WO2023013136A1 - Measurement system, measuring instrument, and cable - Google Patents

Measurement system, measuring instrument, and cable Download PDF

Info

Publication number
WO2023013136A1
WO2023013136A1 PCT/JP2022/011729 JP2022011729W WO2023013136A1 WO 2023013136 A1 WO2023013136 A1 WO 2023013136A1 JP 2022011729 W JP2022011729 W JP 2022011729W WO 2023013136 A1 WO2023013136 A1 WO 2023013136A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptacle
optical
optical fiber
cable
positions
Prior art date
Application number
PCT/JP2022/011729
Other languages
French (fr)
Japanese (ja)
Inventor
寛 森田
一彰 鳥羽
真也 山本
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023013136A1 publication Critical patent/WO2023013136A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • This technology relates to a measurement system, a measuring instrument, and a cable, and more particularly to a measurement system and the like for determining whether the amount of axis deviation of an optical communication device is within a specified range.
  • optical communication based on spatial coupling is known.
  • this optical communication especially in a single-mode fiber, a large loss of optical power occurs due to misalignment. For this reason, conventionally, high precision is required for parts in order to suppress misalignment, leading to an increase in cost.
  • This optical communication device has an optical waveguide for propagating only a fundamental mode at a first wavelength, and communicates using light having a second wavelength and having at least a primary mode component together with the fundamental mode. and the second wavelength is a wavelength at which the optical waveguide can propagate at least the first order mode along with the fundamental mode.
  • Double-mode optical communication equipment is characterized by the ability to use low-precision, low-cost parts, as it aims to reduce costs by reducing accuracy.
  • the purpose of this technology is to make it possible to determine whether the amount of axis misalignment of an optical communication device is within a specified range.
  • the concept of this technology is a cable; equipped with a measuring instrument,
  • the cable is having a plug for connection to a receptacle of a transmitter to be tested;
  • the plug is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
  • the measuring instrument an optical receiver that receives an optical signal sent from the transmitter through the cable; a process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis;
  • the measurement system has a processing unit that determines whether the measurement is within the specified range.
  • This technology is equipped with a cable and a measuring instrument.
  • the cable may be integral with the meter.
  • a pigtail type measuring instrument is configured as a whole.
  • the cable has a plug for connecting to the receptacle of the transmitter to be inspected, and this plug is configured so that the core position of the optical fiber can be shifted to multiple positions with respect to the optical axis.
  • the measuring instrument has an optical receiver and a processor.
  • the optical receiver receives an optical signal sent from the transmitter through the cable.
  • the core position of the optical fiber of the plug is shifted to a plurality of positions with respect to the optical axis, and based on the values measured by the optical receiver at the plurality of positions, the amount of misalignment of the transmitter axis is set within a specified range. It is determined whether it is contained within.
  • the processor shifts the core position of the optical fiber to a plurality of positions on the circumference of a circle centered on the optical axis. good.
  • the processing unit may send a control signal to the plug via a signal line included in the cable. good. This makes it possible to appropriately perform the process of shifting the core position of the optical fiber of the plug to a plurality of positions.
  • the processing unit compares the power value or bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axis deviation of the transmitter is within a specified range. judge, may be so. This makes it possible to effectively determine whether the amount of axial deviation of the transmitter is within the specified range.
  • the processing unit may further perform a process of presenting the determination result to the user.
  • the information is presented to the user through display, sound output, or the like. This allows the user to recognize whether or not the amount of axial misalignment of the transmitter is within the prescribed range.
  • the transmitter has an optical fiber that propagates only a fundamental mode at a first wavelength, and communicates using light having a second wavelength and having at least a first-order mode component along with the fundamental mode.
  • the second wavelength may be a wavelength at which the optical fiber can propagate at least the first order mode together with said fundamental mode.
  • the core position of the optical fiber of the plug of the cable connected to the receptacle of the transmitter to be inspected is shifted to a plurality of positions with respect to the optical axis in order to evaluate the worst condition
  • the measuring device determines whether the amount of misalignment of the transmitter is within a specified range based on the values measured from the received optical signals sent from the transmitter through the cable at a plurality of positions. Therefore, it is possible to determine whether the amount of misalignment of the transmitter is within the specified range.
  • the transmitting measuring instrument a first receptacle for connecting to a plug on one end of a cable to be tested; an optical transmitter that outputs an optical signal to the first receptacle via an optical fiber; the first receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
  • the receiving side measuring instrument a second receptacle for connecting to a plug on the other end side of the optical gable to be inspected; an optical receiver that receives an optical signal input from the cable through the second receptacle; the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
  • the transmitter measuring instrument has a first receptacle for connecting to a plug on one end of a cable to be inspected, and an optical transmitter for outputting an optical signal to the first receptacle via an optical fiber.
  • the first receptacle is configured such that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
  • the receiver-side measuring instrument has a second receptacle for connecting to the plug on the other end side of the optical cable to be inspected, and an optical receiver for receiving an optical signal input from the cable through the second receptacle.
  • the second receptacle is configured such that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
  • the receiving side measuring instrument further has a processing unit.
  • processing is performed to shift the core position of the optical fiber of the first receptacle and the core position of the optical fiber of the second receptacle to a plurality of positions with respect to the optical axis. Further, in the processing unit, processing is performed to determine whether the amount of axial deviation of the cable is within a specified range based on the values measured from the output signals of the optical receiving unit at a plurality of positions.
  • the processing unit shifts the core position of the optical fiber of the first receptacle and the core position of the optical fiber of the second receptacle to a plurality of positions with respect to the optical axis. It may be shifted to a plurality of positions on the circumference. By shifting to multiple positions on the circumference in this way, it is possible to shift the same distance from the center of the optical axis regardless of the direction of shifting, and the amount of axial deviation of the cable is within the specified range under the same conditions regardless of the direction of shifting. It is possible to judge whether it is within
  • the processing unit shifts the signal line included in the cable to the first receptacle or the signal line not included in the cable to the first receptacle.
  • a control signal may be sent over the line. This makes it possible to appropriately perform the process of shifting the core position of the optical fiber of the first receptacle to a plurality of positions.
  • the processing unit compares the power value or bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axial deviation of the cable is within a specified range. do, may be done. This makes it possible to effectively determine whether the amount of axial deviation of the transmitter is within the specified range.
  • the processing unit may further perform a process of presenting the determination result to the user.
  • the information is presented to the user through display, sound output, or the like. This allows the user to recognize whether or not the amount of axial misalignment of the cable is within the specified range.
  • the cable comprises an optical fiber that propagates only a fundamental mode at a first wavelength, and communicates using light having a second wavelength and having at least a first-order mode component along with said fundamental mode.
  • the second wavelength may be a wavelength at which the optical fiber can propagate at least the first order mode together with said fundamental mode.
  • the core position of the optical fiber of the receptacle of the transmitting side measuring device connected to one end of the cable to be inspected and the receptacle of the receiving side measuring device connected to the other end of the cable are In order to evaluate the worst conditions, the core position of the optical fiber is shifted to multiple positions with respect to the optical axis, and the receiving side measuring device receives the optical signal sent through the cable from the transmitting side measuring device at multiple positions. Based on the value measured from the received signal, it is determined whether the amount of axial deviation of the cable is within a specified range. Therefore, it is possible to determine whether the amount of axial misalignment of the cable is within the specified range.
  • Another concept of this technology is a cable; equipped with a measuring instrument,
  • the cable is having a plug on one end for connecting to a first receptacle of a receiver to be tested and a plug on the other end for connecting to a second receptacle of the measuring instrument;
  • the plug on the one end side is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
  • the measuring instrument the second receptacle; an optical transmitter that outputs an optical signal to the second receptacle via an optical fiber;
  • the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
  • the measurement system further includes a processing unit that shifts the core position of the optical fiber of the second receptacle and the core position of the plug on one end of the cable to a plurality of positions with respect to the optical axis.
  • This technology is equipped with a cable and a measuring instrument.
  • the cable has a plug on one end for connection to a first receptacle of the receiver under test and a plug on the other end for connection to a second receptacle of the meter.
  • the plug on the one end side is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
  • the measuring instrument has a second receptacle and an optical transmitter that outputs an optical signal to the second receptacle via an optical fiber.
  • the second receptacle is configured such that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
  • the measuring device further has a processing unit. In this processing unit, processing is performed to shift the core position of the optical fiber of the second receptacle and the core position of the plug on the one end side of the cable to a plurality of positions with respect to the optical axis.
  • the processing unit shifts the core position of the optical fiber of the second receptacle and the core position of the optical fiber of the plug on the one end side of the cable to a plurality of positions with respect to the optical axis. It may be shifted to multiple positions on the circumference of the circle. By shifting to a plurality of positions on the circumference in this way, it is possible to shift the same distance from the center of the optical axis regardless of the direction of shift, and the amount of misalignment of the receiver can be within the specified range under the same conditions regardless of the direction of shift. It becomes possible to determine whether it is contained within.
  • the processing unit sends a control signal to the plug on the one end side via a signal line included in the cable. , may be so. As a result, it is possible to appropriately perform processing for shifting the core position of the optical fiber of the plug on the one end side to a plurality of positions.
  • the processing unit further includes a processing unit that performs processing for determining whether the amount of axis deviation of the receiver is within a specified range based on values corresponding to optical signals received by the receiver at a plurality of positions. have or be made to have. As a result, it is possible to determine whether the amount of axial deviation of the receiver is within the specified range.
  • the value corresponding to the optical signal received by the receiver may be a power value or bit error rate value measured based on the output signal of the optical receiver. This makes it possible to effectively determine whether the amount of axial deviation of the receiver is within the specified range.
  • the processing unit may further perform a process of presenting the determination result to the user.
  • the information is presented to the user through display, sound output, or the like. This allows the user to recognize whether or not the amount of axial deviation of the receiver is within the specified range.
  • the receiver has an optical fiber that propagates only the fundamental mode at a first wavelength and communicates using light having a second wavelength and having at least a first-order mode component along with the fundamental mode.
  • the second wavelength may be a wavelength at which the optical fiber can propagate at least the first order mode together with said fundamental mode.
  • the core position of the optical fiber of the plug on one end of the cable connected to the first receptacle of the receiver to be inspected and the measuring instrument to which the plug on the other end of the cable is connected In order to evaluate the worst condition, the core position of the optical fiber of the second receptacle of is shifted to a plurality of positions with respect to the optical axis. Therefore, it is possible to determine whether the amount of axial misalignment of the receiver is within the specified range.
  • Another concept of this technology is a receptacle; an optical receiver that receives an optical signal input through the receptacle; A process of shifting the core position of the plug on the other end side of the cable connected to the receptacle on the other end side to a plurality of positions with respect to the optical axis, and measuring from the output signal of the optical receiver at the plurality of positions a measuring instrument comprising a processing unit that determines whether or not the amount of axial deviation of a transmitter connected to the other end of the cable is within a specified range based on the obtained value.
  • Another concept of this technology is a receptacle;
  • An optical receiver that receives an optical signal input through the receptacle,
  • the receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis, a process of shifting a core position of the receptacle and a receptacle of a transmitting device connected to a plug on the other end of a cable having a plug on one end connected to the receptacle to a plurality of positions with respect to an optical axis;
  • the measuring instrument further comprises a processing unit that determines whether the amount of axial deviation of the cable is within a specified range based on the value measured from the output signal of the optical receiving unit at the position.
  • Another concept of this technology is a receptacle; An optical transmitter that outputs an optical signal to the receptacle via an optical fiber,
  • the receptacle is in the measuring instrument configured to allow the core position of the optical fiber to be shifted to a plurality of positions with respect to the optical axis.
  • the receptacle may be supplied with control signals for shifting to a plurality of positions via signal lines included in or not included in the cable connected to the receptacle.
  • Another concept of this technology is a receptacle; An optical transmitter that outputs an optical signal to the receptacle via an optical fiber, The receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis, The measuring instrument further comprises a processor that shifts the core position of the receptacle and the plug on the other end of the cable connected to the receptacle with the plug on the one end to a plurality of positions with respect to the optical axis.
  • the processing unit determines whether the amount of misalignment of the receiver is within a specified range based on values corresponding to the optical signals received by the receiver connected to the other end of the cable at a plurality of positions. Further processing may be performed.
  • a cable provided with a plug configured to allow the core position of an optical fiber to be shifted to a plurality of positions with respect to an optical axis.
  • a signal line for transmitting a control signal to the plug may be further provided.
  • FIG. 1 is a diagram showing an outline of optical communication by spatial coupling
  • FIG. FIG. 2 is a diagram showing the basic structure of an optical fiber and the LPml mode of a stepped optical fiber
  • FIG. 10 is a diagram when the normalized frequency V is considered in the case of 1310 nm, which is common in single mode. It is a figure which shows an example of the precision deterioration factor of optical axis alignment. It is a figure which shows an example of the precision deterioration factor of optical axis alignment.
  • FIG. 4 is a diagram for explaining that when light with a wavelength of 850 nm is input to a single-mode fiber with a wavelength of 1310 nm, a fundamental mode of LP01 and a first-order mode of LP11 can exist.
  • FIG. 10 is a graph showing simulation results of loss amount when the wavelength of input light is 1310 nm and 850 nm
  • FIG. 4 is a diagram showing that only the fundamental mode exists in input light when there is no optical axis misalignment, but part of the fundamental mode is converted to the primary mode when there is optical axis misalignment. 4 is a graph for explaining how the fundamental mode is converted to the primary mode according to the deviation
  • 1 is a block diagram showing a configuration example of a transmission/reception system using double-mode optical communication devices (transmitter, cable, receiver);
  • FIG. 10 is a graph showing simulation results of loss amount when the wavelength of input light is 1310 nm and 850 nm
  • FIG. 4 is a diagram showing that only the fundamental mode exists in input light when there is no optical axis misalignment, but part of the fundamental mode is converted to the primary mode when there is optical axis misalignment. 4 is a graph for explaining how the fundamental mode is converted to the primary mode according to the
  • FIG. 1 is a diagram showing an outline of optical communication by spatial coupling between a measurement object and a measurement jig;
  • FIG. 4 is a diagram simulating the intensity distribution of light transmitted through an optical fiber in the case of single mode and double mode;
  • FIG. 4 is a diagram simulating the power intensity distribution of light when light having fundamental mode and first-order mode components is transmitted through an optical fiber;
  • FIG. 3 is a diagram for explaining optical communication (single mode and double mode) by spatial coupling between a measurement object and a measurement jig;
  • FIG. 10 is a diagram showing that the amount of light that can be coupled to the optical fiber greatly changes depending on whether the position of the optical fiber on the side of the measuring jig is shifted upward or downward.
  • FIG. 1 is a block diagram showing a configuration example of a measurement system that inspects a transmitter;
  • FIG. 4 is a diagram showing a state in which the receptacle of the transmitter and the plug of the cable are connected;
  • FIG. 4 is a diagram for explaining structures of a receptacle and a plug;
  • FIG. 4 illustrates how control signals are supplied from the measuring instrument to the plug of the cable via signal lines included in the cable.
  • FIG. 4 is a diagram showing a state in which the plug of the cable and the receptacle of the measuring device are connected; 4 is a flow chart showing an example of a procedure of control processing at the time of measurement in the control unit of the measuring device;
  • FIG. 4 is a diagram showing an example of integrally configuring the cable and measuring instrument portions in the measurement system; 1 is a block diagram showing a configuration example of a measurement system for inspecting a cable;
  • FIG. 4 is a flow chart showing an example of a procedure of control processing at the time of measurement in the control section of the measuring device on the receiving side;
  • FIG. 11 is a block diagram showing another configuration example of a measurement system for inspecting a cable; It is a figure which shows the structural example of the measurement system which makes a receiver the test object.
  • 4 is a flow chart showing an example of a procedure of control processing at the time of measurement in the control unit of the measuring device;
  • FIG. 11 is a diagram showing a configuration example of another measurement system whose inspection target
  • FIG. 1 shows an outline of optical communication by spatial coupling.
  • the light emitted from the optical fiber 10T on the transmission side is collimated by the lens 11T and emitted.
  • this collimated light is condensed by the lens 11R on the receiving side and is incident on the optical fiber 10R.
  • the optical fibers 10T and 10R have a double structure of a central core 10a serving as an optical path and a clad 10b surrounding the core 10a.
  • FIG. 2(a) shows the basic structure of an optical fiber.
  • An optical fiber has a structure in which a central portion called a core is covered with a layer called a clad.
  • the core has a high refractive index n1 and the clad has a low refractive index n2, so that light is confined in the core and propagates.
  • FIG. 2(b) shows the LPml (Linearly Polarized) mode of the stepped optical fiber and the normalized propagation constant b as a function of the normalized frequency V.
  • the horizontal axis is the normalized frequency V, which can be expressed by the following formula (1).
  • d is the core diameter
  • NA is the numerical aperture
  • is the wavelength of light.
  • V ⁇ dNA/ ⁇ (1)
  • LP01 is the fundamental mode (zeroth-order mode), and LP11, LP21, .
  • the normalized frequency V is 2.405 or less, so that only the fundamental mode of LP01 is propagated, resulting in a single mode.
  • increasing the core diameter increases the number of modes that can be propagated.
  • a general multimode fiber propagates several hundred modes by setting the core diameter to a value such as 50 ⁇ m.
  • FIGS. 4 and 5 show an example of factors that degrade the precision of optical axis alignment.
  • optical axis misalignment occurs due to uneven amounts of fixing materials 16T and 16R for fixing ferrules 15T and 15R and optical fibers 10T and 10R.
  • optical axis deviation occurs due to insufficient shaping accuracy of the lenses 11T and 11R.
  • optical axis misalignment occurs due to insufficient accuracy of the alignment mechanisms (recessed portion 17T and protruded portion 17R) provided in the ferrules 15T and 15R.
  • the convex portion 17R shown in FIGS. 5(a) and 5(b) may be a pin.
  • the amount of misalignment of the transmitter is within a specified range. This is a technique for making it possible to make a good judgment as to whether the
  • the double-mode optical communication device has an optical waveguide that propagates only the fundamental mode at a first wavelength, and uses light having a second wavelength and having at least a first-order mode component together with the fundamental mode.
  • the second wavelength is the wavelength at which the optical waveguide can propagate at least the first order mode along with the fundamental mode.
  • FIG. 8 is a graph showing simulation results of optical power coupling efficiency in that case.
  • the horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency. With no misalignment, 100% of the power propagates into the optical fiber and the coupling efficiency is unity. Then, for example, if only 50% of the power of the input light is propagated into the optical fiber, the coupling efficiency is 0.5.
  • the fundamental mode (0th mode) component and the 1st mode component are separately described, and the sum is the total curve. Since the input light exists only in the fundamental mode, it can be seen that the fundamental mode is converted to the first-order mode according to the deviation. On the other hand, in the case of 1310 nm, only the fundamental mode can propagate as shown in FIG. 3(a), so the fundamental mode is purely reduced as shown in FIG.
  • the optical fiber is capable of propagating only the fundamental mode at a first wavelength (e.g. 1310 nm)
  • the optical fiber transmits light of a second wavelength (e.g. 850 nm) capable of propagating the first mode along with the fundamental mode. It is possible to improve the coupling efficiency of the optical power by configuring to perform communication using it.
  • FIG. 11 shows a configuration example of a transmission/reception system 100 using double-mode optical communication devices (transmitter, cable, receiver).
  • This transmission/reception system 100 has a transmitter 200 , a receiver 300 and a cable 400 .
  • Transmitter 200 and receiver 300 are connected via cable 400 .
  • the transmitter 200 is, for example, an AV source such as a personal computer, game machine, disc player, set-top box, digital camera, mobile phone.
  • Receiver 300 is, for example, a television receiver, a projector, a head-mounted display, or the like.
  • the transmitter 200 has a transmission processing section 204 , a driver IC 205 , a light emitting section 201 , an optical fiber 203 and a receptacle 202 .
  • the light emitting unit 201 includes a laser element such as a VCSEL (Vertical Cavity Surface Emitting LASER) or a light emitting element such as an LED (light emitting diode).
  • the light emitting unit 201 constitutes an optical transmission unit, is driven by the driver IC 205 based on transmission data supplied from the transmission processing unit 204, and outputs an optical signal corresponding to the transmission data.
  • the optical fiber 203 propagates the optical signal output from the light emitting section 201 to the receptacle 202 .
  • the receiver 300 has a receptacle 301 , a light receiving section 302 , an optical fiber 303 , an amplifier section 304 and a reception processing section 305 .
  • the light receiving section 302 includes a light receiving element such as a photodiode.
  • the light receiving section 302 converts an optical signal sent from the receptacle 301 through the optical fiber 303 into an electrical signal.
  • the electric signal output from the light receiving unit 302 is amplified by the amplifying unit 304 and supplied to the reception processing unit 305 as a received signal.
  • Reception processing section 305 obtains reception data by performing processing such as demodulation on the reception signal. to 305
  • the cable 400 is configured to have plugs 402 and 403 at one end and the other end of the optical fiber 401 .
  • a plug 402 at one end of the optical fiber 401 is connected to the receptacle 202 of the transmitter 200
  • a plug 403 at the other end of the optical fiber 401 is connected to the receptacle 301 of the receiver 300 .
  • the optical fiber 203 of the transmitter 200, the optical fiber 303 of the receiver 300 and the optical fiber 401 of the cable 400 are assumed to propagate only the fundamental mode component at the first wavelength.
  • These optical fibers are also configured to have zero chromatic dispersion at the first wavelength.
  • the first wavelength is 1310 nm
  • These optical fibers thus act as single-mode fibers at a wavelength of 1310 nm (see FIG. 3).
  • the second wavelength is the wavelength at which each optical fiber described above can propagate the primary mode as well as the fundamental mode.
  • the second wavelength is 850 nm.
  • these optical fibers have a normalized frequency V of 2.96, so that the first-order mode can propagate in addition to the fundamental mode, and they function as double-mode fibers (Fig. 6).
  • the double-mode optical communication device transmitter, cable, receiver
  • the purpose is to reduce the accuracy of misalignment and reduce costs
  • low-precision and inexpensive parts can be used. It is characterized by However, as a result, it is assumed that some degree of axial misalignment occurs in the product. Therefore, when transmitting and receiving light when the connector is mated, the amount of axis misalignment on both the transmitting side and the receiving side must be within the specified range.
  • FIG. 12 shows an outline of optical communication by spatial coupling between the object to be measured and the measurement jig.
  • the light emitted from the optical fiber 20T on the measurement target side is collimated by the lens 21T and emitted. Then, this collimated light is condensed by the lens 21R on the measurement jig side and is incident on the optical fiber 20R.
  • the optical fibers 20T and 20R have a double structure of a central core 20a serving as an optical path and a clad 20b surrounding the core 20a.
  • the measurement jig when the measurement jig is positioned at the center of the optical axis with respect to the measurement object, there is a possibility that the measurement jig receives power within the specified range even if the measurement object has an axis deviation. There is however, this does not consider variations on the measuring jig side, that is, on the receiving side, and there is a possibility that it will be NG (Not Good) in an actual system.
  • FIG. 13(a) shows the power intensity distribution of light propagating through the optical fiber in the case of single mode.
  • the intensity is the highest at the center of the core of the optical fiber, and becomes lower toward the clad, resulting in a normal distribution.
  • the power intensity distribution of the light transmitted through the optical fiber ceases to be a normal distribution, as shown in FIG. 13(b).
  • the points of high strength alternate with respect to the center of the core in one direction and in another direction opposite to this one direction, upward and downward in the example shown.
  • FIG. 14(a) is a diagram simulating the power intensity distribution of light when light having fundamental mode and first-order mode components is transmitted through an optical fiber, similar to FIG. 13(b) described above.
  • FIGS. 14(b), (c), and (d) respectively show the power intensity distribution of light at the output end face of the optical fiber cut at positions P1, P2, and P3.
  • 14(b), (c), and (d) indicate the outer periphery of the core.
  • FIG. 16(b) shows the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the measurement jig and the core when the position of the optical fiber on the measurement jig side is shifted upward.
  • FIG. 16(c) shows the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the measuring jig and the core when the optical fiber on the measuring jig side is positioned at the center.
  • FIG. 16(d) shows the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the measuring jig and the core when the position of the optical fiber on the measuring jig side is shifted downward. .
  • the worst condition is when the position of the optical fiber deviates in a direction that is bad for both, and it is necessary to secure the amount of power within the specified amount even under this condition. In other words, it is necessary to deliberately shift the position of the optical fiber for evaluation on the measuring jig side as well.
  • FIG. 17 shows an example of an evaluation method performed by shifting the optical fiber position (core position) on the measurement jig side.
  • the measuring jig In order to evaluate the worst conditions for the light emitted from the object to be measured, the measuring jig deliberately shifts the position of the optical fiber and judges whether the power is within a specified amount.
  • shifting the position of the optical fiber if the power intensity distribution of the light emitted from the measurement object side is in the state shown in FIG. The worst condition is when it is shifted.
  • the direction of deviation of the position (core position) of the optical fiber on the side of the measurement jig which is the worst condition, changes depending on the power intensity distribution shape of the light emitted from the measurement target side. It is necessary to evaluate by shifting to multiple positions with respect to
  • FIG. 18(a) shows an example of shifting the position of the optical fiber to a plurality of positions.
  • This example shows an example in which the position of the optical fiber (core position) is shifted to a plurality of positions on the circumference of a circle centered on the optical axis, here eight positions from “1" to "8".
  • the number of locations is not limited to 8, and may be, for example, 4, 16, or the like.
  • 17(b-1) to (b-8) show the optical fiber end of the light incident on the measuring jig when the position of the optical fiber on the measuring jig side is shifted from "1" to "8", respectively.
  • 1 shows an example of the positional relationship between the power intensity distribution and the core in .
  • FIG. 18B shows an example in which a square is divided into 9 equal parts and the optical fiber positions (core positions) are shifted to eight outer positions. At positions "4", "6", and "8", the distance from the center of the optical axis is greater than at other positions, so the conditions are severe and there is a possibility that correct evaluation cannot be performed.
  • FIG. 19(a) shows a configuration example of a measurement system 50A whose inspection target is a transmitter.
  • This measuring system 50A has a transmitter 200 to be inspected, a cable 510 as a measuring jig, and a measuring device 520. As shown in FIG. Transmitter 200 and measuring device 520 are connected via cable 510 .
  • the transmitter 200 has a transmission processing unit 204, a driver IC 205, a light emitting unit 201, an optical fiber 203, and a connector 202 as a receptacle.
  • This transmitter 200 is similar to the transmitter 200 in the transmission/reception system 100 shown in FIG. 11, and detailed description thereof will be omitted here.
  • the cable 510 is configured to have plugs 502 and 503 at one end and the other end of the optical fiber 501 .
  • a plug 502 at one end of the optical fiber 501 is connected to the receptacle 202 of the transmitter 200
  • a plug 503 at the other end of the optical fiber 501 is connected to a receptacle 521 of the measuring device 520 .
  • the optical fiber 501 has the same configuration as the optical fiber 203 of the transmitter 200, and propagates the fundamental mode and the first mode at the second wavelength (850 nm, for example).
  • Light (optical signal) having the second wavelength is output from the light emitting unit 201 of the transmitter 200 .
  • the plug 502 is configured so that the core position of the optical fiber 501 can be shifted to a plurality of positions with respect to the optical axis in order to evaluate the worst conditions.
  • the core positions of the optical fiber 501 are located at a plurality of positions on the circumference of a circle centered on the optical axis, for example, "1" to "8" as shown in FIG. ” is shifted to 8 positions.
  • FIG. 20 shows a state in which the receptacle 202 of the transmitter 200 and the plug 502 of the cable 510 are connected.
  • the receptacle 202 has a receptacle body 211 .
  • the receptacle main body 211 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a structure of a ferrule with a lens.
  • the receptacle body 211 By configuring the receptacle body 211 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. In addition, since the receptacle main body 211 is configured as a ferrule with a lens in this way, even in the case of multi-channel communication, multi-channel communication can be easily realized simply by inserting an optical fiber into the ferrule.
  • the receptacle main body 211 has a concave light emitting portion (light transmission space) 213 formed on its front side.
  • a plurality of lenses (convex lenses) 214 corresponding to each channel are integrally formed in the receptacle main body 211 so as to be positioned at the bottom portion of the light emitting portion 213 in a horizontal direction. .
  • the receptacle body 211 is provided with a plurality of optical fiber insertion holes 216 extending forward from the rear surface side and aligned horizontally in alignment with the lens 214 of each channel.
  • the optical fiber 203 has a double structure of a central core 203a serving as an optical path and a clad 203b surrounding the core.
  • the optical fiber insertion hole 216 of each channel is formed so that the optical axis of the lens 214 corresponding to the core 201a of the optical fiber 203 inserted therein is aligned.
  • the optical fiber insertion hole 216 of each channel is shaped so that its bottom position, that is, the contact position of its tip (output end) when the optical fiber 203 is inserted, coincides with the focal position of the lens 214 . ing.
  • an adhesive injection hole 212 extending downward from the upper surface side is formed so as to communicate near the bottom position of a plurality of optical fiber insertion holes 216 arranged in a horizontal direction. .
  • optical fiber 203 is fixed to receptacle body 211 by injecting adhesive 217 around optical fiber 203 from adhesive injection hole 212 .
  • the lens 214 has the function of shaping the light emitted from the optical fiber 203 into collimated light and emitting it. As a result, the light emitted from the output end of the optical fiber 203 with a predetermined NA is incident on the lens 214, shaped into collimated light, and emitted.
  • the plug 502 has a connector body 611 configured by connecting a first optical section 612 and a second optical section 613 .
  • the first optical section 612 is made of a light-transmissive material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength.
  • the first optical section 612 has a concave light incident section (light transmission space) 621 formed on the front side thereof.
  • Lenses 622 corresponding to the respective channels are integrally formed in the first optical section 612 so as to be positioned at the bottom of the light entrance section 621 and are horizontally aligned.
  • the second optical section 613 has a configuration in which a fiber ferrule 632 is arranged inside a square tube-shaped fiber ferrule positioning member 631 fixed to the back side of the first optical section 612 by adhesion or the like. ing. Note that the fiber ferrule positioning member 631 may be integrated with the first optical section 612 .
  • the fiber ferrule 632 has four upper, lower, left, and right faces connected in series via a shape-changing member 633 composed of, for example, a piezo element or the like and a spring 634 (not shown in FIG. 20). It is fixed to the inner surface of the positioning member 631 with a floating structure. A light transmitting material 635 is inserted between the back side of the first optical section 612 and the front side of the fiber ferrule 632 .
  • the fiber ferrule 632 is provided with a plurality of optical fiber insertion holes 636 extending forward from the back side and arranged in a horizontal direction corresponding to the lenses 622 of each channel of the first optical section 612 .
  • the optical fiber 501 has a double structure consisting of a central core 501a serving as an optical path and a clad 501b surrounding the core.
  • the optical fiber insertion hole 636 of each channel is formed so that its bottom position, that is, the contact position of its tip (incident end) when the optical fiber 501 is inserted, coincides with the focal position of the lens 622. .
  • an adhesive injection hole 637 extending downward from the upper surface side is formed so as to communicate with the vicinity of the bottom position of a plurality of optical fiber insertion holes 636 arranged in a horizontal direction.
  • the lens 622 of the first optical section 612 has the function of condensing the incident collimated light.
  • the collimated light is incident on the lens 622 and condensed, and this condensed light is incident on the incident end of the optical fiber 501 fixed to the fiber ferrule 632 of the second optical section 613 .
  • the shape-changing members 633 arranged on the upper, lower, left, and right sides of the fiber ferrule 632 are fed from the measuring instrument 520 side via a signal line (not shown in FIG. 19(a)) included in the cable 510. , are provided control signals for moving the core position of the optical fiber 501 .
  • the core positions of the optical fiber 501 in the plug 502 are sequentially positioned at eight positions "1" to "8" on the circumference of a circle centered on the optical axis. It is shifted (see FIGS. 17(b-1) to (b-8)).
  • FIG. 21(a) shows a top view of the receptacle 202 and the plug 502 portion.
  • parts corresponding to those in FIG. 20(a) are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the first optical portion 612 and the second optical portion 613 of the plug 502 are actually connected to the housing 640 with a spring 641 or the like, and have a so-called floating structure.
  • the receptacle body 211 of the receptacle 202 is actually connected to the housing 220 with a spring 221 or the like, and has a so-called floating structure.
  • the receptacle 202 and the plug 502 are fitted together, the receptacle 202 and the plug 502 are connected by the positioning pin 222 so that the optical axes of the plug 502 are aligned. It is provided in the fiber ferrule positioning member 631 of the optical section 613 .
  • FIG. 21(b) shows a rear view of the plug 502 portion
  • FIG. 21(c) shows a side view of the plug 502 portion.
  • 21(b) and 21(c) portions corresponding to those in FIG. 21(a) are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 21 shows an example of 12 channels in which 12 optical fibers 203 and 501 exist respectively. Simultaneous evaluation is possible.
  • FIG. 22 shows a state in which a control signal is supplied from the measuring instrument 520 side via the signal line 504 included in the cable 510 to the shape-changing members 633 arranged on the top, bottom, left, and right of the fiber ferrule 632 . .
  • FIG. 23 shows a state in which the plug 503 of the cable 510 and the receptacle 521 of the measuring instrument 520 are connected.
  • the plug 503 has a plug body 651 .
  • the plug body 651 is made of a light-transmissive material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a structure of a ferrule with a lens.
  • the plug body 651 By configuring the plug body 651 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. Further, since the plug main body 651 is configured as a ferrule with a lens in this way, multi-channel communication can be easily realized simply by inserting an optical fiber into the ferrule even in the case of multi-channel.
  • the plug body 651 has a recessed light emitting portion (light transmission space) 653 formed on its front side.
  • a plurality of lenses (convex lenses) 654 corresponding to the respective channels are integrally formed in the plug body 651 so as to be positioned at the bottom of the light emitting portion 653 in a horizontal direction. .
  • the plug body 651 is provided with a plurality of optical fiber insertion holes 656 extending forward from the back side and aligned in the horizontal direction so as to match the lenses 654 of each channel.
  • the optical fiber 501 has a double structure consisting of a central core 501a serving as an optical path and a clad 501b surrounding the core.
  • the optical fiber insertion hole 656 of each channel is formed so that the optical axis of the lens 654 corresponding to the core 501a of the optical fiber 501 inserted therein is aligned.
  • the optical fiber insertion hole 656 of each channel is shaped so that its bottom position, that is, the contact position of its tip (output end) when the optical fiber 501 is inserted, coincides with the focal position of the lens 654 . ing.
  • the plug body 651 is formed so that an adhesive injection hole 652 extending downward from the upper surface side communicates with the vicinity of the bottom position of a plurality of optical fiber insertion holes 656 arranged in a horizontal direction. After optical fiber 501 is inserted into optical fiber insertion hole 656 , optical fiber 501 is fixed to plug body 651 by injecting adhesive 657 around optical fiber 501 from adhesive injection hole 652 .
  • the lens 654 has the function of shaping the light emitted from the optical fiber 501 into collimated light and emitting it.
  • the light emitted from the output end of the optical fiber 501 with a predetermined NA is incident on the lens 654, shaped into collimated light, and emitted.
  • the receptacle 521 has a receptacle body 671 .
  • the receptacle main body 671 is made of, for example, a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a configuration of a ferrule with a lens.
  • the receptacle main body 671 has a concave light incident portion (light transmission space) 673 formed on the front side thereof.
  • a plurality of lenses (convex lenses) 674 corresponding to the respective channels are integrally formed in the receptacle body 671 so as to be positioned at the bottom portion of the light incident portion 673 and arranged horizontally. .
  • the receptacle body 671 is provided with a plurality of optical fiber insertion holes 676 extending forward from the back side and aligned in the horizontal direction so as to match the lenses 674 of each channel.
  • the optical fiber 523 has a double structure of a central core 523a serving as an optical path and a clad 523b surrounding the core.
  • the optical fiber insertion hole 676 of each channel is formed so that the optical axis of the corresponding lens 674 is aligned with the core 523a of the optical fiber 523 inserted therein.
  • the optical fiber insertion hole 676 of each channel is shaped so that its bottom position, that is, the contact position of its tip (incident end) when the optical fiber 523 is inserted, coincides with the focal position of the lens 674 . ing.
  • an adhesive injection hole 672 extending downward from the upper surface side is formed so as to communicate near the bottom position of a plurality of optical fiber insertion holes 676 arranged in a horizontal direction. .
  • the optical fiber 523 is fixed to the receptacle body 671 by injecting the adhesive 677 around the optical fiber 523 from the adhesive injection hole 672 .
  • the lens 674 has the function of condensing the incident collimated light.
  • the collimated light is incident on the lens 674 and condensed, and this condensed light is incident on the incident end of the optical fiber 523 with a predetermined NA.
  • measuring instrument 520 includes receptacle 521, optical fiber 523, light receiving section 522, amplifying section 524, measuring section 525, control section 526, display section 527, user operation It has a portion 528 .
  • the optical fiber 523 has the same configuration as the optical fiber 203 of the transmitter 200, and propagates the fundamental mode and the first mode at the second wavelength (850 nm, for example).
  • the light receiving section 522 includes a light receiving element such as a photodiode.
  • the light receiving section 522 constitutes an optical receiving section, and converts an optical signal sent from the receptacle 521 through the optical fiber 523 into an electrical signal.
  • the output signal of the light receiving section 522 is amplified by the amplifying section 524 and supplied to the measuring section 525 .
  • a measurement unit 525 measures a power value or a bit error rate value from the output signal of the light receiving unit 522 .
  • the measured value of the measuring section 525 is supplied to the control section 526 .
  • the control unit 526 controls measurement operations in the measurement system 50A. Control unit 526 starts control processing based on a user operation from user operation unit 528 . During measurement, the control unit 526 controls the shape-changing members arranged above, below, left and right of the fiber ferrule 532 of the plug 502 through the signal line 504 (not shown in FIG. 19A) of the cable 510 from the receptacle 521. 533 with a control signal (see FIG. 22). As a result, the core position of the optical fiber 501 is controlled so as to sequentially shift to eight positions from "1" to "8" on the circumference of the circle centered on the optical axis (see FIG. 18(a)). ).
  • the control unit 526 sequentially shifts the core position of the optical fiber 501 as described above in order to evaluate the worst condition, and the measurement value (power value or bit error rate value) of the measurement unit 525 is At the stage when the reference value is not cleared, the amount of axial deviation of the transmitter 200 is not within the specified range, that is, it is judged as "NG", and the measured value of the measuring unit 525 clears the reference value at all positions. In this case, it is determined that the amount of axial deviation of the transmitter 200 is within the specified range, that is, "OK".
  • whether or not the measured value of the measuring unit 525 clears the reference value is determined by comparing the measured value with a threshold value.
  • control unit 526 displays the result of the above determination on the display unit 527 during measurement.
  • a display signal is supplied from the control unit 526 to the display unit 527, and the display unit 527 displays "OK result” or "NG result”.
  • the display unit 527 is configured by an LED (Light Emitting Diode) display unit or the like.
  • a sound output unit such as a speaker may be provided instead of the display unit 527 to output the "OK result” or the "NG result” by voice, or to specify the "OK result” or the "NG result” that can be identified. It is also conceivable to output the sound of
  • the flowchart of FIG. 24 shows an example of the procedure of control processing during measurement in the control unit 526 of the measuring device 520 .
  • the control unit 526 starts control processing in step ST1.
  • step ST2 the controller 526 sets the core position of the optical fiber 501 inside the plug 502 of the cable 510 to "1".
  • step ST3 the control section 526 determines whether the measured value of the measuring section 525 has cleared the reference value. If not cleared, in step ST4, the controller 526 determines that the amount of axial misalignment of the transmitter 200 is not within the specified range, that is, "NG", and displays the "NG result" on the display 527. After that, in step ST5, the control process is terminated.
  • step ST3 the control unit 526 determines whether the core position of the optical fiber 501 in the plug 502 of the cable 510 is "8" in step ST6. If the core position is not "8", the controller 526 sets the core position of the optical fiber 501 in the plug 502 of the cable 510 to the next position in step ST7, and then returns to step ST3.
  • step ST6 determines that the amount of axial deviation of the transmitter 200 is within the specified range, that is, "OK”, and "OK result” in step ST8. is displayed on the display unit 527, and then the control process is terminated in step ST5.
  • the light emitting section 201 of the transmitter 200 is in a state of outputting an optical signal, and this optical signal is transmitted to the measuring instrument 520 via the cable 510.
  • the core position of the optical fiber 501 of the plug 502 of the cable 510 is sequentially shifted to eight positions from "1" to "8" on the circumference of the circle centered on the optical axis. , as described above, "NG” or "OK” is determined, and the result is displayed.
  • the core position of the optical fiber 501 of the plug 502 of the cable 510 connected to the receptacle 202 of the transmitter 200 to be inspected is determined to evaluate the worst conditions.
  • the display unit immediately displays "NG result". 527 and the processing is terminated.
  • the core position is sequentially shifted until the core position reaches "8", and it is determined whether the measured value at each position clears the reference value. , an OK location (location where the reference value is cleared) or an NG location (location where the reference value is not cleared) may be displayed.
  • the core position of the optical fiber 501 of the plug 502 of the optical fiber 510 is sequentially shifted to a plurality of positions during measurement.
  • the lens component portion of the plug 502 that is, the portion of the first optical portion 612 also has a floating structure, and the position is controlled by the shape-changing member for evaluation. It is also possible to This is the same for a measurement system for inspecting cables and receivers, which will be described later.
  • the measuring device 520 side of the cable 510 is fixedly connected to the measuring device 520 .
  • the fiber ferrule 632 in order to move the core position of the optical fiber 501 of the plug 502 of the optical fiber 510, the fiber ferrule 632 is set in a floating state, and the shape-changing members 633 arranged on the upper, lower, left, and right sides of the fiber ferrule 632 It is configured to supply a control signal.
  • the structure for moving this core position is not limited to this, and other structures may be used. This is the same for a measurement system for inspecting cables and receivers, which will be described later.
  • FIG. 26(a) shows a configuration example of a measurement system 50B for inspecting cables.
  • This measurement system 50B has a transmitter side measuring device 530, a cable 400 to be tested, and a receiving side measuring device 540.
  • the transmitting side measuring device 530 and the receiving side measuring device 540 are connected via the cable 400 .
  • the cable 400 is configured to have plugs 402 and 403 at one end and the other end of the optical fiber 401 .
  • a plug 402 at one end of the optical fiber 401 is connected to a receptacle 532 of a transmitter measuring device 530
  • a plug 403 at the other end of the optical fiber 401 is connected to a receptacle 541 of a receiver measuring device 540 .
  • This cable 400 is similar to the cable 400 in the transmission/reception system 100 shown in FIG.
  • the transmitter measuring instrument 530 has a transmitter processor 534 , a driver IC 535 , a light emitter 531 , an optical fiber 533 and a receptacle 532 .
  • the light emitting unit 531 includes a laser element such as a VCSEL (Vertical Cavity Surface Emitting LASER) or a light emitting element such as an LED (light emitting diode).
  • the light emitting unit 531 constitutes an optical transmission unit, is driven by the driver IC 535 based on transmission data supplied from the transmission processing unit 534, and outputs an optical signal corresponding to the transmission data.
  • the optical fiber 533 propagates the optical signal output from the light emitting section 531 to the receptacle 532 .
  • the light emitting unit 531 has a second wavelength (e.g., 850 nm) as well as the light emitting unit 201 of the transmitter 200 in the transmission/reception system 100 shown in FIG.
  • Light optical signal
  • the optical fiber 533 has the same configuration as the optical fiber 401 of the cable 400, and propagates the fundamental mode and the primary mode at the second wavelength.
  • the receptacle 532 has the same configuration as the plug 502 of the cable 510 shown in FIG. 19 (see FIGS. 20 and 21), although the detailed description of the structure is omitted.
  • the position can be shifted to, for example, eight positions "1" to "8” (see FIG. 18A) on the circumference of a circle centered on the optical axis.
  • a control signal for moving the core position of the optical fiber 401 is sent to the receptacle 532 from the receiving measuring instrument 540 via a signal line (not shown in FIG. 26(a)) included in the cable 400. supplied to As a result, the core position of the optical fiber 533 in the receptacle 532 is sequentially shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis.
  • FIG. 26(b) shows that the core position of the optical fiber 533 in the receptacle 532 is shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis as described above. 4 shows an example of the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the plug 402 of the cable 400 and the core in this case.
  • the core position appears to be moving due to the cutout of the figure, but this core position is fixed.
  • the receiving side measuring device 540 has a receptacle 541, an optical fiber 543, a light receiving section 542, an amplifying section 544, a measuring section 545, a control section 546, a display section 547, and a user operation section 548.
  • the optical fiber 543 has the same configuration as the optical fiber 401 of the cable 400, and propagates the fundamental mode and the primary mode at the second wavelength.
  • the receptacle 541 has a structure similar to that of the plug 502 of the cable 510 shown in FIG. 19 (see FIGS. 20 and 21), although a detailed description of the structure is omitted.
  • the position can be shifted to, for example, eight positions "1" to "8” (see FIG. 18A) on the circumference of a circle centered on the optical axis.
  • a control signal for moving the core position of the optical fiber 401 is supplied from the control unit 546 to the receptacle 541 .
  • the core position of the optical fiber 543 in the receptacle 541 is sequentially shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis.
  • FIG. 26(c) shows the case where the core position of the optical fiber 543 is shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis as described above.
  • 3 shows an example of the positional relationship between the power intensity distribution at the end of the optical fiber of the light incident on the receptacle 541 and the core.
  • the light receiving section 542 includes a light receiving element such as a photodiode.
  • the light receiving section 542 constitutes an optical receiving section, and converts an optical signal sent from the receptacle 541 through the optical fiber 543 into an electrical signal.
  • the output signal of the light receiving section 542 is amplified by the amplifying section 544 and supplied to the measuring section 545 .
  • a measuring section 545 measures a power value or a bit error rate value from the output signal of the light receiving section 542 .
  • the measured value of the measuring section 545 is supplied to the control section 546 .
  • the control unit 546 controls measurement operations in the measurement system 50B.
  • the control unit 546 starts control processing based on a user operation from the user operation unit 548 .
  • the control unit 546 supplies a control signal for moving the core position of the optical fiber 533 to the receptacle 532 of the transmitter measuring device 530 from the receptacle 541 through the signal line of the cable 510, and also transmits light to the receptacle 541.
  • a control signal is provided to move the core position of fiber 543 .
  • the core position of the optical fiber 533 in the receptacle 532 is shifted sequentially to eight positions "1" to “8” (see FIG. 18(a)) on the circumference of the circle centered on the optical axis.
  • the core positions of the optical fiber 543 in the receptacle 541 are eight positions from “1” to "8” on the circumference of the circle centered on the optical axis. (see FIG. 18(a)).
  • the control unit 546 sequentially shifts the core position of the optical fiber 533 in the receptacle 532 and the core position of the optical fiber 543 in the receptacle 541 in order to evaluate the worst conditions.
  • the measured value power value or bit error rate value
  • the amount of axis deviation of the cable 400 is not within the specified range, that is, it is judged as "NG"
  • the measured value of the measuring unit 545 clears the reference value
  • whether or not the measured value of the measuring unit 525 clears the reference value is determined by comparing the measured value with a threshold value.
  • control unit 546 displays the result of the above determination on the display unit 547 during measurement.
  • a display signal is supplied from the control unit 546 to the display unit 547, and the display unit 547 displays "OK result” or "NG result”.
  • the display unit 547 is configured by an LED (Light Emitting Diode) display unit or the like.
  • a sound output unit such as a speaker may be provided instead of the display unit 547 to output "OK result” or "NG result” by voice, or to identify "OK result” or "NG result”. It is also conceivable to output the sound of
  • the flowchart of FIG. 27 shows an example of the procedure of control processing at the time of measurement in the control section 546 of the receiving-side measuring instrument 540 .
  • the control unit 546 starts control processing in step ST11.
  • step ST12 the controller 526 sets the core position of the optical fiber 533 in the receptacle 532 of the transmitter measuring instrument 530 to "1".
  • step ST13 the controller 546 sets the core position of the optical fiber 543 in the receptacle 541 of the receiver measuring instrument 540 to "1".
  • step ST14 the control section 546 determines whether the measured value clears the reference value. If not cleared, in step ST15, the control unit 546 determines that the amount of axial misalignment of the cable 400 is not within the specified range, that is, “NG”, displays “NG result” on the display unit 547, After that, in step ST16, the control process ends.
  • step ST14 the control section 546 determines whether or not the core position of the optical fiber 543 in the receptacle 541 of the receiver measuring instrument 540 is "8" in step ST17. If the core position is not "8", the control section 546 sets the core position of the optical fiber 543 in the receptacle 541 of the receiver measuring instrument 540 to the next position in step ST18, and then returns to the process of step ST14.
  • the control section 546 determines whether or not the core position of the optical fiber 533 in the receptacle 532 of the transmitter measuring instrument 530 is "8” in step ST19. . If the core position is not “8", the controller 546 sets the core position of the optical fiber 543 in the receptacle 541 of the receiver measuring instrument 540 to "1" in step ST20, and in step ST21, sets the core position of the transmitting measuring instrument The core position of the optical fiber 533 in the receptacle 532 of 530 is set to the next position, and then the process returns to step ST14.
  • step ST19 the control section 546 determines that the amount of axial deviation of the cable 400 is within the specified range, that is, "OK”, and outputs "OK result” in step ST22. It is displayed on the display unit 547, and then the control process is terminated in step ST16.
  • the light emitting unit 531 of the transmitter measuring device 530 is put into a state of outputting an optical signal at the time of measurement. sent to.
  • the core position of the optical fiber 533 of the receptacle 532 of the transmitting side measuring device 530 and the core position of the optical fiber 543 of the receptacle 541 of the receiving side measuring device 540 are respectively on the circumference of the circle centered on the optical axis.
  • the data is sequentially shifted to eight positions from "1" to "8", and the reception-side measuring device 540 judges "NG" or "OK” as described above, and the result is displayed.
  • the core position of the optical fiber 543 of the receptacle 541 of the receiving side measuring device 540 connected to the end side is shifted to a plurality of positions with respect to the optical axis, and the amount of axis deviation of the cable 400 is defined. It determines if it is within range. Therefore, it is possible to determine whether the amount of axial deviation of the cable 400 is within the specified range.
  • the measured value of the measuring unit 545 clears the reference value before both the core position of the optical fiber 533 in the receptacle 532 and the core position of the optical fiber 543 in the receptacle 541 reach "8".
  • An example has been described in which if there is no result, "NG result” is immediately displayed on the display unit 547 and the process is terminated.
  • the core positions are sequentially shifted until both core positions reach "8", and it is determined whether the measured value at each position clears the reference value. It is also conceivable to configure the position to display whether it is an OK location (location where the reference value is cleared) or an NG location (location where the reference value is not cleared).
  • control signal for moving the core position of the optical fiber 533 in the receptacle 532 of the transmitting side measuring device 530 which is output from the control section 546 of the receiving side measuring device 540, is transmitted through the signal line included in the cable 400.
  • the example of transmitting to the receptacle 532 of the transmitting meter 530 has been described.
  • this control signal is transmitted via a signal line 410 not included in the cable 400 by providing dedicated terminals 536 and 549 to the transmitting side measuring device 530 and the receiving side measuring device 540 respectively.
  • a configuration is also conceivable.
  • the core position of the receptacle 532 of the transmitting side measuring instrument 530 is controlled by the control section 546 of the receiving measuring instrument 540 .
  • a configuration in which the core position of the receptacle 532 of the transmitter measuring device 530 is controlled by a controller (not shown in FIG. 26(a)) in the transmitter measuring device 530 is also conceivable.
  • the controller in the transmitter measuring device 530 and the controller 546 in the receiver measuring device 540 need to be connected and linked externally, or they may be independently controlled by the measurement user.
  • FIG. 29(a) shows a configuration example of a measurement system 50C whose inspection target is a receiver.
  • This measuring system 50C has a measuring device 550, a cable 560 as a measuring jig, and a receiver 300A. Measuring instrument 550 and receiver 300A are connected via cable 560 .
  • the receiver 300A corresponds to the receiver 300 in the transmission/reception system 100 shown in FIG. 11, and the corresponding parts are indicated by the same reference numerals.
  • Receiver 300A has receptacle 301 , light receiving section 302 , optical fiber 303 , amplifier section 304 and reception processing section 305 .
  • the light receiving section 302 includes a light receiving element such as a photodiode.
  • the light receiving section 302 converts an optical signal sent from the receptacle 301 through the optical fiber 303 into an electrical signal.
  • the electric signal output from the light receiving unit 302 is amplified by the amplifying unit 304 and supplied to the reception processing unit 305 as a received signal.
  • Reception processing section 305 obtains reception data by performing processing such as demodulation on the reception signal.
  • Reception processing section 305 also measures the power value or bit error rate value from the received signal and outputs the measured value to terminal 306 .
  • the cable 560 is configured to have plugs 562 and 563 at one end and the other end of the optical fiber 561 .
  • a plug 562 at one end of the optical fiber 561 is connected to the receptacle 552 of the measuring device 550, and a plug 563 at the other end of the optical fiber 561 is connected to the receptacle 301 of the receiver 300A.
  • the optical fiber 561 has the same configuration as the optical fiber 303 of the receiver 300A, and propagates the fundamental mode and the primary mode at the second wavelength (850 nm, for example).
  • the plug 563 has the same structure as the plug 502 of the cable 510 shown in FIG. 19 (see FIGS. 20 and 21), although the detailed structure description is omitted.
  • the position can be shifted to, for example, eight positions "1" to "8” (see FIG. 18A) on the circumference of a circle centered on the optical axis.
  • a control signal for moving the core position of the optical fiber 561 is supplied to the plug 563 from the measuring instrument 550 via the signal line (not shown in FIG. 29(a)) included in the cable 560. be done.
  • the core position of the optical fiber 561 in the plug 563 is sequentially shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis.
  • FIG. 29(c) shows that the core position of the optical fiber 561 in the plug 563 is shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis as described above. 4 shows an example of the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the receptacle 301 of the receiver 300A and the core in this case.
  • the core position appears to be moving due to the cutout of the figure, but this core position is fixed.
  • the measuring device 550 has a transmission processing unit 554, a driver IC 555, a light emitting unit 551, an optical fiber 553, a receptacle 552, a control unit 556, a display unit 557, and a user operation unit 558.
  • the light emitting unit 551 includes a laser element such as a VCSEL (Vertical Cavity Surface Emitting LASER) or a light emitting element such as an LED (light emitting diode).
  • the light emitting unit 551 constitutes an optical transmission unit, is driven by the driver IC 555 based on transmission data supplied from the transmission processing unit 554, and outputs an optical signal corresponding to the transmission data.
  • the optical fiber 553 propagates the optical signal output from the light emitting section 551 to the receptacle 552 .
  • light (optical signal) having the second wavelength (for example, 850 nm) is output from the light emitting section 551, similarly to the light emitting section 201 of the transmitter 200 in the transmission/reception system 100 shown in FIG.
  • the optical fiber 553 has the same configuration as the optical fiber 303 of the receiver 300A, and propagates the fundamental mode and the primary mode at the second wavelength.
  • the receptacle 552 has the same configuration as the plug 502 of the cable 510 shown in FIG. 19 (see FIGS. 20 and 21), although the detailed description of the structure is omitted.
  • the position can be shifted to, for example, eight positions "1" to "8” (see FIG. 18A) on the circumference of a circle centered on the optical axis.
  • a control signal for moving the core position of the optical fiber 553 is supplied from the control unit 556 to the receptacle 552 .
  • the core position of the optical fiber 553 in the receptacle 552 is sequentially shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis.
  • FIG. 29(b) shows that the core position of the optical fiber 553 in the receptacle 552 is shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis as described above.
  • 5 shows an example of the positional relationship between the power intensity distribution at the end of the optical fiber of the light incident on the plug 562 of the cable 560 and the core in this case.
  • the core position appears to be moving due to the cutout of the figure, but this core position is fixed.
  • the control unit 556 controls measurement operations in the measurement system 50C. Control unit 556 starts control processing based on a user operation from user operation unit 558 . At the time of measurement, the control unit 556 supplies a control signal for moving the core position of the optical fiber 561 to the plug 563 of the cable 560 from the receptacle 552 through the signal line of the cable 560, and also transmits the optical fiber 553 to the receptacle 552. Provides a control signal to move the core position.
  • the core position of the optical fiber 561 in the plug 563 is shifted sequentially to eight positions "1" to “8” (see FIG. 18A) on the circumference of the circle centered on the optical axis.
  • the core positions of the optical fiber 561 in the plug 563 and the core positions of the optical fiber 553 in the receptacle 552 are eight positions "1" to "8” on the circumference of a circle centered on the optical axis. (see FIG. 18(a)).
  • control unit 556 is supplied with the measured value (power value or bit error rate value) obtained by the reception processing unit 305 from the terminal 306 of the receiver 300A via the signal line 570 and the terminal 559 .
  • the controller 556 sequentially shifts the core position of the optical fiber 561 in the plug 563 and the core position of the optical fiber 553 in the receptacle 552, as described above, in order to evaluate the worst conditions. is not cleared, the amount of misalignment of the receiver 300A is not within the specified range, that is, it is judged as "NG", and if the measured value clears the reference value at all positions, the receiver 300A It is determined that the shaft misalignment is within the specified range, that is, "OK".
  • whether or not the measured value of the measuring unit 525 clears the reference value is determined by comparing the measured value with a threshold value.
  • control unit 556 displays the result of the above determination on the display unit 557 during measurement.
  • a display signal is supplied from the control unit 556 to the display unit 557, and the display unit 557 displays "OK result” or "NG result”.
  • the display unit 557 is configured by an LED (Light Emitting Diode) display unit or the like.
  • a sound output unit such as a speaker may be provided instead of the display unit 557 to output "OK result” or "NG result” by voice, or to identify "OK result” or “NG result”. It is also conceivable to output the sound of
  • the flowchart of FIG. 30 shows an example of the procedure of control processing at the time of measurement in the control section 556 of the measuring device 550 .
  • the control unit 556 starts control processing in step ST31. Next, the controller 556 sets the core position of the optical fiber 553 in the receptacle 552 of the measuring device 550 to "1" in step ST32. Next, the controller 556 sets the core position of the optical fiber 561 in the plug 563 of the cable 560 to "1" in step ST33.
  • step ST34 the control section 556 determines whether the measured value clears the reference value. If not cleared, in step ST35, control section 556 determines that the amount of axial misalignment of receiver 300A is not within the specified range, that is, "NG”, and displays "NG result” on display section 557. After that, in step ST36, the control process is terminated.
  • control unit 556 determines whether the core position of the optical fiber 561 in the plug 563 of the cable 560 is "8" in step ST37. If the core position is not "8", the controller 556 sets the core position of the optical fiber 561 in the plug 563 of the cable 560 to the next position in step ST38, and then returns to step ST34.
  • the controller 556 determines whether the core position of the optical fiber 553 in the receptacle 552 of the measuring device 550 is "8" in step ST39. If the core position is not “8", the controller 556 sets the core position of the optical fiber 561 in the plug 563 of the cable 560 to "1" in step ST40, and moves the core position of the optical fiber 561 in the receptacle 552 of the measuring device 550 to "1" in step ST41. , the core position of the optical fiber 553 is set to the next position, and then the process returns to step ST34.
  • control section 556 determines that the amount of axial deviation of receiver 300A is within the specified range, that is, "OK”, and "OK result” in step ST42. is displayed on the display unit 557, and then the control process is terminated in step ST36.
  • the light emitting unit 551 of the measuring device 550 is set to output an optical signal during measurement, and this optical signal is transmitted to the receiver 300A via the cable 560.
  • the core position of the optical fiber 561 of the plug 563 of the cable 560 and the core position of the optical fiber 553 of the receptacle 552 of the measuring device 550 are respectively "1" to "8" on the circumference of the circle centered on the optical axis.
  • the measurement device 550 determines "NG” or "OK” as described above, and the result is displayed.
  • the core position of the optical fiber 553 of the receptacle 552 of the measuring device 550 to which the plug 562 on the other end side is connected is shifted to a plurality of positions with respect to the optical axis, and the amount of misalignment of the receiver is calculated. is within the specified range. Therefore, it is possible to determine whether the amount of axial misalignment of the receiver is within the specified range.
  • An example has been described in which if the value does not clear the reference value, the "NG result" is immediately displayed on the display unit 557 and the process is terminated.
  • the core positions are sequentially shifted until both core positions reach "8", and it is determined whether the measured value at each position clears the reference value. It is also conceivable to configure the position to display whether it is an OK location (location where the reference value is cleared) or an NG location (location where the reference value is not cleared).
  • the control unit 556 of the measuring device 550 controls the receiver based on the measurement value (power value or bit error rate value) obtained by the reception processing unit 305 of the receiver 300A. is within the specified range.
  • the measurement value power value or bit error rate value
  • image data is transmitted as an optical signal from the transmission side, and whether or not the amount of axial deviation of the receiver is within a specified range is determined based on whether image display is possible on the receiver.
  • FIG. 31 shows a configuration example of a measurement system 50D whose inspection target is a receiver.
  • This measuring system 50D has a measuring device 550A, a cable 560 as a measuring jig, and a receiver 300B. Measuring instrument 550A and receiver 300B are connected via cable 560 .
  • the receiver 300B has a receptacle 301, a light receiving section 302, an optical fiber 303, an amplifier section 304, a reception processing section 305, and a display 307.
  • the reception processing unit 305 obtains video data by performing processing such as demodulation on the reception signal supplied from the light receiving unit 302 via the amplification unit 304 .
  • a display 307 displays an image based on the image data obtained by the reception processing unit 305 .
  • the rest of the receiving section 300B is configured in the same manner as the receiver 300A in the measurement system 50C shown in FIG. 29(a).
  • the cable 560 is configured to have plugs 562 and 563 at one end and the other end of the optical fiber 561 .
  • a plug 562 at one end of the optical fiber 561 is connected to the receptacle 552 of the measuring device 550A, and a plug 563 at the other end of the optical fiber 561 is connected to the receptacle 301 of the receiver 300B.
  • this cable 560 is configured in the same manner as the cable 560 in the measurement system 50C shown in FIG. 29(a).
  • the measuring device 550A has a transmission processing section 554A, a driver IC 555, a light emitting section 551, an optical fiber 553, a receptacle 552, a control section 556A, and a user operation section 558.
  • the transmission processing unit 554A outputs video data as transmission data during measurement. As a result, an optical signal corresponding to the video data is output from the light emitting unit 551 and propagated to the receptacle 552 .
  • the control unit 556A controls measurement operations in the measurement system 50D. Control unit 556A starts control processing based on a user operation from user operation unit 558 . At the time of measurement, the control unit 556A supplies a control signal for moving the core position of the optical fiber 561 to the plug 563 of the cable 560 from the receptacle 552 through the signal line of the cable 560, and also transmits the optical fiber 553 to the receptacle 552. Provides a control signal to move the core position.
  • the core position of the optical fiber 561 in the plug 563 is shifted sequentially to eight positions "1" to “8” (see FIG. 18A) on the circumference of the circle centered on the optical axis.
  • the core positions of the optical fiber 561 in the plug 563 and the core positions of the optical fiber 553 in the receptacle 552 are eight positions "1" to "8” on the circumference of a circle centered on the optical axis. (see FIG. 18(a)).
  • the rest of the measuring instrument 550A is configured in the same manner as the measuring instrument 550 in the measuring system 50C shown in FIG. 29(a).
  • the light emitting unit 551 of the measuring device 550A is set to output an optical signal of video data during measurement, and this optical signal is transmitted to the receiver 300B via the cable 560.
  • the core position of the optical fiber 561 of the plug 563 of the cable 560 and the core position of the optical fiber 553 of the receptacle 552 of the measuring device 550A are respectively "1" to "8" on the circumference of the circle centered on the optical axis. , and the user determines whether or not the image is displayed correctly on the display 307 of the receiver 300B at that time. determine if there is
  • the core position of the optical fiber 553 of the receptacle 552 of the measuring instrument 550A to which the plug 562 of the measuring instrument 550A is connected is shifted to a plurality of positions with respect to the optical axis in order to evaluate the worst conditions. It is possible to judge whether the amount of axial deviation of the receiver is within the specified range or not.
  • the measurement system 50D shown in FIG. 31 corresponds to the measurement system 50C shown in FIG. ), in which the image data is transmitted as an optical signal from the transmission side, and whether or not the image can be displayed on the reception side determines whether the amount of axial deviation of the transmitter or cable is within a specified range.
  • a configuration for judging whether it is within the range can also be considered in the same way.
  • the first wavelength is 1310 nm, but since a laser light source or an LED light source may be used as the light source, the first wavelength may be, for example, between 300 nm and 5 ⁇ m. can be considered.
  • the first wavelength is 1310 nm, but it is also conceivable that this first wavelength is a wavelength in the 1310 nm band including 1310 nm. Moreover, although the first wavelength is 1310 nm in the above embodiment, it is also conceivable that the first wavelength is 1550 nm or a wavelength in the 1550 nm band including 1550 nm. Also, although the second wavelength is described as 850 nm, it is also conceivable that this second wavelength is a wavelength in the 850 nm band including 850 nm.
  • optical waveguide is an optical fiber
  • present technology can of course also be applied to an optical waveguide other than an optical fiber, such as a silicon optical waveguide.
  • the present technology can also have the following configuration.
  • a cable equipped with a measuring instrument,
  • the cable is having a plug for connection to a receptacle of a transmitter to be tested;
  • the plug is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
  • the measuring instrument an optical receiver that receives an optical signal sent from the transmitter through the cable; a process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis;
  • a measurement system having a processing unit that determines whether the measurement is within a specified range.
  • the processing section shifts the core position of the optical fiber of the plug to a plurality of positions on the circumference of a circle centered on the optical axis. 1) The measurement system described in 1).
  • the processing unit sends a control signal to the plug via a signal line included in the cable. ) or (2).
  • the processing unit compares a power value or a bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axial deviation of the transmitter is within a specified range.
  • the measurement system according to any one of (1) to (3) above.
  • the transmitter comprises an optical fiber that propagates only a fundamental mode at a first wavelength and communicates using light having a second wavelength and having at least a first-order mode component along with the fundamental mode; death,
  • the measurement system according to any one of (1) to (5), wherein the second wavelength is a wavelength that allows the optical fiber to propagate at least the primary mode together with the fundamental mode.
  • the measuring system according to any one of (1) to (6), wherein the cable is integrated with the measuring device.
  • a transmitter measuring instrument Equipped with a receiver measuring instrument, The transmitting measuring instrument, a first receptacle for connecting to a plug on one end of a cable to be tested; an optical transmitter that outputs an optical signal to the first receptacle via an optical fiber; the first receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
  • the receiving side measuring instrument a second receptacle for connecting to a plug on the other end side of the optical gable to be inspected; an optical receiver that receives an optical signal input from the cable through the second receptacle; the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
  • the processing unit shifts the optical axis to: The measurement system according to (8) above, wherein the measuring system is shifted to a plurality of positions on the circumference of the centered circle.
  • the processing unit shifts a signal line included in the cable to the first receptacle or to the cable.
  • the processing unit compares a power value or a bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axial deviation of the cable is within a specified range.
  • the measurement system according to any one of (8) to (10) above.
  • the measurement system according to any one of (8) to (11), wherein the processing unit further performs a process of presenting the determination result to the user.
  • the cable has an optical fiber that propagates only a fundamental mode at a first wavelength, and communicates using light having a second wavelength and having at least a first-order mode component along with the fundamental mode.
  • the second wavelength is a wavelength that allows the optical fiber to propagate at least a first-order mode together with the fundamental mode.
  • a cable equipped with a measuring instrument,
  • the cable is having a plug on one end for connecting to a first receptacle of a receiver to be tested and a plug on the other end for connecting to a second receptacle of the measuring instrument;
  • the plug on the one end side is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
  • the measuring instrument the second receptacle; an optical transmitter that outputs an optical signal to the second receptacle via an optical fiber;
  • the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
  • the measurement system further comprising a processing unit that shifts the core position of the optical fiber of the second receptacle and the core position of the plug on one end side of the cable to a plurality of positions with respect to the optical axis.
  • the processing unit performs processing for determining whether the amount of axis deviation of the receiver is within a specified range based on values corresponding to the optical signals received by the receiver at the plurality of positions.
  • the value according to the optical signal received by the receiver is a power value or a bit error rate value measured based on the output signal of the optical receiver.
  • the processing unit further performs a process of presenting the determination result to the user.
  • the receiver comprises an optical fiber that propagates only a fundamental mode at a first wavelength and communicates using light having a second wavelength and having at least a first order mode component along with the fundamental mode. death,
  • the measurement system according to any one of (14) to (19), wherein the second wavelength is a wavelength that allows the optical fiber to propagate at least a first-order mode together with the fundamental mode.
  • (21) a receptacle; an optical receiver that receives an optical signal input through the receptacle; A process of shifting the core position of the plug on the other end side of the cable connected to the receptacle on the other end side to a plurality of positions with respect to the optical axis, and measuring from the output signal of the optical receiver at the plurality of positions a processing unit that determines whether the amount of axial deviation of a transmitter connected to the other end of the cable is within a specified range based on the value obtained.
  • the measuring instrument further comprises a processing unit that determines whether the amount of axial deviation of the cable is within a specified range based on the value measured from the output signal of the optical receiving unit at the position.
  • a receptacle (23) a receptacle; An optical transmitter that outputs an optical signal to the receptacle via an optical fiber, The receptacle is configured such that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis. (24) The receptacle is supplied with a control signal for shifting to the plurality of positions via a signal line included in a cable connected to the receptacle or a signal line not included in the cable. measuring instrument described in .
  • the measuring instrument further comprises a processing unit that shifts the core position of the receptacle and the plug on the other end of the cable connected to the receptacle with the plug on the one end to a plurality of positions with respect to the optical axis.
  • the processing unit adjusts the amount of axis deviation of the receiver within a specified range based on the values corresponding to the optical signals received by the receiver connected to the other end of the cable at the plurality of positions.
  • Control unit 557 Display unit 558... User operation unit 559... Terminal 560... Cable 561... Optical fiber 562, 563... Plug 570... Signal line 612 First optical section 613 Second optical section 631 Fiber ferrule positioning member 632 Fiber ferrule 633 Shape changing member 634 Spring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention makes it possible to favorably determine whether an axial shift amount in an optical communication device falls within a prescribed range. If an object to be inspected is a transmitter, for instance, this transmitter is connected to a measurement instrument via a cable. A core position of an optical fiber in a plug of the cable, which is connected to a receptacle of the transmitter, is shifted to a plurality of positions relative to an optical axis in order to evaluate a worst condition. The measurement instrument is used to determine whether the axial shift amount of the transmitter falls within a prescribed range, on the basis of a value measured from a received signal of an optical signal sent from the transmitter via the cable at each of the plurality of positions.

Description

測定システム、測定器およびケーブルMeasuring systems, instruments and cables
 本技術は、測定システム、測定器およびケーブルに関し、詳しくは、光通信装置の軸ずれ量が規定範囲内に収まっているか判断するための測定システム等に関する。 This technology relates to a measurement system, a measuring instrument, and a cable, and more particularly to a measurement system and the like for determining whether the amount of axis deviation of an optical communication device is within a specified range.
 従来、空間結合による光通信が知られている。この光通信の場合、特に、シングルモードファイバにおいては、位置ずれにより光パワーの大きなロスが発生する。そのため、従来は、位置ずれを抑えるために部品の精度要求が高く、コストアップにつながっている。 Conventionally, optical communication based on spatial coupling is known. In the case of this optical communication, especially in a single-mode fiber, a large loss of optical power occurs due to misalignment. For this reason, conventionally, high precision is required for parts in order to suppress misalignment, leading to an increase in cost.
 本出願人は、先に、位置ずれの精度を緩和してコスト削減を図り得る光通信装置、いわゆるダブルモードの光通信装置を提案した(特許文献1参照)。この光通信装置は、第1の波長では基本モードのみを伝搬する光導波路を有し、第2の波長を持つと共に基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をするものであって、第2の波長は、光導波路が基本モードと共に少なくとも1次モードを伝搬し得る波長である。 The applicant of the present application has previously proposed an optical communication device that can reduce the cost by reducing the accuracy of misalignment, that is, a so-called double-mode optical communication device (see Patent Document 1). This optical communication device has an optical waveguide for propagating only a fundamental mode at a first wavelength, and communicates using light having a second wavelength and having at least a primary mode component together with the fundamental mode. and the second wavelength is a wavelength at which the optical waveguide can propagate at least the first order mode along with the fundamental mode.
国際公開第2020/153236号WO2020/153236
 ダブルモードの光通信装置は、精度緩和によるコストダウンが目的のため、精度の低い安い部品を使えるのが特徴である。しかし、その結果、製品としてはある程度軸ズレが発生していることが想定される。そのためコネクタ嵌合時に光の送受伝搬を行う際には、送信側/受信側双方とも規定の軸ズレ量に収まっている必要があり、逆に収まっていないと通信できない可能性がある。 Double-mode optical communication equipment is characterized by the ability to use low-precision, low-cost parts, as it aims to reduce costs by reducing accuracy. However, as a result, it is assumed that some degree of axial misalignment occurs in the product. Therefore, when transmitting and receiving light when the connector is mated, both the transmission side and the reception side must be within the specified amount of axial misalignment.
 本技術の目的は、光通信装置の軸ずれ量が規定範囲内に収まっているかを良好に判断可能とすることにある。 The purpose of this technology is to make it possible to determine whether the amount of axis misalignment of an optical communication device is within a specified range.
 本技術の概念は、
 ケーブルと、
 測定器を備え、
 前記ケーブルは、
 検査対象としての送信機のレセプタクルに接続するためのプラグを有し、
 前記プラグは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記測定器は、
 前記送信機から前記ケーブルを通して送られてくる光信号を受信する光受信部と、
 前記プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて前記送信機の軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部を有する
 測定システムにある。
The concept of this technology is
a cable;
equipped with a measuring instrument,
The cable is
having a plug for connection to a receptacle of a transmitter to be tested;
The plug is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
The measuring instrument
an optical receiver that receives an optical signal sent from the transmitter through the cable;
a process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis; The measurement system has a processing unit that determines whether the measurement is within the specified range.
 本技術においては、ケーブルと測定器を備えるものである。例えば、ケーブルは、測定器と一体とされていてもよい。この場合、全体としてピッグテール型測定器が構成される。 This technology is equipped with a cable and a measuring instrument. For example, the cable may be integral with the meter. In this case, a pigtail type measuring instrument is configured as a whole.
 ケーブルは検査対象としての送信機のレセプタクルに接続するためのプラグを有し、このプラグは光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成される。 The cable has a plug for connecting to the receptacle of the transmitter to be inspected, and this plug is configured so that the core position of the optical fiber can be shifted to multiple positions with respect to the optical axis.
 測定器は、光受信部と処理部を有する。光受信部では、送信機からケーブルを通して送られてくる光信号が受信される。処理部では、プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理と、この複数の位置における光受信部から測定された値に基づいて送信機の軸ずれ量が規定範囲内に収まっているか判断される。 The measuring instrument has an optical receiver and a processor. The optical receiver receives an optical signal sent from the transmitter through the cable. In the processing unit, the core position of the optical fiber of the plug is shifted to a plurality of positions with respect to the optical axis, and based on the values measured by the optical receiver at the plurality of positions, the amount of misalignment of the transmitter axis is set within a specified range. It is determined whether it is contained within.
 例えば、処理部は、プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、光軸を中心とする円の円周上の複数の位置にずらす、ようにされてもよい。このように円周上の複数の位置にずらすことで、ずらす方向によらずに光軸中心から同じ距離だけずらすことができ、ずらす方向によらず同じ条件で送信機の軸ずれ量が規定範囲内に収まっているか判断することが可能になる。 For example, in the process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis, the processor shifts the core position of the optical fiber to a plurality of positions on the circumference of a circle centered on the optical axis. good. By shifting to a plurality of positions on the circumference in this way, it is possible to shift the same distance from the center of the optical axis regardless of the direction of shift, and the amount of misalignment of the transmitter axis can be within the specified range under the same conditions regardless of the direction of shift. It becomes possible to determine whether it is contained within.
 また、例えば、処理部は、プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、プラグにケーブルに含まれる信号ラインを介して制御信号を送る、ようにされてもよい。これにより、プラグの光ファイバのコア位置を複数の位置にずらす処理を適切に行うことが可能となる。 Further, for example, in the process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis, the processing unit may send a control signal to the plug via a signal line included in the cable. good. This makes it possible to appropriately perform the process of shifting the core position of the optical fiber of the plug to a plurality of positions.
 また、例えば、処理部は、送信機の軸ずれ量が規定範囲内に収まっているか判断する処理では、光受信部の出力信号から測定されたパワー値またはビットエラーレート値を閾値と比較して判断する、ようにされてもよい。これにより、送信機の軸ずれ量が規定範囲内に収まっているかを効果的に判断することが可能となる。 Further, for example, the processing unit compares the power value or bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axis deviation of the transmitter is within a specified range. judge, may be so. This makes it possible to effectively determine whether the amount of axial deviation of the transmitter is within the specified range.
 また、例えば、処理部は、判断結果をユーザに提示する処理をさらに行う、ようにされてもよい。この場合、例えば、表示や音出力等でユーザへの提示がされる。これにより、ユーザは送信機の軸ずれ量が規定範囲内に収まっているか否かを認識することが可能となる。 Also, for example, the processing unit may further perform a process of presenting the determination result to the user. In this case, for example, the information is presented to the user through display, sound output, or the like. This allows the user to recognize whether or not the amount of axial misalignment of the transmitter is within the prescribed range.
 また、例えば、送信機は、第1の波長では基本モードのみを伝搬する光ファイバを有し、第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をし、第2の波長は、光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である、ようにされてもよい。これにより、ダブルモードの光通信装置である送信機の軸ずれ量が規定範囲内に収まっているか否かを判断することが可能となる。 Also, for example, the transmitter has an optical fiber that propagates only a fundamental mode at a first wavelength, and communicates using light having a second wavelength and having at least a first-order mode component along with the fundamental mode. and the second wavelength may be a wavelength at which the optical fiber can propagate at least the first order mode together with said fundamental mode. This makes it possible to determine whether or not the amount of axis deviation of the transmitter, which is a double-mode optical communication device, is within the prescribed range.
 このように本技術においては、検査対象としての送信機のレセプタクルに接続されるケーブルのプラグの光ファイバのコア位置を、ワースト条件を評価するために、光軸に対して複数の位置にずらし、測定器では複数の位置において送信機からケーブルを通して送られてくる光信号の受信信号から測定された値に基づいて送信機の軸ずれ量が規定範囲内に収まっているか判断するものである。そのため、送信機の軸ずれ量が規定範囲内に収まっているかを良好に判断することが可能となる。 As described above, in the present technology, the core position of the optical fiber of the plug of the cable connected to the receptacle of the transmitter to be inspected is shifted to a plurality of positions with respect to the optical axis in order to evaluate the worst condition, The measuring device determines whether the amount of misalignment of the transmitter is within a specified range based on the values measured from the received optical signals sent from the transmitter through the cable at a plurality of positions. Therefore, it is possible to determine whether the amount of misalignment of the transmitter is within the specified range.
 また、本技術の他の概念は、
 送信側測定器と、
 受信側測定器を備え、
 前記送信側測定器は、
 検査対象としてのケーブルの一端側のプラグに接続するための第1のレセプタクルと、
 前記第1のレセプタクルに光ファイバを介して光信号を出力する光送信部を有し、
 前記第1のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記受信側測定器は、
 前記検査対象としての光ゲーブルの他端側のプラグに接続するための第2のレセプタクルと、
 前記ケーブルから前記第2のレセプタクルを通して入力される光信号を受信する光受信部を有し、
 前記第2のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記第1のレセプタクルの光ファイバのコア位置および前記第2のレセプタクルの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて前記ケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部をさらに有する
 測定システムにある。
Another concept of this technology is
a transmitter measuring instrument;
Equipped with a receiver measuring instrument,
The transmitting measuring instrument,
a first receptacle for connecting to a plug on one end of a cable to be tested;
an optical transmitter that outputs an optical signal to the first receptacle via an optical fiber;
the first receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
The receiving side measuring instrument
a second receptacle for connecting to a plug on the other end side of the optical gable to be inspected;
an optical receiver that receives an optical signal input from the cable through the second receptacle;
the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
A process of shifting the core position of the optical fiber of the first receptacle and the core position of the optical fiber of the second receptacle to a plurality of positions with respect to an optical axis, and output signals of the optical receiver at the plurality of positions. The measurement system further includes a processing unit that determines whether the amount of axial deviation of the cable is within a specified range based on the value measured from the
 本技術においては、送信側測定器と受信側測定器を備えるものである。送信側測定器は、検査対象としてのケーブルの一端側のプラグに接続するための第1のレセプタクルと、この第1のレセプタクルに光ファイバを介して光信号を出力する光送信部を有する。そして、第1のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成される。 This technology is equipped with a transmitting side measuring instrument and a receiving side measuring instrument. The transmitter measuring instrument has a first receptacle for connecting to a plug on one end of a cable to be inspected, and an optical transmitter for outputting an optical signal to the first receptacle via an optical fiber. The first receptacle is configured such that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
 受信側測定器は、検査対象としての光ゲーブルの他端側のプラグに接続するための第2のレセプタクルと、ケーブルから第2のレセプタクルを通して入力される光信号を受信する光受信部を有する。そして、第2のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成される。 The receiver-side measuring instrument has a second receptacle for connecting to the plug on the other end side of the optical cable to be inspected, and an optical receiver for receiving an optical signal input from the cable through the second receptacle. The second receptacle is configured such that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
 また、受信側測定器は、処理部をさらに有する。処理部では、第1のレセプタクルの光ファイバのコア位置および第2のレセプタクルの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理が行われる。また、処理部では、複数の位置における光受信部の出力信号から測定された値に基づいてケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理が行われる。 In addition, the receiving side measuring instrument further has a processing unit. In the processing unit, processing is performed to shift the core position of the optical fiber of the first receptacle and the core position of the optical fiber of the second receptacle to a plurality of positions with respect to the optical axis. Further, in the processing unit, processing is performed to determine whether the amount of axial deviation of the cable is within a specified range based on the values measured from the output signals of the optical receiving unit at a plurality of positions.
 例えば、処理部は、第1のレセプタクルの光ファイバのコア位置および第2のレセプタクルの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理では、光軸を中心とする円の円周上の複数の位置にずらす、ようにされてもよい。このように円周上の複数の位置にずらすことで、ずらす方向によらずに光軸中心から同じ距離だけずらすことができ、ずらす方向によらず同じ条件でケーブルの軸ずれ量が規定範囲内に収まっているか判断することが可能になる。 For example, the processing unit shifts the core position of the optical fiber of the first receptacle and the core position of the optical fiber of the second receptacle to a plurality of positions with respect to the optical axis. It may be shifted to a plurality of positions on the circumference. By shifting to multiple positions on the circumference in this way, it is possible to shift the same distance from the center of the optical axis regardless of the direction of shifting, and the amount of axial deviation of the cable is within the specified range under the same conditions regardless of the direction of shifting. It is possible to judge whether it is within
 また、例えば、処理部は、第1のレセプタクルの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、第1のレセプタクルにケーブルに含まれる信号ラインまたはケーブルに含まれない信号ラインを介して制御信号を送る、ようにされてもよい。これにより、第1のレセプタクルの光ファイバのコア位置を複数の位置にずらす処理を適切に行うことが可能となる。 Further, for example, in the process of shifting the core position of the optical fiber of the first receptacle to a plurality of positions with respect to the optical axis, the processing unit shifts the signal line included in the cable to the first receptacle or the signal line not included in the cable to the first receptacle. A control signal may be sent over the line. This makes it possible to appropriately perform the process of shifting the core position of the optical fiber of the first receptacle to a plurality of positions.
 また、例えば、処理部は、ケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理では、光受信部の出力信号から測定されたパワー値またはビットエラーレート値を閾値と比較して判断する、ようにされてもよい。これにより、送信機の軸ずれ量が規定範囲内に収まっているかを効果的に判断することが可能となる。 Further, for example, the processing unit compares the power value or bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axial deviation of the cable is within a specified range. do, may be done. This makes it possible to effectively determine whether the amount of axial deviation of the transmitter is within the specified range.
 また、例えば、処理部は、判断結果をユーザに提示する処理をさらに行う、ようにされてもよい。この場合、例えば、表示や音出力等でユーザへの提示がされる。これにより、ユーザはケーブルの軸ずれ量が規定範囲内に収まっているか否かを認識することが可能となる。 Also, for example, the processing unit may further perform a process of presenting the determination result to the user. In this case, for example, the information is presented to the user through display, sound output, or the like. This allows the user to recognize whether or not the amount of axial misalignment of the cable is within the specified range.
 また、例えば、ケーブルは、第1の波長では基本モードのみを伝搬する光ファイバを有し、第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をし、第2の波長は、光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である、ようにされてもよい。これにより、ダブルモードの光通信装置であるケーブルの軸ずれ量が規定範囲内に収まっているか否かを判断することが可能となる。 Also, for example, the cable comprises an optical fiber that propagates only a fundamental mode at a first wavelength, and communicates using light having a second wavelength and having at least a first-order mode component along with said fundamental mode. , the second wavelength may be a wavelength at which the optical fiber can propagate at least the first order mode together with said fundamental mode. This makes it possible to determine whether or not the amount of axis deviation of the cable, which is a double-mode optical communication device, is within a specified range.
 このように本技術においては、検査対象としてのケーブルの一端側に接続される送信側測定器のレセプタクルの光ファイバのコア位置およびそのケーブルの他端側に接続される受信側測定器のレセプタクルの光ファイバのコア位置を、ワースト条件を評価するために、それぞれ光軸に対して複数の位置にずらし、受信側測定器では複数の位置において送信側測定器からケーブルを通して送られてくる光信号の受信信号から測定された値に基づいてケーブルの軸ずれ量が規定範囲内に収まっているか判断するものである。そのため、ケーブルの軸ずれ量が規定範囲内に収まっているかを良好に判断することが可能となる。 In this way, in the present technology, the core position of the optical fiber of the receptacle of the transmitting side measuring device connected to one end of the cable to be inspected and the receptacle of the receiving side measuring device connected to the other end of the cable are In order to evaluate the worst conditions, the core position of the optical fiber is shifted to multiple positions with respect to the optical axis, and the receiving side measuring device receives the optical signal sent through the cable from the transmitting side measuring device at multiple positions. Based on the value measured from the received signal, it is determined whether the amount of axial deviation of the cable is within a specified range. Therefore, it is possible to determine whether the amount of axial misalignment of the cable is within the specified range.
 また、本技術の他の概念は、
 ケーブルと、
 測定器を備え、
 前記ケーブルは、
 検査対象としての受信機の第1のレセプタクルに接続するための一端側のプラグと前記測定器の第2のレセプタクルに接続するための他端側のプラグを有し、
 前記一端側のプラグは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記測定器は、
 前記第2のレセプタクルと、
 前記第2のレセプタクルに光ファイバを介して光信号を出力する光送信部を有し、
 前記第2のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記第2のレセプタクルの光ファイバのコア位置および前記ケーブルの一端側のプラグのコア位置をそれぞれ光軸に対して複数の位置にずらす処理を行う処理部をさらに有する
 測定システムにある。
Another concept of this technology is
a cable;
equipped with a measuring instrument,
The cable is
having a plug on one end for connecting to a first receptacle of a receiver to be tested and a plug on the other end for connecting to a second receptacle of the measuring instrument;
The plug on the one end side is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
The measuring instrument
the second receptacle;
an optical transmitter that outputs an optical signal to the second receptacle via an optical fiber;
the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
The measurement system further includes a processing unit that shifts the core position of the optical fiber of the second receptacle and the core position of the plug on one end of the cable to a plurality of positions with respect to the optical axis.
 本技術においては、ケーブルと測定器を備えるものである。ケーブルは、検査対象としての受信機の第1のレセプタクルに接続するための一端側のプラグと測定器の第2のレセプタクルに接続するための他端側のプラグを有する。そして、一端側のプラグは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成される。 This technology is equipped with a cable and a measuring instrument. The cable has a plug on one end for connection to a first receptacle of the receiver under test and a plug on the other end for connection to a second receptacle of the meter. The plug on the one end side is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
 測定器は、第2のレセプタクルと、この第2のレセプタクルに光ファイバを介して光信号を出力する光送信部を有する。そして、第2のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成される。また、測定器は、処理部をさらに有する。この処理部では、第2のレセプタクルの光ファイバのコア位置およびケーブルの一端側のプラグのコア位置をそれぞれ光軸に対して複数の位置にずらす処理が行われる。 The measuring instrument has a second receptacle and an optical transmitter that outputs an optical signal to the second receptacle via an optical fiber. The second receptacle is configured such that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis. Moreover, the measuring device further has a processing unit. In this processing unit, processing is performed to shift the core position of the optical fiber of the second receptacle and the core position of the plug on the one end side of the cable to a plurality of positions with respect to the optical axis.
 例えば、処理部は、第2のレセプタクルの光ファイバのコア位置およびケーブルの一端側のプラグの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理では、光軸を中心とする円の円周上の複数の位置にずらす、ようにされてもよい。このように円周上の複数の位置にずらすことで、ずらす方向によらずに光軸中心から同じ距離だけずらすことができ、ずらす方向によらず同じ条件で受信機の軸ずれ量が規定範囲内に収まっているか判断することが可能になる。 For example, the processing unit shifts the core position of the optical fiber of the second receptacle and the core position of the optical fiber of the plug on the one end side of the cable to a plurality of positions with respect to the optical axis. It may be shifted to multiple positions on the circumference of the circle. By shifting to a plurality of positions on the circumference in this way, it is possible to shift the same distance from the center of the optical axis regardless of the direction of shift, and the amount of misalignment of the receiver can be within the specified range under the same conditions regardless of the direction of shift. It becomes possible to determine whether it is contained within.
 また、例えば、処理部は、一端側のプラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、一端側のプラグにケーブルに含まれる信号ラインを介して制御信号を送る、ようにされてもよい。これにより、一端側のプラグの光ファイバのコア位置を複数の位置にずらす処理を適切に行うことが可能となる。 Further, for example, in the process of shifting the core position of the optical fiber of the plug on the one end side to a plurality of positions with respect to the optical axis, the processing unit sends a control signal to the plug on the one end side via a signal line included in the cable. , may be so. As a result, it is possible to appropriately perform processing for shifting the core position of the optical fiber of the plug on the one end side to a plurality of positions.
 また、例えば、処理部は、複数の位置において受信機で受信される光信号に応じた値に基づいて受信機の軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部をさらに有する、ようにされてもよい。これにより、受信機の軸ずれ量が規定範囲内に収まっているか良好に判断することが可能となる。 Further, for example, the processing unit further includes a processing unit that performs processing for determining whether the amount of axis deviation of the receiver is within a specified range based on values corresponding to optical signals received by the receiver at a plurality of positions. have or be made to have. As a result, it is possible to determine whether the amount of axial deviation of the receiver is within the specified range.
 この場合、例えば、受信機で受信される光信号に応じた値は、光受信部の出力信号に基づいて測定されたパワー値またはビットエラーレート値であってもよい。これにより、受信機の軸ずれ量が規定範囲内に収まっているかを効果的に判断することが可能となる。 In this case, for example, the value corresponding to the optical signal received by the receiver may be a power value or bit error rate value measured based on the output signal of the optical receiver. This makes it possible to effectively determine whether the amount of axial deviation of the receiver is within the specified range.
 また、例えば、処理部は、判断結果をユーザに提示する処理をさらに行う、ようにされてもよい。この場合、例えば、表示や音出力等でユーザへの提示がされる。これにより、ユーザは受信機の軸ずれ量が規定範囲内に収まっているか否かを認識することが可能となる。 Also, for example, the processing unit may further perform a process of presenting the determination result to the user. In this case, for example, the information is presented to the user through display, sound output, or the like. This allows the user to recognize whether or not the amount of axial deviation of the receiver is within the specified range.
 また、例えば、受信機は、第1の波長では基本モードのみを伝搬する光ファイバを有し、第2の波長を持つと共に基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をし、第2の波長は、光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である、ようにされてもよい。これにより、ダブルモードの光通信装置である受信機の軸ずれ量が規定範囲内に収まっているか否かを判断することが可能となる。 Also, for example, the receiver has an optical fiber that propagates only the fundamental mode at a first wavelength and communicates using light having a second wavelength and having at least a first-order mode component along with the fundamental mode. , the second wavelength may be a wavelength at which the optical fiber can propagate at least the first order mode together with said fundamental mode. This makes it possible to determine whether or not the amount of axis deviation of the receiver, which is a double-mode optical communication device, is within a prescribed range.
 このように本技術においては、検査対象としての受信機の第1のレセプタクルに接続されるケーブルの一端側のプラグの光ファイバのコア位置およびそのケーブルの他端側のプラグが接続される測定器の第2のレセプタクルの光ファイバのコア位置を、ワースト条件を評価するために、それぞれ光軸に対して複数の位置にずらすものである。そのため、受信機の軸ずれ量が規定範囲内に収まっているかを良好に判断することが可能となる。 Thus, in the present technology, the core position of the optical fiber of the plug on one end of the cable connected to the first receptacle of the receiver to be inspected and the measuring instrument to which the plug on the other end of the cable is connected In order to evaluate the worst condition, the core position of the optical fiber of the second receptacle of is shifted to a plurality of positions with respect to the optical axis. Therefore, it is possible to determine whether the amount of axial misalignment of the receiver is within the specified range.
 この場合、例えば、測定器の光送信部から映像データの光信号を出力し、受信機側で受信された光信号による映像を確認できるものであれば、その映像が正しく表示されるか否かにより受信機の軸ずれ量が規定範囲内に収まっているかを判断可能である。 In this case, for example, if an optical signal of video data is output from the optical transmission unit of the measuring instrument and the image of the received optical signal can be checked on the receiver side, it is possible to check whether the image is displayed correctly. It is possible to judge whether the amount of misalignment of the receiver is within the specified range.
 また、本技術の他の概念は、
 レセプタクルと、
 前記レセプタクルを通して入力される光信号を受信する光受信部と、
 前記レセプタクルに一端側のプラグが接続されたケーブルの他端側のプラグのコア位置を光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて、前記ケーブルの他端側に接続される送信機の軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部を備える
 測定器にある。
Another concept of this technology is
a receptacle;
an optical receiver that receives an optical signal input through the receptacle;
A process of shifting the core position of the plug on the other end side of the cable connected to the receptacle on the other end side to a plurality of positions with respect to the optical axis, and measuring from the output signal of the optical receiver at the plurality of positions a measuring instrument comprising a processing unit that determines whether or not the amount of axial deviation of a transmitter connected to the other end of the cable is within a specified range based on the obtained value.
 また、本技術の他の概念は、
 レセプタクルと、
 前記レセプタクルを通して入力される光信号を受信する光受信部を備え、
 前記レセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記レセプタクルおよび前記レセプタクルに一端側のプラグが接続されたケーブルの他端側のプラグに接続された送信側機器のレセプタクルのコア位置を光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて、前記ケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部をさらに備える
 測定器にある。
Another concept of this technology is
a receptacle;
An optical receiver that receives an optical signal input through the receptacle,
The receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
a process of shifting a core position of the receptacle and a receptacle of a transmitting device connected to a plug on the other end of a cable having a plug on one end connected to the receptacle to a plurality of positions with respect to an optical axis; The measuring instrument further comprises a processing unit that determines whether the amount of axial deviation of the cable is within a specified range based on the value measured from the output signal of the optical receiving unit at the position.
 また、本技術の他の概念は、
 レセプタクルと、
 前記レセプタクルに光ファイバを介して光信号を出力する光送信部を備え、
 前記レセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成される
 測定器にある。
Another concept of this technology is
a receptacle;
An optical transmitter that outputs an optical signal to the receptacle via an optical fiber,
The receptacle is in the measuring instrument configured to allow the core position of the optical fiber to be shifted to a plurality of positions with respect to the optical axis.
 例えば、レセプタクルには、そのレセプタクルに接続されるケーブルに含まれる信号ラインまたはケーブルに含まれない信号ラインを介して複数の位置にずらすための制御信号が供給される、ようにされてもよい。 For example, the receptacle may be supplied with control signals for shifting to a plurality of positions via signal lines included in or not included in the cable connected to the receptacle.
 また、本技術の他の概念は、
 レセプタクルと、
 前記レセプタクルに光ファイバを介して光信号を出力する光送信部を備え、
 前記レセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記レセプタクルおよび前記レセプタクルに一端側のプラグが接続されたケーブルの他端側のプラグのコア位置を光軸に対して複数の位置にずらす処理を行う処理部をさらに備える
 測定器にある。
Another concept of this technology is
a receptacle;
An optical transmitter that outputs an optical signal to the receptacle via an optical fiber,
The receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
The measuring instrument further comprises a processor that shifts the core position of the receptacle and the plug on the other end of the cable connected to the receptacle with the plug on the one end to a plurality of positions with respect to the optical axis.
 例えば、処理部は、複数の位置においてケーブルの他端側に接続された受信機で受信される光信号に応じた値に基づいて受信機の軸ずれ量が規定範囲内に収まっているか判断する処理をさらに行う、ようにされてもよい。 For example, the processing unit determines whether the amount of misalignment of the receiver is within a specified range based on values corresponding to the optical signals received by the receiver connected to the other end of the cable at a plurality of positions. Further processing may be performed.
 また、本技術の他の概念は、
 光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成されたプラグを備える
 ケーブルにある。
Another concept of this technology is
A cable provided with a plug configured to allow the core position of an optical fiber to be shifted to a plurality of positions with respect to an optical axis.
 例えば、プラグに制御信号を送信する信号ラインをさらに備える、ようにされてもよい。 For example, a signal line for transmitting a control signal to the plug may be further provided.
空間結合による光通信の概要を示す図である。1 is a diagram showing an outline of optical communication by spatial coupling; FIG. 光ファイバの基本的な構造と、ステップ型光ファイバのLPmlモードを示す図である。FIG. 2 is a diagram showing the basic structure of an optical fiber and the LPml mode of a stepped optical fiber; シングルモードで一般的な1310nmのケースで規格化周波数Vを考えた場合の図である。FIG. 10 is a diagram when the normalized frequency V is considered in the case of 1310 nm, which is common in single mode. 光軸合わせの精度劣化要因の一例を示す図である。It is a figure which shows an example of the precision deterioration factor of optical axis alignment. 光軸合わせの精度劣化要因の一例を示す図である。It is a figure which shows an example of the precision deterioration factor of optical axis alignment. 1310nmのシングルモードファイバに850nmの波長の光を入力した場合にLP01の基本モードとLP11の1次モードが存在し得ることを説明するための図である。FIG. 4 is a diagram for explaining that when light with a wavelength of 850 nm is input to a single-mode fiber with a wavelength of 1310 nm, a fundamental mode of LP01 and a first-order mode of LP11 can exist. 入力光にはLP01の基本モードしか存在しない条件で光軸ずれが発生した場合について考えるための図である。It is a diagram for considering a case where an optical axis shift occurs under the condition that only the fundamental mode of LP01 exists in the input light. 入力光の波長が1310nmと850nmにおけるロス量のシミュレーション結果を記載したグラフである。FIG. 10 is a graph showing simulation results of loss amount when the wavelength of input light is 1310 nm and 850 nm; FIG. 光軸ずれがない状態では入力光には基本モードしか存在しないが、光軸ずれがある状態では基本モードの一部が1次モードへ変換されることを示す図である。FIG. 4 is a diagram showing that only the fundamental mode exists in input light when there is no optical axis misalignment, but part of the fundamental mode is converted to the primary mode when there is optical axis misalignment. ずれに応じて基本モードが1次モードへ変換されることを説明するためのグラフである。4 is a graph for explaining how the fundamental mode is converted to the primary mode according to the deviation; ダブルモードの光通信装置(送信機、ケーブル、受信機)を利用した送受信システムの構成例を示すブロック図である。1 is a block diagram showing a configuration example of a transmission/reception system using double-mode optical communication devices (transmitter, cable, receiver); FIG. 測定対象と測定冶具との間における空間結合による光通信の概要を示す図である。1 is a diagram showing an outline of optical communication by spatial coupling between a measurement object and a measurement jig; FIG. シングルモードとダブルモードの場合に光ファイバ内を伝達する光の強度分布をシミュレーションした図である。FIG. 4 is a diagram simulating the intensity distribution of light transmitted through an optical fiber in the case of single mode and double mode; 光ファイバ内を基本モードおよび1次モードの成分を持つ光が伝送する場合における光のパワー強度分布をシミュレーションした図である。FIG. 4 is a diagram simulating the power intensity distribution of light when light having fundamental mode and first-order mode components is transmitted through an optical fiber; 測定対象と測定冶具との間における空間結合による光通信(シングルモードとダブルモードの場合)を説明するための図である。FIG. 3 is a diagram for explaining optical communication (single mode and double mode) by spatial coupling between a measurement object and a measurement jig; 測定治具側の光ファイバ位置が上にずれた場合と下にずれた場合で光ファイバに結合できる光の量が大きく変わることを示す図である。FIG. 10 is a diagram showing that the amount of light that can be coupled to the optical fiber greatly changes depending on whether the position of the optical fiber on the side of the measuring jig is shifted upward or downward. 測定冶具側の光ファイバ位置(コア位置)をずらして行う評価方法の一例を示す図である。It is a figure which shows an example of the evaluation method performed by shifting the optical fiber position (core position) by the side of a measuring jig. 光ファイバの位置を複数の位置にずらす一例を示す図である。It is a figure which shows an example which shifts the position of an optical fiber to several positions. 送信機を検査対象とする測定システムの構成例を示すブロック図である。1 is a block diagram showing a configuration example of a measurement system that inspects a transmitter; FIG. 送信機のレセプタクルとケーブルのプラグが接続された状態を示す図である。FIG. 4 is a diagram showing a state in which the receptacle of the transmitter and the plug of the cable are connected; レセプタクルとプラグの構造を説明するための図である。FIG. 4 is a diagram for explaining structures of a receptacle and a plug; 測定器からケーブルのプラグにそのケーブルに含まれる信号ラインを介して制御信号が供給される状態を示す図である。FIG. 4 illustrates how control signals are supplied from the measuring instrument to the plug of the cable via signal lines included in the cable. ケーブルのプラグと測定器のレセプタクルが接続された状態を示す図である。FIG. 4 is a diagram showing a state in which the plug of the cable and the receptacle of the measuring device are connected; 測定器の制御部における測定時の制御処理の手順の一例を示すフローチャートである。4 is a flow chart showing an example of a procedure of control processing at the time of measurement in the control unit of the measuring device; 測定システムにおけるケーブルと測定器の部分を一体的に構成する例を示す図である。FIG. 4 is a diagram showing an example of integrally configuring the cable and measuring instrument portions in the measurement system; ケーブルを検査対象とする測定システムの構成例を示すブロック図である。1 is a block diagram showing a configuration example of a measurement system for inspecting a cable; FIG. 受信側測定器の制御部における測定時の制御処理の手順の一例を示すフローチャートである。4 is a flow chart showing an example of a procedure of control processing at the time of measurement in the control section of the measuring device on the receiving side; ケーブルを検査対象とする測定システムの他の構成例を示すブロック図である。FIG. 11 is a block diagram showing another configuration example of a measurement system for inspecting a cable; 受信機を検査対象とする測定システムの構成例を示す図である。It is a figure which shows the structural example of the measurement system which makes a receiver the test object. 測定器の制御部における測定時の制御処理の手順の一例を示すフローチャートである。4 is a flow chart showing an example of a procedure of control processing at the time of measurement in the control unit of the measuring device; 受信機を検査対象とする他の測定システムの構成例を示す図である。FIG. 11 is a diagram showing a configuration example of another measurement system whose inspection target is a receiver;
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
 1.実施の形態
 2.変形例
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, modes for carrying out the invention (hereinafter referred to as "embodiments") will be described. The description will be given in the following order.
1. Embodiment 2. Modification
 <1.実施の形態>
 [本技術に関係する技術の説明]
 まず、本技術に関係する技術について説明する。図1は、空間結合による光通信の概要を示している。この場合、送信側の光ファイバ10Tから出射された光はレンズ11Tでコリメート光に成形されて出射される。そして、このコリメート光が受信側のレンズ11Rで集光されて光ファイバ10Rに入射される。この光通信の場合、特に、シングルモードファイバにおいては、位置ずれにより光パワーの大きなロスが発生する。なお、光ファイバ10T,10Rは、光路となる中心部のコア10aと、その周囲を覆うクラッド10bの二重構造となっている。
<1. Embodiment>
[Description of technology related to this technology]
First, the technology related to the present technology will be described. FIG. 1 shows an outline of optical communication by spatial coupling. In this case, the light emitted from the optical fiber 10T on the transmission side is collimated by the lens 11T and emitted. Then, this collimated light is condensed by the lens 11R on the receiving side and is incident on the optical fiber 10R. In the case of this optical communication, especially in a single-mode fiber, a large loss of optical power occurs due to misalignment. The optical fibers 10T and 10R have a double structure of a central core 10a serving as an optical path and a clad 10b surrounding the core 10a.
 次に、モードの基本的な考え方について説明する。光ファイバ内をシングルモードで伝搬しようとする場合、モードが1つだけ存在するように、ファイバの屈折率やコア径といったパラメータを決める必要がある。 Next, I will explain the basic concept of modes. When trying to propagate in a single mode in an optical fiber, it is necessary to determine parameters such as the refractive index and core diameter of the fiber so that only one mode exists.
 図2(a)は、光ファイバの基本的な構造を示している。光ファイバは、コアと呼ばれる中心部をクラッドと呼ばれる層で覆った構造となっている。この場合、コアの屈折率n1は高く、クラッドの屈折率n2は低くされており、光はコアの中に閉じ込められて伝搬していく。 FIG. 2(a) shows the basic structure of an optical fiber. An optical fiber has a structure in which a central portion called a core is covered with a layer called a clad. In this case, the core has a high refractive index n1 and the clad has a low refractive index n2, so that light is confined in the core and propagates.
 図2(b)は、ステップ型光ファイバのLPml (Linearly Polarized:直線偏光) モードであり、規格化伝搬定数bを規格化周波数Vの関数として示したものである。縦軸は規格化伝搬定数bであり、あるモードが通らない(遮断)状態ではb=0となり、光パワーがコア内に閉じ込められるほど(伝搬できるほど)、bは1に近づく。横軸は規格化周波数Vで、以下の数式(1)で表すことができる。ここで、dはコア径、NAは開口数、λは光の波長である。
 V=πdNA/λ   ・・・(1)
FIG. 2(b) shows the LPml (Linearly Polarized) mode of the stepped optical fiber and the normalized propagation constant b as a function of the normalized frequency V. FIG. The vertical axis is the normalized propagation constant b. When a certain mode does not pass through (blocked), b=0. The horizontal axis is the normalized frequency V, which can be expressed by the following formula (1). Here, d is the core diameter, NA is the numerical aperture, and λ is the wavelength of light.
V=πdNA/λ (1)
 例えば、V=2.405のときLP11が遮断される状態となるため、モードはLP01のみ存在することになる。従って、V=2.405以下の状態がシングルモードとなる。ここで、LP01は基本モード(0次モード)であり、以降LP11, LP21,・・・が、それぞれ、1次モード、2次モード、・・・となる。 For example, when V=2.405, LP11 is cut off, so only LP01 exists as a mode. Therefore, the state of V=2.405 or less is the single mode. Here, LP01 is the fundamental mode (zeroth-order mode), and LP11, LP21, .
 例えば、図3(a)のように、シングルモードで一般的な1310nmのケースで規格化周波数Vを考えてみる。ここで、コア径d、開口数NAをそれぞれ1310nm光ファイバの一般的なパラメータであるd=8μm、NA=0.1とし、ファイバを伝搬する光の波長を1310nmとすると、数式(1)からV=1.92となる。 For example, let us consider the normalized frequency V in the case of 1310 nm, which is common in single mode, as shown in FIG. 3(a). Here, assuming that the core diameter d and the numerical aperture NA are d = 8 μm and NA = 0.1, which are general parameters for a 1310 nm optical fiber, and the wavelength of light propagating through the fiber is 1310 nm, from equation (1) V=1.92.
 従って、図3(b)に示すように、規格化周波数Vは2.405以下となるため、LP01の基本モードのみ伝搬されることとなり、シングルモードとなる。ここで、コア径を大きくすると伝播できるモードが増えることになる。因みに、例えば、一般的なマルチモードファイバはコア径を50μmといった値にすることで数百のモードを伝搬させている。 Therefore, as shown in FIG. 3(b), the normalized frequency V is 2.405 or less, so that only the fundamental mode of LP01 is propagated, resulting in a single mode. Here, increasing the core diameter increases the number of modes that can be propagated. Incidentally, for example, a general multimode fiber propagates several hundred modes by setting the core diameter to a value such as 50 μm.
 図1に示すような空間結合による光通信を考えた場合、シングルモードでは、コア径が小さいため、送信側/受信側の光結合部の位置合わせがシビアになり、正確に光軸を合わせるための精度要求が高くなるという問題がある。 Considering optical communication using spatial coupling as shown in Fig. 1, in single mode, the core diameter is small, so it is difficult to align the optical coupling part on the transmitting side/receiving side. However, there is a problem that the accuracy requirements for
 この問題を解決するために、一般的に、高精度な部品を使用したり、光ファイバへの光入力部を加工することで光をファイバコアへ挿入し易くしたりする。しかし、高精度な部品はコストが高く、また加工を要するものは加工費が高くなるため、シングルモード通信用のコネクタやシステムは一般的にコストが高くなる。 In order to solve this problem, it is generally easier to insert light into the fiber core by using high-precision parts or processing the light input part to the optical fiber. However, high-precision parts are expensive, and those that require machining are expensive, so connectors and systems for single-mode communication are generally expensive.
 図4、図5は、光軸合わせの精度劣化要因の一例を示している。例えば、図4(a)に示すように、フェルール15T,15Rと光ファイバ10T,10Rを固定するための固定材16T,16Rの量の不均一により、光軸ずれが発生する。また、例えば、図4(b)に示すように、レンズ11T,11Rの整形精度不足により、光軸ずれが発生する。 FIGS. 4 and 5 show an example of factors that degrade the precision of optical axis alignment. For example, as shown in FIG. 4(a), optical axis misalignment occurs due to uneven amounts of fixing materials 16T and 16R for fixing ferrules 15T and 15R and optical fibers 10T and 10R. Further, for example, as shown in FIG. 4B, optical axis deviation occurs due to insufficient shaping accuracy of the lenses 11T and 11R.
 また、図5(a),(b)に示すように、フェルール15T,15Rに設けた位置合わせ用機構(凹部17T、凸部17R)の精度不足により、光軸ずれが発生する。なお、図5(a),(b)に示す凸部17Rは、ピンであることもある。 In addition, as shown in FIGS. 5(a) and 5(b), optical axis misalignment occurs due to insufficient accuracy of the alignment mechanisms (recessed portion 17T and protruded portion 17R) provided in the ferrules 15T and 15R. The convex portion 17R shown in FIGS. 5(a) and 5(b) may be a pin.
 本技術は、例えば位置ずれの精度を緩和してコスト削減を図り得る光通信装置、いわゆるダブルモードの光通信装置(送信機、ケーブル、受信機)において、送信機の軸ずれ量が規定範囲内に収まっているかを良好に判断することを可能とするための技術である。 For example, in an optical communication device that can reduce the cost by reducing the accuracy of misalignment, that is, a so-called double-mode optical communication device (transmitter, cable, receiver), the amount of misalignment of the transmitter is within a specified range. This is a technique for making it possible to make a good judgment as to whether the
 ここで、ダブルモードの光通信装置は、第1の波長では基本モードのみを伝搬する光導波路を有し、第2の波長を持つと共に基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をするものであって、第2の波長は、光導波路が基本モードと共に少なくとも1次モードを伝搬し得る波長である。 Here, the double-mode optical communication device has an optical waveguide that propagates only the fundamental mode at a first wavelength, and uses light having a second wavelength and having at least a first-order mode component together with the fundamental mode. For communication, the second wavelength is the wavelength at which the optical waveguide can propagate at least the first order mode along with the fundamental mode.
 ダブルモードの光通信装置について説明する。例えば、図3(a)と同じ条件の光ファイバに、1310nmではなく、850nmの波長の光を入力した場合、図6(b)に示すように、規格化周波数V=2.96となる。そのため、図6(a)に示すように、LP01の基本モードと、LP11の1次モードが存在し得ることになる。 A double-mode optical communication device will be explained. For example, when light with a wavelength of 850 nm instead of 1310 nm is input to the optical fiber under the same conditions as in FIG. 3(a), the normalized frequency V=2.96 as shown in FIG. 6(b). Therefore, as shown in FIG. 6A, a fundamental mode of LP01 and a primary mode of LP11 can exist.
 図7(a)に示すような光学系を組んだ際に、入力光にはLP01の基本モードしか存在しない条件で、受信側の光ファイバの位置が光軸に対して垂直方向にずれた場合(図7(a),(b)の矢印参照)、つまり光軸ずれが発生した場合について考える。 When the optical system as shown in FIG. 7(a) is assembled, and under the condition that only the fundamental mode of LP01 exists in the input light, the position of the optical fiber on the receiving side is shifted in the direction perpendicular to the optical axis. (Refer to the arrows in FIGS. 7A and 7B), that is, the case where optical axis deviation occurs.
 図8は、その場合における光パワーの結合効率のシミュレーション結果を記載したグラフである。横軸は光軸ずれ量で、縦軸は結合効率を表している。ずれがない状態では、光ファイバ内へ100%のパワーが伝搬し、結合効率は1となる。そして、例えば、入力光に対して光ファイバ内へ50%しかパワーが伝搬されない場合は、結合効率は0.5となる。 FIG. 8 is a graph showing simulation results of optical power coupling efficiency in that case. The horizontal axis represents the amount of optical axis deviation, and the vertical axis represents the coupling efficiency. With no misalignment, 100% of the power propagates into the optical fiber and the coupling efficiency is unity. Then, for example, if only 50% of the power of the input light is propagated into the optical fiber, the coupling efficiency is 0.5.
 入力光の波長を1310nmと850nmで比較すると、850nmの場合の特性が良いことが分かる。この理由は、1310nmの場合には基本モードのみしか伝搬できないのに対して、850nmの場合、基本モードの他に1次モードも伝搬できるためである(図6(a)参照)。 Comparing the input light wavelengths of 1310 nm and 850 nm, it can be seen that the characteristics of 850 nm are good. The reason for this is that only the fundamental mode can propagate in the case of 1310 nm, whereas the primary mode can propagate in addition to the fundamental mode in the case of 850 nm (see FIG. 6A).
 つまり、光軸ずれがない状態では、図9(a)に示すように、入力光には基本モードしか存在しない。一方、光軸ずれがある状態では、図9(b)に示すように、基本モードの一部がクラッドとコアの屈折率差で生じる位相差を利用して1次モードへ変換される。1310nmの場合はこの1次モードを伝搬できないが、850nmの場合はこの1次モードも伝搬できることから、850nmの場合の特性が良くなる。 In other words, when there is no optical axis deviation, only the fundamental mode exists in the input light, as shown in FIG. 9(a). On the other hand, when the optical axis is misaligned, part of the fundamental mode is converted into the primary mode by utilizing the phase difference caused by the refractive index difference between the clad and the core, as shown in FIG. 9(b). In the case of 1310 nm, this first-order mode cannot propagate, but in the case of 850 nm, this first-order mode can also propagate, so the characteristics in the case of 850 nm are improved.
 図10のグラフには、基本モード(0次モード)成分と1次モード成分を分離して記載しており、足し合わせたものがトータル(Total)の曲線となる。入力光は基本モードしか存在しないため、ずれに応じて基本モードが1次モードへ変換されていることが分かる。一方、1310nmの場合、図3(a)に示すように基本モードしか伝搬できないため、図8に示すように、基本モードが純粋に減少している。 In the graph of FIG. 10, the fundamental mode (0th mode) component and the 1st mode component are separately described, and the sum is the total curve. Since the input light exists only in the fundamental mode, it can be seen that the fundamental mode is converted to the first-order mode according to the deviation. On the other hand, in the case of 1310 nm, only the fundamental mode can propagate as shown in FIG. 3(a), so the fundamental mode is purely reduced as shown in FIG.
 図8において、1310nmと850nmについて、結合効率0.8(約-1dB)で比較すると約1.8倍、結合効率0.9(約―0.5dB)で比較すると約2.35倍も位置ずれに対する精度を緩和することができる。 In FIG. 8, for 1310 nm and 850 nm, when the coupling efficiency is 0.8 (about -1 dB), it is about 1.8 times, and when the coupling efficiency is 0.9 (about -0.5 dB), it is about 2.35 times. Accuracy against deviation can be relaxed.
 このように光ファイバを第1の波長(例えば1310nm)では基本モードのみを伝搬し得るものとし、この光ファイバが基本モードと共に1次モードを伝搬し得る第2の波長(例えば850nm)の光を用いて通信を行うように構成することで、光パワーの結合効率を高めることが可能となる。 Thus, if the optical fiber is capable of propagating only the fundamental mode at a first wavelength (e.g. 1310 nm), the optical fiber transmits light of a second wavelength (e.g. 850 nm) capable of propagating the first mode along with the fundamental mode. It is possible to improve the coupling efficiency of the optical power by configuring to perform communication using it.
 図11は、ダブルモードの光通信装置(送信機、ケーブル、受信機)を利用した送受信システム100の構成例を示している。この送受信システム100は、送信機200と、受信機300と、ケーブル400を有している。送信機200と受信機300は、ケーブル400を介して接続されている。 FIG. 11 shows a configuration example of a transmission/reception system 100 using double-mode optical communication devices (transmitter, cable, receiver). This transmission/reception system 100 has a transmitter 200 , a receiver 300 and a cable 400 . Transmitter 200 and receiver 300 are connected via cable 400 .
 送信機200は、例えば、パーソナルコンピュータ、ゲーム機、ディスクプレーヤ、セットトップボックス、デジタルカメラ、携帯電話などのAVソースである。受信機300は、例えば、テレビ受信機、プロジェクタ、ヘッドマウントディスプレイ等である。 The transmitter 200 is, for example, an AV source such as a personal computer, game machine, disc player, set-top box, digital camera, mobile phone. Receiver 300 is, for example, a television receiver, a projector, a head-mounted display, or the like.
 送信機200は、送信処理部204と、ドライバIC205と、発光部201と、光ファイバ203と、レセプタクル202を有している。発光部201は、VCSEL(Vertical Cavity Surface Emitting LASER)等のレーザー素子、またはLED(light emitting diode)等の発光素子を備えている。発光部201は、光送信部を構成し、送信処理部204から供給される送信データに基づいてドライバIC205で駆動され、送信データに応じた光信号を出力する。光ファイバ203は、発光部201から出力された光信号をレセプタクル202に伝搬する。 The transmitter 200 has a transmission processing section 204 , a driver IC 205 , a light emitting section 201 , an optical fiber 203 and a receptacle 202 . The light emitting unit 201 includes a laser element such as a VCSEL (Vertical Cavity Surface Emitting LASER) or a light emitting element such as an LED (light emitting diode). The light emitting unit 201 constitutes an optical transmission unit, is driven by the driver IC 205 based on transmission data supplied from the transmission processing unit 204, and outputs an optical signal corresponding to the transmission data. The optical fiber 203 propagates the optical signal output from the light emitting section 201 to the receptacle 202 .
 受信機300は、レセプタクル301と、受光部302と、光ファイバ303と、増幅部304と、受信処理部305を有している。受光部302は、フォトダイオード等の受光素子を備えている。受光部302は、レセプタクル301から光ファイバ303を介して送られてくる光信号を電気信号に変換する。受光部302から出力された電気信号は増幅部304で増幅されて受信信号として受信処理部305に供給される。受信処理部305は、受信信号に対して復調等の処理を行って受信データを得る。
305に
The receiver 300 has a receptacle 301 , a light receiving section 302 , an optical fiber 303 , an amplifier section 304 and a reception processing section 305 . The light receiving section 302 includes a light receiving element such as a photodiode. The light receiving section 302 converts an optical signal sent from the receptacle 301 through the optical fiber 303 into an electrical signal. The electric signal output from the light receiving unit 302 is amplified by the amplifying unit 304 and supplied to the reception processing unit 305 as a received signal. Reception processing section 305 obtains reception data by performing processing such as demodulation on the reception signal.
to 305
 ケーブル400は、光ファイバ401の一端および他端に、プラグ402,403を有する構成とされている。光ファイバ401の一端のプラグ402は送信機200のレセプタクル202に接続され、この光ファイバ401の他端のプラグ403は受信機300のレセプタクル301に接続されている。 The cable 400 is configured to have plugs 402 and 403 at one end and the other end of the optical fiber 401 . A plug 402 at one end of the optical fiber 401 is connected to the receptacle 202 of the transmitter 200 , and a plug 403 at the other end of the optical fiber 401 is connected to the receptacle 301 of the receiver 300 .
 送信機200の光ファイバ203、受信機300の光ファイバ303およびケーブル400の光ファイバ401は、第1の波長では基本モードの成分のみを伝搬するものとされる。また、これらの光ファイバは、第1の波長で波長分散がゼロとなるように構成されている。例えば、第1の波長は1310nmとされ、コア径d、開口数NAがそれぞれ1310nm光ファイバの一般的なパラメータであるd=8μm、NA=0.1とされ、規格化周波数V=1.92となるようにされている。これにより、これらの光ファイバは、1310nmの波長ではシングルモードファイバとして機能する(図3参照)。 The optical fiber 203 of the transmitter 200, the optical fiber 303 of the receiver 300 and the optical fiber 401 of the cable 400 are assumed to propagate only the fundamental mode component at the first wavelength. These optical fibers are also configured to have zero chromatic dispersion at the first wavelength. For example, the first wavelength is 1310 nm, the core diameter d and the numerical aperture NA are d=8 μm and NA=0.1, which are general parameters for a 1310 nm optical fiber, respectively, and the normalized frequency V=1.92. is designed to be These optical fibers thus act as single-mode fibers at a wavelength of 1310 nm (see FIG. 3).
 送受信システム100では、第2の波長を持つと共に基本モードと1次モードの成分を持つ光を用いて通信が行われる。ここで、第2の波長は、上述の各光ファイバが基本モードと共に1次モードを伝搬し得る波長である。具体的には、例えば、第2の波長は850nmとされる。850nmの光が用いられる場合、これらの光ファイバでは、規格化周波数V=2.96となることから、基本モードの他に1次モードも伝搬し得るものとなり、ダブルモードファイバとして機能する(図6参照)。 In the transmission/reception system 100, communication is performed using light having a second wavelength and having fundamental mode and first-order mode components. Here, the second wavelength is the wavelength at which each optical fiber described above can propagate the primary mode as well as the fundamental mode. Specifically, for example, the second wavelength is 850 nm. When light with a wavelength of 850 nm is used, these optical fibers have a normalized frequency V of 2.96, so that the first-order mode can propagate in addition to the fundamental mode, and they function as double-mode fibers (Fig. 6).
 上述したようにダブルモードの光通信装置(送信機、ケーブル、受信機)においては、位置ずれの精度を緩和してコスト削減を図ることが目的であることから、精度の低い安価な部品を使えることが特徴である。しかし、その結果、製品としてはある程度軸ずれが発生していることが想定される。そのため、コネクタ嵌合時に光の送受伝搬を行う際には、送信側/受信側双方とも軸ずれ量が規定内に収まっている必要があり、逆に収まっていないと通信できない可能性がある。 As mentioned above, in the double-mode optical communication device (transmitter, cable, receiver), since the purpose is to reduce the accuracy of misalignment and reduce costs, low-precision and inexpensive parts can be used. It is characterized by However, as a result, it is assumed that some degree of axial misalignment occurs in the product. Therefore, when transmitting and receiving light when the connector is mated, the amount of axis misalignment on both the transmitting side and the receiving side must be within the specified range.
 図12は、測定対象と測定冶具との間における空間結合による光通信の概要を示している。この場合、測定対象側の光ファイバ20Tから出射された光はレンズ21Tでコリメート光に成形されて出射される。そして、このコリメート光が測定冶具側のレンズ21Rで集光されて光ファイバ20Rに入射される。なお、光ファイバ20T,20Rは、光路となる中心部のコア20aと、その周囲を覆うクラッド20bの二重構造となっている。 FIG. 12 shows an outline of optical communication by spatial coupling between the object to be measured and the measurement jig. In this case, the light emitted from the optical fiber 20T on the measurement target side is collimated by the lens 21T and emitted. Then, this collimated light is condensed by the lens 21R on the measurement jig side and is incident on the optical fiber 20R. The optical fibers 20T and 20R have a double structure of a central core 20a serving as an optical path and a clad 20b surrounding the core 20a.
 例えば、図12に示すように、測定対象に対して測定治具が光軸センターに位置する場合、測定対象に軸ずれがある場合でも測定治具側では規定内のパワーが受光される可能性がある。しかし、これは測定治具側、つまりは受信側のばらつきは加味されておらず、実際のシステムではNG(Not Good)となる可能性がある。 For example, as shown in FIG. 12, when the measurement jig is positioned at the center of the optical axis with respect to the measurement object, there is a possibility that the measurement jig receives power within the specified range even if the measurement object has an axis deviation. There is However, this does not consider variations on the measuring jig side, that is, on the receiving side, and there is a possibility that it will be NG (Not Good) in an actual system.
 一般的なシングルモードの規格品、例えばMPOといった光コネクタも光軸に対する許容公差が規定されているが、これはパワー強度分布が正規分布のため、測定対象に対して測定治具側が光軸センターでも成り立つ。なぜなら測定時に受信側のズレも加味して測定対象側のロス量を決めればよいからである。この場合、規定の全体ロス許容量から受信側の公差分を差し引いて評価時のスペックを決めるようにされる。 General single-mode standard products, such as MPO optical connectors, also have tolerances for the optical axis. But it works. This is because the amount of loss on the side of the object to be measured can be determined in consideration of the deviation on the receiving side during measurement. In this case, the specification at the time of evaluation is determined by subtracting the tolerance of the receiving side from the prescribed overall loss allowance.
 図13(a)は、シングルモードの場合に光ファイバ内を伝達する光のパワー強度分布を示している。この場合、光ファイバのコアの中心が最も強度が高く、クラッドへ近づくほど強度が低くなる、正規分布となる。 FIG. 13(a) shows the power intensity distribution of light propagating through the optical fiber in the case of single mode. In this case, the intensity is the highest at the center of the core of the optical fiber, and becomes lower toward the clad, resulting in a normal distribution.
 しかし、ダブルモードの場合のように基本モードと1次モードが混在した場合には、図13(b)に示すように、光ファイバ内を伝達する光のパワー強度分布は正規分布ではなくなる。この場合、強度の高い箇所がコアの中心に対して、一の方向およびこの一の方向とは逆の他の方向に、図示の例では上方向および下方向に、交互に現れる。 However, when the fundamental mode and the primary mode coexist as in the case of the double mode, the power intensity distribution of the light transmitted through the optical fiber ceases to be a normal distribution, as shown in FIG. 13(b). In this case, the points of high strength alternate with respect to the center of the core in one direction and in another direction opposite to this one direction, upward and downward in the example shown.
 図14(a)は、上述の図13(b)と同様に、光ファイバ内を基本モードおよび1次モードの成分を持つ光が伝送する場合における光のパワー強度分布をシミュレーションした図である。図14(b),(c),(d)は、それぞれ、P1,P2,P3の位置で切断した場合における光ファイバの出力端面の光のパワー強度分布を示している。なお、図14(b),(c),(d)における破線で示された円は、コアの外周を示している。 FIG. 14(a) is a diagram simulating the power intensity distribution of light when light having fundamental mode and first-order mode components is transmitted through an optical fiber, similar to FIG. 13(b) described above. FIGS. 14(b), (c), and (d) respectively show the power intensity distribution of light at the output end face of the optical fiber cut at positions P1, P2, and P3. 14(b), (c), and (d) indicate the outer periphery of the core.
 図12に示すような測定対象と測定冶具との間における空間結合による光通信を考える。図15(a)のように、測定対象側のコア20aの中心から出た光は測定冶具側のコア20aの中心へと結合する。 Consider optical communication by spatial coupling between the measurement object and the measurement jig as shown in FIG. As shown in FIG. 15A, the light emitted from the center of the core 20a on the side of the object to be measured is coupled to the center of the core 20a on the side of the measurement jig.
 また、例えば、図14(b)のパワー強度分布の光が測定対象側から出射された場合、図15(b)に示すように、測定治具側ではファイバセンターから外れる方向に強度が高い光が進むことになる。このように測定治具の光軸センターに光ファイバがいる状態では結合効率がワーストとなる条件とは言えない。 Further, for example, when the light having the power intensity distribution shown in FIG. 14B is emitted from the measurement target side, as shown in FIG. will proceed. In this way, it cannot be said that the condition in which the optical fiber is in the center of the optical axis of the measuring jig is the worst condition for the coupling efficiency.
 つまり、測定対象側から出射される光のパワー強度分布の光が図16(a)に示す状態にあった場合、図16(b)~(d)に示すように、測定治具側の光ファイバ位置が上にずれた場合と下にずれた場合で光ファイバに結合できる光の量が大きく変わる。 That is, when the light having the power intensity distribution of the light emitted from the measurement object side is in the state shown in FIG. 16(a), as shown in FIGS. The amount of light that can be coupled to the optical fiber varies greatly depending on whether the fiber position is shifted upward or downward.
 図16(b)は、測定治具側の光ファイバ位置が上側にずれた場合において測定冶具に入射される光の光ファイバ端におけるパワー強度分布とコアとの位置関係を示している。図16(c)は、測定治具側の光ファイバ位置がセンターにある場合において測定冶具に入射される光の光ファイバ端におけるパワー強度分布とコアとの位置関係を示している。さらに、図16(d)は、測定治具側の光ファイバ位置が下側にずれた場合において測定冶具に入射される光の光ファイバ端におけるパワー強度分布とコアとの位置関係を示している。 FIG. 16(b) shows the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the measurement jig and the core when the position of the optical fiber on the measurement jig side is shifted upward. FIG. 16(c) shows the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the measuring jig and the core when the optical fiber on the measuring jig side is positioned at the center. Furthermore, FIG. 16(d) shows the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the measuring jig and the core when the position of the optical fiber on the measuring jig side is shifted downward. .
 測定対象の軸ずれ量が規定範囲内に収まっているか判断する際、送信側と受信側のそれぞれの光ファイバの位置ずれを加味する必要がある。双方にとって悪い方向に光ファイバの位置がずれた場合がワーストとなる条件であり、その条件でも規定量内のパワー量を担保する必要がある。つまりは、測定治具側も敢えて光ファイバ位置をずらした評価が必要となる。  When judging whether the amount of axis misalignment of the object to be measured is within the specified range, it is necessary to consider the misalignment of the optical fibers on the transmitting side and the receiving side. The worst condition is when the position of the optical fiber deviates in a direction that is bad for both, and it is necessary to secure the amount of power within the specified amount even under this condition. In other words, it is necessary to deliberately shift the position of the optical fiber for evaluation on the measuring jig side as well.
 図17は、測定冶具側の光ファイバ位置(コア位置)をずらして行う評価方法の一例を示している。測定対象から出射された光に対し、ワースト条件を評価するために、測定治具側は敢えて光ファイバの位置をずらし、規定のパワー量内であるかどうかを判断する。光ファイバの位置をずらす際、測定対象側から出射される光のパワー強度分布の光が図17(a)に示す状態にあった場合には、測定治具側の光ファイバの位置を上側にずらしたときがワースト条件となる。 FIG. 17 shows an example of an evaluation method performed by shifting the optical fiber position (core position) on the measurement jig side. In order to evaluate the worst conditions for the light emitted from the object to be measured, the measuring jig deliberately shifts the position of the optical fiber and judges whether the power is within a specified amount. When shifting the position of the optical fiber, if the power intensity distribution of the light emitted from the measurement object side is in the state shown in FIG. The worst condition is when it is shifted.
 しかし、測定対象側から出射される光のパワー強度分布形状によってワースト条件となる測定治具側の光ファイバの位置(コア位置)のずれの方向が変化することから、光ファイバの位置を光軸に対して複数の位置にずらして評価する必要がある。 However, the direction of deviation of the position (core position) of the optical fiber on the side of the measurement jig, which is the worst condition, changes depending on the power intensity distribution shape of the light emitted from the measurement target side. It is necessary to evaluate by shifting to multiple positions with respect to
 図18(a)は、光ファイバの位置を複数の位置にずらす一例を示している。この例は、光ファイバの位置(コア位置)を、光軸を中心とする円の円周上の複数の位置、ここでは「1」~「8」の8箇所の位置にずらす例を示している。なお、8箇所に限定されるものではなく、例えば4箇所、16箇所などであってもよい。図17(b-1)~(b-8)は、それぞれ、測定治具側の光ファイバ位置を「1」~「8」にずらした場合において、測定冶具に入射される光の光ファイバ端におけるパワー強度分布とコアとの位置関係の一例を示している。 FIG. 18(a) shows an example of shifting the position of the optical fiber to a plurality of positions. This example shows an example in which the position of the optical fiber (core position) is shifted to a plurality of positions on the circumference of a circle centered on the optical axis, here eight positions from "1" to "8". there is Note that the number of locations is not limited to 8, and may be, for example, 4, 16, or the like. 17(b-1) to (b-8) show the optical fiber end of the light incident on the measuring jig when the position of the optical fiber on the measuring jig side is shifted from "1" to "8", respectively. 1 shows an example of the positional relationship between the power intensity distribution and the core in .
 このように光軸を中心とする円の円周上の複数の位置に光ファイバの位置をずらして評価することで、ずらす方向によらずに光軸中心から同じ距離だけずらすことができ、ずらす方向によらず同じ条件で評価をすることが可能となり、正しい評価を行うことが可能となる。例えば、図18(b)は、4角形を9等分して外側の8箇所の位置に光ファイバの位置(コア位置)をずらす例を示しているが、この例の場合、「2」、「4」、「6」、「8」の位置では、他の位置に比べて光軸中心からの距離が大きくなるため条件が厳しく、正しい評価ができない可能性がある。 In this way, by shifting the position of the optical fiber to a plurality of positions on the circumference of the circle centered on the optical axis and evaluating it, it is possible to shift the optical fiber by the same distance from the center of the optical axis regardless of the shifting direction. Evaluation can be performed under the same conditions regardless of the direction, and correct evaluation can be performed. For example, FIG. 18B shows an example in which a square is divided into 9 equal parts and the optical fiber positions (core positions) are shifted to eight outer positions. At positions "4", "6", and "8", the distance from the center of the optical axis is greater than at other positions, so the conditions are severe and there is a possibility that correct evaluation cannot be performed.
 「送信機を検査対象とする測定システム」
 図19(a)は、送信機を検査対象とする測定システム50Aの構成例を示している。この測定システム50Aは、検査対象の送信機200と、測定冶具としてのケーブル510と、測定器520を有している。送信機200と測定器520は、ケーブル510を介して接続されている。
"Measurement system for transmitter inspection"
FIG. 19(a) shows a configuration example of a measurement system 50A whose inspection target is a transmitter. This measuring system 50A has a transmitter 200 to be inspected, a cable 510 as a measuring jig, and a measuring device 520. As shown in FIG. Transmitter 200 and measuring device 520 are connected via cable 510 .
 送信機200は、送信処理部204と、ドライバIC205と、発光部201と、光ファイバ203と、レセプタクルとしてのコネクタ202を有している。この送信機200は、図11に示す送受信システム100における送信機200と同様のものであり、ここでは詳細説明を省略する。 The transmitter 200 has a transmission processing unit 204, a driver IC 205, a light emitting unit 201, an optical fiber 203, and a connector 202 as a receptacle. This transmitter 200 is similar to the transmitter 200 in the transmission/reception system 100 shown in FIG. 11, and detailed description thereof will be omitted here.
 ケーブル510は、光ファイバ501の一端および他端に、プラグ502,503を有する構成とされている。光ファイバ501の一端のプラグ502は送信機200のレセプタクル202に接続され、この光ファイバ501の他端のプラグ503は測定器520のレセプタクル521に接続されている。光ファイバ501は、送信機200の光ファイバ203と同様の構成であり、第2の波長(例えば850nm)では基本モードと1次モードを伝搬するものとされる。なお、送信機200の発光部201からは、第2の波長を持つ光(光信号)が出力される。 The cable 510 is configured to have plugs 502 and 503 at one end and the other end of the optical fiber 501 . A plug 502 at one end of the optical fiber 501 is connected to the receptacle 202 of the transmitter 200 , and a plug 503 at the other end of the optical fiber 501 is connected to a receptacle 521 of the measuring device 520 . The optical fiber 501 has the same configuration as the optical fiber 203 of the transmitter 200, and propagates the fundamental mode and the first mode at the second wavelength (850 nm, for example). Light (optical signal) having the second wavelength is output from the light emitting unit 201 of the transmitter 200 .
 プラグ502は、ワースト条件を評価するために、光ファイバ501のコア位置を光軸に対して複数の位置にずらすことが可能に構成される。この実施の形態においては、光ファイバ501のコア位置は、光軸を中心とする円の円周上の複数の位置に、例えば、図18(a)に示すように、「1」~「8」の8箇所の位置にずらされる。 The plug 502 is configured so that the core position of the optical fiber 501 can be shifted to a plurality of positions with respect to the optical axis in order to evaluate the worst conditions. In this embodiment, the core positions of the optical fiber 501 are located at a plurality of positions on the circumference of a circle centered on the optical axis, for example, "1" to "8" as shown in FIG. ” is shifted to 8 positions.
 図20は、送信機200のレセプタクル202とケーブル510のプラグ502が接続された状態を示している。 FIG. 20 shows a state in which the receptacle 202 of the transmitter 200 and the plug 502 of the cable 510 are connected.
 レセプタクル202は、レセプタクル本体211を備えている。レセプタクル本体211は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなり、レンズ付きフェルールの構成となっている。 The receptacle 202 has a receptacle body 211 . The receptacle main body 211 is made of a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a structure of a ferrule with a lens.
 このようにレセプタクル本体211がレンズ付きフェルールの構成とされることで、光ファイバとレンズとの光軸合わせを容易に行うことができる。また、このようにレセプタクル本体211がレンズ付きフェルールの構成とされることで、多チャネルの場合でも、光ファイバをフェルールに挿入するだけで、多チャネル通信を容易に実現できる。 By configuring the receptacle body 211 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. In addition, since the receptacle main body 211 is configured as a ferrule with a lens in this way, even in the case of multi-channel communication, multi-channel communication can be easily realized simply by inserting an optical fiber into the ferrule.
 レセプタクル本体211には、その前面側に、凹状の光出射部(光伝達空間)213が形成されている。そして、このレセプタクル本体211には、この光出射部213の底部分に位置するように、各チャネルに対応した複数のレンズ(凸レンズ)214が水平方向に並んだ状態で一体的に形成されている。 The receptacle main body 211 has a concave light emitting portion (light transmission space) 213 formed on its front side. A plurality of lenses (convex lenses) 214 corresponding to each channel are integrally formed in the receptacle main body 211 so as to be positioned at the bottom portion of the light emitting portion 213 in a horizontal direction. .
 また、レセプタクル本体211には、背面側から前方に延びる光ファイバ挿入孔216が、各チャネルのレンズ214に合わせて、水平方向に並んだ状態で複数設けられている。光ファイバ203は、光路となる中心部のコア203aと、その周囲を覆うクラッド203bの二重構造となっている。 In addition, the receptacle body 211 is provided with a plurality of optical fiber insertion holes 216 extending forward from the rear surface side and aligned horizontally in alignment with the lens 214 of each channel. The optical fiber 203 has a double structure of a central core 203a serving as an optical path and a clad 203b surrounding the core.
 各チャネルの光ファイバ挿入孔216は、そこに挿入される光ファイバ203のコア201aと対応するレンズ214の光軸が一致するように、成形されている。また、各チャネルの光ファイバ挿入孔216は、その底位置、つまり光ファイバ203を挿入した際に、その先端(出射端)の当接位置がレンズ214の焦点位置と合致するように、成形されている。 The optical fiber insertion hole 216 of each channel is formed so that the optical axis of the lens 214 corresponding to the core 201a of the optical fiber 203 inserted therein is aligned. The optical fiber insertion hole 216 of each channel is shaped so that its bottom position, that is, the contact position of its tip (output end) when the optical fiber 203 is inserted, coincides with the focal position of the lens 214 . ing.
 また、レセプタクル本体211には、上面側から下方に延びる接着剤注入孔212が、水平方向に並んだ状態にある複数の光ファイバ挿入孔216の底位置付近に連通するように、形成されている。光ファイバ203が光ファイバ挿入孔216に挿入された後、接着剤注入孔212から接着剤217が光ファイバ203の周囲に注入されることで、光ファイバ203はレセプタクル本体211に固定される。 Further, in the receptacle body 211, an adhesive injection hole 212 extending downward from the upper surface side is formed so as to communicate near the bottom position of a plurality of optical fiber insertion holes 216 arranged in a horizontal direction. . After optical fiber 203 is inserted into optical fiber insertion hole 216 , optical fiber 203 is fixed to receptacle body 211 by injecting adhesive 217 around optical fiber 203 from adhesive injection hole 212 .
 レセプタクル202において、レンズ214は、光ファイバ203から出射された光をコリメート光に成形して出射する機能を持つ。これにより、光ファイバ203の出射端から所定のNAで出射された光は、レンズ214に入射されてコリメート光に成形されて出射される。 In the receptacle 202, the lens 214 has the function of shaping the light emitted from the optical fiber 203 into collimated light and emitting it. As a result, the light emitted from the output end of the optical fiber 203 with a predetermined NA is incident on the lens 214, shaped into collimated light, and emitted.
 プラグ502は、第1の光学部612と第2の光学部613が接続されて構成されたコネクタ本体611を備えている。 The plug 502 has a connector body 611 configured by connecting a first optical section 612 and a second optical section 613 .
 第1の光学部612は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなっている。この第1の光学部612には、その前面側に、凹状の光入射部(光伝達空間)621が形成されている。そして、この第1の光学部612には、この光入射部621の底部分に位置するように、各チャネルに対応したレンズ622が水平方向に並んだ状態で一体的に形成されている。このように第1の光学部612にレンズ622が一体的に形成されることで、第1の光学部612に対するレンズ622の位置精度を高めることができる。 The first optical section 612 is made of a light-transmissive material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength. The first optical section 612 has a concave light incident section (light transmission space) 621 formed on the front side thereof. Lenses 622 corresponding to the respective channels are integrally formed in the first optical section 612 so as to be positioned at the bottom of the light entrance section 621 and are horizontally aligned. By forming the lens 622 integrally with the first optical section 612 in this manner, the positional accuracy of the lens 622 with respect to the first optical section 612 can be improved.
 第2の光学部613は、第1の光学部612の背面側に接着等で固定された4角筒形状のファイバ用フェルール位置決め部材631の内部に、ファイバ用フェルール632が配置された構成となっている。なお、ファイバ用フェルール位置決め部材631は、第1の光学部612と一体型となっていてもよい。 The second optical section 613 has a configuration in which a fiber ferrule 632 is arranged inside a square tube-shaped fiber ferrule positioning member 631 fixed to the back side of the first optical section 612 by adhesion or the like. ing. Note that the fiber ferrule positioning member 631 may be integrated with the first optical section 612 .
 ファイバ用フェルール632は、上下左右の4面が、例えばピエゾ素子等で構成される形状変化部材633およびバネ634(図20には図示されていない)の直列接続構成体を介して、ファイバ用フェルール位置決め部材631の内面にフローティング構造で固定された状態とされている。なお、第1の光学部612の背面側とファイバ用フェルール632の前面側との間には、光透過材635が挿入されている。 The fiber ferrule 632 has four upper, lower, left, and right faces connected in series via a shape-changing member 633 composed of, for example, a piezo element or the like and a spring 634 (not shown in FIG. 20). It is fixed to the inner surface of the positioning member 631 with a floating structure. A light transmitting material 635 is inserted between the back side of the first optical section 612 and the front side of the fiber ferrule 632 .
 ファイバ用フェルール632には、背面側から前方に延びる光ファイバ挿入孔636が、第1の光学部612の各チャネルのレンズ622に対応させて、水平方向に並んだ状態で複数設けられている。光ファイバ501は、光路となる中心部のコア501aと、その周囲を覆うクラッド501bの二重構造となっている。 The fiber ferrule 632 is provided with a plurality of optical fiber insertion holes 636 extending forward from the back side and arranged in a horizontal direction corresponding to the lenses 622 of each channel of the first optical section 612 . The optical fiber 501 has a double structure consisting of a central core 501a serving as an optical path and a clad 501b surrounding the core.
 各チャネルの光ファイバ挿入孔636は、その底位置、つまり光ファイバ501を挿入した際に、その先端(入射端)の当接位置がレンズ622の焦点位置と合致するように、成形されている。 The optical fiber insertion hole 636 of each channel is formed so that its bottom position, that is, the contact position of its tip (incident end) when the optical fiber 501 is inserted, coincides with the focal position of the lens 622. .
 また、ファイバ用フェルール632には、上面側から下方に延びる接着剤注入孔637が、水平方向に並んだ状態にある複数の光ファイバ挿入孔636の底位置付近に連通するように、形成されている。光ファイバ501が光ファイバ挿入孔636に挿入された後、接着剤注入孔637から接着剤638が光ファイバ501の周囲に注入されることで、光ファイバ501はファイバ用フェルール632に固定される。 Further, in the fiber ferrule 632, an adhesive injection hole 637 extending downward from the upper surface side is formed so as to communicate with the vicinity of the bottom position of a plurality of optical fiber insertion holes 636 arranged in a horizontal direction. there is After the optical fiber 501 is inserted into the optical fiber insertion hole 636 , the optical fiber 501 is fixed to the fiber ferrule 632 by injecting the adhesive 638 around the optical fiber 501 from the adhesive injection hole 637 .
 ケーブル510のプラグ502において、第1の光学部612のレンズ622は、入射されるコリメート光を集光する機能を持つ。この場合、コリメート光がレンズ622に入射されて集光され、この集光された光は、第2の光学部613のファイバ用フェルール632に固定された光ファイバ501の入射端に入射される。 In the plug 502 of the cable 510, the lens 622 of the first optical section 612 has the function of condensing the incident collimated light. In this case, the collimated light is incident on the lens 622 and condensed, and this condensed light is incident on the incident end of the optical fiber 501 fixed to the fiber ferrule 632 of the second optical section 613 .
 測定時には、ファイバ用フェルール632の上下左右に配置されている形状変化部材633に、ケーブル510に含まれる信号ライン(図19(a)には図示されていない)を介して、測定器520側から、光ファイバ501のコア位置を動かすための制御信号が供給される。これにより、プラグ502における光ファイバ501のコア位置は、図19(b)に示すように、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずらされていく(図17(b-1)~(b-8)参照)。 At the time of measurement, the shape-changing members 633 arranged on the upper, lower, left, and right sides of the fiber ferrule 632 are fed from the measuring instrument 520 side via a signal line (not shown in FIG. 19(a)) included in the cable 510. , are provided control signals for moving the core position of the optical fiber 501 . As a result, as shown in FIG. 19B, the core positions of the optical fiber 501 in the plug 502 are sequentially positioned at eight positions "1" to "8" on the circumference of a circle centered on the optical axis. It is shifted (see FIGS. 17(b-1) to (b-8)).
 図21(a)は、レセプタクル202とプラグ502の部分の上面図を示している。この図21(a)において、図20(a)と対応する部分には同一符号を付し、その詳細説明は省略する。プラグ502の第1の光学部612および第2の光学部613は、実際には、筐体640にバネ641などで接続されており、いわゆるフローティング構造とされている。また、レセプタクル202のレセプタクル本体211は、実際には、筐体220にバネ221などで接続されており、いわゆるフローティング構造とされている。 FIG. 21(a) shows a top view of the receptacle 202 and the plug 502 portion. In FIG. 21(a), parts corresponding to those in FIG. 20(a) are denoted by the same reference numerals, and detailed description thereof will be omitted. The first optical portion 612 and the second optical portion 613 of the plug 502 are actually connected to the housing 640 with a spring 641 or the like, and have a so-called floating structure. Further, the receptacle body 211 of the receptacle 202 is actually connected to the housing 220 with a spring 221 or the like, and has a so-called floating structure.
 レセプタクル202とプラグ502を嵌合する際、レセプタクル202とプラグ502の光軸が合うように位置決めピン222によって結合され、その位置決めピン222を挿入する穴642が第1の光学部612および第2の光学部613のファイバ用フェルール位置決め部材631に設けられている。 When the receptacle 202 and the plug 502 are fitted together, the receptacle 202 and the plug 502 are connected by the positioning pin 222 so that the optical axes of the plug 502 are aligned. It is provided in the fiber ferrule positioning member 631 of the optical section 613 .
 なお、図21(b)は、プラグ502の部分の背面図を示し、図21(c)は、プラグ502の部分の側面図を示している。これら図21(b),(c)において、図21(a)と対応する部分には同一符号を付し、その詳細説明は省略する。 21(b) shows a rear view of the plug 502 portion, and FIG. 21(c) shows a side view of the plug 502 portion. 21(b) and 21(c), portions corresponding to those in FIG. 21(a) are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図21は光ファイバ203、501がそれぞれ12本存在する12チャネルの例であるが、プラグ502の第2の光学部613のファイバ用フェルール632をX軸、Y軸に移動制御するので、12チャネル同時に評価することが可能である。 FIG. 21 shows an example of 12 channels in which 12 optical fibers 203 and 501 exist respectively. Simultaneous evaluation is possible.
 図22は、ファイバ用フェルール632の上下左右に配置されている形状変化部材633に、ケーブル510に含まれる信号ライン504を介して、測定器520側から制御信号が供給される状態を示している。 FIG. 22 shows a state in which a control signal is supplied from the measuring instrument 520 side via the signal line 504 included in the cable 510 to the shape-changing members 633 arranged on the top, bottom, left, and right of the fiber ferrule 632 . .
 図23は、ケーブル510のプラグ503と測定器520のレセプタクル521が接続された状態を示している。 FIG. 23 shows a state in which the plug 503 of the cable 510 and the receptacle 521 of the measuring instrument 520 are connected.
 プラグ503は、プラグ本体651を備えている。プラグ本体651は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなり、レンズ付きフェルールの構成となっている。 The plug 503 has a plug body 651 . The plug body 651 is made of a light-transmissive material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a structure of a ferrule with a lens.
 このようにプラグ本体651がレンズ付きフェルールの構成とされることで、光ファイバとレンズとの光軸合わせを容易に行うことができる。また、このようにプラグ本体651がレンズ付きフェルールの構成とされることで、多チャネルの場合でも、光ファイバをフェルールに挿入するだけで、多チャネル通信を容易に実現できる。 By configuring the plug body 651 as a ferrule with a lens in this way, it is possible to easily align the optical axes of the optical fiber and the lens. Further, since the plug main body 651 is configured as a ferrule with a lens in this way, multi-channel communication can be easily realized simply by inserting an optical fiber into the ferrule even in the case of multi-channel.
 プラグ本体651には、その前面側に、凹状の光出射部(光伝達空間)653が形成されている。そして、このプラグ本体651には、この光出射部653の底部分に位置するように、各チャネルに対応した複数のレンズ(凸レンズ)654が水平方向に並んだ状態で一体的に形成されている。 The plug body 651 has a recessed light emitting portion (light transmission space) 653 formed on its front side. A plurality of lenses (convex lenses) 654 corresponding to the respective channels are integrally formed in the plug body 651 so as to be positioned at the bottom of the light emitting portion 653 in a horizontal direction. .
 また、プラグ本体651には、背面側から前方に延びる光ファイバ挿入孔656が、各チャネルのレンズ654に合わせて、水平方向に並んだ状態で複数設けられている。光ファイバ501は、光路となる中心部のコア501aと、その周囲を覆うクラッド501bの二重構造となっている。 Also, the plug body 651 is provided with a plurality of optical fiber insertion holes 656 extending forward from the back side and aligned in the horizontal direction so as to match the lenses 654 of each channel. The optical fiber 501 has a double structure consisting of a central core 501a serving as an optical path and a clad 501b surrounding the core.
 各チャネルの光ファイバ挿入孔656は、そこに挿入される光ファイバ501のコア501aと対応するレンズ654の光軸が一致するように、成形されている。また、各チャネルの光ファイバ挿入孔656は、その底位置、つまり光ファイバ501を挿入した際に、その先端(出射端)の当接位置がレンズ654の焦点位置と合致するように、成形されている。 The optical fiber insertion hole 656 of each channel is formed so that the optical axis of the lens 654 corresponding to the core 501a of the optical fiber 501 inserted therein is aligned. The optical fiber insertion hole 656 of each channel is shaped so that its bottom position, that is, the contact position of its tip (output end) when the optical fiber 501 is inserted, coincides with the focal position of the lens 654 . ing.
 また、プラグ本体651は、上面側から下方に延びる接着剤注入孔652が、水平方向に並んだ状態にある複数の光ファイバ挿入孔656の底位置付近に連通するように、形成されている。光ファイバ501が光ファイバ挿入孔656に挿入された後、接着剤注入孔652から接着剤657が光ファイバ501の周囲に注入されることで、光ファイバ501はプラグ本体651に固定される。 Also, the plug body 651 is formed so that an adhesive injection hole 652 extending downward from the upper surface side communicates with the vicinity of the bottom position of a plurality of optical fiber insertion holes 656 arranged in a horizontal direction. After optical fiber 501 is inserted into optical fiber insertion hole 656 , optical fiber 501 is fixed to plug body 651 by injecting adhesive 657 around optical fiber 501 from adhesive injection hole 652 .
 プラグ503において、レンズ654は、光ファイバ501から出射された光をコリメート光に成形して出射する機能を持つ。これにより、光ファイバ501の出射端から所定のNAで出射された光は、レンズ654に入射されてコリメート光に成形されて出射される。 In the plug 503, the lens 654 has the function of shaping the light emitted from the optical fiber 501 into collimated light and emitting it. As a result, the light emitted from the output end of the optical fiber 501 with a predetermined NA is incident on the lens 654, shaped into collimated light, and emitted.
 レセプタクル521は、レセプタクル本体671を備えている。レセプタクル本体671は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなり、レンズ付きフェルールの構成となっている。 The receptacle 521 has a receptacle body 671 . The receptacle main body 671 is made of, for example, a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a configuration of a ferrule with a lens.
 レセプタクル本体671には、その前面側に、凹状の光入射部(光伝達空間)673が形成されている。そして、このレセプタクル本体671には、この光入射部673の底部分に位置するように、各チャネルに対応した複数のレンズ(凸レンズ)674が水平方向に並んだ状態で一体的に形成されている。 The receptacle main body 671 has a concave light incident portion (light transmission space) 673 formed on the front side thereof. A plurality of lenses (convex lenses) 674 corresponding to the respective channels are integrally formed in the receptacle body 671 so as to be positioned at the bottom portion of the light incident portion 673 and arranged horizontally. .
 また、レセプタクル本体671には、背面側から前方に延びる光ファイバ挿入孔676が、各チャネルのレンズ674に合わせて、水平方向に並んだ状態で複数設けられている。光ファイバ523は、光路となる中心部のコア523aと、その周囲を覆うクラッド523bの二重構造となっている。 Further, the receptacle body 671 is provided with a plurality of optical fiber insertion holes 676 extending forward from the back side and aligned in the horizontal direction so as to match the lenses 674 of each channel. The optical fiber 523 has a double structure of a central core 523a serving as an optical path and a clad 523b surrounding the core.
 各チャネルの光ファイバ挿入孔676は、そこに挿入される光ファイバ523のコア523aと対応するレンズ674の光軸が一致するように、成形されている。また、各チャネルの光ファイバ挿入孔676は、その底位置、つまり光ファイバ523を挿入した際に、その先端(入射端)の当接位置がレンズ674の焦点位置と合致するように、成形されている。 The optical fiber insertion hole 676 of each channel is formed so that the optical axis of the corresponding lens 674 is aligned with the core 523a of the optical fiber 523 inserted therein. The optical fiber insertion hole 676 of each channel is shaped so that its bottom position, that is, the contact position of its tip (incident end) when the optical fiber 523 is inserted, coincides with the focal position of the lens 674 . ing.
 また、レセプタクル本体671には、上面側から下方に延びる接着剤注入孔672が、水平方向に並んだ状態にある複数の光ファイバ挿入孔676の底位置付近に連通するように、形成されている。光ファイバ523が光ファイバ挿入孔676に挿入された後、接着剤注入孔672から接着剤677が光ファイバ523の周囲に注入されることで、光ファイバ523はレセプタクル本体671に固定される。 Further, in the receptacle body 671, an adhesive injection hole 672 extending downward from the upper surface side is formed so as to communicate near the bottom position of a plurality of optical fiber insertion holes 676 arranged in a horizontal direction. . After the optical fiber 523 is inserted into the optical fiber insertion hole 676 , the optical fiber 523 is fixed to the receptacle body 671 by injecting the adhesive 677 around the optical fiber 523 from the adhesive injection hole 672 .
 レセプタクル621において、レンズ674は、入射されるコリメート光を集光する機能を持つ。この場合、コリメート光がレンズ674に入射されて集光され、この集光された光は、光ファイバ523の入射端に所定のNAで入射される。 In the receptacle 621, the lens 674 has the function of condensing the incident collimated light. In this case, the collimated light is incident on the lens 674 and condensed, and this condensed light is incident on the incident end of the optical fiber 523 with a predetermined NA.
 図19(a)に戻って、測定器520は、レセプタクル521と、光ファイバ523と、受光部522と、増幅部524と、測定部525と、制御部526と、表示部527と、ユーザ操作部528を有している。光ファイバ523は、送信機200の光ファイバ203と同様の構成であり、第2の波長(例えば850nm)では基本モードと1次モードを伝搬するものとされる。 Returning to FIG. 19A, measuring instrument 520 includes receptacle 521, optical fiber 523, light receiving section 522, amplifying section 524, measuring section 525, control section 526, display section 527, user operation It has a portion 528 . The optical fiber 523 has the same configuration as the optical fiber 203 of the transmitter 200, and propagates the fundamental mode and the first mode at the second wavelength (850 nm, for example).
 受光部522は、フォトダイオード等の受光素子を備えている。受光部522は、光受信部を構成し、レセプタクル521から光ファイバ523を介して送られてくる光信号を電気信号に変換する。受光部522の出力信号は、増幅部524で増幅されて、測定部525に供給される。測定部525は、受光部522の出力信号から、パワー値またはビットエラーレート値を測定する。測定部525の測定値は、制御部526に供給される。 The light receiving section 522 includes a light receiving element such as a photodiode. The light receiving section 522 constitutes an optical receiving section, and converts an optical signal sent from the receptacle 521 through the optical fiber 523 into an electrical signal. The output signal of the light receiving section 522 is amplified by the amplifying section 524 and supplied to the measuring section 525 . A measurement unit 525 measures a power value or a bit error rate value from the output signal of the light receiving unit 522 . The measured value of the measuring section 525 is supplied to the control section 526 .
 制御部526は、測定システム50Aにおける測定動作を制御する。制御部526は、ユーザ操作部528からのユーザ操作に基づいて制御処理を開始する。制御部526は、測定時には、レセプタクル521からケーブル510の信号ライン504(図19(a)には図示していない)を通じて、プラグ502のファイバ用フェルール532の上下左右に配置されている形状変化部材533に、制御信号を供給する(図22参照)。これにより、光ファイバ501のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずれるように制御される(図18(a)参照)。 The control unit 526 controls measurement operations in the measurement system 50A. Control unit 526 starts control processing based on a user operation from user operation unit 528 . During measurement, the control unit 526 controls the shape-changing members arranged above, below, left and right of the fiber ferrule 532 of the plug 502 through the signal line 504 (not shown in FIG. 19A) of the cable 510 from the receptacle 521. 533 with a control signal (see FIG. 22). As a result, the core position of the optical fiber 501 is controlled so as to sequentially shift to eight positions from "1" to "8" on the circumference of the circle centered on the optical axis (see FIG. 18(a)). ).
 また、制御部526は、測定時には、ワースト条件を評価するために、上述したように光ファイバ501のコア位置を順次ずらしていき、測定部525の測定値(パワー値またはビットエラーレート値)が基準値をクリアしていない段階で、送信機200の軸ずれ量が規定範囲内に収まっていない、つまり「NG」と判断し、全ての位置で測定部525の測定値が基準値をクリアした場合、送信機200の軸ずれ量が規定範囲内に収まっている、つまり「OK」と判断する。ここで、測定部525の測定値が基準値をクリアしているか否かの判断は、測定値を閾値と比較することで行われる。 Also, during measurement, the control unit 526 sequentially shifts the core position of the optical fiber 501 as described above in order to evaluate the worst condition, and the measurement value (power value or bit error rate value) of the measurement unit 525 is At the stage when the reference value is not cleared, the amount of axial deviation of the transmitter 200 is not within the specified range, that is, it is judged as "NG", and the measured value of the measuring unit 525 clears the reference value at all positions. In this case, it is determined that the amount of axial deviation of the transmitter 200 is within the specified range, that is, "OK". Here, whether or not the measured value of the measuring unit 525 clears the reference value is determined by comparing the measured value with a threshold value.
 また、制御部526は、測定時には、上述の判断の結果を表示部527に表示する。この場合、制御部526から表示部527に表示信号が供給され、表示部527には「OK結果」、あるいは「NG結果」が表示される。表示部527は、LED(Light Emitting Diode)表示部等で構成される。なお、表示部527の代わりに音出力部、例えばスピーカ等を設け、「OK結果」、あるいは「NG結果」を音声出力すること、または「OK結果」、あるいは「NG結果」を識別可能な特定の音を出力すること、なども考えられる。 Also, the control unit 526 displays the result of the above determination on the display unit 527 during measurement. In this case, a display signal is supplied from the control unit 526 to the display unit 527, and the display unit 527 displays "OK result" or "NG result". The display unit 527 is configured by an LED (Light Emitting Diode) display unit or the like. A sound output unit such as a speaker may be provided instead of the display unit 527 to output the "OK result" or the "NG result" by voice, or to specify the "OK result" or the "NG result" that can be identified. It is also conceivable to output the sound of
  図24のフローチャートは、測定器520の制御部526における測定時の制御処理の手順の一例を示している。 The flowchart of FIG. 24 shows an example of the procedure of control processing during measurement in the control unit 526 of the measuring device 520 .
 制御部526は、ステップST1において、制御処理を開始する。次に、制御部526は、ステップST2において、ケーブル510のプラグ502内の光ファイバ501のコア位置を「1」にする。 The control unit 526 starts control processing in step ST1. Next, in step ST2, the controller 526 sets the core position of the optical fiber 501 inside the plug 502 of the cable 510 to "1".
 次に、制御部526は、ステップST3において、測定部525の測定値が基準値をクリアしているか判断する。クリアしていない場合、制御部526は、ステップST4において、送信機200の軸ずれ量が規定範囲内に収まっていない、つまり「NG」と判断し、「NG結果」を表示部527に表示し、その後、ステップST5において、制御処理を終了する。 Next, in step ST3, the control section 526 determines whether the measured value of the measuring section 525 has cleared the reference value. If not cleared, in step ST4, the controller 526 determines that the amount of axial misalignment of the transmitter 200 is not within the specified range, that is, "NG", and displays the "NG result" on the display 527. After that, in step ST5, the control process is terminated.
 ステップST3でクリアしている場合、制御部526は、ステップST6において、ケーブル510のプラグ502内の光ファイバ501のコア位置は「8」であるか否かを判断する。コア位置が「8」でない場合、制御部526は、ステップST7において、ケーブル510のプラグ502内の光ファイバ501のコア位置を次の位置にし、その後に、ステップST3の処理に戻る。 If cleared in step ST3, the control unit 526 determines whether the core position of the optical fiber 501 in the plug 502 of the cable 510 is "8" in step ST6. If the core position is not "8", the controller 526 sets the core position of the optical fiber 501 in the plug 502 of the cable 510 to the next position in step ST7, and then returns to step ST3.
 ステップST6でコア位置が「8」である場合、制御部526は、ステップST8において、送信機200の軸ずれ量が規定範囲内に収まっている、つまり「OK」と判断し、「OK結果」を表示部527に表示し、その後、ステップST5において、制御処理を終了する。 When the core position is "8" in step ST6, the control unit 526 determines that the amount of axial deviation of the transmitter 200 is within the specified range, that is, "OK", and "OK result" in step ST8. is displayed on the display unit 527, and then the control process is terminated in step ST5.
 図19(a)に示す測定システム50Aにおいては、測定時には、送信機200の発光部201は光信号を出力する状態とされ、この光信号はケーブル510を介して、測定器520に送信される。この状態において、ケーブル510のプラグ502の光ファイバ501のコア位置が光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずらされ、測定器520において、上述したように「NG」、あるいは「OK」の判断がされ、その結果が表示される。 In the measurement system 50A shown in FIG. 19A, during measurement, the light emitting section 201 of the transmitter 200 is in a state of outputting an optical signal, and this optical signal is transmitted to the measuring instrument 520 via the cable 510. . In this state, the core position of the optical fiber 501 of the plug 502 of the cable 510 is sequentially shifted to eight positions from "1" to "8" on the circumference of the circle centered on the optical axis. , as described above, "NG" or "OK" is determined, and the result is displayed.
 このように図19(a)に示す測定システム50Aにおいては、検査対象としての送信機200のレセプタクル202に接続されるケーブル510のプラグ502の光ファイバ501のコア位置を、ワースト条件を評価するために、光軸に対して複数の位置にずらして送信機200の軸ずれ量が規定範囲内に収まっているか判断するものである。そのため、送信機200の軸ずれ量が規定範囲内に収まっているかを良好に判断することが可能となる。 As described above, in the measurement system 50A shown in FIG. 19A, the core position of the optical fiber 501 of the plug 502 of the cable 510 connected to the receptacle 202 of the transmitter 200 to be inspected is determined to evaluate the worst conditions. Second, it is determined whether or not the amount of axial deviation of the transmitter 200 is within a specified range by shifting the transmitter 200 to a plurality of positions with respect to the optical axis. Therefore, it is possible to determine whether the amount of axial deviation of the transmitter 200 is within the specified range.
 なお、上述では、プラグ502における光ファイバ501のコア位置が「8」に到達する前の段階で測定部525の測定値が基準値をクリアしていない場合には直ちに「NG結果」を表示部527に表示して処理を終了する例を説明した。しかし、コア位置が「8」に到達するまでコア位置を順次ずらして、それぞれの位置で測定値が基準値をクリアしているか否かを判断し、表示部527には、全てのコア位置について、OK箇所(基準値をクリアしている箇所)であるかNG箇所(基準値をクリアしていない箇所)であるかを表示する構成とすることも考えられる。 In the above description, if the measured value of the measuring unit 525 does not clear the reference value before the core position of the optical fiber 501 in the plug 502 reaches "8", the display unit immediately displays "NG result". 527 and the processing is terminated. However, the core position is sequentially shifted until the core position reaches "8", and it is determined whether the measured value at each position clears the reference value. , an OK location (location where the reference value is cleared) or an NG location (location where the reference value is not cleared) may be displayed.
 また、上述では、測定時には光ファイバ510のプラグ502の光ファイバ501のコア位置を複数位置に順次ずらす例を説明した。しかし、図示は省略するが、コリメート部のずれ耐性も評価したい場合は、プラグ502のレンズ部品部分、つまり第1の光学部612の部分もフローティング構造とし、形状変化部材で位置を制御して評価することも可能である。このことは、後述するケーブルや受信機を検査対象とする測定システムにおいても同様である。 Also, in the above description, an example in which the core position of the optical fiber 501 of the plug 502 of the optical fiber 510 is sequentially shifted to a plurality of positions during measurement has been described. However, although illustration is omitted, if it is desired to also evaluate the displacement resistance of the collimate portion, the lens component portion of the plug 502, that is, the portion of the first optical portion 612 also has a floating structure, and the position is controlled by the shape-changing member for evaluation. It is also possible to This is the same for a measurement system for inspecting cables and receivers, which will be described later.
 また、図19(a)に示す測定システム50Aにおけるケーブル510と測定器520の部分を一体的に構成し、図25に示すようにピックテール型とすることも考えられる。この場合、ケーブル510の測定器520側は測定器520に固定接続されたものとなる。 It is also conceivable to integrally configure the cable 510 and the measuring instrument 520 in the measurement system 50A shown in FIG. In this case, the measuring device 520 side of the cable 510 is fixedly connected to the measuring device 520 .
 また、上述では、光ファイバ510のプラグ502の光ファイバ501のコア位置を動かすために、ファイバ用フェルール632をフローティング状態とし、このファイバ用フェルール632の上下左右に配置されている形状変化部材633に制御信号を供給する構成としている。しかし、このコア位置を動かすための構造は、これに限定されるものではなく、その他の構造であってもよい。このことは、後述するケーブルや受信機を検査対象とする測定システムにおいても同様である。 Further, in the above description, in order to move the core position of the optical fiber 501 of the plug 502 of the optical fiber 510, the fiber ferrule 632 is set in a floating state, and the shape-changing members 633 arranged on the upper, lower, left, and right sides of the fiber ferrule 632 It is configured to supply a control signal. However, the structure for moving this core position is not limited to this, and other structures may be used. This is the same for a measurement system for inspecting cables and receivers, which will be described later.
 「ケーブルを検査対象とする測定システム」
 図26(a)は、ケーブルを検査対象とする測定システム50Bの構成例を示している。この測定システム50Bは、送信側測定器530と、検査対象のケーブル400と、受信側測定器540を有している。送信側測定器530と受信側測定器540は、ケーブル400を介して接続されている。
"Measurement system for cable inspection"
FIG. 26(a) shows a configuration example of a measurement system 50B for inspecting cables. This measurement system 50B has a transmitter side measuring device 530, a cable 400 to be tested, and a receiving side measuring device 540. FIG. The transmitting side measuring device 530 and the receiving side measuring device 540 are connected via the cable 400 .
 ケーブル400は、光ファイバ401の一端および他端に、プラグ402,403を有する構成とされている。光ファイバ401の一端のプラグ402は送信側測定器530のレセプタクル532に接続され、この光ファイバ401の他端のプラグ403は受信側測定器540のレセプタクル541に接続されている。このケーブル400は、図11に示す送受信システム100におけるケーブル400と同様のものである。 The cable 400 is configured to have plugs 402 and 403 at one end and the other end of the optical fiber 401 . A plug 402 at one end of the optical fiber 401 is connected to a receptacle 532 of a transmitter measuring device 530 , and a plug 403 at the other end of the optical fiber 401 is connected to a receptacle 541 of a receiver measuring device 540 . This cable 400 is similar to the cable 400 in the transmission/reception system 100 shown in FIG.
 送信側測定器530は、送信処理部534と、ドライバIC535と、発光部531と、光ファイバ533と、レセプタクル532を有している。発光部531は、VCSEL(Vertical Cavity Surface Emitting LASER)等のレーザー素子、またはLED(light emitting diode)等の発光素子を備えている。発光部531は、光送信部を構成し、送信処理部534から供給される送信データに基づいてドライバIC535で駆動され、送信データに応じた光信号を出力する。光ファイバ533は、発光部531から出力された光信号をレセプタクル532に伝搬する。この場合、発光部531からは、図11に示す送受信システム100における送信機200の発光部201と同様に、第2の波長(例えば850nm)を持つと共に、基本モードと1次モードの成分を持つ光(光信号)が出力される。また、光ファイバ533は、ケーブル400の光ファイバ401と同様の構成であり、第2の波長では基本モードと1次モードを伝搬するものとされる。 The transmitter measuring instrument 530 has a transmitter processor 534 , a driver IC 535 , a light emitter 531 , an optical fiber 533 and a receptacle 532 . The light emitting unit 531 includes a laser element such as a VCSEL (Vertical Cavity Surface Emitting LASER) or a light emitting element such as an LED (light emitting diode). The light emitting unit 531 constitutes an optical transmission unit, is driven by the driver IC 535 based on transmission data supplied from the transmission processing unit 534, and outputs an optical signal corresponding to the transmission data. The optical fiber 533 propagates the optical signal output from the light emitting section 531 to the receptacle 532 . In this case, the light emitting unit 531 has a second wavelength (e.g., 850 nm) as well as the light emitting unit 201 of the transmitter 200 in the transmission/reception system 100 shown in FIG. Light (optical signal) is output. The optical fiber 533 has the same configuration as the optical fiber 401 of the cable 400, and propagates the fundamental mode and the primary mode at the second wavelength.
 レセプタクル532は、詳細構造の説明は省略するが、図19に示すケーブル510のプラグ502と同様の構成とされ(図20、図21参照)、ワースト条件を評価するために、光ファイバ533のコア位置を、光軸を中心とする円の円周上の例えば「1」~「8」の8箇所の位置(図18(a)参照)にずらすことが可能に構成される。 The receptacle 532 has the same configuration as the plug 502 of the cable 510 shown in FIG. 19 (see FIGS. 20 and 21), although the detailed description of the structure is omitted. The position can be shifted to, for example, eight positions "1" to "8" (see FIG. 18A) on the circumference of a circle centered on the optical axis.
 測定時には、ケーブル400に含まれる信号ライン(図26(a)には図示されていない)を介して、受信側測定器540側から、光ファイバ401のコア位置を動かすための制御信号がレセプタクル532に供給される。これにより、レセプタクル532における光ファイバ533のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずらされていく。 During measurement, a control signal for moving the core position of the optical fiber 401 is sent to the receptacle 532 from the receiving measuring instrument 540 via a signal line (not shown in FIG. 26(a)) included in the cable 400. supplied to As a result, the core position of the optical fiber 533 in the receptacle 532 is sequentially shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis.
 図26(b)は、上述したようにレセプタクル532における光ファイバ533のコア位置が光軸を中心とする円の円周上の「1」~「8」の8箇所の位置にそれぞれずらされた場合における、ケーブル400のプラグ402に入射される光の光ファイバ端におけるパワー強度分布とコアとの位置関係の一例を示している。なお、図26(b)では、図の切り取りの関係で、コア位置が動いているように見えるが、このコア位置は固定である。 FIG. 26(b) shows that the core position of the optical fiber 533 in the receptacle 532 is shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis as described above. 4 shows an example of the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the plug 402 of the cable 400 and the core in this case. In addition, in FIG. 26(b), the core position appears to be moving due to the cutout of the figure, but this core position is fixed.
 受信側測定器540は、レセプタクル541と、光ファイバ543と、受光部542と、増幅部544と、測定部545と、制御部546と、表示部547と、ユーザ操作部548を有している。光ファイバ543は、ケーブル400の光ファイバ401と同様の構成であり、第2の波長では基本モードと1次モードを伝搬するものとされる。 The receiving side measuring device 540 has a receptacle 541, an optical fiber 543, a light receiving section 542, an amplifying section 544, a measuring section 545, a control section 546, a display section 547, and a user operation section 548. . The optical fiber 543 has the same configuration as the optical fiber 401 of the cable 400, and propagates the fundamental mode and the primary mode at the second wavelength.
 レセプタクル541は、詳細構造の説明は省略するが、図19に示すケーブル510のプラグ502と同様の構成とされ(図20、図21参照)、ワースト条件を評価するために、光ファイバ543のコア位置を、光軸を中心とする円の円周上の例えば「1」~「8」の8箇所の位置(図18(a)参照)にずらすことが可能に構成される。 The receptacle 541 has a structure similar to that of the plug 502 of the cable 510 shown in FIG. 19 (see FIGS. 20 and 21), although a detailed description of the structure is omitted. The position can be shifted to, for example, eight positions "1" to "8" (see FIG. 18A) on the circumference of a circle centered on the optical axis.
 測定時には、制御部546から、光ファイバ401のコア位置を動かすための制御信号がレセプタクル541に供給される。これにより、レセプタクル541における光ファイバ543のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずらされていく。 During measurement, a control signal for moving the core position of the optical fiber 401 is supplied from the control unit 546 to the receptacle 541 . As a result, the core position of the optical fiber 543 in the receptacle 541 is sequentially shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis.
 図26(c)は、上述したように光ファイバ543のコア位置が光軸を中心とする円の円周上の「1」~「8」の8箇所の位置にそれぞれずらされたた場合における、レセプタクル541に入射される光の光ファイバ端におけるパワー強度分布とコアとの位置関係の一例を示している。 FIG. 26(c) shows the case where the core position of the optical fiber 543 is shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis as described above. 3 shows an example of the positional relationship between the power intensity distribution at the end of the optical fiber of the light incident on the receptacle 541 and the core.
 受光部542は、フォトダイオード等の受光素子を備えている。受光部542は、光受信部を構成し、レセプタクル541から光ファイバ543を介して送られてくる光信号を電気信号に変換する。受光部542の出力信号は、増幅部544で増幅されて、測定部545に供給される。測定部545は、受光部542の出力信号から、パワー値またはビットエラーレート値を測定する。測定部545の測定値は、制御部546に供給される。 The light receiving section 542 includes a light receiving element such as a photodiode. The light receiving section 542 constitutes an optical receiving section, and converts an optical signal sent from the receptacle 541 through the optical fiber 543 into an electrical signal. The output signal of the light receiving section 542 is amplified by the amplifying section 544 and supplied to the measuring section 545 . A measuring section 545 measures a power value or a bit error rate value from the output signal of the light receiving section 542 . The measured value of the measuring section 545 is supplied to the control section 546 .
 制御部546は、測定システム50Bにおける測定動作を制御する。制御部546は、ユーザ操作部548からのユーザ操作に基づいて制御処理を開始する。制御部546は、測定時には、レセプタクル541からケーブル510の信号ラインを通じて、送信側測定器530のレセプタクル532に、光ファイバ533のコア位置を動かすための制御信号を供給すると共に、レセプタクル541に、光ファイバ543のコア位置を動かすための制御信号を供給する。 The control unit 546 controls measurement operations in the measurement system 50B. The control unit 546 starts control processing based on a user operation from the user operation unit 548 . At the time of measurement, the control unit 546 supplies a control signal for moving the core position of the optical fiber 533 to the receptacle 532 of the transmitter measuring device 530 from the receptacle 541 through the signal line of the cable 510, and also transmits light to the receptacle 541. A control signal is provided to move the core position of fiber 543 .
 これにより、レセプタクル532における光ファイバ533のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置(図18(a)参照)に順次ずれるように制御される。また、レセプタクル532における光ファイバ533のそれぞれのコア位置で、レセプタクル541における光ファイバ543のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずれるように制御される(図18(a)参照)。 As a result, the core position of the optical fiber 533 in the receptacle 532 is shifted sequentially to eight positions "1" to "8" (see FIG. 18(a)) on the circumference of the circle centered on the optical axis. controlled by Further, the core positions of the optical fiber 543 in the receptacle 541 are eight positions from "1" to "8" on the circumference of the circle centered on the optical axis. (see FIG. 18(a)).
 また、制御部546は、測定時には、ワースト条件を評価するために、上述したようにレセプタクル532における光ファイバ533のコア位置およびレセプタクル541における光ファイバ543のコア位置を順次ずらしていき、測定部545の測定値(パワー値またはビットエラーレート値)が基準値をクリアしていない段階で、ケーブル400の軸ずれ量が規定範囲内に収まっていない、つまり「NG」と判断し、全ての位置で測定部545の測定値が基準値をクリアした場合、ケーブル400の軸ずれ量が規定範囲内に収まっている、つまり「OK」と判断する。ここで、測定部525の測定値が基準値をクリアしているか否かの判断は、測定値を閾値と比較することで行われる。 During measurement, the control unit 546 sequentially shifts the core position of the optical fiber 533 in the receptacle 532 and the core position of the optical fiber 543 in the receptacle 541 in order to evaluate the worst conditions. At the stage where the measured value (power value or bit error rate value) of does not clear the reference value, the amount of axis deviation of the cable 400 is not within the specified range, that is, it is judged as "NG", and at all positions When the measured value of the measuring unit 545 clears the reference value, it is determined that the axial deviation amount of the cable 400 is within the specified range, that is, "OK". Here, whether or not the measured value of the measuring unit 525 clears the reference value is determined by comparing the measured value with a threshold value.
 また、制御部546は、測定時には、上述の判断の結果を表示部547に表示する。この場合、制御部546から表示部547に表示信号が供給され、表示部547には「OK結果」、あるいは「NG結果」が表示される。表示部547は、LED(Light Emitting Diode)表示部等で構成される。なお、表示部547の代わりに音出力部、例えばスピーカ等を設け、「OK結果」、あるいは「NG結果」を音声出力すること、または「OK結果」、あるいは「NG結果」を識別可能な特定の音を出力すること、なども考えられる。 Also, the control unit 546 displays the result of the above determination on the display unit 547 during measurement. In this case, a display signal is supplied from the control unit 546 to the display unit 547, and the display unit 547 displays "OK result" or "NG result". The display unit 547 is configured by an LED (Light Emitting Diode) display unit or the like. A sound output unit such as a speaker may be provided instead of the display unit 547 to output "OK result" or "NG result" by voice, or to identify "OK result" or "NG result". It is also conceivable to output the sound of
 図27のフローチャートは、受信側測定器540の制御部546における測定時の制御処理の手順の一例を示している。 The flowchart of FIG. 27 shows an example of the procedure of control processing at the time of measurement in the control section 546 of the receiving-side measuring instrument 540 .
 制御部546は、ステップST11において、制御処理を開始する。次に、制御部526は、ステップST12において、送信側測定器530のレセプタクル532内の光ファイバ533のコア位置を「1」にする。次に、制御部546は、ステップST13において、受信側測定器540のレセプタクル541内の光ファイバ543のコア位置を「1」にする。 The control unit 546 starts control processing in step ST11. Next, in step ST12, the controller 526 sets the core position of the optical fiber 533 in the receptacle 532 of the transmitter measuring instrument 530 to "1". Next, in step ST13, the controller 546 sets the core position of the optical fiber 543 in the receptacle 541 of the receiver measuring instrument 540 to "1".
 次に、制御部546は、ステップST14において、測定値が基準値をクリアしているか判断する。クリアしていない場合、制御部546は、ステップST15において、ケーブル400の軸ずれ量が規定範囲内に収まっていない、つまり「NG」と判断し、「NG結果」を表示部547に表示し、その後、ステップST16において、制御処理を終了する。 Next, in step ST14, the control section 546 determines whether the measured value clears the reference value. If not cleared, in step ST15, the control unit 546 determines that the amount of axial misalignment of the cable 400 is not within the specified range, that is, “NG”, displays “NG result” on the display unit 547, After that, in step ST16, the control process ends.
 ステップST14でクリアしている場合、制御部546は、ステップST17において、受信側測定器540のレセプタクル541内の光ファイバ543のコア位置は「8」であるか否かを判断する。コア位置が「8」でない場合、制御部546は、ステップST18において、受信側測定器540のレセプタクル541内の光ファイバ543のコア位置を次の位置にし、その後に、ステップST14の処理に戻る。 If cleared in step ST14, the control section 546 determines whether or not the core position of the optical fiber 543 in the receptacle 541 of the receiver measuring instrument 540 is "8" in step ST17. If the core position is not "8", the control section 546 sets the core position of the optical fiber 543 in the receptacle 541 of the receiver measuring instrument 540 to the next position in step ST18, and then returns to the process of step ST14.
 ステップST17でコア位置が「8」である場合、制御部546は、ステップST19において、送信側測定器530のレセプタクル532内の光ファイバ533のコア位置は「8」であるか否かを判断する。コア位置が「8」でない場合、制御部546は、ステップST20において、受信側測定器540のレセプタクル541内の光ファイバ543のコア位置を「1」にすると共に、ステップST21において、送信側測定器530のレセプタクル532内の光ファイバ533のコア位置を次の位置にし、その後に、ステップST14の処理に戻る。 When the core position is "8" in step ST17, the control section 546 determines whether or not the core position of the optical fiber 533 in the receptacle 532 of the transmitter measuring instrument 530 is "8" in step ST19. . If the core position is not "8", the controller 546 sets the core position of the optical fiber 543 in the receptacle 541 of the receiver measuring instrument 540 to "1" in step ST20, and in step ST21, sets the core position of the transmitting measuring instrument The core position of the optical fiber 533 in the receptacle 532 of 530 is set to the next position, and then the process returns to step ST14.
 ステップST19でコア位置が「8」である場合、制御部546は、ステップST22において、ケーブル400の軸ずれ量が規定範囲内に収まっている、つまり「OK」と判断し、「OK結果」を表示部547に表示し、その後、ステップST16において、制御処理を終了する。 When the core position is "8" in step ST19, the control section 546 determines that the amount of axial deviation of the cable 400 is within the specified range, that is, "OK", and outputs "OK result" in step ST22. It is displayed on the display unit 547, and then the control process is terminated in step ST16.
 図26(a)に示す測定システム50Bにおいては、測定時には、送信側測定器530の発光部531は光信号を出力する状態とされ、この光信号はケーブル400を介して、受信側測定器540に送信される。この状態において、送信側測定器530のレセプタクル532の光ファイバ533のコア位置および受信側測定器540のレセプタクル541の光ファイバ543のコア位置がそれぞれ光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずらされ、受信側測定器540において、上述したように「NG」、あるいは「OK」の判断がされ、その結果が表示される。 In the measurement system 50B shown in FIG. 26(a), the light emitting unit 531 of the transmitter measuring device 530 is put into a state of outputting an optical signal at the time of measurement. sent to. In this state, the core position of the optical fiber 533 of the receptacle 532 of the transmitting side measuring device 530 and the core position of the optical fiber 543 of the receptacle 541 of the receiving side measuring device 540 are respectively on the circumference of the circle centered on the optical axis. The data is sequentially shifted to eight positions from "1" to "8", and the reception-side measuring device 540 judges "NG" or "OK" as described above, and the result is displayed.
 このように図26(a)に示す測定システム50Bにおいては、検査対象としてのケーブル400の一端側に接続される送信側測定器530のレセプタクル532の光ファイバ533のコア位置およびそのケーブル400の他端側に接続される受信側測定器540のレセプタクル541の光ファイバ543のコア位置を、ワースト条件を評価するためにそれぞれ光軸に対して複数の位置にずらしてケーブル400の軸ずれ量が規定範囲内に収まっているか判断するものである。そのため、ケーブル400の軸ずれ量が規定範囲内に収まっているかを良好に判断することが可能となる。 Thus, in the measurement system 50B shown in FIG. 26(a), the core position of the optical fiber 533 in the receptacle 532 of the transmission side measuring instrument 530 connected to one end side of the cable 400 to be inspected and the cable 400 In order to evaluate the worst condition, the core position of the optical fiber 543 of the receptacle 541 of the receiving side measuring device 540 connected to the end side is shifted to a plurality of positions with respect to the optical axis, and the amount of axis deviation of the cable 400 is defined. It determines if it is within range. Therefore, it is possible to determine whether the amount of axial deviation of the cable 400 is within the specified range.
 なお、上述では、レセプタクル532における光ファイバ533のコア位置およびレセプタクル541における光ファイバ543のコア位置の双方が「8」に到達する前の段階で測定部545の測定値が基準値をクリアしていない場合には直ちに「NG結果」を表示部547に表示して処理を終了する例を説明した。しかし、双方のコア位置が「8」に到達するまでコア位置を順次ずらして、それぞれの位置で測定値が基準値をクリアしているか否かを判断し、表示部547には、全てのコア位置について、OK箇所(基準値をクリアしている箇所)であるかNG箇所(基準値をクリアしていない箇所)であるかを表示する構成とすることも考えられる。 In the above description, the measured value of the measuring unit 545 clears the reference value before both the core position of the optical fiber 533 in the receptacle 532 and the core position of the optical fiber 543 in the receptacle 541 reach "8". An example has been described in which if there is no result, "NG result" is immediately displayed on the display unit 547 and the process is terminated. However, the core positions are sequentially shifted until both core positions reach "8", and it is determined whether the measured value at each position clears the reference value. It is also conceivable to configure the position to display whether it is an OK location (location where the reference value is cleared) or an NG location (location where the reference value is not cleared).
 また、上述では、受信側測定器540の制御部546から出される、送信側測定器530のレセプタクル532内の光ファイバ533のコア位置を動かすための制御信号を、ケーブル400に含まれる信号ラインを介して送信側測定器530のレセプタクル532に送信する例を説明した。しかし、この制御信号を、図28に示すように、送信側測定器530と受信側測定器540のそれぞれに専用端子536,549を設け、ケーブル400に含まれない信号ライン410を介して、送信する構成も考えられる。 Further, in the above description, the control signal for moving the core position of the optical fiber 533 in the receptacle 532 of the transmitting side measuring device 530, which is output from the control section 546 of the receiving side measuring device 540, is transmitted through the signal line included in the cable 400. The example of transmitting to the receptacle 532 of the transmitting meter 530 has been described. However, as shown in FIG. 28, this control signal is transmitted via a signal line 410 not included in the cable 400 by providing dedicated terminals 536 and 549 to the transmitting side measuring device 530 and the receiving side measuring device 540 respectively. A configuration is also conceivable.
 また、上述では、送信側測定器530のレセプタクル532のコア位置を受信測定器540の制御部546で制御する例を説明した。しかし、送信側測定器530のレセプタクル532のコア位置は、送信側測定器530内の制御部(図26(a)には図示されていない)で制御する構成も考えられる。この場合には、送信側測定器530内の制御部と受信側測定器540内の制御部546は外部で繋がりリンクする必要があるか、あるいは測定ユーザが主導でそれぞれ別に制御してもよい。 Also, in the above description, an example has been described in which the core position of the receptacle 532 of the transmitting side measuring instrument 530 is controlled by the control section 546 of the receiving measuring instrument 540 . However, a configuration in which the core position of the receptacle 532 of the transmitter measuring device 530 is controlled by a controller (not shown in FIG. 26(a)) in the transmitter measuring device 530 is also conceivable. In this case, the controller in the transmitter measuring device 530 and the controller 546 in the receiver measuring device 540 need to be connected and linked externally, or they may be independently controlled by the measurement user.
 「受信機を検査対象とする測定システム」
 図29(a)は、受信機を検査対象とする測定システム50Cの構成例を示している。この測定システム50Cは、測定器550と、測定冶具としてのケーブル560と、受信機300Aを有している。測定器550と受信機300Aは、ケーブル560を介して接続されている。
"Measurement system for receivers"
FIG. 29(a) shows a configuration example of a measurement system 50C whose inspection target is a receiver. This measuring system 50C has a measuring device 550, a cable 560 as a measuring jig, and a receiver 300A. Measuring instrument 550 and receiver 300A are connected via cable 560 .
 受信機300Aは、図11に示す送受信システム100における受信機300に対応したものであり、対応する部分には同一符号を付して示している。受信機300Aは、レセプタクル301と、受光部302と、光ファイバ303と、増幅部304と、受信処理部305を有している。受光部302は、フォトダイオード等の受光素子を備えている。受光部302は、レセプタクル301から光ファイバ303を介して送られてくる光信号を電気信号に変換する。 The receiver 300A corresponds to the receiver 300 in the transmission/reception system 100 shown in FIG. 11, and the corresponding parts are indicated by the same reference numerals. Receiver 300A has receptacle 301 , light receiving section 302 , optical fiber 303 , amplifier section 304 and reception processing section 305 . The light receiving section 302 includes a light receiving element such as a photodiode. The light receiving section 302 converts an optical signal sent from the receptacle 301 through the optical fiber 303 into an electrical signal.
 受光部302から出力された電気信号は増幅部304で増幅されて受信信号として受信処理部305に供給される。受信処理部305は、受信信号に対して復調等の処理を行って受信データを得る。また、受信処理部305は、受信信号からパワー値またはビットエラーレート値を測定し、測定値を端子306に出力する。 The electric signal output from the light receiving unit 302 is amplified by the amplifying unit 304 and supplied to the reception processing unit 305 as a received signal. Reception processing section 305 obtains reception data by performing processing such as demodulation on the reception signal. Reception processing section 305 also measures the power value or bit error rate value from the received signal and outputs the measured value to terminal 306 .
 ケーブル560は、光ファイバ561の一端および他端に、プラグ562,563を有する構成とされている。光ファイバ561の一端のプラグ562は測定器550のレセプタクル552に接続され、この光ファイバ561の他端のプラグ563は受信機300Aのレセプタクル301に接続されている。光ファイバ561は、受信機300Aの光ファイバ303と同様の構成であり、第2の波長(例えば850nm)では基本モードと1次モードを伝搬するものとされる。 The cable 560 is configured to have plugs 562 and 563 at one end and the other end of the optical fiber 561 . A plug 562 at one end of the optical fiber 561 is connected to the receptacle 552 of the measuring device 550, and a plug 563 at the other end of the optical fiber 561 is connected to the receptacle 301 of the receiver 300A. The optical fiber 561 has the same configuration as the optical fiber 303 of the receiver 300A, and propagates the fundamental mode and the primary mode at the second wavelength (850 nm, for example).
 プラグ563は、詳細構造の説明は省略するが、図19に示すケーブル510のプラグ502と同様の構成とされ(図20、図21参照)、ワースト条件を評価するために、光ファイバ561のコア位置を、光軸を中心とする円の円周上の例えば「1」~「8」の8箇所の位置(図18(a)参照)にずらすことが可能に構成される。 The plug 563 has the same structure as the plug 502 of the cable 510 shown in FIG. 19 (see FIGS. 20 and 21), although the detailed structure description is omitted. The position can be shifted to, for example, eight positions "1" to "8" (see FIG. 18A) on the circumference of a circle centered on the optical axis.
 測定時には、ケーブル560に含まれる信号ライン(図29(a)には図示されていない)を介して、測定器550側から、光ファイバ561のコア位置を動かすための制御信号がプラグ563に供給される。これにより、プラグ563における光ファイバ561のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずらされていく。 During measurement, a control signal for moving the core position of the optical fiber 561 is supplied to the plug 563 from the measuring instrument 550 via the signal line (not shown in FIG. 29(a)) included in the cable 560. be done. As a result, the core position of the optical fiber 561 in the plug 563 is sequentially shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis.
 図29(c)は、上述したようにプラグ563における光ファイバ561のコア位置が光軸を中心とする円の円周上の「1」~「8」の8箇所の位置にそれぞれずらされた場合における、受信機300Aのレセプタクル301に入射される光の光ファイバ端におけるパワー強度分布とコアとの位置関係の一例を示している。なお、図29(c)では、図の切り取りの関係で、コア位置が動いているように見えるが、このコア位置は固定である。 FIG. 29(c) shows that the core position of the optical fiber 561 in the plug 563 is shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis as described above. 4 shows an example of the positional relationship between the power intensity distribution at the optical fiber end of the light incident on the receptacle 301 of the receiver 300A and the core in this case. In addition, in FIG. 29(c), the core position appears to be moving due to the cutout of the figure, but this core position is fixed.
 測定器550は、送信処理部554と、ドライバIC555と、発光部551と、光ファイバ553と、レセプタクル552と、制御部556と、表示部557と、ユーザ操作部558を有している。 The measuring device 550 has a transmission processing unit 554, a driver IC 555, a light emitting unit 551, an optical fiber 553, a receptacle 552, a control unit 556, a display unit 557, and a user operation unit 558.
 発光部551は、VCSEL(Vertical Cavity Surface Emitting LASER)等のレーザー素子、またはLED(light emitting diode)等の発光素子を備えている。発光部551は、光送信部を構成し、送信処理部554から供給される送信データに基づいてドライバIC555で駆動され、送信データに応じた光信号を出力する。光ファイバ553は、発光部551から出力された光信号をレセプタクル552に伝搬する。この場合、発光部551からは、図11に示す送受信システム100における送信機200の発光部201と同様に、第2の波長(例えば850nm)を持つ光(光信号)が出力される。また、光ファイバ553は、受信機300Aの光ファイバ303と同様の構成であり、第2の波長では基本モードと1次モードを伝搬するものとされる。 The light emitting unit 551 includes a laser element such as a VCSEL (Vertical Cavity Surface Emitting LASER) or a light emitting element such as an LED (light emitting diode). The light emitting unit 551 constitutes an optical transmission unit, is driven by the driver IC 555 based on transmission data supplied from the transmission processing unit 554, and outputs an optical signal corresponding to the transmission data. The optical fiber 553 propagates the optical signal output from the light emitting section 551 to the receptacle 552 . In this case, light (optical signal) having the second wavelength (for example, 850 nm) is output from the light emitting section 551, similarly to the light emitting section 201 of the transmitter 200 in the transmission/reception system 100 shown in FIG. The optical fiber 553 has the same configuration as the optical fiber 303 of the receiver 300A, and propagates the fundamental mode and the primary mode at the second wavelength.
 レセプタクル552は、詳細構造の説明は省略するが、図19に示すケーブル510のプラグ502と同様の構成とされ(図20、図21参照)、ワースト条件を評価するために、光ファイバ553のコア位置を、光軸を中心とする円の円周上の例えば「1」~「8」の8箇所の位置(図18(a)参照)にずらすことが可能に構成される。 The receptacle 552 has the same configuration as the plug 502 of the cable 510 shown in FIG. 19 (see FIGS. 20 and 21), although the detailed description of the structure is omitted. The position can be shifted to, for example, eight positions "1" to "8" (see FIG. 18A) on the circumference of a circle centered on the optical axis.
 測定時には、制御部556から、光ファイバ553のコア位置を動かすための制御信号がレセプタクル552に供給される。これにより、レセプタクル552における光ファイバ553のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずらされていく。 During measurement, a control signal for moving the core position of the optical fiber 553 is supplied from the control unit 556 to the receptacle 552 . As a result, the core position of the optical fiber 553 in the receptacle 552 is sequentially shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis.
 図29(b)は、上述したようにレセプタクル552における光ファイバ553のコア位置が光軸を中心とする円の円周上の「1」~「8」の8箇所の位置にそれぞれずらされたた場合における、ケーブル560のプラグ562に入射される光の光ファイバ端におけるパワー強度分布とコアとの位置関係の一例を示している。なお、図29(b)では、図の切り取りの関係で、コア位置が動いているように見えるが、このコア位置は固定である。 FIG. 29(b) shows that the core position of the optical fiber 553 in the receptacle 552 is shifted to eight positions "1" to "8" on the circumference of the circle centered on the optical axis as described above. 5 shows an example of the positional relationship between the power intensity distribution at the end of the optical fiber of the light incident on the plug 562 of the cable 560 and the core in this case. In addition, in FIG. 29(b), the core position appears to be moving due to the cutout of the figure, but this core position is fixed.
 制御部556は、測定システム50Cにおける測定動作を制御する。制御部556は、ユーザ操作部558からのユーザ操作に基づいて制御処理を開始する。制御部556は、測定時には、レセプタクル552からケーブル560の信号ラインを通じて、ケーブル560のプラグ563に、光ファイバ561のコア位置を動かすための制御信号を供給すると共に、レセプタクル552に、光ファイバ553のコア位置を動かすための制御信号を供給する。 The control unit 556 controls measurement operations in the measurement system 50C. Control unit 556 starts control processing based on a user operation from user operation unit 558 . At the time of measurement, the control unit 556 supplies a control signal for moving the core position of the optical fiber 561 to the plug 563 of the cable 560 from the receptacle 552 through the signal line of the cable 560, and also transmits the optical fiber 553 to the receptacle 552. Provides a control signal to move the core position.
 これにより、プラグ563における光ファイバ561のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置(図18(a)参照)に順次ずれるように制御される。また、プラグ563における光ファイバ561のそれぞれのコア位置で、レセプタクル552における光ファイバ553のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずれるように制御される(図18(a)参照)。 As a result, the core position of the optical fiber 561 in the plug 563 is shifted sequentially to eight positions "1" to "8" (see FIG. 18A) on the circumference of the circle centered on the optical axis. controlled by The core positions of the optical fiber 561 in the plug 563 and the core positions of the optical fiber 553 in the receptacle 552 are eight positions "1" to "8" on the circumference of a circle centered on the optical axis. (see FIG. 18(a)).
 また、制御部556には、受信機300Aの端子306から、信号ライン570および端子559を介して、受信処理部305で得られた測定値(パワー値またはビットエラーレート値)が供給される。 Also, the control unit 556 is supplied with the measured value (power value or bit error rate value) obtained by the reception processing unit 305 from the terminal 306 of the receiver 300A via the signal line 570 and the terminal 559 .
 制御部556は、測定時には、ワースト条件を評価するために、上述したようにプラグ563における光ファイバ561のコア位置およびレセプタクル552における光ファイバ553のコア位置を順次ずらしていき、測定値が基準値をクリアしていない段階で、受信機300Aの軸ずれ量が規定範囲内に収まっていない、つまり「NG」と判断し、全ての位置で測定値が基準値をクリアした場合、受信機300Aの軸ずれ量が規定範囲内に収まっている、つまり「OK」と判断する。ここで、測定部525の測定値が基準値をクリアしているか否かの判断は、測定値を閾値と比較することで行われる。 During measurement, the controller 556 sequentially shifts the core position of the optical fiber 561 in the plug 563 and the core position of the optical fiber 553 in the receptacle 552, as described above, in order to evaluate the worst conditions. is not cleared, the amount of misalignment of the receiver 300A is not within the specified range, that is, it is judged as "NG", and if the measured value clears the reference value at all positions, the receiver 300A It is determined that the shaft misalignment is within the specified range, that is, "OK". Here, whether or not the measured value of the measuring unit 525 clears the reference value is determined by comparing the measured value with a threshold value.
 また、制御部556は、測定時には、上述の判断の結果を表示部557に表示する。この場合、制御部556から表示部557に表示信号が供給され、表示部557には「OK結果」、あるいは「NG結果」が表示される。表示部557は、LED(Light Emitting Diode)表示部等で構成される。なお、表示部557の代わりに音出力部、例えばスピーカ等を設け、「OK結果」、あるいは「NG結果」を音声出力すること、または「OK結果」、あるいは「NG結果」を識別可能な特定の音を出力すること、なども考えられる。 Also, the control unit 556 displays the result of the above determination on the display unit 557 during measurement. In this case, a display signal is supplied from the control unit 556 to the display unit 557, and the display unit 557 displays "OK result" or "NG result". The display unit 557 is configured by an LED (Light Emitting Diode) display unit or the like. A sound output unit such as a speaker may be provided instead of the display unit 557 to output "OK result" or "NG result" by voice, or to identify "OK result" or "NG result". It is also conceivable to output the sound of
 図30のフローチャートは、測定器550の制御部556における測定時の制御処理の手順の一例を示している。 The flowchart of FIG. 30 shows an example of the procedure of control processing at the time of measurement in the control section 556 of the measuring device 550 .
 制御部556は、ステップST31において、制御処理を開始する。次に、制御部556は、ステップST32において、測定器550のレセプタクル552内の光ファイバ553のコア位置を「1」にする。次に、制御部556は、ステップST33において、ケーブル560のプラグ563内の光ファイバ561のコア位置を「1」にする。 The control unit 556 starts control processing in step ST31. Next, the controller 556 sets the core position of the optical fiber 553 in the receptacle 552 of the measuring device 550 to "1" in step ST32. Next, the controller 556 sets the core position of the optical fiber 561 in the plug 563 of the cable 560 to "1" in step ST33.
 次に、制御部556は、ステップST34において、測定値が基準値をクリアしているか判断する。クリアしていない場合、制御部556は、ステップST35において、受信機300Aの軸ずれ量が規定範囲内に収まっていない、つまり「NG」と判断し、「NG結果」を表示部557に表示し、その後、ステップST36において、制御処理を終了する。 Next, in step ST34, the control section 556 determines whether the measured value clears the reference value. If not cleared, in step ST35, control section 556 determines that the amount of axial misalignment of receiver 300A is not within the specified range, that is, "NG", and displays "NG result" on display section 557. After that, in step ST36, the control process is terminated.
 ステップST34でクリアしている場合、制御部556は、ステップST37において、ケーブル560のプラグ563内の光ファイバ561のコア位置は「8」であるか否かを判断する。コア位置が「8」でない場合、制御部556は、ステップST38において、ケーブル560のプラグ563内の光ファイバ561のコア位置を次の位置にし、その後に、ステップST34の処理に戻る。 If cleared in step ST34, the control unit 556 determines whether the core position of the optical fiber 561 in the plug 563 of the cable 560 is "8" in step ST37. If the core position is not "8", the controller 556 sets the core position of the optical fiber 561 in the plug 563 of the cable 560 to the next position in step ST38, and then returns to step ST34.
 ステップST17でコア位置が「8」である場合、制御部556は、ステップST39において、測定器550のレセプタクル552内の光ファイバ553のコア位置は「8」であるか否かを判断する。コア位置が「8」でない場合、制御部556は、ステップST40において、ケーブル560のプラグ563内の光ファイバ561のコア位置を「1」にすると共に、ステップST41において、測定器550のレセプタクル552内の光ファイバ553のコア位置を次の位置にし、その後に、ステップST34の処理に戻る。 If the core position is "8" in step ST17, the controller 556 determines whether the core position of the optical fiber 553 in the receptacle 552 of the measuring device 550 is "8" in step ST39. If the core position is not "8", the controller 556 sets the core position of the optical fiber 561 in the plug 563 of the cable 560 to "1" in step ST40, and moves the core position of the optical fiber 561 in the receptacle 552 of the measuring device 550 to "1" in step ST41. , the core position of the optical fiber 553 is set to the next position, and then the process returns to step ST34.
 ステップST39でコア位置が「8」である場合、制御部556は、ステップST42において、受信機300Aの軸ずれ量が規定範囲内に収まっている、つまり「OK」と判断し、「OK結果」を表示部557に表示し、その後、ステップST36において、制御処理を終了する。 If the core position is "8" in step ST39, control section 556 determines that the amount of axial deviation of receiver 300A is within the specified range, that is, "OK", and "OK result" in step ST42. is displayed on the display unit 557, and then the control process is terminated in step ST36.
 図29(a)に示す測定システム50Cにおいては、測定時には、測定器550の発光部551は光信号を出力する状態とされ、この光信号はケーブル560を介して、受信機300Aに送信される。この状態において、ケーブル560のプラグ563の光ファイバ561のコア位置および測定器550のレセプタクル552の光ファイバ553のコア位置がそれぞれ光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずらされ、測定器550において、上述したように「NG」、あるいは「OK」の判断がされ、その結果が表示される。 In the measurement system 50C shown in FIG. 29(a), the light emitting unit 551 of the measuring device 550 is set to output an optical signal during measurement, and this optical signal is transmitted to the receiver 300A via the cable 560. . In this state, the core position of the optical fiber 561 of the plug 563 of the cable 560 and the core position of the optical fiber 553 of the receptacle 552 of the measuring device 550 are respectively "1" to "8" on the circumference of the circle centered on the optical axis. , and the measurement device 550 determines "NG" or "OK" as described above, and the result is displayed.
 このように図29(a)に示す測定システム50Cにおいては、検査対象としての受信機300Aのレセプタクル301に接続されるケーブル560の一端側のプラグ563の光ファイバ561のコア位置およびそのケーブル560の他端側のプラグ562が接続される測定器550のレセプタクル552の光ファイバ553のコア位置を、ワースト条件を評価するためにそれぞれ光軸に対して複数の位置にずらして受信機の軸ずれ量が規定範囲内に収まっているかを判断するものである。そのため、受信機の軸ずれ量が規定範囲内に収まっているかを良好に判断することが可能となる。 Thus, in the measurement system 50C shown in FIG. 29A, the core position of the optical fiber 561 of the plug 563 on the one end side of the cable 560 connected to the receptacle 301 of the receiver 300A to be inspected and the position of the cable 560 In order to evaluate the worst condition, the core position of the optical fiber 553 of the receptacle 552 of the measuring device 550 to which the plug 562 on the other end side is connected is shifted to a plurality of positions with respect to the optical axis, and the amount of misalignment of the receiver is calculated. is within the specified range. Therefore, it is possible to determine whether the amount of axial misalignment of the receiver is within the specified range.
 なお、上述では、プラグ563における光ファイバ561のコア位置およびレセプタクル552における光ファイバ553のコア位置の双方が「8」に到達する前の段階で受信機300Aの受信処理部305で得られた測定値が基準値をクリアしていない場合には直ちに「NG結果」を表示部557に表示して処理を終了する例を説明した。しかし、双方のコア位置が「8」に到達するまでコア位置を順次ずらして、それぞれの位置で測定値が基準値をクリアしているか否かを判断し、表示部557には、全てのコア位置について、OK箇所(基準値をクリアしている箇所)であるかNG箇所(基準値をクリアしていない箇所)であるかを表示する構成とすることも考えられる。 In the above description, the measurement obtained by the reception processing unit 305 of the receiver 300A before both the core position of the optical fiber 561 in the plug 563 and the core position of the optical fiber 553 in the receptacle 552 reach "8". An example has been described in which if the value does not clear the reference value, the "NG result" is immediately displayed on the display unit 557 and the process is terminated. However, the core positions are sequentially shifted until both core positions reach "8", and it is determined whether the measured value at each position clears the reference value. It is also conceivable to configure the position to display whether it is an OK location (location where the reference value is cleared) or an NG location (location where the reference value is not cleared).
 「受信機を検査対象とする他の測定システム」
 上述の図29(a)に示す測定システム50Cでは、受信機300Aの受信処理部305で得られた測定値(パワー値またはビットエラーレート値)に基づいて測定器550の制御部556が受信機の軸ずれ量が規定範囲内に収まっているかを判断している。しかし、送信側から映像データを光信号として送信し、受信機で映像表示ができるか否かで、受信機の軸ずれ量が規定範囲内に収まっているかを判断する構成も考えられる。
"Other measuring systems for receiver inspection"
In the measurement system 50C shown in FIG. 29A described above, the control unit 556 of the measuring device 550 controls the receiver based on the measurement value (power value or bit error rate value) obtained by the reception processing unit 305 of the receiver 300A. is within the specified range. However, a configuration is also conceivable in which image data is transmitted as an optical signal from the transmission side, and whether or not the amount of axial deviation of the receiver is within a specified range is determined based on whether image display is possible on the receiver.
 図31は、受信機を検査対象とする測定システム50Dの構成例を示している。この図31において、図29(a)と対応する部分には同一符号を付し、その詳細説明は省略する。この測定システム50Dは、測定器550Aと、測定冶具としてのケーブル560と、受信機300Bを有している。測定器550Aと受信機300Bは、ケーブル560を介して接続されている。 FIG. 31 shows a configuration example of a measurement system 50D whose inspection target is a receiver. In FIG. 31, parts corresponding to those in FIG. 29(a) are denoted by the same reference numerals, and detailed description thereof will be omitted. This measuring system 50D has a measuring device 550A, a cable 560 as a measuring jig, and a receiver 300B. Measuring instrument 550A and receiver 300B are connected via cable 560 .
 受信機300Bは、レセプタクル301と、受光部302と、光ファイバ303と、増幅部304と、受信処理部305と、ディスプレイ307を有している。受信処理部305は、受光部302から増幅部304を介して供給される受信信号に対して復調等の処理を行って映像データを得る。ディスプレイ307は、受信処理部305で得られた映像データによる映像を表示する。詳細説明は省略するが、この受信部300Bのその他は、図29(a)に示す測定システム50Cにおける受信機300Aと同様に構成される。 The receiver 300B has a receptacle 301, a light receiving section 302, an optical fiber 303, an amplifier section 304, a reception processing section 305, and a display 307. The reception processing unit 305 obtains video data by performing processing such as demodulation on the reception signal supplied from the light receiving unit 302 via the amplification unit 304 . A display 307 displays an image based on the image data obtained by the reception processing unit 305 . Although the detailed description is omitted, the rest of the receiving section 300B is configured in the same manner as the receiver 300A in the measurement system 50C shown in FIG. 29(a).
 ケーブル560は、光ファイバ561の一端および他端に、プラグ562,563を有する構成とされている。光ファイバ561の一端のプラグ562は測定器550Aのレセプタクル552に接続され、この光ファイバ561の他端のプラグ563は受信機300Bのレセプタクル301に接続されている。詳細説明は省略するが、このケーブル560は、図29(a)に示す測定システム50Cにおけるケーブル560と同様に構成される。 The cable 560 is configured to have plugs 562 and 563 at one end and the other end of the optical fiber 561 . A plug 562 at one end of the optical fiber 561 is connected to the receptacle 552 of the measuring device 550A, and a plug 563 at the other end of the optical fiber 561 is connected to the receptacle 301 of the receiver 300B. Although detailed description is omitted, this cable 560 is configured in the same manner as the cable 560 in the measurement system 50C shown in FIG. 29(a).
 測定器550Aは、送信処理部554Aと、ドライバIC555と、発光部551と、光ファイバ553と、レセプタクル552と、制御部556Aと、ユーザ操作部558を有している。 The measuring device 550A has a transmission processing section 554A, a driver IC 555, a light emitting section 551, an optical fiber 553, a receptacle 552, a control section 556A, and a user operation section 558.
 送信処理部554Aは、測定時に、送信データとして映像データを出力する。これにより、発光部551からは映像データに応じた光信号が出力され、レセプタクル552に伝搬される。 The transmission processing unit 554A outputs video data as transmission data during measurement. As a result, an optical signal corresponding to the video data is output from the light emitting unit 551 and propagated to the receptacle 552 .
 制御部556Aは、測定システム50Dにおける測定動作を制御する。制御部556Aは、ユーザ操作部558からのユーザ操作に基づいて制御処理を開始する。制御部556Aは、測定時には、レセプタクル552からケーブル560の信号ラインを通じて、ケーブル560のプラグ563に、光ファイバ561のコア位置を動かすための制御信号を供給すると共に、レセプタクル552に、光ファイバ553のコア位置を動かすための制御信号を供給する。 The control unit 556A controls measurement operations in the measurement system 50D. Control unit 556A starts control processing based on a user operation from user operation unit 558 . At the time of measurement, the control unit 556A supplies a control signal for moving the core position of the optical fiber 561 to the plug 563 of the cable 560 from the receptacle 552 through the signal line of the cable 560, and also transmits the optical fiber 553 to the receptacle 552. Provides a control signal to move the core position.
 これにより、プラグ563における光ファイバ561のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置(図18(a)参照)に順次ずれるように制御される。また、プラグ563における光ファイバ561のそれぞれのコア位置で、レセプタクル552における光ファイバ553のコア位置は、光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずれるように制御される(図18(a)参照)。 As a result, the core position of the optical fiber 561 in the plug 563 is shifted sequentially to eight positions "1" to "8" (see FIG. 18A) on the circumference of the circle centered on the optical axis. controlled by The core positions of the optical fiber 561 in the plug 563 and the core positions of the optical fiber 553 in the receptacle 552 are eight positions "1" to "8" on the circumference of a circle centered on the optical axis. (see FIG. 18(a)).
 詳細説明は省略するが、この測定器550Aのその他は、図29(a)に示す測定システム50Cにおける測定器550と同様に構成される。 Although the detailed description is omitted, the rest of the measuring instrument 550A is configured in the same manner as the measuring instrument 550 in the measuring system 50C shown in FIG. 29(a).
 図31に示す測定システム50Dにおいては、測定時には、測定器550Aの発光部551は映像データの光信号を出力する状態とされ、この光信号はケーブル560を介して、受信機300Bに送信される。この状態において、ケーブル560のプラグ563の光ファイバ561のコア位置および測定器550Aのレセプタクル552の光ファイバ553のコア位置がそれぞれ光軸を中心とする円の円周上の「1」~「8」の8箇所の位置に順次ずらされ、ユーザは、その際に、受信機300Bのディスプレイ307に映像が正しく表示されるか否かで、受信機300Bの軸ずれ量が規定範囲内に収まっているかを判断する。 In the measuring system 50D shown in FIG. 31, the light emitting unit 551 of the measuring device 550A is set to output an optical signal of video data during measurement, and this optical signal is transmitted to the receiver 300B via the cable 560. . In this state, the core position of the optical fiber 561 of the plug 563 of the cable 560 and the core position of the optical fiber 553 of the receptacle 552 of the measuring device 550A are respectively "1" to "8" on the circumference of the circle centered on the optical axis. , and the user determines whether or not the image is displayed correctly on the display 307 of the receiver 300B at that time. determine if there is
 このように図31に示す測定システム50Dにおいても、検査対象としての受信機300Bのレセプタクル301に接続されるケーブル560の一端側のプラグ563の光ファイバ561のコア位置およびそのケーブル560の他端側のプラグ562が接続される測定器550Aのレセプタクル552の光ファイバ553のコア位置を、ワースト条件を評価するためにそれぞれ光軸に対して複数の位置にずらして受信機の軸ずれ量が規定範囲内に収まっているかを判断するものであり、受信機の軸ずれ量が規定範囲内に収まっているかを良好に判断することが可能となる。 Thus, in the measurement system 50D shown in FIG. 31 as well, the core position of the optical fiber 561 of the plug 563 on one end side of the cable 560 connected to the receptacle 301 of the receiver 300B to be inspected and the other end side of the cable 560 The core position of the optical fiber 553 of the receptacle 552 of the measuring instrument 550A to which the plug 562 of the measuring instrument 550A is connected is shifted to a plurality of positions with respect to the optical axis in order to evaluate the worst conditions. It is possible to judge whether the amount of axial deviation of the receiver is within the specified range or not.
 なお、図31に示す測定システム50Dは図29(a)に示す検査対象が受信機である測定システム50Cに対応したものであるが、図19(a)に示す測定システム50Aや図26(a)に示す測定システム50Bに対応する測定システムであって、送信側から映像データを光信号として送信し、受信側で映像表示ができるか否かで、送信機やケーブルの軸ずれ量が規定範囲内に収まっているかを判断する構成も同様に考えることができる。 Note that the measurement system 50D shown in FIG. 31 corresponds to the measurement system 50C shown in FIG. ), in which the image data is transmitted as an optical signal from the transmission side, and whether or not the image can be displayed on the reception side determines whether the amount of axial deviation of the transmitter or cable is within a specified range. A configuration for judging whether it is within the range can also be considered in the same way.
 <2.変形例>
 なお、上述実施の形態においては、第1の波長が1310nmとして説明したが、光源としてレーザー光源やLED光源の使用が考えられることから、第1の波長としては、例えば300nmから5μmの間にあることが考えられる。
<2. Variation>
In the above-described embodiment, the first wavelength is 1310 nm, but since a laser light source or an LED light source may be used as the light source, the first wavelength may be, for example, between 300 nm and 5 μm. can be considered.
 また、上述の実施の形態においては、第1の波長が1310nmとして説明したが、この第1の波長が、1310nmを含む1310nm帯の波長であることも考えられる。また、上述の実施の形態においては、第1の波長が1310nmとして説明したが、この第1の波長が、1550nm、あるいは、1550nmを含む1550nm帯の波長であることも考えられる。また、第2の波長が850nmとして説明したが、この第2の波長が、850nmを含む850nm帯の波長であることも考えられる。 Also, in the above embodiment, the first wavelength is 1310 nm, but it is also conceivable that this first wavelength is a wavelength in the 1310 nm band including 1310 nm. Moreover, although the first wavelength is 1310 nm in the above embodiment, it is also conceivable that the first wavelength is 1550 nm or a wavelength in the 1550 nm band including 1550 nm. Also, although the second wavelength is described as 850 nm, it is also conceivable that this second wavelength is a wavelength in the 850 nm band including 850 nm.
 また、上述実施の形態においては、光導波路が光ファイバである例で説明したが、本技術は光ファイバ以外の光導波路、例えばシリコン光導波路等である場合にも、適用できることは勿論である。 Also, in the above-described embodiments, an example in which the optical waveguide is an optical fiber has been described, but the present technology can of course also be applied to an optical waveguide other than an optical fiber, such as a silicon optical waveguide.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is obvious that those who have ordinary knowledge in the technical field of the present disclosure can conceive of various modifications or modifications within the scope of the technical idea described in the claims. is naturally within the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏し得る。 Also, the effects described in this specification are merely descriptive or exemplary, and are not limiting. In other words, the technology according to the present disclosure can produce other effects that are obvious to those skilled in the art from the description of this specification in addition to or instead of the above effects.
 なお、本技術は、以下のような構成もとることができる。
 (1)ケーブルと、
 測定器を備え、
 前記ケーブルは、
 検査対象としての送信機のレセプタクルに接続するためのプラグを有し、
 前記プラグは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記測定器は、
 前記送信機から前記ケーブルを通して送られてくる光信号を受信する光受信部と、
 前記プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて前記送信機の軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部を有する
 測定システム。
 (2)前記処理部は、前記プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、前記光軸を中心とする円の円周上の複数の位置にずらす
 前記(1)に記載の測定システム。
 (3)前記処理部は、前記プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、前記プラグに前記ケーブルに含まれる信号ラインを介して制御信号を送る
 前記(1)または(2)に記載の測定システム。
 (4)前記処理部は、前記送信機の軸ずれ量が規定範囲内に収まっているか判断する処理では、前記光受信部の出力信号から測定されたパワー値またはビットエラーレート値を閾値と比較して判断する
 前記(1)から(3)のいずれかに記載の測定システム。
 (5)前記処理部は、前記判断結果をユーザに提示する処理をさらに行う
 前記(1)から(4)のいずれかに記載の測定システム。
 (6)前記送信機は、第1の波長では基本モードのみを伝搬する光ファイバを有し、第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をし、
 前記第2の波長は、前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
 前記(1)から(5)のいずれかに記載の測定システム。
 (7)前記ケーブルは、前記測定器と一体とされている
 前記(1)から(6)のいずれかに記載の測定システム。
 (8)送信側測定器と、
 受信側測定器を備え、
 前記送信側測定器は、
 検査対象としてのケーブルの一端側のプラグに接続するための第1のレセプタクルと、
 前記第1のレセプタクルに光ファイバを介して光信号を出力する光送信部を有し、
 前記第1のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記受信側測定器は、
 前記検査対象としての光ゲーブルの他端側のプラグに接続するための第2のレセプタクルと、
 前記ケーブルから前記第2のレセプタクルを通して入力される光信号を受信する光受信部を有し、
 前記第2のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記第1のレセプタクルの光ファイバのコア位置および前記第2のレセプタクルの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて前記ケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部をさらに有する
 測定システム。
 (9)前記処理部は、前記第1のレセプタクルの光ファイバのコア位置および前記第2のレセプタクルの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理では、前記光軸を中心とする円の円周上の複数の位置にずらす
 前記(8)に記載の測定システム。
 (10)前記処理部は、前記第1のレセプタクルの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、前記第1のレセプタクルに前記ケーブルに含まれる信号ラインまたは前記ケーブルに含まれない信号ラインを介して制御信号を送る
 前記(8)または(9)に記載の測定システム。
 (11)前記処理部は、前記ケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理では、前記光受信部の出力信号から測定されたパワー値またはビットエラーレート値を閾値と比較して判断する
 前記(8)から(10)のいずれかに記載の測定システム。
 (12)前記処理部は、前記判断結果をユーザに提示する処理をさらに行う
 前記(8)から(11)のいずれかに記載の測定システム。
 (13)前記ケーブルは、第1の波長では基本モードのみを伝搬する光ファイバを有し、第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をし、
 前記第2の波長は、前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
 前記(8)から(12)のいずれかに記載の測定システム。
 (14)ケーブルと、
 測定器を備え、
 前記ケーブルは、
 検査対象としての受信機の第1のレセプタクルに接続するための一端側のプラグと前記測定器の第2のレセプタクルに接続するための他端側のプラグを有し、
 前記一端側のプラグは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記測定器は、
 前記第2のレセプタクルと、
 前記第2のレセプタクルに光ファイバを介して光信号を出力する光送信部を有し、
 前記第2のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記第2のレセプタクルの光ファイバのコア位置および前記ケーブルの一端側のプラグのコア位置をそれぞれ光軸に対して複数の位置にずらす処理を行う処理部をさらに有する
 測定システム。
 (15)前記処理部は、前記第2のレセプタクルの光ファイバのコア位置および前記ケーブルの一端側のプラグの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理では、前記光軸を中心とする円の円周上の複数の位置にずらす
 前記(14)に記載の測定システム。
 (16)前記処理部は、前記一端側のプラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、前記一端側のプラグに前記ケーブルに含まれる信号ラインを介して制御信号を送る
 前記(14)または(15)に記載の測定システム。
 (17)前記処理部は、前記複数の位置において前記受信機で受信される光信号に応じた値に基づいて前記受信機の軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部をさらに有する
 前記(14)から(16)のいずれかに記載の測定システム。
 (18)前記受信機で受信される光信号に応じた値は、前記光受信部の出力信号に基づいて測定されたパワー値またはビットエラーレート値である
 前記(17)に記載の測定システム。
 (19)前記処理部は、前記判断結果をユーザに提示する処理をさらに行う
 前記(17)または(18)に記載の測定システム。
 (20)前記受信機は、第1の波長では基本モードのみを伝搬する光ファイバを有し、第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をし、
 前記第2の波長は、前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
 前記(14)から(19)のいずれかに記載の測定システム。
 (21)レセプタクルと、
 前記レセプタクルを通して入力される光信号を受信する光受信部と、
 前記レセプタクルに一端側のプラグが接続されたケーブルの他端側のプラグのコア位置を光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて、前記ケーブルの他端側に接続される送信機の軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部を備える
 測定器。
 (22)レセプタクルと、
 前記レセプタクルを通して入力される光信号を受信する光受信部を備え、
 前記レセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記レセプタクルおよび前記レセプタクルに一端側のプラグが接続されたケーブルの他端側のプラグに接続された送信側機器のレセプタクルのコア位置を光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて、前記ケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部をさらに備える
 測定器。
 (23)レセプタクルと、
 前記レセプタクルに光ファイバを介して光信号を出力する光送信部を備え、
 前記レセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成される
 測定器。
 (24)前記レセプタクルには、該レセプタクルに接続されるケーブルに含まれる信号ラインまたは前記ケーブルに含まれない信号ラインを介して前記複数の位置にずらすための制御信号が供給される
 前記(23)に記載の測定器。
 (25)レセプタクルと、
 前記レセプタクルに光ファイバを介して光信号を出力する光送信部を備え、
 前記レセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
 前記レセプタクルおよび前記レセプタクルに一端側のプラグが接続されたケーブルの他端側のプラグのコア位置を光軸に対して複数の位置にずらす処理を行う処理部をさらに備える
 測定器。
 (26)前記処理部は、前記複数の位置において前記ケーブルの他端側に接続された受信機で受信される光信号に応じた値に基づいて前記受信機の軸ずれ量が規定範囲内に収まっているか判断する処理をさらに行う
 前記(25)に記載の測定器。
 (27)光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成されたプラグを備える
 ケーブル。
 (28)前記プラグに制御信号を送信する信号ラインをさらに備える
 前記(27)に記載のケーブル。
Note that the present technology can also have the following configuration.
(1) a cable;
equipped with a measuring instrument,
The cable is
having a plug for connection to a receptacle of a transmitter to be tested;
The plug is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
The measuring instrument
an optical receiver that receives an optical signal sent from the transmitter through the cable;
a process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis; A measurement system having a processing unit that determines whether the measurement is within a specified range.
(2) In the process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis, the processing section shifts the core position of the optical fiber of the plug to a plurality of positions on the circumference of a circle centered on the optical axis. 1) The measurement system described in 1).
(3) In the process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis, the processing unit sends a control signal to the plug via a signal line included in the cable. ) or (2).
(4) The processing unit compares a power value or a bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axial deviation of the transmitter is within a specified range. The measurement system according to any one of (1) to (3) above.
(5) The measurement system according to any one of (1) to (4), wherein the processing unit further performs a process of presenting the determination result to the user.
(6) the transmitter comprises an optical fiber that propagates only a fundamental mode at a first wavelength and communicates using light having a second wavelength and having at least a first-order mode component along with the fundamental mode; death,
The measurement system according to any one of (1) to (5), wherein the second wavelength is a wavelength that allows the optical fiber to propagate at least the primary mode together with the fundamental mode.
(7) The measuring system according to any one of (1) to (6), wherein the cable is integrated with the measuring device.
(8) a transmitter measuring instrument;
Equipped with a receiver measuring instrument,
The transmitting measuring instrument,
a first receptacle for connecting to a plug on one end of a cable to be tested;
an optical transmitter that outputs an optical signal to the first receptacle via an optical fiber;
the first receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
The receiving side measuring instrument
a second receptacle for connecting to a plug on the other end side of the optical gable to be inspected;
an optical receiver that receives an optical signal input from the cable through the second receptacle;
the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
A process of shifting the core position of the optical fiber of the first receptacle and the core position of the optical fiber of the second receptacle to a plurality of positions with respect to an optical axis, and output signals of the optical receiver at the plurality of positions. measurement system, further comprising a processing unit that determines whether the amount of axial deviation of the cable is within a specified range based on the value measured from the measurement system.
(9) In the process of shifting the core position of the optical fiber of the first receptacle and the core position of the optical fiber of the second receptacle to a plurality of positions with respect to the optical axis, the processing unit shifts the optical axis to: The measurement system according to (8) above, wherein the measuring system is shifted to a plurality of positions on the circumference of the centered circle.
(10) In the process of shifting the core position of the optical fiber of the first receptacle to a plurality of positions with respect to the optical axis, the processing unit shifts a signal line included in the cable to the first receptacle or to the cable. The measurement system according to (8) or (9) above, wherein a control signal is sent via a signal line not included.
(11) The processing unit compares a power value or a bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axial deviation of the cable is within a specified range. The measurement system according to any one of (8) to (10) above.
(12) The measurement system according to any one of (8) to (11), wherein the processing unit further performs a process of presenting the determination result to the user.
(13) The cable has an optical fiber that propagates only a fundamental mode at a first wavelength, and communicates using light having a second wavelength and having at least a first-order mode component along with the fundamental mode. ,
The measurement system according to any one of (8) to (12), wherein the second wavelength is a wavelength that allows the optical fiber to propagate at least a first-order mode together with the fundamental mode.
(14) a cable;
equipped with a measuring instrument,
The cable is
having a plug on one end for connecting to a first receptacle of a receiver to be tested and a plug on the other end for connecting to a second receptacle of the measuring instrument;
The plug on the one end side is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
The measuring instrument
the second receptacle;
an optical transmitter that outputs an optical signal to the second receptacle via an optical fiber;
the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
The measurement system further comprising a processing unit that shifts the core position of the optical fiber of the second receptacle and the core position of the plug on one end side of the cable to a plurality of positions with respect to the optical axis.
(15) In the process in which the processing unit shifts the core position of the optical fiber of the second receptacle and the core position of the optical fiber of the plug on one end side of the cable to a plurality of positions with respect to the optical axis, The measurement system according to (14) above, wherein the displacement is to a plurality of positions on the circumference of a circle centered on the axis.
(16) In the process of shifting the core position of the optical fiber of the plug on the one end side to a plurality of positions with respect to the optical axis, the processing unit controls the plug on the one end side via a signal line included in the cable. The measurement system according to (14) or (15), which transmits a signal.
(17) The processing unit performs processing for determining whether the amount of axis deviation of the receiver is within a specified range based on values corresponding to the optical signals received by the receiver at the plurality of positions. The measurement system according to any one of (14) to (16) above, further comprising a section.
(18) The measurement system according to (17), wherein the value according to the optical signal received by the receiver is a power value or a bit error rate value measured based on the output signal of the optical receiver.
(19) The measurement system according to (17) or (18), wherein the processing unit further performs a process of presenting the determination result to the user.
(20) The receiver comprises an optical fiber that propagates only a fundamental mode at a first wavelength and communicates using light having a second wavelength and having at least a first order mode component along with the fundamental mode. death,
The measurement system according to any one of (14) to (19), wherein the second wavelength is a wavelength that allows the optical fiber to propagate at least a first-order mode together with the fundamental mode.
(21) a receptacle;
an optical receiver that receives an optical signal input through the receptacle;
A process of shifting the core position of the plug on the other end side of the cable connected to the receptacle on the other end side to a plurality of positions with respect to the optical axis, and measuring from the output signal of the optical receiver at the plurality of positions a processing unit that determines whether the amount of axial deviation of a transmitter connected to the other end of the cable is within a specified range based on the value obtained.
(22) a receptacle;
An optical receiver that receives an optical signal input through the receptacle,
The receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
a process of shifting a core position of the receptacle and a receptacle of a transmitting device connected to a plug on the other end of a cable having a plug on one end connected to the receptacle to a plurality of positions with respect to an optical axis; The measuring instrument further comprises a processing unit that determines whether the amount of axial deviation of the cable is within a specified range based on the value measured from the output signal of the optical receiving unit at the position.
(23) a receptacle;
An optical transmitter that outputs an optical signal to the receptacle via an optical fiber,
The receptacle is configured such that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
(24) The receptacle is supplied with a control signal for shifting to the plurality of positions via a signal line included in a cable connected to the receptacle or a signal line not included in the cable. measuring instrument described in .
(25) a receptacle;
An optical transmitter that outputs an optical signal to the receptacle via an optical fiber,
The receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
The measuring instrument further comprises a processing unit that shifts the core position of the receptacle and the plug on the other end of the cable connected to the receptacle with the plug on the one end to a plurality of positions with respect to the optical axis.
(26) The processing unit adjusts the amount of axis deviation of the receiver within a specified range based on the values corresponding to the optical signals received by the receiver connected to the other end of the cable at the plurality of positions. The measuring instrument according to (25), further performing a process of determining whether or not it fits.
(27) A cable provided with a plug configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
(28) The cable according to (27), further comprising a signal line that transmits a control signal to the plug.
50A,50B,50C,50D・・・測定システム
 100・・・送受信システム
 200・・・送信機
 201・・・発光部
 202・・・レセプタクル
 203・・・光ファイバ
 204・・・送信処理部
 205・・・ドライバIC
 300,300A,300B・・・受信機
 301・・・レセプタクル
 302・・・受光部
 303・・・光ファイバ
 304・・・増幅部
 305・・・受信処理部
 306・・・端子
 307・・・ディスプレイ
 400・・・ケーブル
 401・・・光ファイバ
 402,403・・・プラグ
 410・・・信号ライン
 510・・・ケーブル
 501・・・光ファイバ
 502,503・・・プラグ
 504・・・信号ライン
 520・・・測定器
 521・・・レセプタクル
 522・・・受光部
 523・・・光ファイバ
 524・・・増幅部
 525・・・測定部
 526・・・制御部
 527・・・表示部
 528・・・ユーザ操作部
 530・・・送信側測定器
 531・・・発光部
 532・・・レセプタクル
 533・・・光ファイバ
 534・・・送信処理部
 535・・・ドライバIC
 536・・・専用端子
 540・・・受信側測定器
 541・・・レセプタクル
 542・・・受光部
 543・・・光ファイバ
 544・・・増幅部
 545・・・測定部
 546・・・制御部
 547・・・表示部
 548・・・ユーザ操作部
 549・・・専用端子
 550,550A・・・測定器
 551・・・発光部
 552・・・レセプタクル
 553・・・光ファイバ
 554,554A・・・送信処理部
 555・・・ドライバIC
 556,556A・・・制御部
 557・・・表示部
 558・・・ユーザ操作部
 559・・・端子
 560・・・ケーブル
 561・・・光ファイバ
 562,563・・・プラグ
 570・・・信号ライン
 612・・・第1の光学部
 613・・・第2の光学部
 631・・・ファイバ用フェルール位置決め部材
 632・・・ファイバ用フェルール
 633・・・形状変化部材
 634・・・バネ
50A, 50B, 50C, 50D... Measurement system 100... Transmission/reception system 200... Transmitter 201... Light emitting unit 202... Receptacle 203... Optical fiber 204... Transmission processing unit 205.・・・Driver IC
300, 300A, 300B receiver 301 receptacle 302 light receiving unit 303 optical fiber 304 amplifier 305 reception processing unit 306 terminal 307 display DESCRIPTION OF SYMBOLS 400... Cable 401... Optical fiber 402, 403... Plug 410... Signal line 510... Cable 501... Optical fiber 502, 503... Plug 504... Signal line 520. Measuring device 521 Receptacle 522 Light receiving unit 523 Optical fiber 524 Amplifier 525 Measuring unit 526 Control unit 527 Display unit 528 User Operation unit 530 Transmitting measuring device 531 Light emitting unit 532 Receptacle 533 Optical fiber 534 Transmission processing unit 535 Driver IC
536 Dedicated terminal 540 Receiving side measuring device 541 Receptacle 542 Light receiving unit 543 Optical fiber 544 Amplifier 545 Measuring unit 546 Control unit 547 Display unit 548 User operation unit 549 Dedicated terminal 550, 550A Measuring device 551 Light emitting unit 552 Receptacle 553 Optical fiber 554, 554A Transmission Processing unit 555 Driver IC
556, 556A... Control unit 557... Display unit 558... User operation unit 559... Terminal 560... Cable 561... Optical fiber 562, 563... Plug 570... Signal line 612 First optical section 613 Second optical section 631 Fiber ferrule positioning member 632 Fiber ferrule 633 Shape changing member 634 Spring

Claims (28)

  1.  ケーブルと、
     測定器を備え、
     前記ケーブルは、
     検査対象としての送信機のレセプタクルに接続するためのプラグを有し、
     前記プラグは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
     前記測定器は、
     前記送信機から前記ケーブルを通して送られてくる光信号を受信する光受信部と、
     前記プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて前記送信機の軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部を有する
     測定システム。
    a cable;
    equipped with a measuring instrument,
    The cable is
    having a plug for connection to a receptacle of a transmitter to be tested;
    The plug is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
    The measuring instrument
    an optical receiver that receives an optical signal sent from the transmitter through the cable;
    a process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis; A measurement system having a processing unit that determines whether the measurement is within a specified range.
  2.  前記処理部は、前記プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、前記光軸を中心とする円の円周上の複数の位置にずらす
     請求項1に記載の測定システム。
    2. The processing unit according to claim 1, wherein in the process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis, the processor shifts the core position of the optical fiber to a plurality of positions on the circumference of a circle centered on the optical axis. measurement system.
  3.  前記処理部は、前記プラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、前記プラグに前記ケーブルに含まれる信号ラインを介して制御信号を送る
     請求項1に記載の測定システム。
    2. The processing unit according to claim 1, wherein in the process of shifting the core position of the optical fiber of the plug to a plurality of positions with respect to the optical axis, the processing unit sends a control signal to the plug via a signal line included in the cable. measurement system.
  4.  前記処理部は、前記送信機の軸ずれ量が規定範囲内に収まっているか判断する処理では、前記光受信部の出力信号から測定されたパワー値またはビットエラーレート値を閾値と比較して判断する
     請求項1に記載の測定システム。
    The processing unit compares a power value or a bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axial deviation of the transmitter is within a specified range. The measurement system according to claim 1.
  5.  前記処理部は、前記判断結果をユーザに提示する処理をさらに行う
     請求項1に記載の測定システム。
    The measurement system according to claim 1, wherein the processing section further performs a process of presenting the determination result to a user.
  6.  前記送信機は、第1の波長では基本モードのみを伝搬する光ファイバを有し、第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をし、
     前記第2の波長は、前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
     請求項1に記載の測定システム。
    said transmitter comprising an optical fiber propagating only a fundamental mode at a first wavelength and communicating using light having a second wavelength and having at least a first order mode component along with said fundamental mode;
    2. The measurement system of claim 1, wherein said second wavelength is a wavelength at which said optical fiber can propagate at least a first order mode along with said fundamental mode.
  7.  前記ケーブルは、前記測定器と一体とされている
     請求項1に記載の測定システム。
    2. The measurement system according to claim 1, wherein said cable is integral with said measurement device.
  8.  送信側測定器と、
     受信側測定器を備え、
     前記送信側測定器は、
     検査対象としてのケーブルの一端側のプラグに接続するための第1のレセプタクルと、
     前記第1のレセプタクルに光ファイバを介して光信号を出力する光送信部を有し、
     前記第1のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
     前記受信側測定器は、
     前記検査対象としての光ゲーブルの他端側のプラグに接続するための第2のレセプタクルと、
     前記ケーブルから前記第2のレセプタクルを通して入力される光信号を受信する光受信部を有し、
     前記第2のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
     前記第1のレセプタクルの光ファイバのコア位置および前記第2のレセプタクルの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて前記ケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部をさらに有する
     測定システム。
    a transmitter measuring instrument;
    Equipped with a receiver measuring instrument,
    The transmitting measuring instrument,
    a first receptacle for connecting to a plug on one end of a cable to be tested;
    an optical transmitter that outputs an optical signal to the first receptacle via an optical fiber;
    the first receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
    The receiving side measuring instrument
    a second receptacle for connecting to a plug on the other end side of the optical gable to be inspected;
    an optical receiver that receives an optical signal input from the cable through the second receptacle;
    the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
    A process of shifting the core position of the optical fiber of the first receptacle and the core position of the optical fiber of the second receptacle to a plurality of positions with respect to an optical axis, and output signals of the optical receiver at the plurality of positions. measurement system, further comprising a processing unit that determines whether the amount of axial deviation of the cable is within a specified range based on the value measured from the measurement system.
  9.  前記処理部は、前記第1のレセプタクルの光ファイバのコア位置および前記第2のレセプタクルの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理では、前記光軸を中心とする円の円周上の複数の位置にずらす
     請求項8に記載の測定システム。
    The processing unit shifts the core position of the optical fiber of the first receptacle and the core position of the optical fiber of the second receptacle to a plurality of positions with respect to the optical axis. 9. The measurement system of claim 8, wherein the displacement is a plurality of positions on the circumference of the circle.
  10.  前記処理部は、前記第1のレセプタクルの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、前記第1のレセプタクルに前記ケーブルに含まれる信号ラインまたは前記ケーブルに含まれない信号ラインを介して制御信号を送る
     請求項8に記載の測定システム。
    In the process of shifting the core position of the optical fiber of the first receptacle to a plurality of positions with respect to the optical axis, the processing unit is configured to shift a signal line included in the cable to the first receptacle or not included in the cable. 9. The measurement system of claim 8, wherein the control signal is sent via the signal line.
  11.  前記処理部は、前記ケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理では、前記光受信部の出力信号から測定されたパワー値またはビットエラーレート値を閾値と比較して判断する
     請求項8に記載の測定システム。
    The processing unit compares a power value or a bit error rate value measured from the output signal of the optical receiving unit with a threshold in the process of determining whether the amount of axis deviation of the cable is within a specified range. A measurement system according to claim 8 .
  12.  前記処理部は、前記判断結果をユーザに提示する処理をさらに行う
     請求項8に記載の測定システム。
    The measurement system according to claim 8, wherein the processing section further performs a process of presenting the determination result to a user.
  13.  前記ケーブルは、第1の波長では基本モードのみを伝搬する光ファイバを有し、第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をし、
     前記第2の波長は、前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
     請求項8に記載の測定システム。
    said cable having an optical fiber that propagates only a fundamental mode at a first wavelength and communicating using light having a second wavelength and having at least a first order mode component along with said fundamental mode;
    9. The measurement system of claim 8, wherein said second wavelength is a wavelength at which said optical fiber can propagate at least a first order mode along with said fundamental mode.
  14.  ケーブルと、
     測定器を備え、
     前記ケーブルは、
     検査対象としての受信機の第1のレセプタクルに接続するための一端側のプラグと前記測定器の第2のレセプタクルに接続するための他端側のプラグを有し、
     前記一端側のプラグは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
     前記測定器は、
     前記第2のレセプタクルと、
     前記第2のレセプタクルに光ファイバを介して光信号を出力する光送信部を有し、
     前記第2のレセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
     前記第2のレセプタクルの光ファイバのコア位置および前記ケーブルの一端側のプラグのコア位置をそれぞれ光軸に対して複数の位置にずらす処理を行う処理部をさらに有する
     測定システム。
    a cable;
    equipped with a measuring instrument,
    The cable is
    having a plug on one end for connecting to a first receptacle of a receiver to be tested and a plug on the other end for connecting to a second receptacle of the measuring instrument;
    The plug on the one end side is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
    The measuring instrument
    the second receptacle;
    an optical transmitter that outputs an optical signal to the second receptacle via an optical fiber;
    the second receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis;
    The measurement system further comprising a processing unit that shifts the core position of the optical fiber of the second receptacle and the core position of the plug on one end side of the cable to a plurality of positions with respect to the optical axis.
  15.  前記処理部は、前記第2のレセプタクルの光ファイバのコア位置および前記ケーブルの一端側のプラグの光ファイバのコア位置をそれぞれ光軸に対して複数の位置にずらす処理では、前記光軸を中心とする円の円周上の複数の位置にずらす
     請求項14に記載の測定システム。
    The processing unit shifts the core position of the optical fiber of the second receptacle and the core position of the optical fiber of the plug on one end side of the cable to a plurality of positions with respect to the optical axis. 15. The measurement system of claim 14, wherein a plurality of positions on the circumference of a circle with .
  16.  前記処理部は、前記一端側のプラグの光ファイバのコア位置を光軸に対して複数の位置にずらす処理では、前記一端側のプラグに前記ケーブルに含まれる信号ラインを介して制御信号を送る
     請求項14に記載の測定システム。
    In the process of shifting the core position of the optical fiber of the plug on the one end side to a plurality of positions with respect to the optical axis, the processing unit sends a control signal to the plug on the one end side via a signal line included in the cable. 15. Measurement system according to claim 14.
  17.  前記処理部は、前記複数の位置において前記受信機で受信される光信号に応じた値に基づいて前記受信機の軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部をさらに有する
     請求項14に記載の測定システム。
    The processing unit further includes a processing unit that determines whether the amount of axis deviation of the receiver is within a specified range based on values corresponding to the optical signals received by the receiver at the plurality of positions. 15. The measurement system of claim 14, comprising:
  18.  前記受信機で受信される光信号に応じた値は、前記光受信部の出力信号に基づいて測定されたパワー値またはビットエラーレート値である
     請求項17に記載の測定システム。
    18. The measurement system according to claim 17, wherein the value according to the optical signal received by the receiver is a power value or a bit error rate value measured based on the output signal of the optical receiver.
  19.  前記処理部は、前記判断結果をユーザに提示する処理をさらに行う
     請求項17に記載の測定システム。
    The measurement system according to claim 17, wherein the processing section further performs a process of presenting the determination result to a user.
  20.  前記受信機は、第1の波長では基本モードのみを伝搬する光ファイバを有し、第2の波長を持つと共に前記基本モードと共に少なくとも1次モードの成分を持つ光を用いて通信をし、
     前記第2の波長は、前記光ファイバが前記基本モードと共に少なくとも1次モードを伝搬し得る波長である
     請求項14に記載の測定システム。
    the receiver comprises an optical fiber that propagates only a fundamental mode at a first wavelength and communicates using light having a second wavelength and having at least a first order mode component along with the fundamental mode;
    15. The measurement system of claim 14, wherein said second wavelength is a wavelength at which said optical fiber can propagate at least a first order mode along with said fundamental mode.
  21.  レセプタクルと、
     前記レセプタクルを通して入力される光信号を受信する光受信部と、
     前記レセプタクルに一端側のプラグが接続されたケーブルの他端側のプラグのコア位置を光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて、前記ケーブルの他端側に接続される送信機の軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部を備える
     測定器。
    a receptacle;
    an optical receiver that receives an optical signal input through the receptacle;
    A process of shifting the core position of the plug on the other end side of the cable connected to the receptacle on the other end side to a plurality of positions with respect to the optical axis, and measuring from the output signal of the optical receiver at the plurality of positions a processing unit that determines whether the amount of axial deviation of a transmitter connected to the other end of the cable is within a specified range based on the value obtained.
  22.  レセプタクルと、
     前記レセプタクルを通して入力される光信号を受信する光受信部を備え、
     前記レセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
     前記レセプタクルおよび前記レセプタクルに一端側のプラグが接続されたケーブルの他端側のプラグに接続された送信側機器のレセプタクルのコア位置を光軸に対して複数の位置にずらす処理と、該複数の位置における前記光受信部の出力信号から測定された値に基づいて、前記ケーブルの軸ずれ量が規定範囲内に収まっているか判断する処理を行う処理部をさらに備える
     測定器。
    a receptacle;
    An optical receiver that receives an optical signal input through the receptacle,
    The receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
    a process of shifting a core position of the receptacle and a receptacle of a transmitting device connected to a plug on the other end of a cable having a plug on one end connected to the receptacle to a plurality of positions with respect to an optical axis; The measuring instrument further comprises a processing unit that determines whether the amount of axial deviation of the cable is within a specified range based on the value measured from the output signal of the optical receiving unit at the position.
  23.  レセプタクルと、
     前記レセプタクルに光ファイバを介して光信号を出力する光送信部を備え、
     前記レセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成される
     測定器。
    a receptacle;
    An optical transmitter that outputs an optical signal to the receptacle via an optical fiber,
    The receptacle is configured such that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis.
  24.  前記レセプタクルには、該レセプタクルに接続されるケーブルに含まれる信号ラインまたは前記ケーブルに含まれない信号ラインを介して前記複数の位置にずらすための制御信号が供給される
     請求項23に記載の測定器。
    24. The measurement of claim 23, wherein the receptacle is supplied with control signals for shifting to the plurality of positions via signal lines included in or not included in a cable connected to the receptacle. vessel.
  25.  レセプタクルと、
     前記レセプタクルに光ファイバを介して光信号を出力する光送信部を備え、
     前記レセプタクルは、光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成され、
     前記レセプタクルおよび前記レセプタクルに一端側のプラグが接続されたケーブルの他端側のプラグのコア位置を光軸に対して複数の位置にずらす処理を行う処理部をさらに備える
     測定器。
    a receptacle;
    An optical transmitter that outputs an optical signal to the receptacle via an optical fiber,
    The receptacle is configured so that the core position of the optical fiber can be shifted to a plurality of positions with respect to the optical axis,
    The measuring instrument further comprises a processing unit that shifts the core position of the receptacle and the plug on the other end of the cable connected to the receptacle with the plug on the one end to a plurality of positions with respect to the optical axis.
  26.  前記処理部は、前記複数の位置において前記ケーブルの他端側に接続された受信機で受信される光信号に応じた値に基づいて前記受信機の軸ずれ量が規定範囲内に収まっているか判断する処理をさらに行う
     請求項25に記載の測定器。
    The processing unit determines whether the amount of misalignment of the receiver is within a specified range based on the values corresponding to the optical signals received by the receiver connected to the other end of the cable at the plurality of positions. 26. The meter of claim 25, further performing the process of determining.
  27.  光ファイバのコア位置を光軸に対して複数の位置にずらすことが可能に構成されたプラグを備える
     ケーブル。
    A cable provided with a plug configured so that the core position of an optical fiber can be shifted to a plurality of positions with respect to an optical axis.
  28.  前記プラグに制御信号を送信する信号ラインをさらに備える
     請求項27に記載のケーブル。
    28. The cable of Claim 27, further comprising a signal line for sending control signals to said plug.
PCT/JP2022/011729 2021-08-04 2022-03-15 Measurement system, measuring instrument, and cable WO2023013136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021128010 2021-08-04
JP2021-128010 2021-08-04

Publications (1)

Publication Number Publication Date
WO2023013136A1 true WO2023013136A1 (en) 2023-02-09

Family

ID=85155534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011729 WO2023013136A1 (en) 2021-08-04 2022-03-15 Measurement system, measuring instrument, and cable

Country Status (1)

Country Link
WO (1) WO2023013136A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276750A (en) * 1993-04-02 1994-01-04 The Whitaker Corporation Connectors having translational and rotational compliance about the leading edge
JPH08105818A (en) * 1994-10-05 1996-04-23 Nippon Telegr & Teleph Corp <Ntt> Apparatus for automatically measuring optical characteristic of optical connector
JP2004325607A (en) * 2003-04-22 2004-11-18 Kyocera Corp Receptacle for optical module
JP2005241478A (en) * 2004-02-26 2005-09-08 Kyocera Corp Receptacle joint loss measurement device
JP2008122674A (en) * 2006-11-13 2008-05-29 Seiko Epson Corp Method of manufacturing optical module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276750A (en) * 1993-04-02 1994-01-04 The Whitaker Corporation Connectors having translational and rotational compliance about the leading edge
JPH08105818A (en) * 1994-10-05 1996-04-23 Nippon Telegr & Teleph Corp <Ntt> Apparatus for automatically measuring optical characteristic of optical connector
JP2004325607A (en) * 2003-04-22 2004-11-18 Kyocera Corp Receptacle for optical module
JP2005241478A (en) * 2004-02-26 2005-09-08 Kyocera Corp Receptacle joint loss measurement device
JP2008122674A (en) * 2006-11-13 2008-05-29 Seiko Epson Corp Method of manufacturing optical module

Similar Documents

Publication Publication Date Title
US11716146B2 (en) Optical communication apparatus, optical communication method, and optical communication system
EP3640692B9 (en) Optical connector module
JP7396304B2 (en) Optical communication equipment, optical communication method, and optical communication system
US20060083461A1 (en) Multimode wavelength multiplexing optical transceiver
CN114641716B (en) Optical module, adjusting device and adjusting method
CN112041718B (en) Optical communication connector, optical transmitter, optical receiver, optical communication system, and optical communication cable
WO2020153237A1 (en) Optical communication device, optical communication method, and optical communication system
US6851870B1 (en) Method for measuring and assembling transceiver optical sub-assembly
WO2023013136A1 (en) Measurement system, measuring instrument, and cable
JP7428140B2 (en) Optical connectors, optical cables and electronic equipment
US20090016683A1 (en) Angled fiber ferrule having off-axis fiber through-hole and method of coupling an optical fiber at an off-axis angle
US20110096563A1 (en) Method, device, and system for controlling encircled flux
JP7459519B2 (en) Optical communication device, optical communication method, and optical communication system
WO2023145570A1 (en) Determination device, determination method, and program
WO2023157761A1 (en) Determination device, determination method, and program
WO2023195280A1 (en) Optical cable, electronic device, and optical communication system
WO2020039636A1 (en) Optical connector unit and optical connection structure
CN114616500A (en) Multi-core optical fiber and fan-out assembly
JP7409119B2 (en) Optical transmitter, wavelength width adjustment device, and wavelength width adjustment method
JP7459528B2 (en) Optical receiver, wavelength width adjustment device, and wavelength width adjustment method
EP4283886A1 (en) Optical waveguide, optical communication device, optical communication method, and optical communication system
WO2018173673A1 (en) Optical loopback member and optical loopback connector
WO2021145246A1 (en) Optical communication device, optical communication method, optical communication system, light transmission device, light reception device, wavelength interval adjustment device, and wavelength interval adjustment method
US20240035923A1 (en) Measuring device, measuring method, and electronic device
WO2023176798A1 (en) Multicore optical fiber, optical combiner, and fiber properties measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE