミラー61は、第一光L11を主面21に垂直な方向に反射する光学素子である。第一ミラー61は、図2に示されるように、第一半導体レーザチップ51からの第一光L11を反射する第一反射面61aを有する素子である。図2及び図3に示されるように、第一ミラー61は、蓋体40の第一レンズ41と対応する位置に配置される。図2に示されるように、第一反射面61aは、第一半導体レーザチップ51の出射面と対向して配置される。本実施の形態では、第一ミラー61は、平面状の第一反射面61aを有する平面ミラーである。第一反射面61aは、第一光軸方向に対して45°傾斜している。言い換えると、第一反射面61aに垂直な方向は、第一光軸方向に対して45°傾斜している。第一反射面61aにおいて第一光L11は反射され、第一反射光L12として第一ミラー61から蓋体40へ向かって伝搬する。また、図2において、第一反射光L12は破線矢印で示されているが、この破線矢印は第一反射光L12の光軸を示すものであり、実際の第一反射光L12は幅を持つ発散光である。 The first mirror 61 is an optical element that reflects the first light L11 in a direction perpendicular to the main surface 21. The first mirror 61 is an element having a first reflecting surface 61a that reflects the first light L11 from the first semiconductor laser chip 51, as shown in FIG. As shown in FIGS. 2 and 3 , the first mirror 61 is arranged at a position corresponding to the first lens 41 of the lid 40 . As shown in FIG. 2 , the first reflecting surface 61 a is arranged to face the emission surface of the first semiconductor laser chip 51 . In this embodiment, the first mirror 61 is a plane mirror having a planar first reflecting surface 61a. The first reflecting surface 61a is inclined at 45° with respect to the first optical axis direction. In other words, the direction perpendicular to the first reflecting surface 61a is inclined at 45° with respect to the first optical axis direction. The first light L11 is reflected by the first reflecting surface 61a and propagates from the first mirror 61 toward the lid 40 as the first reflected light L12. In FIG. 2, the first reflected light L12 is indicated by a dashed arrow, but this dashed arrow indicates the optical axis of the first reflected light L12, and the actual first reflected light L12 has a width. Divergent light.
 第一ミラー61は、基台20の主面21に、金属系接合材で実装される。本実施の形態では、すべての第一セット11a~11jにおいて、第一ミラー61と第一半導体レーザチップ51との位置関係は同じである。言い換えると、第一半導体レーザチップ51の出射面から第一ミラー61までの距離はすべて同じであり、第一半導体レーザチップ51の第一光L11の光軸(つまり、第一光軸)の主面21からの高さや第一反射面61aの主面21からの高さはすべて同じである。 The first mirror 61 is mounted on the main surface 21 of the base 20 with a metallic bonding material. In this embodiment, the positional relationship between the first mirror 61 and the first semiconductor laser chip 51 is the same in all the first sets 11a to 11j. In other words, the distances from the emission surface of the first semiconductor laser chip 51 to the first mirror 61 are all the same, and the optical axis of the first light L11 of the first semiconductor laser chip 51 (that is, the first optical axis) The height from the surface 21 and the height from the main surface 21 of the first reflecting surface 61a are all the same.
 第一サブマウント71は、主面21に配置され、第一半導体レーザチップ51が配置される支持部材である。第一サブマウント71は、図2に示されるように、主面21と、第一半導体レーザチップ51との間に配置される。 The first submount 71 is a support member arranged on the main surface 21 and on which the first semiconductor laser chip 51 is arranged. The first submount 71 is arranged between the main surface 21 and the first semiconductor laser chip 51, as shown in FIG.
 第一サブマウント71は、第一半導体レーザチップ51で発生する熱を放散させるためのヒートシンクとしても機能する。したがって、第一サブマウント71の材料は、導電性材料及び絶縁性材料のいずれによって構成されていてもよいが、熱伝導率の高い材料によって構成されているとよい。第一サブマウント71の熱伝導率は、例えば、150W/(m・K)以上であるとよい。例えば、第一サブマウント71は、窒化アルミニウム(AlN)や多結晶の炭化ケイ素(SiC)などのセラミック、Cuなどの金属材料、又は、単結晶ダイヤモンドや多結晶ダイヤモンドのダイヤモンドなどによって構成されている。本実施の形態において、第一サブマウント71は、AlNによって構成されている。なお、第一サブマウント71の形状は、例えば、矩形板状の直方体であるが、これに限らない。導電性材料を用いる場合は、実装面に絶縁性材料を形成するなどして、半導体レーザチップと導電性の基台とが電気的に接続しないようにするとよい。 The first submount 71 also functions as a heat sink for dissipating heat generated by the first semiconductor laser chip 51 . Therefore, the material of the first submount 71 may be either a conductive material or an insulating material, but preferably a material with high thermal conductivity. The thermal conductivity of the first submount 71 may be, for example, 150 W/(m·K) or more. For example, the first submount 71 is made of a ceramic such as aluminum nitride (AlN) or polycrystalline silicon carbide (SiC), a metal material such as Cu, or a single crystal diamond or polycrystalline diamond. . In this embodiment, the first submount 71 is made of AlN. Although the shape of the first submount 71 is, for example, a rectangular parallelepiped, the shape is not limited to this. When a conductive material is used, it is preferable to prevent electrical connection between the semiconductor laser chip and the conductive base by, for example, forming an insulating material on the mounting surface.
 第一サブマウント71は、例えば、基台20の主面21に金属系接合材を用いて接合される。つまり、第一サブマウント71は、基台20に固定用の穴などを形成することなく実装される。このため、基台20における放熱特性を低下させることなく、サブマウント50を基台20に実装できる。 The first submount 71 is, for example, bonded to the main surface 21 of the base 20 using a metallic bonding material. That is, the first submount 71 is mounted without forming a fixing hole or the like in the base 20 . Therefore, the submount 50 can be mounted on the base 20 without degrading the heat dissipation characteristics of the base 20 .
 図3に示される複数の第二セット12a~12dは、基台20の主面21に配置される。複数の第二セット12a~12dの各々は、第二半導体レーザチップ52と、第二ミラー62とを有する。本実施の形態では、4個の第二セット12a~12dの各々は、主面21に配置され、第二半導体レーザチップ52が配置される第二サブマウント72をさらに有する。複数の第二セット12a~12dは、第二方向に一列に配列されている。 A plurality of second sets 12a-12d shown in FIG. Each of the plurality of second sets 12 a - 12 d has a second semiconductor laser chip 52 and a second mirror 62 . In this embodiment, each of the four second sets 12a-12d further has a second submount 72 arranged on the main surface 21 and on which the second semiconductor laser chip 52 is arranged. A plurality of second sets 12a-12d are arranged in a line in a second direction.
 第二半導体レーザチップ52は、主面21に平行な第二光軸を有し、第一波長帯と異なる第二波長帯の第二光を出射するレーザチップである。本実施の形態では、第二光軸は、第二方向に平行である。第二波長帯は、緑色光を含む波長帯(490nm以上、580nm以下程度)の少なくとも一部を含む。つまり、第二半導体レーザチップ52は、緑色半導体レーザチップである。なお、第二波長帯は、第一波長帯と少なくとも一部が異なればよい。つまり、第二波長帯は、第一波長帯の一部を含んでもよい。 The second semiconductor laser chip 52 is a laser chip that has a second optical axis parallel to the main surface 21 and emits second light in a second wavelength band different from the first wavelength band. In this embodiment, the second optical axis is parallel to the second direction. The second wavelength band includes at least part of the wavelength band (about 490 nm or more and 580 nm or less) including green light. That is, the second semiconductor laser chip 52 is a green semiconductor laser chip. The second wavelength band may be at least partially different from the first wavelength band. That is, the second wavelength band may include part of the first wavelength band.
 第二半導体レーザチップ52は、レーザ光である第二光を出射する出射面を有する。第二光は、第一光と同様に幅を持つ発散光である。本実施の形態では、第二半導体レーザチップ52は、図3の左側から右側に向かう向きに第二光を出射する。 The second semiconductor laser chip 52 has an emission surface through which the second light, which is laser light, is emitted. The second light is divergent light with a width similar to that of the first light. In this embodiment, the second semiconductor laser chip 52 emits the second light from left to right in FIG.
 第二半導体レーザチップ52は、第二光軸を長手方向とする長尺状である。一例として、第二半導体レーザチップ52の第二光軸方向の長さは、1200μmであるが、これに限らない。 The second semiconductor laser chip 52 is elongated with the second optical axis as its longitudinal direction. As an example, the length of the second semiconductor laser chip 52 in the direction of the second optical axis is 1200 μm, but it is not limited to this.
 第二半導体レーザチップ52は、第二サブマウント72の上面に実装される。具体的には、第二半導体レーザチップ52は、第二サブマウント72上のp側接続電極(図示せず)に実装されている。本実施の形態において、第二半導体レーザチップ52は、ジャンクションダウン実装により第二サブマウント72に実装されている。第二半導体レーザチップ52のp側電極が、第二サブマウント72上のp側接続電極に接続される。第二サブマウント72上のp側接続電極は、第二半導体レーザチップ52に電流を供給するためのp側接続電極の一例である。また、第二半導体レーザチップ52のn側接続電極は、第二半導体レーザチップ52に電流を供給するためのn側接続電極の一例である。なお、第二半導体レーザチップ52の実装形態は、これに限るものではなく、ジャンクションアップ実装により第二サブマウント72に実装されていてもよい。このように、第二半導体レーザチップ52と第二サブマウント72とで第二サブモジュールを構成し、第二サブモジュールの各々は、第二半導体レーザチップ52に電力を供給するためのp側接続電極及びn側接続電極を有する。 The second semiconductor laser chip 52 is mounted on the top surface of the second submount 72 . Specifically, the second semiconductor laser chip 52 is mounted on a p-side connection electrode (not shown) on the second submount 72 . In this embodiment, the second semiconductor laser chip 52 is mounted on the second submount 72 by junction-down mounting. A p-side electrode of the second semiconductor laser chip 52 is connected to a p-side connection electrode on the second submount 72 . The p-side connection electrode on the second submount 72 is an example of a p-side connection electrode for supplying current to the second semiconductor laser chip 52 . Also, the n-side connection electrode of the second semiconductor laser chip 52 is an example of an n-side connection electrode for supplying current to the second semiconductor laser chip 52 . The mounting form of the second semiconductor laser chip 52 is not limited to this, and may be mounted on the second submount 72 by junction-up mounting. Thus, the second semiconductor laser chip 52 and the second submount 72 constitute a second submodule, and each of the second submodules has a p-side connection for supplying power to the second semiconductor laser chip 52. It has an electrode and an n-side connection electrode.
 また、第二半導体レーザチップ52は、第一半導体レーザチップ51と同様に、出射面が第二サブマウント72の光出射側の端面からはみ出すように実装されている。第二半導体レーザチップ52から第二ミラー62へ伝搬する第二光の偏光方向は、主面21に平行な第一方向である。ここで、第二半導体レーザチップ52は、GaInN系半導体で形成された活性層を有する半導体レーザチップである。第二半導体レーザチップ52は、TEモードで発振する。第二半導体レーザチップ52の活性層の主面が主面21と平行となるように、第二半導体レーザチップ52は実装されている。 Also, the second semiconductor laser chip 52 is mounted so that the emission surface protrudes from the end face of the second submount 72 on the light emission side, similarly to the first semiconductor laser chip 51 . The polarization direction of the second light propagating from the second semiconductor laser chip 52 to the second mirror 62 is the first direction parallel to the main surface 21 . Here, the second semiconductor laser chip 52 is a semiconductor laser chip having an active layer made of a GaInN-based semiconductor. The second semiconductor laser chip 52 oscillates in TE mode. The second semiconductor laser chip 52 is mounted such that the main surface of the active layer of the second semiconductor laser chip 52 is parallel to the main surface 21 .
 第二ミラー62は、第二光を主面21に垂直な方向に反射する光学素子である。第二ミラー62は、図3に示されるように、第二半導体レーザチップ52からの第二光を反射する第二反射面62aを有する素子である。図3に示されるように、第二ミラー62は、蓋体40の第二レンズ42と対応する位置に配置される。第二反射面62aは、第二半導体レーザチップ52の出射面と対向して配置される。本実施の形態では、第二ミラー62は、平面状の第二反射面62aを有する平面ミラーである。第二反射面62aは、第二光軸方向に対して45°傾斜している。言い換えると、第二反射面62aに垂直な方向は、第二光軸方向に対して45°傾斜している。第二反射面62aにおいて第二光は反射され、第二反射光として第二ミラー62から蓋体40へ向かって伝搬する。第二反射光は発散光である。 The second mirror 62 is an optical element that reflects the second light in a direction perpendicular to the main surface 21 . The second mirror 62 is an element having a second reflecting surface 62a that reflects the second light from the second semiconductor laser chip 52, as shown in FIG. As shown in FIG. 3 , the second mirror 62 is arranged at a position corresponding to the second lens 42 of the lid 40 . The second reflecting surface 62 a is arranged to face the emission surface of the second semiconductor laser chip 52 . In this embodiment, the second mirror 62 is a plane mirror having a planar second reflecting surface 62a. The second reflecting surface 62a is inclined at 45° with respect to the second optical axis direction. In other words, the direction perpendicular to the second reflecting surface 62a is inclined at 45° with respect to the second optical axis direction. The second light is reflected by the second reflecting surface 62a and propagates from the second mirror 62 toward the lid 40 as second reflected light. The second reflected light is divergent light.
 第二ミラー62は、基台20の主面21に実装される。本実施の形態では、すべての第二セット12a~12dにおいて、第二ミラー62と第二半導体レーザチップ52との位置関係は同じである。言い換えると、第二半導体レーザチップ52の出射面から第二ミラー62までの距離はすべて同じであり、第二半導体レーザチップ52の第二光の光軸の主面21からの高さや第二反射面62aの主面21からの高さはすべて同じである。 The second mirror 62 is mounted on the main surface 21 of the base 20. In this embodiment, the positional relationship between the second mirror 62 and the second semiconductor laser chip 52 is the same in all of the second sets 12a-12d. In other words, the distances from the emission surface of the second semiconductor laser chip 52 to the second mirror 62 are all the same, and the height of the optical axis of the second light of the second semiconductor laser chip 52 from the main surface 21 and the second reflection The heights of the surfaces 62a from the main surface 21 are all the same.
 第二サブマウント72は、主面21に配置され、第二半導体レーザチップ52が配置される支持部材である。第二サブマウント72は、主面21と、第二半導体レーザチップ52との間に配置される。 The second submount 72 is a support member arranged on the main surface 21 and on which the second semiconductor laser chip 52 is arranged. The second submount 72 is arranged between the main surface 21 and the second semiconductor laser chip 52 .
 第二サブマウント72は、第一サブマウント71と同様に、ヒートシンクとしても機能する。第二サブマウント72の材料及び形状、並びに、主面21への実装構成は、第一サブマウント71と同様である。 The second submount 72, like the first submount 71, also functions as a heat sink. The material and shape of the second submount 72 and the mounting structure on the main surface 21 are the same as those of the first submount 71 .
 図3に示される複数の第三セット13a~13dは、基台20の主面21に配置される。複数の第三セット13a~13dの各々は、第三半導体レーザチップ53と、第三ミラー63とを有する。本実施の形態では、4個の第三セット13a~13dの各々は、主面21に配置され、第三半導体レーザチップ53が配置される第三サブマウント73をさらに有する。複数の第三セット13a~13dは、第二方向に一列に配列されている。 A plurality of third sets 13a-13d shown in FIG. Each of the plurality of third sets 13 a - 13 d has a third semiconductor laser chip 53 and a third mirror 63 . In this embodiment, each of the four third sets 13a-13d further has a third submount 73 arranged on the major surface 21 and on which the third semiconductor laser chip 53 is arranged. The plurality of third sets 13a-13d are arranged in a row in the second direction.
 第三半導体レーザチップ53は、主面21に平行な第三光軸を有し、第一波長帯及び第二波長帯と異なる第三波長帯の第三光を出射するレーザチップである。本実施の形態では、第三光軸は、第二方向に平行である。第三波長帯は、青色光を含む波長帯(380nm以上、490nm以下程度)の少なくとも一部を含む。つまり、第三半導体レーザチップ53は、青色半導体レーザチップである。なお、第三波長帯は、第一波長帯及び第二波長帯と少なくとも一部が異なればよい。つまり、第三波長帯は、第一波長帯及び第二波長帯の少なくとも一方の一部を含んでもよい。 The third semiconductor laser chip 53 is a laser chip that has a third optical axis parallel to the main surface 21 and emits third light in a third wavelength band different from the first and second wavelength bands. In this embodiment, the third optical axis is parallel to the second direction. The third wavelength band includes at least part of the wavelength band (approximately 380 nm or more and 490 nm or less) including blue light. That is, the third semiconductor laser chip 53 is a blue semiconductor laser chip. The third wavelength band may be at least partially different from the first and second wavelength bands. That is, the third wavelength band may include a portion of at least one of the first wavelength band and the second wavelength band.
 第三半導体レーザチップ53は、レーザ光である第三光を出射する出射面を有する。第三光は、第一光及び第二光と同様に幅を持つ発散光である。本実施の形態では、第三半導体レーザチップ53は、図3の左側から右側に向かう向きに第三光を出射する。 The third semiconductor laser chip 53 has an emission surface for emitting third light, which is laser light. The third light is divergent light having a width similar to the first light and the second light. In this embodiment, the third semiconductor laser chip 53 emits the third light from left to right in FIG.
 第三半導体レーザチップ53は、第三光軸を長手方向とする長尺状である。一例として、第三半導体レーザチップ53の第三光軸方向の長さは、1200μmであるが、これに限らない。 The third semiconductor laser chip 53 has a long shape with the third optical axis as its longitudinal direction. As an example, the length of the third semiconductor laser chip 53 in the direction of the third optical axis is 1200 μm, but it is not limited to this.
 第三半導体レーザチップ53は、第三サブマウント73の上面に実装される。具体的には、第三半導体レーザチップ53は、第三サブマウント73上のp側接続電極(図示せず)に実装されている。本実施の形態において、第三半導体レーザチップ53は、ジャンクションダウン実装により第三サブマウント73に実装されている。第三半導体レーザチップ53のp側電極が、第三サブマウント73上のp側接続電極に接続される。第三サブマウント73上のp側接続電極は、第三半導体レーザチップ53に電流を供給するためのp側接続電極の一例である。また、第三半導体レーザチップ53のn側接続電極は、第三半導体レーザチップ53に電流を供給するためのn側接続電極の一例である。なお、第三半導体レーザチップ53の実装形態は、これに限るものではなく、ジャンクションアップ実装により第三サブマウント73に実装されていてもよい。このように、第三半導体レーザチップ53と第三サブマウント73とで第三サブモジュールを構成し、第三サブモジュールの各々は、第三半導体レーザチップ53に電力を供給するためのp側接続電極及びn側接続電極を有する。 The third semiconductor laser chip 53 is mounted on the top surface of the third submount 73 . Specifically, the third semiconductor laser chip 53 is mounted on a p-side connection electrode (not shown) on the third submount 73 . In this embodiment, the third semiconductor laser chip 53 is mounted on the third submount 73 by junction-down mounting. A p-side electrode of the third semiconductor laser chip 53 is connected to a p-side connection electrode on the third submount 73 . The p-side connection electrode on the third submount 73 is an example of a p-side connection electrode for supplying current to the third semiconductor laser chip 53 . Also, the n-side connection electrode of the third semiconductor laser chip 53 is an example of an n-side connection electrode for supplying current to the third semiconductor laser chip 53 . The mounting form of the third semiconductor laser chip 53 is not limited to this, and may be mounted on the third submount 73 by junction-up mounting. Thus, the third semiconductor laser chip 53 and the third submount 73 constitute a third submodule, and each of the third submodules has a p-side connection for supplying power to the third semiconductor laser chip 53. It has an electrode and an n-side connection electrode.
 また、第三半導体レーザチップ53は、第一半導体レーザチップ51及び第二半導体レーザチップ52と同様に、出射面が第三サブマウント73の光出射側の端面からはみ出すように実装されている。第三半導体レーザチップ53から第三ミラー63へ伝搬する第三光の偏光方向は、主面21に平行な第一方向である。ここで、第三半導体レーザチップ53は、GaInN系半導体で形成された活性層を有する半導体レーザチップである。第三半導体レーザチップ53は、TEモードで発振する。第三半導体レーザチップ53の活性層の主面が主面21と平行となるように、第三半導体レーザチップ53は実装されている。 Also, the third semiconductor laser chip 53 is mounted so that the emission surface protrudes from the end surface of the third submount 73 on the light emission side, similarly to the first semiconductor laser chip 51 and the second semiconductor laser chip 52 . The polarization direction of the third light propagating from the third semiconductor laser chip 53 to the third mirror 63 is the first direction parallel to the main surface 21 . Here, the third semiconductor laser chip 53 is a semiconductor laser chip having an active layer made of a GaInN semiconductor. The third semiconductor laser chip 53 oscillates in TE mode. The third semiconductor laser chip 53 is mounted such that the main surface of the active layer of the third semiconductor laser chip 53 is parallel to the main surface 21 .
 第三ミラー63は、第三光を主面21に垂直な方向に反射する光学素子である。第三ミラー63は、図3に示されるように、第三半導体レーザチップ53からの第三光を反射する第三反射面63aを有する素子である。図3に示されるように、第三ミラー63は、蓋体40の第三レンズ43と対応する位置に配置される。第三反射面63aは、第三半導体レーザチップ53の出射面と対向して配置される。本実施の形態では、第三ミラー63は、平面状の第三反射面63aを有する平面ミラーである。第三反射面63aは、第三光軸方向に対して45°傾斜している。言い換えると、第三反射面63aに垂直な方向は、第三光軸方向に対して45°傾斜している。第三反射面63aにおいて第三光は反射され、第三反射光として第三ミラー63から蓋体40へ向かって伝搬する。第三反射光は発散光である。 The third mirror 63 is an optical element that reflects the third light in a direction perpendicular to the main surface 21 . The third mirror 63 is an element having a third reflecting surface 63a that reflects the third light from the third semiconductor laser chip 53, as shown in FIG. As shown in FIG. 3 , the third mirror 63 is arranged at a position corresponding to the third lens 43 of the lid 40 . The third reflecting surface 63 a is arranged to face the emission surface of the third semiconductor laser chip 53 . In this embodiment, the third mirror 63 is a plane mirror having a planar third reflecting surface 63a. The third reflecting surface 63a is inclined at 45° with respect to the third optical axis direction. In other words, the direction perpendicular to the third reflecting surface 63a is inclined at 45° with respect to the third optical axis direction. The third light is reflected by the third reflecting surface 63a and propagates from the third mirror 63 toward the lid 40 as the third reflected light. The third reflected light is divergent light.
 第三ミラー63は、基台20の主面21に実装される。本実施の形態では、すべての第三セット13a~13dにおいて、第三ミラー63と第三半導体レーザチップ53との位置関係は同じである。言い換えると、第三半導体レーザチップ53の出射面から第三ミラー63までの距離はすべて同じであり、第三半導体レーザチップ53の第三光の光軸の主面21からの高さや第三反射面63aの主面21からの高さはすべて同じである。 The third mirror 63 is mounted on the main surface 21 of the base 20. In this embodiment, the positional relationship between the third mirror 63 and the third semiconductor laser chip 53 is the same in all the third sets 13a to 13d. In other words, the distances from the emission surface of the third semiconductor laser chip 53 to the third mirror 63 are all the same, and the height of the optical axis of the third light of the third semiconductor laser chip 53 from the main surface 21 and the third reflection All the heights from the main surface 21 of the surface 63a are the same.
 第三サブマウント73は、主面21に配置され、第三半導体レーザチップ53が配置される支持部材である。第三サブマウント73は、主面21と、第三半導体レーザチップ53との間に配置される。 The third submount 73 is a support member arranged on the main surface 21 and on which the third semiconductor laser chip 53 is arranged. The third submount 73 is arranged between the main surface 21 and the third semiconductor laser chip 53 .
 第三サブマウント73は、第一サブマウント71と同様に、ヒートシンクとしても機能する。第三サブマウント73の材料及び形状、並びに、主面21への実装構成は、第一サブマウント71と同様である。 The third submount 73, like the first submount 71, also functions as a heat sink. The material and shape of the third submount 73 as well as the mounting structure on the main surface 21 are the same as those of the first submount 71 .
 図1及び図2に示される蓋体40は、少なくとも一部が透光性を有する光学部材である。蓋体40は、枠部材30に支持され、枠部材30で囲まれる領域の蓋として機能する。蓋体40は、例えばガラスなどの透光性の部材で構成される。本実施の形態では、蓋体40は、複数の第一レンズ41と、複数の第二レンズ42と、複数の第三レンズ43とを有する。各レンズは一体的に形成されていてもよいし、蓋体40から着脱自在に形成されていてもよい。蓋体40と枠部材30との間は、気密シールされる。なお、本実施の形態では、蓋体40と枠部材30との間は、気密シールされたが、必ずしも気密シールされなくてもよい。また、蓋体40は、必ずしも枠部材30の開口部の全体を覆わなくてもよい。 The lid 40 shown in FIGS. 1 and 2 is an optical member at least partially translucent. The lid body 40 is supported by the frame member 30 and functions as a lid for the area surrounded by the frame member 30 . The lid 40 is made of a translucent member such as glass. In this embodiment, the lid 40 has a plurality of first lenses 41 , a plurality of second lenses 42 and a plurality of third lenses 43 . Each lens may be integrally formed, or may be formed detachably from the lid 40 . The space between the lid 40 and the frame member 30 is airtightly sealed. In this embodiment, the space between the lid 40 and the frame member 30 is airtightly sealed, but it is not necessarily airtightly sealed. Also, the lid 40 does not necessarily have to cover the entire opening of the frame member 30 .
 複数の第一レンズ41の各々には、図2に示されるように、第一ミラー61で反射された第一光L11が入射する。言い換えると、複数の第一レンズ41の各々は、第一ミラー61の第一反射面61aで反射された第一光L11である第一反射光L12を受ける。本実施の形態では、複数の第一レンズ41の各々は、第一反射光L12をコリメートし、第一出力光L13として出力する。複数の第一レンズ41は、すべて同一の焦点距離を有する球面レンズである。複数の第一レンズ41の個数は、第一セット11a~11jの個数と等しい。本実施の形態では、複数の第一レンズ41の個数は10個である。複数の第一レンズ41の各々は、第一反射面61aと対向する位置に配置される。したがって、複数の第一レンズ41は、複数の第一セット11a~11jと同様に、第二方向に2列に配列される。 The first light L11 reflected by the first mirror 61 is incident on each of the plurality of first lenses 41, as shown in FIG. In other words, each of the multiple first lenses 41 receives the first reflected light L12 that is the first light L11 reflected by the first reflecting surface 61 a of the first mirror 61 . In the present embodiment, each of the multiple first lenses 41 collimates the first reflected light L12 and outputs it as the first output light L13. The multiple first lenses 41 are all spherical lenses having the same focal length. The number of first lenses 41 is equal to the number of first sets 11a-11j. In this embodiment, the number of first lenses 41 is ten. Each of the plurality of first lenses 41 is arranged at a position facing the first reflecting surface 61a. Therefore, the plurality of first lenses 41 are arranged in two rows in the second direction, similar to the plurality of first sets 11a to 11j.
 複数の第二レンズ42の各々には、第二ミラー62で反射された第二光が入射する。言い換えると、複数の第二レンズ42の各々は、第二ミラー62の第二反射面62aで反射された第二光である第二反射光を受ける。本実施の形態では、複数の第二レンズ42の各々は、第二反射光をコリメートし、第二出力光として出力する。複数の第二レンズ42は、すべて同一の焦点距離を有する球面レンズである。複数の第二レンズ42の個数は、第二セット12a~12dの個数と等しい。本実施の形態では、複数の第二レンズ42の個数は4個である。複数の第二レンズ42の各々は、第二反射面62aと対向する位置に配置される。したがって、複数の第二レンズ42は、複数の第二セット12a~12dと同様に、第二方向に1列に配列される。 The second light reflected by the second mirror 62 is incident on each of the plurality of second lenses 42 . In other words, each of the plurality of second lenses 42 receives the second reflected light, which is the second light reflected by the second reflecting surface 62 a of the second mirror 62 . In this embodiment, each of the plurality of second lenses 42 collimates the second reflected light and outputs it as second output light. The plurality of second lenses 42 are all spherical lenses having the same focal length. The number of second lenses 42 is equal to the number of second sets 12a-12d. In this embodiment, the number of the plurality of second lenses 42 is four. Each of the plurality of second lenses 42 is arranged at a position facing the second reflecting surface 62a. Accordingly, the plurality of second lenses 42 are arranged in a row in the second direction, similar to the plurality of second sets 12a-12d.
 複数の第三レンズ43の各々には、第三ミラー63で反射された第三光が入射する。言い換えると、複数の第三レンズ43の各々は、第三ミラー63の第三反射面63aで反射された第三光である第三反射光を受ける。本実施の形態では、複数の第三レンズ43の各々は、第三反射光をコリメートし、第三出力光として出力する。本実施の形態では、複数の第三レンズ43は、すべて同一の焦点距離を有する球面レンズである。複数の第三レンズ43の個数は、第三セット13a~13dの個数と等しい。本実施の形態では、複数の第三レンズ43の個数は4個である。複数の第三レンズ43の各々は、第三反射面63aと対向する位置に配置される。したがって、複数の第三レンズ43は、複数の第三セット13a~13dと同様に、第二方向に1列に配列される。 The third light reflected by the third mirror 63 is incident on each of the plurality of third lenses 43 . In other words, each of the plurality of third lenses 43 receives the third reflected light, which is the third light reflected by the third reflecting surface 63 a of the third mirror 63 . In this embodiment, each of the plurality of third lenses 43 collimates the third reflected light and outputs it as third output light. In this embodiment, the multiple third lenses 43 are all spherical lenses having the same focal length. The number of the plurality of third lenses 43 is equal to the number of the third sets 13a-13d. In this embodiment, the number of the plurality of third lenses 43 is four. Each of the plurality of third lenses 43 is arranged at a position facing the third reflecting surface 63a. Therefore, the plurality of third lenses 43 are arranged in a row in the second direction, similar to the plurality of third sets 13a-13d.
 蓋体40は、図1に示されるように、複数の第一レンズ41、複数の第二レンズ42、及び複数の第三レンズ43が配置されているレンズ領域44を有する。本実施の形態では、レンズ領域44は、矩形状の形状を有する。レンズ領域44は、例えば、各レンズが配置される面積が占める割合が、90%以上である任意の領域で定義されてもよい。またレンズ領域44は、複数の第一レンズ41、複数の第二レンズ42、及び、複数の第三レンズ43の包絡線で囲まれる領域で定義されてもよい。 As shown in FIG. 1, the lid 40 has a lens area 44 in which a plurality of first lenses 41, a plurality of second lenses 42, and a plurality of third lenses 43 are arranged. In this embodiment, lens region 44 has a rectangular shape. The lens area 44 may be defined as an arbitrary area in which the ratio of the area where each lens is arranged is 90% or more, for example. Also, the lens area 44 may be defined by an area surrounded by the envelopes of the plurality of first lenses 41 , the plurality of second lenses 42 , and the plurality of third lenses 43 .
 [1-2.偏光方向]
 本実施の形態に係る多波長光源モジュール10が出射する光の偏光方向について説明する。まず、第一半導体レーザチップ51が出射する第一光の偏光方向について図4及び図5を用いて説明する。図4は、本実施の形態に係る第一半導体レーザチップ51の遠視野像(FFP)の概要を示す模式図である。図5は、本実施の形態に係る第一半導体レーザチップ51からの第一光L11の伝搬の様子を示す図である。図5には、第一光軸を通り、第二方向に垂直な断面が示されている。また、図5には、第一光L11及び第一反射光L12の光軸が破線矢印で示されている。
[1-2. Polarization direction]
A polarization direction of light emitted from the multi-wavelength light source module 10 according to the present embodiment will be described. First, the polarization direction of the first light emitted by the first semiconductor laser chip 51 will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 is a schematic diagram showing an outline of a far-field image (FFP) of the first semiconductor laser chip 51 according to this embodiment. FIG. 5 is a diagram showing how the first light L11 propagates from the first semiconductor laser chip 51 according to this embodiment. FIG. 5 shows a cross section passing through the first optical axis and perpendicular to the second direction. Also, in FIG. 5, the optical axes of the first light L11 and the first reflected light L12 are indicated by dashed arrows.
 第一半導体レーザチップ51は、図4に示される第三方向に積層された半導体積層体を含む。第一半導体レーザチップ51の出射面から出射された第一光L11は、積層方向に平行な第三方向における広がり角が、積層方向に垂直な第二方向における広がり角より大きくなる。第一光L11の広がり角が大きい第三方向に沿った軸がファスト軸Afであり、第一光L11の第一光軸及びファスト軸Afに垂直な第二方向に平行な軸がスロー軸Asである。赤色半導体レーザチップである第一半導体レーザチップ51においては、偏光方向がファスト軸Afに平行である。つまり、第一半導体レーザチップ51から第一ミラー61へ伝搬する第一光L11の偏光方向は、第三方向に平行である。図5に示されるように、第一半導体レーザチップ51から第一ミラー61へ伝搬する第一光L11のファスト軸Af及び偏光方向は、基台20の主面21に垂直である。 The first semiconductor laser chip 51 includes semiconductor laminates stacked in the third direction shown in FIG. The first light L11 emitted from the emission surface of the first semiconductor laser chip 51 has a larger spread angle in the third direction parallel to the stacking direction than in the second direction perpendicular to the stacking direction. The axis along the third direction in which the spread angle of the first light L11 is large is the fast axis Af, and the axis parallel to the second direction perpendicular to the first optical axis and the fast axis Af of the first light L11 is the slow axis As. is. In the first semiconductor laser chip 51, which is a red semiconductor laser chip, the polarization direction is parallel to the fast axis Af. That is, the polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 is parallel to the third direction. As shown in FIG. 5 , the fast axis Af and the polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 are perpendicular to the main surface 21 of the base 20 .
 このような第一光L11は、第一ミラー61の第一反射面61aで反射され、第一反射光L12として主面21に垂直な第三方向に伝搬する。第一光L11の第一ミラー61での反射に伴い、ファスト軸Afの方向も変わる。第一反射光L12のファスト軸Afは、図5に示されるように第一方向に平行である。第一反射光L12の偏光方向は、ファスト軸Afに平行であるため、第一方向に平行な方向となる。 Such first light L11 is reflected by the first reflecting surface 61a of the first mirror 61 and propagates in the third direction perpendicular to the main surface 21 as the first reflected light L12. As the first light L11 is reflected by the first mirror 61, the direction of the fast axis Af also changes. The fast axis Af of the first reflected light L12 is parallel to the first direction as shown in FIG. Since the polarization direction of the first reflected light L12 is parallel to the fast axis Af, it is parallel to the first direction.
 続いて、第二半導体レーザチップ52が出射する第二光の偏光方向について図6を用いて説明する。図6は、本実施の形態に係る第二半導体レーザチップ52からの第二光L21の伝搬の様子を示す図である。図6には、第二光軸を通り、第一方向に垂直な断面が示されている。また、図6には、第二光L21及び第二反射光L22の光軸が破線矢印で示されている。 Next, the polarization direction of the second light emitted by the second semiconductor laser chip 52 will be explained using FIG. FIG. 6 is a diagram showing how the second light L21 propagates from the second semiconductor laser chip 52 according to this embodiment. FIG. 6 shows a cross section passing through the second optical axis and perpendicular to the first direction. Also, in FIG. 6, the optical axes of the second light L21 and the second reflected light L22 are indicated by dashed arrows.
 第二半導体レーザチップ52は、第三方向に積層された半導体積層体を含む。第二半導体レーザチップ52の出射面から出射された第二光L21は、積層方向に平行な第三方向における広がり角が、積層方向に垂直な第二方向における広がり角より大きくなる。第二光L21の広がり角が大きい第三方向に沿った軸がファスト軸Afであり、第二光L21の第二光軸及びファスト軸Afに垂直な第一方向に平行な軸がスロー軸Asである。緑色半導体レーザチップである第二半導体レーザチップ52においては、偏光方向がスロー軸Asに平行である。つまり、第二半導体レーザチップ52から第二ミラー62へ伝搬する第二光L21の偏光方向は、第一方向に平行である。このように、第一半導体レーザチップ51から第一ミラー61へ伝搬する第一光L11の偏光方向と、第二半導体レーザチップ52から第二ミラー62へ伝搬する第二光L21の偏光方向とは、直交する。図6に示されるように、第二半導体レーザチップ52から第二ミラー62へ伝搬する第二光L21のスロー軸As及び偏光方向は、基台20の主面21に平行である。 The second semiconductor laser chip 52 includes semiconductor laminates stacked in the third direction. The second light L21 emitted from the emission surface of the second semiconductor laser chip 52 has a larger spread angle in the third direction parallel to the stacking direction than in the second direction perpendicular to the stacking direction. The axis along the third direction in which the spread angle of the second light L21 is large is the fast axis Af, and the axis parallel to the first direction perpendicular to the second optical axis and the fast axis Af of the second light L21 is the slow axis As. is. In the second semiconductor laser chip 52, which is a green semiconductor laser chip, the polarization direction is parallel to the slow axis As. That is, the polarization direction of the second light L21 propagating from the second semiconductor laser chip 52 to the second mirror 62 is parallel to the first direction. Thus, the polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 and the polarization direction of the second light L21 propagating from the second semiconductor laser chip 52 to the second mirror 62 are , are orthogonal. As shown in FIG. 6 , the slow axis As and the polarization direction of the second light L21 propagating from the second semiconductor laser chip 52 to the second mirror 62 are parallel to the main surface 21 of the base 20 .
 このような第二光L21は、第二ミラー62の第二反射面62aで反射され、第二反射光L22として主面21に垂直な第三方向に伝搬する。第二光L21の第二ミラー62での反射に伴い、ファスト軸Afの方向は変わるが、スロー軸Asの方向は変化しない。第二反射光L22のスロー軸Asは、図6に示されるように第一方向に平行である。第二反射光L22の偏光方向は、スロー軸Asに平行であるため、第一方向に平行な方向となる。 Such second light L21 is reflected by the second reflecting surface 62a of the second mirror 62 and propagates in the third direction perpendicular to the main surface 21 as the second reflected light L22. As the second light L21 is reflected by the second mirror 62, the direction of the fast axis Af changes, but the direction of the slow axis As does not change. The slow axis As of the second reflected light L22 is parallel to the first direction as shown in FIG. Since the polarization direction of the second reflected light L22 is parallel to the slow axis As, it is parallel to the first direction.
 青色半導体レーザチップである第三半導体レーザチップ53から出射された第三光のスロー軸As及び偏光方向は、第二半導体レーザチップ52と同様に、第一方向に平行な方向である。このように、第一半導体レーザチップ51から第一ミラー61へ伝搬する第一光L11の偏光方向と、第三半導体レーザチップ53から第三ミラー63へ伝搬する第三光の偏光方向とは、直交する。また、第三光が、第三ミラー63の第三反射面63aで反射され、第三反射光として主面21に垂直な第三方向に伝搬する。ここで、第三光の第三ミラー63での反射に伴い、ファスト軸Afの方向は変わるが、スロー軸Asの方向は変化しないため、第三反射光の偏光方向は、第二反射光L22と同様に、第一方向に平行な方向となる。 The slow axis As and the polarization direction of the third light emitted from the third semiconductor laser chip 53, which is a blue semiconductor laser chip, are parallel to the first direction, similarly to the second semiconductor laser chip 52. Thus, the polarization direction of the first light L11 propagating from the first semiconductor laser chip 51 to the first mirror 61 and the polarization direction of the third light propagating from the third semiconductor laser chip 53 to the third mirror 63 are Orthogonal. Also, the third light is reflected by the third reflecting surface 63a of the third mirror 63 and propagates in the third direction perpendicular to the main surface 21 as the third reflected light. Here, as the third light is reflected by the third mirror 63, the direction of the fast axis Af changes, but the direction of the slow axis As does not change. is parallel to the first direction.
 以上のように、第一反射光、第二反射光、及び第三反射光の偏光方向は、いずれも第一方向に平行な方向となる。なお、第一出力光、第二出力光、及び第三出力光の偏光方向も、いずれも、第一方向に平行な方向となる。また、本実施の形態に係る多波長光源モジュール10からは、複数の第一半導体レーザチップ51、複数の第二半導体レーザチップ52、及び、複数の第三半導体レーザチップ53からの各光が出射されるため、単一の第一半導体レーザチップ51、単一の第二半導体レーザチップ52、及び、単一の第三半導体レーザチップ53だけを備える多波長光源モジュールより、高パワーの光を出射できる。したがって、本実施の形態に係る多波長光源モジュール10は、偏光方向が揃っていて、かつ、高パワーな光を出射できる。このような、多波長光源モジュール10は、例えば、単一の液晶を備える時分解型プロジェクタ用の光源に適している。多波長光源モジュール10を用いることで、偏光方向が揃った光が得られるため、多波長光源モジュール10からの光を偏光フィルタによってフィルタリングする際に発生する光損失を低減できる。また、多波長光源モジュール10を用いることで、高パワーの光を得られるため、より明るい画像を投影できる時分解型プロジェクタを実現できる。 As described above, the polarization directions of the first reflected light, the second reflected light, and the third reflected light are all parallel to the first direction. The polarization directions of the first output light, the second output light, and the third output light are all parallel to the first direction. Further, from the multi-wavelength light source module 10 according to the present embodiment, the plurality of first semiconductor laser chips 51, the plurality of second semiconductor laser chips 52, and the plurality of third semiconductor laser chips 53 emit light. Therefore, high-power light is emitted from the multi-wavelength light source module including only the single first semiconductor laser chip 51, the single second semiconductor laser chip 52, and the single third semiconductor laser chip 53. can. Therefore, the multi-wavelength light source module 10 according to the present embodiment can emit light with uniform polarization directions and high power. Such a multi-wavelength light source module 10 is suitable, for example, as a light source for a time-resolved projector with a single liquid crystal. By using the multi-wavelength light source module 10, it is possible to obtain light with the same polarization direction, so it is possible to reduce light loss that occurs when the light from the multi-wavelength light source module 10 is filtered by the polarizing filter. Also, by using the multi-wavelength light source module 10, high-power light can be obtained, so that a time-resolved projector capable of projecting a brighter image can be realized.
 [1-3.各レンズの形状]
 本実施の形態に係る各レンズの形状について説明する。図4に示されるように、第一光L11は、ファスト軸Af方向の方がスロー軸As方向よりビーム径が大きい。第一反射光L12も、第一光L11と同様に、ファスト軸Af方向の方がスロー軸As方向よりビーム径が大きい。このため、図1及び図3に示されるように、第一反射光L12が入射する第一レンズ41のスロー軸As方向(つまり、第二方向)の寸法をファスト軸Af方向(つまり、第一方向)の寸法より小さくしてもよい。つまり、複数の第一レンズ41の各々の、第二方向における幅は、第一方向における幅より小さくてもよい。第一レンズ41の第一反射光L12のファスト軸Af方向における寸法と、スロー軸As方向における寸法との比は、例えば、2:1から6:1程度である。このように、スロー軸As方向における第一レンズ41の寸法を小さくすることができる。第二レンズ42、及び第三レンズ43についても第一レンズ41と同様に、それぞれ、第二反射光、及び第三反射光のスロー軸As方向の寸法を小さくしてもよい。つまり、複数の第二レンズ42の各々の、第一方向における幅は、第二方向における幅より小さくてもよい。また、複数の第三レンズ43の各々の、第一方向における幅は、第二方向における幅より小さくてもよい。これにより、各レンズの外部に光が入射することを抑制しつつ、多波長光源モジュール10の寸法を小型化することが可能となる。
[1-3. Shape of each lens]
The shape of each lens according to this embodiment will be described. As shown in FIG. 4, the first light L11 has a beam diameter larger in the direction of the fast axis Af than in the direction of the slow axis As. Similarly to the first light L11, the first reflected light L12 also has a larger beam diameter in the direction of the fast axis Af than in the direction of the slow axis As. Therefore, as shown in FIGS. 1 and 3, the dimension in the direction of the slow axis As (that is, the second direction) of the first lens 41 on which the first reflected light L12 is incident is the direction of the fast axis Af (that is, the first direction). That is, the width in the second direction of each of the plurality of first lenses 41 may be smaller than the width in the first direction. The ratio of the dimension in the fast axis Af direction and the dimension in the slow axis As direction of the first reflected light L12 of the first lens 41 is, for example, about 2:1 to 6:1. Thus, the dimension of the first lens 41 in the direction of the slow axis As can be reduced. As with the first lens 41, the second lens 42 and the third lens 43 may also have smaller dimensions in the direction of the slow axis As of the second reflected light and the third reflected light, respectively. That is, the width in the first direction of each of the plurality of second lenses 42 may be smaller than the width in the second direction. Also, the width in the first direction of each of the plurality of third lenses 43 may be smaller than the width in the second direction. As a result, it is possible to reduce the size of the multi-wavelength light source module 10 while suppressing light from entering the outside of each lens.
 また、図1及び図3に示されるように、第一レンズ41と、第二レンズ42及び第三レンズ43との第二方向における寸法が異なる。これに伴い、第二方向に一列に配列される第一レンズ41の個数は、第二方向に一列に配列される第二レンズ42の個数、及び、第二方向に一列に配列される第三レンズ43の個数と異なってもよい。 Also, as shown in FIGS. 1 and 3, the dimensions in the second direction of the first lens 41, the second lens 42 and the third lens 43 are different. Along with this, the number of the first lenses 41 arranged in a row in the second direction is the number of the second lenses 42 arranged in a row in the second direction, and the number of the third lenses 42 arranged in a row in the second direction. It may differ from the number of lenses 43 .
 [1-4.配線]
 本実施の形態に係る各半導体レーザチップへ電力を供給するための配線のレイアウトについて図7を用いて説明する。図7は、本実施の形態に係る多波長光源モジュール10における各セット及び配線のレイアウトを示す平面図である。図7には、多波長光源モジュール10の蓋体40を取り除いた状態を示す平面図が示されている。
[1-4. wiring]
A wiring layout for supplying power to each semiconductor laser chip according to the present embodiment will be described with reference to FIG. FIG. 7 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 10 according to this embodiment. FIG. 7 shows a plan view of the multi-wavelength light source module 10 with the cover 40 removed.
 図7に示されるように、枠部材30は、枠部材30の外部から枠部材30の内部に配置された各セットに電流を供給するための2個の第一正極電流端子91pと、2個の第一負極電流端子91nと、1個の第二正極電流端子92pと、1個の第二負極電流端子92nと、1個の第三正極電流端子93pと、1個の第三負極電流端子93nとを有する。2個の第一正極電流端子91pと、1個の第二正極電流端子92pと、1個の第三正極電流端子93pとは、枠部材30の第二方向における一方の端部(図7の左側の端部)に配置される。2個の第一負極電流端子91nと、1個の第二負極電流端子92nと、1個の第三負極電流端子93nとは、枠部材30の第二方向における他方の端部(図7の右側の端部)に配置される。このように、正極電流端子と、負極電流端子とを分離して配置することで、多波長光源モジュール10を含む回路設計を容易化することができる。また、正極電流端子と負極電流端子との配置を識別しやすくなるため、多波長光源モジュール10への配線接続時の接続ミスの発生を抑制できる。各電流端子は、枠部材30の外部から内部に貫通する導電性部材である。枠部材30が導電性材料で形成される場合には、各電流端子と枠部材30との間が電気的に絶縁される。このような各電流端子を用いて、多波長光源モジュール10の外部から、各半導体レーザチップに電流が供給される。 As shown in FIG. 7, the frame member 30 includes two first positive current terminals 91p for supplying current to each set arranged inside the frame member 30 from the outside of the frame member 30, and two positive current terminals 91p. a first negative current terminal 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, and a third negative current terminal 93n. Two first positive current terminals 91p, one second positive current terminal 92p, and one third positive current terminal 93p are connected to one end of the frame member 30 in the second direction (see FIG. 7). left end). Two first negative current terminals 91n, one second negative current terminal 92n, and one third negative current terminal 93n are connected to the other end of the frame member 30 in the second direction (see FIG. 7). right end). By arranging the positive current terminal and the negative current terminal separately in this manner, circuit design including the multi-wavelength light source module 10 can be facilitated. In addition, since it becomes easy to identify the arrangement of the positive current terminal and the negative current terminal, it is possible to suppress the occurrence of connection errors when wiring to the multi-wavelength light source module 10 . Each current terminal is a conductive member penetrating from the outside to the inside of the frame member 30 . If the frame member 30 is made of a conductive material, each current terminal and the frame member 30 are electrically insulated. A current is supplied to each semiconductor laser chip from the outside of the multi-wavelength light source module 10 using each of these current terminals.
 また、本実施の形態では、多波長光源モジュール10は、4個の第一セット用中継部材81と、1個の第二セット用中継部材82と、1個の第三セット用中継部材83とをさらに備える。 In the present embodiment, the multi-wavelength light source module 10 includes four first set relay members 81, one second set relay member 82, and one third set relay member 83. further provide.
 第一セット用中継部材81は、複数の第一セット11a~11jと隣り合う位置に配置される部材である。本実施の形態では、4個の第一セット用中継部材81は、それぞれ、第一セット11a、11e、11f、及び11jと第二方向において隣り合う位置に配置される。第一セット用中継部材81は、導電性部材81eを含む。導電性部材81eの構成は特に限定されない。導電性部材81eとして、例えば、Au膜などを用いることができる。本実施の形態では、第一セット用中継部材81は、絶縁性部材81dをさらに含む。絶縁性部材81dは、絶縁性材料を含む部材であり、基台20の主面21に配置される。絶縁性部材81dは、基台20と導電性部材81eとの間の電気的絶縁を維持できる部材であれば特に限定されない。絶縁性部材81dとして、例えば、AlN、SiC、SiN、アルミナなどの絶縁性材料を用いることができる。導電性部材81eは、絶縁性部材81dを介して基台20の主面21に配置される。これにより、導電性部材81eと基台20との間の電気的絶縁を維持できる。本実施の形態では、導電性部材81eは、絶縁性部材81dの上面に配置され、金属系接合材で基台20に接合される。 The first set relay member 81 is a member arranged at a position adjacent to the plurality of first sets 11a to 11j. In the present embodiment, the four first set relay members 81 are respectively arranged at positions adjacent to the first sets 11a, 11e, 11f, and 11j in the second direction. The first set relay member 81 includes a conductive member 81e. The configuration of the conductive member 81e is not particularly limited. For example, an Au film or the like can be used as the conductive member 81e. In the present embodiment, the first set relay member 81 further includes an insulating member 81d. The insulating member 81 d is a member containing an insulating material and arranged on the main surface 21 of the base 20 . The insulating member 81d is not particularly limited as long as it can maintain electrical insulation between the base 20 and the conductive member 81e. As the insulating member 81d, for example, an insulating material such as AlN, SiC, SiN, or alumina can be used. The conductive member 81e is arranged on the main surface 21 of the base 20 via the insulating member 81d. Thereby, electrical insulation between the conductive member 81e and the base 20 can be maintained. In the present embodiment, the conductive member 81e is arranged on the upper surface of the insulating member 81d and joined to the base 20 with a metal-based joining material.
 第二セット用中継部材82は、複数の第二セット12a~12dと隣り合う位置に配置される部材である。本実施の形態では、第二セット用中継部材82は、複数の第二セット12a~12dと第一方向において隣り合う位置に配置され、複数の導電性部材82e1~82e5を含む。導電性部材82e1~82e5の各々の材質などは、導電性部材81eと同様である。本実施の形態では、第二セット用中継部材82は、絶縁性部材82dをさらに含む。絶縁性部材82dは、絶縁性材料を含む部材であり、基台20の主面21に配置される。絶縁性部材82dの構成は、絶縁性部材81dの構成と同様である。本実施の形態では、絶縁性部材82dは、第二方向に延在する長尺状の形状を有する。絶縁性部材82dの上面には、複数の導電性部材82e1~82e5が互いに電気的に絶縁された状態で配置される。 The second set relay member 82 is a member arranged at a position adjacent to the plurality of second sets 12a to 12d. In the present embodiment, the second set relay member 82 is arranged adjacent to the plurality of second sets 12a to 12d in the first direction, and includes a plurality of conductive members 82e1 to 82e5. The material of each of the conductive members 82e1 to 82e5 is the same as that of the conductive member 81e. In the present embodiment, the second set relay member 82 further includes an insulating member 82d. The insulating member 82 d is a member containing an insulating material and arranged on the main surface 21 of the base 20 . The configuration of the insulating member 82d is similar to that of the insulating member 81d. In this embodiment, the insulating member 82d has an elongated shape extending in the second direction. A plurality of conductive members 82e1 to 82e5 are arranged electrically insulated from each other on the upper surface of the insulating member 82d.
 複数の導電性部材82e1~82e5は、第二方向に配列されている。導電性部材82e1は、第二正極電流端子92p及び第二セット12aと隣り合う位置に配置される。導電性部材82e2は、第二セット12a及び第二セット12bと隣り合う位置に配置される。導電性部材82e3は、第二セット12b及び第二セット12cと隣り合う位置に配置される。導電性部材82e4は、第二セット12c及び第二セット12dと隣り合う位置に配置される。導電性部材82e5は、第二セット12d及び第二負極電流端子92nと隣り合う位置に配置される。 A plurality of conductive members 82e1 to 82e5 are arranged in the second direction. The conductive member 82e1 is positioned adjacent to the second positive current terminal 92p and the second set 12a. The conductive member 82e2 is arranged at a position adjacent to the second set 12a and the second set 12b. The conductive member 82e3 is arranged at a position adjacent to the second set 12b and the second set 12c. The conductive member 82e4 is arranged at a position adjacent to the second set 12c and the second set 12d. The conductive member 82e5 is positioned adjacent to the second set 12d and the second negative current terminal 92n.
 なお、第二セット用中継部材82は、複数の絶縁性部材を含んでもよい。例えば、第二セット用中継部材82は、複数の導電性部材82e1~82e5が、それぞれ配置される複数の絶縁性部材を含んでもよい。 The second set relay member 82 may include a plurality of insulating members. For example, the second set relay member 82 may include a plurality of insulating members in which the plurality of conductive members 82e1 to 82e5 are respectively arranged.
 第三セット用中継部材83は、複数の第三セット13a~13dと隣り合う位置に配置される部材である。本実施の形態では、第三セット用中継部材83は、複数の第三セット13a~13dと第一方向において隣り合う位置に配置され、複数の導電性部材83e1~83e5を含む。導電性部材83e1~83e5の各々の材質は、導電性部材81eと同様である。本実施の形態では、第三セット用中継部材83は、絶縁性部材83dをさらに含む。絶縁性部材83dは、絶縁性材料を含む部材であり、基台20の主面21に配置される。絶縁性部材83dの構成は、絶縁性部材81dの構成と同様である。本実施の形態では、絶縁性部材83dは、第二方向に延在する長尺状の形状を有する。絶縁性部材83dの上面には、複数の導電性部材83e1~83e5が互いに電気的に絶縁された状態で配置される。 The third set relay member 83 is a member arranged at a position adjacent to the plurality of third sets 13a to 13d. In the present embodiment, the third set relay member 83 is arranged adjacent to the plurality of third sets 13a to 13d in the first direction, and includes a plurality of conductive members 83e1 to 83e5. The material of each of the conductive members 83e1 to 83e5 is the same as that of the conductive member 81e. In the present embodiment, the third set relay member 83 further includes an insulating member 83d. The insulating member 83 d is a member containing an insulating material and arranged on the main surface 21 of the base 20 . The configuration of the insulating member 83d is the same as the configuration of the insulating member 81d. In this embodiment, the insulating member 83d has an elongated shape extending in the second direction. A plurality of conductive members 83e1 to 83e5 are arranged electrically insulated from each other on the upper surface of the insulating member 83d.
 複数の導電性部材83e1~83e5は、第二方向に配列されている。導電性部材83e1は、第三正極電流端子93p及び第三セット13aと隣り合う位置に配置される。導電性部材83e2は、第三セット13a及び第三セット13bと隣り合う位置に配置される。導電性部材83e3は、第三セット13b及び第三セット13cと隣り合う位置に配置される。導電性部材83e4は、第三セット13c及び第三セット13dと隣り合う位置に配置される。導電性部材83e5は、第三セット13d及び第三負極電流端子93nと隣り合う位置に配置される。 The plurality of conductive members 83e1 to 83e5 are arranged in the second direction. The conductive member 83e1 is positioned adjacent to the third positive current terminal 93p and the third set 13a. The conductive member 83e2 is arranged at a position adjacent to the third set 13a and the third set 13b. The conductive member 83e3 is arranged at a position adjacent to the third set 13b and the third set 13c. The conductive member 83e4 is arranged at a position adjacent to the third set 13c and the third set 13d. The conductive member 83e5 is positioned adjacent to the third set 13d and the third negative current terminal 93n.
 なお、第三セット用中継部材83は、複数の絶縁性部材を含んでもよい。例えば、第三セット用中継部材83は、複数の導電性部材83e1~83e5が、それぞれ配置される複数の絶縁性部材を含んでもよい。 Note that the third set relay member 83 may include a plurality of insulating members. For example, the third set relay member 83 may include a plurality of insulating members in which the plurality of conductive members 83e1 to 83e5 are respectively arranged.
 複数の第一セット11a~11jは、複数の第一ワイヤW1を用いて電気的に直列接続されている。第一ワイヤW1は、導電性のワイヤである。第一ワイヤW1は、導電性のワイヤであれば特に限定されない。本実施の形態では、第一ワイヤW1は、Auを含むワイヤである。具体的には、第一セット11aの第一半導体レーザチップ51のn側接続電極(図示せず)と、隣接する第一セット11bの第一サブマウント71上に形成されたp側接続電極71eとの間が、1本以上の第一ワイヤW1で接続される。p側接続電極71eは、第一サブマウント71に実装された第一半導体レーザチップ51のp側電極(図示せず)と電気的に接続されている。このように、第一セット11aの第一半導体レーザチップ51のn側接続電極と、第一セット11bの第一半導体レーザチップ51のp側電極とが、電気的に接続される。同様に、第一セット11b、11c、及び11dの第一半導体レーザチップ51のn側接続電極と、それぞれに隣接される第一セット11c、11d、及び11eの第一サブマウント71のp側接続電極71eとが、それぞれ、電気的に接続される。また、第一セット11f、11g、11h及び11iの第一半導体レーザチップ51のn側接続電極と、それぞれに隣接する第一セット11g、11h、11i及び11jの第一サブマウント71のp側接続電極71eとが、それぞれ、電気的に接続される。 A plurality of first sets 11a to 11j are electrically connected in series using a plurality of first wires W1. The first wire W1 is a conductive wire. The first wire W1 is not particularly limited as long as it is a conductive wire. In this embodiment, the first wire W1 is a wire containing Au. Specifically, the n-side connection electrode (not shown) of the first semiconductor laser chip 51 of the first set 11a and the p-side connection electrode 71e formed on the adjacent first submount 71 of the first set 11b are connected by one or more first wires W1. The p-side connection electrode 71 e is electrically connected to a p-side electrode (not shown) of the first semiconductor laser chip 51 mounted on the first submount 71 . Thus, the n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11a and the p-side electrodes of the first semiconductor laser chips 51 of the first set 11b are electrically connected. Similarly, the n-side connection electrodes of the first semiconductor laser chips 51 of the first sets 11b, 11c, and 11d and the p-side connections of the first submounts 71 of the first sets 11c, 11d, and 11e adjacent to them, respectively. The electrodes 71e are electrically connected to each other. Also, the n-side connection electrodes of the first semiconductor laser chips 51 of the first sets 11f, 11g, 11h and 11i and the p-side connections of the first submounts 71 of the first sets 11g, 11h, 11i and 11j adjacent to each other The electrodes 71e are electrically connected to each other.
 2個の第一正極電流端子91pのうち一方の第一正極電流端子91pと、第一セット11aのp側接続電極71eとは、第一ワイヤW1と、1個の第一セット用中継部材81とを用いて電気的に接続される。当該1個の第一セット用中継部材81は、当該第一正極電流端子91p及び第一セット11aと隣り合う位置に配置される。第一正極電流端子91pのうち、枠部材30で囲まれた領域内に位置する部分と、第一セット用中継部材81の導電性部材81eとが、1本以上の第一ワイヤW1を用いて電気的に接続される。また、第一セット用中継部材81の導電性部材81eと、第一セット11aのp側接続電極71eとが1本以上の第一ワイヤW1を用いて電気的に接続される。同様に、2個の第一正極電流端子91pのうち他方の第一正極電流端子91pと、第一セット11fのp側接続電極71eとは、1個の第一セット用中継部材81と第一ワイヤW1とを用いて電気的に接続される。 The first positive current terminal 91p, which is one of the two first positive current terminals 91p, and the p-side connection electrode 71e of the first set 11a are connected by a first wire W1 and one relay member 81 for the first set. and are electrically connected. The single first set relay member 81 is arranged at a position adjacent to the first positive current terminal 91p and the first set 11a. A portion of the first positive electrode current terminal 91p located within the region surrounded by the frame member 30 and the conductive member 81e of the first set relay member 81 are connected by using one or more first wires W1. electrically connected. Also, the conductive member 81e of the first set relay member 81 and the p-side connection electrode 71e of the first set 11a are electrically connected using one or more first wires W1. Similarly, the other first positive current terminal 91p of the two first positive current terminals 91p and the p-side connection electrode 71e of the first set 11f are connected to one first set relay member 81 and the first set 11f. It is electrically connected using a wire W1.
 2個の第一負極電流端子91nのうち一方の第一負極電流端子91nと、第一セット11eの第一半導体レーザチップ51のn側接続電極とは、1個の第一セット用中継部材81と第一ワイヤW1とを用いて電気的に接続される。当該1個の第一セット用中継部材81は、当該第一負極電流端子91n及び第一セット11eと隣り合う位置に配置される。第一負極電流端子91nのうち、枠部材30で囲まれた領域内に位置する部分と、第一セット用中継部材81の導電性部材81eとが、1本以上の第一ワイヤW1を用いて電気的に接続される。また、第一セット用中継部材81の導電性部材81eと、第一セット11eの第一半導体レーザチップ51のn側接続電極とが1本以上の第一ワイヤW1を用いて電気的に接続される。同様に、2個の第一負極電流端子91nのうち他方の第一負極電流端子91nと、第一セット11jの第一半導体レーザチップ51のn側接続電極とは、1個の第一セット用中継部材81と第一ワイヤW1とを用いて電気的に接続される。 One first negative current terminal 91n of the two first negative current terminals 91n and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11e are combined into one first set relay member 81. and the first wire W1. The single first set relay member 81 is arranged at a position adjacent to the first negative current terminal 91n and the first set 11e. A portion of the first negative current terminal 91n located within the region surrounded by the frame member 30 and the conductive member 81e of the first set relay member 81 are connected by using one or more first wires W1. electrically connected. Also, the conductive member 81e of the relay member 81 for the first set and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11e are electrically connected using one or more first wires W1. be. Similarly, the other first negative current terminal 91n of the two first negative current terminals 91n and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11j are combined into one for the first set. They are electrically connected using the relay member 81 and the first wire W1.
 以上のような構成により、1個の第一正極電流端子91p及び1個の第一負極電流端子91nから、電気的に直列接続された5個の第一セット11a~11eに、電流を供給できる。また、1個の第一正極電流端子91p及び1個の第一負極電流端子91nから、電気的に直列接続された5個の第一セット11f~11jに、電流を供給できる。 With the above configuration, current can be supplied from one first positive current terminal 91p and one first negative current terminal 91n to the five first sets 11a to 11e electrically connected in series. . Also, current can be supplied from one first positive current terminal 91p and one first negative current terminal 91n to the five first sets 11f to 11j electrically connected in series.
 複数の第二セット12a~12dは、複数の第二ワイヤW2と第二セット用中継部材82とを用いて電気的に直列接続されている。第二ワイヤW2は、第一ワイヤW1と同様の構成を有する。本実施の形態では、第二セット12aの第二半導体レーザチップ52のn側接続電極(図示せず)と、第二セット12bの第二サブマウント72上に形成されたp側接続電極72eとの間が、1本以上の第二ワイヤW2と、第二セット用中継部材82の導電性部材82e2とを用いて電気的に接続される。具体的には、第二セット12aの第二半導体レーザチップ52のn側接続電極(図示せず)と、導電性部材82e2とが、1本以上の第二ワイヤW2で接続される。また、導電性部材82e2と、第二セット12bのp側接続電極72eとが、1本以上の第二ワイヤW2で接続される。p側接続電極72eは、第二サブマウント72に実装された第二半導体レーザチップ52のp側電極(図示せず)と電気的に接続されている。このように、第二セット12aの第二半導体レーザチップ52のn側接続電極と、第二セット12bの第二半導体レーザチップ52のp側電極とが、電気的に接続される。同様に、第二セット12bの第二半導体レーザチップ52のn側接続電極と、第二セット12cの第二半導体レーザチップ52のp側電極とが、第二ワイヤW2と、導電性部材82e3とを用いて電気的に接続される。第二セット12cの第二半導体レーザチップ52のn側接続電極と、第二セット12dの第二半導体レーザチップ52のp側電極とが、第二ワイヤW2と、導電性部材82e4とを用いて電気的に接続される。 The plurality of second sets 12a to 12d are electrically connected in series using the plurality of second wires W2 and the relay member 82 for the second set. The second wire W2 has the same configuration as the first wire W1. In this embodiment, the n-side connection electrodes (not shown) of the second semiconductor laser chips 52 of the second set 12a and the p-side connection electrodes 72e formed on the second submount 72 of the second set 12b are electrically connected using one or more second wires W2 and the conductive member 82e2 of the relay member 82 for the second set. Specifically, the n-side connection electrodes (not shown) of the second semiconductor laser chips 52 of the second set 12a and the conductive member 82e2 are connected by one or more second wires W2. Also, the conductive member 82e2 and the p-side connection electrode 72e of the second set 12b are connected by one or more second wires W2. The p-side connection electrode 72 e is electrically connected to the p-side electrode (not shown) of the second semiconductor laser chip 52 mounted on the second submount 72 . Thus, the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12a and the p-side electrodes of the second semiconductor laser chips 52 of the second set 12b are electrically connected. Similarly, the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12b and the p-side electrodes of the second semiconductor laser chips 52 of the second set 12c are connected to the second wire W2 and the conductive member 82e3. are electrically connected using The n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12c and the p-side electrodes of the second semiconductor laser chips 52 of the second set 12d are connected using a second wire W2 and a conductive member 82e4. electrically connected.
 第二正極電流端子92pと、第二セット12aのp側接続電極72eとは、第二ワイヤW2と、第二セット用中継部材82とを用いて電気的に接続される。具体的には、第二正極電流端子92pのうち、枠部材30で囲まれた領域内に位置する部分と、第二セット用中継部材82の導電性部材82e1とが、1本以上の第二ワイヤW2を用いて電気的に接続される。また、導電性部材82e1と、第二セット12aのp側接続電極72eとが1本以上の第二ワイヤW2を用いて電気的に接続される。 The second positive electrode current terminal 92p and the p-side connection electrode 72e of the second set 12a are electrically connected using the second wire W2 and the relay member 82 for the second set. Specifically, the portion of the second positive electrode current terminal 92p located within the region surrounded by the frame member 30 and the conductive member 82e1 of the second set relay member 82 are one or more second terminals. They are electrically connected using a wire W2. Also, the conductive member 82e1 and the p-side connection electrode 72e of the second set 12a are electrically connected using one or more second wires W2.
 第二負極電流端子92nと、第二セット12dの第二半導体レーザチップ52のn側接続電極とは、第二ワイヤW2と、第二セット用中継部材82とを用いて電気的に接続される。具体的には、第二負極電流端子92nのうち、枠部材30で囲まれた領域内に位置する部分と、第二セット用中継部材82の導電性部材82e5とが、1本以上の第二ワイヤW2を用いて電気的に接続される。また、導電性部材82e5と、第二セット12dの第二半導体レーザチップ52のn側接続電極とが1本以上の第二ワイヤW2を用いて電気的に接続される。 The second negative electrode current terminal 92n and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12d are electrically connected using the second wire W2 and the relay member 82 for the second set. . Specifically, the portion of the second negative electrode current terminal 92n located within the region surrounded by the frame member 30 and the conductive member 82e5 of the second set relay member 82 are combined into one or more second terminals. They are electrically connected using a wire W2. Also, the conductive member 82e5 and the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12d are electrically connected using one or more second wires W2.
 以上のような構成により、第二正極電流端子92p及び第二負極電流端子92nから、電気的に直列接続された4個の第二セット12a~12dに、電流を供給できる。 With the configuration described above, current can be supplied from the second positive current terminal 92p and the second negative current terminal 92n to the four second sets 12a to 12d electrically connected in series.
 複数の第三セット13a~13dは、複数の第三ワイヤW3と、第三セット用中継部材83とを用いて電気的に直列接続されている。第三ワイヤW3は、第一ワイヤW1と同様の構成を有する。本実施の形態では、第三セット13aの第三半導体レーザチップ53のn側接続電極(図示せず)と、第三セット13bの第三サブマウント73上に形成されたp側接続電極73eとの間が、1本以上の第三ワイヤW3と、第三セット用中継部材83の導電性部材83e2とを用いて電気的に接続される。具体的には、第三セット13aの第三半導体レーザチップ53のn側接続電極(図示せず)と、導電性部材83e2とが、1本以上の第三ワイヤW3で接続される。また、導電性部材83e2と、第三セット13bのp側接続電極73eとが、1本以上の第三ワイヤW3で接続される。p側接続電極73eは、第三サブマウント73に実装された第三半導体レーザチップ53のp側電極(図示せず)と電気的に接続されている。このように、第三セット13aの第三半導体レーザチップ53のn側接続電極と、第三セット13bの第三半導体レーザチップ53のp側電極とが、電気的に接続される。同様に、第三セット13bの第三半導体レーザチップ53のn側接続電極と、第三セット13cの第三半導体レーザチップ53のp側電極とが、第三ワイヤW3と、導電性部材83e3とを用いて電気的に接続される。第三セット13cの第三半導体レーザチップ53のn側接続電極と、第三セット13dの第三半導体レーザチップ53のp側電極とが、第三ワイヤW3と、導電性部材83e4とを用いて電気的に接続される。 The plurality of third sets 13a to 13d are electrically connected in series using the plurality of third wires W3 and the relay member 83 for the third set. The third wire W3 has the same configuration as the first wire W1. In this embodiment, the n-side connection electrode (not shown) of the third semiconductor laser chip 53 of the third set 13a and the p-side connection electrode 73e formed on the third submount 73 of the third set 13b are electrically connected using one or more third wires W3 and the conductive member 83e2 of the relay member 83 for the third set. Specifically, the n-side connection electrode (not shown) of the third semiconductor laser chip 53 of the third set 13a and the conductive member 83e2 are connected by one or more third wires W3. Also, the conductive member 83e2 and the p-side connection electrode 73e of the third set 13b are connected by one or more third wires W3. The p-side connection electrode 73 e is electrically connected to a p-side electrode (not shown) of the third semiconductor laser chip 53 mounted on the third submount 73 . Thus, the n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13a and the p-side electrodes of the third semiconductor laser chips 53 of the third set 13b are electrically connected. Similarly, the n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13b and the p-side electrodes of the third semiconductor laser chips 53 of the third set 13c are connected to the third wire W3 and the conductive member 83e3. are electrically connected using The n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13c and the p-side electrodes of the third semiconductor laser chips 53 of the third set 13d are connected using the third wire W3 and the conductive member 83e4. electrically connected.
 第三正極電流端子93pと、第三セット13aのp側接続電極73eとは、第三ワイヤW3と、第三セット用中継部材83とを用いて電気的に接続される。具体的には、第三正極電流端子93pのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材83の導電性部材83e1とが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、導電性部材83e1と、第三セット13aのp側接続電極73eとが1本以上の第三ワイヤW3を用いて電気的に接続される。 The third positive current terminal 93p and the p-side connection electrode 73e of the third set 13a are electrically connected using the third wire W3 and the relay member 83 for the third set. Specifically, the portion of the third positive electrode current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 83e1 of the relay member 83 for the third set are connected to one or more third terminals. They are electrically connected using a wire W3. Also, the conductive member 83e1 and the p-side connection electrode 73e of the third set 13a are electrically connected using one or more third wires W3.
 第三負極電流端子93nと、第三セット13dの第三半導体レーザチップ53のn側接続電極とは、第三ワイヤW3と、第三セット用中継部材83とを用いて電気的に接続される。具体的には、第三負極電流端子93nのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材83の導電性部材83e5とが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、導電性部材83e5と、第三セット13dの第三半導体レーザチップ53のn側接続電極とが1本以上の第三ワイヤW3を用いて電気的に接続される。 The third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13d are electrically connected using the third wire W3 and the relay member 83 for the third set. . Specifically, the portion of the third negative electrode current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 83e5 of the relay member 83 for the third set are combined into one or more third terminals. They are electrically connected using a wire W3. Also, the conductive member 83e5 and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13d are electrically connected using one or more third wires W3.
 以上のような構成により、第三正極電流端子93p及び第三負極電流端子93nから、電気的に直列接続された4個の第三セット13a~13dに、電流を供給できる。 With the configuration described above, current can be supplied from the third positive current terminal 93p and the third negative current terminal 93n to the four third sets 13a to 13d electrically connected in series.
 本実施の形態では、複数の第二セット12a~12dが第二方向に配列されており、かつ、複数の第二セット12a~12dの各々の第二光軸が第二方向に平行である。これに伴い、隣り合う二つの第二半導体レーザチップ52の間に、第二ミラー62が配置される。このため、隣り合う二つの第二半導体レーザチップ52を電気的に接続するための第二ワイヤW2と、第二ミラー62及び第二光とが干渉し得る。しかしながら、本実施の形態では、複数の第二セット12a~12dと第一方向において隣り合う位置に配置される第二セット用中継部材82を介して、隣り合うに対して二つの第二半導体レーザチップ52を電気的に接続するため、第二ワイヤW2と第二ミラー62及び第二光との干渉を抑制できる。 In the present embodiment, the plurality of second sets 12a-12d are arranged in the second direction, and the second optical axis of each of the plurality of second sets 12a-12d is parallel to the second direction. Along with this, the second mirror 62 is arranged between two adjacent second semiconductor laser chips 52 . Therefore, the second wire W2 for electrically connecting two adjacent second semiconductor laser chips 52, the second mirror 62 and the second light may interfere with each other. However, in the present embodiment, two second semiconductor lasers adjacent to the plurality of second sets 12a to 12d are provided via the second set relay member 82 arranged at a position adjacent to the plurality of second sets 12a to 12d in the first direction. Since the chip 52 is electrically connected, interference between the second wire W2, the second mirror 62, and the second light can be suppressed.
 さらに、第二セット用中継部材82を用いることで、第二ワイヤW2の使用量を削減することが可能となる。特に、本実施の形態のように、第二ワイヤW2がAuを含む場合には、第二ワイヤW2の使用量を削減することで、コストを削減することが可能となる。 Furthermore, by using the second set relay member 82, it is possible to reduce the amount of the second wire W2 used. In particular, when the second wire W2 contains Au as in the present embodiment, the cost can be reduced by reducing the amount of the second wire W2 used.
 本実施の形態では、第二セット用中継部材82及び導電性部材82e2~82e5が、第二ミラー62と第一方向において隣り合う位置に配置される。このような導電性部材82e2~82e5を用いることで、第二ミラー62を迂回して、隣り合う二つの第二半導体レーザチップ52を電気的に接続できるため、より一層確実に、第二ワイヤW2と第二ミラー62及び第二光との干渉を抑制できる。 In the present embodiment, the second set relay member 82 and the conductive members 82e2 to 82e5 are arranged at positions adjacent to the second mirror 62 in the first direction. By using such conductive members 82e2 to 82e5, two adjacent second semiconductor laser chips 52 can be electrically connected bypassing the second mirror 62, so that the second wire W2 can be connected more reliably. , the interference with the second mirror 62 and the second light can be suppressed.
 また、複数の第三セット13a~13dについても、複数の第二セット12a~12dと同様に、第三ワイヤW3と、第三セット用中継部材83と用いることで、第三ワイヤW3と第三ミラー63及び第三光との干渉を抑制できる。また、第三セット用中継部材83及び導電性部材83e2~83e5が、第三ミラー63と第一方向において隣り合う位置に配置される。このような導電性部材83e2~83e5を用いることで、より一層確実に、第三ワイヤW3と第三ミラー63及び第三光との干渉を抑制できる。 Further, for the plurality of third sets 13a to 13d, similarly to the plurality of second sets 12a to 12d, by using the third wire W3 and the third set relay member 83, the third wire W3 and the third set Interference with the mirror 63 and the third light can be suppressed. Also, the third set relay member 83 and the conductive members 83e2 to 83e5 are arranged at positions adjacent to the third mirror 63 in the first direction. By using such conductive members 83e2 to 83e5, interference between the third wire W3, the third mirror 63, and the third light can be suppressed more reliably.
 (実施の形態2)
 実施の形態2に係る多波長光源モジュールについて説明する。本実施の形態に係る多波長光源モジュールは、主に、第二セット及び第三セットの配列方向において実施の形態1に係る多波長光源モジュール10と相違する。以下、本実施の形態に係る多波長光源モジュールについて、実施の形態1に係る多波長光源モジュール10との相違点を中心に図8を用いて説明する。
(Embodiment 2)
A multi-wavelength light source module according to Embodiment 2 will be described. The multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 10 according to the first embodiment mainly in the arrangement directions of the second set and the third set. The multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 8, focusing on differences from the multi-wavelength light source module 10 according to the first embodiment.
 図8は、本実施の形態に係る多波長光源モジュール110における各セット及び配線のレイアウトを示す平面図である。図8には、多波長光源モジュール110の蓋体を取り除いた状態を示す平面図が示されている。 FIG. 8 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 110 according to this embodiment. FIG. 8 shows a plan view of the multi-wavelength light source module 110 with the lid removed.
 図8に示されるように、本実施の形態に係る多波長光源モジュール110は、基台20と、複数の第一セット11a~11hと、複数の第二セット12a~12dとを備える。本実施の形態では、多波長光源モジュール110は、複数の第三セット13a~13dと、枠部材30と、2個の第一正極電流端子91pと、2個の第一負極電流端子91nと、第二正極電流端子92pと、第二負極電流端子92nと、第三正極電流端子93pと、第三負極電流端子93nと、第一ワイヤW1と、第二ワイヤW2と、第三ワイヤW3と、4個の第一セット用中継部材81と、第二セット用中継部材182a及び182bと、第三セット用中継部材183a及び183bとをさらに備える。なお、図8には示されないが、多波長光源モジュール110は、実施の形態1に係る多波長光源モジュール10と同様に、各セットに対応する位置に配置されるレンズを有する蓋体をさらに備える。 As shown in FIG. 8, the multi-wavelength light source module 110 according to this embodiment includes a base 20, a plurality of first sets 11a-11h, and a plurality of second sets 12a-12d. In this embodiment, the multi-wavelength light source module 110 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 182a and 182b, and third set relay members 183a and 183b. Although not shown in FIG. 8, the multi-wavelength light source module 110 further includes lids having lenses arranged at positions corresponding to each set, as in the multi-wavelength light source module 10 according to the first embodiment. .
 本実施の形態に係る複数の第一セット11a~11hは、実施の形態1に係る第一セット11a~11jと、個数において異なるが、個数以外は、同様の構成を有する。 The plurality of first sets 11a to 11h according to the present embodiment are different in number from the first sets 11a to 11j according to the first embodiment, but have the same configuration except for the number.
 複数の第二セット12a~12dの各々の第二光軸は、実施の形態1と同様に、第二方向に平行である。本実施の形態では、複数の第二セット12a~12dは、第一方向に一列に配列されている。複数の第二セット12a~12dは、第二ワイヤW2を用いて電気的に直列接続されている。本実施の形態では、隣り合う二つの第二半導体レーザチップ52の間に第二ミラー62などが配置されないため、隣り合う二つの第二半導体レーザチップ52の間は、中継部材などを用いることなく第二ワイヤW2のみによって電気的に接続されている。これにより、中継部材及び第二ワイヤW2の使用量を削減できる。 The second optical axis of each of the plurality of second sets 12a-12d is parallel to the second direction, as in the first embodiment. In this embodiment, the plurality of second sets 12a-12d are arranged in a row in the first direction. A plurality of second sets 12a-12d are electrically connected in series using a second wire W2. In this embodiment, since the second mirror 62 or the like is not arranged between the two adjacent second semiconductor laser chips 52, a relay member or the like is not used between the two adjacent second semiconductor laser chips 52. They are electrically connected only by the second wire W2. As a result, the usage of the intermediate member and the second wire W2 can be reduced.
 第二正極電流端子92pと、第二セット12dのp側接続電極72eとは、第二ワイヤW2と、第二セット用中継部材182bとを用いて電気的に接続される。第二セット用中継部材182bは、第二セット12dと第二方向において隣り合う位置に配置される。第二セット用中継部材182bは、導電性部材182e2と、絶縁性部材182d2とを含む。導電性部材182e2は、絶縁性部材182d2の上面に配置される。 The second positive electrode current terminal 92p and the p-side connection electrode 72e of the second set 12d are electrically connected using the second wire W2 and the second set relay member 182b. The second set relay member 182b is arranged at a position adjacent to the second set 12d in the second direction. The second set relay member 182b includes a conductive member 182e2 and an insulating member 182d2. The conductive member 182e2 is arranged on the upper surface of the insulating member 182d2.
 第二正極電流端子92pのうち、枠部材30で囲まれた領域内に位置する部分と、第二セット用中継部材182bの導電性部材182e2とが、1本以上の第二ワイヤW2を用いて電気的に接続される。また、導電性部材182e2と、第二セット12dのp側接続電極72eとが1本以上の第二ワイヤW2を用いて電気的に接続される。 A portion of the second positive electrode current terminal 92p located within the region surrounded by the frame member 30 and the conductive member 182e2 of the second set relay member 182b are connected using one or more second wires W2. electrically connected. Also, the conductive member 182e2 and the p-side connection electrode 72e of the second set 12d are electrically connected using one or more second wires W2.
 第二負極電流端子92nと、第二セット12aの第二半導体レーザチップ52のn側接続電極とは、第二ワイヤW2と、第二セット用中継部材182aとを用いて電気的に接続される。第二セット用中継部材182aは、第二セット12aと第一方向において隣り合う位置に配置される。第二セット用中継部材182aは、導電性部材182e1と、絶縁性部材182d1とを含む。導電性部材182e1は、絶縁性部材182d1の上面に配置される。 The second negative electrode current terminal 92n and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12a are electrically connected using the second wire W2 and the second set relay member 182a. . The second set relay member 182a is arranged at a position adjacent to the second set 12a in the first direction. The second set relay member 182a includes a conductive member 182e1 and an insulating member 182d1. The conductive member 182e1 is arranged on the upper surface of the insulating member 182d1.
 第二負極電流端子92nのうち、枠部材30で囲まれた領域内に位置する部分と、第二セット用中継部材182aの導電性部材182e1とが、1本以上の第二ワイヤW2を用いて電気的に接続される。また、導電性部材182e1と、第二セット12aの第二半導体レーザチップ52のn側接続電極とが1本以上の第二ワイヤW2を用いて電気的に接続される。このように、第二セット12aと第一方向において隣り合う第二セット用中継部材182aを用いることにより、第二ワイヤW2の使用量を削減することができる。 A portion of the second negative current terminal 92n located within the region surrounded by the frame member 30 and the conductive member 182e1 of the second set relay member 182a are connected by using one or more second wires W2. electrically connected. Also, the conductive member 182e1 and the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12a are electrically connected using one or more second wires W2. In this way, by using the second set relay member 182a adjacent to the second set 12a in the first direction, the usage amount of the second wire W2 can be reduced.
 以上のような構成により、第二正極電流端子92p及び第二負極電流端子92nから、電気的に直列接続された4個の第二セット12a~12dに、電流を供給できる。 With the configuration described above, current can be supplied from the second positive current terminal 92p and the second negative current terminal 92n to the four second sets 12a to 12d electrically connected in series.
 複数の第三セット13a~13dの各々の第三光軸は、実施の形態1と同様に、第二方向に平行である。本実施の形態では、複数の第三セット13a~13dは、第一方向に一列に配列されている。複数の第三セット13a~13dは、第三ワイヤW3を用いて電気的に直列接続されている。本実施の形態では、隣り合う二つの第三半導体レーザチップ53の間に第三ミラー63などが配置されないため、隣り合う二つの第三半導体レーザチップ53の間は、中継部材などを用いることなく第三ワイヤW3のみによって電気的に接続されている。これにより、中継部材及び第三ワイヤW3の使用量を削減できる。 The third optical axis of each of the plurality of third sets 13a-13d is parallel to the second direction, as in the first embodiment. In this embodiment, the plurality of third sets 13a-13d are arranged in a row in the first direction. The plurality of third sets 13a-13d are electrically connected in series using a third wire W3. In this embodiment, since the third mirror 63 or the like is not arranged between the two adjacent third semiconductor laser chips 53, a relay member or the like is not used between the two adjacent third semiconductor laser chips 53. They are electrically connected only by the third wire W3. As a result, the usage of the intermediate member and the third wire W3 can be reduced.
 第三正極電流端子93pと、第三セット13dのp側接続電極73eとは、第三ワイヤW3と、第三セット用中継部材183bとを用いて電気的に接続される。第三セット用中継部材183bは、第三セット13dと第一方向において隣り合う位置に配置される。第三セット用中継部材183bは、導電性部材183e2と、絶縁性部材183d2とを含む。導電性部材183e2は、絶縁性部材183d2の上面に配置される。 The third positive current terminal 93p and the p-side connection electrode 73e of the third set 13d are electrically connected using the third wire W3 and the third set relay member 183b. The third set relay member 183b is arranged at a position adjacent to the third set 13d in the first direction. The third set relay member 183b includes a conductive member 183e2 and an insulating member 183d2. The conductive member 183e2 is arranged on the upper surface of the insulating member 183d2.
 第三正極電流端子93pのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材183bの導電性部材183e2とが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、導電性部材183e2と、第三セット13dのp側接続電極73eとが1本以上の第三ワイヤW3を用いて電気的に接続される。このように、第三セット13dの第三ミラー63と第一方向において隣り合う第三セット用中継部材183bを用いることにより、第三ワイヤW3と、第三セット13dの第三ミラー63及び第三光とが干渉することを抑制できる。また、第三ワイヤW3の使用量を削減することができる。 A portion of the third positive current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 183e2 of the relay member 183b for the third set are connected using one or more third wires W3. electrically connected. Also, the conductive member 183e2 and the p-side connection electrode 73e of the third set 13d are electrically connected using one or more third wires W3. In this way, by using the third set relay member 183b adjacent to the third mirror 63 of the third set 13d in the first direction, the third wire W3, the third mirror 63 of the third set 13d and the third Interference with light can be suppressed. In addition, the usage of the third wire W3 can be reduced.
 第三負極電流端子93nと、第三セット13aの第三半導体レーザチップ53のn側接続電極とは、第三ワイヤW3と、第三セット用中継部材183aとを用いて電気的に接続される。第三セット用中継部材183aは、第三セット13aと第一方向において隣り合う位置に配置される。第三セット用中継部材183aは、導電性部材183e1と、絶縁性部材183d1とを含む。導電性部材183e1は、絶縁性部材183d1の上面に配置される。 The third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13a are electrically connected using the third wire W3 and the third set relay member 183a. . The third set relay member 183a is arranged at a position adjacent to the third set 13a in the first direction. The third set relay member 183a includes a conductive member 183e1 and an insulating member 183d1. The conductive member 183e1 is arranged on the upper surface of the insulating member 183d1.
 第三負極電流端子93nのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材183aの導電性部材183e1とが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、導電性部材183e1と、第三セット13aの第三半導体レーザチップ53のn側接続電極とが1本以上の第三ワイヤW3を用いて電気的に接続される。このように、第三セット13aの第三ミラー63と第一方向において隣り合う第三セット用中継部材183aを用いることにより、第三ワイヤW3と、第三セット13aの第三ミラー63及び第三光とが干渉することを抑制できる。また、第三ワイヤW3の使用量を削減することができる。 A portion of the third negative current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 183e1 of the third set relay member 183a are connected by using one or more third wires W3. electrically connected. Also, the conductive member 183e1 and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13a are electrically connected using one or more third wires W3. In this way, by using the third set relay member 183a adjacent to the third mirror 63 of the third set 13a in the first direction, the third wire W3, the third mirror 63 of the third set 13a and the third Interference with light can be suppressed. In addition, the usage of the third wire W3 can be reduced.
 以上のような構成により、第三正極電流端子93p及び第三負極電流端子93nから、電気的に直列接続された4個の第三セット13a~13dに、電流を供給できる。 With the configuration described above, current can be supplied from the third positive current terminal 93p and the third negative current terminal 93n to the four third sets 13a to 13d electrically connected in series.
 また、本実施の形態に係る多波長光源モジュール110においても、実施の形態1に係る多波長光源モジュール10と同様に、偏光方向が揃っており、かつ、高パワーの光を出射することができる。 Also, in the multi-wavelength light source module 110 according to the present embodiment, similarly to the multi-wavelength light source module 10 according to the first embodiment, the polarization directions are aligned and high-power light can be emitted. .
 (実施の形態3)
 実施の形態3に係る多波長光源モジュールについて説明する。本実施の形態に係る多波長光源モジュールは、主に、第三セット13a~13dの配置において、実施の形態2に係る多波長光源モジュール110と相違する。以下、本実施の形態に係る多波長光源モジュールについて、実施の形態2に係る多波長光源モジュール110との相違点を中心に図9を用いて説明する。
(Embodiment 3)
A multi-wavelength light source module according to Embodiment 3 will be described. The multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 110 according to the second embodiment mainly in the arrangement of the third set 13a-13d. The multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 9, focusing on differences from the multi-wavelength light source module 110 according to the second embodiment.
 図9は、本実施の形態に係る多波長光源モジュール210における各セット及び配線のレイアウトを示す平面図である。図9には、多波長光源モジュール210の蓋体を取り除いた状態を示す平面図が示されている。 FIG. 9 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 210 according to this embodiment. FIG. 9 shows a plan view of the multi-wavelength light source module 210 with the lid removed.
 図9に示されるように、本実施の形態に係る多波長光源モジュール210は、基台20と、複数の第一セット11a~11hと、複数の第二セット12a~12dとを備える。本実施の形態では、多波長光源モジュール210は、複数の第三セット13a~13dと、枠部材30と、2個の第一正極電流端子91pと、2個の第一負極電流端子91nと、第二正極電流端子92pと、第二負極電流端子92nと、第三正極電流端子93pと、第三負極電流端子93nと、第一ワイヤW1と、第二ワイヤW2と、第三ワイヤW3と、4個の第一セット用中継部材81と、第二セット用中継部材182a及び182bと、第三セット用中継部材183c及び183dとをさらに備える。なお、図9には示されないが、多波長光源モジュール210は、実施の形態1に係る多波長光源モジュール10と同様に、各セットに対応する位置に配置されるレンズを有する蓋体をさらに備える。 As shown in FIG. 9, the multi-wavelength light source module 210 according to this embodiment includes a base 20, a plurality of first sets 11a-11h, and a plurality of second sets 12a-12d. In this embodiment, the multi-wavelength light source module 210 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 182a and 182b, and third set relay members 183c and 183d. Although not shown in FIG. 9, the multi-wavelength light source module 210 further includes lids having lenses arranged at positions corresponding to each set, as in the multi-wavelength light source module 10 according to the first embodiment. .
 本実施の形態に係る第三セット13a~13dの各々においては、第三光軸の方向において、第三半導体レーザチップ53の方が、第三ミラー63より、主面21の端部に近い位置に配置される。言い換えると、第三半導体レーザチップ53は、主面21上の領域の外側から内側に向かって第三光を出射する。これにより、主面21の端部に配置される第三正極電流端子93p及び第三負極電流端子93nと第三半導体レーザチップ53との間に第三ミラー63が配置されない。したがって、各電流端子と第三半導体レーザチップ53とを接続する第三ワイヤW3と、第三ミラー63及び第三光とが干渉することを抑制できる。 In each of the third sets 13a to 13d according to the present embodiment, the third semiconductor laser chip 53 is closer to the end of the main surface 21 than the third mirror 63 in the direction of the third optical axis. placed in In other words, the third semiconductor laser chip 53 emits the third light from the outside to the inside of the area on the main surface 21 . As a result, the third mirror 63 is not arranged between the third positive current terminal 93p and the third negative current terminal 93n arranged at the end of the main surface 21 and the third semiconductor laser chip 53 . Therefore, it is possible to suppress interference between the third wire W3 connecting each current terminal and the third semiconductor laser chip 53, the third mirror 63, and the third light.
 本実施の形態に係る第三正極電流端子93pと、第三セット13dのp側接続電極73eとは、第三ワイヤW3と、第三セット用中継部材183dとを用いて電気的に接続される。第三セット用中継部材183dは、第三セット13dと第二方向において隣り合う位置に配置される。第三セット用中継部材183dは、導電性部材183e4と、絶縁性部材183d4とを含む。導電性部材183e4は、絶縁性部材183d4の上面に配置される。 The third positive current terminal 93p according to the present embodiment and the p-side connection electrode 73e of the third set 13d are electrically connected using the third wire W3 and the third set relay member 183d. . The third set relay member 183d is arranged at a position adjacent to the third set 13d in the second direction. The third set relay member 183d includes a conductive member 183e4 and an insulating member 183d4. The conductive member 183e4 is arranged on the upper surface of the insulating member 183d4.
 第三正極電流端子93pのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材183dの導電性部材183e4とが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、導電性部材183e4と、第三セット13dのp側接続電極73eとが1本以上の第三ワイヤW3を用いて電気的に接続される。 A portion of the third positive electrode current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 183e4 of the third set relay member 183d are connected by using one or more third wires W3. electrically connected. Also, the conductive member 183e4 and the p-side connection electrode 73e of the third set 13d are electrically connected using one or more third wires W3.
 第三負極電流端子93nと、第三セット13aの第三半導体レーザチップ53のn側接続電極とは、第三ワイヤW3と、第三セット用中継部材183cとを用いて電気的に接続される。第三セット用中継部材183cは、第三セット13aと第一方向において隣り合う位置に配置される。第三セット用中継部材183cは、導電性部材183e3と、絶縁性部材183d3とを含む。導電性部材183e3は、絶縁性部材183d3の上面に配置される。 The third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13a are electrically connected using the third wire W3 and the third set relay member 183c. . The third set relay member 183c is arranged at a position adjacent to the third set 13a in the first direction. The third set relay member 183c includes a conductive member 183e3 and an insulating member 183d3. The conductive member 183e3 is arranged on the upper surface of the insulating member 183d3.
 第三負極電流端子93nのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材183cの導電性部材183e3とが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、導電性部材183e3と、第三セット13aの第三半導体レーザチップ53のn側接続電極とが1本以上の第三ワイヤW3を用いて電気的に接続される。このように、第三セット13aと第一方向において隣り合う第三セット用中継部材183cを用いることにより、第三ワイヤW3の使用量を削減することができる。 A portion of the third negative current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 183e3 of the third set relay member 183c are connected by using one or more third wires W3. electrically connected. Also, the conductive member 183e3 and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13a are electrically connected using one or more third wires W3. In this way, by using the third set relay member 183c adjacent to the third set 13a in the first direction, the usage amount of the third wire W3 can be reduced.
 以上のように、本実施の形態では、第三光軸の方向において、第三半導体レーザチップ53の方が、第三ミラー63より、主面21の端部に近い位置に配置される。このため、各電流端子と第三半導体レーザチップ53とを接続する第三ワイヤW3と、第三ミラー63及び第三光とが干渉することを抑制できる。また、第三セット用中継部材183c及び183dを小型化することができる。 As described above, in the present embodiment, the third semiconductor laser chip 53 is arranged closer to the end of the main surface 21 than the third mirror 63 in the direction of the third optical axis. Therefore, it is possible to suppress interference between the third wire W3 connecting each current terminal and the third semiconductor laser chip 53, the third mirror 63, and the third light. Also, the third set relay members 183c and 183d can be made smaller.
 本実施の形態では、第二セット12a~12dの各々においても、第三セット13a~13dと同様に、第二光軸の方向において、第二半導体レーザチップ52の方が、第二ミラー62より、主面21の端部に近い位置に配置される。これにより、各電流端子と第二半導体レーザチップ52とを接続する第二ワイヤW2と、第二ミラー62及び第二光とが干渉することを抑制できる。 In the present embodiment, in each of the second sets 12a to 12d as well as in the third sets 13a to 13d, the second semiconductor laser chip 52 is located closer to the second mirror 62 than the second mirror 62 in the direction of the second optical axis. , are arranged near the edge of the main surface 21 . This can suppress interference between the second wire W2 connecting each current terminal and the second semiconductor laser chip 52, the second mirror 62, and the second light.
 また、本実施の形態に係る多波長光源モジュール210においても、実施の形態1に係る多波長光源モジュール10と同様に、偏光方向が揃っており、かつ、高パワーの光を出射することができる。 Also, in the multi-wavelength light source module 210 according to the present embodiment, similarly to the multi-wavelength light source module 10 according to the first embodiment, the polarization directions are aligned and high-power light can be emitted. .
 (実施の形態4)
 実施の形態4に係る多波長光源モジュールについて説明する。本実施の形態に係る多波長光源モジュールは、主に、第二セット12a~12d及び第三セット13a~13dの配置において、実施の形態1に係る多波長光源モジュール10と相違する。以下、本実施の形態に係る多波長光源モジュールについて、実施の形態1に係る多波長光源モジュール10との相違点を中心に図10を用いて説明する。
(Embodiment 4)
A multi-wavelength light source module according to Embodiment 4 will be described. The multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 10 according to the first embodiment mainly in the arrangement of the second sets 12a-12d and the third sets 13a-13d. The multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 10, focusing on differences from the multi-wavelength light source module 10 according to the first embodiment.
 図10は、本実施の形態に係る多波長光源モジュール310における各セット及び配線のレイアウトを示す平面図である。図10には、多波長光源モジュール310の蓋体を取り除いた状態を示す平面図が示されている。 FIG. 10 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 310 according to this embodiment. FIG. 10 shows a plan view of the multi-wavelength light source module 310 with the lid removed.
 図10に示されるように、本実施の形態に係る多波長光源モジュール310は、基台20と、複数の第一セット11a~11jと、複数の第二セット12a~12dとを備える。本実施の形態では、多波長光源モジュール310は、複数の第三セット13a~13dと、枠部材30と、2個の第一正極電流端子91pと、2個の第一負極電流端子91nと、第二正極電流端子92pと、第二負極電流端子92nと、第三正極電流端子93pと、第三負極電流端子93nと、第一ワイヤW1と、第二ワイヤW2と、第三ワイヤW3と、4個の第一セット用中継部材81と、第二セット用中継部材382a~382cと、第三セット用中継部材383a~383cとをさらに備える。なお、図10には示されないが、多波長光源モジュール310は、実施の形態1に係る多波長光源モジュール10と同様に、各セットに対応する位置に配置されるレンズを有する蓋体をさらに備える。 As shown in FIG. 10, a multi-wavelength light source module 310 according to this embodiment includes a base 20, a plurality of first sets 11a-11j, and a plurality of second sets 12a-12d. In this embodiment, the multi-wavelength light source module 310 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 382a to 382c, and third set relay members 383a to 383c. Although not shown in FIG. 10, the multi-wavelength light source module 310 further includes lids having lenses arranged at positions corresponding to the respective sets, as in the multi-wavelength light source module 10 according to the first embodiment. .
 第二セット用中継部材382aは、導電性部材382e1と、絶縁性部材382d1とを含む。導電性部材382e1は、絶縁性部材382d1の上面に配置される。第二セット用中継部材382aは、第二セット12aと第一方向において隣り合う位置に配置される。また、第二セット用中継部材382aは、第二正極電流端子92pと隣り合う位置に配置される。 The second set relay member 382a includes a conductive member 382e1 and an insulating member 382d1. The conductive member 382e1 is arranged on the upper surface of the insulating member 382d1. The second set relay member 382a is arranged at a position adjacent to the second set 12a in the first direction. In addition, the second set relay member 382a is arranged at a position adjacent to the second positive electrode current terminal 92p.
 第二セット用中継部材382bは、導電性部材382e2と、絶縁性部材382d2とを含む。導電性部材382e2は、絶縁性部材382d2の上面に配置される。第二セット用中継部材382bは、第二方向に延在し、第二セット12b、12c、及び第三セット13aと第一方向において、第三セット用中継部材383aを介して隣り合う位置に配置される。 The second set relay member 382b includes a conductive member 382e2 and an insulating member 382d2. The conductive member 382e2 is arranged on the upper surface of the insulating member 382d2. The second set relay member 382b extends in the second direction and is arranged at a position adjacent to the second sets 12b, 12c, and the third set 13a in the first direction via the third set relay member 383a. be done.
 第二セット用中継部材382cは、導電性部材382e3と、絶縁性部材382d3とを含む。導電性部材382e3は、絶縁性部材382d3の上面に配置される。第二セット用中継部材382cは、第二方向に延在し、第二セット12d及び第三セット13cと第一方向において隣り合う位置に配置される。また、第二セット用中継部材382cは、第二負極電流端子92nと隣り合う位置に配置される。 The second set relay member 382c includes a conductive member 382e3 and an insulating member 382d3. The conductive member 382e3 is arranged on the upper surface of the insulating member 382d3. The second set relay member 382c extends in the second direction and is arranged at a position adjacent to the second set 12d and the third set 13c in the first direction. In addition, the second set relay member 382c is arranged at a position adjacent to the second negative current terminal 92n.
 第三セット用中継部材383aは、導電性部材383e1と、絶縁性部材383d1とを含む。導電性部材383e1は、絶縁性部材383d1の上面に配置される。第三セット用中継部材383aは、第二方向に延在し、第二セット12b及び第三セット13aと第一方向において隣り合う位置に配置される。また、第三セット用中継部材383aは、第三正極電流端子93pと隣り合う位置に配置される。 The third set relay member 383a includes a conductive member 383e1 and an insulating member 383d1. The conductive member 383e1 is arranged on the upper surface of the insulating member 383d1. The third set relay member 383a extends in the second direction and is arranged at a position adjacent to the second set 12b and the third set 13a in the first direction. Also, the third set relay member 383a is arranged at a position adjacent to the third positive electrode current terminal 93p.
 第三セット用中継部材383bは、導電性部材383e2と、絶縁性部材383d2とを含む。導電性部材383e2は、絶縁性部材383d2の上面に配置される。第三セット用中継部材383bは、第二方向に延在し、第二セット12d、第三セット13b及び13cと第一方向において、第二セット用中継部材382cを介して隣り合う位置に配置される。 The third set relay member 383b includes a conductive member 383e2 and an insulating member 383d2. The conductive member 383e2 is arranged on the upper surface of the insulating member 383d2. The third set relay member 383b extends in the second direction and is arranged at a position adjacent to the second set 12d, the third sets 13b and 13c in the first direction via the second set relay member 382c. be.
 第三セット用中継部材383cは、導電性部材383e3と、絶縁性部材383d3とを含む。導電性部材383e3は、絶縁性部材383d3の上面に配置される。第三セット用中継部材383cは、第二方向に延在し、第三セット13dと第一方向において隣り合う位置に配置される。また、第三セット用中継部材383cは、第三負極電流端子93nと隣り合う位置に配置される。 The third set relay member 383c includes a conductive member 383e3 and an insulating member 383d3. The conductive member 383e3 is arranged on the upper surface of the insulating member 383d3. The third set relay member 383c extends in the second direction and is arranged at a position adjacent to the third set 13d in the first direction. Also, the third set relay member 383c is arranged at a position adjacent to the third negative current terminal 93n.
 本実施の形態に係る多波長光源モジュール310においては、複数の第二セット12a~12dと、複数の第三セットとが、第二方向に交互に配置されている。具体的には、図10に示されるように、第二セット12a、第三セット13b、第二セット12d、及び、第三セット13cが、この順に第二方向に配列されている。また、第二セット12b、第三セット13a、第二セット12c、及び、第三セット13dが、この順に第二方向に配列されている。第二セット12a~12d、及び、第三セット13a~13dをこのように配置することにより、多波長光源モジュール310から出射される光における第二光と第三光との強度分布の偏りを抑制できる。 In the multi-wavelength light source module 310 according to the present embodiment, the plurality of second sets 12a to 12d and the plurality of third sets are alternately arranged in the second direction. Specifically, as shown in FIG. 10, a second set 12a, a third set 13b, a second set 12d, and a third set 13c are arranged in this order in the second direction. A second set 12b, a third set 13a, a second set 12c, and a third set 13d are arranged in this order in the second direction. By arranging the second sets 12a to 12d and the third sets 13a to 13d in this way, the bias in the intensity distribution between the second light and the third light in the light emitted from the multi-wavelength light source module 310 is suppressed. can.
 また、第二セット12a及び12bは、第一方向に配列されており、第二セット12c及び12dは、第一方向に配列されている。第三セット13a及び13bは、第一方向に配列されており、第三セット13c及び13dは、第一方向に配列されている。このように、複数の第二セット12a~12dのうち、少なくとも2個の第二セットは、第一方向に配列されてもよい。また、複数の第三セット13a~13dのうち、少なくとも2個の第三セットは、第一方向に配列されてもよい。 Also, the second sets 12a and 12b are arranged in the first direction, and the second sets 12c and 12d are arranged in the first direction. The third sets 13a and 13b are arranged in a first direction and the third sets 13c and 13d are arranged in the first direction. Thus, at least two second sets among the plurality of second sets 12a-12d may be arranged in the first direction. At least two third sets among the plurality of third sets 13a-13d may be arranged in the first direction.
 本実施の形態においては、第二セット12a~12dは、第二ワイヤW2及び第二セット用中継部材382a~382cを用いて電気的に直列接続されている。具体的には、第二セット12aの第二半導体レーザチップ52のn側接続電極と、第二セット12bのp側接続電極72eとが、1本以上の第二ワイヤW2で接続される。第二セット12bの第二半導体レーザチップ52のn側接続電極と、第二セット用中継部材382bの導電性部材382e2とが1本以上の第二ワイヤW2で接続される。ここで、図10に示されるように、第二ワイヤW2が、第三セット用中継部材383aの上方を通過する(つまり、第三セット用中継部材383aを跨ぐ)。言い換えると、第二ワイヤW2と主面21との間に第三セット用中継部材383aが配置される。このため、第三セット用中継部材383aは、第二セット用中継部材382bより、主面21からの高さが低くてもよい。これにより、第二ワイヤW2と第三セット用中継部材383aとが干渉することを抑制できる。 In the present embodiment, the second sets 12a-12d are electrically connected in series using the second wire W2 and the second set relay members 382a-382c. Specifically, the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12a and the p-side connection electrodes 72e of the second set 12b are connected by one or more second wires W2. The n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12b and the conductive members 382e2 of the relay members 382b for the second set are connected by one or more second wires W2. Here, as shown in FIG. 10, the second wire W2 passes above the third set relay member 383a (that is, straddles the third set relay member 383a). In other words, the third set relay member 383a is arranged between the second wire W2 and the main surface 21 . Therefore, the third set relay member 383a may be lower in height from the main surface 21 than the second set relay member 382b. This can suppress interference between the second wire W2 and the third set relay member 383a.
 また、第二セット用中継部材382bの導電性部材382e2と、第二セット12cのp側接続電極72eとが1本以上の第二ワイヤW2で接続される。第二セット12cの第二半導体レーザチップ52のn側接続電極と、第二セット12dのp側接続電極72eとが、1本以上の第二ワイヤW2で接続される。 Also, the conductive member 382e2 of the second set relay member 382b and the p-side connection electrode 72e of the second set 12c are connected by one or more second wires W2. The n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12c and the p-side connection electrodes 72e of the second set 12d are connected by one or more second wires W2.
 以上のように本実施の形態では、複数の第二セット12a~12dは、第二方向において隣り合う2個の第二セット12b及び12cを含む。第二セット用中継部材382bは、2個の第二セット12b及び12cと第一方向において隣り合う位置に配置される。2個の第二セット12b及び12cのうち一方の第二セット12bが有する第二半導体レーザチップ52のn側接続電極は、一方の第二セット12bが有するp側接続電極72eと第二セット用中継部材382bとの間に配置され、かつ、第二セット用中継部材382bと1本以上の第二ワイヤW2を用いて電気的に接続される。 As described above, in the present embodiment, the plurality of second sets 12a to 12d includes two second sets 12b and 12c adjacent in the second direction. The second set relay member 382b is arranged at a position adjacent to the two second sets 12b and 12c in the first direction. The n-side connection electrodes of the second semiconductor laser chip 52 of the second set 12b, one of the two second sets 12b and 12c, are combined with the p-side connection electrode 72e of the second set 12b. It is arranged between the relay member 382b and electrically connected to the second set relay member 382b using one or more second wires W2.
 また、2個の第二セット12b及び12cのうち他方の第二セット12cが有するp側接続電極72eは、他方の第二セット12cが有する第二半導体レーザチップ52のn側接続電極と第二セット用中継部材382bとの間に配置され、かつ、第二セット用中継部材382bと電気的に接続される。 The p-side connection electrode 72e of the other second set 12c of the two second sets 12b and 12c is the n-side connection electrode of the second semiconductor laser chip 52 of the other second set 12c. It is arranged between the setting relay member 382b and electrically connected to the second setting relay member 382b.
 第二正極電流端子92pと、第二セット12aのp側接続電極72eとは、第二ワイヤW2と、第二セット用中継部材382aとを用いて電気的に接続される。具体的には、第二正極電流端子92pのうち、枠部材30で囲まれた領域内に位置する部分と、第二セット用中継部材382aの導電性部材382e1とが、1本以上の第二ワイヤW2を用いて電気的に接続される。また、導電性部材382e1と、第二セット12aのp側接続電極72eとが1本以上の第二ワイヤW2を用いて電気的に接続される。 The second positive electrode current terminal 92p and the p-side connection electrode 72e of the second set 12a are electrically connected using the second wire W2 and the second set relay member 382a. Specifically, the portion of the second positive electrode current terminal 92p located within the region surrounded by the frame member 30 and the conductive member 382e1 of the second set relay member 382a are combined into one or more second positive current terminals 92p. They are electrically connected using a wire W2. Also, the conductive member 382e1 and the p-side connection electrode 72e of the second set 12a are electrically connected using one or more second wires W2.
 第二負極電流端子92nと、第二セット12dの第二半導体レーザチップ52のn側接続電極とは、第二ワイヤW2と、第二セット用中継部材382cとを用いて電気的に接続される。具体的には、第二負極電流端子92nのうち、枠部材30で囲まれた領域内に位置する部分と、第二セット用中継部材382cの導電性部材382e3とが、1本以上の第二ワイヤW2を用いて電気的に接続される。また、導電性部材382e3と、第二セット12dの第二半導体レーザチップ52のn側接続電極とが1本以上の第二ワイヤW2を用いて電気的に接続される。 The second negative electrode current terminal 92n and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12d are electrically connected using the second wire W2 and the second set relay member 382c. . Specifically, the portion of the second negative electrode current terminal 92n located within the region surrounded by the frame member 30 and the conductive member 382e3 of the second set relay member 382c are combined into one or more second terminals. They are electrically connected using a wire W2. Also, the conductive member 382e3 and the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12d are electrically connected using one or more second wires W2.
 以上のような構成により、複数の第二セット12a~12dは、電気的に直列接続される。また、第二正極電流端子92p及び第二負極電流端子92nから、電気的に直列接続された4個の第二セット12a~12dに、電流を供給できる。また、第二セット12b及び12cと第一方向において隣り合う第二セット用中継部材382bと、第二セット12dと第一方向において隣り合う第二セット用中継部材382cとを用いることにより、第二ワイヤW2の使用量を削減することができる。さらに、第二セット用中継部材382bは、第二セット12bの第二ミラー62と第一方向において隣り合う位置に配置される。また第二セット用中継部材382cは、第二セット12dの第二ミラー62と第一方向において隣り合う位置に配置される。第二セット用中継部材382bを用いることで、第二ミラー62を迂回して、第二セット12bの第二半導体レーザチップ52と、第二セット12cの第二半導体レーザチップ52とを電気的に接続できる。また、第二セット用中継部材382cを用いることで、第二ミラー62を迂回して、第二半導体レーザチップ52と第二負極電流端子92nとを電気的に接続できる。したがって、第二ワイヤW2と第二ミラー62及び第二光との干渉を抑制できる。 With the configuration as described above, the plurality of second sets 12a to 12d are electrically connected in series. Further, current can be supplied to the second set of four electrically connected in series 12a-12d from the second positive current terminal 92p and the second negative current terminal 92n. Further, by using the second set relay member 382b adjacent to the second sets 12b and 12c in the first direction and the second set relay member 382c adjacent to the second set 12d in the first direction, the second The usage amount of the wire W2 can be reduced. Further, the second set relay member 382b is arranged at a position adjacent to the second mirror 62 of the second set 12b in the first direction. The second set relay member 382c is arranged at a position adjacent to the second mirror 62 of the second set 12d in the first direction. By using the second set relay member 382b, the second semiconductor laser chips 52 of the second set 12b and the second semiconductor laser chips 52 of the second set 12c are electrically connected bypassing the second mirror 62. Can connect. In addition, by using the second set relay member 382c, the second semiconductor laser chip 52 and the second negative current terminal 92n can be electrically connected bypassing the second mirror 62. FIG. Therefore, interference between the second wire W2, the second mirror 62, and the second light can be suppressed.
 本実施の形態においては、第三セット13a~13dは、第三ワイヤW3及び第三セット用中継部材383a~383cを用いて電気的に直列接続されている。具体的には、第三セット13aの第三半導体レーザチップ53のn側接続電極と、第三セット13bのp側接続電極73eとが、1本以上の第三ワイヤW3で接続される。第三セット13bの第三半導体レーザチップ53のn側接続電極と、第三セット用中継部材383bの導電性部材383e2とが1本以上の第三ワイヤW3で接続される。第三セット用中継部材383bの導電性部材383e2と、第三セット13cのp側接続電極73eとが1本以上の第三ワイヤW3で接続される。第三セット13cの第三半導体レーザチップ53のn側接続電極と、第三セット13dのp側接続電極73eとが、1本以上の第三ワイヤW3で接続される。 In the present embodiment, the third sets 13a-13d are electrically connected in series using the third wire W3 and the third set relay members 383a-383c. Specifically, the n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13a and the p-side connection electrodes 73e of the third set 13b are connected by one or more third wires W3. The n-side connection electrode of the third semiconductor laser chip 53 of the third set 13b and the conductive member 383e2 of the relay member 383b for the third set are connected by one or more third wires W3. The conductive member 383e2 of the relay member 383b for the third set and the p-side connection electrode 73e of the third set 13c are connected by one or more third wires W3. The n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13c and the p-side connection electrodes 73e of the third set 13d are connected by one or more third wires W3.
 ここで、図10に示されるように、第三ワイヤW3が、第二セット用中継部材382cの上方を通過する(つまり、第二セット用中継部材382cを跨ぐ)。言い換えると、第三ワイヤW3と主面21との間に第二セット用中継部材382cが配置される。このため、第二セット用中継部材382cは、第三セット用中継部材383bより、主面21からの高さが低くてもよい。これにより、第三ワイヤW3と第二セット用中継部材382cとが干渉することを抑制できる。 Here, as shown in FIG. 10, the third wire W3 passes above the second set relay member 382c (that is, straddles the second set relay member 382c). In other words, the second set relay member 382c is arranged between the third wire W3 and the main surface 21 . Therefore, the second set relay member 382c may be lower in height from the main surface 21 than the third set relay member 383b. Thereby, interference between the third wire W3 and the second set relay member 382c can be suppressed.
 以上のように本実施の形態では、複数の第三セット13a~13dは、第二方向において隣り合う2個の第三セット13b及び13cを含む。第三セット用中継部材383bは、2個の第三セット13b及び13cと第一方向において隣り合う位置に配置される。2個の第三セット13b及び13cのうち一方の第三セット13bが有する第三半導体レーザチップ53のn側接続電極は、一方の第三セット13bが有するp側接続電極73eと第三セット用中継部材383bとの間に配置され、かつ、第三セット用中継部材383bと1本以上の第三ワイヤW3を用いて電気的に接続される。 As described above, in the present embodiment, the plurality of third sets 13a to 13d includes two third sets 13b and 13c adjacent in the second direction. The third set relay member 383b is arranged at a position adjacent to the two third sets 13b and 13c in the first direction. The n-side connection electrode of the third semiconductor laser chip 53 of the third set 13b, one of the two third sets 13b and 13c, is connected to the p-side connection electrode 73e of the third set 13b. It is arranged between the relay member 383b and electrically connected to the third set relay member 383b using one or more third wires W3.
 また、2個の第三セット13b及び13cのうち他方の第三セット13cが有するp側接続電極73eは、他方の第三セット13cが有する第三半導体レーザチップ53のn側接続電極と第三セット用中継部材383bとの間に配置され、かつ、第三セット用中継部材383bと電気的に接続される。 The p-side connection electrode 73e of the other third set 13c of the two third sets 13b and 13c is the n-side connection electrode of the third semiconductor laser chip 53 of the other third set 13c. It is arranged between the setting relay member 383b and electrically connected to the third set relay member 383b.
 第三正極電流端子93pと、第三セット13aのp側接続電極73eとは、第三ワイヤW3と、第三セット用中継部材383aとを用いて電気的に接続される。具体的には、第三正極電流端子93pのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材383aの導電性部材383e1とが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、導電性部材383e1と、第三セット13aのp側接続電極73eとが1本以上の第三ワイヤW3を用いて電気的に接続される。 The third positive current terminal 93p and the p-side connection electrode 73e of the third set 13a are electrically connected using the third wire W3 and the third set relay member 383a. Specifically, the portion of the third positive electrode current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 383e1 of the relay member 383a for the third set are connected to one or more third terminals. They are electrically connected using a wire W3. Also, the conductive member 383e1 and the p-side connection electrode 73e of the third set 13a are electrically connected using one or more third wires W3.
 第三負極電流端子93nと、第三セット13dの第三半導体レーザチップ53のn側接続電極とは、第三ワイヤW3と、第三セット用中継部材383cとを用いて電気的に接続される。具体的には、第三負極電流端子93nのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材383cの導電性部材383e3とが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、導電性部材383e3と、第三セット13dの第三半導体レーザチップ53のn側接続電極とが1本以上の第三ワイヤW3を用いて電気的に接続される。 The third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13d are electrically connected using the third wire W3 and the third set relay member 383c. . Specifically, the portion of the third negative electrode current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 383e3 of the relay member 383c for the third set are combined into one or more third terminals. They are electrically connected using a wire W3. Also, the conductive member 383e3 and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13d are electrically connected using one or more third wires W3.
 以上のような構成により、複数の第三セット13a~13dは、電気的に直列接続される。また、第三正極電流端子93p及び第三負極電流端子93nから、電気的に直列接続された4個の第三セット13a~13dに、電流を供給できる。さらに、第三セット用中継部材383a及び383bは、それぞれ、第三セット13a及び13cの第三ミラー63と第一方向において隣り合う位置に配置される。このような第三セット用中継部材383aを用いることで、第三ミラー63を迂回して、第三正極電流端子93pと第三セット13aの第三半導体レーザチップ53とを電気的に接続できる。また、このような第三セット用中継部材383bを用いることで、第三セット13bの第三半導体レーザチップ53と、第三セット13cの第三半導体レーザチップ53とを電気的に接続できる。したがって、第三ワイヤW3と第三ミラー63及び第三光との干渉を抑制できる。 With the configuration as described above, the plurality of third sets 13a to 13d are electrically connected in series. Also, current can be supplied to the third set 13a-13d of four electrically connected in series from the third positive current terminal 93p and the third negative current terminal 93n. Furthermore, the third set relay members 383a and 383b are arranged at positions adjacent to the third mirrors 63 of the third sets 13a and 13c in the first direction, respectively. By using such a third set relay member 383a, it is possible to bypass the third mirror 63 and electrically connect the third positive current terminal 93p and the third semiconductor laser chip 53 of the third set 13a. Further, by using such a third set relay member 383b, the third semiconductor laser chip 53 of the third set 13b and the third semiconductor laser chip 53 of the third set 13c can be electrically connected. Therefore, interference between the third wire W3, the third mirror 63, and the third light can be suppressed.
 また、本実施の形態に係る多波長光源モジュール310においても、実施の形態1に係る多波長光源モジュール10と同様に、偏光方向が揃っており、かつ、高パワーの光を出射することができる。 Also, in the multi-wavelength light source module 310 according to the present embodiment, similarly to the multi-wavelength light source module 10 according to the first embodiment, the polarization directions are aligned and high-power light can be emitted. .
 (実施の形態5)
 実施の形態5に係る多波長光源モジュールについて説明する。本実施の形態に係る多波長光源モジュールは、主に、第一セット11a~11jの配置において、実施の形態4に係る多波長光源モジュール310と相違する。以下、本実施の形態に係る多波長光源モジュールについて、実施の形態4に係る多波長光源モジュール310との相違点を中心に図11を用いて説明する。
(Embodiment 5)
A multi-wavelength light source module according to Embodiment 5 will be described. The multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 310 according to the fourth embodiment mainly in the arrangement of the first set 11a-11j. The multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 11, focusing on differences from the multi-wavelength light source module 310 according to the fourth embodiment.
 図11は、本実施の形態に係る多波長光源モジュール410における各セット及び配線のレイアウトを示す平面図である。図11には、多波長光源モジュール410の蓋体を取り除いた状態を示す平面図が示されている。 FIG. 11 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 410 according to this embodiment. FIG. 11 shows a plan view of the multi-wavelength light source module 410 with the cover removed.
 図11に示されるように、本実施の形態に係る多波長光源モジュール410は、基台20と、複数の第一セット11a~11jと、複数の第二セット12a~12dとを備える。本実施の形態では、多波長光源モジュール410は、複数の第三セット13a~13dと、枠部材30と、2個の第一正極電流端子91pと、2個の第一負極電流端子91nと、第二正極電流端子92pと、第二負極電流端子92nと、第三正極電流端子93pと、第三負極電流端子93nと、第一ワイヤW1と、第二ワイヤW2と、第三ワイヤW3と、4個の第一セット用中継部材81と、第二セット用中継部材382a~382cと、第三セット用中継部材383a~383cとをさらに備える。なお、図11には示されないが、多波長光源モジュール410は、実施の形態1に係る多波長光源モジュール10と同様に、各セットに対応する位置に配置されるレンズを有する蓋体をさらに備える。 As shown in FIG. 11, a multi-wavelength light source module 410 according to this embodiment includes a base 20, a plurality of first sets 11a-11j, and a plurality of second sets 12a-12d. In this embodiment, the multi-wavelength light source module 410 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 382a to 382c, and third set relay members 383a to 383c. Although not shown in FIG. 11, the multi-wavelength light source module 410 further includes lids having lenses arranged at positions corresponding to the respective sets, as in the multi-wavelength light source module 10 according to the first embodiment. .
 本実施の形態では、図11に示されるように、複数の第一セット11a~11jは、複数の第一セットのうち1個以上の第一セット11a~11eを含む第一グループと、第一グループに含まれる1個以上の第一セット11a~11eと異なる1個以上の第一セット11f~11jを含む第二グループとを含み、複数の第二セット12a~12d及び複数の第三セット13a~13dは、第一グループと第二グループとの間に配置される。 In the present embodiment, as shown in FIG. 11, the plurality of first sets 11a to 11j includes a first group including one or more first sets 11a to 11e among the plurality of first sets, and a first A second group including one or more first sets 11a-11e included in the group and one or more different first sets 11f-11j, including a plurality of second sets 12a-12d and a plurality of third sets 13a 13d are positioned between the first and second groups.
 このように、複数の第一セット11a~11jの配置を分散することができるため、第一光の強度分布における偏りを抑制できる。また、本実施の形態では、実施の形態4と同様に、第二セット12a~12dの各々と第三セット13a~13dの各々とは、第二方向に交互に配置されているため、第二光及び第三光の強度分布における偏りも抑制できる。 In this way, since the arrangement of the plurality of first sets 11a to 11j can be dispersed, the bias in the intensity distribution of the first light can be suppressed. Further, in the present embodiment, as in the fourth embodiment, each of the second sets 12a to 12d and each of the third sets 13a to 13d are alternately arranged in the second direction. It is also possible to suppress the bias in the intensity distribution of the light and the third light.
 また、本実施の形態に係る多波長光源モジュール410においても、実施の形態1に係る多波長光源モジュール10と同様に、偏光方向が揃っており、かつ、高パワーの光を出射することができる。 Also, in the multi-wavelength light source module 410 according to the present embodiment, similarly to the multi-wavelength light source module 10 according to the first embodiment, the polarization directions are aligned and high-power light can be emitted. .
 (実施の形態6)
 実施の形態6に係る多波長光源モジュールについて説明する。本実施の形態に係る多波長光源モジュールは、主に、第一セット11a~11eの配置において、実施の形態5に係る多波長光源モジュール410と相違する。以下、本実施の形態に係る多波長光源モジュールについて、実施の形態4に係る多波長光源モジュール410との相違点を中心に図12を用いて説明する。
(Embodiment 6)
A multi-wavelength light source module according to Embodiment 6 will be described. The multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 410 according to the fifth embodiment mainly in the arrangement of the first set 11a-11e. The multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 12, focusing on differences from the multi-wavelength light source module 410 according to the fourth embodiment.
 図12は、本実施の形態に係る多波長光源モジュール510における各セット及び配線のレイアウトを示す平面図である。図12には、多波長光源モジュール510の蓋体を取り除いた状態を示す平面図が示されている。 FIG. 12 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 510 according to this embodiment. FIG. 12 shows a plan view of the multi-wavelength light source module 510 with the lid removed.
 図12に示されるように、本実施の形態に係る多波長光源モジュール510は、基台20と、複数の第一セット11a~11jと、複数の第二セット12a~12dとを備える。本実施の形態では、多波長光源モジュール510は、複数の第三セット13a~13dと、枠部材30と、2個の第一正極電流端子91pと、2個の第一負極電流端子91nと、第二正極電流端子92pと、第二負極電流端子92nと、第三正極電流端子93pと、第三負極電流端子93nと、第一ワイヤW1と、第二ワイヤW2と、第三ワイヤW3と、4個の第一セット用中継部材81と、第二セット用中継部材382a~382cと、第三セット用中継部材383a~383cとをさらに備える。なお、図12には示されないが、多波長光源モジュール510は、実施の形態1に係る多波長光源モジュール10と同様に、各セットに対応する位置に配置されるレンズを有する蓋体をさらに備える。 As shown in FIG. 12, a multi-wavelength light source module 510 according to this embodiment includes a base 20, a plurality of first sets 11a-11j, and a plurality of second sets 12a-12d. In this embodiment, the multi-wavelength light source module 510 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes four first set relay members 81, second set relay members 382a to 382c, and third set relay members 383a to 383c. Although not shown in FIG. 12, the multi-wavelength light source module 510 further includes lids having lenses arranged at positions corresponding to each set, as in the multi-wavelength light source module 10 according to Embodiment 1. .
 本実施の形態においても、実施の形態5に係る多波長光源モジュール410と同様に、複数の第一セット11a~11jは、複数の第一セットのうち1個以上の第一セット11a~11eを含む第一グループと、第一グループに含まれる1個以上の第一セット11a~11eと異なる1個以上の第一セット11f~11jを含む第二グループとを含み、複数の第二セット12a~12d及び複数の第三セット13a~13dは、第一グループと第二グループとの間に配置される。 Also in the present embodiment, as in the multi-wavelength light source module 410 according to the fifth embodiment, the plurality of first sets 11a to 11j include one or more first sets 11a to 11e among the plurality of first sets. and a second group including one or more first sets 11f to 11j different from the one or more first sets 11a to 11e included in the first group, and a plurality of second sets 12a to 12d and a plurality of third sets 13a-13d are arranged between the first and second groups.
 このように、複数の第一セット11a~11jの配置を分散することができるため、第一光の強度分布における偏りを抑制できる。 In this way, since the arrangement of the plurality of first sets 11a to 11j can be dispersed, the bias in the intensity distribution of the first light can be suppressed.
 また、本実施の形態では、第一方向において、第一セット11a~11jの各々の第一半導体レーザチップ51は、第一ミラー61より、基台20の主面21の端部に近い位置に配置されている。一般に、第一半導体レーザチップ51を基台20の主面21の端部に近い位置に配置する方が、放熱特性がよい。このため、本実施の形態では、第一半導体レーザチップ51の放熱特性を高め得ることができる。これにより、第一半導体レーザチップ51の特性を高めることができる。 Further, in the present embodiment, the first semiconductor laser chip 51 of each of the first sets 11a to 11j is positioned closer to the end of the main surface 21 of the base 20 than the first mirror 61 in the first direction. are placed. In general, disposing the first semiconductor laser chip 51 at a position close to the edge of the main surface 21 of the base 20 has better heat dissipation characteristics. Therefore, in this embodiment, it is possible to improve the heat dissipation characteristics of the first semiconductor laser chip 51 . Thereby, the characteristics of the first semiconductor laser chip 51 can be improved.
 また、本実施の形態に係る多波長光源モジュール510では、各セットを、第二方向に延びる直線に対して線対称に配置することができる。これにより、第一光、第二光、及び第三光の強度分布の偏りをより一層抑制できる。 Also, in the multi-wavelength light source module 510 according to the present embodiment, each set can be arranged symmetrically with respect to a straight line extending in the second direction. Thereby, the bias of the intensity distribution of the first light, the second light, and the third light can be further suppressed.
 また、本実施の形態に係る多波長光源モジュール510においても、実施の形態1に係る多波長光源モジュール10と同様に、偏光方向が揃っており、かつ、高パワーの光を出射することができる。 Also, in the multi-wavelength light source module 510 according to the present embodiment, similarly to the multi-wavelength light source module 10 according to the first embodiment, the polarization directions are aligned and high-power light can be emitted. .
 (実施の形態7)
 実施の形態7に係る多波長光源モジュールについて説明する。本実施の形態に係る多波長光源モジュールは、主に、各セットの配置において、実施の形態5に係る多波長光源モジュール410と相違する。以下、本実施の形態に係る多波長光源モジュールについて、実施の形態4に係る多波長光源モジュール410との相違点を中心に図13を用いて説明する。
(Embodiment 7)
A multi-wavelength light source module according to Embodiment 7 will be described. The multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 410 according to the fifth embodiment mainly in the arrangement of each set. The multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 13, focusing on differences from the multi-wavelength light source module 410 according to the fourth embodiment.
 図13は、本実施の形態に係る多波長光源モジュール610における各セット及び配線のレイアウトを示す平面図である。図13には、多波長光源モジュール610の蓋体を取り除いた状態を示す平面図が示されている。 FIG. 13 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 610 according to this embodiment. FIG. 13 shows a plan view of the multi-wavelength light source module 610 with the lid removed.
 図13に示されるように、本実施の形態に係る多波長光源モジュール610は、基台20と、複数の第一セット11a~11hと、複数の第二セット12a~12dとを備える。本実施の形態では、多波長光源モジュール610は、複数の第三セット13a~13dと、枠部材30と、2個の第一正極電流端子91pと、2個の第一負極電流端子91nと、2個の第二正極電流端子92pと、2個の第二負極電流端子92nと、2個の第三正極電流端子93pと、2個の第三負極電流端子93nと、第一ワイヤW1と、第二ワイヤW2と、第三ワイヤW3と、4個の第一セット用中継部材81と、第二セット用中継部材382a~382fと、第三セット用中継部材383a~383fとをさらに備える。なお、図13には示されないが、多波長光源モジュール610は、実施の形態1に係る多波長光源モジュール10と同様に、各セットに対応する位置に配置されるレンズを有する蓋体をさらに備える。 As shown in FIG. 13, a multi-wavelength light source module 610 according to this embodiment includes a base 20, a plurality of first sets 11a-11h, and a plurality of second sets 12a-12d. In this embodiment, the multi-wavelength light source module 610 includes a plurality of third sets 13a-13d, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, two second positive current terminals 92p, two second negative current terminals 92n, two third positive current terminals 93p, two third negative current terminals 93n, a first wire W1, It further includes a second wire W2, a third wire W3, four first set relay members 81, second set relay members 382a to 382f, and third set relay members 383a to 383f. Although not shown in FIG. 13, the multi-wavelength light source module 610 further includes lids having lenses arranged at positions corresponding to each set, as in the multi-wavelength light source module 10 according to the first embodiment. .
 第二セット用中継部材382d~382fは、それぞれ、第二セット用中継部材382a~382cと同様の構成を有する。 The second set relay members 382d to 382f have the same configuration as the second set relay members 382a to 382c, respectively.
 第三セット用中継部材383d~383fは、それぞれ、第三セット用中継部材383a~383cと同様の構成を有する。 The third set relay members 383d to 383f have the same configuration as the third set relay members 383a to 383c.
 第一セット11a~11dは、実施の形態4に係る第一セット11a~11eなどと同様に、第一ワイヤW1と、第一セット用中継部材81とを用いて電気的に直列接続される。第一セット11e~11hも、実施の形態4に係る第一セット11a~11eなどと同様に、第一ワイヤW1と、第一セット用中継部材81とを用いて電気的に直列接続される。 The first sets 11a to 11d are electrically connected in series using the first wire W1 and the first set relay member 81, like the first sets 11a to 11e according to the fourth embodiment. The first sets 11e to 11h are also electrically connected in series using the first wire W1 and the first set relay member 81, like the first sets 11a to 11e according to the fourth embodiment.
 第二セット12a及び12bは、実施の形態4に係る第二セット12b及び12cなどと同様に、第二ワイヤW2と、第二セット用中継部材382a~382cとを用いて電気的に直列接続される。第二セット12c及び12dも、実施の形態4に係る第二セット12b及び12cなどと同様に、第二ワイヤW2と、第二セット用中継部材382d~382fとを用いて電気的に直列接続される。 The second sets 12a and 12b are electrically connected in series using the second wire W2 and the second set relay members 382a to 382c, like the second sets 12b and 12c according to the fourth embodiment. be. Similarly to the second sets 12b and 12c according to the fourth embodiment, the second sets 12c and 12d are also electrically connected in series using the second wire W2 and the second set relay members 382d to 382f. be.
 第三セット13a及び13bは、実施の形態4に係る第三セット13b及び13cなどと同様に、第三ワイヤW3と、第三セット用中継部材383a~383cとを用いて電気的に直列接続される。第三セット13c及び13dも、実施の形態4に係る第三セット13b及び13cなどと同様に、第三ワイヤW3と、第三セット用中継部材383d~383fとを用いて電気的に直列接続される。 The third sets 13a and 13b are electrically connected in series using the third wire W3 and third set relay members 383a to 383c, like the third sets 13b and 13c according to the fourth embodiment. be. The third sets 13c and 13d are also electrically connected in series using the third wire W3 and the third set relay members 383d to 383f, like the third sets 13b and 13c according to the fourth embodiment. be.
 本実施の形態に係る多波長光源モジュール610は、主面21上に行列状に配置される複数のユニットを備える。複数のユニットの各々は、複数の第一セット11a~11hのうち少なくとも1個の第一セットと、複数の第二セット12a~12dのうち少なくとも1個の第二セットと、複数の第三セット13a~13dのうち少なくとも1個の第三セットとを含む。図13に示される破線枠の内部が各ユニットに相当する。多波長光源モジュール610は、第一セット11a及び11b、第二セット12a、並びに、第三セット13aを含むユニットと、第一セット11c及び11d、第二セット12b、並びに、第三セット13bを含むユニットと、第一セット11e及び11f、第二セット12c、並びに、第三セット13cを含むユニットと、第一セット11g及び11h、第二セット12d、並びに、第三セット13dを含むユニットとを備える。このように、多波長光源モジュール610は2行2列の行列状に配置される4個のユニットを備える。このように各々が、第一光、第二光、及び第三光を出射する複数のユニットが行列状に配置されることにより、多波長光源モジュール610からの光の第一光、第二光、及び第三光の強度分布の偏りを抑制できる。 A multi-wavelength light source module 610 according to this embodiment includes a plurality of units arranged in a matrix on the main surface 21 . Each of the plurality of units includes at least one first set out of the plurality of first sets 11a-11h, at least one second set out of the plurality of second sets 12a-12d, and a plurality of third sets and a third set of at least one of 13a-13d. The inside of the dashed frame shown in FIG. 13 corresponds to each unit. The multi-wavelength light source module 610 includes units including first sets 11a and 11b, second set 12a and third set 13a, and first sets 11c and 11d, second set 12b and third set 13b. a unit comprising a first set 11e and 11f, a second set 12c and a third set 13c, and a unit comprising a first set 11g and 11h, a second set 12d and a third set 13d . Thus, the multi-wavelength light source module 610 has four units arranged in a matrix of two rows and two columns. By arranging a plurality of units in a matrix, each of which emits the first light, the second light, and the third light, the light from the multi-wavelength light source module 610 becomes the first light and the second light. , and the bias of the intensity distribution of the third light can be suppressed.
 また、複数のユニットの各々において、第一セットから、第二セット及び第三セットが配置される領域へ向かう向きに第一光が出射されてもよい。例えば、図13に示されるように、第一セット11a及び11bから、第二セット12a及び第三セット13aが配置される領域へ向かう向きに第一光が出射されてもよい。これにより、第一セット11a及び11bのそれぞれの第一ミラー61と、第二セット12aの第二ミラー62及び第三セット13aの第三ミラー63とを近づけることができる。つまり、多波長光源モジュール610から出射される第一光と、第二光及び第三光とを近づけることができる。したがって、多波長光源モジュール610から出射される光の強度分布の均一性を向上できる。 Also, in each of the plurality of units, the first light may be emitted from the first set toward the area where the second set and the third set are arranged. For example, as shown in FIG. 13, the first light may be emitted from the first sets 11a and 11b in a direction toward the area where the second set 12a and the third set 13a are arranged. Thereby, the first mirrors 61 of the first sets 11a and 11b can be brought closer to the second mirrors 62 of the second set 12a and the third mirrors 63 of the third set 13a. In other words, the first light emitted from the multi-wavelength light source module 610 and the second light and the third light can be made close to each other. Therefore, the uniformity of the intensity distribution of light emitted from the multi-wavelength light source module 610 can be improved.
 また、本実施の形態に係る多波長光源モジュール610においても、実施の形態1に係る多波長光源モジュール10と同様に、偏光方向が揃っており、かつ、高パワーの光を出射することができる。 Also, in the multi-wavelength light source module 610 according to the present embodiment, similarly to the multi-wavelength light source module 10 according to the first embodiment, the polarization directions are aligned and high-power light can be emitted. .
 また、本実施の形態では、多波長光源モジュール610の各セットの配置態様は、以下のようにも表現できる。多波長光源モジュール610は、複数の第一列と、複数の第二列とを備える。複数の第一列の各々は、複数の第一セット11a~11hのうち一部の第一セットを含み、当該一部の第一セットは、一列に配列されている。具体的には、多波長光源モジュール610は、2個の第一列を備える。一方の第一列は、第二方向に配列された第一セット11a~11dを含み、他方の第一列は、第二方向に配列された第一セット11e~11hを含む。複数の第二列の各々は、複数の第二セット12a~12dのうち一部の第二セットと、複数の第三セット13a~13dのうち一部の第三セットとを含む。当該一部の第二セットと、当該一部の第三セットとは、複数の第一列の各々の配列方向と平行に一列に配列されている。具体的には、多波長光源モジュール610は、2個の第二列を備える。一方の第二列は、第二方向に配列された、第二セット12a及び12b、並びに、第三セット13a及び13bを含み、他方の第一列は、第二方向に配列された、第二セット12c及び12d、並びに、第三セット13c及び13dを含む。複数の第一列の各々と、複数の第二列の各々とは、複数の第一列の各々の配列方向と垂直な方向である第一方向において交互に配置されている。 In addition, in the present embodiment, the arrangement mode of each set of multi-wavelength light source modules 610 can also be expressed as follows. The multi-wavelength light source module 610 comprises a plurality of first rows and a plurality of second rows. Each of the plurality of first rows includes a partial first set among the plurality of first sets 11a to 11h, and the partial first sets are arranged in a row. Specifically, the multi-wavelength light source module 610 comprises two first rows. One first row contains first sets 11a-11d arranged in a second direction, and the other first row contains first sets 11e-11h arranged in a second direction. Each of the plurality of second columns includes a portion of the second sets of the plurality of second sets 12a-12d and a portion of the plurality of third sets 13a-13d of the third sets. The part of the second set and the part of the third set are arranged in a row parallel to the arrangement direction of each of the plurality of first rows. Specifically, the multi-wavelength light source module 610 comprises two second rows. One second row comprises a second set 12a and 12b and a third set 13a and 13b arranged in a second direction, and the other first row comprises a second set arranged in a second direction. Includes sets 12c and 12d and a third set 13c and 13d. Each of the plurality of first rows and each of the plurality of second rows are alternately arranged in a first direction perpendicular to the arrangement direction of each of the plurality of first rows.
 このような配置により、多波長光源モジュール610からの光の第一光、第二光、及び第三光の強度分布の偏りを抑制できる。 With such an arrangement, it is possible to suppress bias in the intensity distribution of the first light, second light, and third light from the multi-wavelength light source module 610 .
 (実施の形態8)
 実施の形態8に係る多波長光源モジュールについて説明する。本実施の形態に係る多波長光源モジュールは、主に、各セットの配列方向と光軸方向との関係において、実施の形態1に係る多波長光源モジュール10と相違する。以下、本実施の形態に係る多波長光源モジュールについて、実施の形態1に係る多波長光源モジュール110との相違点を中心に図14を用いて説明する。
(Embodiment 8)
A multi-wavelength light source module according to Embodiment 8 will be described. The multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 10 according to the first embodiment mainly in the relationship between the arrangement direction of each set and the optical axis direction. The multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 14, focusing on differences from the multi-wavelength light source module 110 according to the first embodiment.
 図14は、本実施の形態に係る多波長光源モジュール710における各セット及び配線のレイアウトを示す平面図である。図14には、多波長光源モジュール710の蓋体を取り除いた状態を示す平面図が示されている。 FIG. 14 is a plan view showing the layout of each set and wiring in the multi-wavelength light source module 710 according to this embodiment. FIG. 14 shows a plan view of the multi-wavelength light source module 710 with the lid removed.
 図14に示されるように、本実施の形態に係る多波長光源モジュール710は、基台20と、複数の第一セット11a~11cと、複数の第二セット12a~12cとを備える。本実施の形態では、多波長光源モジュール710は、複数の第三セット13a~13cと、枠部材30と、第一正極電流端子91pと、第一負極電流端子91nと、第二正極電流端子92pと、第二負極電流端子92nと、第三正極電流端子93pと、第三負極電流端子93nと、第一ワイヤW1と、第二ワイヤW2と、第三ワイヤW3と、2個の第一セット用中継部材81と、2個の第二セット用中継部材782と、2個の第三セット用中継部材783とをさらに備える。なお、図14には示されないが、多波長光源モジュール710は、実施の形態1に係る多波長光源モジュール10と同様に、各セットに対応する位置に配置されるレンズを有する蓋体をさらに備える。なお、図14には、蓋体が有する各レンズの輪郭が破線で示されている。 As shown in FIG. 14, a multi-wavelength light source module 710 according to this embodiment includes a base 20, a plurality of first sets 11a-11c, and a plurality of second sets 12a-12c. In this embodiment, the multi-wavelength light source module 710 includes a plurality of third sets 13a-13c, a frame member 30, a first positive current terminal 91p, a first negative current terminal 91n, and a second positive current terminal 92p. , a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, a first set of two , two relay members 782 for the second set, and two relay members 783 for the third set. Although not shown in FIG. 14, the multi-wavelength light source module 710 further includes lids having lenses arranged at positions corresponding to each set, like the multi-wavelength light source module 10 according to Embodiment 1. . In addition, in FIG. 14, the outline of each lens included in the lid is indicated by a dashed line.
 本実施の形態に係る第二セット用中継部材782及び第三セット用中継部材783は、第一セット用中継部材81と同様の構成を有する。 The second set relay member 782 and third set relay member 783 according to the present embodiment have the same configuration as the first set relay member 81 .
 本実施の形態に係る蓋体は、3個の第一レンズ741と、3個の第二レンズ742と、3個の第三レンズ743とを有する。 The lid according to this embodiment has three first lenses 741 , three second lenses 742 and three third lenses 743 .
 第一セット11a~11cの各々の第一光軸は、実施の形態1に係る第一セット11a~11cと同様に、第一方向に平行である。なお、図14に示されるように、第一方向は、図14の水平方向及び上下方向に対して傾斜している。第二セット12a~12cの各々の第二光軸は、実施の形態1に係る第二セット12a~12cと同様に、第二方向に平行である。なお、図14に示されるように、第二方向は、図14の水平方向及び上下方向に対して傾斜している。第三セット13a~13cの各々の第三光軸は、実施の形態1に係る第三セット13a~13cと同様に、第二方向に平行である。これにより、本実施の形態に係る多波長光源モジュール710においても、実施の形態1に係る多波長光源モジュール10と同様に、偏光方向が揃っており、かつ、高パワーの光を出射することができる。 The first optical axis of each of the first sets 11a-11c is parallel to the first direction, like the first sets 11a-11c according to the first embodiment. In addition, as shown in FIG. 14, the first direction is inclined with respect to the horizontal direction and the vertical direction of FIG. The second optical axis of each of the second sets 12a-12c is parallel to the second direction, like the second sets 12a-12c according to the first embodiment. In addition, as shown in FIG. 14, the second direction is inclined with respect to the horizontal direction and the vertical direction of FIG. The third optical axis of each of the third sets 13a-13c is parallel to the second direction, like the third sets 13a-13c according to the first embodiment. As a result, in the multi-wavelength light source module 710 according to the present embodiment as well, similarly to the multi-wavelength light source module 10 according to the first embodiment, the polarization directions are aligned and high-power light can be emitted. can.
 本実施の形態では、第一セット11a~11c、第二セット12a~12c、及び、第三セット13a~13cの配列方向は、図14の横方向(つまり、水平方向)であり、第一方向及び第二方向に対して傾斜している。言い換えると、第一セット11a~11cの配列方向は、第一光軸に対して傾斜している。第二セット12a~12cの配列方向は、第二光軸に対して傾斜している。第三セット13a~13cの配列方向は、第三光軸に対して傾斜している。これにより、各セットを配置するために必要な領域の面積を削減することが可能となる。したがって、多波長光源モジュール710を小型化することができる。 In the present embodiment, the arrangement direction of the first sets 11a to 11c, the second sets 12a to 12c, and the third sets 13a to 13c is the horizontal direction in FIG. and inclined with respect to the second direction. In other words, the arrangement direction of the first set 11a-11c is tilted with respect to the first optical axis. The arrangement direction of the second sets 12a-12c is inclined with respect to the second optical axis. The arrangement direction of the third sets 13a-13c is inclined with respect to the third optical axis. This makes it possible to reduce the area of the region required for arranging each set. Therefore, the multi-wavelength light source module 710 can be miniaturized.
 また、第二セット12aの第二ミラー62は、第二セット12aと隣り合う第二セット12bの第二サブマウント72と第一方向において接している。第二セット12bの第二ミラー62は、第二セット12bと隣り合う第二セット12cの第二サブマウント72と第一方向において接している。 Also, the second mirror 62 of the second set 12a is in contact with the second submount 72 of the second set 12b adjacent to the second set 12a in the first direction. A second mirror 62 of the second set 12b contacts a second submount 72 of the second set 12c adjacent to the second set 12b in the first direction.
 また、第三セット13aの第三ミラー63は、第三セット13aと隣り合う第三セット13bの第三サブマウント73と第一方向において接している。第三セット13bの第三ミラー63は、第三セット13bと隣り合う第三セット13cの第三サブマウント73と第一方向において接している。 Also, the third mirror 63 of the third set 13a is in contact with the third submount 73 of the third set 13b adjacent to the third set 13a in the first direction. The third mirror 63 of the third set 13b contacts the third submount 73 of the third set 13c adjacent to the third set 13b in the first direction.
 また、本実施の形態では、第二セット12b及び12cは、それぞれ、第一セット11a及び11bと第一方向において接している。具体的には、第二セット12bの第二サブマウント72は、第一セット11aの第一ミラー61と第一方向において接している。第二セット12cの第二サブマウント72は、第一セット11bの第一ミラー61と第一方向において接している。 Also, in the present embodiment, the second sets 12b and 12c are in contact with the first sets 11a and 11b, respectively, in the first direction. Specifically, the second submount 72 of the second set 12b contacts the first mirror 61 of the first set 11a in the first direction. A second submount 72 of the second set 12c contacts the first mirror 61 of the first set 11b in a first direction.
 また、本実施の形態では、第二セット12a及び12bは、それぞれ、第三セット13b及び13cと第一方向において接している。具体的には、第二セット12aの第二ミラー62は、第三セット13bの第三サブマウント73と第一方向において接している。第二セット12bの第二ミラー62は、第三セット13cの第三サブマウント73と第一方向において接している。 Also, in the present embodiment, the second sets 12a and 12b are in contact with the third sets 13b and 13c, respectively, in the first direction. Specifically, the second mirror 62 of the second set 12a contacts the third submount 73 of the third set 13b in the first direction. A second mirror 62 of the second set 12b contacts a third submount 73 of the third set 13c in a first direction.
 以上のようなレイアウトにより、隣り合う二つのセット間の隙間を削減できるため、各セットを配置するために必要な領域の面積をより一層削減できる。 With the above layout, the gap between two adjacent sets can be reduced, so the area required for arranging each set can be further reduced.
 なお、図14に示される例では、例えば、第二セット12bは、1個の第一セット11a及び1個の第三セット13cと接するが、2個以上の第一セット及び2個以上の第三セットと接してもよい。つまり、複数の第二セット12a~12cのうち少なくとも1個の第二セットは、複数の第一セット11a~11cのうち少なくとも1個の第一セット、及び、複数の第三セット13a~13cのうち少なくとも1個の第三セットと第一方向において接していてもよい。また、複数の第一セット11a~11cのうち少なくとも1個の第一セットは、複数の第二セット12a~12cのうち少なくとも1個の第二セット、及び、複数の第三セット13a~13cのうち少なくとも1個の第三セットと第一方向において接していてもよい。また、複数の第三セット13a~13cのうち少なくとも1個の第三セットは、複数の第一セット11a~11cのうち少なくとも1個の第一セット、及び、複数の第二セット12a~12cのうち少なくとも1個の第二セットと第一方向において接していてもよい。 In the example shown in FIG. 14, for example, the second set 12b contacts one first set 11a and one third set 13c, but two or more first sets and two or more second sets May contact with three sets. That is, at least one second set out of the plurality of second sets 12a to 12c includes at least one first set out of the plurality of first sets 11a to 11c and a plurality of third sets 13a to 13c. At least one of the third sets may be tangent in the first direction. At least one first set out of the plurality of first sets 11a to 11c includes at least one second set out of the plurality of second sets 12a to 12c and a plurality of third sets 13a to 13c. At least one of the third sets may be tangent in the first direction. At least one third set out of the plurality of third sets 13a to 13c includes at least one first set out of the plurality of first sets 11a to 11c and at least one of the plurality of second sets 12a to 12c. It may be in contact with at least one second set of them in the first direction.
 上述したような各セットのレイアウトに合わせて、蓋体の各レンズの構成も適宜設計されてもよい。図14に示されるように、本実施の形態に係る蓋体が有する3個の第一レンズ741の各々の形状は、3個の第二レンズ742の各々の形状、及び、3個の第三レンズ743の各々の形状と異なる。また、3個の第二レンズ742の各々の形状は、3個の第三レンズ743の各々の形状と異なる。 The configuration of each lens of the lid may be appropriately designed according to the layout of each set as described above. As shown in FIG. 14, the shape of each of the three first lenses 741 included in the lid according to this embodiment is the shape of each of the three second lenses 742 and the shape of each of the three third lenses. The shape of each of the lenses 743 is different. Also, the shape of each of the three second lenses 742 is different from the shape of each of the three third lenses 743 .
 第一セット11a~11cは、実施の形態1に係る第一セット11a~11eと同様に、1本以上の第一ワイヤW1及び2個の第一セット用中継部材81を用いて電気的に直列接続される。第二セット12a~12cは、第一セット11a~11cと同様に、1本以上の第二ワイヤW2及び2個の第二セット用中継部材782を用いて電気的に直列接続される。第三セット13a~13cは、第一セット11a~11cと同様に、1本以上の第三ワイヤW3及び2個の第三セット用中継部材783を用いて電気的に直列接続される。なお、図14では、図面が煩雑化することを避けるために最小限の本数の第一ワイヤW1、第二ワイヤW2、及び第三ワイヤW3が示されているが、各ワイヤの本数は、図14に示される例より多くてもよい。 The first sets 11a to 11c are electrically connected in series using one or more first wires W1 and two first set relay members 81, similarly to the first sets 11a to 11e according to the first embodiment. Connected. The second sets 12a-12c are electrically connected in series using one or more second wires W2 and two second set relay members 782, similar to the first sets 11a-11c. The third sets 13a-13c are electrically connected in series using one or more third wires W3 and two third set relay members 783, similar to the first sets 11a-11c. Note that FIG. 14 shows the minimum number of first wire W1, second wire W2, and third wire W3 in order to avoid complication of the drawing, but the number of each wire is There may be more than the example shown in 14.
 (実施の形態9)
 実施の形態9に係る多波長光源モジュールについて説明する。本実施の形態に係る多波長光源モジュールは、主に、各セットの配列方向において実施の形態1に係る多波長光源モジュール10と相違する。以下、本実施の形態に係る多波長光源モジュールについて、実施の形態1に係る多波長光源モジュール10との相違点を中心に図15を用いて説明する。
(Embodiment 9)
A multi-wavelength light source module according to Embodiment 9 will be described. The multi-wavelength light source module according to this embodiment differs from the multi-wavelength light source module 10 according to the first embodiment mainly in the arrangement direction of each set. The multi-wavelength light source module according to the present embodiment will be described below with reference to FIG. 15, focusing on differences from the multi-wavelength light source module 10 according to the first embodiment.
 図15は、実施の形態9に係る多波長光源モジュール810における各モジュール及び配線のレイアウトを示す平面図である。図15には、多波長光源モジュール810の蓋体を取り除いた状態を示す平面図が示されている。 FIG. 15 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module 810 according to the ninth embodiment. FIG. 15 shows a plan view of the multi-wavelength light source module 810 with the lid removed.
 図15に示されるように、本実施の形態に係る多波長光源モジュール810は、基台20と、複数の第一セット11a~11hと、複数の第二セット12a~12eとを備える。本実施の形態では、多波長光源モジュール810は、複数の第三セット13a~13eと、枠部材30と、2個の第一正極電流端子91pと、2個の第一負極電流端子91nと、第二正極電流端子92pと、第二負極電流端子92nと、第三正極電流端子93pと、第三負極電流端子93nと、第一ワイヤW1と、第二ワイヤW2と、第三ワイヤW3と、2個の第一セット用中継部材881と、2個の第二セット用中継部材882と、2個の第三セット用中継部材883とをさらに備える。なお、図15には示されないが、多波長光源モジュール810は、実施の形態1に係る多波長光源モジュール10と同様に、各セットに対応する位置に配置されるレンズを有する蓋体をさらに備える。 As shown in FIG. 15, a multi-wavelength light source module 810 according to this embodiment includes a base 20, a plurality of first sets 11a-11h, and a plurality of second sets 12a-12e. In this embodiment, the multi-wavelength light source module 810 includes a plurality of third sets 13a-13e, a frame member 30, two first positive current terminals 91p, two first negative current terminals 91n, a second positive current terminal 92p, a second negative current terminal 92n, a third positive current terminal 93p, a third negative current terminal 93n, a first wire W1, a second wire W2, a third wire W3, It further includes two first set relay members 881 , two second set relay members 882 , and two third set relay members 883 . Although not shown in FIG. 15, the multi-wavelength light source module 810 further includes lids having lenses arranged at positions corresponding to each set, like the multi-wavelength light source module 10 according to Embodiment 1. .
 本実施の形態に係る複数の第一セット11a~11hの各々は、実施の形態1に係る各第一セットと同様に、第一半導体レーザチップ51と、第一ミラー61と、第一サブマウント71とを有する。 Each of the plurality of first sets 11a to 11h according to the present embodiment includes a first semiconductor laser chip 51, a first mirror 61, and a first submount, similarly to each first set according to the first embodiment. 71.
 第一半導体レーザチップ51の第一光軸は、実施の形態1と同様に、主面21に平行な第一方向に平行である。本実施の形態では、図15の横方向が第一方向である。本実施の形態では、複数の第一セット11a~11hは、第一方向に配列される。より具体的には、4個の第一セット11a~11d、及び、4個の第一セット11e~11hが、それぞれ第一方向に一列に配列される。つまり、第一セット11a~11hは、第一方向に2列に配列される。 The first optical axis of the first semiconductor laser chip 51 is parallel to the first direction parallel to the main surface 21, as in the first embodiment. In this embodiment, the horizontal direction in FIG. 15 is the first direction. In this embodiment, the plurality of first sets 11a-11h are arranged in a first direction. More specifically, the four first sets 11a-11d and the four first sets 11e-11h are each arranged in a row in the first direction. That is, the first sets 11a-11h are arranged in two rows in the first direction.
 本実施の形態に係る複数の第二セット12a~12eの各々は、実施の形態1に係る各第二セットと同様に、第二半導体レーザチップ52と、第二ミラー62と、第二サブマウント72とを有する。 Each of the plurality of second sets 12a to 12e according to the present embodiment includes a second semiconductor laser chip 52, a second mirror 62, and a second submount, similarly to each second set according to the first embodiment. 72.
 第二半導体レーザチップ52の第二光軸は、実施の形態1と同様に、主面21に平行な第二方向に平行である。本実施の形態では、図15の上下方向が第二方向である。第二方向は、第一方向に対して垂直な方向である。本実施の形態では、複数の第二セット12a~12eは、第一方向に配列される。より具体的には、複数の第二セット12a~12eは、第一方向に一列に配列される。 The second optical axis of the second semiconductor laser chip 52 is parallel to the second direction parallel to the main surface 21, as in the first embodiment. In this embodiment, the vertical direction in FIG. 15 is the second direction. The second direction is a direction perpendicular to the first direction. In this embodiment, the plurality of second sets 12a-12e are arranged in a first direction. More specifically, the plurality of second sets 12a-12e are arranged in a row in the first direction.
 本実施の形態に係る複数の第三セット13a~13eの各々は、実施の形態1に係る各第三セットと同様に、第三半導体レーザチップ53と、第三ミラー63と、第三サブマウント73とを有する。 Each of the plurality of third sets 13a to 13e according to the present embodiment includes a third semiconductor laser chip 53, a third mirror 63, and a third submount, similarly to each third set according to the first embodiment. 73.
 第三半導体レーザチップ53の第三光軸は、実施の形態1と同様に、主面21に平行な第二方向に平行である。本実施の形態では、複数の第三セット13a~13eは、第一方向に配列される。より具体的には、複数の第三セット13a~13eは、第一方向に一列に配列される。 The third optical axis of the third semiconductor laser chip 53 is parallel to the second direction parallel to the main surface 21, as in the first embodiment. In this embodiment, the plurality of third sets 13a-13e are arranged in the first direction. More specifically, the plurality of third sets 13a-13e are arranged in a row in the first direction.
 第一セット用中継部材881は、複数の第一セット11a~11hと隣り合う位置に配置される部材である。本実施の形態では、一方の第一セット用中継部材881は、複数の第一セット11a~11dと第二方向において隣り合う位置に配置され、他方の第一セット用中継部材881は、複数の第一セット11e~11hと第二方向において隣り合う位置に配置される。第一セット用中継部材881は、複数の導電性部材81e1~81e5を含む。導電性部材81e1~81e5の各々の材質などは、導電性部材81eと同様である。本実施の形態では、第一セット用中継部材881は、絶縁性部材881dをさらに含む。絶縁性部材881dは、絶縁性材料を含む部材であり、基台20の主面21に配置される。絶縁性部材881dの構成は、絶縁性部材81dの構成と同様である。本実施の形態では、絶縁性部材881dは、第一方向に延在する長尺状の形状を有する。絶縁性部材881dの上面には、複数の導電性部材82e1~81e5が互いに電気的に絶縁された状態で配置される。 The first set relay member 881 is a member arranged at a position adjacent to the plurality of first sets 11a to 11h. In the present embodiment, one first set relay member 881 is arranged at a position adjacent to the plurality of first sets 11a to 11d in the second direction, and the other first set relay member 881 is arranged at a position adjacent to the plurality of first sets 11a to 11d. They are arranged adjacent to the first sets 11e to 11h in the second direction. The first set relay member 881 includes a plurality of conductive members 81e1 to 81e5. The material of each of the conductive members 81e1 to 81e5 is the same as that of the conductive member 81e. In the present embodiment, the first set relay member 881 further includes an insulating member 881d. The insulating member 881 d is a member containing an insulating material and arranged on the main surface 21 of the base 20 . The configuration of the insulating member 881d is the same as the configuration of the insulating member 81d. In this embodiment, the insulating member 881d has an elongated shape extending in the first direction. A plurality of conductive members 82e1 to 81e5 are arranged electrically insulated from each other on the upper surface of the insulating member 881d.
 複数の導電性部材81e1~81e5は、第一方向に配列されている。二つの導電性部材81e1のうち一方の導電性部材81e1は、第一正極電流端子91p及び第一セット11aと隣り合う位置に配置される。二つの導電性部材81e1のうち他方の導電性部材81e1は、第一正極電流端子91p及び第一セット11eと隣り合う位置に配置される。二つの導電性部材81e2のうち一方の導電性部材81e2は、第一セット11a及び第一セット11bと隣り合う位置に配置される。二つの導電性部材81e2のうち他方の導電性部材81e2は、第一セット11e及び第一セット11fと隣り合う位置に配置される。二つの導電性部材81e3のうち一方の導電性部材81e3は、第一セット11b及び第一セット11cと隣り合う位置に配置される。二つの導電性部材81e3のうち他方の導電性部材81e3は、第一セット11f及び第一セット11gと隣り合う位置に配置される。二つの導電性部材81e4のうち一方の導電性部材81e4は、第一セット11c及び第一セット11dと隣り合う位置に配置される。二つの導電性部材81e4のうち他方の導電性部材81e4は、第一セット11g及び第一セット11hと隣り合う位置に配置される。二つの導電性部材81e5のうち一方の導電性部材81e5は、第一セット11d及び第一負極電流端子91nと隣り合う位置に配置される。二つの導電性部材81e5のうち他方の導電性部材81e5は、第一セット11h及び第一負極電流端子91nと隣り合う位置に配置される。 The plurality of conductive members 81e1 to 81e5 are arranged in the first direction. One conductive member 81e1 of the two conductive members 81e1 is arranged adjacent to the first positive current terminal 91p and the first set 11a. The other conductive member 81e1 of the two conductive members 81e1 is arranged adjacent to the first positive current terminal 91p and the first set 11e. One conductive member 81e2 of the two conductive members 81e2 is arranged at a position adjacent to the first set 11a and the first set 11b. The other conductive member 81e2 of the two conductive members 81e2 is arranged at a position adjacent to the first set 11e and the first set 11f. One conductive member 81e3 of the two conductive members 81e3 is arranged at a position adjacent to the first set 11b and the first set 11c. The other conductive member 81e3 of the two conductive members 81e3 is arranged at a position adjacent to the first set 11f and the first set 11g. One conductive member 81e4 of the two conductive members 81e4 is arranged at a position adjacent to the first set 11c and the first set 11d. The other conductive member 81e4 of the two conductive members 81e4 is arranged at a position adjacent to the first set 11g and the first set 11h. One of the two conductive members 81e5 is positioned adjacent to the first set 11d and the first negative current terminal 91n. The other conductive member 81e5 of the two conductive members 81e5 is positioned adjacent to the first set 11h and the first negative current terminal 91n.
 なお、第一セット用中継部材881は、複数の絶縁性部材を含んでもよい。例えば、第一セット用中継部材881は、複数の導電性部材81e1~81e5が、それぞれ配置される複数の絶縁性部材を含んでもよい。 Note that the first set relay member 881 may include a plurality of insulating members. For example, the first set relay member 881 may include a plurality of insulating members in which the plurality of conductive members 81e1 to 81e5 are respectively arranged.
 第二セット用中継部材882は、複数の第二セット12a~12eと隣り合う位置に配置される部材である。本実施の形態では、2個の第二セット用中継部材882は、それぞれ、第二セット12a及び12eと第一方向において隣り合う位置に配置される。第二セット用中継部材882は、導電性部材882eを含む。導電性部材882eの構成は、導電性部材81eと同様である。本実施の形態では、第二セット用中継部材882は、絶縁性部材882dをさらに含む。絶縁性部材882dの構成は、絶縁性部材81dと同様である。 The second set relay member 882 is a member arranged at a position adjacent to the plurality of second sets 12a to 12e. In the present embodiment, the two second set relay members 882 are arranged at positions adjacent to the second sets 12a and 12e in the first direction. The second set relay member 882 includes a conductive member 882e. The configuration of the conductive member 882e is similar to that of the conductive member 81e. In the present embodiment, the second set relay member 882 further includes an insulating member 882d. The configuration of the insulating member 882d is similar to that of the insulating member 81d.
 第三セット用中継部材883は、複数の第三セット13a~13eと隣り合う位置に配置される部材である。本実施の形態では、2個の第三セット用中継部材883は、それぞれ、第三セット13a及び13eと第一方向において隣り合う位置に配置される。第三セット用中継部材883は、導電性部材883eを含む。導電性部材883eの構成は、導電性部材81eと同様である。本実施の形態では、第三セット用中継部材883は、絶縁性部材883dをさらに含む。絶縁性部材883dの構成は、絶縁性部材81dと同様である。 The third set relay member 883 is a member arranged at a position adjacent to the plurality of third sets 13a to 13e. In the present embodiment, the two third set relay members 883 are arranged at positions adjacent to the third sets 13a and 13e in the first direction. The third set relay member 883 includes a conductive member 883e. The configuration of the conductive member 883e is similar to that of the conductive member 81e. In the present embodiment, the third set relay member 883 further includes an insulating member 883d. The configuration of the insulating member 883d is similar to that of the insulating member 81d.
 複数の第一セット11a~11dは、複数の第一ワイヤW1と、第一セット用中継部材881とを用いて電気的に直列接続されている。第一セット11aの第一半導体レーザチップ51のn側接続電極(図示せず)と、第一セット11bの第一サブマウント71上に形成されたp側接続電極71eとの間が、1本以上の第一ワイヤW1と、第一セット用中継部材881の導電性部材81e2とを用いて電気的に接続される。具体的には、第一セット11aの第一半導体レーザチップ51のn側接続電極(図示せず)と、導電性部材81e2とが、1本以上の第一ワイヤW1で接続される。また、導電性部材81e2と、第一セット11bのp側接続電極71eとが、1本以上の第一ワイヤW1で接続される。p側接続電極71eは、第一サブマウント71に実装された第一半導体レーザチップ51のp側電極(図示せず)と電気的に接続されている。このように、第一セット11aの第一半導体レーザチップ51のn側接続電極と、第一セット11bの第一半導体レーザチップ51のp側電極とが、電気的に接続される。同様に、第一セット11bの第一半導体レーザチップ51のn側接続電極と、第一セット11cの第一半導体レーザチップ51のp側電極とが、第一ワイヤW1と、導電性部材81e3とを用いて電気的に接続される。第一セット11cの第一半導体レーザチップ51のn側接続電極と、第一セット11dの第一半導体レーザチップ51のp側電極とが、第一ワイヤW1と、導電性部材81e4とを用いて電気的に接続される。複数の第一セット11e~11hは、複数の第一セット11a~11dと同様に、複数の第一ワイヤW1と、第一セット用中継部材881とを用いて電気的に直列接続されている。 The plurality of first sets 11a to 11d are electrically connected in series using the plurality of first wires W1 and the relay member 881 for the first set. There is one line between the n-side connection electrode (not shown) of the first semiconductor laser chip 51 of the first set 11a and the p-side connection electrode 71e formed on the first submount 71 of the first set 11b. The above first wire W1 and the conductive member 81e2 of the relay member 881 for the first set are used to electrically connect. Specifically, the n-side connection electrode (not shown) of the first semiconductor laser chip 51 of the first set 11a and the conductive member 81e2 are connected by one or more first wires W1. Also, the conductive member 81e2 and the p-side connection electrode 71e of the first set 11b are connected by one or more first wires W1. The p-side connection electrode 71 e is electrically connected to a p-side electrode (not shown) of the first semiconductor laser chip 51 mounted on the first submount 71 . Thus, the n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11a and the p-side electrodes of the first semiconductor laser chips 51 of the first set 11b are electrically connected. Similarly, the n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11b and the p-side electrodes of the first semiconductor laser chips 51 of the first set 11c are connected to the first wire W1 and the conductive member 81e3. are electrically connected using The n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11c and the p-side electrodes of the first semiconductor laser chips 51 of the first set 11d are connected using the first wire W1 and the conductive member 81e4. electrically connected. The plurality of first sets 11e to 11h are electrically connected in series using the plurality of first wires W1 and the first set relay member 881, like the plurality of first sets 11a to 11d.
 第一正極電流端子91pと、第一セット11aのp側接続電極71eとは、第一ワイヤW1と、第一セット用中継部材881とを用いて電気的に接続される。具体的には、第一正極電流端子91pのうち、枠部材30で囲まれた領域内に位置する部分と、第一セット用中継部材881の導電性部材81e1とが、1本以上の第一ワイヤW1を用いて電気的に接続される。また、導電性部材81e1と、第一セット11aのp側接続電極71eとが1本以上の第一ワイヤW1を用いて電気的に接続される。同様に、第一正極電流端子91pと、第一セット11eのp側接続電極71eとは、第一ワイヤW1と、第一セット用中継部材881とを用いて電気的に接続される。 The first positive current terminal 91p and the p-side connection electrode 71e of the first set 11a are electrically connected using the first wire W1 and the relay member 881 for the first set. Specifically, the portion of the first positive electrode current terminal 91p located within the region surrounded by the frame member 30 and the conductive member 81e1 of the first set relay member 881 are combined into one or more first positive current terminals 91p. They are electrically connected using a wire W1. Also, the conductive member 81e1 and the p-side connection electrode 71e of the first set 11a are electrically connected using one or more first wires W1. Similarly, the first positive current terminal 91p and the p-side connection electrode 71e of the first set 11e are electrically connected using the first wire W1 and the relay member 881 for the first set.
 第一負極電流端子91nと、第一セット11dの第一半導体レーザチップ51のn側接続電極とは、第一ワイヤW1と、第一セット用中継部材881とを用いて電気的に接続される。具体的には、第一負極電流端子91nのうち、枠部材30で囲まれた領域内に位置する部分と、第一セット用中継部材881の導電性部材81e5とが、1本以上の第一ワイヤW1を用いて電気的に接続される。また、導電性部材81e5と、第一セット11dの第一半導体レーザチップ51のn側接続電極とが1本以上の第一ワイヤW1を用いて電気的に接続される。同様に、第一負極電流端子91nと、第一セット11hの第一半導体レーザチップ51のn側接続電極とは、第一ワイヤW1と、第一セット用中継部材881とを用いて電気的に接続される。 The first negative electrode current terminal 91n and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11d are electrically connected using the first wire W1 and the first set relay member 881. . Specifically, the portion of the first negative electrode current terminal 91n located within the region surrounded by the frame member 30 and the conductive member 81e5 of the first set relay member 881 are combined into one or more first electrode current terminals. They are electrically connected using a wire W1. Also, the conductive member 81e5 and the n-side connection electrodes of the first semiconductor laser chips 51 of the first set 11d are electrically connected using one or more first wires W1. Similarly, the first negative electrode current terminal 91n and the n-side connection electrode of the first semiconductor laser chip 51 of the first set 11h are electrically connected using the first wire W1 and the relay member 881 for the first set. Connected.
 以上のような構成により、第一正極電流端子91p及び第一負極電流端子91nから、電気的に直列接続された8個の第一セット11a~11hに、電流を供給できる。 With the configuration described above, current can be supplied from the first positive current terminal 91p and the first negative current terminal 91n to the eight first sets 11a to 11h electrically connected in series.
 複数の第二セット12a~12eは、複数の第二ワイヤW2を用いて電気的に直列接続されている。具体的には、第二セット12aの第二半導体レーザチップ52のn側接続電極(図示せず)と、隣接する第二セット12bの第二サブマウント72上に形成されたp側接続電極72eとの間が、1本以上の第二ワイヤW2で接続される。p側接続電極72eは、第二サブマウント72に実装された第二半導体レーザチップ52のp側電極(図示せず)と電気的に接続されている。このように、第二セット12aの第二半導体レーザチップ52のn側接続電極と、第二セット12bの第二半導体レーザチップ52のp側電極とが、電気的に接続される。同様に、第二セット12b、12c、及び12dの第二半導体レーザチップ52のn側接続電極と、それぞれに隣接される第二セット12c、12d、及び12eの第二サブマウント72のp側接続電極72eとが、それぞれ、電気的に接続される。 The plurality of second sets 12a-12e are electrically connected in series using the plurality of second wires W2. Specifically, the n-side connection electrode (not shown) of the second semiconductor laser chip 52 of the second set 12a and the p-side connection electrode 72e formed on the adjacent second submount 72 of the second set 12b are connected by one or more second wires W2. The p-side connection electrode 72 e is electrically connected to the p-side electrode (not shown) of the second semiconductor laser chip 52 mounted on the second submount 72 . Thus, the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12a and the p-side electrodes of the second semiconductor laser chips 52 of the second set 12b are electrically connected. Similarly, the n-side connection electrodes of the second semiconductor laser chips 52 of the second set 12b, 12c, and 12d and the p-side connection of the second submounts 72 of the second set 12c, 12d, and 12e adjacent to each other. The electrodes 72e are electrically connected to each other.
 第二正極電流端子92pと、第二セット12aのp側接続電極72eとは、第二ワイヤW2と、1個の第二セット用中継部材882とを用いて電気的に接続される。当該1個の第二セット用中継部材882は、当該第二正極電流端子92p及び第二セット12aと隣り合う位置に配置される。第二正極電流端子92pのうち、枠部材30で囲まれた領域内に位置する部分と、第二セット用中継部材882の導電性部材882eとが、1本以上の第二ワイヤW2を用いて電気的に接続される。また、第二セット用中継部材882の導電性部材882eと、第二セット12aのp側接続電極72eとが1本以上の第二ワイヤW2を用いて電気的に接続される。 The second positive current terminal 92p and the p-side connection electrode 72e of the second set 12a are electrically connected using a second wire W2 and one relay member 882 for the second set. The single second set relay member 882 is arranged at a position adjacent to the second positive current terminal 92p and the second set 12a. A portion of the second positive electrode current terminal 92p located within the region surrounded by the frame member 30 and the conductive member 882e of the second set relay member 882 are connected using one or more second wires W2. electrically connected. Also, the conductive member 882e of the second set relay member 882 and the p-side connection electrode 72e of the second set 12a are electrically connected using one or more second wires W2.
 第二負極電流端子92nと、第二セット12eの第二半導体レーザチップ52のn側接続電極とは、1個の第二セット用中継部材882と第二ワイヤW2とを用いて電気的に接続される。当該1個の第二セット用中継部材882は、当該第二負極電流端子92n及び第二セット12eと隣り合う位置に配置される。第二負極電流端子92nのうち、枠部材30で囲まれた領域内に位置する部分と、第二セット用中継部材882の導電性部材882eとが、1本以上の第二ワイヤW2を用いて電気的に接続される。また、第二セット用中継部材882の導電性部材882eと、第二セット12eの第二半導体レーザチップ52のn側接続電極とが1本以上の第二ワイヤW2を用いて電気的に接続される。 The second negative electrode current terminal 92n and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12e are electrically connected using one second set relay member 882 and a second wire W2. be done. The single second set relay member 882 is arranged at a position adjacent to the second negative current terminal 92n and the second set 12e. A portion of the second negative current terminal 92n located within the region surrounded by the frame member 30 and the conductive member 882e of the second set relay member 882 are connected by using one or more second wires W2. electrically connected. Also, the conductive member 882e of the second set relay member 882 and the n-side connection electrode of the second semiconductor laser chip 52 of the second set 12e are electrically connected using one or more second wires W2. be.
 以上のような構成により、第二正極電流端子92p及び第二負極電流端子92nから、電気的に直列接続された5個の第二セット12a~12eに、電流を供給できる。 With the configuration described above, current can be supplied from the second positive current terminal 92p and the second negative current terminal 92n to the five second sets 12a to 12e electrically connected in series.
 複数の第三セット13a~13eは、複数の第三ワイヤW3を用いて電気的に直列接続されている。具体的には、第三セット13aの第三半導体レーザチップ53のn側接続電極(図示せず)と、隣接する第三セット13bの第三サブマウント73上に形成されたp側接続電極73eとの間が、1本以上の第三ワイヤW3で接続される。p側接続電極73eは、第三サブマウント73に実装された第三半導体レーザチップ53のp側電極(図示せず)と電気的に接続されている。このように、第三セット13aの第三半導体レーザチップ53のn側接続電極と、第三セット13bの第三半導体レーザチップ53のp側電極とが、電気的に接続される。同様に、第三セット13b、13c、及び13dの第三半導体レーザチップ53のn側接続電極と、それぞれに隣接される第三セット13c、13d、及び13eの第三サブマウント73のp側接続電極73eとが、それぞれ、電気的に接続される。 The plurality of third sets 13a-13e are electrically connected in series using the plurality of third wires W3. Specifically, the n-side connection electrode (not shown) of the third semiconductor laser chip 53 of the third set 13a and the p-side connection electrode 73e formed on the third submount 73 of the adjacent third set 13b are connected by one or more third wires W3. The p-side connection electrode 73 e is electrically connected to a p-side electrode (not shown) of the third semiconductor laser chip 53 mounted on the third submount 73 . Thus, the n-side connection electrodes of the third semiconductor laser chips 53 of the third set 13a and the p-side electrodes of the third semiconductor laser chips 53 of the third set 13b are electrically connected. Similarly, the n-side connection electrodes of the third semiconductor laser chips 53 of the third sets 13b, 13c, and 13d and the p-side connections of the third submounts 73 of the third sets 13c, 13d, and 13e adjacent to them, respectively. The electrodes 73e are electrically connected to each other.
 第三正極電流端子93pと、第三セット13aのp側接続電極73eとは、第三ワイヤW3と、1個の第三セット用中継部材883とを用いて電気的に接続される。当該1個の第三セット用中継部材883は、当該第三正極電流端子93p及び第三セット13aと隣り合う位置に配置される。第三正極電流端子93pのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材883の導電性部材883eとが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、第三セット用中継部材883の導電性部材883eと、第三セット13aのp側接続電極73eとが1本以上の第三ワイヤW3を用いて電気的に接続される。 The third positive current terminal 93p and the p-side connection electrode 73e of the third set 13a are electrically connected using a third wire W3 and one relay member 883 for the third set. The single third set relay member 883 is arranged at a position adjacent to the third positive current terminal 93p and the third set 13a. A portion of the third positive electrode current terminal 93p located within the region surrounded by the frame member 30 and the conductive member 883e of the relay member 883 for the third set are connected using one or more third wires W3. electrically connected. Also, the conductive member 883e of the relay member 883 for the third set and the p-side connection electrode 73e of the third set 13a are electrically connected using one or more third wires W3.
 第三負極電流端子93nと、第三セット13eの第三半導体レーザチップ53のn側接続電極とは、1個の第三セット用中継部材883と第三ワイヤW3とを用いて電気的に接続される。当該1個の第三セット用中継部材883は、当該第三負極電流端子93n及び第三セット13eと隣り合う位置に配置される。第三負極電流端子93nのうち、枠部材30で囲まれた領域内に位置する部分と、第三セット用中継部材883の導電性部材883eとが、1本以上の第三ワイヤW3を用いて電気的に接続される。また、第三セット用中継部材883の導電性部材883eと、第三セット13eの第三半導体レーザチップ53のn側接続電極とが1本以上の第三ワイヤW3を用いて電気的に接続される。 The third negative electrode current terminal 93n and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13e are electrically connected using one third set relay member 883 and a third wire W3. be done. The single third set relay member 883 is arranged adjacent to the third negative current terminal 93n and the third set 13e. A portion of the third negative electrode current terminal 93n located within the region surrounded by the frame member 30 and the conductive member 883e of the third set relay member 883 are connected by using one or more third wires W3. electrically connected. Also, the conductive member 883e of the relay member 883 for the third set and the n-side connection electrode of the third semiconductor laser chip 53 of the third set 13e are electrically connected using one or more third wires W3. be.
 以上のような構成により、第三正極電流端子93p及び第三負極電流端子93nから、電気的に直列接続された5個の第三セット13a~13eに、電流を供給できる。 With the configuration described above, current can be supplied from the third positive current terminal 93p and the third negative current terminal 93n to the five third sets 13a to 13e electrically connected in series.
 本実施の形態に係る多波長光源モジュール810においても、実施の形態1に係る多波長光源モジュール10と同様の効果が奏される。 The multi-wavelength light source module 810 according to the present embodiment also has the same effect as the multi-wavelength light source module 10 according to the first embodiment.
 (変形例など)
 以上、本開示に係る多波長光源モジュールについて、各実施の形態に基づいて説明したが、本開示は、上記各実施の形態に限定されるものではない。
(Modified example, etc.)
As described above, the multi-wavelength light source module according to the present disclosure has been described based on each embodiment, but the present disclosure is not limited to each of the above embodiments.
 例えば、上記各実施の形態では、各多波長光源モジュールは、枠部材30を備えるが、枠部材30は、各発光素子の必須の構成要素ではない。例えば、各多波長光源モジュールの各蓋体が、枠部材に相当する部分を有してもよい。また、各蓋体は、枠部材30以外の部材によって基台20に支持されてもよい。 For example, in each of the above-described embodiments, each multi-wavelength light source module includes the frame member 30, but the frame member 30 is not an essential component of each light emitting element. For example, each lid of each multi-wavelength light source module may have a portion corresponding to the frame member. Also, each lid may be supported on the base 20 by a member other than the frame member 30 .
 また、上記各実施の形態では、各セットは、一つの独立したミラーを有したが、ミラーの構成はこれに限定されない。例えば、隣り合うセットの各々が有するミラーは、一体化されていてもよい。このような変形例について、図16~図18を用いて説明する。図16は、実施の形態1の変形例に係る多波長光源モジュール10aの蓋体を取り外した状態を示す平面図である。図17は、実施の形態2の変形例に係る多波長光源モジュール110aにおける各モジュール及び配線のレイアウトを示す平面図である。図18は、実施の形態7の変形例に係る多波長光源モジュール610aにおける各モジュール及び配線のレイアウトを示す平面図である。 Also, in each of the above embodiments, each set has one independent mirror, but the configuration of the mirrors is not limited to this. For example, the mirrors of each adjacent set may be integrated. Such modifications will be described with reference to FIGS. 16 to 18. FIG. FIG. 16 is a plan view of the multi-wavelength light source module 10a according to the modification of the first embodiment, with the cover removed. FIG. 17 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module 110a according to the modification of the second embodiment. FIG. 18 is a plan view showing the layout of each module and wiring in the multi-wavelength light source module 610a according to the modification of the seventh embodiment.
 実施の形態1の変形例に係る多波長光源モジュール10aにおいては、図16に示されるように、複数の第一セット11a~11jのうち、第二の方向に隣り合う第一セットが有する第一ミラー61が一体化されている。言い換えると、隣り合う第一セットが有する第一ミラー61が一体に形成されている。本変形例では、5個の第一セット11a~11eの第一ミラー61、及び、5個の第一セット11f~11jの第一ミラー61が、それぞれ一体化されている。また、一体化された複数の第一ミラー61の第一反射面61aは同一平面内にあってもよい。本変形例では、5個の第一セット11a~11eの第一ミラー61の第一反射面61a、及び、5個の第一セット11f~11jの第一ミラー61の第一反射面61aが、それぞれ同一平面内にある。 In the multi-wavelength light source module 10a according to the modification of the first embodiment, as shown in FIG. 16, among the plurality of first sets 11a to 11j, first sets of first sets adjacent in the second direction have first A mirror 61 is integrated. In other words, the first mirrors 61 of the adjacent first sets are integrally formed. In this modification, the first mirrors 61 of the five first sets 11a to 11e and the first mirrors 61 of the five first sets 11f to 11j are integrated. Also, the first reflecting surfaces 61a of the plurality of integrated first mirrors 61 may be in the same plane. In this modification, the first reflecting surfaces 61a of the first mirrors 61 of the five first sets 11a to 11e and the first reflecting surfaces 61a of the first mirrors 61 of the five first sets 11f to 11j are They are in the same plane.
 また、図16に示されるように、複数の第二セット12a~12dのうち1個の第二セットが有する第二ミラー62と、複数の第三セット13a~13dのうち、当該第二ミラー62と第一の方向に隣り合う1個の第三セットが有する第三ミラー63とは一体化されていてもよい。本変形例では、第二セット12a~12dの第二ミラー62と、第三セット13a~13dの第三ミラー63とが、それぞれ一体化されている。この場合、図16に示されるように、第二セット用中継部材82は、第二ミラー62及び第三ミラーとの干渉を抑制するために、実施の形態1と同様に、第一セット11a~11jと、第二セット12a~12dとの間に配置されるとよい。 Further, as shown in FIG. 16, the second mirror 62 of one of the plurality of second sets 12a to 12d and the second mirror 62 of the plurality of third sets 13a to 13d and the third mirror 63 of one third set adjacent in the first direction may be integrated. In this modification, the second mirrors 62 of the second set 12a-12d and the third mirrors 63 of the third set 13a-13d are integrated. In this case, as shown in FIG. 16, the second set relay member 82 is provided with the first sets 11a to 11a, as in the first embodiment, in order to suppress interference with the second mirror 62 and the third mirror. 11j and the second set 12a-12d.
 また、一体化された第二ミラー62の第二反射面62aと、第三ミラー63の第三反射面63aとは同一平面内にあってもよい。本変形例では、5個の第一セット11a~11eの第一ミラー61の第一反射面61a、及び、5個の第一セット11f~11jの第一ミラー61の第一反射面61aが、それぞれ同一平面内にある。 Also, the integrated second reflecting surface 62a of the second mirror 62 and the third reflecting surface 63a of the third mirror 63 may be on the same plane. In this modification, the first reflecting surfaces 61a of the first mirrors 61 of the five first sets 11a to 11e and the first reflecting surfaces 61a of the first mirrors 61 of the five first sets 11f to 11j are They are in the same plane.
 実施の形態2の変形例に係る多波長光源モジュール110aにおいては、図17に示されるように、第二の方向に隣り合う4個の第一セット11a~11dの第一ミラー61、及び、第二の方向に隣り合う4個の第一セット11e~11hの第一ミラー61が、それぞれ一体化されている。本変形例では、4個の第一セット11a~11dの第一ミラー61の第一反射面61a、及び、4個の第一セット11e~11hの第一ミラー61の第一反射面61aが、それぞれ同一平面内にある。 In the multi-wavelength light source module 110a according to the modification of the second embodiment, as shown in FIG. 17, four first sets 11a to 11d of the first mirrors 61 and the second The first mirrors 61 of the four first sets 11e to 11h adjacent in two directions are respectively integrated. In this modification, the first reflecting surfaces 61a of the first mirrors 61 of the four first sets 11a to 11d and the first reflecting surfaces 61a of the first mirrors 61 of the four first sets 11e to 11h are They are in the same plane.
 また、図17に示されるように、第一の方向に隣り合う4個の第二セット12a~12dの第二ミラー62、及び、第一の方向に隣り合う4個の第三セット13a~13dの第三ミラー63が、それぞれ一体化されている。また、本変形例では、4個の第二セット12a~12dの第二ミラー62の第二反射面62a、及び、4個の第三セット13a~13dの第三ミラー63の第三反射面63aが、それぞれ同一平面内にある。 Also, as shown in FIG. 17, a second set of four mirrors 12a-12d adjacent in the first direction and a third set of four mirrors 13a-13d adjacent in the first direction. are integrated with each other. In addition, in this modification, the second reflecting surfaces 62a of the second mirrors 62 of the four second sets 12a to 12d and the third reflecting surfaces 63a of the third mirrors 63 of the four third sets 13a to 13d are in the same plane.
 実施の形態7の変形例に係る多波長光源モジュール610aにおいては、図18に示されるように、第二の方向に隣り合う2個の第一セット11a及び11bの第一ミラー61、2個の第一セット11c及び11dの第一ミラー61、2個の第一セット11e及び11fの第一ミラー61、並びに、2個の第一セット11g及び11hの第一ミラー61が、それぞれ一体化されている。本変形例では、2個の第一セット11a及び11bの第一ミラー61の第一反射面61a、2個の第一セット11c及び11dの第一ミラー61の第一反射面61a、2個の第一セット11e及び11fの第一ミラー61の第一反射面61a、並びに、2個の第一セット11g及び11hの第一ミラー61の第一反射面61aが、それぞれ同一平面内にある。 In a multi-wavelength light source module 610a according to a modification of Embodiment 7, as shown in FIG. 18, two first sets 11a and 11b of first mirrors 61 and two A first set 11c and 11d of first mirrors 61, two first sets 11e and 11f of first mirrors 61, and two first sets 11g and 11h of first mirrors 61 are integrated respectively. there is In this modification, the first reflecting surfaces 61a of the first mirrors 61 of the two first sets 11a and 11b, the first reflecting surfaces 61a of the first mirrors 61 of the two first sets 11c and 11d, and two The first reflecting surfaces 61a of the first mirrors 61 of the first set 11e and 11f and the first reflecting surfaces 61a of the first mirrors 61 of the two first sets 11g and 11h are coplanar, respectively.
 また、図18に示されるように、第二セット12aの第二ミラー62と第二の方向に隣り合う第三セット13aの第三ミラー63とが一体化されており、第二セット12bの第二ミラー62と第三セット13bの第三ミラー63とが一体化されており、第二セット12cの第二ミラー62と第三セット13cの第三ミラー63とが一体化されており、第二セット12dの第二ミラー62と第三セット13dの第三ミラー63とが一体化されている。また、本変形例では、一体化された第二ミラー62の第二反射面62aと、第三ミラー63の第三反射面63aとは、異なる平面内にある。 Also, as shown in FIG. 18, the second mirror 62 of the second set 12a and the third mirror 63 of the third set 13a adjacent in the second direction are integrated, and the second mirror 63 of the second set 12b is integrated. The second mirror 62 and the third mirror 63 of the third set 13b are integrated, the second mirror 62 of the second set 12c and the third mirror 63 of the third set 13c are integrated, and the second The second mirror 62 of the set 12d and the third mirror 63 of the third set 13d are integrated. Moreover, in this modification, the integrated second reflecting surface 62a of the second mirror 62 and the integrated third reflecting surface 63a of the third mirror 63 are in different planes.
 また、他の実施の形態においても、複数のミラーを一体化してもよい。例えば、上記実施の形態4に係る多波長光源モジュール310において、第一セット11a~11eの第一ミラー61、及び、第一セット11f~11jの第一ミラー61を、それぞれ一体化してもよい。また、第二セット12a及び12bの第二ミラー62、第二セット12c及び12dの第二ミラー62、第三セット13a及び13bの第三ミラー63、及び、第三セット13c及び13dの第三ミラー63を、それぞれ一体化してもよい。 Also, in other embodiments, a plurality of mirrors may be integrated. For example, in the multi-wavelength light source module 310 according to the fourth embodiment, the first mirrors 61 of the first sets 11a to 11e and the first mirrors 61 of the first sets 11f to 11j may be integrated. Also, second mirrors 62 of the second set 12a and 12b, second mirrors 62 of the second set 12c and 12d, third mirrors 63 of the third set 13a and 13b, and third mirrors of the third set 13c and 13d. 63 may be integrated respectively.
 以上のような各変形例に係る多波長光源モジュールにおいても、上記各実施の形態に係る多波長光源モジュールと同様の効果が奏される。さらに、上記各変形例においては、各ミラーを基台20の主面21に実装する際に発生する実装位置のばらつきを抑制することができる。 また、上記各実施の形態に係る多波長光源モジュールの各サブマウントは、必須の構成要素ではない。各半導体レーザチップは、基台20に直接実装されてもよい。このように各半導体レーザチップは、基台20の主面21に直接、又は、サブマウントを介して実装されてもよい。 The multi-wavelength light source modules according to the modifications described above also have the same effect as the multi-wavelength light source modules according to the above-described embodiments. Furthermore, in each of the modifications described above, it is possible to suppress variation in the mounting position that occurs when each mirror is mounted on the main surface 21 of the base 20 . Also, each submount of the multi-wavelength light source module according to each of the above embodiments is not an essential component. Each semiconductor laser chip may be directly mounted on the base 20 . In this manner, each semiconductor laser chip may be mounted directly on the main surface 21 of the base 20 or via a submount.
 また、上記各実施の形態では、複数の第一セットの各々は、同一の構成を有したが、互いに異なる構成を有していてもよい。複数の第二セットの各々も、互いに異なる構成を有していてもよい。複数の第三セットの各々も、互いに異なる構成を有していてもよい。 Also, in each of the above-described embodiments, each of the plurality of first sets has the same configuration, but they may have different configurations. Each of the plurality of second sets may also have different configurations. Each of the plurality of third sets may also have different configurations.
 また、上記各実施の形態において、配列された複数の第一セットの各々の第一半導体レーザチップは、同一の向きに第一光を出射したが、配列された複数の第一セットは、当該同一の向きと逆向きに第一光を出射する第一半導体レーザチップを含んでもよい。 Further, in each of the above-described embodiments, the first semiconductor laser chips of the plurality of arranged first sets emit the first light in the same direction. A first semiconductor laser chip that emits the first light in the same direction and in the opposite direction may be included.
 また、上記各実施の形態では、各中継部材は、導電性部材は、絶縁性部材を介して主面21に配置されたが、主面21が絶縁性部材で形成されている場合には、主面21に導電性部材が直接配置されてもよい。この場合、各中継部材は、絶縁性部材を含まなくてもよい。 In each of the above-described embodiments, the relay members and the conductive members are arranged on the main surface 21 via the insulating member. A conductive member may be directly arranged on the major surface 21 . In this case, each relay member may not include an insulating member.
 また、上記各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, it is realized by arbitrarily combining the constituent elements and functions of the above embodiments without departing from the scope of the present disclosure, as well as the forms obtained by applying various modifications that a person skilled in the art can think of for the above embodiments. Any form is also included in the present disclosure.
 例えば、実施の形態5、又は、実施の形態6に係る複数の第一セット11a~11jのレイアウトと、実施の形態1に係る複数の第二セット12a~12d、及び複数の第三セット13a~13dのレイアウトとを組み合わせてもよい。 For example, the layout of the plurality of first sets 11a to 11j according to Embodiment 5 or Embodiment 6, the plurality of second sets 12a to 12d and the plurality of third sets 13a to 13a according to Embodiment 1 13d layout may be combined.
 また、上記各実施の形態では、多波長光源モジュールは、複数の第一セットと、複数の第二セットと、複数の第三セットとを備えたが、多波長光源モジュールは複数の第三セットを備えなくてもよい。つまり、多波長光源モジュールは、複数の第一セット、複数の第二セット、及び、複数の第三セットのうち、複数の第一セット及び複数の第二セットだけを備えてもよい。この場合、例えば、複数の第一セットの各々は、TMモードの赤色レーザを出射するGaInP系半導体レーザチップからなる第一半導体レーザチップを有し、第二セットの各々は、TEモードの青色レーザを出射するGaInN系半導体レーザチップからなる第二半導体レーザチップを有してもよい。あるいは、多波長光源モジュールは、複数の第一セットと、複数の第二セットと、1個だけの第三セットとを備えていてもよい。この場合、例えば、複数の第一セットの各々は、TMモードの赤色レーザを出射するGaInP系半導体レーザチップからなる第一半導体レーザチップを有し、複数の第二セットの各々は、TEモードの緑色レーザを出射するGaInN系半導体レーザチップからなる第二半導体レーザチップを有し、第三セットは、TEモードの青色レーザを出射するGaInN系半導体レーザチップからなる第三半導体レーザチップを有してもよい。 Further, in each of the above embodiments, the multi-wavelength light source module includes a plurality of first sets, a plurality of second sets, and a plurality of third sets, but the multi-wavelength light source module includes a plurality of third sets does not have to be That is, the multi-wavelength light source module may comprise only the plurality of first sets and the plurality of second sets among the plurality of first sets, the plurality of second sets and the plurality of third sets. In this case, for example, each of the plurality of first sets has a first semiconductor laser chip consisting of a GaInP semiconductor laser chip that emits a TM mode red laser, and each of the second sets has a TE mode blue laser chip. may have a second semiconductor laser chip composed of a GaInN-based semiconductor laser chip that emits . Alternatively, the multi-wavelength light source module may comprise multiple first sets, multiple second sets and only one third set. In this case, for example, each of the plurality of first sets has a first semiconductor laser chip composed of a GaInP-based semiconductor laser chip that emits a TM mode red laser, and each of the plurality of second sets has a TE mode laser chip. A second semiconductor laser chip comprising a GaInN semiconductor laser chip for emitting a green laser, and a third set comprising a third semiconductor laser chip comprising a GaInN semiconductor laser chip for emitting a TE mode blue laser. good too.
 本開示の多波長光源モジュールは、例えば、単一の液晶を備える時分解型プロジェクタなどに適用できる。 The multi-wavelength light source module of the present disclosure can be applied to, for example, a time-resolved projector including a single liquid crystal.
 10、10a、110、110a、210、310、410、510、610、610a、710、810 多波長光源モジュール
 11a、11b、11c、11d、11e、11f、11g、11h、11i、11j 第一セット
 12a、12b、12c、12d 第二セット
 13a、13b、13c、13d 第三セット
 20 基台
 21 主面
 30 枠部材
 40 蓋体
 41、741 第一レンズ
 42、742 第二レンズ
 43、743 第三レンズ
 44 レンズ領域
 51 第一半導体レーザチップ
 52 第二半導体レーザチップ
 53 第三半導体レーザチップ
 61 第一ミラー
 61a 第一反射面
 62 第二ミラー
 62a 第二反射面
 63 第三ミラー
 63a 第三反射面
 71 第一サブマウント
 71e、72e、73e p側接続電極
 72 第二サブマウント
 73 第三サブマウント
 81、881 第一セット用中継部材
 81d、82d、83d、182d1、182d2、183d1、183d2、183d3、183d4、382d1、382d2、382d3、383d1、383d2、383d3、881d、882d、883d 絶縁性部材
 81e、81e1、81e2、81e3、81e4、81e5、82e1、82e2、82e3、82e4、82e5、83e1、83e2、83e3、83e4、83e5、182e1、182e2、183e1、183e2、183e3、183e4、382e1、382e2、382e3、383e1、383e2、383e3、882e、883e 導電性部材
 82、182a、182b、382a、382b、382c、382d、382e、382f、782 第二セット用中継部材
 83、183a、183b、183c、183d、383a、383b、383c、383d、383e、383f、783 第三セット用中継部材
 91p 第一正極電流端子
 91n 第一負極電流端子
 92p 第二正極電流端子
 92n 第二負極電流端子
 93p 第三正極電流端子
 93n 第三負極電流端子
 Af ファスト軸
 As スロー軸
 L11 第一光
 L12 第一反射光
 L13 第一出力光
 L21 第二光
 L22 第二反射光
 W1 第一ワイヤ
 W2 第二ワイヤ
 W3 第三ワイヤ
10, 10a, 110, 110a, 210, 310, 410, 510, 610, 610a, 710, 810 multi-wavelength light source module 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h, 11i, 11j first set 12a , 12b, 12c, 12d Second set 13a, 13b, 13c, 13d Third set 20 Base 21 Main surface 30 Frame member 40 Lid 41, 741 First lens 42, 742 Second lens 43, 743 Third lens 44 Lens region 51 First semiconductor laser chip 52 Second semiconductor laser chip 53 Third semiconductor laser chip 61 First mirror 61a First reflecting surface 62 Second mirror 62a Second reflecting surface 63 Third mirror 63a Third reflecting surface 71 First Submount 71e, 72e, 73e p-side connection electrode 72 Second submount 73 Third submount 81, 881 First set relay member 81d, 82d, 83d, 182d1, 182d2, 183d1, 183d2, 183d3, 183d4, 382d1, 382d2, 382d3, 383d1, 383d2, 383d3, 881d, 882d, 883d Insulating member 81e, 81e1, 81e2, 81e3, 81e4, 81e5, 82e1, 82e2, 82e3, 82e4, 82e5, 83e1, 83e2, 83e3, 85e4, 83e4, 182e1, 182e2, 183e1, 183e2, 183e3, 183e4, 382e1, 382e2, 382e3, 383e1, 383e2, 383e3, 882e, 883e Conductive member 82, 182a, 182b, 382a, 382b, 382c, 382d, 382e 7, 8282 Second set relay member 83, 183a, 183b, 183c, 183d, 383a, 383b, 383c, 383d, 383e, 383f, 783 Third set relay member 91p First positive electrode current terminal 91n First negative electrode current terminal 92p Second positive electrode Current terminal 92n Second negative current terminal 93p Third positive current terminal 93n Third negative current terminal Af Fast axis As Slow axis L11 First light L12 First reflected light L13 First output light L21 Second light L22 Second reflected light W1 First wire W2 Second wire W3 Third wire

Claims (32)

  1.  主面を有する基台と、
     前記主面に配置される複数の第一セット及び複数の第二セットとを備え、
     前記複数の第一セットの各々は、
     前記主面に平行な第一光軸を有し、第一波長帯の第一光を出射する第一半導体レーザチップと、
     前記第一光を前記主面に垂直な方向に反射する第一ミラーとを有し、
     前記複数の第二セットの各々は、
     前記主面に平行な第二光軸を有し、前記第一波長帯と異なる第二波長帯の第二光を出射する第二半導体レーザチップと、
     前記第二光を前記主面に垂直な方向に反射する第二ミラーとを有し、
     前記第一光軸は、前記主面に平行な第一方向に平行であり、
     前記第二光軸は、前記主面に平行な第二方向に平行であり、
     前記第二方向は、前記第一方向に対して垂直な方向であり、
     前記第一半導体レーザチップから前記第一ミラーへ伝搬する前記第一光の偏光方向と、前記第二半導体レーザチップから前記第二ミラーへ伝搬する前記第二光の偏光方向とは、直交する
     多波長光源モジュール。
    a base having a main surface;
    A plurality of first sets and a plurality of second sets arranged on the main surface,
    each of the plurality of first sets comprising:
    a first semiconductor laser chip having a first optical axis parallel to the main surface and emitting a first light in a first wavelength band;
    a first mirror that reflects the first light in a direction perpendicular to the principal surface;
    each of the plurality of second sets comprising:
    a second semiconductor laser chip having a second optical axis parallel to the main surface and emitting a second light in a second wavelength band different from the first wavelength band;
    a second mirror that reflects the second light in a direction perpendicular to the principal surface;
    The first optical axis is parallel to the first direction parallel to the principal surface,
    The second optical axis is parallel to a second direction parallel to the principal surface,
    The second direction is a direction perpendicular to the first direction,
    The polarization direction of the first light propagating from the first semiconductor laser chip to the first mirror and the polarization direction of the second light propagating from the second semiconductor laser chip to the second mirror are orthogonal to each other. Wavelength light source module.
  2.  前記複数の第一セットは、前記第二方向に配列されている
     請求項1に記載の多波長光源モジュール。
    The multi-wavelength light source module according to claim 1, wherein the plurality of first sets are arranged in the second direction.
  3.  前記複数の第一セットは、電気的に直列接続されている
     請求項1又は2に記載の多波長光源モジュール。
    The multi-wavelength light source module according to claim 1 or 2, wherein the plurality of first sets are electrically connected in series.
  4.  前記複数の第二セットは、前記第二方向に配列されている
     請求項1~3のいずれか1項に記載の多波長光源モジュール。
    The multi-wavelength light source module according to any one of claims 1 to 3, wherein the plurality of second sets are arranged in the second direction.
  5.  前記主面上であって、前記複数の第二セットと前記第一方向において隣り合う位置に配置される第二セット用中継部材をさらに備え、
     前記第二セット用中継部材は、導電性部材を含み、
     前記複数の第二セットは、複数の第二ワイヤ及び前記第二セット用中継部材を用いて、電気的に直列接続されている
     請求項4に記載の多波長光源モジュール。
    further comprising a second set relay member arranged on the main surface at a position adjacent to the plurality of second sets in the first direction;
    The second set relay member includes a conductive member,
    5. The multi-wavelength light source module according to claim 4, wherein the plurality of second sets are electrically connected in series using a plurality of second wires and the relay member for the second set.
  6.  前記第二セット用中継部材は、前記第二ミラーに対して前記第一方向に隣り合う位置に配置される
     請求項5に記載の多波長光源モジュール。
    The multi-wavelength light source module according to claim 5, wherein the second set relay member is arranged at a position adjacent to the second mirror in the first direction.
  7.  前記複数の第二セットは、前記第一方向に配列されている
     請求項1~3のいずれか1項に記載の多波長光源モジュール。
    The multi-wavelength light source module according to any one of claims 1 to 3, wherein the plurality of second sets are arranged in the first direction.
  8.  前記主面上であって、前記複数の第二セットに対して前記第一方向に隣り合う位置に配置される第二セット用中継部材をさらに備え、
     前記第二セット用中継部材は、導電性部材を含み、
     前記複数の第二セットは、複数の第二ワイヤ及び前記第二セット用中継部材を用いて、電気的に直列接続されている
     請求項7に記載の多波長光源モジュール。
    further comprising a second set relay member arranged on the main surface at a position adjacent to the plurality of second sets in the first direction;
    The second set relay member includes a conductive member,
    8. The multi-wavelength light source module according to claim 7, wherein the plurality of second sets are electrically connected in series using a plurality of second wires and the relay member for the second set.
  9.  前記第二セット用中継部材は、前記第二ミラーに対して前記第一方向に隣り合う位置に配置される
     請求項8に記載の多波長光源モジュール。
    The multi-wavelength light source module according to claim 8, wherein the second set relay member is arranged at a position adjacent to the second mirror in the first direction.
  10.  前記主面に配置される複数の第三セットをさらに備え、
     前記複数の第三セットの各々は、
     前記第二方向に平行な第三光軸を有し、前記第一波長帯及び前記第二波長帯と異なる第三波長帯の第三光を出射する第三半導体レーザチップと、
     前記第三光を前記主面に垂直な方向に反射する第三ミラーとを有し、
     前記第一半導体レーザチップから前記第一ミラーへ伝搬する前記第一光の偏光方向と、前記第三半導体レーザチップから前記第三ミラーへ伝搬する前記第三光の偏光方向とは、直交する
     請求項1~3のいずれか1項に記載の多波長光源モジュール。
    further comprising a plurality of third sets arranged on the major surface;
    each of the plurality of third sets comprising:
    a third semiconductor laser chip having a third optical axis parallel to the second direction and emitting a third light in a third wavelength band different from the first wavelength band and the second wavelength band;
    a third mirror that reflects the third light in a direction perpendicular to the principal surface;
    The polarization direction of the first light propagating from the first semiconductor laser chip to the first mirror and the polarization direction of the third light propagating from the third semiconductor laser chip to the third mirror are orthogonal to each other. The multi-wavelength light source module according to any one of Items 1 to 3.
  11.  前記複数の第三セットは、前記第二方向に配列されている
     請求項10に記載の多波長光源モジュール。
    The multi-wavelength light source module according to claim 10, wherein the plurality of third sets are arranged in the second direction.
  12.  前記複数の第二セットの各々と、前記複数の第三セットの各々とは、前記第二方向に交互に配置されている
     請求項11に記載の多波長光源モジュール。
    The multi-wavelength light source module according to claim 11, wherein each of the plurality of second sets and each of the plurality of third sets are alternately arranged in the second direction.
  13.  複数の第一列と、複数の第二列とを備え、
     前記複数の第一列の各々は、前記複数の第一セットのうち一部の第一セットを含み、
     前記一部の第一セットは、一列に配列されており、
     前記複数の第二列の各々は、前記複数の第二セットのうち一部の第二セットと、前記複数の第三セットのうち一部の第三セットとを含み、
     前記一部の第二セットと、前記一部の第三セットとは、前記複数の第一列の各々の配列方向と平行に一列に配列されており、
     前記複数の第一列の各々と、前記複数の第二列の各々とは、前記複数の第一列の各々の配列方向と垂直な方向において交互に配置されている
     請求項12に記載の多波長光源モジュール。
    comprising a plurality of first rows and a plurality of second rows,
    each of the plurality of first columns includes a first set of a portion of the plurality of first sets;
    The first set of the portion is arranged in a row,
    each of the plurality of second columns includes a portion of the plurality of second sets and a portion of the plurality of third sets;
    The second set of the part and the third set of the part are arranged in a row parallel to the arrangement direction of each of the plurality of first rows,
    13. The multi-layer according to claim 12, wherein each of the plurality of first rows and each of the plurality of second rows are alternately arranged in a direction perpendicular to the arrangement direction of each of the plurality of first rows. Wavelength light source module.
  14.  前記主面上であって、前記複数の第二セットと前記第一方向において隣り合う位置に配置される第二セット用中継部材をさらに備え、
     前記複数の第二セットの各々は、前記第二半導体レーザチップに電力を供給するためのp側接続電極及びn側接続電極を有し、
     前記複数の第二セットは、前記第二方向において隣り合う2個の第二セットを含み、
     前記第二セット用中継部材は、前記2個の第二セットと前記第一方向において隣り合う位置に配置され、
     前記2個の第二セットのうち一方の第二セットが有する前記n側接続電極は、前記一方の第二セットが有する前記p側接続電極と前記第二セット用中継部材との間に配置され、かつ、前記第二セット用中継部材と電気的に接続され、
     前記2個の第二セットのうち他方の第二セットが有する前記p側接続電極は、前記他方の第二セットが有する前記n側接続電極と前記第二セット用中継部材との間に配置され、かつ、前記第二セット用中継部材と電気的に接続される
     請求項12に記載の多波長光源モジュール。
    further comprising a second set relay member arranged on the main surface at a position adjacent to the plurality of second sets in the first direction;
    each of the plurality of second sets has a p-side connection electrode and an n-side connection electrode for supplying power to the second semiconductor laser chip;
    The plurality of second sets includes two second sets adjacent in the second direction,
    The second set relay member is arranged at a position adjacent to the two second sets in the first direction,
    The n-side connection electrode included in one of the two second sets is arranged between the p-side connection electrode included in the one second set and the relay member for the second set. and electrically connected to the second set relay member,
    The p-side connection electrode included in the other second set of the two second sets is arranged between the n-side connection electrode included in the other second set and the relay member for the second set. and electrically connected to the second set relay member.
  15.  前記主面上であって、前記複数の第三セットと前記第一方向において隣り合う位置に配置される第三セット用中継部材をさらに備え、
     前記複数の第二セットは、複数の第二ワイヤ及び前記第二セット用中継部材を用いて電気的に直列接続されており、
     前記複数の第三セットは、複数の第三ワイヤ及び前記第三セット用中継部材を用いて電気的に直列接続されており、
     前記第二セット用中継部材は、前記複数の第三ワイヤのうち少なくとも1本の第三ワイヤと前記主面との間に配置され、前記第三セット用中継部材より前記主面からの高さが低い
     請求項14に記載の多波長光源モジュール。
    further comprising a third set relay member arranged on the main surface at a position adjacent to the plurality of third sets in the first direction;
    The plurality of second sets are electrically connected in series using a plurality of second wires and the second set relay member,
    The plurality of third sets are electrically connected in series using a plurality of third wires and the relay member for the third set,
    The second set relay member is disposed between at least one third wire of the plurality of third wires and the main surface, and is higher than the third set relay member from the main surface. 15. The multi-wavelength light source module of claim 14, wherein .
  16.  前記複数の第一セットは、前記複数の第一セットのうち1個以上の第一セットを含む第一グループと、前記第一グループに含まれる1以上の第一セットと異なる1個以上の第一セットを含む第二グループとを含み、
     前記複数の第二セット及び前記複数の第三セットは、前記第一グループと前記第二グループとの間に配置される
     請求項10に記載の多波長光源モジュール。
    The plurality of first sets includes a first group including one or more first sets among the plurality of first sets, and one or more first sets different from the one or more first sets included in the first group. a second group comprising a set;
    11. The multi-wavelength light source module of claim 10, wherein the second set of plurality and the third set of plurality are arranged between the first group and the second group.
  17.  前記第一方向において、前記複数の第一セットの各々の前記第一半導体レーザチップは、前記第一ミラーより、前記主面の端部に近い位置に配置されている
     請求項16に記載の多波長光源モジュール。
    17. The multiplexer according to claim 16, wherein in the first direction, the first semiconductor laser chips of each of the plurality of first sets are arranged closer to the end of the main surface than the first mirror. Wavelength light source module.
  18.  前記複数の第二セットの各々と、前記複数の第三セットの各々とは、前記第二方向に交互に配列されている
     請求項10、16、17のいずれか1項に記載の多波長光源モジュール。
    18. The multi-wavelength light source according to any one of claims 10, 16 and 17, wherein each of the plurality of second sets and each of the plurality of third sets are alternately arranged in the second direction. module.
  19.  前記複数の第二セットの少なくとも2個の第二セットは、前記第一方向に配列される
     請求項18に記載の多波長光源モジュール。
    19. The multi-wavelength light source module of claim 18, wherein at least two second sets of said plurality of second sets are arranged in said first direction.
  20.  前記多波長光源モジュールは、前記主面上に行列状に配置される複数のユニットを備え、
     前記複数のユニットの各々は、前記複数の第一セットのうち少なくとも1個の第一セットと、前記複数の第二セットのうち少なくとも1個の第二セットと、前記複数の第三セットのうち少なくとも1個の第三セットとを含む
     請求項10に記載の多波長光源モジュール。
    The multi-wavelength light source module comprises a plurality of units arranged in a matrix on the main surface,
    Each of the plurality of units includes at least one first set among the plurality of first sets, at least one second set among the plurality of second sets, and among the plurality of third sets 11. The multiple wavelength light source module of claim 10, comprising at least one third set.
  21.  前記複数のユニットの各々において、前記少なくとも1個の第一セットの各々から、前記少なくとも1個の第二セット及び前記少なくとも1個の第三セットが配置される領域へ向かう向きに前記第一光が出射される
     請求項20に記載の多波長光源モジュール。
    In each of the plurality of units, the first light beam is directed from each of the at least one first set toward an area where the at least one second set and the at least one third set are arranged. 21. The multi-wavelength light source module of claim 20, wherein is emitted.
  22.  複数の第一レンズと、複数の第二レンズとをさらに備え、
     前記複数の第一レンズの各々には、前記第一ミラーで反射された前記第一光が入射し、
     前記複数の第二レンズの各々には、前記第二ミラーで反射された前記第二光が入射し、
     前記複数の第一レンズの各々の、前記第二方向における幅は、前記第一方向における幅より小さく、
     前記複数の第二レンズの各々の、前記第一方向における幅は、前記第二方向における幅より小さい
     請求項1~9のいずれか1項に記載の多波長光源モジュール。
    further comprising a plurality of first lenses and a plurality of second lenses,
    The first light reflected by the first mirror enters each of the plurality of first lenses,
    The second light reflected by the second mirror enters each of the plurality of second lenses,
    each of the plurality of first lenses has a width in the second direction smaller than a width in the first direction;
    The multi-wavelength light source module according to any one of claims 1 to 9, wherein each of the plurality of second lenses has a width in the first direction smaller than a width in the second direction.
  23.  複数の第一レンズと、複数の第二レンズと、複数の第三レンズとをさらに備え、
     前記複数の第一レンズ、前記複数の第二レンズ、及び、前記複数の第三レンズは、基板の主面に平行な面上に配置され、
     前記複数の第一レンズの各々には、前記第一ミラーで反射された前記第一光が入射し、
     前記複数の第二レンズの各々には、前記第二ミラーで反射された前記第二光が入射し、
     前記複数の第三レンズの各々には、前記第三ミラーで反射された前記第三光が入射し、
     前記複数の第一レンズの各々の、前記第二方向における幅は、前記第一方向における幅より小さく、
     前記複数の第二レンズの各々の、前記第一方向における幅は、前記第二方向における幅より小さく、
     前記複数の第三レンズの各々の、前記第一方向における幅は、前記第二方向における幅より小さい
     請求項10~21のいずれか1項に記載の多波長光源モジュール。
    further comprising a plurality of first lenses, a plurality of second lenses, and a plurality of third lenses,
    The plurality of first lenses, the plurality of second lenses, and the plurality of third lenses are arranged on a plane parallel to the main surface of the substrate,
    The first light reflected by the first mirror enters each of the plurality of first lenses,
    The second light reflected by the second mirror enters each of the plurality of second lenses,
    The third light reflected by the third mirror enters each of the plurality of third lenses,
    each of the plurality of first lenses has a width in the second direction smaller than a width in the first direction;
    each of the plurality of second lenses has a width in the first direction smaller than a width in the second direction;
    The multi-wavelength light source module according to any one of claims 10 to 21, wherein each of the plurality of third lenses has a width in the first direction smaller than a width in the second direction.
  24.  前記複数の第一レンズと、前記複数の第二レンズと、前記複数の第三レンズとが配置される領域は、矩形状の形状を有する
     請求項23に記載の多波長光源モジュール。
    24. The multi-wavelength light source module according to claim 23, wherein a region in which the plurality of first lenses, the plurality of second lenses, and the plurality of third lenses are arranged has a rectangular shape.
  25.  前記複数の第一レンズのうち、前記第二方向に一列に配列される第一レンズの個数は、
     前記複数の第二レンズのうち、前記第二方向に一列に配列される第二レンズの個数と異なる
     請求項22~24のいずれか1項に記載の多波長光源モジュール。
    Among the plurality of first lenses, the number of first lenses arranged in a row in the second direction is
    25. The multi-wavelength light source module according to any one of claims 22 to 24, wherein the number of the second lenses arranged in a row in the second direction is different from the number of the second lenses among the plurality of second lenses.
  26.  前記複数の第一セットの各々は、前記主面に配置され、前記第一半導体レーザチップが配置される第一サブマウントを有し、
     前記複数の第二セットの各々は、前記主面に配置され、前記第二半導体レーザチップが配置される第二サブマウントを有し、
     前記複数の第二セットの配列方向は、前記第一方向及び前記第二方向に対して傾斜しており、
     前記複数の第二セットのうち、少なくとも1個の第二セットが有する前記第二ミラーは、隣り合う他の第二セットが有する前記第二サブマウントと前記第一方向において接している
     請求項1に記載の多波長光源モジュール。
    each of the plurality of first sets has a first submount disposed on the main surface and on which the first semiconductor laser chip is disposed;
    each of the plurality of second sets has a second submount disposed on the main surface and on which the second semiconductor laser chip is disposed;
    The arrangement direction of the plurality of second sets is inclined with respect to the first direction and the second direction,
    2. The second mirror of at least one second set among the plurality of second sets is in contact with the second submount of another adjacent second set in the first direction. The multi-wavelength light source module according to .
  27.  前記複数の第二セットのうち少なくとも1個の第二セットは、前記複数の第一セットのうち少なくとも1個の第一セットと前記第一方向において接している
     請求項26に記載の多波長光源モジュール。
    27. The multi-wavelength light source according to claim 26, wherein at least one second set of said plurality of second sets is in contact with at least one first set of said plurality of first sets in said first direction. module.
  28.  前記複数の第一セットの配列方向は、前記第一方向及び前記第二方向に対して傾斜している
     請求項26又は27に記載の多波長光源モジュール。
    The multi-wavelength light source module according to claim 26 or 27, wherein the arrangement directions of the plurality of first sets are inclined with respect to the first direction and the second direction.
  29.  複数の第一レンズと、複数の第二レンズとをさらに備え、
     前記複数の第一レンズ、及び前記複数の第二レンズは、前記主面に平行な面上に配置され、
     前記複数の第一レンズの各々には、前記第一ミラーで反射された前記第一光が入射し、
     前記複数の第二レンズの各々には、前記第二ミラーで反射された前記第二光が入射し、
     前記複数の第一レンズの各々の形状と、前記複数の第二レンズの各々の形状とは異なる
     請求項26~28のいずれか1項に記載の多波長光源モジュール。
    further comprising a plurality of first lenses and a plurality of second lenses,
    The plurality of first lenses and the plurality of second lenses are arranged on a plane parallel to the principal plane,
    The first light reflected by the first mirror enters each of the plurality of first lenses,
    The second light reflected by the second mirror enters each of the plurality of second lenses,
    The multi-wavelength light source module according to any one of claims 26 to 28, wherein the shape of each of the plurality of first lenses is different from the shape of each of the plurality of second lenses.
  30.  複数の第一レンズと、複数の第二レンズとをさらに備え、
     前記複数の第一レンズの各々には、前記第一ミラーで反射された前記第一光が入射し、
     前記複数の第二レンズの各々には、前記第二ミラーで反射された前記第二光が入射し、
     前記複数の第一レンズの各々の、前記第二方向における幅は、前記第一方向における幅より小さく、
     前記複数の第二レンズの各々の、前記第一方向における幅は、前記第二方向における幅より小さい
     請求項26又は27に記載の多波長光源モジュール。
    further comprising a plurality of first lenses and a plurality of second lenses,
    The first light reflected by the first mirror enters each of the plurality of first lenses,
    The second light reflected by the second mirror enters each of the plurality of second lenses,
    each of the plurality of first lenses has a width in the second direction smaller than a width in the first direction;
    The multi-wavelength light source module according to claim 26 or 27, wherein each of the plurality of second lenses has a width in the first direction smaller than a width in the second direction.
  31.  前記主面に配置される枠部材と、
     前記枠部材に配置される蓋体とをさらに備え、
     前記基台と前記枠部材と前記蓋体とで囲まれた空間内に、前記複数の第一セット及び前記複数の第二セットが配置される
     請求項10~21のいずれか1項に記載の多波長光源モジュール。
    a frame member arranged on the main surface;
    and a lid disposed on the frame member,
    The plurality of first sets and the plurality of second sets are arranged in a space surrounded by the base, the frame member, and the lid according to any one of claims 10 to 21. Multi-wavelength light source module.
  32.  前記蓋体は、複数の第一レンズと複数の第二レンズとを有する
     請求項31に記載の多波長光源モジュール。
    32. The multi-wavelength light source module according to claim 31, wherein said lid has a plurality of first lenses and a plurality of second lenses.
PCT/JP2022/028206 2021-08-06 2022-07-20 Multi-wavelength light source module WO2023013418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021129637A JP2023023799A (en) 2021-08-06 2021-08-06 Multi-wavelength light source module
JP2021-129637 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023013418A1 true WO2023013418A1 (en) 2023-02-09

Family

ID=85155557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028206 WO2023013418A1 (en) 2021-08-06 2022-07-20 Multi-wavelength light source module

Country Status (2)

Country Link
JP (1) JP2023023799A (en)
WO (1) WO2023013418A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083460A (en) * 1999-09-14 2001-03-30 Hamamatsu Photonics Kk Laser device
JP2002156594A (en) * 2000-11-21 2002-05-31 Ricoh Co Ltd Multibeam light source device, multibeam scanner and image forming device
JP2011049338A (en) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd Light emitting device, and optical device
WO2013113547A1 (en) * 2012-01-31 2013-08-08 Osram Gmbh Conversion unit, laser assembly, lighting assembly, method for producing a conversion unit, and method for operating a laser assembly
JP2016219779A (en) * 2015-05-20 2016-12-22 日亜化学工業株式会社 Light emitting device
US20190094673A1 (en) * 2017-09-26 2019-03-28 Qingdao Hisense Laser Display Co., Ltd. Laser array, laser light soure and laser projection device
US20200083664A1 (en) * 2018-09-06 2020-03-12 Nichia Corporation Light emitting device
JP2020072116A (en) * 2018-10-29 2020-05-07 日亜化学工業株式会社 Light source device
JP2020154209A (en) * 2019-03-22 2020-09-24 日亜化学工業株式会社 Light source device and optical engine
JP2020194916A (en) * 2019-05-29 2020-12-03 日亜化学工業株式会社 Light-emitting device
WO2021213106A1 (en) * 2020-04-21 2021-10-28 青岛海信激光显示股份有限公司 Laser and projection device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083460A (en) * 1999-09-14 2001-03-30 Hamamatsu Photonics Kk Laser device
JP2002156594A (en) * 2000-11-21 2002-05-31 Ricoh Co Ltd Multibeam light source device, multibeam scanner and image forming device
JP2011049338A (en) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd Light emitting device, and optical device
WO2013113547A1 (en) * 2012-01-31 2013-08-08 Osram Gmbh Conversion unit, laser assembly, lighting assembly, method for producing a conversion unit, and method for operating a laser assembly
JP2016219779A (en) * 2015-05-20 2016-12-22 日亜化学工業株式会社 Light emitting device
US20190094673A1 (en) * 2017-09-26 2019-03-28 Qingdao Hisense Laser Display Co., Ltd. Laser array, laser light soure and laser projection device
US20200083664A1 (en) * 2018-09-06 2020-03-12 Nichia Corporation Light emitting device
JP2020072116A (en) * 2018-10-29 2020-05-07 日亜化学工業株式会社 Light source device
JP2020154209A (en) * 2019-03-22 2020-09-24 日亜化学工業株式会社 Light source device and optical engine
JP2020194916A (en) * 2019-05-29 2020-12-03 日亜化学工業株式会社 Light-emitting device
WO2021213106A1 (en) * 2020-04-21 2021-10-28 青岛海信激光显示股份有限公司 Laser and projection device

Also Published As

Publication number Publication date
JP2023023799A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US20220360039A1 (en) Laser package and system with laser packages
JP7332860B2 (en) light emitting device
WO2023013418A1 (en) Multi-wavelength light source module
CN217087134U (en) Multi-wavelength semiconductor laser light source module
WO2021210348A1 (en) Light source device
US20220302672A1 (en) Base member or light-emitting device
JP7428129B2 (en) Light emitting device and projection display device
JP2019046830A (en) Optical module
JP2022101471A (en) Light-emitting device
JP4128037B2 (en) Semiconductor laser device
JP2021190463A (en) Light-emitting device
JP2023043376A (en) Light-emitting device and backlight
US12000567B2 (en) Light source device including first substrate supporting first and second laser diodes and second substrate supporting third laser diode
US20240039249A1 (en) Light-emitting module
US11984437B2 (en) Light-emitting device
WO2024024734A1 (en) Light-emitting module
JP7371642B2 (en) semiconductor light emitting device
US20240047946A1 (en) Light-emitting device
US20220416502A1 (en) Semiconductor laser device
WO2021199532A1 (en) Sub-mount, light-emitting device, and optical module
WO2021256421A1 (en) Semiconductor light-emitting device and light-emitting apparatus provided with same
US20220149596A1 (en) Semiconductor laser device
WO2023176205A1 (en) Light-emitting device
JP2017212157A (en) Light source device and projector
JP2023135633A (en) light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE